WO2022050407A1 - Cement production method, production method for kneaded cement product, and biomass ash powdery material - Google Patents

Cement production method, production method for kneaded cement product, and biomass ash powdery material Download PDF

Info

Publication number
WO2022050407A1
WO2022050407A1 PCT/JP2021/032653 JP2021032653W WO2022050407A1 WO 2022050407 A1 WO2022050407 A1 WO 2022050407A1 JP 2021032653 W JP2021032653 W JP 2021032653W WO 2022050407 A1 WO2022050407 A1 WO 2022050407A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
ash
powder
biomass ash
mass
Prior art date
Application number
PCT/JP2021/032653
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 桐野
美育 ▲高▼野
建佑 林
俊一郎 内田
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021053696A external-priority patent/JP2022044542A/en
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2022050407A1 publication Critical patent/WO2022050407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for producing a cement and a method for producing a cement kneaded product, and more particularly to a method for producing a cement using biomass ash as a raw material for cement and a method for producing a cement kneaded product.
  • the present invention also relates to biomass ash powder granules suitable for producing cement or a cement kneaded product.
  • Incinerator ash generated by incinerator of urban waste is desired to be recycled as a raw material for cement, etc. against the background of the tightness of disposal sites in recent years.
  • the construction and operation of biomass power generation facilities are progressing due to various efforts toward the spread of renewable energy, and the amount of incineration ash (biomass ash) generated by biomass power generation is also increasing. Therefore, it is expected that biomass ash will be recycled as a raw material for cement as well as incineration ash such as municipal waste.
  • Non-Patent Document 1 it is considered to apply biomass ash to a cement admixture.
  • biomass ash is used as it is as a cement admixture.
  • this method there is a problem that the strength of a hardened cement product such as concrete or mortar using the obtained cement is significantly reduced.
  • An object of the present invention is to provide a technique capable of effectively utilizing biomass ash while suppressing a decrease in the strength of the produced cement hardened product.
  • the cement manufacturing method according to the present invention is Step (a) of classifying biomass ash into coarse powder and fine powder,
  • the coarse powder obtained in the step (a) is applied to at least one of a cement clinker raw material to be charged into a cement kiln, a cement clinker obtained from the cement clinker, or a cement after crushing the cement clinker. It is characterized by having a step (b) of charging.
  • cement raw material a cement clinker (hereinafter, both may be collectively referred to as “cement raw material”) or cement.
  • cement raw material both may be collectively referred to as “cement raw material”.
  • cement raw material both may be collectively referred to as “cement raw material”.
  • the chlorine regulation value in cement may be exceeded, leading to reinforcement corrosion.
  • the coarse powder with a relatively large particle size has a lower content of calcium, sulfur, chlorine, and carbon than the fine powder with a relatively small particle size, and is close to the composition of coal ash. Therefore, when used as a clinker raw material, homogeneity with that of a conventional clinker raw material can be ensured.
  • the content of sulfur and chlorine is low, it is difficult to generate coaching in the cement kiln, and it is difficult to increase the load on the chlorine bypass. Further, even when it is used as a mixed material of cement, it has an effect that the quality of cement can be homogenized because the content of calcium, sulfur, chlorine and carbon is low.
  • the step (a) is not particularly limited as long as it is an apparatus capable of classifying biomass ash at a classification point on the order of ⁇ m. Is preferably used, and particularly from the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a vortex type centrifugal classification device, a sieving device, or the like.
  • step (b) it is put into the raw material mixing system equipment such as a mixer and a crusher for preparing the raw material of the cement cleaner, and to the preheater top and the calcination furnace before the cement kiln (rotary kiln). , Put into the cement kiln kiln butt, Put into the front of the cement kiln kiln, Put into the cleaner cooler to cool the cement clinker obtained by firing, Crushing device (mill) to crush the cement cleaner. It can be put into a mixing machine, put into a mixer for producing mixed cement, put into a concrete mixer, and the like. That is, the coarse powder of biomass ash obtained in the step (a) can be added to various stages during cement production, and can be suitably used as a raw material for cement clinker or a cement mixture.
  • the raw material mixing system equipment such as a mixer and a crusher for preparing the raw material of the cement cleaner, and to the preheater top and the calcination furnace before the cement kiln
  • mixed material when used in the present specification, it means a material to be added to cement clinker or cement regardless of the cement manufacturing stage.
  • the characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder and fine powder) obtained through the step (a) are different, the influence on the clinker characteristics and the clinker manufacturing process and the influence on the cement characteristics. All or part of the coarse powder or fine powder can be added to the raw material or mixed material of cement clinker. As a result, the composition or characteristics of the cement clinker or cement will be different from the case where the biomass ash (raw ash) is added as it is.
  • the coarse powder obtained in the step (a) may be added to the cement raw material or cement, and it is not always necessary that all the coarse powder is added to the cement raw material or cement.
  • the residual coarse powder can also be used, for example, as a fine aggregate.
  • This step (a) is preferably carried out on biomass ash (preferably dry ash) in a state where water has not been added and the hydrate formation reaction has not progressed.
  • biomass ash preferably dry ash
  • the biomass ash is preferably fly ash generated from a fluidized bed type combustion furnace and is preferably dry ash.
  • dry ash refers to biomass ash that has been recovered in a dry state, has not been watered by the time it is classified, and has not aggregated or formed hydrates. Point to. Further, the dry ash is in a state where a large amount of water is added and dispersed even if water is added before the classification treatment, and a case where hydrate is not formed by long-term storage is also included. Further, in the present specification, “wet ash” is, for example, water-cooled or sprinkled with water-cooled or sprinkled with main ash which is an incineration residue discharged from the bottom of an incinerator or fly ash collected by a dust collector or the like. Refers to those collected in a state containing ash and those that have been dried. Generally, the wet ash has a water content of 15% by mass or more.
  • the step (a) is preferably a step of classifying with 20 ⁇ m to 100 ⁇ m as a classification point. This is particularly efficient because chlorine and sulfur are predominantly distributed to the fine powder side.
  • the step (b) may be a step of putting the coarse powder obtained in the step (a) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment.
  • the cement manufacturing method includes a step (c) of pulverizing at least a part of the coarse powder obtained in the step (a).
  • the step (b) is a step of putting the coarse powder after being crushed by the step (c) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment. It doesn't matter.
  • the coarse powder is crushed and put into a cement clinker or cement in a state where the particle size is made fine, so that the strength of the cement can be increased.
  • the crushing of the coarse powder may be performed at the same time as the crushing of the cement clinker.
  • the cement manufacturing method may include a step (d) of putting the fine powder obtained in the step (a) into the cement clinker raw material.
  • Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is mixed with the cement clinker raw material to activate the pozzolan reaction. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification (hereinafter, may be referred to as “raw ash”) is added to the cement clinker raw material.
  • the step (b) may be a step of putting the coarse powder obtained in the step (a) into a cement clinker raw material to be put into a cement kiln.
  • the cement manufacturing method includes a step (d) of putting the fine powder obtained in the step (a) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment. It doesn't matter.
  • Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is mixed with the cement clinker or cement to activate the pozzolan reaction. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification (hereinafter referred to as “raw ash”) is put into cement clinker or cement.
  • the cement manufacturing method includes a step (e) of washing the fine powder obtained in the step (a) with water.
  • the step (d) may be a step of adding the fine powder after being washed with water by the step (e).
  • biomass ash contains harmful components in cement and concrete, and the quality is not stable due to the presence of easily reactive calcium components. Therefore, cement raw materials and the like are used. There was a concern that it would be restricted by the recycling of resources.
  • the biomass ash that has undergone the washing step (e) is charged into the cement raw material (cement clinker raw material, cement clinker) or cement, so that the charged biomass ash is chlorine, which is a cement repellent component. Is efficiently removed, and the corrosion of the reinforcing bars of concrete as a hardened cement product can be suppressed.
  • the water washing step (e) includes a step (e1) of adding water to biomass ash to form a slurry, a step of supplying water washing water to the slurry and washing it with water (e2), and dehydration of the slurry after washing with water. It is preferable to have the step (e3). Chlorine and heavy metals can be removed because the dehydrated product is obtained by washing the slurry with water and then dehydrating it.
  • the cement manufacturing method may include a step (f) of oxidizing the biomass ash during or after the execution of the step (e).
  • an acid solution may be added during washing of the biomass ash, or a carbon dioxide (CO 2 ) -containing gas may be blown into the biomass ash, or the CO 2 -containing gas may be added to the biomass ash after the washing treatment. It does not matter if it is blown into it.
  • CO 2 containing gas By using the combustion exhaust gas of cement kiln, the bleed gas of chlorine bypass, and the combustion exhaust gas of biomass incineration equipment and biomass power plant as CO 2 containing gas, CO 2 contained in these gases can be changed to calcium carbonate. Since it can be fixed to biomass ash, it can be expected to reduce CO 2 emissions.
  • harmful gases such as sulfur acid substances (SO x ) contained in the exhaust gas can be converted into calcium sulfate and immobilized on biomass ash.
  • the step (f) by carbonating the biomass ash during the washing with water according to the step (e), the calcium content contained in a large amount in the waste liquid after washing with water can be precipitated as calcium carbonate, so that scale is generated. It is suppressed. As a result, it is possible to prevent the piping for wastewater treatment from being blocked.
  • the cement manufacturing method may include a step of removing unburned carbon contained in the biomass ash during the execution of the step (e).
  • Biomass ash may contain a lot of unburned carbon. For this reason, when biomass ash containing a large amount of carbon is used as a raw material for cement clinker, the temperature of the preheater may rise, and when used as a mixed material, darkening of concrete and a water reducing agent may be adsorbed on carbon. May cause a decrease in liquidity.
  • unburned carbon can be removed during washing with water, so that the above-mentioned problems can be suppressed.
  • the amount of unburned carbon contained may be reduced by performing flotation by mixing a decombustible carbon agent such as oil or a surfactant.
  • the step (a) of classifying biomass ash into coarse powder and fine powder and the coarse powder obtained in the step (a) are cemented without crushing. It is characterized by having a step (g) of mixing with water.
  • cement kneaded body is a concept including concrete and mortar, and includes the state before hardening and the state after hardening.
  • hardened cement product refers to a state after the cement kneaded product is hardened.
  • Non-Patent Document 1 incinerated ash obtained by burning woody biomass alone is classified by a sieve with 90 ⁇ m as a classification point, and then the residual portion (coarse powder) of the sieve is replaced by 10% with respect to the amount of fine bone material. The compressive strength of the obtained mortar specimen has been verified.
  • biomass ash contains a lot of chlorine.
  • the chlorine content of the concrete may exceed the regulation value, and in some cases, rebar corrosion may occur. be.
  • the chlorine content is lower than that of the fine powder. There is. This makes it possible to keep the amount of chlorine contained in the obtained cement kneaded product within the regulated value even when the cement kneaded product is produced by using it as an alternative material to the fine aggregate.
  • This step (a) is preferably carried out on biomass ash (preferably dry ash) in a state where water has not been added and the hydrate formation reaction has not progressed.
  • biomass ash preferably dry ash
  • the biomass ash is wet ash and aggregates or hydrates are formed, there is a possibility that a large amount of chlorine is contained on the coarse powder side even when the classification is performed. ..
  • the step (a) is not particularly limited as long as it is an apparatus capable of classifying biomass ash at a classification point on the order of ⁇ m. Is preferably used, and particularly from the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a vortex type centrifugal classification device, a sieving device, or the like. At this time, it is preferable to classify using a reference value in the range of 30 ⁇ m to 100 ⁇ m as a classification point.
