WO2022051965A1 - Zero beam overlap millimeter wave small cell network - Google Patents

Zero beam overlap millimeter wave small cell network Download PDF

Info

Publication number
WO2022051965A1
WO2022051965A1 PCT/CN2020/114416 CN2020114416W WO2022051965A1 WO 2022051965 A1 WO2022051965 A1 WO 2022051965A1 CN 2020114416 W CN2020114416 W CN 2020114416W WO 2022051965 A1 WO2022051965 A1 WO 2022051965A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
cells
beam set
overlap
Prior art date
Application number
PCT/CN2020/114416
Other languages
French (fr)
Inventor
Li Tan
Chaofeng HUI
Meng Liu
Ying Wang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/114416 priority Critical patent/WO2022051965A1/en
Publication of WO2022051965A1 publication Critical patent/WO2022051965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for a zero beam overlap millimeter wave small cell network.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a base station includes selecting a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicating, using one or more beams of the beam set, with one or more user UEs in the cell associated with the base station.
  • a method of wireless communication performed by a UE includes selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicating with a base station using the beam selected from the beam set associated with the cell.
  • a method of wireless communication performed by a network controller includes receiving beam information for a plurality of cells; and determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  • a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
  • a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicate with a base station using the beam selected from the beam set associated with the cell.
  • a network controller for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive beam information for a plurality of cells; and determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicate with a base station using the beam selected from the beam set associated with the cell.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to: receive beam information for a plurality of cells; and determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  • an apparatus for wireless communication includes means for selecting, for a cell, a beam set that does not overlap with beam sets of neighboring cells; and means for communicating, using one or more beams of the beam set, with one or more UEs in the cell.
  • an apparatus for wireless communication includes means for selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and means for communicating with a base station using the beam selected from the beam set associated with the cell.
  • an apparatus for wireless communication includes means for receiving beam information for a plurality of cells; and means for determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example beamforming architecture that supports beamforming for millimeter wave (mmW) communications, in accordance with various aspects of the present disclosure.
  • mmW millimeter wave
  • Fig. 4 is a diagram illustrating an example of a synchronization signal (SS) hierarchy, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example of beams generated by a mmW antenna panel, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example beam table for a mmW cell, in accordance with various aspects of the present disclosure.
  • Figs. 7-8 are diagrams illustrating examples associated with wireless communication using a zero beam overlap millimeter wave small cell network, in accordance with various aspects of the present disclosure.
  • Figs. 9-11 are diagrams illustrating example processes associated with wireless communication using a zero beam overlap millimeter wave small cell network, in accordance with various aspects of the present disclosure.
  • FIGS. 12-14 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 7-11.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 7-11.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with wireless communication using a zero beam overlap millimeter wave small cell network, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 190 of network controller 130, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110, the UE 120, and/or the network controller 130, may cause the one or more processors, the UE 120, the base station 110, and/or the network controller 130 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • UE 120 may include means for selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells, means for communicating with a base station using the beam selected from the beam set associated with the cell, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for selecting, for a cell, a beam set that does not overlap with beam sets of neighboring cells, means for communicating, using one or more beams of the beam set, with one or more UES in the cell, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • network controller 130 may include means for receiving beam information for a plurality of cells, means for determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells, means for transmitting, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell, means for storing a beam table including information identifying the respective beam set for each cell of the plurality of cells, and/or the like.
  • such means may include one or more components of network controller 130 described in connection with Fig. 2, such as controller/processor 290, communication unit 294, memory 292, and/or the like.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example beamforming architecture 300 that supports beamforming for millimeter wave (mmW) communications, in accordance with various aspects of the present disclosure.
  • architecture 300 may implement aspects of wireless network 100.
  • architecture 300 may be implemented in a transmitting device (e.g., a first wireless communication device, UE, or base station) and/or a receiving device (e.g., a second wireless communication device, UE, or base station) , as described herein.
  • Fig. 3 is a diagram illustrating example hardware components of a wireless communication device in accordance with certain aspects of the disclosure.
  • the illustrated components may include those that may be used for antenna element selection and/or for beamforming for transmission of wireless signals.
  • the architecture 300 includes a modem (modulator/demodulator) 302, a digital to analog converter (DAC) 304, a first mixer 306, a second mixer 308, and a splitter 310.
  • the architecture 300 also includes multiple first amplifiers 312, multiple phase shifters 314, multiple second amplifiers 316, and an antenna array 318 that includes multiple antenna elements 320.
  • Reference numbers 322, 324, 326, and 328 indicate regions in the architecture 300 in which different types of signals travel or are processed. Specifically, reference number 322 indicates a region in which digital baseband signals travel or are processed, reference number 324 indicates a region in which analog baseband signals travel or are processed, reference number 326 indicates a region in which analog intermediate frequency (IF) signals travel or are processed, and reference number 328 indicates a region in which analog radio frequency (RF) signals travel or are processed.
  • the architecture also includes a local oscillator A 330, a local oscillator B 332, and a controller/processor 334. In some aspects, controller/processor 334 corresponds to controller/processor 240 of the base station described above in connection with Fig. 2 and/or controller/processor 280 of the UE described above in connection with Fig. 2.
  • Each of the antenna elements 320 may include one or more sub-elements for radiating or receiving RF signals.
  • a single antenna element 320 may include a first sub-element cross-polarized with a second sub-element that can be used to independently transmit cross-polarized signals.
  • the antenna elements 320 may include patch antennas, dipole antennas, or other types of antennas arranged in a linear pattern, a two dimensional pattern, or another pattern.
  • a spacing between antenna elements 320 may be such that signals with a desired wavelength transmitted separately by the antenna elements 320 may interact or interfere (e.g., to form a desired beam) . For example, given an expected range of wavelengths or frequencies, the spacing may provide a quarter wavelength, half wavelength, or other fraction of a wavelength of spacing between neighboring antenna elements 320 to allow for interaction or interference of signals transmitted by the separate antenna elements 320 within that expected range.
  • the modem 302 processes and generates digital baseband signals and may also control operation of the DAC 304, first and second mixers 306, 308, splitter 310, first amplifiers 312, phase shifters 314, and/or the second amplifiers 316 to transmit signals via one or more or all of the antenna elements 320.
  • the modem 302 may process signals and control operation in accordance with a communication standard such as a wireless standard discussed herein.
  • the DAC 304 may convert digital baseband signals received from the modem 302 (and that are to be transmitted) into analog baseband signals.
  • the first mixer 306 upconverts analog baseband signals to analog IF signals within an IF using a local oscillator A 330.
  • the first mixer 306 may mix the signals with an oscillating signal generated by the local oscillator A 330 to “move” the baseband analog signals to the IF. In some cases, some processing or filtering (not shown) may take place at the IF.
  • the second mixer 308 upconverts the analog IF signals to analog RF signals using the local oscillator B 332. Similar to the first mixer, the second mixer 308 may mix the signals with an oscillating signal generated by the local oscillator B 332 to “move” the IF analog signals to the RF or the frequency at which signals will be transmitted or received.
  • the modem 302 and/or the controller/processor 334 may adjust the frequency of local oscillator A 330 and/or the local oscillator B 332 so that a desired IF and/or RF frequency is produced and used to facilitate processing and transmission of a signal within a desired bandwidth.
  • signals upconverted by the second mixer 308 are split or duplicated into multiple signals by the splitter 310.
  • the splitter 310 in architecture 300 splits the RF signal into multiple identical or nearly identical RF signals.
  • the split may take place with any type of signal, including with baseband digital, baseband analog, or IF analog signals.
  • Each of these signals may correspond to an antenna element 320, and the signal travels through and is processed by amplifiers 312, 316, phase shifters 314, and/or other elements corresponding to the respective antenna element 320 to be provided to and transmitted by the corresponding antenna element 320 of the antenna array 318.
  • the splitter 310 may be an active splitter that is connected to a power supply and provides some gain so that RF signals exiting the splitter 310 are at a power level equal to or greater than the signal entering the splitter 310.
  • the splitter 310 is a passive splitter that is not connected to power supply and the RF signals exiting the splitter 310 may be at a power level lower than the RF signal entering the splitter 310.
  • the resulting RF signals may enter an amplifier, such as a first amplifier 312, or a phase shifter 314 corresponding to an antenna element 320.
  • the first and second amplifiers 312, 316 are illustrated with dashed lines because one or both of them might not be necessary in some aspects. In some aspects, both the first amplifier 312 and second amplifier 316 are present. In some aspects, neither the first amplifier 312 nor the second amplifier 316 is present. In some aspects, one of the two amplifiers 312, 316 is present but not the other.
  • the splitter 310 is an active splitter, the first amplifier 312 may not be used.
  • the phase shifter 314 is an active phase shifter that can provide a gain, the second amplifier 316 might not be used.
  • the amplifiers 312, 316 may provide a desired level of positive or negative gain.
  • a positive gain (positive dB) may be used to increase an amplitude of a signal for radiation by a specific antenna element 320.
  • a negative gain (negative dB) may be used to decrease an amplitude and/or suppress radiation of the signal by a specific antenna element.
  • Each of the amplifiers 312, 316 may be controlled independently (e.g., by the modem 302 or the controller/processor 334) to provide independent control of the gain for each antenna element 320.
  • the modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the splitter 310, first amplifiers 312, phase shifters 314, and/or second amplifiers 316 that may be used to configure a gain to provide a desired amount of gain for each component and thus each antenna element 320.
  • the phase shifter 314 may provide a configurable phase shift or phase offset to a corresponding RF signal to be transmitted.
  • the phase shifter 314 may be a passive phase shifter not directly connected to a power supply. Passive phase shifters might introduce some insertion loss.
  • the second amplifier 316 may boost the signal to compensate for the insertion loss.
  • the phase shifter 314 may be an active phase shifter connected to a power supply such that the active phase shifter provides some amount of gain or prevents insertion loss.
  • the settings of each of the phase shifters 314 are independent, meaning that each can be independently set to provide a desired amount of phase shift or the same amount of phase shift or some other configuration.
  • the modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the phase shifters 314 and which may be used to configure the phase shifters 314 to provide a desired amount of phase shift or phase offset between antenna elements 320.
  • RF signals received by the antenna elements 320 are provided to one or more first amplifiers 356 to boost the signal strength.
  • the first amplifiers 356 may be connected to the same antenna arrays 318 (e.g., for time division duplex (TDD) operations) .
  • the first amplifiers 356 may be connected to different antenna arrays 318.
  • the boosted RF signal is input into one or more phase shifters 354 to provide a configurable phase shift or phase offset for the corresponding received RF signal to enable reception via one or more Rx beams.
  • the phase shifter 354 may be an active phase shifter or a passive phase shifter.
  • the settings of the phase shifters 354 are independent, meaning that each can be independently set to provide a desired amount of phase shift or the same amount of phase shift or some other configuration.
  • the modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the phase shifters 354 and which may be used to configure the phase shifters 354 to provide a desired amount of phase shift or phase offset between antenna elements 320 to enable reception via one or more Rx beams.
  • the outputs of the phase shifters 354 may be input to one or more second amplifiers 352 for signal amplification of the phase shifted received RF signals.
  • the second amplifiers 352 may be individually configured to provide a configured amount of gain.
  • the second amplifiers 352 may be individually configured to provide an amount of gain to ensure that the signals input to combiner 350 have the same magnitude.
  • the amplifiers 352 and/or 356 are illustrated in dashed lines because they might not be necessary in some aspects. In some aspects, both the amplifier 352 and the amplifier 356 are present. In another aspect, neither the amplifier 352 nor the amplifier 356 are present. In other aspects, one of the amplifiers 352, 356 is present but not the other.
  • the combiner 350 in architecture 300 combines the RF signal into a signal.
  • the combiner 350 may be a passive combiner (e.g., not connected to a power source) , which may result in some insertion loss.
  • the combiner 350 may be an active combiner (e.g., connected to a power source) , which may result in some signal gain.
  • When combiner 350 is an active combiner it may provide a different (e.g., configurable) amount of gain for each input signal so that the input signals have the same magnitude when they are combined.
  • the combiner 350 may not need the second amplifier 352 because the active combiner may provide the signal amplification.
  • the output of the combiner 350 is input into mixers 348 and 346.
  • Mixers 348 and 346 generally down convert the received RF signal using inputs from local oscillators 372 and 370, respectively, to create intermediate or baseband signals that carry the encoded and modulated information.
  • the output of the mixers 348 and 346 are input into an analog-to-digital converter (ADC) 344 for conversion to analog signals.
  • ADC analog-to-digital converter
  • the analog signals output from ADC 344 is input to modem 302 for baseband processing, such as decoding, de-interleaving, and/or the like.
  • the architecture 300 is given by way of example only to illustrate an architecture for transmitting and/or receiving signals.
  • the architecture 300 and/or each portion of the architecture 300 may be repeated multiple times within an architecture to accommodate or provide an arbitrary number of RF chains, antenna elements, and/or antenna panels.
  • numerous alternate architectures are possible and contemplated.
  • a single antenna array 318 is shown, two, three, or more antenna arrays may be included, each with one or more of their own corresponding amplifiers, phase shifters, splitters, mixers, DACs, ADCs, and/or modems.
  • a single UE may include two, four, or more antenna arrays for transmitting or receiving signals at different physical locations on the UE or in different directions.
