WO2022051938A1 - Cross-component carrier activation of joint dl/ul tci state - Google Patents

Cross-component carrier activation of joint dl/ul tci state Download PDF

Info

Publication number
WO2022051938A1
WO2022051938A1 PCT/CN2020/114233 CN2020114233W WO2022051938A1 WO 2022051938 A1 WO2022051938 A1 WO 2022051938A1 CN 2020114233 W CN2020114233 W CN 2020114233W WO 2022051938 A1 WO2022051938 A1 WO 2022051938A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
tci state
activation
list
tci
Prior art date
Application number
PCT/CN2020/114233
Other languages
French (fr)
Inventor
Yan Zhou
Fang Yuan
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/114233 priority Critical patent/WO2022051938A1/en
Priority to US18/018,503 priority patent/US20230291533A1/en
Priority to CN202180054113.8A priority patent/CN116235592A/en
Priority to EP21865989.4A priority patent/EP4211963A1/en
Priority to PCT/CN2021/117102 priority patent/WO2022052935A1/en
Publication of WO2022051938A1 publication Critical patent/WO2022051938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to cross-component carrier (CC) activation of joint downlink (DL) /uplink (UL) transmission configuration indicator (TCI) states.
  • CC cross-component carrier
  • DL downlink
  • UL uplink
  • TCI transmission configuration indicator
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus may be a device at a UE.
  • the device may be a processor and/or a modem at a UE or the UE itself.
  • the apparatus receives, from a base station, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a component carrier (CC) , the joint UL and DL TCI state indicating a common beam for communication of data and control channels in DL and UL.
  • the apparatus applies the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • the apparatus may be a device at a base station.
  • the device may be a processor and/or a modem at a base station or the base station itself.
  • the apparatus configures a component carrier (CC) list comprising multiple CCs.
  • the apparatus transmits, to a user equipment, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  • DL downlink
  • UL uplink
  • TCI transmission configuration indicator
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4A is a diagram illustrating a MAC-CE for activating joint DL/UL TCI states.
  • FIG. 4B is a diagram illustrating a configured CC list for cross-CC activation.
  • FIG. 5 is a call flow diagram of signaling between a UE and a base station.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 8 is a flowchart of a method of wireless communication.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
  • UE 104 may comprise an activation component 198 configured to receive an activation of a joint DL and UL TCI state for a CC.
  • the UE 104 may receive, from a base station, an activation of a joint DL and UL TCI state for a CC, the joint UL and DL TCI state indicating a common beam for communication of data and control channel in DL and UL.
  • the channels to apply the indication of joint DL and UL TCI state may include any of PDCCH, PDSCH, PUCCH, PUSCH, CSI-RS or SRS.
  • the UE 104 may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • the base station 180 may be configured to configure a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
  • base station 180 may comprise a configuration component 199 configured to configure a CC list comprising multiple CCs.
  • the base station 180 may configure a CC list comprising multiple CCs.
  • the base station 180 may transmit, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • signaling a common beam for multiple DL and UL resources may be utilized to save both beam indication overhead and latency.
  • the common beam indication may be signaled via a joint DL/UL TCI state.
  • Cross-CC activation of joint DL/UL TCI states may be similar to cross-CC activation of DL TCI states.
  • aspects presented herein provide an enhancement on multi-beam operation, such as but not limited to, targeting frequency range 2 (FR2) while also being applicable to frequency range 1 (FR1) .
  • Aspects presented herein may facilitate more efficient, e.g., lower latency and overhead, DL/UL beam management to support higher intra and Layer-1/Layer-2 centric inter-cell mobility and/or a larger number of configured TCI states.
  • aspects may enable the configuration and/or activation of a common beam for data and control transmission/reception for DL and UL, especially for intra-band carrier aggregation (CA) , a unified TCI framework for DL and UL beam indication, or enhancement on signaling mechanisms to improve latency and efficiency with more usage of dynamic control signaling, e.g., as compared to RRC signaling.
  • Aspects may further facilitate UL beam selection for UEs equipped with multiple panels, considering UL coverage loss mitigation due to maximum permissible exposure (MPE) , based on UL beam indication with the unified TCI framework for UL fast panel selection.
  • MPE maximum permissible exposure
  • aspects presented herein provide a configuration to allow a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
  • the joint DL/UL TCI state may be activated for a CC in a MAC-CE and/or in a DCI.
  • FIG. 4A is an example 400 illustrating an example MAC-CE 402 that may be used to activate joint DL/UL TCI states and DL/UL communication.
  • the example in FIG. 4 is merely one example of a MAC-CE that may be used to activate a joint DL/UL TCI state.
  • a MAC-CE including different content may also be used to activate the joint DL/UL TCI state, or a different message, such as DCI may be used to activate the joint DL/UL TCI state in other examples.
  • the MAC-CE 402 may be a UE-specific MAC-CE for TCI state activation/deactivation, which is transmitted on PDSCH from a base station to a UE.
  • the TCI state activation/deactivation for UE-specific MAC-CE is identified by a MAC PDU subheader.
  • the MAC-CE 402 may have a variable size bitmap including a serving cell ID field, a BWP ID field, a C i field, TCI state ID i, j field, and a reserved (R) field.
  • the serving cell ID may indicate the identity of the serving cell for which the MAC-CE 402 applies in the case of carrier aggregation (CA) .
  • the MAC-CE 402 may activate the TCI states for any of data channel such as PDSCH, PUSCH, or control channel such as control resource set (CORESET) , PUCCH, or RS signal such as CSI-RS and SRS for a UE.
  • CORESET control resource set
  • PUCCH Physical Uplink Control Channel
  • RS signal such as CSI-RS and SRS for a UE.
  • the length of the field may be 5 bits, for example.
  • the BWP ID indicates indicates a DL BWP for which the MAC-CE 402 applies as the codepoint.
  • the length of the BWP ID field may be 2 bits, for example.
  • the TCI state ID i, j field indicates the TCI state, where i is the index of the codepoint and TCI state ID i, j denotes the j th TCI state indicated for the i th codepoint.
  • the TCI codepoint to which the TCI states are mapped is determined by its ordinal position among all the TCI codepoints with sets of TCI state ID i, j fields, i.e., the first TCI codepoint with TCI state ID 0, 1 and TCI state ID 0, 2 is mapped to the codepoint value 0, the second TCI codepoint with TCI state ID 1, 1 and TCI state ID 1, 2 is mapped to the codepoint value 1, and so on.
  • the TCI state ID i, 2 is optional based on the indication of the C i field.
  • the maximum number of activated TCI codepoints may be 8 (accordingly, N ⁇ 7) and the maximum number of TCI states mapped to a TCI codepoint may be 2. In one configuration, the maximum number of TCI states mapped to a TCI codepoint may greater than 2.
  • there may be a number of M-1 C i field for a TCI codepoint, respectively indicating that whether each of the TCI state ID i, m is present or not, where m 2, ..., M.
  • the R field is a reserved bit that may be set to "0" .
  • one TRP can schedule DL receptions or UL transmissions simultaneously with each of multiple TRPs by sending a single scheduling DCI.
  • the corresponding activation MAC-CE may activate at least one set of at least one joint DL/UL TCI state.
  • each of the multiple activated joint DL/UL TCI states may be sequentially applied to DL receptions or UL transmissions associated with each of the multiple scheduled TRPs.
  • the two joint TCI states are 1-to-1 mapped to two TRPs scheduled by all scheduling DCIs, where the channel types or resources of DL receptions or UL transmissions per scheduled TRP is dynamically indicated in each scheduling DCI.
  • the channel types or resources for DL receptions associated with a TRP can be such as PDSCH, PDCCH or COREST, CSI-RS, and the channel types or resources for UL transmission associated with a TRP can be such as PUSCH, PUCCH, SRS, or PRACH.
  • each scheduling DCI may not have a field of TCI codepoint and may not need to specify the used joint TCI state for channel types or resources of DL receptions or UL transmissions per scheduled TRP.
  • Resources for DL receptions or UL transmissions with multiple scheduled TRPs may be frequency division multiplexed (FDMed) , time divison multiplexed (TDMed) , or spatially division multiplexed (SDMed) , which may be dynamically indicated in each scheduling DCI.
  • FDMed frequency division multiplexed
  • TDMed time divison multiplexed
  • SDMed spatially division multiplexed
  • the two joint TCI states in the 0 th set activated by the MAC-CE may be applied to resources allocated for DL receptions or UL transmissions associated with the two TRPs, respectively.
  • 1 st joint TCI states may be applied to 1 st PDSCH in two FDMed PDSCHs, 1 st PUCCH in two TDMed PUCCHs, and 1 st PUSCH in two TDMed PUSCHs
  • 2 nd joint TCI states may be applied to 2 nd PDSCH in two FDMed PDSCHs, 2 nd PUCCH in two TDMed PUCCHs, and 2 nd PUSCH in two TDMed PUSCHs.
  • the mapping between joint TCI state and resources of DL receptions or UL transmissions associated with each TRP may be determined in the specification (i.e., predetermined) or dynamically by the base station via RRC/MAC-CE/DCI.
  • a DCI may further indicate a TCI codepoint which is mapped to one of the multiple sets of joint TCI state (s) .
  • the indicated TCI codepoint may be used only for resources of DL receptions or UL transmissions scheduled by the same DCI indicating the TCI codepoint.
  • 1 st /2 nd joint TCI states may be applied to 1 st /2 nd PDSCH and 1 st /2 nd PUCCH scheduled by this DCI, respectively.