  • the adjusting powder is mixed with the coarse powder, so that the proportion of amorphous material in the mixture of the coarse powder and the adjusting powder is adjusted to be 60% by mass or less. It may be a step of mixing with cement and water in a state of being.
  • a mixture is mixed by mixing an adjusting powder (other biomass ash, etc.) having a low amorphous ratio.
  • the total amorphous ratio can be 60% by mass or less.
  • the coarse powder classified in the step (a) may be mixed in the step (g) after being washed with water. This makes it possible to further reduce the chlorine, alkali metal, and sulfur components contained in the crude powder. In addition, it is possible to reduce the amounts of heavy metals such as selenium and chromium, which may pollute the environment, and easily reactive calcium oxide and calcium hydroxide.
  • the fine powder obtained in the step (a) is crushed into a cement clinker raw material to be charged into a cement kiln, a cement clinker obtained from the cement kiln, or the cement clinker. It may have a step (d) of putting it into at least one of the cements obtained later.
  • Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is the cement clinker raw material, the cement clinker (hereinafter, both may be collectively referred to as "cement raw material"), or cement.
  • cement raw material the cement clinker raw material
  • the reaction is activated by mixing with the cement. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification is put into the cement raw material or cement.
  • the coarse powder having a relatively low chlorine content is used as a partial substitute material for the fine aggregate
  • the fine powder having a relatively high chlorine content is one of the cement raw materials and the cement mixture. Used as a substitute material for parts. This makes it possible to effectively utilize the biomass ash without leaving it.
  • alkaline silica When the amorphous ratio of the biomass ash powder granules (coarse powder) exceeds 60% by mass, or when the substitution rate of the fine aggregate of the biomass ash powder granules exceeds 40% by mass, alkaline silica is similarly applied. From the viewpoint of suppressing the reaction, at least one of the latent water-hardening substance and the pozzolan may be mixed as an admixture in the step (g).
  • the biomass ash powder granules according to the present invention are characterized in that the value (D10) of the cumulative volume percentage of the particle size distribution of 10% is 35 ⁇ m or more.
  • a biomass ash powder granule having a suppressed chlorine (Cl) content is realized.
  • a cement kneaded product is produced by using the biomass ash powder granules as a partial substitute material for the fine aggregate, it is possible to suppress an increase in the amount of chlorine contained in the obtained cement kneaded product. That is, the biomass ash powder granules may be used for replacement with fine aggregates for hardened cement products.
  • cement kneaded body it is preferable that 5% by mass to 40% by mass of the fine aggregate contained in the hardened cement (cement kneaded body) is composed of the biomass ash powder granules. According to the above configuration, a cement kneaded product in which an increase in chlorine content is suppressed while replacing a part of the fine aggregate with biomass ash powder granules is realized.
  • the biomass ash powder granules are finer than the particle size of general fine aggregate specified in JIS A5005 "Crushed stone and crushed sand for concrete". Therefore, when the biomass ash powder granules are mixed in a proportion exceeding 40% by mass of the total fine aggregate, the proportion of the fine powder contained in the fine aggregate becomes too high, which affects the fluidity of the cement kneaded body. It can occur. On the other hand, when the biomass ash powder granules are mixed at a ratio of less than 5% by mass of the whole fine aggregate, the biomass ash whose amount is increasing cannot be fully utilized.
  • the coarse powder with a relatively large particle size has a lower content of calcium, sulfur, chlorine, and carbon than the fine powder with a relatively small particle size. Therefore, by setting D10 to 35 ⁇ m or more, biomass ash powder granules having a low chlorine content (chlorine concentration) can be obtained. More preferably, the D10 of the biomass ash powder is 50 ⁇ m to 115 ⁇ m. By setting the D10 of the biomass ash powder granules to 115 ⁇ m or less, the action as a binder (pozzolan reaction) can be expected, so that the strength of the hardened cement product can be ensured. From the same viewpoint, the value (D90) in which the cumulative volume percentage of the particle size distribution of the biomass ash powder is 90% is preferably 80 ⁇ m to 400 ⁇ m.
  • the value (D50) of the cumulative volume percentage of the particle size distribution of the biomass ash powder is preferably 100 ⁇ m to 300 ⁇ m, more preferably 150 ⁇ m to 250 ⁇ m, and 175 ⁇ m to 200 ⁇ m. Is particularly preferable.
  • the particle size distribution of the biomass ash powder can be measured by, for example, a laser diffraction / scattering type particle size distribution measuring device.
  • the chlorine (Cl) content of the biomass ash powder granules is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
  • the proportion of chlorine contained in the biomass ash powder granules can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve method using a fluorescent X-ray apparatus, and the like are preferably exemplified.
  • the biomass ash powder is preferably a powder having an amorphous content of 60% by mass or less.
  • the biomass ash powder granules have a D10 of 35 ⁇ m or more, and have a larger particle size than the cement used in the production of the cement kneaded product.
  • the proportion of amorphous material contained in the biomass ash powder granules having such a particle size increases, when a cement kneaded body is produced using the biomass ash powder granules, it becomes possible to combine with alkali metals (Na, K).
  • alkali metals Na, K
  • the reactivity increases and the amount of alkaline silica gel generated increases, and a phenomenon (alkali silica reaction) in which durability is lowered due to water absorption expansion accompanying this reaction is likely to occur.
  • the alkali-silica reaction is also referred to as "alkali-aggregate reaction".
  • the proportion of amorphous material contained in the biomass ash powder granules is more preferably 50% by mass or less, further preferably 40% by mass or less, and particularly preferably 30% by mass or less. preferable.
  • a method of calculating the measurement result of X-ray diffraction by Rietveld analysis (XRD-Rietveld method) can be used.
  • the content of SO 3 contained in the biomass ash powder is preferably 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.2% by mass or less. If the content of SO 3 contained in the biomass ash powder exceeds 1% by mass, it affects the quality of the hardened cement product, such as showing abnormal expansion when used in the production of a cement kneaded product. there is a possibility.
  • the method for measuring the content of SO 3 contained in the biomass ash powder can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve using a fluorescent X-ray apparatus, and the like are preferably exemplified. ..
  • the ignition loss of the biomass ash powder is preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • the ignition loss of the biomass ash powder granules exceeds 3% by mass, the amount of unburned carbon increases, and when used for the production of a cement kneaded body, the chemical admixture added to the kneaded body is adsorbed. It may adversely affect the fluidity and air volume, and may cause darkening of the obtained hardened cement product.
  • the method for measuring the ignition loss of the biomass ash powder granules can be measured by a well-known method, and for example, a method based on JIS R5202 "Cement Chemical Analysis Method" is preferably exemplified.
  • the biomass ash powder granules may be used for partial replacement with a cement clinker raw material to be put into a cement kiln.
  • the biomass ash powder granules may be used for partial replacement of cement clinker or a cement mixture to be charged into cement after crushing the cement clinker.
  • the proportion of amorphous material contained in the coarse powder obtained after the classification of biomass ash is high to the extent of exceeding 60% by mass, if this coarse powder is used as a partial substitute material for fine aggregate, an alkaline silica reaction will occur. May occur.
  • the crude powder obtained after classifying the biomass ash has a low content of calcium, sulfur, chlorine, and carbon and is close to the composition of coal ash. Uniformity can be ensured. Since this coarse powder has a particularly low content of sulfur and chlorine, it has the effect that coaching in the cement kiln is less likely to occur and the load on the chlorine bypass is less likely to increase.
  • FIG. 7 It is a block diagram schematically showing an example of the structure of the washing equipment provided in the processing system shown in FIG. 7. It is a figure which shows an example of the processing flow when the oxidation process and the unburned carbon removal process are executed together with a water washing process. It is a block diagram schematically showing another example of the structure of the water washing facility in FIG. 7. It is a block diagram schematically showing another configuration of the treatment system for carrying out the cement manufacturing method in the second embodiment. It is a block diagram schematically showing another configuration of the treatment system for carrying out the cement manufacturing method in the second embodiment. It is a figure which shows typically another processing flow of the cement manufacturing method in 2nd Embodiment.
  • the present invention relates to a technique for using biomass ash in the production of cement or a cement kneaded product (hardened cement product). First, the biomass ash to which the present invention is applied will be described.
  • the biomass ash to which the present invention is applied generally includes incinerator ash of biomass, and includes, for example, incinerator ash of plants and bamboo and incinerator ash of food residue.
  • the biomass ash contains water-soluble alkali metal chloride, alkali metal sulfate, and alkali metal carbonate. Compared to municipal waste incineration ash and chlorine bypass dust, biomass ash has the advantage that the proportion of alkali metal sulfate and alkali metal carbonate is large and the concentration of alkaline chlorine is low.
  • the biomass ash is an incinerator ash, it contains a glass component having pozzolan reactivity like coal ash.
  • the incinerated ash of vegetation and bamboo has a relatively high content of K 2 O, and more than half of potassium (K 2 O) is contained in the glass phase. Therefore, since biomass ash has high activity when used as a mixed material, it is preferable to use it at the time of cement production.
  • the content of K 2 O in the biomass ash is preferably 2% by mass to 10% by mass, more preferably 3% by mass to 8% by mass, and further preferably 3% by mass to 5% by mass. More preferred. If the K 2 O content of the biomass ash is less than 2% by mass, the strength of the cement when used as a mixed material may be low, and the required amount as a material to be added to the cement is secured in the first place. It may not be possible. On the other hand, when the K 2 O content of biomass ash exceeds 10% by mass, the amount used as a raw material for cement clinker is limited, and the occurrence of alkaline aggregate reaction when used as a mixed material increases. There is a risk.
  • the sulfur oxide (SO 3 ) concentration contained in the biomass ash is preferably 0.5% by mass to 6% by mass, more preferably 1% by mass to 5% by mass.
  • co-firing of biomass and coal may be carried out, and the biomass ash to which the present invention is applied includes ash generated when such co-firing is carried out.
  • coal ash obtained by burning coal generally has a low K 2 O content
  • the activity of biomass ash differs depending on the amount of coal used during co-firing. Therefore, from the viewpoint of recycling as a mixed material at the time of cement production, in the case of co-firing with coal, it is preferable that the ash is obtained from a fuel having a biomass ratio of 50% by mass or more.
  • palm coconut ash obtained by using palm coconut husk as fuel is also preferably exemplified among the incinerated ash of vegetation and bamboo.
  • Palm palm husks are a by-product of palm oil production and are primarily used in the natural biomass energy industry. Palm coconut shell is a yellowish brown fibrous substance with low ash content, its particle size is about 5 mm to 40 mm, and its calorific value is about 4000 Kcal / kg. Therefore, in energy production using renewable resources, palm coconut husks. In recent years, shells have been increasingly used as fuel for biomass power generation.
  • the biomass ash from such a combustion furnace contains a large amount of calcium component and sulfur component, and for example, the CaO content is generally 5% by mass to 45% by mass.
  • the morphology of the Ca compound derived from the added limestone includes forms such as CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaSO 4 (plaster).
  • the CaO content of the biomass ash to which the present invention is applied is preferably 10% by mass to 40% by mass, preferably 15% by mass to 30% by mass, from the viewpoint of the strength of cement when recycled as a mixed material. It is more preferable to have.