  • mixers, splitters, amplifiers, phase shifters and other components may be located in different signal type areas (e.g., represented by different ones of the reference numbers 322, 324, 326, 328) in different implemented architectures.
  • a split of the signal to be transmitted into multiple signals may take place at the analog RF, analog IF, analog baseband, or digital baseband frequencies in different examples.
  • amplification and/or phase shifts may also take place at different frequencies.
  • one or more of the splitter 310, amplifiers 312, 316, or phase shifters 314 may be located between the DAC 304 and the first mixer 306 or between the first mixer 306 and the second mixer 308.
  • the functions of one or more of the components may be combined into one component.
  • the phase shifters 314 may perform amplification to include or replace the first and/or or second amplifiers 312, 316.
  • a phase shift may be implemented by the second mixer 308 to obviate the need for a separate phase shifter 314. This technique is sometimes called local oscillator (LO) phase shifting.
  • LO local oscillator
  • the modem 302 and/or the controller/processor 334 may control one or more of the other components 304 through 372 to select one or more antenna elements 320 and/or to form beams for transmission of one or more signals.
  • the antenna elements 320 may be individually selected or deselected for transmission of a signal (or signals) by controlling an amplitude of one or more corresponding amplifiers, such as the first amplifiers 312 and/or the second amplifiers 316.
  • Beamforming includes generation of a beam using multiple signals on different antenna elements, where one or more or all of the multiple signals are shifted in phase relative to each other.
  • the formed beam may carry physical or higher layer reference signals or information.
  • each signal of the multiple signals is radiated from a respective antenna element 320
  • the radiated signals interact, interfere (constructive and destructive interference) , and amplify each other to form a resulting beam.
  • the shape (such as the amplitude, width, and/or presence of side lobes) and the direction (such as an angle of the beam relative to a surface of the antenna array 318) can be dynamically controlled by modifying the phase shifts or phase offsets imparted by the phase shifters 314 and amplitudes imparted by the amplifiers 312, 316 of the multiple signals relative to each other.
  • the controller/processor 334 may be located partially or fully within one or more other components of the architecture 300. For example, the controller/processor 334 may be located within the modem 302 in some aspects.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of a synchronization signal (SS) hierarchy, in accordance with various aspects of the present disclosure.
  • the SS hierarchy may include an SS burst set 405, which may include multiple SS bursts 410, shown as SS burst 0 through SS burst N-1, where N is a maximum number of repetitions of the SS burst 410 that may be transmitted by the base station.
  • each SS burst 410 may include one or more SS blocks (SSBs) 415, shown as SSB 0 through SSB M-1, where M is a maximum number of SSBs 415 that can be carried by an SS burst 410.
  • SSBs SS blocks
  • different SSBs 415 may be beam-formed differently (e.g., transmitted using different beams) , and may be used for cell search, cell acquisition, beam management, beam selection, and/or the like (e.g., as part of an initial network access procedure) .
  • An SS burst set 405 may be periodically transmitted by a wireless node (e.g., base station 110) , such as every X milliseconds, as shown in Fig. 4.
  • an SS burst set 405 may have a fixed or dynamic length, shown as Y milliseconds in Fig. 4.
  • an SS burst set 405 or an SS burst 410 may be referred to as a discovery reference signal (DRS) transmission window, an SSB measurement time configuration (SMTC) window, and/or the like.
  • DRS discovery reference signal
  • SMTC SSB measurement time configuration
  • an SSB 415 may include resources that carry a primary synchronization signal (PSS) 420, a secondary synchronization signal (SSS) 425, a physical broadcast channel (PBCH) 430, and/or the like.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • multiple SSBs 415 are included in an SS burst 410 (e.g., with transmission on different beams) , and the PSS 420, the SSS 425, and/or the PBCH 430 may be the same across each SSB 415 of the SS burst 410.
  • a single SSB 415 may be included in an SS burst 410.
  • the SSB 415 may be at least four symbols (e.g., OFDM symbols) in length, where each symbol carries one or more of the PSS 420 (e.g., occupying one symbol) , the SSS 425 (e.g., occupying one symbol) , and/or the PBCH 430 (e.g., occupying two symbols) .
  • an SSB 415 may be referred to as an SS/PBCH block.
  • the symbols of an SSB 415 are consecutive, as shown in Fig. 4. In some aspects, the symbols of an SSB 415 are non-consecutive. Similarly, in some aspects, one or more SSBs 415 of the SS burst 410 may be transmitted in consecutive radio resources (e.g., consecutive symbols) during one or more slots. Additionally, or alternatively, one or more SSBs 415 of the SS burst 410 may be transmitted in non-consecutive radio resources.
  • the SS bursts 410 may have a burst period, and the SSBs 415 of the SS burst 410 may be transmitted by a wireless node (e.g., base station 110) according to the burst period. In this case, the SSBs 415 may be repeated during each SS burst 410.
  • the SS burst set 405 may have a burst set periodicity, whereby the SS bursts 410 of the SS burst set 405 are transmitted by the wireless node according to the fixed burst set periodicity. In other words, the SS bursts 410 may be repeated during each SS burst set 405.
  • an SSB 415 may include an SSB index, which may correspond to a beam used to carry the SSB 415.
  • a UE 120 may monitor for and/or measure SSBs 415 using different receive (Rx) beams during an initial network access procedure and/or a cell search procedure, among other examples. Based at least in part on the monitoring and/or measuring, the UE 120 may indicate one or more SSBs 415 with a best signal parameter (e.g., a reference signal received power (RSRP) parameter and/or the like) to a base station 110.
  • RSRP reference signal received power
  • the base station 110 and the UE 120 may use the one or more indicated SSBs 415 to select one or more beams to be used for communication between the base station 110 and the UE 120 (e.g., for a random access channel (RACH) procedure and/or the like) . Additionally, or alternatively, the UE 120 may use the SSB 415 and/or the SSB index to determine a cell timing for a cell via which the SSB 415 is received (e.g., a serving cell) .
  • RACH random access channel
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of beams generated by a mmW antenna panel, in accordance with various aspects of the present disclosure.
  • a mmW antenna panel 505 may be capable of generating beams over a range of azimuth and elevation angles.
  • the azimuth angles are angles in a horizontal plane of the antenna panel 505, and the elevation angles are angles in a vertical plane of the antenna panel 505.
  • first beam 510 having an azimuth angle of 0 degrees and an elevation angle of 0 degrees
  • second beam 515 having an azimuth angle of 45 degrees and an elevation angle of 0 degrees
  • third beam 520 having an azimuth angle of -45 degrees and an elevation angle of 0 degrees.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example beam table 600 for a mmW cell, in accordance with various aspects of the present disclosure.
  • An antenna panel e.g., antenna panel 505 of Fig. 5 of a mmW base station may have a physical capability to generate beams over a certain range of azimuth and elevation angles.
  • the antenna panel of the mmW base station may have a physical capability to generate beams over an elevation span of 120 degrees and an azimuth span of 120 degrees.
  • the beam table 600 lists predefined beams (e.g., 128 predefined beams) that form a spatial array of beams for the mmW cell.
  • the numbers in the beam table may be beam identifiers (IDs) that correspond to respective beams having respective azimuth and elevation angles.
  • IDs beam identifiers
  • beam ID 10 may correspond to a beam having an elevation angle of 60 degrees and an azimuth angle of 15 degrees.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • mmW base stations may serve cells with small coverage areas, such as limited geographical areas or indoor spaces. Such mmW cells may be referred to as “small cells. ”
  • multiple mmW small cells may be used for UEs in a smart factory.
  • mmW communications may provide increased spectrum width and shorter air interface latency for the smart factory UEs.
  • Such smart factory UEs may be static (e.g., a high definition video camera) or semi-static (e.g., an augmented reality capable assembly station) .
  • Static UEs may have a fixed location. Semi-static UEs may move within a limited range of locations.
  • a high data rate, especially for uplink communications, may be a priority for a smart factory.
  • a mmW base station may be capable of generating beams over a large range of azimuth and elevation angles. Accordingly, when multiple mmW base stations are deployed to provide multiple neighboring mmW small cells (e.g., in a smart factory or the like) , there may be significant overlap in the spatial domain between the beams of the neighboring mmW small cells. Overlapping beams from neighboring mmW small cells may cause interference, which may lead to a reduced data rate. In addition, overlapping beams from neighboring mmW small cells may result in unnecessary power consumption by mmW base stations to provide redundant coverage to certain coverage areas.
  • Some techniques and apparatuses described herein enable a network of cells (e.g., mmW cells) in which beams of neighboring cells do not overlap.
  • a base station may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells.
  • the base station may use one or more beams of the selected beam set to communicate with one or more UEs in the cell associated with the base station.
  • the beams in the cell associated with the base station do not overlap with beams in neighboring cells, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base station and the neighboring base stations.
  • Fig. 7 is a diagram illustrating an example 700 associated with wireless communication using a zero beam overlap mmW small cell network, in accordance with various aspects of the present disclosure.
  • example 700 includes communication between a base station 110 and a UE 120.
  • base station 110 and UE 120 may be included in a wireless network, such as wireless network 100.
  • Base station 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink.
  • the base station 110 may be a mmW base station.
  • the base station 110 may select, for a cell associated with the base station 110, a beam set that does not overlap with beam sets of neighboring cells.
  • a cell associated with the base station 110 there may be zero beam overlap between the beam set of the cell (e.g., mmW cell) associated with the base station 110 and beam sets of neighboring cells. That is, no beams of the beam set of the cell associated with the base station 110 may overlap in a spatial domain with any beams of the beam sets of the neighboring cells.
  • neighborhboring cells may refer to any adjacent cells, or “neighboring cells” may refer to any cells within a certain range of the cell associated with the base station 110.
  • the beam set selected by the base station 110 may include a subset of azimuth angles and/or elevation angles for the base station 110.
  • the beam set may include azimuth angles and/or elevation angles in reduced range as compared with a range of azimuth angles and/or elevation angles over which the base station 110 is physically capable of generating beams.
  • the base station 110 may select a subset of predefined beams in a spatial domain from a set of predefined beams associated with the base station 110.
  • the base station 110 may select a beam set 710 that is a subset of predefined beams listed in a beam table associated with the base station 110. In the example 700 shown in Fig.
  • the beam set 710 may include beams 7-10, 23-26, 39-42, and 55-58 of the 128 beams listed in the beam table.
  • the selected beam set 710 may correspond to a reduced range of azimuth angles and elevation angles as compared with the entire set of predefined beams listed in the beam table.
  • the beam set selected for the cell associated with the base station 110 may cover a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
  • the UE 120 and/or one or more other UEs in the cell associated with the base station 110 may be static or semi-static UEs, and the beam set for the cell associated with the base station 110 may be selected based at least in part on a location (or range of locations) associated with the UE 120 and/or the one or more other UEs.
  • the beam set for the cell associated with the base station 110 may be selected based at least in part on beam measurements in the cell associated with the base station 110 (and/or beam measurements in the neighboring cells) .
  • a manual walk test e.g., with a mobile UE
  • the beam measurements may be used to determine whether there is any overlap between beams associated with the base station 110 and beams associated with the one or more neighboring base stations.
  • a beam associated with the base station 110 overlaps with a beam associated with a neighboring base station
  • the determination of which one of the base station 110 or the neighboring base station will not include the overlapping beam in the selected beam set may be based at least in part on the beam measurements on the overlapping beams. For example, the stronger of the overlapping beams may be used, while the weaker of the overlapping beams may not be included in the selected beam set for the base station 110 or the neighboring base station.
  • the beam set for the cell associated with the base station 110 may be selected based at least in part on a static analysis of the coverage area of the cell associated with the base station 110 and coverage areas of the neighboring cells.
  • the beam set for the cell associated with the base station 110 may be selected based at least in part on a beam table that includes information identifying the beam sets of the neighboring cells.
  • the beam table may also include information identifying the beam set selected for the cell associated with the base station 110.
  • the beam table may be stored in the base station 110, one or more neighboring base stations, and/or another network device (e.g., network controller 130) .
  • the base station 110 may independently select the beam set that does not overlap with beam sets of neighboring cells.
  • the base station 110 may communicate with one or more neighboring base stations to select the beam set for the cell associated with the base station 110.
  • the base station 110 may receive, from the one or more neighboring base stations, beam information associated with the neighboring cells, and select the beam set that does not overlap with the beam sets of the neighboring cells based at least in part on the beam information received from the one or more neighboring base stations.
  • a network controller may determine the beam set for the cell associated with the base station 110 and the beam sets for the neighboring cells.
  • the network controller may be a central beam management server that maintains a beam table including information that identifies the beam set for the cell associated with the base station 110 and the beam sets of the neighboring cells.
  • the base station 110 and one or more neighboring base stations may communicate with the network controller and select the respective beam sets identified in the beam table maintained by the network controller.
  • the UE 120 may select a beam from the beam set selected by the base station 110.
  • the UE 120 may be in the cell associated with the base station 110, and may select a beam from the beam set that does not overlap with beam sets of neighboring cells.
  • the base station 110 may sweep through the beams of the selected beam set and transmit SSBs on the beams of the selected beam set.
  • the SSBs may include SSB indexes, which may correspond to the beams used to carry the SSBs.
  • the UE 120 may monitor for and/or measure the SSBs using different Rx beams during an initial network access procedure and/or a cell search procedure, among other examples. Based at least in part on the monitoring and/or measuring of the SSBs, the UE 120 may indicate one or more SSBs with a best signal parameter (e.g., RSRP or the like) to the base station 110.
  • the base station 110 and the UE 120 may use the one or more indicated SSBs to select one or more beams of the selected beam set for the cell to be used for communication between the base station 110 and the UE 120.
  • a best signal parameter e.g., RSRP or the like
  • the base station 110 and the UE 120 may communicate using the selected beam from the beam set selected for the cell.
  • One or more beams may be selected, for communication between the base station 110 and the UE 120, from the beam set that does not overlap with beam sets of the neighboring cells.
  • the base station 110 may receive uplink communications from the UE 120 via the one or more beams selected from the beam set and/or transmit downlink communications to the UE 120 via the one or more beams selected from the beam set.
  • the UE 120 may transmit uplink communications to the base station 110 via the one or more beams selected from the beam set and/or receive downlink communications from the base station 110 via the one or more beams selected from the beam set.