  • the indicated TCI codepoint may be used for DL receptions or UL transmissions scheduled by all the following scheduling DCIs.
  • a first DCI may indicate one TCI codepoint which is mapped to a set of 1 st and 2 nd joint TCI states, and 1 st /2 nd joint TCI states may be applied to resources of DL receptions or UL transmissions for 1 st /2 nd TRPs scheduled by all the scheduling DCIs following the first DCI.
  • one TCI codepoint may be defined to indicate a set of default common beams, e.g., the TCI codepoint with lowest/highest codepoint ID, at least when no TCI codepoint is indicated by any DCI.
  • a base station may activate a joint DL/UL TCI state across multiple CCs by transmitting an indication to the UE to activate the joint DL/UL TCI state for one CC.
  • the UE receiving the indication to activate the joint DL/UL TCI state for the single CC may apply the activation of the joint DL/UL TCI state to multiple CCs, e.g., the multiple CCs having an association with the single CC.
  • the joint DL/UL TCI state can be activated by an indication of MAC-CE or DCI, which also indicates the CC/BWP ID for the activated joint TCI state to be applied. If the applied CC ID belongs to a configured CC list, the activated joint TCI state ID or the ID of individual components in the MAC-CE or DCI may be applied to every CC in the CC list. As a first example, the same joint DL/UL TCI state ID (s) may be applied to all BWPs of every CC in the CC list. As another example, the same joint DL/UL TCI state ID (s) may be applied to the active DL/UL BWP of every CC in the CC list.
  • the CC lists can be dedicated for the joint DL/UL TCI state only.
  • the base station and UE may reuse CC lists for cross-CC activation of a DL TCI state or cross-CC activation of an UL TCI state.
  • the MAC-CE or DCI activating the joint DL/UL TCI state may include an ID of individual components for cross-CC activation.
  • the MAC-CE or DCI may indicate an ID of a source reference signal providing various DL quasi-co-location (QCL) assumptions and/or UL spatial relation information.
  • a QCL assumption may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, a spatial receive or a spatial transmit parameters.
  • the MAC-CE or DCI may indicate UL power control parameters, including one or more of a pathloss reference signal (such as a CSI-RS or other reference signal) , a nominal power parameter (such a P0 or other nominal power) , a pathloss scaling factor (such as ⁇ or other scaling factor) , a close-loop index (such as i0 or i1) , an identifier of a power control group (such as a PC group ID) , or a combination thereof.
  • a pathloss reference signal such as a CSI-RS or other reference signal
  • a nominal power parameter such as a P0 or other nominal power
  • a pathloss scaling factor such as ⁇ or other scaling factor
  • close-loop index such as i0 or i1
  • the MAC-CE or DCI may indicate UL timing advance parameters, including one or more of a timing advance (TA) group ID and/or TA value.
  • the MAC-CE or DCI may indicate a UE panel ID or similar ID, e.g. an antenna port group ID, a beam group ID, etc.
  • FIG. 4B is an example 410 illustrating a configured CC list for cross-CC activation.
  • the configured CC list may be configured via RRC signaling, which may include the serving cells (e.g., CC0, CC1, CC2) .
  • the UE may receive a MAC-CE0 for updating one or more joint DL/UL TCI states in CC0, by indicating one or more joint DL/UL TCI state IDs in the MAC-CE0.
  • the MAC-CE0 may contain an index for the CC0 which may indicate the serving cell intended to receive the update.
  • the UE may apply the MAC-CE0 for CC0 by activating the indicated joint DL/UL TCI states in CC0, in response to the receipt of the MAC-CE0.
  • the updated/activated joint DL/UL TCI states for CC0 are corresponding to the joint DL/UL TCI states configured for CC0 of the same joint DL/UL TCI state IDs as indicated by the MAC-CE0.
  • the UE may determine that the CC0 may belong to a CC list, such that the UE may apply the same MAC-CE0 to the other CCs within the CC list.
  • the MAC-CE0 indicates one or more joint DL/UL TCI state IDs, such that the TCI states may be applied to every CC in the CC list.
  • the joint DL/UL TCI states configured for that CC which are of the TCI state IDs same as indicated by the MAC-CE0 are activated/updated.
  • the same joint DL/UL TCI state ID may be applied to all BWPs of every CC in the CC list.
  • the same joint DL/UL TCI state ID may be applied to active DL/UL BWP of every CC in the CC list.
  • the list may be dedicated to joint DL/UL TCI state only.
  • the list may be reused for other CC lists, such as, cross-CC activation of DL or UL TCI state.
  • FIG. 5 is a call flow diagram 500 of signaling between a UE 502 and a base station 504 including the activation of a joint DL and UL TCI state across multiple CCs.
  • the base station 504 may be configured to provide at least one cell.
  • the base station may use a single transmission reception point (TRP) or multiple TRPs to communicate with the UE 502. If the base station 404 uses multiple TRPs, the communication with the multiple TRPs may be based on a single DCI or may be based on multiple DCIs.
  • TRP transmission reception point
  • the base station may use a single DCI to schedule the transmissions or receptions associated with different TRPs, or may use different DCIs to schedule the transmissions or receptions associated with different TRPs.
  • the UE 502 may be configured to communicate with the base station 504.
  • the base station 504 may correspond to base station 102/180 and, accordingly, the cell may include a geographic coverage area 110 in which communication coverage is provided and/or small cell 102’ having a coverage area 110’.
  • a UE 502 may correspond to at least UE 104.
  • the base station 504 may correspond to base station 310 and the UE 502 may correspond to UE 350.
  • Optional aspects are illustrated with a dashed line.
  • the base station 504 may configure a CC list comprising multiple CCs.
  • the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
  • the base station may transmit the configuration of the CC list, at 508, to the UE 502.
  • the base station may configure more than one CC list for the UE 502 in some examples.
  • the base station may configure the CC list (s) in RRC signaling to the UE 502.
  • the base station 504 may configure one or more joint DL and UL TCI states for the UE.
  • the joint DL and UL TCI states may each indicate parameters, such as a beam, for downlink communication and uplink communication with the base station 504.
  • the joint DL and UL TCI state may indicate the parameters based on a source reference signal, for example.
  • the base station may transmit the configuration of the joint DL and UL TCI states to the UE 502 in RRC signaling, for example.
  • the base station 504 may transmit an activation of at least one of the configured joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list.
  • the base station 504 may indicate a deactivation of the joint DL and UL TCI state.
  • the base station may transmit the activation/deactivation of the joint DL and UL TCI state for a CC comprised in the CC list to a UE 502, e.g., for a single CC.
  • the UE 502 may receive the activation of the joint DL and UL TCI state for the CC comprised in the CC list from the base station 504.
  • the joint UL and DL TCI state may indicate a common beam for communication in DL and UL.
  • the activation of the joint DL and UL TCI state for the CC may be transmitted in one or more of a MAC-CE or DCI.
  • a set of joint DL and UL TCI states may be RRC configured and then a joint DL and UL TCI state from the configured set may be activated in more dynamic signaling (e.g., a MAC-CE or DCI) .
  • the MAC-CE or the DCI may indicate the CC or a BWP ID for which the joint DL and UL TCI state is activated.
  • the UE may apply the activation of the joint DL and UL TCI state to each CC in a CC list configured at 508 that includes the CC indicated in the MAC-CE/DCI activating the TCI state.
  • Each CC may have multiple BWPs, e.g., up to 4 BWPs.
  • the activation may activate the joint DL and UL TCI state for each BWP of each of the multiple CCs, e.g., each of the CCs in the CC list that includes the CC indicated in the MAC-CE/DCI.
  • the activation 511 may activate the joint DL and UL TCI state for an active BWP of each of the multiple CCs, e.g., rather than each BWP of each of the CCs.
  • the active BWP may be a downlink BWP or an uplink BWP.
  • the base station may transmit the activation 511 of the joint DL and UL TCI state in a message that may indicate a joint TCI state ID and an ID of one or more component in the joint TCI state ID.
  • the one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • the base station 504 may transmit a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state.
  • the base station 504 may transmit the configuration of the CC list for cross-CC activation of the joint DL and UL TCI state to the UE 502.
  • the UE 502 may receive the configuration of the CC list for cross-CC activation of the joint DL and UL TCI state from the base station 504.
  • the UE 502 may apply the joint DL and UL TCI state to each CC comprised in the CC list.
  • the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
  • the UE 502 may apply the joint DL and UL TCI state to multiple CCs.
  • the UE may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • the UE 502 and the base station 504 may exchange downlink and/or uplink communication 514 based on the activation of the joint DL/UL TCI state.
  • the downlink and/or uplink communication 514 may be exchanged on multiple CCs based on the activated joint DL/UL TCI state.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 502; the apparatus 702; the cellular baseband processor 704, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • Optional aspects are illustrated with a dashed line.
  • the method may allow a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
  • the UE may receive a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state.
  • 604 may be performed by configuration component 742 of apparatus 702.
  • the UE may apply the joint DL and UL TCI state to each CC comprised in the CC list.
  • the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
  • the UE may receive an activation of a joint DL and UL TCI state for a CC.
  • 602 may be performed by activation component 740 of apparatus 702.