  • the ash type of the biomass ash to which the present invention is applied may be the main ash that remains unburned at the bottom of the combustion furnace of biomass power generation, or soot dust that is contained in the combustion exhaust gas and floats as a gas is collected by a dust collector. It does not matter if it is the fly ash obtained by the above. Of these, fly ash is preferable because it has a higher concentration of alkali metal and chlorine, and chlorine is easily separated by washing with water, which is efficient.
  • the biomass ash is preferably dry ash.
  • Biomass ash that has been sprayed with water once may become granular, or chlorine may be incorporated into the produced hydrate, making it difficult to separate chlorine by classification or washing with water.
  • the dry ash for example, it is preferable that Friedel's salt or ettringite, which is a hydrate, is not detected by powder X-ray diffraction.
  • the dry ash preferably has a water content of 10% by mass or less, and more preferably 5% by mass or less.
  • the ignition loss is preferably 10% or less.
  • the water content can be determined as the mass reduction rate when dried at 105 ° C.
  • the ignition loss can be determined as the mass loss rate when the object dried at 105 ° C. is heated at 975 ° C.
  • the amount of structural water of the hydrate in the biomass ash may be obtained as the amount of hydrate produced by subtracting the amount of decarbonization by calcium carbonate from the loss on ignition.
  • the amount of hydrate produced is preferably 5% or less, more preferably 3% or less.
  • the particle size of the biomass ash is, for example, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 90 ⁇ m or less, which increases the strength of the cement.
  • the particle size can be measured by using a laser diffraction / scattering type particle size distribution measuring device, for example, by using ethanol as a dispersion medium with MW3300EXII manufactured by Microtrac Bell, and measuring after ultrasonic dispersion for 1 minute. can.
  • the D 50 value means the particle size at a cumulative 50% in the volume-based particle size distribution.
  • FIG. 1 is a drawing schematically showing a processing flow of the cement manufacturing method in the present embodiment.
  • FIG. 2 is a block diagram schematically showing a configuration of a treatment system for implementing the cement manufacturing method in the present embodiment.
  • the processing system 1 shown in FIG. 2 includes a raw material tank 3 in which the cement clinker raw material Y1 is stored, a powder storage tank 5 in which the biomass ash B1 is stored, a clinker production facility 10, a classification facility 20, and a first crushing facility. 30 and.
  • the clinker manufacturing facility 10 is a facility for firing the cement clinker raw material Y1 to generate the cement clinker Cn1, and is a preheater that preheats the cement clinker 12 for firing and the cement clinker raw material Y1 before being charged into the cement kiln 12. 11 and a clinker cooler 13 for cooling the cement clinker Cn1 after firing.
  • the treatment system 1 in the present embodiment can also be referred to as a "cement manufacturing system".
  • the cement manufacturing method of the present embodiment includes a step S10 for classifying the biomass ash B1 and a step S20 for adding or adding the classified biomass ash B1 to a cement raw material or the like.
  • the charging or adding process is collectively referred to as a “loading” process.
  • classification step S10 The biomass ash B1 stored in the powder storage tank 5 is classified into coarse powder B1C having a coarse particle size and fine powder B1F having a fine particle size based on a predetermined classification point by the classification equipment 20.
  • the classification point defined in the classification step S10 is preferably 20 ⁇ m to 100 ⁇ m, more preferably 30 ⁇ m to 90 ⁇ m, and particularly preferably 38 ⁇ m to 75 ⁇ m or less.
  • the classification equipment 20 is not particularly limited as long as it can classify the biomass ash B1 at the classification points on the order of ⁇ m as described above, and for example, a sieve, an inertial classification device, a centrifugal classification device, a gravity type classification device, or the like is suitable. From the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a sieving device, or the like. However, when the water washing step S30 described later is performed, it is efficient to perform the classification in a wet manner.
  • the fly ash of biomass ash from such an incinerator includes relatively coarse-grained melt-solidified and aggregated glass and sand-derived substances, relatively fine-grained volatile alkali metal salts, and the above-mentioned limestone-derived substances, and fine particles. Includes glass particles. Therefore, when the particle size distribution of biomass ash is expressed by frequency, if the classification point is set between the peaks on the fine grain side and the peaks on the coarse grain side, chlorine, sulfur, and calcium can be efficiently separated. ..
  • FIG. 3 is a graph showing the particle size distribution of incinerated fly ash obtained from the biomass power generation facility P1 used in the verification 1 described later. According to the graph of FIG. 3, it is confirmed that peaks having high frequency values appear on the fine powder side having a relatively fine particle size and the coarse powder side having a relatively coarse particle size. It is considered that the fine powder side is derived from limes and alkali metal salts, and the coarse powder side is derived from quartz and feldspar. Therefore, it can be seen that chlorine, sulfur, and calcium can be efficiently separated by classifying the particle size of the region between these mountains (the region of the valley) as the classification point.
  • the incinerator that is a fluidized bed type is equipped with equipment for recovering incinerator ash that has settled in boilers, air preheaters, high-temperature gas channels, etc., and equipment for recovering incinerator ash such as cyclones and bag filters. There is. Since the particle size of the incinerator ash collected by these collection facilities is different, it is possible to replace them with a classification device by separating and collecting them.
  • the classification equipment 20 may be equipped with a storage tank for biomass ash B1. Further, a supply device for quantitatively supplying the biomass ash B1 from this storage tank to the classification facility 20 may be attached. These storage tanks and supply devices may be appropriately used depending on the state of the received biomass ash B1.
  • the particle size of the coarse powder B1C obtained after classification can be mentioned.
  • the coarse powder B1C obtained after the classification is classified in the classification step S10 so that the D10 value of the particle size is 35 ⁇ m or more. More preferably, the D10 value of the crude powder B1C after classification is 50 ⁇ m to 115 ⁇ m.
  • the median value (D50) of the particle size of the coarse powder B1C is preferably 100 ⁇ m to 300 ⁇ m, more preferably 150 ⁇ m to 250 ⁇ m, and particularly preferably 175 ⁇ m to 200 ⁇ m.
  • the D90 value of the particle size of the coarse powder B1C is preferably 80 ⁇ m to 400 ⁇ m.
  • the chlorine (Cl) content is typically reduced to 0.2% by mass or less.
  • the chlorine content of the crude powder B1C is preferably 0.01% by mass to 0.1% by mass, and more preferably 0.01% by mass to 0.05% by mass.
  • the chlorine concentration ratio (ratio of chlorine content) of the fine powder B1F to the coarse powder B1C is preferably 4 or more, more preferably 8 or more, and further preferably 12 or more.
  • the chlorine content of the fine powder B1F is, for example, typically 0.2% by mass to 2% by mass, and more typically 0.3% by mass to 1.5% by mass. That is, by this classification step S10, the biomass ash B1 (raw ash) is separated into a coarse powder B1C having a relatively low chlorine content and a fine powder B1F having a relatively high chlorine content.
  • the activity index of the fine powder B1F obtained in the classification step S10 is higher than that of biomass ash (raw ash) B1, typically 70% or more in 7 days, 65% or more in 28 days, and more typically. Will be 75% or more in 7 days and 70% or more in 28 days.
  • the activity index contained in the biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, a method based on JIS A 6201: 2015 “Fly ash for concrete” is preferably exemplified.
  • the yield of the fine powder B1F is preferably 10% by mass to 80% by mass, more preferably 20% by mass to 70% by mass, and further preferably 30% by mass to 60% by mass.
  • the yield of the fine powder B1F may be the ratio of the total mass of the obtained fine powder B1F to the total mass of the biomass ash B1 before the execution of the classification step S10.
  • the yield of the crude powder B1C is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 80% by mass, and further preferably 40% by mass to 70% by mass. ..
  • the total alkali concentration of the fine powder B1F is, for example, typically 2% by mass to 10% by mass, and more typically 3% by mass to 8% by mass.
  • the total alkali concentration of the crude powder B1C is typically reduced to 0.5% by mass to 6% by mass, and more typically to 2% by mass to 5% by mass.
  • the total alkali concentration contained in the biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve using a fluorescent X-ray apparatus, and the like are preferably exemplified.
  • a similar method can be used for measuring the concentrations of chlorine, sulfur oxides, calcium oxide and the like.
  • the ratio of the sulfur oxide (SO 3 ) content of the fine powder B1F to the coarse powder B1C is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.
  • the sulfur oxide content of the fine powder B1F is, for example, typically 1% by mass to 6% by mass, and more typically 2% by mass to 5% by mass.
  • the sulfur oxide content of the crude powder B1C is typically reduced to 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.2% by mass or less. ..
  • the calcium oxide concentration ratio of the fine powder B1F to the coarse powder B1C is preferably 1.5 or more, more preferably 2 or more, and further preferably 3 or more.
  • the calcium oxide concentration of the fine powder B1F is, for example, typically 8% by mass to 40% by mass, and more typically 15% by mass to 35% by mass.
  • the calcium oxide concentration of the crude powder B1C is typically reduced to 3% by mass to 15% by mass, and more typically reduced to 5% by mass to 10% by mass.
  • the ignition loss of the crude powder B1C is preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • the ignition loss of the fine powder B1F is typically 5% by mass to 15% by mass, and more typically 5% by mass to 10% by mass. That is, by this classification step S10, the coarse powder B1C having a relatively low ignition loss and the fine powder B1F having a relatively high ignition loss are separated.
  • the method for measuring the ignition loss of biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, a method based on JIS R5202 "Chemical analysis method for cement" is preferably exemplified.
  • This classification step S10 corresponds to the step (a).
  • the crude powder B1C obtained in the classification step S10 is added (added) as a raw material for cement clinker or as a mixed material to cement clinker or cement.
  • the coarse powder B1C is charged into the clinker manufacturing facility 10, and the cement clinker Cn1 obtained from the clinker manufacturing facility 10 is mixed with gypsum as needed and crushed into the first crushing facility 30.
  • the case of being thrown in is illustrated. In the latter case, the coarse powder B1C is pulverized together with the cement clinker Cn1 to produce mixed cement. At that time, watering and crushing aids are added as needed.
  • the coarse powder B1C may be charged into either the clinker production facility 10 or the first crushing facility 30.
  • a general mill used in the finishing process such as a tube mill can be used.
  • the mill is also called a finish crusher, and in a cylindrical drum, a steel ball, cement clinker Cn1, and gypsum added as needed are crushed while colliding with each other by the rotation of the drum.
  • the gypsum is not particularly limited, and examples thereof include natural dihydrate gypsum, flue gas desulfurized gypsum, phosphoric acid gypsum, titanium gypsum, and phosphoric acid gypsum. These may be used alone or in combination of two or more.
  • the crude powder B1C replaces a part of the cement raw material, and it is preferable to add 0.5% by mass to 30% by mass with respect to the mass of the cement raw material. Further, it is preferable to add gypsum in an SO 3 equivalent of 1.5% by mass to 5.0% by mass in order to improve the strength development and fluidity of the cement.
  • the coarse powder B1C obtained in the classification step S10 may be directly charged into the clinker cooler 13.
  • the charging method include a method of dropping from the upper part of the clinker cooler 13 at a position of a desired temperature in the clinker cooler 13.
  • the input amount is preferably set to be about 0.5% by mass to 20% by mass with respect to the mass of the cement. If an air-quenching cooler is used as the clinker cooler 13, the coarse powder B1C can be charged at a predetermined position in the clinker cooler 13, which is preferable.