  • the base station 110 may select a beam set, for a cell associated with the base station 110, that does not overlap with beam sets of neighboring cells.
  • the base station may use one or more beams of the selected beam set to communicate with the UE 120 and/or one or more other UEs in the cell associated with the base station.
  • the beams in the cell associated with the base station do not overlap with beams in neighboring cells, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base station 110 and the neighboring base stations.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • Fig. 8 is a diagram illustrating an example 800 associated with wireless communication using a zero beam overlap mmW small cell network, in accordance with various aspects of the present disclosure.
  • example 800 includes communication between base stations 110 and UEs 120.
  • the base stations 110 and the UEs 120 may be included in a wireless network, such as wireless network 100.
  • the base stations 110 and the UEs 120 may communicate on wireless access links, which may include uplinks and downlinks.
  • the base stations 110 may include a first base station 110-1, a second base station 110-2, and a third base station 110-3.
  • the first base station 110-1, the second base station 110-2, and the third base station 110-3 may be mmW base stations.
  • the first base station 110-1, the second base station 110-2, and the third base station 110-3 may communicate with a network controller 130.
  • the UEs 120 may include a first UE 120-1, a second UE 120-2, a third UE 120-3, a fourth UE 120-4, a fifth UE 120-5, and a sixth UE 120-6.
  • one or more of the UEs 120 may be static or semi-static UEs.
  • the base stations 110, the UEs 120, and the network controller 130 may be associated with a smart factory or the like.
  • a first beam set may be selected for a first cell associated with the first base station 110-1.
  • the first beam set may define a first coverage area 805-1 for the first cell.
  • a second beam set may be selected for a second cell associated with the second base station 110-2.
  • the second beam set may define a second coverage area 805-2 for the second cell.
  • a third beam set may be selected for a third cell associated with the third base station 110-3.
  • the third beam set may define a third coverage area 805-3 for the third cell.
  • the first beam set, the second beam set, and the third beam set may be selected such that there is zero beam overlap between the first beam set, the second beam set, and the third beam set. Accordingly, the first coverage area 805-1, the second coverage area, 805-2, and the third coverage area 805-3 may not overlap with each other.
  • the first UE 120-1 and the second UE 120-2 may be in the first coverage area 805-1 of the first cell.
  • the first base station 110-1 may communicate with the first UE 120-1 and the second UE 120-2 via beams selected from the first beam set.
  • the third UE 120-3 and the fourth UE 120-4 may be in the second coverage area 805-2 of the second cell.
  • the second base station 110-2 may communicate with the third UE 120-3 and the fourth UE 120-4 via beams selected from the second beam set.
  • the fifth UE 120-5 and the sixth UE 120-6 may be in the third coverage area 805-3 of the third cell.
  • the third base station 110-3 may communicate with the fifth UE 120-5 and the sixth UE 120-6 via beams selected from the third beam set.
  • the network controller 130 may determine the first beam set for the first cell associated with the first base station 110-1, the second beam set for the second cell associated with the second base station 110-2, and the third beam set for the third cell associated with the third base station 110-3. For example, the network controller 130 may receive beam information associated with the first cell, the second cell, and the third cell, and determine the first beam set, the second beam set, and the third beam set based at least in part on the beam information. In some aspects, the network controller 130 may receive the beam information associated with the first cell, the second cell, and the third cell from the first base station 110-1, the second base station 110-2, and the third base station 110-3, respectively.
  • the network controller 130 may determine the first beam set, the second beam set, and the third beam set, such that no beams in the first beam set, the second beam set, and the third beam set overlap in a spatial domain. In some aspects, the network controller 130 may determine the first beam set, the second beam set, and the third beam set to define the first coverage area 805-1, the second coverage area 805-2, and the third coverage area 805-3 to provide maximum coverage for a particular space (e.g., a building, such as a smart factory or the like) without any overlap between the first coverage area 805-1, the second coverage area 805-2, and the third coverage area 805-3.
  • a particular space e.g., a building, such as a smart factory or the like
  • the network controller 130 may determine the first beam set, the second beam set, and the third beam set based in part on respective locations associated with one or more static or semi-static UEs (e.g., UEs 120-1, 120-2, 120-3, 120-4, 120-5, and/or 120-6) .
  • static or semi-static UEs e.g., UEs 120-1, 120-2, 120-3, 120-4, 120-5, and/or 120-6 .
  • the network controller 130 may be a central beam management server that maintains a beam table that includes information identifying the first beam set, the second beam set, and the third beam set.
  • the information identifying the first beam set may be retrieved from the network controller 130 by the first base station 110-1 and/or transmitted to the first base station 110-1 by the network controller 130.
  • the information identifying the second beam set may be retrieved from the network controller 130 by the second base station 110-2 and/or transmitted to the second base station 110-2 by the network controller 130.
  • the information identifying the third beam set may be retrieved from the network controller 130 by the third base station 110-3 and/or transmitted to the third base station 110-3 by the network controller 130.
  • the base stations may provide a network of cells (e.g., mmW cells) in which the beams of neighboring cells do not overlap. For each cell, a beam may be selected that does not overlap with the beam sets of the neighboring cells. Each base station may use one or more beams of the respective selected beam set to communicate with one or more UEs in the cell associated with that base station. As a result, the beams in neighboring cells do not overlap, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base stations.
  • cells e.g., mmW cells
  • a beam may be selected that does not overlap with the beam sets of the neighboring cells.
  • Each base station may use one or more beams of the respective selected beam set to communicate with one or more UEs in the cell associated with that base station.
  • the beams in neighboring cells do not overlap, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base stations.
  • Fig. 8 is provided as an example. Other examples may differ from what is described with respect to Fig. 8.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
  • the base station e.g., base station 110
  • process 900 may include selecting a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells (block 910) .
  • the base station e.g., using selection component 1208, depicted in Fig. 12
  • process 900 may include communicating, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station (block 920) .
  • the base station e.g., using reception component 1202 and/or transmission component 1204, depicted in Fig. 12
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the base station is a millimeter wave base station.
  • the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
  • the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
  • the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
  • the one or more UEs include one or more static or semi-static UEs, and selecting the beam set for the cell associated with the base station is based at least in part on one or more locations associated with respective UEs of the one or more static or semi-static UEs.
  • selecting the beam set for the cell associated with the base station is based at least in part on beam measurements in the cell associated with the base station and the neighbor cells.
  • selecting the beam set for the cell associated with the base station is based at least in part on static analysis of a coverage area of the cell associated with the base station and of coverage areas of the neighbor cells.
  • selecting the beam set for the cell associated with the base station is based at least in part on a beam table including information identifying the beam sets of the neighboring cells.
  • the beam table includes information identifying the beam set for the cell associated with the base station.
  • selecting the beam set for the cell associated with the base station comprises receiving beam information from one or more other base stations associated with one or more of the neighboring cells, and selecting the beam set for the cell associated with the base station that does not overlap with the beam sets of the one or more neighboring cells based at least in part on the beam information.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 1000 is an example where the UE (e.g., UE 120) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
  • the UE e.g., UE 120
  • process 1000 may include selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells (block 1010) .
  • the UE e.g., using selection component 1308, depicted in Fig. 13
  • process 1000 may include communicating with a base station using the beam selected from the beam set associated with the cell (block 1020) .
  • the UE e.g., using reception component 1302 and/or transmission component 1304, depicted in Fig. 13
  • Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • selecting a beam from the beam associated with the cell comprises selecting the beam based at least in part on synchronization signal blocks transmitted over the beam set associated with the cell.
  • the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
  • the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
  • the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
  • the UE is a static or semi-static UE.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a network controller, in accordance with various aspects of the present disclosure.
  • Example process 1100 is an example where the network controller (e.g., network controller 130) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
  • the network controller e.g., network controller 130
  • process 1100 may include receiving beam information for a plurality of cells (block 1110) .
  • the network controller e.g., using reception component 1402, depicted in Fig. 14
  • process 1100 may include determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells (block 1120) .
  • the network controller e.g., using determination component 1408, depicted in Fig. 14
  • Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • receiving the beam information for the plurality of cells comprises receiving the beam information for each cell of the plurality of cells from a respective base station associated with the cell.
  • process 1100 includes transmitting, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell.
  • the respective beam set for each cell includes a subset of a set of pre-defined beams in a spatial domain for a respective base station associated with the cell.
  • the respective beam set for each cell covers at least one of a subset of elevation angles or a subset of azimuth angles for a respective base station associated with the cell.
  • the respective beam set for each cell covers a respective coverage area that does not overlap with coverage areas covered by the beam sets of the other cells of the plurality of cells.
  • determining the respective beam set for each cell is based at least in part on one or more locations associated with respective UEs of one or more static or semi-static UEs.
  • determining the respective beam set for each cell is based at least in part on beam measurements in the plurality of cells.
  • determining the respective beam set for each cell is based at least in part on static analysis of coverage areas of the plurality of cells.
  • process 1100 includes storing a beam table including information identifying the respective beam set for each cell of the plurality of cells.
  • process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
  • Fig. 12 is a block diagram of an example apparatus 1200 for wireless communication.
  • the apparatus 1200 may be a base station, or a base station may include the apparatus 1200.
  • the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204.
  • the apparatus 1200 may include a selection component 1208, among other examples.
  • the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9.
  • the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206.
  • the reception component 1202 may provide received communications to one or more other components of the apparatus 1200.
  • the reception component 1202 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1206.
  • the reception component 1202 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206.
  • one or more other components of the apparatus 1206 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206.
  • the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206.
  • the transmission component 1204 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1204 may be collocated with the reception component 1202 in a transceiver.
  • the selection component 1208 may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells.
  • the selection component 1208 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
  • the reception component 1202 and/or the transmission component 1204 may communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
  • Fig. 12 The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
  • Fig. 13 is a block diagram of an example apparatus 1300 for wireless communication.
  • the apparatus 1300 may be a UE, or a UE may include the apparatus 1300.
  • the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304.
  • the apparatus 1300 may include a selection component 1308, among other examples.
  • the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10.
  • the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306.
  • the reception component 1302 may provide received communications to one or more other components of the apparatus 1300.
  • the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1306.
  • the reception component 1302 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306.
  • one or more other components of the apparatus 1306 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306.
  • the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306.
  • the transmission component 1304 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1304 may be collocated with the reception component 1302 in a transceiver.
  • the selection component 1308 may select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells.
  • the selection component 1308 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the reception component 1302 and/or the transmission component 1304 may communicate with a base station using the beam selected from the beam set associated with the cell.
  • Fig. 13 The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
  • Fig. 14 is a block diagram of an example apparatus 1400 for wireless communication.
  • the apparatus 1400 may be a network controller, or a network controller may include the apparatus 1400.
  • the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404.
  • the apparatus 1400 may include one or more of a determination component 1408 or a storage component 1410, among other examples.
  • the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1100 of Fig. 11.
  • the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the network controller described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406.
  • the reception component 1402 may provide received communications to one or more other components of the apparatus 1400.
  • the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1406.
  • the reception component 1402 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
  • the transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406.
  • one or more other components of the apparatus 1406 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406.
  • the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406.
  • the transmission component 1404 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
  • the transmission component 1404 may be collocated with the reception component 1402 in a transceiver.
  • the reception component 1402 may receive beam information for a plurality of cells.
  • the determination component 1408 may determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  • the determination component 1408 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
  • the transmission component 1404 may transmit, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell.
  • the storage component 1210 may store a beam table including information identifying the respective beam set for each cell of the plurality of cells.
  • the storage component 1210 may include a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
  • Fig. 14 The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14. Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells. The base station may communicate, using one or more beams of the beam set, with one or more user equipments in the cell associated with the base station. Numerous other aspects are provided.