  • the UE may receive the activation of the joint DL and UL TCI state for the CC from a base station.
  • the joint UL and DL TCI state may indicate a common beam for communication in DL and UL.
  • the activation of the joint DL and UL TCI state for the CC may be received in one or more of a media access control (MAC) control element (CE) (MAC-CE) or downlink control information (DCI) .
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the MAC-CE or the DCI may indicate the CC or a bandwidth part (BWP) identifier (ID) for which the joint DL and UL TCI state is activated.
  • the CC may be associated with a list of the multiple CCs.
  • the UE may apply the joint DL and UL TCI state to each CC in the list of the multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • the UE may apply the joint DL and UL TCI state to each BWP of each of the multiple CCs.
  • the UE may apply the joint DL and UL TCI state to an active BWP of each of the multiple CCs.
  • the active BWP may be a downlink BWP or an uplink BWP.
  • the UE may receive the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state ID and an ID of one or more component in the joint TCI state ID.
  • the one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • the UE may apply the joint DL and UL TCI state to multiple CCs.
  • 606 may be performed by application component 744 of apparatus 702.
  • the UE may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702.
  • the apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718.
  • the cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 704 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software.
  • the cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734.
  • the communication manager 732 includes the one or more illustrated components.
  • the components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704.
  • the cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
  • the communication manager 732 includes an activation component 740 that is configured to receive an activation of a joint DL and UL TCI state for a CC, e.g., as described in connection with 602 of FIG. 6.
  • the communication manager 732 further includes a configuration component 742 that is configured to receive a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state, e.g., as described in connection with 604 of FIG. 6.
  • the communication manager 732 further includes an application component 744 that is configured to apply the joint DL and UL TCI state to multiple CCs, e.g., as described in connection with 606 of FIG. 6.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 702 includes means for receiving, from a base station, an activation of a joint DL and UL TCI state for a CC.
  • the joint UL and DL TCI state indicating a common beam for communication in DL and UL.
  • the apparatus includes means for applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • the apparatus further includes means for receiving a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state.
  • the UE applies the joint DL and UL TCI state to each CC comprised in the CC list.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means.
  • the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 8 is a flowchart 800 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., the base station 102/180, 504; the apparatus 902; the baseband unit 904, which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • Optional aspects are illustrated with a dashed line.
  • the method may allow a base station to configure a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
  • the base station may configure a CC list comprising multiple CCs.
  • 802 may be performed by configuration component 940 of apparatus 902.
  • the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
  • the base station may transmit an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list.
  • 804 may be performed by activation component 942 of apparatus 902.
  • the base station may transmit the activation of the joint DL and UL TCI state for the CC comprised in the CC list to a UE.
  • the joint UL and DL TCI state may indicate a common beam for communication in DL and UL.
  • the activation of the joint DL and UL TCI state for the CC may be transmitted in one or more of a MAC-CE or DCI.
  • the MAC-CE or the DCI may indicate the CC or a BWP ID for which the joint DL and UL TCI state is activated.
  • the activation may activate the joint DL and UL TCI state for each BWP of each of the multiple CCs.
  • the activation activates the joint DL and UL TCI state for an active BWP of each of the multiple CCs.
  • the active BWP may be a downlink BWP or an uplink BWP.
  • the base station may transmit the activation of the joint DL and UL TCI state in a message that may indicate a joint TCI state ID and an ID of one or more component in the joint TCI state ID.
  • the one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902.
  • the apparatus 902 is a BS and includes a baseband unit 904.
  • the baseband unit 904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 904 may include a computer-readable medium /memory.
  • the baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software.
  • the baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934.
  • the communication manager 932 includes the one or more illustrated components.
  • the components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904.
  • the baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 932 includes a configuration component 940 that configures a CC list comprising multiple CCs, e.g., as described in connection with 802 of FIG. 8.
  • the communication manager 932 further includes an activation component 942 that transmits an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, e.g., as described in connection with 804 of FIG. 8.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 8. As such, each block in the aforementioned flowchart of FIG. 8 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 902 includes means for configuring a CC list comprising multiple CCs.
  • the apparatus includes means for transmitting, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list.
  • the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Example 1 is a method of wireless communication of a UE comprising receiving, from a base station, an activation of a joint DL and UL TCI state for a CC, the joint UL and DL TCI state indicating a common beam for communication in DL and UL; and applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • Example 2 the method of Example 1 further includes that the activation of the joint DL and UL TCI state for the CC is received in one or more of a MAC-CE or DCI.
  • Example 3 the method of Example 1 or 2 further includes that the MAC-CE or the DCI indicates the CC or a BWP ID for which the joint DL and UL TCI state is activated.
  • Example 4 the method of any of Examples 1-3 further includes that the CC is associated with a list of the multiple CCs, and wherein the UE applies the joint DL and UL TCI state to each CC in the list of the multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  • Example 5 the method of any of Examples 1-4 further includes that the UE applies the joint DL and UL TCI state to each BWP of each of the multiple CCs.
  • Example 6 the method of any of Examples 1-5 further includes that the UE applies the joint DL and UL TCI state to an active BWP of each of the multiple CCs.
  • Example 7 the method of any of Examples 1-6 further includes that the active BWP is a downlink BWP or an uplink BWP.
  • Example 8 the method of any of Examples 1-7 further includes receiving a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state, wherein the UE applies the joint DL and UL TCI state to each CC comprised in the CC list.
  • Example 9 the method of any of Examples 1-8 further includes that the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • Example 10 the method of any of Examples 1-9 further includes that the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
  • Example 11 the method of any of Examples 1-10 further includes that the UE receives the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
  • ID joint TCI state identifier
  • Example 12 the method of any of Examples 1-11 further includes that the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • Example 13 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of Examples 1-12.
  • Example 14 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-12.
  • Example 15 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-12.
  • Example 16 is a method of wireless communication at a base station comprising configuring a CC list comprising multiple CCs; and transmitting, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  • Example 17 the method of Example 16 further includes that the activation of the joint DL and UL TCI state for the CC is transmitted in one or more of a MAC-CE or DCI.
  • Example 18 the method of Example 16 or 17 further includes that the MAC-CE or the DCI indicates the CC or a BWP D for which the joint DL and UL TCI state is activated.
  • Example 19 the method of any of Examples 16-18 further includes that activation activates the joint DL and UL TCI state for each BWP of each of the multiple CCs.
  • Example 20 the method of any of Examples 16-19 further includes that the activation activates the joint DL and UL TCI state for an active BWP of each of the multiple CCs.
  • Example 21 the method of any of Examples 16-20 further includes that the active BWP is a downlink BWP or an uplink BWP.
  • Example 22 the method of any of Examples 16-21 further includes that the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  • Example 23 the method of any of Examples 16-22 further includes that the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
  • Example 24 the method of any of Examples 16-23 further includes that the base station transmits the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
  • ID joint TCI state identifier
  • Example 25 the method of any of Examples 16-24 further includes that the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
  • Example 26 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of Examples 16-25.
  • Example 27 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 16-25.
  • Example 28 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 16-25.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