  • the coarse powder B1C When the coarse powder B1C is washed with water and then put into the clinker cooler 13, it is convenient because the water can be evaporated and removed by using heat energy which is not directly related to the production of the cement clinker Cn1. Further, in order to prevent a large amount of dust from being generated in the clinker cooler 13, the coarse powder B1C preferably has a water content of 50% by mass or less, and is preferably added in the form of lumps or granules.
  • the crude powder B1C obtained after the classification step S10 is also reduced in alkali metal concentration, calcium concentration, chlorine concentration, and sulfur concentration as compared with the fine powder B1F. Therefore, as shown in FIG. 2, it can be used in the clinker manufacturing facility 10 together with the cement clinker raw material Y1.
  • the cement clinker raw material Y1 it is possible to put the cement clinker raw material Y1 into a mixer for preparation, put it into a preheater 11 or a calcination furnace, put the cement kiln 12 into a kiln butt or a kiln front, and the like. It can be suitably used as a raw material for cement clinker Cn1 that can be put into various cement manufacturing stages.
  • the processing system 1 is provided with a crushing facility (second crushing facility 35) different from the first crushing facility 30 for crushing the cement clinker Cn1.
  • the coarse powder B1C classified in the classification facility 20 may be crushed in the second crushing facility 35 and then charged into the clinker cooler 13 or the first crushing facility 30.
  • the second crushing equipment 35 can be realized by the same equipment as the first crushing equipment 30.
  • the step of crushing the coarse powder B1C in the second crushing facility 35 corresponds to the step (c).
  • the strength of cement is enhanced by putting it into a cement clinker or cement in a state where the particle size is made finer by crushing.
  • the coarse powder B1C after crushing may be mixed with the cement obtained after the cement clinker Cn1 is crushed in the first crushing equipment 30.
  • the timing of this mixing may be on the route to the cement silo in which the cement is stored in the subsequent stage of the first crushing facility 30, may be in the cement silo, and further, when the cement is used. It does not matter even during the cement mixing process. Since the crude powder B1C has a low chlorine content, the effect of suppressing an increase in the chlorine content of the hardened cement product can be obtained while using the biomass ash B1 regardless of the timing of mixing the crude powder B1C.
  • the crude powder B1C is preferably pulverized so that the specific surface area of the brain is 4000 cm 2 / g or more in order to activate the pozzolan reaction and increase the strength of the hardened cement product. It is particularly preferable to do so.
  • the activity index of the coarse powder B1C after pulverization is higher than that of biomass ash (raw ash) B1, typically 65% or more in 7 days, 70% or more in 28 days, and more typically. It will be 68% or more in 7 days and 70% or more in 28 days.
  • the chlorine concentration of the crude powder B1C is greatly reduced by the classification step S10, and the sulfur content is also greatly reduced, so that clogging due to the adhesion of the low melting point substance to the preheater, the kiln bottom, and the kiln is suppressed.
  • the coarse powder B1C in a state where the reactivity is enhanced by being crushed by the second crushing equipment 35 may be used as a cement mixture.
  • step S20 in which the coarse powder B1C after classification or the coarse powder B1C after pulverization treatment is put into the cement manufacturing process corresponds to the step (b).
  • the use of the fine powder B1F classified in the classification facility 20 is not restricted.
  • the coarse powder B1C may be used as a raw material for cement clinker, or may be added (added) to cement clinker or cement as a mixed material, and may be used as fertilizer or fine aggregate. It doesn't matter if it is a thing.
  • the fine powder B1F has a finer particle size and exhibits higher reactivity than the coarse powder B1C. Therefore, by recovering the fine powder B1F and using it as a cement mixture, the pozzolan reaction is activated and the cement cured product is obtained. The effect of increasing the strength is expected.
  • the obtained fine powder B1F is directly added to the same place as the coarse powder B1C at the same amount ratio, it is the same as adding the raw powder of biomass ash (raw ash B1). Therefore, taking advantage of the different characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder B1C and fine powder B1F), it is possible to put it in different places, change the amount ratio, wash it with water, etc. It may be put in after going.
  • the chemical composition of the classified biomass ash that is, coarse powder B1C and fine powder B1F
  • FIG. 5 is a drawing schematically showing a processing flow of the cement manufacturing method in the present embodiment.
  • FIG. 6 is a drawing schematically showing an example of a detailed processing flow of the water washing step S30 described later.
  • FIG. 7 is a block diagram schematically showing the structure of the processing system 1 that implements the cement manufacturing method of the present embodiment, following FIG. 2.
  • the treatment system 1 of the present embodiment shown in FIG. 7 is different from the first embodiment in that it is provided with a water washing facility 40.
  • the water washing facility 40 is a facility for washing the biomass ash B1 with water, and is provided for the purpose of reducing the concentration of cement repellent components such as chlorine contained in the biomass ash B1.
  • An example of the detailed structure of the water washing facility 40 will be described later with reference to FIG.
  • the treatment system 1 in the present embodiment can also be referred to as a "cement manufacturing system" as in the first embodiment.
  • the water washing step S30 is performed only on the fine powder B1F obtained after the classification step S10. This is because, as described above in the first embodiment, the biomass ash (raw ash) B1 is classified by the classification step S10, so that the chlorine content of the crude powder B1C is lowered, while that of the fine powder B1F is reduced. This is because the chlorine content is relatively high.
  • the water washing step S30 may be executed for the coarse powder B1C, or the water washing step S30 may be executed together with the classification step S10. When the classification step S10 and the water washing step S30 are executed at the same time, the wet classification may be performed.
  • the fine powder B1F obtained by classifying the biomass ash (raw ash) B1 in the classification step S10 is subjected to a water washing treatment by the water washing equipment 40. More specifically, as shown in FIG. 6, a step S31 for slurrying the fine powder B1F, a step S32 for washing the slurry with water, and a step S33 for dehydrating are executed.
  • a liquid supply device 42 for supplying water W2 is attached.
  • a slurry stirring device 44 equipped with a stirring blade is attached for mixing the fine powder B1F and water W2 and stirring the slurry Lr1 generated by the mixing.
  • a slurrying step S31 for mixing and stirring fine powder B1F and water W2 to generate a slurry Lr1 and a water washing step S32 for eluting a cement repellent component such as chlorine into the liquid phase in the slurry Lr1 are performed.
  • a slurry agitator 44 for that purpose for example, a paddle type or screw type general agitator can be used.
  • the mass ratio (W2 / B1F) of the fine powder B1F and water W2 in the slurrying step S31 is preferably 2 to 10, more preferably 3 to 7, and particularly preferably 4 to 5. If the mass ratio (W2 / B1F) is smaller than 2, the reforming effect may be insufficient, such as insufficient elution of water-soluble components such as chlorine from the fine powder B1F. Further, if the mass ratio (W2 / B1F) is larger than 10, the amount of wastewater W4 becomes large.
  • the water washing step S32 is performed by allowing the slurry Lr1 to stand or stir for a predetermined time. As a result, slurry Lr2 in which the soluble component of the fine powder B1F is eluted in the liquid phase of the slurry can be obtained.
  • the time required for the water washing step S32 is preferably 30 minutes or more, more preferably 45 minutes or more, because the fine powder B1F is sufficiently reformed with water W2.
  • the slurry Lr2 in which the cement repellent component such as chlorine is eluted in the liquid phase in the slurry is discharged from the powder dissolution tank 43 and transferred to the solid-liquid separation device 46.
  • a normal slurry liquid transport device such as a centrifugal pump for slurry, a piston pump, and a mono pump may be used.
  • the solid-liquid separation device 46 separates the slurry Lr2 into solid and liquid to obtain a dehydrated product Ck1 (dehydration step S33).
  • a filter press a pressurized leaf filter device, a screw press, a belt press, a belt filter, a normal filtration device such as sedimentation separation, or the like can be used.
  • the water content of the dehydrated product is preferably 20% by mass to 90% by mass, preferably 30% by mass. It is more preferably to be about 70% by mass.
  • the amount of the cement repellent component such as chlorine is reduced in the obtained dehydrated product Ck1 as compared with the fine powder B1F before the execution of the washing step S30. Ru.
  • heavy metals and the like contained in the biomass ash B1 are also eluted in the wastewater W4, they may be discharged into the environment after being appropriately treated for water quality.
  • a water cleaning device 49 may be attached to the solid-liquid separation device 46, and water W3 may be added to the dehydrated product Ck1 and then dehydrated again. According to this, since the liquid phase of the slurry Lr2 is almost replaced with water, the eluted components can be removed more reliably.
  • This water washing step S30 corresponds to the step (e).
  • the dehydrated product Ck1 obtained through the washing step S30 has a reduced content of cement repellent components such as chlorine, and contains easily reactive calcium oxide and calcium hydroxide that affect the strength development and fluidity of cement Cn2. Is sufficiently reduced. Therefore, the quality of the cement Cn2 obtained by using the dehydrated anhydride Ck1 derived from the fine powder B1F is uniformly added to the raw material of the cement clinker Cn1 or to the cement clinker Cn1 or the cement Cn2. It will be easier to keep.
  • FIG. 7 an example in which the fine powder B1F after washing with water is put into the cement clinker Cn1 is shown. This step corresponds to step (d).
  • the dehydrated product Ck1 derived from the fine powder B1F obtained through the washing step S30 may contain water as compared with the fine powder B1F obtained in the first embodiment. Therefore, by putting this dehydrated product Ck1 into the first crushing equipment 30, it can also be used for temperature control in the first crushing equipment 30. If the water content in the dehydrated product Ck1 is excessive, it can be easily dehydrated by sedimentation separation or the like, and conversely, if the water content is insufficient, an appropriate amount is sprinkled on the first crushing facility 30. Just do it.
  • the wastewater W4 obtained in the dehydration step S33 may be mixed with cement clinker Cn1 in a state where the contained chlorine ions are reduced by a well-known method such as ion exchange resin, membrane separation, and precipitation formation by silver or lead ions.
  • a well-known method such as ion exchange resin, membrane separation, and precipitation formation by silver or lead ions.
  • This makes it possible to effectively utilize the alkali metal contained in the wastewater W4, which has a strength-enhancing effect, while removing chlorine that causes corrosion of the reinforcing bars.
  • the dehydrated product Ck1 derived from the fine powder B1F obtained by executing the water washing step S30 becomes less active by washing with water. Therefore, the activity is increased by adding the waste water W4 after washing with water as a cement additive. Can be compensated for.
  • Biomass ash B1 has a lower chlorine content than municipal waste incinerator ash. Therefore, the chlorine contained in the wastewater W4 can be easily separated, and a large amount of alkali metal sulfates and carbonates can be obtained in the wastewater W4. Therefore, by charging the wastewater W4 on the route from the clinker cooler 13 to the first crushing facility 30, more alkali metals can be utilized as the cement additive.
  • water for cooling the cement clinker Cn1 and for adjusting the temperature in the first crushing facility 30 can be sprinkled without drying or solidifying. It can also be used. More specific charging points include a clinker cooler 13 having a temperature of 400 ° C. or lower in the clinker manufacturing facility 10, a transport device for transporting from the clinker cooler 13 to a subsequent stage, and a first crushing facility 30. When the temperature of the charging point exceeds 400 ° C., it evaporates instantly, so that the alkali metal as a cement additive is less likely to be contained in the cement Cn2. Further, if the wastewater W4 is introduced after the first crushing facility 30, water remains in the cement Cn2, and the quality may deteriorate due to the influence of weathering and hydration.