Description

ZERO BEAM OVERLAP MILLIMETER WAVE SMALL CELL NETWORK
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for a zero beam overlap millimeter wave small cell network.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a base station includes selecting a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicating, using one or more beams of the beam set, with one or more user UEs in the cell associated with the base station.
In some aspects, a method of wireless communication performed by a UE includes selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicating with a base station using the beam selected from the beam set associated with the cell.
In some aspects, a method of wireless communication performed by a network controller includes receiving beam information for a plurality of cells; and determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
In some aspects, a base station for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
In some aspects, a UE for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicate with a base station using the beam selected from the beam set associated with the cell.
In some aspects, a network controller for wireless communication includes a memory and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive beam information for a plurality of cells; and determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and communicate with a base station using the beam selected from the beam set associated with the cell.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to: receive beam information for a plurality of cells; and determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
In some aspects, an apparatus for wireless communication includes means for selecting, for a cell, a beam set that does not overlap with beam sets of neighboring cells; and means for communicating, using one or more beams of the beam set, with one or more UEs in the cell.
In some aspects, an apparatus for wireless communication includes means for selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and means for communicating with a base station using the beam selected from the beam set associated with the cell.
In some aspects, an apparatus for wireless communication includes means for receiving beam information for a plurality of cells; and means for determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example beamforming architecture that supports beamforming for millimeter wave (mmW) communications, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of a synchronization signal (SS) hierarchy, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example of beams generated by a mmW antenna panel, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example beam table for a mmW cell, in accordance with various aspects of the present disclosure.
Figs. 7-8 are diagrams illustrating examples associated with wireless communication using a zero beam overlap millimeter wave small cell network, in accordance with various aspects of the present disclosure.
Figs. 9-11 are diagrams illustrating example processes associated with wireless communication using a zero beam overlap millimeter wave small cell network, in accordance with various aspects of the present disclosure.
Figs. 12-14 are block diagrams of example apparatuses for wireless communication, in accordance with various aspects of the present disclosure
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented  or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may  cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a  given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive  processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 7-11.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The  transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 7-11.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with wireless communication using a zero beam overlap millimeter wave small cell network, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, controller/processor 190 of network controller 130, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110, the UE 120, and/or the network controller 130, may cause the one or more processors, the UE 120, the base station 110, and/or the network controller 130 to perform or direct operations of, for example, process 900 of Fig. 9, process 1000 of Fig. 10, process 1100 of Fig. 11, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, UE 120 may include means for selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells, means for communicating with a base station using the beam selected from the beam set associated with the cell, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for selecting, for a cell, a beam set that does not overlap with beam sets of neighboring cells, means for communicating, using one or more beams of the beam set, with one or more UES in the cell, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
In some aspects, network controller 130 may include means for receiving beam information for a plurality of cells, means for determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells, means for transmitting, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell, means for storing a beam table including information identifying the respective beam set for each cell of the plurality of cells, and/or the like. In some aspects, such means may include one or more components of network controller 130 described in connection with Fig. 2, such as controller/processor 290, communication unit 294, memory 292, and/or the like.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example beamforming architecture 300 that supports beamforming for millimeter wave (mmW) communications, in accordance with various aspects of the present disclosure. In some aspects, architecture 300 may implement aspects of wireless network 100. In some aspects, architecture 300 may be implemented in a transmitting device (e.g., a first wireless communication device, UE, or base station) and/or a receiving device (e.g., a second wireless communication device, UE, or base station) , as described herein.
Broadly, Fig. 3 is a diagram illustrating example hardware components of a wireless communication device in accordance with certain aspects of the disclosure.  The illustrated components may include those that may be used for antenna element selection and/or for beamforming for transmission of wireless signals. There are numerous architectures for antenna element selection and implementing phase shifting, only one example of which is illustrated here. The architecture 300 includes a modem (modulator/demodulator) 302, a digital to analog converter (DAC) 304, a first mixer 306, a second mixer 308, and a splitter 310. The architecture 300 also includes multiple first amplifiers 312, multiple phase shifters 314, multiple second amplifiers 316, and an antenna array 318 that includes multiple antenna elements 320.
Transmission lines or other waveguides, wires, traces, and/or the like are shown connecting the various components to illustrate how signals to be transmitted may travel between components.  Reference numbers  322, 324, 326, and 328 indicate regions in the architecture 300 in which different types of signals travel or are processed. Specifically, reference number 322 indicates a region in which digital baseband signals travel or are processed, reference number 324 indicates a region in which analog baseband signals travel or are processed, reference number 326 indicates a region in which analog intermediate frequency (IF) signals travel or are processed, and reference number 328 indicates a region in which analog radio frequency (RF) signals travel or are processed. The architecture also includes a local oscillator A 330, a local oscillator B 332, and a controller/processor 334. In some aspects, controller/processor 334 corresponds to controller/processor 240 of the base station described above in connection with Fig. 2 and/or controller/processor 280 of the UE described above in connection with Fig. 2.
Each of the antenna elements 320 may include one or more sub-elements for radiating or receiving RF signals. For example, a single antenna element 320 may include a first sub-element cross-polarized with a second sub-element that can be used to independently transmit cross-polarized signals. The antenna elements 320 may include patch antennas, dipole antennas, or other types of antennas arranged in a linear pattern, a two dimensional pattern, or another pattern. A spacing between antenna elements 320 may be such that signals with a desired wavelength transmitted separately by the antenna elements 320 may interact or interfere (e.g., to form a desired beam) . For example, given an expected range of wavelengths or frequencies, the spacing may provide a quarter wavelength, half wavelength, or other fraction of a wavelength of spacing between neighboring antenna elements 320 to allow for interaction or  interference of signals transmitted by the separate antenna elements 320 within that expected range.
The modem 302 processes and generates digital baseband signals and may also control operation of the DAC 304, first and  second mixers  306, 308, splitter 310, first amplifiers 312, phase shifters 314, and/or the second amplifiers 316 to transmit signals via one or more or all of the antenna elements 320. The modem 302 may process signals and control operation in accordance with a communication standard such as a wireless standard discussed herein. The DAC 304 may convert digital baseband signals received from the modem 302 (and that are to be transmitted) into analog baseband signals. The first mixer 306 upconverts analog baseband signals to analog IF signals within an IF using a local oscillator A 330. For example, the first mixer 306 may mix the signals with an oscillating signal generated by the local oscillator A 330 to “move” the baseband analog signals to the IF. In some cases, some processing or filtering (not shown) may take place at the IF. The second mixer 308 upconverts the analog IF signals to analog RF signals using the local oscillator B 332. Similar to the first mixer, the second mixer 308 may mix the signals with an oscillating signal generated by the local oscillator B 332 to “move” the IF analog signals to the RF or the frequency at which signals will be transmitted or received. The modem 302 and/or the controller/processor 334 may adjust the frequency of local oscillator A 330 and/or the local oscillator B 332 so that a desired IF and/or RF frequency is produced and used to facilitate processing and transmission of a signal within a desired bandwidth.
In the illustrated architecture 300, signals upconverted by the second mixer 308 are split or duplicated into multiple signals by the splitter 310. The splitter 310 in architecture 300 splits the RF signal into multiple identical or nearly identical RF signals. In other examples, the split may take place with any type of signal, including with baseband digital, baseband analog, or IF analog signals. Each of these signals may correspond to an antenna element 320, and the signal travels through and is processed by  amplifiers  312, 316, phase shifters 314, and/or other elements corresponding to the respective antenna element 320 to be provided to and transmitted by the corresponding antenna element 320 of the antenna array 318. In one example, the splitter 310 may be an active splitter that is connected to a power supply and provides some gain so that RF signals exiting the splitter 310 are at a power level equal to or greater than the signal entering the splitter 310. In another example, the splitter 310 is a passive splitter that is  not connected to power supply and the RF signals exiting the splitter 310 may be at a power level lower than the RF signal entering the splitter 310.
After being split by the splitter 310, the resulting RF signals may enter an amplifier, such as a first amplifier 312, or a phase shifter 314 corresponding to an antenna element 320. The first and  second amplifiers  312, 316 are illustrated with dashed lines because one or both of them might not be necessary in some aspects. In some aspects, both the first amplifier 312 and second amplifier 316 are present. In some aspects, neither the first amplifier 312 nor the second amplifier 316 is present. In some aspects, one of the two  amplifiers  312, 316 is present but not the other. By way of example, if the splitter 310 is an active splitter, the first amplifier 312 may not be used. By way of further example, if the phase shifter 314 is an active phase shifter that can provide a gain, the second amplifier 316 might not be used.
The  amplifiers  312, 316 may provide a desired level of positive or negative gain. A positive gain (positive dB) may be used to increase an amplitude of a signal for radiation by a specific antenna element 320. A negative gain (negative dB) may be used to decrease an amplitude and/or suppress radiation of the signal by a specific antenna element. Each of the  amplifiers  312, 316 may be controlled independently (e.g., by the modem 302 or the controller/processor 334) to provide independent control of the gain for each antenna element 320. For example, the modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the splitter 310, first amplifiers 312, phase shifters 314, and/or second amplifiers 316 that may be used to configure a gain to provide a desired amount of gain for each component and thus each antenna element 320.
The phase shifter 314 may provide a configurable phase shift or phase offset to a corresponding RF signal to be transmitted. The phase shifter 314 may be a passive phase shifter not directly connected to a power supply. Passive phase shifters might introduce some insertion loss. The second amplifier 316 may boost the signal to compensate for the insertion loss. The phase shifter 314 may be an active phase shifter connected to a power supply such that the active phase shifter provides some amount of gain or prevents insertion loss. The settings of each of the phase shifters 314 are independent, meaning that each can be independently set to provide a desired amount of phase shift or the same amount of phase shift or some other configuration. The modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the phase shifters 314 and which may be used to configure the phase shifters  314 to provide a desired amount of phase shift or phase offset between antenna elements 320.
In the illustrated architecture 300, RF signals received by the antenna elements 320 are provided to one or more first amplifiers 356 to boost the signal strength. The first amplifiers 356 may be connected to the same antenna arrays 318 (e.g., for time division duplex (TDD) operations) . The first amplifiers 356 may be connected to different antenna arrays 318. The boosted RF signal is input into one or more phase shifters 354 to provide a configurable phase shift or phase offset for the corresponding received RF signal to enable reception via one or more Rx beams. The phase shifter 354 may be an active phase shifter or a passive phase shifter. The settings of the phase shifters 354 are independent, meaning that each can be independently set to provide a desired amount of phase shift or the same amount of phase shift or some other configuration. The modem 302 and/or the controller/processor 334 may have at least one control line connected to each of the phase shifters 354 and which may be used to configure the phase shifters 354 to provide a desired amount of phase shift or phase offset between antenna elements 320 to enable reception via one or more Rx beams.
The outputs of the phase shifters 354 may be input to one or more second amplifiers 352 for signal amplification of the phase shifted received RF signals. The second amplifiers 352 may be individually configured to provide a configured amount of gain. The second amplifiers 352 may be individually configured to provide an amount of gain to ensure that the signals input to combiner 350 have the same magnitude. The amplifiers 352 and/or 356 are illustrated in dashed lines because they might not be necessary in some aspects. In some aspects, both the amplifier 352 and the amplifier 356 are present. In another aspect, neither the amplifier 352 nor the amplifier 356 are present. In other aspects, one of the  amplifiers  352, 356 is present but not the other.
In the illustrated architecture 300, signals output by the phase shifters 354 (via the amplifiers 352 when present) are combined in combiner 350. The combiner 350 in architecture 300 combines the RF signal into a signal. The combiner 350 may be a passive combiner (e.g., not connected to a power source) , which may result in some insertion loss. The combiner 350 may be an active combiner (e.g., connected to a power source) , which may result in some signal gain. When combiner 350 is an active combiner, it may provide a different (e.g., configurable) amount of gain for each input signal so that the input signals have the same magnitude when they are combined.  When combiner 350 is an active combiner, the combiner 350 may not need the second amplifier 352 because the active combiner may provide the signal amplification.
The output of the combiner 350 is input into  mixers  348 and 346.  Mixers  348 and 346 generally down convert the received RF signal using inputs from  local oscillators  372 and 370, respectively, to create intermediate or baseband signals that carry the encoded and modulated information. The output of the  mixers  348 and 346 are input into an analog-to-digital converter (ADC) 344 for conversion to analog signals. The analog signals output from ADC 344 is input to modem 302 for baseband processing, such as decoding, de-interleaving, and/or the like.
The architecture 300 is given by way of example only to illustrate an architecture for transmitting and/or receiving signals. In some cases, the architecture 300 and/or each portion of the architecture 300 may be repeated multiple times within an architecture to accommodate or provide an arbitrary number of RF chains, antenna elements, and/or antenna panels. Furthermore, numerous alternate architectures are possible and contemplated. For example, although only a single antenna array 318 is shown, two, three, or more antenna arrays may be included, each with one or more of their own corresponding amplifiers, phase shifters, splitters, mixers, DACs, ADCs, and/or modems. For example, a single UE may include two, four, or more antenna arrays for transmitting or receiving signals at different physical locations on the UE or in different directions.
Furthermore, mixers, splitters, amplifiers, phase shifters and other components may be located in different signal type areas (e.g., represented by different ones of the  reference numbers  322, 324, 326, 328) in different implemented architectures. For example, a split of the signal to be transmitted into multiple signals may take place at the analog RF, analog IF, analog baseband, or digital baseband frequencies in different examples. Similarly, amplification and/or phase shifts may also take place at different frequencies. For example, in some aspects, one or more of the splitter 310,  amplifiers  312, 316, or phase shifters 314 may be located between the DAC 304 and the first mixer 306 or between the first mixer 306 and the second mixer 308. In one example, the functions of one or more of the components may be combined into one component. For example, the phase shifters 314 may perform amplification to include or replace the first and/or or  second amplifiers  312, 316. By way of another example, a phase shift may be implemented by the second mixer 308 to obviate the need for a separate phase shifter 314. This technique is sometimes called local oscillator (LO) phase shifting. In some  aspects of this configuration, there may be multiple IF to RF mixers (e.g., for each antenna element chain) within the second mixer 308, and the local oscillator B 332 may supply different local oscillator signals (with different phase offsets) to each IF to RF mixer.