The present disclosure relates to cross-component carrier (CC) activation of joint downlink (DL) /uplink (UL) transmission configuration indicator (TCI) states. In one aspect, the apparatus receives, from a base station, an activation of a joint DL and UL TCI state for a CC, the joint UL and DL TCI state indicating a common beam for communication in DL and UL. The apparatus applies the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.

Description

CROSS-COMPONENT CARRIER ACTIVATION OF JOINT DL/UL TCI STATE BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to cross-component carrier (CC) activation of joint downlink (DL) /uplink (UL) transmission configuration indicator (TCI) states.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device at a UE. The device may be a processor and/or a modem at a UE or the UE itself. The apparatus receives, from a base station, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a component carrier (CC) , the joint UL and DL TCI state indicating a common beam for communication of data and control channels in DL and UL. The apparatus applies the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a device at a base station. The device may be a processor and/or a modem at a base station or the base station itself. The apparatus configures a component carrier (CC) list comprising multiple CCs. The apparatus transmits, to a user equipment, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4A is a diagram illustrating a MAC-CE for activating joint DL/UL TCI states. 
FIG. 4B is a diagram illustrating a configured CC list for cross-CC activation.
FIG. 5 is a call flow diagram of signaling between a UE and a base station.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 8 is a flowchart of a method of wireless communication.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details.  In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage,  magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes  both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas,  such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC. For example, UE 104 may comprise an activation component 198 configured to receive an activation of a joint DL and UL TCI state for a CC. The UE 104 may receive,  from a base station, an activation of a joint DL and UL TCI state for a CC, the joint UL and DL TCI state indicating a common beam for communication of data and control channel in DL and UL. The channels to apply the indication of joint DL and UL TCI state may include any of PDCCH, PDSCH, PUCCH, PUSCH, CSI-RS or SRS. The UE 104 may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
Referring again to FIG. 1, in certain aspects, the base station 180 may be configured to configure a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC. For example, base station 180 may comprise a configuration component 199 configured to configure a CC list comprising multiple CCs. The base station 180 may configure a CC list comprising multiple CCs. The base station 180 may transmit, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various  available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared  channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity  verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial  processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
In wireless communications, signaling a common beam for multiple DL and UL resources may be utilized to save both beam indication overhead and latency. The common beam indication may be signaled via a joint DL/UL TCI state. Cross-CC activation of joint DL/UL TCI states may be similar to cross-CC activation of DL TCI states.
Aspects presented herein provide an enhancement on multi-beam operation, such as but not limited to, targeting frequency range 2 (FR2) while also being applicable to frequency range 1 (FR1) . Aspects presented herein may facilitate more efficient, e.g., lower latency and overhead, DL/UL beam management to support higher intra  and Layer-1/Layer-2 centric inter-cell mobility and/or a larger number of configured TCI states. For example, aspects may enable the configuration and/or activation of a common beam for data and control transmission/reception for DL and UL, especially for intra-band carrier aggregation (CA) , a unified TCI framework for DL and UL beam indication, or enhancement on signaling mechanisms to improve latency and efficiency with more usage of dynamic control signaling, e.g., as compared to RRC signaling. Aspects may further facilitate UL beam selection for UEs equipped with multiple panels, considering UL coverage loss mitigation due to maximum permissible exposure (MPE) , based on UL beam indication with the unified TCI framework for UL fast panel selection.
Aspects presented herein provide a configuration to allow a UE to activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
The joint DL/UL TCI state may be activated for a CC in a MAC-CE and/or in a DCI.
FIG. 4A is an example 400 illustrating an example MAC-CE 402 that may be used to activate joint DL/UL TCI states and DL/UL communication. The example in FIG. 4 is merely one example of a MAC-CE that may be used to activate a joint DL/UL TCI state. A MAC-CE including different content may also be used to activate the joint DL/UL TCI state, or a different message, such as DCI may be used to activate the joint DL/UL TCI state in other examples. The MAC-CE 402 may be a UE-specific MAC-CE for TCI state activation/deactivation, which is transmitted on PDSCH from a base station to a UE. The TCI state activation/deactivation for UE-specific MAC-CE is identified by a MAC PDU subheader. The MAC-CE 402 may have a variable size bitmap including a serving cell ID field, a BWP ID field, a C i field, TCI state ID i, j field, and a reserved (R) field. The serving cell ID may indicate the identity of the serving cell for which the MAC-CE 402 applies in the case of carrier aggregation (CA) . The MAC-CE 402 may activate the TCI states for any of data channel such as PDSCH, PUSCH, or control channel such as control resource set (CORESET) , PUCCH, or RS signal such as CSI-RS and SRS for a UE. The length of the field may be 5 bits, for example. The BWP ID indicates indicates a DL BWP for which the MAC-CE 402 applies as the codepoint. The length of the BWP ID field may be 2 bits, for example. The C i field indicates whether the octet containing TCI state ID i, 2 is present for the ith TCI codepoint (i=0, .. N) . If this field is set to "1" , the octet containing TCI state ID i, 2 is present. If this field is set to "0" ,  the octet containing TCI state ID i, 2 is not present. The TCI state ID i, j field indicates the TCI state, where i is the index of the codepoint and TCI state ID i, j denotes the j th TCI state indicated for the i th codepoint. The TCI codepoint to which the TCI states are mapped is determined by its ordinal position among all the TCI codepoints with sets of TCI state ID i, j fields, i.e., the first TCI codepoint with TCI state ID 0, 1 and TCI state ID 0, 2 is mapped to the codepoint value 0, the second TCI codepoint with TCI state ID 1, 1 and TCI state ID 1, 2 is mapped to the codepoint value 1, and so on. The TCI state ID i, 2 is optional based on the indication of the C i field. The maximum number of activated TCI codepoints may be 8 (accordingly, N ≤ 7) and the maximum number of TCI states mapped to a TCI codepoint may be 2. In one configuration, the maximum number of TCI states mapped to a TCI codepoint may greater than 2. When the number of TCI states mapped to a TCI codepoint is M>2 (TCI state ID i, m, m=1, …, M) , there may be a number of M-1 C i field for a TCI codepoint, respectively indicating that whether each of the TCI state ID i, m is present or not, where m=2, …, M. The R field is a reserved bit that may be set to "0" .
In case of single-DCI based multi-TRP, one TRP can schedule DL receptions or UL transmissions simultaneously with each of multiple TRPs by sending a single scheduling DCI. In this case, the corresponding activation MAC-CE may activate at least one set of at least one joint DL/UL TCI state. At least in case of a single activated set, each of the multiple activated joint DL/UL TCI states may be sequentially applied to DL receptions or UL transmissions associated with each of the multiple scheduled TRPs. For example, if a MAC-CE activates only the 0 th set with two joint DL/UL TCI states, the two joint TCI states are 1-to-1 mapped to two TRPs scheduled by all scheduling DCIs, where the channel types or resources of DL receptions or UL transmissions per scheduled TRP is dynamically indicated in each scheduling DCI. The channel types or resources for DL receptions associated with a TRP can be such as PDSCH, PDCCH or COREST, CSI-RS, and the channel types or resources for UL transmission associated with a TRP can be such as PUSCH, PUCCH, SRS, or PRACH. Therefore, each scheduling DCI may not have a field of TCI codepoint and may not need to specify the used joint TCI state for channel types or resources of DL receptions or UL transmissions per scheduled TRP. Resources for DL receptions or UL transmissions with multiple scheduled TRPs may be frequency division multiplexed (FDMed) , time divison multiplexed (TDMed) , or spatially division multiplexed (SDMed) , which may be dynamically  indicated in each scheduling DCI. For example, a 1 st scheduling DCI schedules two FDMed PDSCHs with two TDMed PUCCHs associated with two TRPs, and a 2 nd scheduling DCI schedules two TDMed PUSCHs associated with two TRPs. For both scheduling DCIs, the two joint TCI states in the 0 th set activated by the MAC-CE may be applied to resources allocated for DL receptions or UL transmissions associated with the two TRPs, respectively. For example, 1 st joint TCI states may be applied to 1 st PDSCH in two FDMed PDSCHs, 1 st PUCCH in two TDMed PUCCHs, and 1 st PUSCH in two TDMed PUSCHs, and similarly, 2 nd joint TCI states may be applied to 2 nd PDSCH in two FDMed PDSCHs, 2 nd PUCCH in two TDMed PUCCHs, and 2 nd PUSCH in two TDMed PUSCHs. The mapping between joint TCI state and resources of DL receptions or UL transmissions associated with each TRP may be determined in the specification (i.e., predetermined) or dynamically by the base station via RRC/MAC-CE/DCI.