  • the wastewater W4 may be drained between the clinker cooler 13 and the first crushing facility 30 in a state where the water content has been reduced by performing a drying treatment or the like. According to this, more alkali metals can be utilized as a cement additive without weathering the cement Cn2.
  • the wastewater W4 if it is dried and solidified, it can be added to the cement Cn2 obtained after crushing in the first crushing facility 30, or can be added to the kneading step at the time of manufacturing the cement kneaded body. Therefore, any amount can be easily added.
  • an amphoteric ion exchange resin or a nanofiltration membrane is particularly preferable. According to this, sulfate ion / carbonate ion and chlorine ion can be selectively separated, and water having a high sulfate ion / carbonate ion concentration and a low chlorine ion concentration and water having a low sulfate ion / carbonate ion concentration and a chlorine ion can be separated. Highly concentrated water can be obtained.
  • the wastewater W4 obtained after washing the fine powder B1F with water often contains selenium and hexavalent chromium.
  • selenium and hexavalent chromium which have the same morphology as sulfate ions, are separated on the water side with a low chlorine concentration.
  • Water with a high chlorine concentration is disposed of, but the water has a low concentration of selenium and hexavalent chromium, which facilitates wastewater treatment.
  • the amount of water can be reduced (increasing the concentration of alkali metal) without drying, and when charged between the clinker cooler 13 and the first crushing facility 30, more alkali metal can be used as a cement additive with the same amount of water sprinkled. Can be utilized.
  • both the wastewater W4 (cement additive) obtained from the washing water and the dehydrated product Ck1 obtained after washing the fine powder B1F with water can be used in the manufacturing process of the cement Cn2.
  • the crude powder B1C can also be used as a raw material for cement clinker or as a mixed material for cement clinker or cement. That is, according to the present embodiment, the biomass ash B1 can be fully utilized for the production of cement Cn2.
  • the effect of reducing the amount of wastewater to be disposed of and the load of wastewater treatment can be expected.
  • the oxidation step S41 and the unburned carbon removing step S42 together with the water washing step S30 (see FIGS. 9 and 10). These steps may be performed in parallel with the execution of the water washing step S30, or may be performed after the execution of the water washing step S30. In addition, only one of the oxidation step S41 and the unburned carbon removal step S42 may be performed.
  • FIG. 9 is a drawing schematically showing a processing flow when both the oxidation step S41 and the unburned carbon removing step S42 are executed in the present embodiment.
  • FIG. 10 is a drawing schematically showing the structure of the water washing facility 40 when these steps S41 and S42 are executed, following FIG. 8. Note that FIG. 10 shows the gas supply device 51 and the flotation device 53 as well as the water washing facility 40.
  • the oxidation step S41 is a step of oxidizing the fine powder B1F.
  • the washing step S30 it can be carried out by adding a pH adjuster to the powder dissolving tank 43 and washing with water. As a result, the washing step S30 and the oxidizing step S41 are performed in parallel.
  • the dehydrated product Ck1 derived from the fine powder B1F obtained after the washing step S30 is suitable as a cement mixed material having a small quality variation.
  • the pH condition of the slurry Lr1 in the oxidation step S41 is preferably pH 4 to 13, and more preferably pH 5 to 12.
  • the pH adjuster is not particularly limited as long as it can reduce the pH of the slurry Lr1, and examples thereof include an acid solution such as sulfuric acid and a CO2 -containing gas.
  • the CO2 - containing gas the combustion exhaust gas of the cement kiln 12 and the combustion exhaust gas of a biomass incineration facility or a biomass power plant can be used. Since these exhaust gases contain carbon dioxide ( CO2 ), the pH can be adjusted from neutral to weakly alkaline by blowing the combustion exhaust gas into the slurry Lr1. According to this, the calcium component contained in the fine powder B1F is carbonated, and it becomes easier to react with the form of calcium carbonate.
  • the gas supply device 51 corresponds to the above-mentioned device for supplying the combustion exhaust gas of the cement kiln 12, the combustion exhaust gas of the biomass incineration facility, the biomass power plant, and the like to the powder melting tank 43.
  • the CO2 - containing gas G1 may contain carbon dioxide, but in order to promote efficient carbonation, the carbon dioxide concentration is preferably 10% or more, more preferably 20% or more.
  • the gas after collecting the chlorine bypass dust of the clinker manufacturing facility 10 contains harmful gas such as sulfur oxide (SO x ), so by blowing this gas into the slurry Lr1. , The effect of immobilizing sulfur oxides can also be expected.
  • the combustion exhaust gas of the clinker production facility 10 By using the combustion exhaust gas of the clinker production facility 10 in this way, the combustion exhaust gas containing carbon dioxide can be obtained on the spot and used for reforming the fine powder B1F, and the reformed fine powder B1F (dehydrated product Ck1) can be obtained. It can be used as a cement mixture. Further, if the combustion exhaust gas of the biomass incineration facility or the biomass power plant is used, the fine powder B1F can be reformed by using the combustion exhaust gas containing carbon dioxide obtained on the spot, and this can be reformed by the clinker production facility 10 or the first crushing. If it is transported to equipment 30 or the like, it can be immediately used as a cement mixture.
  • the waste liquid obtained from the amine-based carbon dioxide recovery device may be added to the powder dissolution tank 43 and washed with water.
  • a liquid containing deteriorated amines is usually discarded, but according to this method, the waste liquid can be effectively utilized.
  • Amines are known to have the effect of promoting the production of carbonate ions by reacting with carbon dioxide, and can efficiently promote the carbonation of calcium components. It is also known that amines function as a pulverizing aid when pulverizing cement clinker Cn1 in the first pulverizing equipment 30.
  • the amines have an amino group and a hydroxyl group in the molecule, and in particular, the amines used as a grinding aid include, for example, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine.
  • MEA monoethanolamine
  • DEA diethanolamine
  • TIPA triethanolamine
  • the dehydrated Ck1 derived from the fine powder B1F in the state where the amines brought in from the added waste liquid are taken in can be expected to impart functionality as a pulverizing aid in the subsequent process, and thus can be used as a cement mixture. It becomes suitable.
  • the dehydrated product Ck1 obtained through the dehydration step S33 may be blown with the CO2 -containing gas G1. According to this, since the easily reactive calcium component remaining in the dehydrated product Ck1 is carbonated, it is possible to further enhance the homogenization of the quality of the cement Cn2 produced by using the dehydrated product Ck1. can. Further, according to this method, the effect of drying the water contained in the dehydrated product Ck1 is also expected.
  • any method may be used as long as the dehydrated anhydride Ck1 can be brought into contact with the CO2 -containing gas.
  • means such as circulating the CO2 -containing gas in a container filled with the dehydrated product Ck1 or passing the dehydrated product Ck1 through the exhaust gas flue can be used.
  • the combustion exhaust gas of the cement kiln 12 or the combustion exhaust gas of the biomass incineration facility or the biomass power plant may be blown into the dehydrated product Ck1.
  • This oxidation step S41 corresponds to the step (f).
  • the unburned carbon removing step S42 is a step of removing unburned carbon contained in the fine powder B1F.
  • the fine powder B1F obtained after classification has a high ignition loss as compared with the coarse powder B1C and contains a large amount of unburned carbon. Therefore, when the fine powder B1F is used as a raw material for the cement clinker Cn1, the temperature of the preheater 11 may increase, and when it is used as a mixed material, the concrete may darken or the fluidity may decrease. be.
  • the deburned carbon agent D1 such as oil or a surfactant added from the deburned carbon agent supply device 52 into the powder dissolution tank 43.
  • a method of processing can be adopted.
  • the obtained slurry Lr2a is subjected to a flotation treatment by adding a predetermined foaming agent, for example, in a flotation apparatus 53 to form a floss containing unburned carbon and a tail from which unburned carbon has been removed or reduced. Be separated. Then, the slurry Lr2b as a tail is sent to the solid-liquid separation device 46 for solid-liquid separation.
  • washing step S30 and the unburned carbon removing step S42 are performed in parallel and continuously.
  • the chlorine concentration (chlorine content) contained in the fine powder B1F is typically reduced to, for example, 0.01% by mass to 0.2% by mass, and more typically. It is reduced from 0.02% by mass to 0.1% by mass.
  • the total alkali metal concentration contained in the fine powder B1F is typically reduced to, for example, 1% by mass to 8% by mass, and more typically 3% by mass to 6% by mass. Is reduced to.
  • the sulfur oxide concentration contained in the fine powder B1F is typically reduced to, for example, 0.5% by mass to 4% by mass, and more typically 1% by mass to 3%. It is reduced to mass%.
  • the elution amount of selenium (Se) of the fine powder B1F is typically 0.002 mg / L to 0.02 mg / L, and more typically 0.005 mg / L. It is reduced to ⁇ 0.01 mg / L.
  • the amount of hexavalent chromium (Cr 6+ ) eluted from the fine powder B1F is typically 0.01 mg / L to 0.1 mg / L, more typically 0.02 mg / L to 0.05 mg / L. It is reduced to L.
  • the elution amount of these selenium and hexavalent chromium can be measured by a well-known method.
  • test by actual use for selenium Examples thereof include a method of measuring hexavalent chromium by the ICP mass analysis method and a method of measuring the hexavalent chromium by the diphenylcarbazide absorptiometry method.
  • the alkali metal content of the dehydrated product Ck1 derived from the fine powder B1F obtained by the method of the present embodiment is reduced by executing the washing step S30, the alkali metal content is still higher than that of coal ash. It is expected to be high. Therefore, when the dehydrated product Ck1 is used as a raw material for the cement clinker Cn1, cement Cn2 having a high alkali metal content may be produced.
  • the main component of the cement additive obtained from the wastewater W4 is an alkali metal salt. Therefore, if these are contained in a large amount in concrete (cement kneaded body), an alkali-silica reaction may occur depending on the aggregate (CA, FA) used.
  • latent hydraulic substances such as blast furnace slag, fly ash, volcanic ash, and volcanic rock are used to reduce the possibility of alkali silica reaction.
  • Pozzolan substances such as calcined clay may also be added (added) as a cement mixture or a concrete admixture. It should be noted that such addition (addition) of a latent hydraulic substance or a pozzolan substance can also be applied to the case where the fine powder B1F in which the water washing step S30 has not been carried out is used.
  • the fine powder B1F after being washed with water in the water washing equipment 40 is charged into the clinker manufacturing equipment 10, and the coarse powder B1C is charged into the clinker manufacturing equipment 10 or the first crushing equipment 30. It doesn't matter.
  • the coarse powder B1C and the fine powder B1F obtained by classifying the biomass ash B1 in the classification equipment 20 the coarse powder B1C is to be washed with water by the water washing equipment 40. It doesn't matter.
  • the content concentrations of chlorine and sulfur in the crude powder B1C are reduced by the classification step S10, but these concentrations are further reduced by performing the washing step S30. Therefore, it can be used as a raw material for cement clinker Cn1.
  • the crude powder B1C after the washing treatment may be added to the clinker production facility 10 and charged into the first crushing facility 30. Further, as in the example shown in FIG. 4, the coarse powder B1C after the washing treatment may be crushed by the second crushing facility 35 and then charged into the clinker manufacturing facility 10.
  • the wastewater W4 obtained in the water washing step S30 was originally obtained after washing with water for the coarse powder B1C having a small amount of chlorine, so that the chlorine content is low. Therefore, the waste water W4 may be mixed with the cement clinker Cn1 without taking measures for reducing the contained chlorine ions as described above.