The modem 302 and/or the controller/processor 334 may control one or more of the other components 304 through 372 to select one or more antenna elements 320 and/or to form beams for transmission of one or more signals. For example, the antenna elements 320 may be individually selected or deselected for transmission of a signal (or signals) by controlling an amplitude of one or more corresponding amplifiers, such as the first amplifiers 312 and/or the second amplifiers 316. Beamforming includes generation of a beam using multiple signals on different antenna elements, where one or more or all of the multiple signals are shifted in phase relative to each other. The formed beam may carry physical or higher layer reference signals or information. As each signal of the multiple signals is radiated from a respective antenna element 320, the radiated signals interact, interfere (constructive and destructive interference) , and amplify each other to form a resulting beam. The shape (such as the amplitude, width, and/or presence of side lobes) and the direction (such as an angle of the beam relative to a surface of the antenna array 318) can be dynamically controlled by modifying the phase shifts or phase offsets imparted by the phase shifters 314 and amplitudes imparted by the  amplifiers  312, 316 of the multiple signals relative to each other. The controller/processor 334 may be located partially or fully within one or more other components of the architecture 300. For example, the controller/processor 334 may be located within the modem 302 in some aspects.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of a synchronization signal (SS) hierarchy, in accordance with various aspects of the present disclosure. As shown in Fig. 4, the SS hierarchy may include an SS burst set 405, which may include multiple SS bursts 410, shown as SS burst 0 through SS burst N-1, where N is a maximum number of repetitions of the SS burst 410 that may be transmitted by the base station. As further shown, each SS burst 410 may include one or more SS blocks (SSBs) 415, shown as SSB 0 through SSB M-1, where M is a maximum number of SSBs 415 that can be carried by an SS burst 410. In some aspects, different SSBs 415 may be beam-formed differently (e.g., transmitted using different beams) , and may be used for cell  search, cell acquisition, beam management, beam selection, and/or the like (e.g., as part of an initial network access procedure) . An SS burst set 405 may be periodically transmitted by a wireless node (e.g., base station 110) , such as every X milliseconds, as shown in Fig. 4. In some aspects, an SS burst set 405 may have a fixed or dynamic length, shown as Y milliseconds in Fig. 4. In some cases, an SS burst set 405 or an SS burst 410 may be referred to as a discovery reference signal (DRS) transmission window, an SSB measurement time configuration (SMTC) window, and/or the like.
In some aspects, an SSB 415 may include resources that carry a primary synchronization signal (PSS) 420, a secondary synchronization signal (SSS) 425, a physical broadcast channel (PBCH) 430, and/or the like. In some aspects, multiple SSBs 415 are included in an SS burst 410 (e.g., with transmission on different beams) , and the PSS 420, the SSS 425, and/or the PBCH 430 may be the same across each SSB 415 of the SS burst 410. In some aspects, a single SSB 415 may be included in an SS burst 410. In some aspects, the SSB 415 may be at least four symbols (e.g., OFDM symbols) in length, where each symbol carries one or more of the PSS 420 (e.g., occupying one symbol) , the SSS 425 (e.g., occupying one symbol) , and/or the PBCH 430 (e.g., occupying two symbols) . In some aspects, an SSB 415 may be referred to as an SS/PBCH block.
In some aspects, the symbols of an SSB 415 are consecutive, as shown in Fig. 4. In some aspects, the symbols of an SSB 415 are non-consecutive. Similarly, in some aspects, one or more SSBs 415 of the SS burst 410 may be transmitted in consecutive radio resources (e.g., consecutive symbols) during one or more slots. Additionally, or alternatively, one or more SSBs 415 of the SS burst 410 may be transmitted in non-consecutive radio resources.
In some aspects, the SS bursts 410 may have a burst period, and the SSBs 415 of the SS burst 410 may be transmitted by a wireless node (e.g., base station 110) according to the burst period. In this case, the SSBs 415 may be repeated during each SS burst 410. In some aspects, the SS burst set 405 may have a burst set periodicity, whereby the SS bursts 410 of the SS burst set 405 are transmitted by the wireless node according to the fixed burst set periodicity. In other words, the SS bursts 410 may be repeated during each SS burst set 405.
In some aspects, an SSB 415 may include an SSB index, which may correspond to a beam used to carry the SSB 415. A UE 120 may monitor for and/or measure SSBs 415 using different receive (Rx) beams during an initial network access  procedure and/or a cell search procedure, among other examples. Based at least in part on the monitoring and/or measuring, the UE 120 may indicate one or more SSBs 415 with a best signal parameter (e.g., a reference signal received power (RSRP) parameter and/or the like) to a base station 110. The base station 110 and the UE 120 may use the one or more indicated SSBs 415 to select one or more beams to be used for communication between the base station 110 and the UE 120 (e.g., for a random access channel (RACH) procedure and/or the like) . Additionally, or alternatively, the UE 120 may use the SSB 415 and/or the SSB index to determine a cell timing for a cell via which the SSB 415 is received (e.g., a serving cell) .
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of beams generated by a mmW antenna panel, in accordance with various aspects of the present disclosure. As shown in Fig. 5, using beamforming, a mmW antenna panel 505 may be capable of generating beams over a range of azimuth and elevation angles. The azimuth angles are angles in a horizontal plane of the antenna panel 505, and the elevation angles are angles in a vertical plane of the antenna panel 505. The example 500 of Fig. 5 shows a first beam 510 having an azimuth angle of 0 degrees and an elevation angle of 0 degrees, a second beam 515 having an azimuth angle of 45 degrees and an elevation angle of 0 degrees, and a third beam 520 having an azimuth angle of -45 degrees and an elevation angle of 0 degrees. The first beam 510 (azimuth = 0 and elevation = 0) is generated in the boresight direction of the antenna panel.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example beam table 600 for a mmW cell, in accordance with various aspects of the present disclosure. An antenna panel (e.g., antenna panel 505 of Fig. 5) of a mmW base station may have a physical capability to generate beams over a certain range of azimuth and elevation angles. For example, as shown in Fig. 6, the antenna panel of the mmW base station may have a physical capability to generate beams over an elevation span of 120 degrees and an azimuth span of 120 degrees. As shown in Fig. 6, the beam table 600 lists predefined beams (e.g., 128 predefined beams) that form a spatial array of beams for the mmW cell. The numbers in the beam table may be beam identifiers (IDs) that correspond to respective beams having respective azimuth and elevation angles. For example, in the beam table  600 of Fig. 6, beam ID 10 may correspond to a beam having an elevation angle of 60 degrees and an azimuth angle of 15 degrees.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
In some cases, mmW base stations may serve cells with small coverage areas, such as limited geographical areas or indoor spaces. Such mmW cells may be referred to as “small cells. ” In exemplary use case, multiple mmW small cells may be used for UEs in a smart factory. In this case, mmW communications may provide increased spectrum width and shorter air interface latency for the smart factory UEs. Such smart factory UEs may be static (e.g., a high definition video camera) or semi-static (e.g., an augmented reality capable assembly station) . Static UEs may have a fixed location. Semi-static UEs may move within a limited range of locations. A high data rate, especially for uplink communications, may be a priority for a smart factory.
A discussed above, a mmW base station may be capable of generating beams over a large range of azimuth and elevation angles. Accordingly, when multiple mmW base stations are deployed to provide multiple neighboring mmW small cells (e.g., in a smart factory or the like) , there may be significant overlap in the spatial domain between the beams of the neighboring mmW small cells. Overlapping beams from neighboring mmW small cells may cause interference, which may lead to a reduced data rate. In addition, overlapping beams from neighboring mmW small cells may result in unnecessary power consumption by mmW base stations to provide redundant coverage to certain coverage areas.
Some techniques and apparatuses described herein enable a network of cells (e.g., mmW cells) in which beams of neighboring cells do not overlap. A base station may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells. The base station may use one or more beams of the selected beam set to communicate with one or more UEs in the cell associated with the base station. As a result, the beams in the cell associated with the base station do not overlap with beams in neighboring cells, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base station and the neighboring base stations.
Fig. 7 is a diagram illustrating an example 700 associated with wireless communication using a zero beam overlap mmW small cell network, in accordance with various aspects of the present disclosure. As shown in Fig. 7, example 700 includes  communication between a base station 110 and a UE 120. In some aspects, base station 110 and UE 120 may be included in a wireless network, such as wireless network 100. Base station 110 and UE 120 may communicate on a wireless access link, which may include an uplink and a downlink. In some aspects, the base station 110 may be a mmW base station.
As shown in Fig. 7, and by reference number 705, the base station 110 may select, for a cell associated with the base station 110, a beam set that does not overlap with beam sets of neighboring cells. In some aspects, there may be zero beam overlap between the beam set of the cell (e.g., mmW cell) associated with the base station 110 and beam sets of neighboring cells. That is, no beams of the beam set of the cell associated with the base station 110 may overlap in a spatial domain with any beams of the beam sets of the neighboring cells. In some aspects, “neighboring cells” may refer to any adjacent cells, or “neighboring cells” may refer to any cells within a certain range of the cell associated with the base station 110.
In some aspects, the beam set selected by the base station 110 may include a subset of azimuth angles and/or elevation angles for the base station 110. For example, the beam set may include azimuth angles and/or elevation angles in reduced range as compared with a range of azimuth angles and/or elevation angles over which the base station 110 is physically capable of generating beams. In some aspects, the base station 110 may select a subset of predefined beams in a spatial domain from a set of predefined beams associated with the base station 110. For example, as shown in Fig. 7, the base station 110 may select a beam set 710 that is a subset of predefined beams listed in a beam table associated with the base station 110. In the example 700 shown in Fig. 7, the beam set 710 may include beams 7-10, 23-26, 39-42, and 55-58 of the 128 beams listed in the beam table. The selected beam set 710 may correspond to a reduced range of azimuth angles and elevation angles as compared with the entire set of predefined beams listed in the beam table.
The beam set selected for the cell associated with the base station 110 may cover a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells. In some aspects, the UE 120 and/or one or more other UEs in the cell associated with the base station 110 may be static or semi-static UEs, and the beam set for the cell associated with the base station 110 may be selected based at least in part on a location (or range of locations) associated with the UE 120 and/or the one or more other UEs.
In some aspects, the beam set for the cell associated with the base station 110 (and/or the beam sets for the neighboring cells) may be selected based at least in part on beam measurements in the cell associated with the base station 110 (and/or beam measurements in the neighboring cells) . For example, a manual walk test (e.g., with a mobile UE) may be performed to measure signal strength (e.g., RSRP or the like) on beams associated with the base station 110 and/or beams associated with one or more neighboring base stations. The beam measurements may be used to determine whether there is any overlap between beams associated with the base station 110 and beams associated with the one or more neighboring base stations. When it is determined that a beam associated with the base station 110 overlaps with a beam associated with a neighboring base station, it may be determined that one of the base station 110 or the neighboring base station will not include the overlapping beam in the selected beam set, thus eliminating the overlap between the beam sets. The determination of which one of the base station 110 or the neighboring base station will not include the overlapping beam in the selected beam set may be based at least in part on the beam measurements on the overlapping beams. For example, the stronger of the overlapping beams may be used, while the weaker of the overlapping beams may not be included in the selected beam set for the base station 110 or the neighboring base station.
In some aspects, the beam set for the cell associated with the base station 110 (and/or the beam sets for the neighboring cells) may be selected based at least in part on a static analysis of the coverage area of the cell associated with the base station 110 and coverage areas of the neighboring cells. In some aspects, the beam set for the cell associated with the base station 110 may be selected based at least in part on a beam table that includes information identifying the beam sets of the neighboring cells. The beam table may also include information identifying the beam set selected for the cell associated with the base station 110. The beam table may be stored in the base station 110, one or more neighboring base stations, and/or another network device (e.g., network controller 130) .
In some aspects, the base station 110 may independently select the beam set that does not overlap with beam sets of neighboring cells. In some aspects, the base station 110 may communicate with one or more neighboring base stations to select the beam set for the cell associated with the base station 110. For example, the base station 110 may receive, from the one or more neighboring base stations, beam information associated with the neighboring cells, and select the beam set that does not overlap with  the beam sets of the neighboring cells based at least in part on the beam information received from the one or more neighboring base stations.
In some aspects, a network controller (e.g., network controller 130) may determine the beam set for the cell associated with the base station 110 and the beam sets for the neighboring cells. In this case, the network controller may be a central beam management server that maintains a beam table including information that identifies the beam set for the cell associated with the base station 110 and the beam sets of the neighboring cells. The base station 110 and one or more neighboring base stations may communicate with the network controller and select the respective beam sets identified in the beam table maintained by the network controller.
As further shown in Fig. 7, and by reference number 715, the UE 120 may select a beam from the beam set selected by the base station 110. The UE 120 may be in the cell associated with the base station 110, and may select a beam from the beam set that does not overlap with beam sets of neighboring cells.
In some aspects, the base station 110 may sweep through the beams of the selected beam set and transmit SSBs on the beams of the selected beam set. The SSBs may include SSB indexes, which may correspond to the beams used to carry the SSBs. The UE 120 may monitor for and/or measure the SSBs using different Rx beams during an initial network access procedure and/or a cell search procedure, among other examples. Based at least in part on the monitoring and/or measuring of the SSBs, the UE 120 may indicate one or more SSBs with a best signal parameter (e.g., RSRP or the like) to the base station 110. The base station 110 and the UE 120 may use the one or more indicated SSBs to select one or more beams of the selected beam set for the cell to be used for communication between the base station 110 and the UE 120.
As further shown in Fig. 7, and by reference number 720, the base station 110 and the UE 120 may communicate using the selected beam from the beam set selected for the cell. One or more beams may be selected, for communication between the base station 110 and the UE 120, from the beam set that does not overlap with beam sets of the neighboring cells. The base station 110 may receive uplink communications from the UE 120 via the one or more beams selected from the beam set and/or transmit downlink communications to the UE 120 via the one or more beams selected from the beam set. The UE 120 may transmit uplink communications to the base station 110 via the one or more beams selected from the beam set and/or receive downlink  communications from the base station 110 via the one or more beams selected from the beam set.
As described above in connection with Fig. 7, the base station 110 may select a beam set, for a cell associated with the base station 110, that does not overlap with beam sets of neighboring cells. The base station may use one or more beams of the selected beam set to communicate with the UE 120 and/or one or more other UEs in the cell associated with the base station. As a result, the beams in the cell associated with the base station do not overlap with beams in neighboring cells, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base station 110 and the neighboring base stations.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
Fig. 8 is a diagram illustrating an example 800 associated with wireless communication using a zero beam overlap mmW small cell network, in accordance with various aspects of the present disclosure. As shown in Fig. 8, example 800 includes communication between base stations 110 and UEs 120. In some aspects, the base stations 110 and the UEs 120 may be included in a wireless network, such as wireless network 100. The base stations 110 and the UEs 120 may communicate on wireless access links, which may include uplinks and downlinks.
The base stations 110 may include a first base station 110-1, a second base station 110-2, and a third base station 110-3. In some aspects, the first base station 110-1, the second base station 110-2, and the third base station 110-3 may be mmW base stations. The first base station 110-1, the second base station 110-2, and the third base station 110-3 may communicate with a network controller 130. The UEs 120 may include a first UE 120-1, a second UE 120-2, a third UE 120-3, a fourth UE 120-4, a fifth UE 120-5, and a sixth UE 120-6. In some aspects, one or more of the UEs 120 may be static or semi-static UEs. In some aspects, the base stations 110, the UEs 120, and the network controller 130 may be associated with a smart factory or the like.
As shown in Fig. 8, a first beam set may be selected for a first cell associated with the first base station 110-1. The first beam set may define a first coverage area 805-1 for the first cell. A second beam set may be selected for a second cell associated with the second base station 110-2. The second beam set may define a second coverage area 805-2 for the second cell. A third beam set may be selected for a third cell associated with the third base station 110-3. The third beam set may define a third  coverage area 805-3 for the third cell. The first beam set, the second beam set, and the third beam set may be selected such that there is zero beam overlap between the first beam set, the second beam set, and the third beam set. Accordingly, the first coverage area 805-1, the second coverage area, 805-2, and the third coverage area 805-3 may not overlap with each other.