If multiple sets of joint TCI state (s) are activated by the MAC-CE, e.g., N+1 sets and N>0, a DCI may further indicate a TCI codepoint which is mapped to one of the multiple sets of joint TCI state (s) . In a first configuration, the indicated TCI codepoint may be used only for resources of DL receptions or UL transmissions scheduled by the same DCI indicating the TCI codepoint. For example, 1 st/2 nd joint TCI states may be applied to 1 st/2 nd PDSCH and 1 st/2 nd PUCCH scheduled by this DCI, respectively. In a second configuration, the indicated TCI codepoint may be used for DL receptions or UL transmissions scheduled by all the following scheduling DCIs. For example, a first DCI may indicate one TCI codepoint which is mapped to a set of 1 st and 2 nd joint TCI states, and 1 st/2 nd joint TCI states may be applied to resources of DL receptions or UL transmissions for 1 st/2 nd TRPs scheduled by all the scheduling DCIs following the first DCI. Within the multiple TCI codepoints corresponding to multiple activated sets of joint DL/UL TCI states, one TCI codepoint may be defined to indicate a set of default common beams, e.g., the TCI codepoint with lowest/highest codepoint ID, at least when no TCI codepoint is indicated by any DCI.
If a joint DL/UL TCI state is activated for a component carrier (CC) , the same joint TCI state ID or the ID of individual components in the joint TCI state ID may be activated across multiple CCs. Thus, a base station may activate a joint DL/UL TCI state across multiple CCs by transmitting an indication to the UE to activate the joint DL/UL TCI state for one CC. The UE receiving the indication to activate the joint  DL/UL TCI state for the single CC may apply the activation of the joint DL/UL TCI state to multiple CCs, e.g., the multiple CCs having an association with the single CC. The joint DL/UL TCI state can be activated by an indication of MAC-CE or DCI, which also indicates the CC/BWP ID for the activated joint TCI state to be applied. If the applied CC ID belongs to a configured CC list, the activated joint TCI state ID or the ID of individual components in the MAC-CE or DCI may be applied to every CC in the CC list. As a first example, the same joint DL/UL TCI state ID (s) may be applied to all BWPs of every CC in the CC list. As another example, the same joint DL/UL TCI state ID (s) may be applied to the active DL/UL BWP of every CC in the CC list. There can be at least one CC list configured by RRC for cross-CC activation of joint DL/UL TCI state. In a first example, the CC lists can be dedicated for the joint DL/UL TCI state only. In a second example, the base station and UE may reuse CC lists for cross-CC activation of a DL TCI state or cross-CC activation of an UL TCI state. Besides the joint TCI state ID, the MAC-CE or DCI activating the joint DL/UL TCI state may include an ID of individual components for cross-CC activation. For example, the MAC-CE or DCI may indicate an ID of a source reference signal providing various DL quasi-co-location (QCL) assumptions and/or UL spatial relation information. A QCL assumption may include, for example, a Doppler shift, a Doppler spread, an average delay, a delay spread, a spatial receive or a spatial transmit parameters. The MAC-CE or DCI may indicate UL power control parameters, including one or more of a pathloss reference signal (such as a CSI-RS or other reference signal) , a nominal power parameter (such a P0 or other nominal power) , a pathloss scaling factor (such as α or other scaling factor) , a close-loop index (such as i0 or i1) , an identifier of a power control group (such as a PC group ID) , or a combination thereof.. The MAC-CE or DCI may indicate UL timing advance parameters, including one or more of a timing advance (TA) group ID and/or TA value. The MAC-CE or DCI may indicate a UE panel ID or similar ID, e.g. an antenna port group ID, a beam group ID, etc.
FIG. 4B is an example 410 illustrating a configured CC list for cross-CC activation. The configured CC list may be configured via RRC signaling, which may include the serving cells (e.g., CC0, CC1, CC2) . In some instances, the UE may receive a MAC-CE0 for updating one or more joint DL/UL TCI states in CC0, by indicating one or more joint DL/UL TCI state IDs in the MAC-CE0. Moreover, the MAC-CE0 may contain an index for the CC0 which may indicate the serving cell intended to  receive the update. The UE may apply the MAC-CE0 for CC0 by activating the indicated joint DL/UL TCI states in CC0, in response to the receipt of the MAC-CE0. The updated/activated joint DL/UL TCI states for CC0 are corresponding to the joint DL/UL TCI states configured for CC0 of the same joint DL/UL TCI state IDs as indicated by the MAC-CE0. In some instances, the UE may determine that the CC0 may belong to a CC list, such that the UE may apply the same MAC-CE0 to the other CCs within the CC list. Since the MAC-CE0 indicates one or more joint DL/UL TCI state IDs, such that the TCI states may be applied to every CC in the CC list. For each CC in the CC list, the joint DL/UL TCI states configured for that CC, which are of the TCI state IDs same as indicated by the MAC-CE0 are activated/updated. In some aspects, the same joint DL/UL TCI state ID may be applied to all BWPs of every CC in the CC list. In some aspects, the same joint DL/UL TCI state ID may be applied to active DL/UL BWP of every CC in the CC list. There may be at least one CC list configured by RRC for cross-CC activation of joint DL/UL TCI state. In some aspects, the list may be dedicated to joint DL/UL TCI state only. In some aspects, the list may be reused for other CC lists, such as, cross-CC activation of DL or UL TCI state.
FIG. 5 is a call flow diagram 500 of signaling between a UE 502 and a base station 504 including the activation of a joint DL and UL TCI state across multiple CCs. The base station 504 may be configured to provide at least one cell. The base station may use a single transmission reception point (TRP) or multiple TRPs to communicate with the UE 502. If the base station 404 uses multiple TRPs, the communication with the multiple TRPs may be based on a single DCI or may be based on multiple DCIs. For example, if multiple TRPs are used in the communication, the base station may use a single DCI to schedule the transmissions or receptions associated with different TRPs, or may use different DCIs to schedule the transmissions or receptions associated with different TRPs. The UE 502 may be configured to communicate with the base station 504. For example, in the context of FIG. 1, the base station 504 may correspond to base station 102/180 and, accordingly, the cell may include a geographic coverage area 110 in which communication coverage is provided and/or small cell 102’ having a coverage area 110’. Further, a UE 502 may correspond to at least UE 104. In another example, in the context of FIG. 3, the base station 504 may correspond to base station 310 and  the UE 502 may correspond to UE 350. Optional aspects are illustrated with a dashed line.
As illustrated at 506, the base station 504 may configure a CC list comprising multiple CCs. In some aspects, the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state. In some aspects, the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state. The base station may transmit the configuration of the CC list, at 508, to the UE 502. The base station may configure more than one CC list for the UE 502 in some examples. The base station may configure the CC list (s) in RRC signaling to the UE 502.
At 510, the base station 504 may configure one or more joint DL and UL TCI states for the UE. The joint DL and UL TCI states may each indicate parameters, such as a beam, for downlink communication and uplink communication with the base station 504. The joint DL and UL TCI state may indicate the parameters based on a source reference signal, for example. The base station may transmit the configuration of the joint DL and UL TCI states to the UE 502 in RRC signaling, for example.
As illustrated at 511, the base station 504 may transmit an activation of at least one of the configured joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list. Similarly, the base station 504 may indicate a deactivation of the joint DL and UL TCI state. The base station may transmit the activation/deactivation of the joint DL and UL TCI state for a CC comprised in the CC list to a UE 502, e.g., for a single CC. The UE 502 may receive the activation of the joint DL and UL TCI state for the CC comprised in the CC list from the base station 504. The joint UL and DL TCI state may indicate a common beam for communication in DL and UL. In some aspects, the activation of the joint DL and UL TCI state for the CC may be transmitted in one or more of a MAC-CE or DCI. For example, a set of joint DL and UL TCI states may be RRC configured and then a joint DL and UL TCI state from the configured set may be activated in more dynamic signaling (e.g., a MAC-CE or DCI) . The MAC-CE or the DCI may indicate the CC or a BWP ID for which the joint DL and UL TCI state is activated. The UE may apply the activation of the joint DL and UL TCI state to each CC in a CC list configured at 508 that includes the CC indicated in the MAC-CE/DCI activating the TCI state. Each CC may have multiple BWPs, e.g., up to 4 BWPs. In some aspects, the activation may activate  the joint DL and UL TCI state for each BWP of each of the multiple CCs, e.g., each of the CCs in the CC list that includes the CC indicated in the MAC-CE/DCI. In some aspects, the activation 511 may activate the joint DL and UL TCI state for an active BWP of each of the multiple CCs, e.g., rather than each BWP of each of the CCs. The active BWP may be a downlink BWP or an uplink BWP. The base station may transmit the activation 511 of the joint DL and UL TCI state in a message that may indicate a joint TCI state ID and an ID of one or more component in the joint TCI state ID. In some aspects, the one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