  • the fine powder B1F may be mixed with cement clinker Cn1 or cement after being separately washed with water as necessary, or may be used as fertilizer or fine aggregate. do not have.
  • FIG. 13 is a drawing schematically showing a processing flow of a modified example of the cement manufacturing method in the present embodiment.
  • FIG. 14 is a block diagram schematically showing the configuration of a treatment system for carrying out the cement manufacturing method based on the treatment flow shown in FIG. 13, following FIG. 7.
  • the water washing step S30 and the classification step S10 may be performed simultaneously by the wet classifying machine. Specific examples thereof include methods such as water sieving, liquid cyclone, and centrifugation.
  • FIG. 15 is a drawing schematically showing a processing flow of a method for producing cement and a cement kneaded body in the present embodiment.
  • FIG. 16 is a block diagram schematically showing the structure of a system that implements this manufacturing method.
  • the processing system 1 shown in FIG. 16 includes a raw material tank 3 in which the cement clinker raw material Y1 is stored, a powder storage tank 5 in which the biomass ash B1 is stored, a clinker production facility 10, a classification facility 20, and a first crushing facility. 30 and mixing equipment 33 are provided.
  • the treatment system 1 in the present embodiment can also be referred to as a "cement and cement kneaded body manufacturing system".
  • the biomass ash B1 used in this embodiment preferably has a particle size median diameter (D50) of 200 ⁇ m or less, more preferably 150 ⁇ m or less, and 90 ⁇ m or less. It is more preferable to have.
  • D50 particle size median diameter
  • the mixing facility 33 is a facility for kneading cement Cn2, water W1, fine aggregate FA, and coarse aggregate CA to produce a cement kneaded body Cn3, and is composed of a known mixer.
  • the mixing equipment 33 is installed in, for example, a concrete factory.
  • the cement kneaded body Cn3 is concrete.
  • the production method of the present embodiment includes a step S10 for classifying the biomass ash B1, a step S20 for charging the classified fine powder B1F in the production process for cement Cn2, and a classified coarse powder B1C. S60, which is added in the manufacturing process of the cement kneaded body Cn3.
  • the step S10 for classifying the biomass ash B1 and the step S20 for charging the classified biomass ash (here, fine powder B1F) in the manufacturing step of the cement Cn2 are the same as those described above in the first embodiment or the second embodiment. Since it is common, detailed explanation is omitted.
  • the crude powder B1C obtained after classification typically has an amorphous content of 60% by mass or less.
  • the amorphous content of the crude powder B1C is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the content of the amorphous substance contained in the fine powder B1F is typically 50% by mass to 80% by mass, and more typically 60% by mass to 70% by mass. That is, by this classification step S10, the coarse powder B1C having a relatively low amorphous content and the fine powder B1F having a relatively high amorphous content are separated. This point will be described later with reference to Examples.
  • This classification step S10 corresponds to the step (a), and the coarse powder B1C obtained in this classification step S10 corresponds to the “biomass ash powder granules”.
  • the fine powder B1F When all the obtained fine powder B1F is added, it is the same as adding the raw powder of biomass ash (raw ash B1) as it is. Therefore, by utilizing the difference in characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder B1C and fine powder B1F), the fine powder B1F can be used as a raw material for cement clinker Cn1, a cement mixture, or a concrete admixture. It may be partially added or washed with water as described later before being added.
  • the fine powder B1F may be added after washing with water in the same manner as described above in the second embodiment. In this case, it is convenient because the water can be evaporated and removed by using the heat energy which is not directly related to the production of the cement clinker Cn1 by putting it in the clinker cooler 13. Further, in order to prevent a large amount of dust from being generated in the clinker cooler 13, the fine powder B1F preferably has a water content of 50% by mass or less, and is preferably added in the form of lumps or granules.
  • fine powder B1F may be added to the cement Cn2 obtained by crushing in the first crushing equipment 30.
  • the timing of this charging may be on the route to the cement silo in which the cement is stored in the subsequent stage of the first crushing facility 30, or may be in the cement silo.
  • the fine powder B1F is added to the cement clinker Cn1 or the first crushing equipment 30 rather than being mixed with the cement Cn2 obtained after the cement clinker Cn1 is crushed in the first crushing equipment 30.
  • the case of charging is preferable because the particle size is finer and the reactivity is higher.
  • the above-mentioned charging step S20 in the cement Cn2 manufacturing process corresponds to the step (d).
  • the coarse powder B1C obtained in the classification step S10 is added as a partial substitute material for the fine aggregate FA at the time of manufacturing the cement kneaded body Cn3 such as concrete.
  • the mixing facility 33 As the mixing equipment 33, a general mixer is used as described above.
  • the substitution rate of the coarse powder B1C with respect to the fine aggregate FA is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass, and 15% by mass. It is particularly preferable to use% to 25% by mass.
  • the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a low chlorine content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, the amount of chlorine contained in the cement kneaded body Cn3 can be kept within the regulated value.
  • the coarse powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low amorphous content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, expansion due to the alkali-silica reaction is unlikely to occur.
  • the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low sulfur oxide content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA at the time of manufacturing, the cement kneaded body Cn3 is not promoted from the desired state, and the cement hardened product is not promoted. The quality of can be homogenized.
  • the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low ignition loss and a small amount of unburned carbon. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, it is unlikely that the obtained hardened cement product will be darkened.
  • the charging step S60 in the manufacturing process of the cement kneaded body Cn3 described above corresponds to the step (g).
  • FIG. 18 is a block diagram schematically showing an example of the configuration of the processing system 1 that implements the flow of FIG. 17 following FIG.
  • this water washing step S30 has the same contents as those described above in the second embodiment, detailed description thereof will be omitted. It should be noted that the point that the water washing step S30 corresponds to the step (e) is also as described above.
  • both the wastewater W4 (cement additive) obtained from the washing water and the dehydrated product Ck1 obtained after washing the fine powder B1F with water are used in the process of producing the cement Cn2.
  • the coarse powder B1C can be used as a partial substitute material for the fine aggregate FA at the time of producing the cement kneaded body Cn3.
  • the biomass ash B1 can be fully used in the production of cement Cn2 and cement kneaded product Cn3.
  • the effect of reducing the amount of wastewater to be disposed of and the load of wastewater treatment can be expected.
  • a water washing step may be executed on the coarse powder B1C obtained after the classification step S10 (water washing step S30a).
  • the treatment system 1 may be provided with a water washing facility 40a for washing the coarse powder B1C after classification with water.
  • the water washing step S30a for the coarse powder B1C the same method as the water washing step S30 for the fine powder B1F described above can be used.
  • the dehydrated product Ck1 obtained after washing the coarse powder B1C with water is charged as a partial substitute material for the fine aggregate FA during the production of the cement kneaded product Cn3 in the charging step S60.
  • the classification step S10 and the water washing step (S30, S30a) may be executed in parallel.
  • the treatment system 1 is provided with a classification facility 20 (40) equipped with a water washing function (see FIG. 21).
  • a wet classifier is preferably used.
  • the raw ash (biomass ash B1) before classification may be subjected to the water washing step S30 and then the classification step S10. In this case, wet classification is adopted in the classification step S10. This point is the same in each of the above embodiments.
  • FIG. 23 is a block diagram schematically showing an example of the configuration of the processing system 1 that implements the flow of FIG. 22 following FIG.
  • the processing system 1 shown in FIG. 23 is different from FIG. 16 in that it includes an analysis facility 61 and a second crushing facility 35.
  • the crude powder B1C obtained in the classification step S10 is analyzed in the analysis facility 61, and the proportion of amorphous material is measured. This measurement may be performed on a part extracted from the obtained crude powder B1C.
  • the analysis equipment 61 includes an X-ray diffractometer and an arithmetic processing unit, and as a measurement method, a method of calculating the measurement result of X-ray diffraction by Rietveld analysis (XRD-Rietveld method) can be preferably used.
  • the crude powder B1C obtained in the classification step S10 typically has an amorphous ratio of 60% by mass or less.
  • the proportion of the amorphous material is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the proportion of amorphous crude powder B1C obtained in the classification step S10 may be relatively high.
  • this crude powder B1C is obtained after the biomass ash B1 is classified, and has a low content of calcium, sulfur, chlorine, and carbon, and has a composition close to that of coal ash. Therefore, it can be used as a raw material for cement clinker Cn1 or as a mixed material for manufacturing cement Cn2.
  • the coarse powder B1C Since the coarse powder B1C has a large particle size as it is, it is crushed in the crushing step S62, and then the obtained crushed coarse powder B2C is added in the cement Cn2 manufacturing process.
  • This crushing step S62 corresponds to the step (c), and the step S20 in which the crushed coarse powder B2C is added in the manufacturing process of the cement Cn2 corresponds to the step (b).
  • the crushing facility 62 may be a raw material crusher in the clinker manufacturing facility 10.
  • the fine powder B1F may be used for other purposes. do not have.
  • Incinerator fly ash BA-1 (grain size D50 is 47.2 ⁇ m, ignition loss (ig.loss) at 975 ° C. is 4 from the biomass power generation facility P1 that uses palm coconut shells as fuel to generate electricity with a circulating fluidized bed furnace. .17%) was obtained (biomass ash B1), and the effect of classifying it on the composition of biomass ash was investigated.
  • the content of coal in the mixed fuel of palm coconut shell and coal was 10% by mass.
  • the particle size distribution of this incinerated fly ash BA-1 (laser diffraction type particle size distribution measuring device: using MT3300EX II manufactured by Microtrac Bell) is as shown in FIG.
  • Test method The test method will be described below.
  • Table 1 shows the particle size distribution of biomass ash after classification.
  • Table 1 also shows the crude powder B1C obtained after classifying the incinerated fly ash BA-2 obtained from the biomass power generation facility P2, which is different from the biomass power generation facility P1, with a classification point of 45 ⁇ m. It is shown.
  • the particle size distribution was measured by a laser diffraction type particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell).
  • Raw ash B1 (reference numeral # 1) derived from incinerated fly ash BA-1, coarse powder B1C (reference numeral # 2) obtained by classifying raw ash B1 by 45 ⁇ m, and fine powder B1F (reference numeral # 3) obtained by classifying raw ash B1 by 45 ⁇ m.
  • the mineral composition of the crude powder B1C (reference numeral # 6) obtained by classifying the raw ash B1 at 90 ⁇ m and the crude powder B1C (reference numeral # 8) derived from the incinerated fly ash BA-2 was measured using the XRD / Rietbelt method.
  • the raw ash B1 (reference numeral # 1) derived from incinerated fly ash BA-1 is further stored at 20 ° C. for 3 days after adding 20% by mass (water content 16.7% by mass) of water by external percentage.
  • the mineral composition was measured by the same method after making a wet ash by drying at 105 ° C. This biomass ash is described as "reference numeral # 1W”.
  • the mineral composition of the crude powder B1C (denoted as "reference numeral # 2W") obtained by classifying the wet ashized raw ash B1 (# 1W) by 45 ⁇ m was measured by the same method.
  • an air jet sheave manufactured by Hosokawa Micron Corporation, e200LS was used.
  • corundum (Al 2 O 3 ) is internally divided as an internal standard substance for the biomass ash corresponding to each of the above codes (# 1, # 2, # 3, # 6, # 8, # 1W, # 2W).
  • the X-ray diffraction pattern was measured by an X-ray diffractometer (D8 ADVANCE A-25 manufactured by Bruker AXS Co., Ltd.) using a sample to which 10% was added.