The first UE 120-1 and the second UE 120-2 may be in the first coverage area 805-1 of the first cell. The first base station 110-1 may communicate with the first UE 120-1 and the second UE 120-2 via beams selected from the first beam set. The third UE 120-3 and the fourth UE 120-4 may be in the second coverage area 805-2 of the second cell. The second base station 110-2 may communicate with the third UE 120-3 and the fourth UE 120-4 via beams selected from the second beam set. The fifth UE 120-5 and the sixth UE 120-6 may be in the third coverage area 805-3 of the third cell. The third base station 110-3 may communicate with the fifth UE 120-5 and the sixth UE 120-6 via beams selected from the third beam set.
In some aspects, the network controller 130 may determine the first beam set for the first cell associated with the first base station 110-1, the second beam set for the second cell associated with the second base station 110-2, and the third beam set for the third cell associated with the third base station 110-3. For example, the network controller 130 may receive beam information associated with the first cell, the second cell, and the third cell, and determine the first beam set, the second beam set, and the third beam set based at least in part on the beam information. In some aspects, the network controller 130 may receive the beam information associated with the first cell, the second cell, and the third cell from the first base station 110-1, the second base station 110-2, and the third base station 110-3, respectively.
The network controller 130 may determine the first beam set, the second beam set, and the third beam set, such that no beams in the first beam set, the second beam set, and the third beam set overlap in a spatial domain. In some aspects, the network controller 130 may determine the first beam set, the second beam set, and the third beam set to define the first coverage area 805-1, the second coverage area 805-2, and the third coverage area 805-3 to provide maximum coverage for a particular space (e.g., a building, such as a smart factory or the like) without any overlap between the first coverage area 805-1, the second coverage area 805-2, and the third coverage area 805-3. In some aspects, the network controller 130 may determine the first beam set, the second beam set, and the third beam set based in part on respective locations associated  with one or more static or semi-static UEs (e.g., UEs 120-1, 120-2, 120-3, 120-4, 120-5, and/or 120-6) .
In some aspects, the network controller 130 may be a central beam management server that maintains a beam table that includes information identifying the first beam set, the second beam set, and the third beam set. The information identifying the first beam set may be retrieved from the network controller 130 by the first base station 110-1 and/or transmitted to the first base station 110-1 by the network controller 130. The information identifying the second beam set may be retrieved from the network controller 130 by the second base station 110-2 and/or transmitted to the second base station 110-2 by the network controller 130. The information identifying the third beam set may be retrieved from the network controller 130 by the third base station 110-3 and/or transmitted to the third base station 110-3 by the network controller 130.
As described above in connection with Fig. 8, the base stations may provide a network of cells (e.g., mmW cells) in which the beams of neighboring cells do not overlap. For each cell, a beam may be selected that does not overlap with the beam sets of the neighboring cells. Each base station may use one or more beams of the respective selected beam set to communicate with one or more UEs in the cell associated with that base station. As a result, the beams in neighboring cells do not overlap, which may reduce interference, leading to an increased data rate for the UEs. This may also result in reduced power consumption for the base stations.
As indicated above, Fig. 8 is provided as an example. Other examples may differ from what is described with respect to Fig. 8.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with various aspects of the present disclosure. Example process 900 is an example where the base station (e.g., base station 110) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
As shown in Fig. 9, in some aspects, process 900 may include selecting a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells (block 910) . For example, the base station (e.g., using selection component 1208, depicted in Fig. 12) may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include communicating, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station (block 920) . For example, the base station (e.g., using reception component 1202 and/or transmission component 1204, depicted in Fig. 12) may communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the base station is a millimeter wave base station.
In a second aspect, alone or in combination with the first aspect, the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
In a third aspect, alone or in combination with one or more of the first and second aspects, the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the one or more UEs include one or more static or semi-static UEs, and selecting the beam set for the cell associated with the base station is based at least in part on one or more locations associated with respective UEs of the one or more static or semi-static UEs.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, selecting the beam set for the cell associated with the base station is based at least in part on beam measurements in the cell associated with the base station and the neighbor cells.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, selecting the beam set for the cell associated with the base station is based at least in part on static analysis of a coverage area of the cell associated with the base station and of coverage areas of the neighbor cells.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, selecting the beam set for the cell associated with the base station is based at least in part on a beam table including information identifying the beam sets of the neighboring cells.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the beam table includes information identifying the beam set for the cell associated with the base station.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, selecting the beam set for the cell associated with the base station comprises receiving beam information from one or more other base stations associated with one or more of the neighboring cells, and selecting the beam set for the cell associated with the base station that does not overlap with the beam sets of the one or more neighboring cells based at least in part on the beam information.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 1000 is an example where the UE (e.g., UE 120) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
As shown in Fig. 10, in some aspects, process 1000 may include selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells (block 1010) . For example, the UE (e.g., using selection component 1308, depicted in Fig. 13) may select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include communicating with a base station using the beam selected from the beam set associated with the cell (block 1020) . For example, the UE (e.g., using reception component 1302 and/or transmission component 1304, depicted in Fig. 13) may communicate with a base station using the beam selected from the beam set associated with the cell, as described above.
Process 1000 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, selecting a beam from the beam associated with the cell comprises selecting the beam based at least in part on synchronization signal blocks transmitted over the beam set associated with the cell.
In a second aspect, alone or in combination with the first aspect, the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
In a third aspect, alone or in combination with one or more of the first and second aspects, the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the UE is a static or semi-static UE.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a network controller, in accordance with various aspects of the present disclosure. Example process 1100 is an example where the network controller (e.g., network controller 130) performs operations associated with wireless communication using a zero beam overlap mmW small cell network.
As shown in Fig. 11, in some aspects, process 1100 may include receiving beam information for a plurality of cells (block 1110) . For example, the network controller (e.g., using reception component 1402, depicted in Fig. 14) may receive beam information for a plurality of cells, as described above.
As further shown in Fig. 11, in some aspects, process 1100 may include determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells (block 1120) .  For example, the network controller (e.g., using determination component 1408, depicted in Fig. 14) may determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells, as described above.
Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, receiving the beam information for the plurality of cells comprises receiving the beam information for each cell of the plurality of cells from a respective base station associated with the cell.
In a second aspect, alone or in combination with the first aspect, process 1100 includes transmitting, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell.
In a third aspect, alone or in combination with one or more of the first and second aspects, the respective beam set for each cell includes a subset of a set of pre-defined beams in a spatial domain for a respective base station associated with the cell.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the respective beam set for each cell covers at least one of a subset of elevation angles or a subset of azimuth angles for a respective base station associated with the cell.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the respective beam set for each cell covers a respective coverage area that does not overlap with coverage areas covered by the beam sets of the other cells of the plurality of cells.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, determining the respective beam set for each cell is based at least in part on one or more locations associated with respective UEs of one or more static or semi-static UEs.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, determining the respective beam set for each cell is based at least in part on beam measurements in the plurality of cells.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, determining the respective beam set for each cell is based at least in part on static analysis of coverage areas of the plurality of cells.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 1100 includes storing a beam table including information identifying the respective beam set for each cell of the plurality of cells.
Although Fig. 11 shows example blocks of process 1100, in some aspects, process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
Fig. 12 is a block diagram of an example apparatus 1200 for wireless communication. The apparatus 1200 may be a base station, or a base station may include the apparatus 1200. In some aspects, the apparatus 1200 includes a reception component 1202 and a transmission component 1204, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1200 may communicate with another apparatus 1206 (such as a UE, a base station, or another wireless communication device) using the reception component 1202 and the transmission component 1204. As further shown, the apparatus 1200 may include a selection component 1208, among other examples.
In some aspects, the apparatus 1200 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1200 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9. In some aspects, the apparatus 1200 and/or one or more components shown in Fig. 12 may include one or more components of the base station described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 12 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1202 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1206. The reception component 1202 may provide received communications to one or more other components of the apparatus 1200. In some aspects, the reception component 1202 may perform signal processing on the received  communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1206. In some aspects, the reception component 1202 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2.
The transmission component 1204 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1206. In some aspects, one or more other components of the apparatus 1206 may generate communications and may provide the generated communications to the transmission component 1204 for transmission to the apparatus 1206. In some aspects, the transmission component 1204 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1206. In some aspects, the transmission component 1204 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. In some aspects, the transmission component 1204 may be collocated with the reception component 1202 in a transceiver.
The selection component 1208 may select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells. In some aspects, the selection component 1208 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described above in connection with Fig. 2. The reception component 1202 and/or the transmission component 1204 may communicate, using one or more beams of the beam set, with one or more UEs in the cell associated with the base station.
The number and arrangement of components shown in Fig. 12 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 12. Furthermore, two or more components shown in Fig. 12 may be implemented within a  single component, or a single component shown in Fig. 12 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 12 may perform one or more functions described as being performed by another set of components shown in Fig. 12.
Fig. 13 is a block diagram of an example apparatus 1300 for wireless communication. The apparatus 1300 may be a UE, or a UE may include the apparatus 1300. In some aspects, the apparatus 1300 includes a reception component 1302 and a transmission component 1304, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1300 may communicate with another apparatus 1306 (such as a UE, a base station, or another wireless communication device) using the reception component 1302 and the transmission component 1304. As further shown, the apparatus 1300 may include a selection component 1308, among other examples.
In some aspects, the apparatus 1300 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1300 may be configured to perform one or more processes described herein, such as process 1000 of Fig. 10. In some aspects, the apparatus 1300 and/or one or more components shown in Fig. 13 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 13 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1302 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1306. The reception component 1302 may provide received communications to one or more other components of the apparatus 1300. In some aspects, the reception component 1302 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed  signals to the one or more other components of the apparatus 1306. In some aspects, the reception component 1302 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 1304 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1306. In some aspects, one or more other components of the apparatus 1306 may generate communications and may provide the generated communications to the transmission component 1304 for transmission to the apparatus 1306. In some aspects, the transmission component 1304 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1306. In some aspects, the transmission component 1304 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 1304 may be collocated with the reception component 1302 in a transceiver.
The selection component 1308 may select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells. In some aspects, the selection component 1308 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. The reception component 1302 and/or the transmission component 1304 may communicate with a base station using the beam selected from the beam set associated with the cell.
The number and arrangement of components shown in Fig. 13 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 13. Furthermore, two or more components shown in Fig. 13 may be implemented within a single component, or a single component shown in Fig. 13 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more)  components shown in Fig. 13 may perform one or more functions described as being performed by another set of components shown in Fig. 13.
Fig. 14 is a block diagram of an example apparatus 1400 for wireless communication. The apparatus 1400 may be a network controller, or a network controller may include the apparatus 1400. In some aspects, the apparatus 1400 includes a reception component 1402 and a transmission component 1404, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1400 may communicate with another apparatus 1406 (such as a UE, a base station, or another wireless communication device) using the reception component 1402 and the transmission component 1404. As further shown, the apparatus 1400 may include one or more of a determination component 1408 or a storage component 1410, among other examples.
In some aspects, the apparatus 1400 may be configured to perform one or more operations described herein in connection with Figs. 7-8. Additionally, or alternatively, the apparatus 1400 may be configured to perform one or more processes described herein, such as process 1100 of Fig. 11. In some aspects, the apparatus 1400 and/or one or more components shown in Fig. 14 may include one or more components of the network controller described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 14 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1402 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1406. The reception component 1402 may provide received communications to one or more other components of the apparatus 1400. In some aspects, the reception component 1402 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1406. In some aspects, the  reception component 1402 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
The transmission component 1404 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1406. In some aspects, one or more other components of the apparatus 1406 may generate communications and may provide the generated communications to the transmission component 1404 for transmission to the apparatus 1406. In some aspects, the transmission component 1404 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1406. In some aspects, the transmission component 1404 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2. In some aspects, the transmission component 1404 may be collocated with the reception component 1402 in a transceiver.
The reception component 1402 may receive beam information for a plurality of cells. The determination component 1408 may determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells. In some aspects, the determination component 1408 may include a communication unit, a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
The transmission component 1404 may transmit, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell.
The storage component 1210 may store a beam table including information identifying the respective beam set for each cell of the plurality of cells. In some aspects, the storage component 1210 may include a controller/processor, a memory, or a combination thereof, of the network controller described above in connection with Fig. 2.
The number and arrangement of components shown in Fig. 14 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 14.  Furthermore, two or more components shown in Fig. 14 may be implemented within a single component, or a single component shown in Fig. 14 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 14 may perform one or more functions described as being performed by another set of components shown in Fig. 14.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any  combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (37)