In some aspects, for example as illustrated at 508, the base station 504 may transmit a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state. The base station 504 may transmit the configuration of the CC list for cross-CC activation of the joint DL and UL TCI state to the UE 502. The UE 502 may receive the configuration of the CC list for cross-CC activation of the joint DL and UL TCI state from the base station 504. The UE 502 may apply the joint DL and UL TCI state to each CC comprised in the CC list. The CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state. The CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
As illustrated at 512, the UE 502 may apply the joint DL and UL TCI state to multiple CCs. The UE may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC. The UE 502 and the base station 504 may exchange downlink and/or uplink communication 514 based on the activation of the joint DL/UL TCI state. The downlink and/or uplink communication 514 may be exchanged on multiple CCs based on the activated joint DL/UL TCI state.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 502; the apparatus 702; the cellular baseband processor 704, which may include the memory 360 and which may be the entire UE 350 or a component of the UE 350, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. Optional aspects are illustrated with a dashed line. The method may allow a UE to  activate a same joint TCI state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
In some aspects, for example at 604, the UE may receive a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state. For example, 604 may be performed by configuration component 742 of apparatus 702. The UE may apply the joint DL and UL TCI state to each CC comprised in the CC list. The CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state. The CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
At 602, the UE may receive an activation of a joint DL and UL TCI state for a CC. For example, 602 may be performed by activation component 740 of apparatus 702. The UE may receive the activation of the joint DL and UL TCI state for the CC from a base station. The joint UL and DL TCI state may indicate a common beam for communication in DL and UL. In some aspects, the activation of the joint DL and UL TCI state for the CC may be received in one or more of a media access control (MAC) control element (CE) (MAC-CE) or downlink control information (DCI) . The MAC-CE or the DCI may indicate the CC or a bandwidth part (BWP) identifier (ID) for which the joint DL and UL TCI state is activated. In some aspects, the CC may be associated with a list of the multiple CCs. The UE may apply the joint DL and UL TCI state to each CC in the list of the multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC. In some aspects, the UE may apply the joint DL and UL TCI state to each BWP of each of the multiple CCs. In some aspects, the UE may apply the joint DL and UL TCI state to an active BWP of each of the multiple CCs. The active BWP may be a downlink BWP or an uplink BWP. In some aspects, the UE may receive the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state ID and an ID of one or more component in the joint TCI state ID. The one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
At 606, the UE may apply the joint DL and UL TCI state to multiple CCs. For example, 606 may be performed by application component 744 of apparatus 702. The UE may apply the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702. The apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718. The cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180. The cellular baseband processor 704 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software. The cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734. The communication manager 732 includes the one or more illustrated components. The components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704. The cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
The communication manager 732 includes an activation component 740 that is configured to receive an activation of a joint DL and UL TCI state for a CC, e.g., as described in connection with 602 of FIG. 6. The communication manager 732 further includes a configuration component 742 that is configured to receive a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state, e.g., as described in connection with 604 of FIG. 6. The communication manager  732 further includes an application component 744 that is configured to apply the joint DL and UL TCI state to multiple CCs, e.g., as described in connection with 606 of FIG. 6.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 6. As such, each block in the aforementioned flowchart of FIG. 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 702, and in particular the cellular baseband processor 704, includes means for receiving, from a base station, an activation of a joint DL and UL TCI state for a CC. The joint UL and DL TCI state indicating a common beam for communication in DL and UL. The apparatus includes means for applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC. The apparatus further includes means for receiving a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state. The UE applies the joint DL and UL TCI state to each CC comprised in the CC list. The aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 8 is a flowchart 800 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g., the base station 102/180, 504; the apparatus 902; the baseband unit 904, which may include the memory 376 and which may be the entire base station 310 or a component of the base station 310, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. Optional aspects are illustrated with a dashed line. The method may allow a base station to configure a UE to activate a same joint TCI  state ID or the ID of individual component in the joint TCI state ID across multiple CCs if a joint DL/UL TCI state is activated for a CC.
At 802, the base station may configure a CC list comprising multiple CCs. For example, 802 may be performed by configuration component 940 of apparatus 902. In some aspects, the CC list may comprise a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state. In some aspects, the CC list may be for the cross-CC activation of a DL TCI state or an UL TCI state.
At 804, the base station may transmit an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list. For example, 804 may be performed by activation component 942 of apparatus 902. The base station may transmit the activation of the joint DL and UL TCI state for the CC comprised in the CC list to a UE. The joint UL and DL TCI state may indicate a common beam for communication in DL and UL. In some aspects, the activation of the joint DL and UL TCI state for the CC may be transmitted in one or more of a MAC-CE or DCI. The MAC-CE or the DCI may indicate the CC or a BWP ID for which the joint DL and UL TCI state is activated. In some aspects, the activation may activate the joint DL and UL TCI state for each BWP of each of the multiple CCs. In some aspects, the activation activates the joint DL and UL TCI state for an active BWP of each of the multiple CCs. The active BWP may be a downlink BWP or an uplink BWP. The base station may transmit the activation of the joint DL and UL TCI state in a message that may indicate a joint TCI state ID and an ID of one or more component in the joint TCI state ID. In some aspects, the one or more component in the joint TCI state ID includes one or more of a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902. The apparatus 902 is a BS and includes a baseband unit 904. The baseband unit 904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 904 may include a computer-readable medium /memory. The baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra. The computer-readable medium /memory may  also be used for storing data that is manipulated by the baseband unit 904 when executing software. The baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934. The communication manager 932 includes the one or more illustrated components. The components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904. The baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 932 includes a configuration component 940 that configures a CC list comprising multiple CCs, e.g., as described in connection with 802 of FIG. 8. The communication manager 932 further includes an activation component 942 that transmits an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, e.g., as described in connection with 804 of FIG. 8.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 8. As such, each block in the aforementioned flowchart of FIG. 8 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 902, and in particular the baseband unit 904, includes means for configuring a CC list comprising multiple CCs. The apparatus includes means for transmitting, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list. The joint UL and DL TCI state indicates a common beam for communication in DL and UL. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one  configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Example 1 is a method of wireless communication of a UE comprising receiving, from a base station, an activation of a joint DL and UL TCI state for a CC, the joint UL and DL TCI state indicating a common beam for communication in DL and UL; and applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
In Example 2, the method of Example 1 further includes that the activation of the joint DL and UL TCI state for the CC is received in one or more of a MAC-CE or DCI.
In Example 3, the method of Example 1 or 2 further includes that the MAC-CE or the DCI indicates the CC or a BWP ID for which the joint DL and UL TCI state is activated.