  • the measurement conditions for X-ray diffraction were CuK ⁇ ray, tube voltage 50 kV, tube current 40 mA, scanning range 5 ° to 65 ° (2 ⁇ ), step width 0.0234, and scanning speed 0.13 sec / step.
  • Rietveld analysis was performed using software (TOPAS Ver.6.0 manufactured by Bruker AEX Co., Ltd.) using the obtained diffraction pattern, and quantitative results of the mineral composition were obtained.
  • the amorphous amount was calculated from the corundum quantitative value using the following formula (1).
  • G 100 ⁇ (AR) / ⁇ A ⁇ (100-R) / 100 ⁇ ...
  • R is a 3 mixing ratio (%) of Al 2 O 3
  • A is a quantitative value (%) of Al 2 O 3 .
  • the quantification results obtained from the Rietbelt analysis were standardized so that the total amount of the composition excluding the quantified value of corundum was 100%, and then standardized at the ratio obtained by subtracting the amorphous amount from this value.
  • the value was used as the mineral composition of each biomass ash (# 1, # 2, # 3, # 6, # 8, # 1W, # 2W).
  • Table 2 shows the results of the mineral composition analysis.
  • FIG. 24 is a polarizing microscope observation image of the raw ash B1 derived from the incinerated fly ash BA-1. Specifically, after extracting the raw ash B1 and hardening it with an epoxy resin, a chip having a size of about 20 mm ⁇ 30 mm was cut out to prepare a mirror-polished slice having a thickness of about 20 ⁇ m. The mirror-polished flakes were observed under a polarizing microscope to confirm the substances constituting the sample.
  • Comparative Example 1 only mountain sand was used as the fine aggregate. Further, in Examples 1 to 5, a part of the fine aggregate was replaced with the coarse powder B1C (# 2, # 6, # 8) of the biomass ash in Table 2 above from the mountain sand at a predetermined substitution rate. It was used. Table 3 shows the properties of the mountain sand NS used in the test. Table 4 shows the results of the compressive strength test and the alkali-silica reaction test in Examples 1 to 5 and Comparative Example 1.
  • Examples 1 to 4 using the coarse powder B1C (# 2, # 6) derived from the incinerated fly ash BA-1 and the coarse powder B1C (# 8) derived from the incinerated fly ash BA-2 were used.
  • the result of the alkali silica reactivity test is Category A, and it is confirmed that the alkali silica reaction is unlikely to occur as in Comparative Example 1 using only the fly ash NS.
  • the amorphous ratio of any of the crude powders B1C (# 2, # 6, # 8) is suppressed to 60% by mass or less, so that the reactivity with the alkali metal is suppressed to be low. It is thought that this is the case.
  • the proportion of amorphous material is relatively high in Examples 1 to 5 (48.2%), and in Example 5, the expansion rate in the mortar bar method is higher than in other Examples. ..
  • Example 4 comparing Examples 1 to 3 in which the substitution rates of the crude powder B1C (# 2) obtained by classification at the same classification point (45 ⁇ m) were changed, the compressive strength of the mortar of the specimen increased as the substitution rate increased. You can see that it has been enhanced. This is because the amount of amorphous increases within the range that does not promote the alkali-silica reaction due to the increased substitution rate, the reactivity with the cement paste increases, and the adhesion strength between the cement paste and the fine aggregate increases. It is presumed that this is due to the fact. In Example 4 in which D10 exceeds 110 ⁇ m, the expansion rate and the compressive strength are lower than those in the other examples.
  • the method of moist ashing is as follows. Wet ash by adding 20% by mass (water content 16.7% by mass) of water to the raw ash B1 (reference numeral # 1), storing at 20 ° C for 3 days, and drying at 105 ° C. And said.
  • the raw ash B1 moistened by this method corresponds to "reference numeral # 1W”
  • the crude powder B1C obtained by classifying the wet ashed raw ash # 1W corresponds to "reference numeral # 2W”. ..
  • an air jet sheave manufactured by Hosokawa Micron Corporation, e200LS
  • the procedure for washing with water corresponds to step S30.
  • This water washing process corresponds to step S30.
  • 100 g of biomass ash (B1, B1F) and 400 g of tap water were put into a beaker to make a slurry, which was stirred with a stirrer at 400 rpm for 30 minutes. At this time, when adjusting the pH by inflowing CO 2 gas during washing with water, the flow rate was adjusted while monitoring the pH in the liquid with a pH meter.
  • Process 2 After stopping stirring, filtration was performed using a Büchner funnel, and 400 g of tap water was further added to the obtained cake on the filter paper to wash the slurry and then recovered.
  • Process 3 After the collected cake was naturally dried, the mass was measured and various analyzes were performed.
  • the obtained coarse powder was pulverized using a ball mill.
  • the measurement of the chemical composition was carried out by the following method. For each prepared sample (# 1 to # 5, # 9 to # 10, # 1W, # 2W, # 1Wp, # 3Wp), a fluorescent X-ray apparatus (Rigaku, ZSX Primus II) was used. The chemical composition was measured by the calibration curve (coal ash) method. The results are shown in Table 5.
  • Each ignition loss was measured by a method according to JIS R5202 "Cement Chemical Analysis Method".
  • the amount of incinerated fly ash and the amount of calcium carbonate in the obtained sample is about 600 ° C to 700 ° C when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C at a heating rate of 20 ° C / min.
  • the amount of decrease was calculated and calculated by the ratio of the weight reduction with the reagent (using TG-DTA2000SR manufactured by NETZSCH).
  • the amount of calcium hydroxide in the incinerated fly ash and the obtained sample the amount of heat absorption around 400 ° C. when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C. at a heating rate of 10 ° C./min is obtained.
  • Determined by the ratio of weight loss with the reagent using DSC404F3 manufactured by NETZSCH).
  • the amount of hydrate produced was the above-mentioned loss on ignition minus the amount of decarboxylation that volatilized from the amount of calcium carbonate.
  • the amount of hydrate produced from the raw ash B1 was 1.8%, and that of the wet ash (# 1W) was 6.0%.
  • the crude powder has a chemical composition close to that of coal ash and is suitable as a raw material for cement clinker.
  • Table 7 below shows the level of each washing condition.
  • the amount of calcium carbonate in the raw ash and the obtained sample decreased by about 600 ° C to 700 ° C when the temperature of the sample was raised to 1000 ° C at a heating rate of 20 ° C / min in a nitrogen atmosphere.
  • the amount was calculated and calculated by the ratio of the weight reduction with the reagent (using TG-DTA2000SR manufactured by NETZSCH).
  • the amount of calcium hydroxide contained in the raw ash (fly ash) and the obtained sample is around 400 ° C. when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C. at a heating rate of 10 ° C./min.
  • the amount of heat absorbed was determined by the ratio of the weight reduction with the reagent (using DSC404F3 manufactured by NETZSCH).
  • this biomass ash contains SiO 2 and CaO as main constituents and is useful as a highly reactive pozzolan mixture.
  • Table 10 shows the results of examining the existence form of the calcium component in the ash by the XRD method.
  • Incinerator fly ash (grain size D50 (frequency) 20.0 ⁇ m, ignition loss at 750 ° C. (ig. Loss) 6 from a biomass power generation facility P3 that uses wood pellets and palm coconut shells as fuel to generate electricity with a stoker furnace. .1%) was obtained and the same test as the verification was performed. The results are shown in Tables 11 and 12. At level 3-2, sulfuric acid for pH adjustment is added at the time of washing with water.
  • this biomass ash contains SiO 2 and CaO as main constituents and is useful as a highly reactive pozzolan mixture. Furthermore, it was clarified that the SO 3 content was increased by adding sulfuric acid and washing with water. Therefore, it is considered that at least a part of the sulfuric acid component for pH adjustment is immobilized in the ash after the washing operation.
  • Processing system 3 Raw material tank 5: Powder storage tank 10: Cleaner manufacturing equipment 11: Preheater 12: Cement kiln 13: Cleaner cooler 20: Classification equipment 30: First crushing equipment 33: Mixing equipment 35: Second crushing equipment 40 , 40a: Water washing equipment 42: Liquid supply device 43: Powder dissolution tank 44: Slurry stirring device 46: Solid-liquid separation device 47: Transfer device 49: Water washing device 51: Gas supply device 52: Decombustible carbon agent supply device 53: Floating beneficiation equipment 61: Analytical equipment 62: Crushing equipment B1: Biomass ash (raw ash) B1C: Coarse powder B1F: Fine powder B2C: Crushed coarse powder CA: Coarse aggregate Ck1: Dehydrated product Cn1: Cement clinker Cn2: Cement Cn3: Cement kneaded body D1: Decombustible carbon agent FA: Fine aggregate G1: CO2 Containing gas Lr1, Lr2, Lr2a, Lr2b

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a technique that enable effective utilization of biomass ash while inhibiting a reduction in the strength of a produced cured cement product. This method has: a step (a) for classifying biomass ash into rough powder and fine powder; and a step (b) for adding the rough powder obtained in step (a) at least to a cement clinker raw material to be put into a cement kiln, to a cement clinker obtained from the cement kiln, or to a cement obtained after a process of pulverizing the cement clinker.

Description

セメント製造方法、セメント混練体の製造方法、バイオマス灰粉粒物Cement manufacturing method, cement kneaded body manufacturing method, biomass ash powder granules
 本発明はセメント製造方法及びセメント混練体の製造方法に関し、特にバイオマス灰をセメント原料等に利用したセメント製造方法及びセメント混練体の製造方法に関する。また、本発明は、セメント又はセメント混練体の製造に適したバイオマス灰粉粒物に関する。 The present invention relates to a method for producing a cement and a method for producing a cement kneaded product, and more particularly to a method for producing a cement using biomass ash as a raw material for cement and a method for producing a cement kneaded product. The present invention also relates to biomass ash powder granules suitable for producing cement or a cement kneaded product.
 都市ゴミの焼却等により発生する焼却灰は、近年、処分場が逼迫しつつあることを背景に、セメント原料等として資源化することが望まれている。また、再生可能エネルギーの普及に向けた諸般の取り組みにより、バイオマス発電設備の建設や運開が進んでおり、バイオマス発電で発生する焼却灰(バイオマス灰)の発生量も増大している。このため、バイオマス灰についても、都市ゴミ等の焼却灰と同様に、セメント原料等として資源化することが期待されている。 Incinerator ash generated by incinerator of urban waste is desired to be recycled as a raw material for cement, etc. against the background of the tightness of disposal sites in recent years. In addition, the construction and operation of biomass power generation facilities are progressing due to various efforts toward the spread of renewable energy, and the amount of incineration ash (biomass ash) generated by biomass power generation is also increasing. Therefore, it is expected that biomass ash will be recycled as a raw material for cement as well as incineration ash such as municipal waste.
 このような課題に関連して、例えば下記非特許文献1では、バイオマス灰をセメント混和材に適用することが検討されている。 In relation to such a problem, for example, in Non-Patent Document 1 below, it is considered to apply biomass ash to a cement admixture.
 上記非特許文献1では、バイオマス灰がそのままセメント混和材として使用されている。しかしながら、この方法によれば、得られたセメントを利用したコンクリートやモルタル等のセメント硬化物の強度が大きく低下するという問題がある。 In the above non-patent document 1, biomass ash is used as it is as a cement admixture. However, according to this method, there is a problem that the strength of a hardened cement product such as concrete or mortar using the obtained cement is significantly reduced.