  1. A method of wireless communication performed by a base station, comprising:
    selecting a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and
    communicating, using one or more beams of the beam set, with one or more user equipments (UEs) in the cell associated with the base station.
  2. The method of claim 1, wherein the base station is a millimeter wave base station.
  3. The method of claim 1, wherein the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
  4. The method of claim 1, wherein the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
  5. The method of claim 1, wherein the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
  6. The method of claim 1, wherein the one or more UEs include one or more static or semi-static UEs, and wherein selecting the beam set for the cell associated with the base station is based at least in part on one or more locations associated with respective UEs of the one or more static or semi-static UEs.
  7. The method of claim 1, wherein selecting the beam set for the cell associated with the base station is based at least in part on beam measurements in the cell associated with the base station and the neighbor cells.
  8. The method of claim 1, wherein selecting the beam set for the cell associated with the base station is based at least in part on static analysis of a coverage area of the cell associated with the base station and of coverage areas of the neighbor cells.
  9. The method of claim 1, wherein selecting the beam set for the cell associated with the base station is based at least in part on a beam table including information identifying the beam sets of the neighboring cells.
  10. The method of claim 9, wherein the beam table includes information identifying the beam set for the cell associated with the base station.
  11. The method of claim 9, wherein selecting the beam set for the cell associated with the base station comprises:
    receiving beam information from one or more other base stations associated with one or more of the neighboring cells; and
    selecting the beam set for the cell associated with the base station that does not overlap with the beam sets of the one or more neighboring cells based at least in part on the beam information.
  12. A method of wireless communication performed by a user equipment (UE) , comprising:
    selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and
    communicating with a base station using the beam selected from the beam set associated with the cell.
  13. The method of claim 12, wherein selecting a beam from the beam associated with the cell comprises:
    selecting the beam based at least in part on synchronization signal blocks transmitted over the beam set associated with the cell.
  14. The method of claim 12, wherein the beam set for the cell associated with the base station includes a subset of a set of pre-defined beams in a spatial domain for the base station.
  15. The method of claim 12, wherein the beam set for the cell associated with the base station covers at least one of a subset of elevation angles or a subset of azimuth angles for the base station.
  16. The method of claim 12, wherein the beam set of the cell associated with the base station covers a coverage area that does not overlap with coverage areas covered by the beam sets of the neighboring cells.
  17. The method of claim 12, wherein the UE is a static or semi-static UEs 
  18. A method of wireless communication performed by a network controller, comprising:
    receiving beam information for a plurality of cells; and
    determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  19. The method of claim 18, wherein receiving the beam information for the plurality of cells comprises:
    receiving the beam information for each cell of the plurality of cells from a respective base station associated with the cell.
  20. The method of claim 18, further comprising:
    transmitting, for each cell of the plurality of cells, and to a respective base station associated with the cell, the respective beam set determined for the cell.
  21. The method of claim 18, wherein the respective beam set for each cell includes a subset of a set of pre-defined beams in a spatial domain for a respective base station associated with the cell.
  22. The method of claim 18, wherein the respective beam set for each cell covers at least one of a subset of elevation angles or a subset of azimuth angles for a respective base station associated with the cell.
  23. The method of claim 18, wherein the respective beam set for each cell covers a respective coverage area that does not overlap with coverage areas covered by the beam sets of the other cells of the plurality of cells.
  24. The method of claim 18, wherein determining the respective beam set for each cell is based at least in part on one or more locations associated with respective UEs of one or more static or semi-static UEs.
  25. The method of claim 18, wherein determining the respective beam set for each cell is based at least in part on beam measurements in the plurality of cells.
  26. The method of claim 18, wherein determining the respective beam set for each cell is based at least in part on static analysis of coverage areas of the plurality of cells.
  27. The method of claim 18, further comprising:
    storing a beam table including information identifying the respective beam set for each cell of the plurality of cells.
  28. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and
    communicate, using one or more beams of the beam set, with one or more user equipments (UEs) in the cell associated with the base station.
  29. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and
    communicate with a base station using the beam selected from the beam set associated with the cell.
  30. A network controller for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive beam information for a plurality of cells; and
    determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  31. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the base station to:
    select a beam set, for a cell associated with the base station, that does not overlap with beam sets of neighboring cells; and
    communicate, using one or more beams of the beam set, with one or more user equipments (UEs) in the cell associated with the base station.
  32. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    select a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and
    communicate with a base station using the beam selected from the beam set associated with the cell.
  33. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a network controller, cause the network controller to:
    receive beam information for a plurality of cells; and
    determine, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  34. An apparatus for wireless communication, comprising:
    means for selecting, for a cell, a beam set that does not overlap with beam sets of neighboring cells; and
    means for communicating, using one or more beams of the beam set, with one or more user equipments (UEs) in the cell.
  35. An apparatus for wireless communication, comprising:
    means for selecting a beam from a beam set associated with a cell, wherein the beam set associated with the cell does not overlap with beam sets of neighboring cells; and
    means for communicating with a base station using the beam selected from the beam set associated with the cell.
  36. An apparatus for wireless communication, comprising:
    means for receiving beam information for a plurality of cells; and
    means for determining, for each cell of the plurality of cells, a respective beam set that does not overlap with beam sets determined for other cells of the plurality of cells.
  37. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, base station, node, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2020/114416 2020-09-10 2020-09-10 Zero beam overlap millimeter wave small cell network WO2022051965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114416 WO2022051965A1 (en) 2020-09-10 2020-09-10 Zero beam overlap millimeter wave small cell network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114416 WO2022051965A1 (en) 2020-09-10 2020-09-10 Zero beam overlap millimeter wave small cell network