In Example 4, the method of any of Examples 1-3 further includes that the CC is associated with a list of the multiple CCs, and wherein the UE applies the joint DL and UL TCI state to each CC in the list of the multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
In Example 5, the method of any of Examples 1-4 further includes that the UE applies the joint DL and UL TCI state to each BWP of each of the multiple CCs.
In Example 6, the method of any of Examples 1-5 further includes that the UE applies the joint DL and UL TCI state to an active BWP of each of the multiple CCs.
In Example 7, the method of any of Examples 1-6 further includes that the active BWP is a downlink BWP or an uplink BWP.
In Example 8, the method of any of Examples 1-7 further includes receiving a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state, wherein the UE applies the joint DL and UL TCI state to each CC comprised in the CC list.
In Example 9, the method of any of Examples 1-8 further includes that the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
In Example 10, the method of any of Examples 1-9 further includes that the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
In Example 11, the method of any of Examples 1-10 further includes that the UE receives the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
In Example 12, the method of any of Examples 1-11 further includes that the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
Example 13 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of Examples 1-12.
Example 14 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-12.
Example 15 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-12.
Example 16 is a method of wireless communication at a base station comprising configuring a CC list comprising multiple CCs; and transmitting, to a user equipment, an activation of a joint DL and UL TCI state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
In Example 17, the method of Example 16 further includes that the activation of the joint DL and UL TCI state for the CC is transmitted in one or more of a MAC-CE or DCI.
In Example 18, the method of Example 16 or 17 further includes that the MAC-CE or the DCI indicates the CC or a BWP D for which the joint DL and UL TCI state is activated.
In Example 19, the method of any of Examples 16-18 further includes that activation activates the joint DL and UL TCI state for each BWP of each of the multiple CCs.
In Example 20, the method of any of Examples 16-19 further includes that the activation activates the joint DL and UL TCI state for an active BWP of each of the multiple CCs.
In Example 21, the method of any of Examples 16-20 further includes that the active BWP is a downlink BWP or an uplink BWP.
In Example 22, the method of any of Examples 16-21 further includes that the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
In Example 23, the method of any of Examples 16-22 further includes that the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
In Example 24, the method of any of Examples 16-23 further includes that the base station transmits the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
In Example 25, the method of any of Examples 16-24 further includes that the one or more component in the joint TCI state ID includes one or more of: a reference signal ID, an uplink power control parameter, an uplink timing advance parameter, a UE panel ID, an antenna port ID, or a beam group ID.
Example 26 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of Examples 16-25.
Example 27 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 16-25.
Example 28 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 16-25.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute  for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (30)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    receiving, from a base station, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a component carrier (CC) , the joint UL and DL TCI state indicating a common beam for communication in DL and UL; and
    applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  2. The method of claim 1, wherein the activation of the joint DL and UL TCI state for the CC is received in one or more of a media access control (MAC) control element (CE) (MAC-CE) or downlink control information (DCI) .
  3. The method of claim 2, wherein the MAC-CE or the DCI indicates the CC or a bandwidth part (BWP) identifier (ID) for which the joint DL and UL TCI state is activated.
  4. The method of claim 1, wherein the CC is associated with a list of the multiple CCs, and wherein the UE applies the joint DL and UL TCI state to each CC in the list of the multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  5. The method of claim 4, wherein the UE applies the joint DL and UL TCI state to each BWP of each of the multiple CCs.
  6. The method of claim 4, wherein the UE applies the joint DL and UL TCI state to an active BWP of each of the multiple CCs.
  7. The method of claim 6, wherein the active BWP is a downlink BWP or an uplink BWP.
  8. The method of claim 1, further comprising:
    receiving a configuration of a CC list for cross-CC activation of the joint DL and UL TCI state, wherein the UE applies the joint DL and UL TCI state to each CC comprised in the CC list.
  9. The method of claim 8, wherein the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  10. The method of claim 8, wherein the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
  11. The method of claim 1, wherein the UE receives the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
  12. The method of claim 11, wherein the one or more component in the joint TCI state ID includes one or more of:
    a reference signal ID,
    an uplink power control parameter,
    an uplink timing advance parameter,
    a UE panel ID,
    an antenna port ID, or
    a beam group ID.
  13. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for receiving, from a base station, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a component carrier (CC) , the joint UL and DL TCI state indicating a common beam for communication in DL and UL; and
    means for applying the joint DL and UL TCI state to multiple CCs in response to receiving the activation of the joint DL and UL TCI state for the CC.
  14. The apparatus of claim 13, further comprising means to perform the method of any of claims 2-12.
  15. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to perform the method of any of claims 1-12.
  16. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to perform the method of any of claims 1-12.
  17. A method of wireless communication of a base station, comprising:
    configuring a component carrier (CC) list comprising multiple CCs; and
    transmitting, to a user equipment, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  18. The method of claim 17, wherein the activation of the joint DL and UL TCI state for the CC is transmitted in one or more of a media access control (MAC) control element (CE) (MAC-CE) or downlink control information (DCI) .
  19. The method of claim 18, wherein the MAC-CE or the DCI indicates the CC or a bandwidth part (BWP) identifier (ID) for which the joint DL and UL TCI state is activated.
  20. The method of claim 17, wherein activation activates the joint DL and UL TCI state for each BWP of each of the multiple CCs.
  21. The method of claim 17, wherein the activation activates the joint DL and UL TCI state for an active BWP of each of the multiple CCs.
  22. The method of claim 21, wherein the active BWP is a downlink BWP or an uplink BWP.
  23. The method of claim 17, wherein the CC list comprises a dedicated CC list for the cross-CC activation of the joint DL and UL TCI state.
  24. The method of claim 17, wherein the CC list is for the cross-CC activation of a DL TCI state or an UL TCI state.
  25. The method of claim 17, wherein the base station transmits the activation of the joint DL and UL TCI state in a message that indicates a joint TCI state identifier (ID) and an ID of one or more component in the joint TCI state ID.
  26. The method of claim 25, wherein the one or more component in the joint TCI state ID includes one or more of:
    a reference signal ID,
    an uplink power control parameter,
    an uplink timing advance parameter,
    a UE panel ID,
    an antenna port ID, or
    a beam group ID.
  27. An apparatus for wireless communication at a base station, comprising:
    means for configuring a component carrier (CC) list comprising multiple CCs; and
    means for transmitting, to a user equipment, an activation of a joint downlink (DL) and uplink (UL) transmission configuration indicator (TCI) state for a CC comprised in the CC list to activate the joint UL and DL TCI state for each of the multiple CCs comprised in the list, wherein the joint UL and DL TCI state indicates a common beam for communication in DL and UL.
  28. The apparatus of claim 27, further comprising means to perform 18-26.
  29. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to perform the method of any of claims 17-26.
  30. A computer-readable medium storing computer executable code, the code when executed by a processor cause the processor to perform the method of any of claims 17-26.
PCT/CN2020/114233 2020-09-09 2020-09-09 Cross-component carrier activation of joint dl/ul tci state WO2022051938A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/114233 WO2022051938A1 (en) 2020-09-09 2020-09-09 Cross-component carrier activation of joint dl/ul tci state
US18/018,503 US20230291533A1 (en) 2020-09-09 2021-09-08 Joint dl/ul tci state activation
CN202180054113.8A CN116235592A (en) 2020-09-09 2021-09-08 Joint DL/UL TCI state activation
EP21865989.4A EP4211963A1 (en) 2020-09-09 2021-09-08 Joint dl/ul tci state activation
PCT/CN2021/117102 WO2022052935A1 (en) 2020-09-09 2021-09-08 Joint dl/ul tci state activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114233 WO2022051938A1 (en) 2020-09-09 2020-09-09 Cross-component carrier activation of joint dl/ul tci state

Publications (1)

Publication Number Publication Date
WO2022051938A1 true WO2022051938A1 (en) 2022-03-17

Family

ID=80630194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114233 WO2022051938A1 (en) 2020-09-09 2020-09-09 Cross-component carrier activation of joint dl/ul tci state

Country Status (1)

Country Link
WO (1) WO2022051938A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085709A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Beam reciprocity indication and joint uplink downlink beam management
CN110719632A (en) * 2018-07-12 2020-01-21 维沃移动通信有限公司 Quasi co-location determining method, scheduling method, terminal and network equipment
CN110809321A (en) * 2018-08-06 2020-02-18 成都华为技术有限公司 Method for receiving and transmitting signal and communication device
CN110875814A (en) * 2018-09-03 2020-03-10 华为技术有限公司 Method for transmitting and receiving hybrid automatic repeat request acknowledgement information and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085709A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Beam reciprocity indication and joint uplink downlink beam management
CN110719632A (en) * 2018-07-12 2020-01-21 维沃移动通信有限公司 Quasi co-location determining method, scheduling method, terminal and network equipment
CN110809321A (en) * 2018-08-06 2020-02-18 成都华为技术有限公司 Method for receiving and transmitting signal and communication device
CN110875814A (en) * 2018-09-03 2020-03-10 华为技术有限公司 Method for transmitting and receiving hybrid automatic repeat request acknowledgement information and communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-2006200, vol. RAN WG1, 7 August 2020 (2020-08-07), pages 1 - 5, XP051915241 *

Similar Documents

Publication Publication Date Title
US20200413476A1 (en) Ue assisted fast transition between rrc states
US11758547B2 (en) Default PDSCH beam selection
US20210045106A1 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US20230291525A1 (en) Activation of joint dl/ul tci states for mdci
US11558101B2 (en) Methods and apparatus to facilitate symbol extension and windowing for beam switching
WO2021143380A1 (en) Methods and apparatus for updating pucch spatial relation information
WO2022052935A1 (en) Joint dl/ul tci state activation
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US11791971B2 (en) Component carrier group based bandwidth part switching
US11419155B2 (en) Message 2 PDSCH repetition based on multi-segment RAR window
US11476984B2 (en) Flexible spectrum usage with carrier aggregation
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
WO2022051927A1 (en) Methods and apparatus for activation of joint dl/ul tci states for mdci
WO2022051938A1 (en) Cross-component carrier activation of joint dl/ul tci state
US11757503B2 (en) UE panel specific beam application time
US11627609B2 (en) Multi-segment RAR window for PRACH retransmission
US11870589B2 (en) Method and apparatus with multi-configuration HARQ message
US11805548B2 (en) Supporting UL LBT status report in NR-U
WO2022051942A1 (en) Enablement relation rule for beam indication schemes
WO2022051923A1 (en) Activation of joint dl/ul tci state for single dci and multiple trps
US11457460B2 (en) Inter-cell interference coordination in mmWave networks
WO2022051936A1 (en) Methods and apparatus for activation of joint dl/ul tci states
WO2023272709A1 (en) Power control parameter in unified tci
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
US20210360659A1 (en) User equipment processing capability indication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952726

Country of ref document: EP

Kind code of ref document: A1