Publications (1)

Publication Number Publication Date
WO2022051965A1 true WO2022051965A1 (en) 2022-03-17

Family

ID=80630237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114416 WO2022051965A1 (en) 2020-09-10 2020-09-10 Zero beam overlap millimeter wave small cell network

Country Status (1)

Country Link
WO (1) WO2022051965A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732638A (en) * 2002-12-30 2006-02-08 摩托罗拉公司 Method and system for minimizing overlap nulling in switched beams
CN101204107A (en) * 2005-05-11 2008-06-18 诺基亚西门子通信有限责任两合公司 Beam-hopping in a radio communications system
WO2016172840A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. Robust mobility measurements and inter-cell coordination in mmwave small cell
CN107889170A (en) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 A kind of signaling method, method of reseptance and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732638A (en) * 2002-12-30 2006-02-08 摩托罗拉公司 Method and system for minimizing overlap nulling in switched beams
CN101204107A (en) * 2005-05-11 2008-06-18 诺基亚西门子通信有限责任两合公司 Beam-hopping in a radio communications system
WO2016172840A1 (en) * 2015-04-28 2016-11-03 Mediatek Inc. Robust mobility measurements and inter-cell coordination in mmwave small cell
CN107889170A (en) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 A kind of signaling method, method of reseptance and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1903971, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699384 *
TCL: "Channel access mechanism", 3GPP DRAFT; R1-2005767, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915024 *

Similar Documents

Publication Publication Date Title
US11838920B2 (en) Beam-based configured grant—small data transfer occasions
EP4297328A2 (en) Antenna and beam selection using csi for channel state feedback rather than csi for beam management
EP4158825A1 (en) Transmission configurations for full duplex transmissions
US11871395B2 (en) Techniques for improved beam management
US20240007165A1 (en) Channel state reporting for full duplex transmissions
US11930375B2 (en) Techniques for beam management
US20230117971A1 (en) Reporting wide bandwidth operation for beamforming
US11632782B2 (en) Spatial filters in full duplex mode
US11811529B2 (en) Rate-matching, puncturing, and power scaling uplink communications in full duplex mode
WO2021217185A1 (en) Techniques for selection or indication of a channel state information report parameter
EP4140227A1 (en) Multi-part layer 1 reporting
WO2022051965A1 (en) Zero beam overlap millimeter wave small cell network
US20220311572A1 (en) Reference signal resource sets for subband measurements
US11736342B2 (en) Different beam failure indicators for noise or interference
US11509384B2 (en) Beam selection in idle mode to avoid monitoring occasion collision
US20220078819A1 (en) Beam-dependent system information
US20230115394A1 (en) Frequency domain beam sweeping for synchronization signals
EP4315937A1 (en) Group based beam reporting for non-serving cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952753

Country of ref document: EP

Kind code of ref document: A1