 本発明は、生成されるセメント硬化物の強度低下を抑制しつつ、バイオマス灰を有効に活用できる技術を提供することを目的とする。 An object of the present invention is to provide a technique capable of effectively utilizing biomass ash while suppressing a decrease in the strength of the produced cement hardened product.
 本発明に係るセメント製造方法は、
 バイオマス灰を粗粉と細粉に分級する工程(a)と、
 前記工程(a)で得られた前記粗粉を、セメントキルンに投入されるセメントクリンカ原料、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカに対する粉砕処理後のセメント、の少なくともいずれかに対して投入する工程(b)とを有することを特徴とする。
The cement manufacturing method according to the present invention is
Step (a) of classifying biomass ash into coarse powder and fine powder,
The coarse powder obtained in the step (a) is applied to at least one of a cement clinker raw material to be charged into a cement kiln, a cement clinker obtained from the cement clinker, or a cement after crushing the cement clinker. It is characterized by having a step (b) of charging.
 上述したように、バイオマス灰は、塩素の含有率が高いため、そのままセメントクリンカ原料やセメントクリンカ(以下、両者をまとめて「セメント原料」と称することがある。)又はセメントに対して投入されると、コンクリート中の塩素規制値を超過して、鉄筋腐食を招来するおそれがある。 As described above, since the biomass ash has a high chlorine content, it is directly added to a cement clinker raw material, a cement clinker (hereinafter, both may be collectively referred to as “cement raw material”) or cement. In addition, the chlorine regulation value in cement may be exceeded, leading to reinforcement corrosion.
 バイオマス灰のうち、相対的に粒度の大きい粗粉は、相対的に粒度の小さい細粉に比べて、カルシウム、硫黄、塩素、及び炭素の含有率が低く、石炭灰の組成に近い。このため、クリンカ原料として利用した場合、従来のクリンカ原料に対する均質性が確保できる。特に、硫黄や塩素の含有率が低いため、セメントキルン内におけるコーチングが生成されにくく、塩素バイパスに対する負荷の増加が生じにくいという効果を有する。また、セメントの混合材として利用した場合においても、カルシウム、硫黄、塩素、及び炭素の含有率が低いため、セメントの品質を均質化できるという効果を有する。 Of the biomass ash, the coarse powder with a relatively large particle size has a lower content of calcium, sulfur, chlorine, and carbon than the fine powder with a relatively small particle size, and is close to the composition of coal ash. Therefore, when used as a clinker raw material, homogeneity with that of a conventional clinker raw material can be ensured. In particular, since the content of sulfur and chlorine is low, it is difficult to generate coaching in the cement kiln, and it is difficult to increase the load on the chlorine bypass. Further, even when it is used as a mixed material of cement, it has an effect that the quality of cement can be homogenized because the content of calcium, sulfur, chlorine and carbon is low.
 前記工程(a)を行うに際しては、バイオマス灰をμmオーダの分級点で分級できる装置であれば特に限定されず、例えば、篩、重力沈降、慣性分級装置、遠心分級装置、重力式分級装置等が好適に使用でき、特に分級精度の観点から、サイクロン型エアセパレータ、渦流型遠心分級装置、篩分け装置等の使用が好ましい。 The step (a) is not particularly limited as long as it is an apparatus capable of classifying biomass ash at a classification point on the order of μm. Is preferably used, and particularly from the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a vortex type centrifugal classification device, a sieving device, or the like.
 上記工程(b)の具体的な方法としては、セメントクリンカの原料の調合のための混合機や粉砕機など原料調合系統設備への投入、セメントキルン(ロータリーキルン)前のプレヒータトップや仮焼炉への投入、セメントキルン窯尻への投入、セメントキルン窯前への投入、焼成して得られたセメントクリンカを冷却するためのクリンカクーラへの投入、セメントクリンカを粉砕するための粉砕装置(ミル)への投入、混合セメント製造用の混合機への投入、コンクリートミキサへの投入等が挙げられる。すなわち、工程(a)で得られたバイオマス灰の粗粉は、セメント製造の際の種々の段階に投入が可能であり、セメントクリンカ原料やセメント混合材として好適に使用され得る。 As a specific method of the above step (b), it is put into the raw material mixing system equipment such as a mixer and a crusher for preparing the raw material of the cement cleaner, and to the preheater top and the calcination furnace before the cement kiln (rotary kiln). , Put into the cement kiln kiln butt, Put into the front of the cement kiln kiln, Put into the cleaner cooler to cool the cement clinker obtained by firing, Crushing device (mill) to crush the cement cleaner. It can be put into a mixing machine, put into a mixer for producing mixed cement, put into a concrete mixer, and the like. That is, the coarse powder of biomass ash obtained in the step (a) can be added to various stages during cement production, and can be suitably used as a raw material for cement clinker or a cement mixture.
 以下において、本明細書では、「混合材」と記載した場合には、セメント製造段階にかかわらずセメントクリンカ又はセメントに対して投入される材料を指すものとする。 In the following, when the term "mixed material" is used in the present specification, it means a material to be added to cement clinker or cement regardless of the cement manufacturing stage.
 工程(a)を経て得られた分級後のバイオマス灰(すなわち、粗粉や微粉)の化学組成等の特性が異なることを利用して、クリンカ特性やクリンカ製造工程における影響とセメント特性に及ぼす影響を考慮しながら、粗紛や細粉の全てやその一部をセメントクリンカの原料又は混合材に投入することができる。この結果、バイオマス灰(原灰)をそのまま投入する場合と比べて、セメントクリンカ又はセメントの組成又は特性が異なることになる。 Utilizing the fact that the characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder and fine powder) obtained through the step (a) are different, the influence on the clinker characteristics and the clinker manufacturing process and the influence on the cement characteristics. All or part of the coarse powder or fine powder can be added to the raw material or mixed material of cement clinker. As a result, the composition or characteristics of the cement clinker or cement will be different from the case where the biomass ash (raw ash) is added as it is.
 なお、工程(a)で得られた粗粉は、少なくともその一部がセメント原料やセメントに投入されるものとしてよく、必ずしもすべての前記粗粉がセメント原料やセメントに投入される必要はない。残余の粗粉は、例えば細骨材として利用することも可能である。 It should be noted that at least a part of the coarse powder obtained in the step (a) may be added to the cement raw material or cement, and it is not always necessary that all the coarse powder is added to the cement raw material or cement. The residual coarse powder can also be used, for example, as a fine aggregate.
 この工程(a)は、水が添加されておらず水和物の形成反応が進行していない状態のバイオマス灰(好ましくは乾灰)に対して実行されるのが好ましい。より詳細には、前記バイオマス灰は、流動床式燃焼炉から発生した飛灰であり、かつ乾灰であるのが好適である。 This step (a) is preferably carried out on biomass ash (preferably dry ash) in a state where water has not been added and the hydrate formation reaction has not progressed. More specifically, the biomass ash is preferably fly ash generated from a fluidized bed type combustion furnace and is preferably dry ash.
 例えば、バイオマス灰が湿灰であって、凝集したり水和物が形成されている状態の場合には、分級を行った場合においても、粗粉側にも塩素が多く含まれる可能性がある。 For example, when the biomass ash is wet ash and aggregates or hydrates are formed, there is a possibility that a large amount of chlorine is contained on the coarse powder side even when the classification is performed. ..
 本明細書において、「乾灰」とは、バイオマス灰のうち乾燥された状態で回収され、分級処理を行うまでに水が添加されておらず、凝集したり水和物が形成されていないものを指す。また、前記の乾灰は、分級処理を行う前に水が添加されても、水が多く添加され分散された状態であり、長期間の保管により水和物が形成されていない場合も含む。また、本明細書において、「湿灰」とは、例えば焼却炉の炉底から排出される焼却残留物である主灰や集塵機等で回収された飛灰を、水冷又は散水されたことで水分を含む状態で回収されたものや、それを乾燥したものを指す。一般的に、湿灰は含水率が15質量%以上である。 As used herein, the term "dry ash" refers to biomass ash that has been recovered in a dry state, has not been watered by the time it is classified, and has not aggregated or formed hydrates. Point to. Further, the dry ash is in a state where a large amount of water is added and dispersed even if water is added before the classification treatment, and a case where hydrate is not formed by long-term storage is also included. Further, in the present specification, "wet ash" is, for example, water-cooled or sprinkled with water-cooled or sprinkled with main ash which is an incineration residue discharged from the bottom of an incinerator or fly ash collected by a dust collector or the like. Refers to those collected in a state containing ash and those that have been dried. Generally, the wet ash has a water content of 15% by mass or more.
 前記工程(a)は、20μm~100μmを分級点として分級する工程とするのが好適である。これにより、特に塩素や硫黄が細粉側に支配的に分配されるため、効率的である。 The step (a) is preferably a step of classifying with 20 μm to 100 μm as a classification point. This is particularly efficient because chlorine and sulfur are predominantly distributed to the fine powder side.
 前記工程(b)は、前記工程(a)で得られた前記粗粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程としても構わない。 The step (b) may be a step of putting the coarse powder obtained in the step (a) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment.
 前記セメント製造方法は、前記工程(a)で得られた前記粗粉の少なくとも一部を粉砕する工程(c)を有し、
 前記工程(b)は、前記工程(c)によって粉砕された後の前記粗粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程であるものとしても構わない。
The cement manufacturing method includes a step (c) of pulverizing at least a part of the coarse powder obtained in the step (a).
The step (b) is a step of putting the coarse powder after being crushed by the step (c) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment. It doesn't matter.
 この方法によれば、粗粉が粉砕されて粒度が細かくされた状態でセメントクリンカやセメントに投入されるため、セメントの強度を高めることができる。なお、粗粉の粉砕は、セメントクリンカの粉砕と同時に行われるものとしても構わない。 According to this method, the coarse powder is crushed and put into a cement clinker or cement in a state where the particle size is made fine, so that the strength of the cement can be increased. The crushing of the coarse powder may be performed at the same time as the crushing of the cement clinker.
 前記セメント製造方法は、前記工程(a)で得られた前記細粉を、前記セメントクリンカ原料に投入する工程(d)を有するものとしても構わない。 The cement manufacturing method may include a step (d) of putting the fine powder obtained in the step (a) into the cement clinker raw material.
 バイオマス灰は活性が低いが、粒度の小さい細粉ほど活性が高く、アルカリ金属含有量も高い。このため、上記方法のように、バイオマス灰を分級した後に得られる細粉が、セメントクリンカ原料に対して混合されることで、ポゾラン反応が活性化する。従って、分級前のバイオマス灰(以下、「原灰」と称することがある。)をセメントクリンカ原料に投入した場合よりも、セメント硬化物の強度が高められる。 Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is mixed with the cement clinker raw material to activate the pozzolan reaction. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification (hereinafter, may be referred to as “raw ash”) is added to the cement clinker raw material.
 前記工程(b)は、前記工程(a)で得られた前記粗粉を、セメントキルンに投入されるセメントクリンカ原料に投入する工程であるものとしても構わない。 The step (b) may be a step of putting the coarse powder obtained in the step (a) into a cement clinker raw material to be put into a cement kiln.
 前記セメント製造方法は、前記工程(a)で得られた前記細粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程(d)を有するものとしても構わない。 The cement manufacturing method includes a step (d) of putting the fine powder obtained in the step (a) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment. It doesn't matter.
 バイオマス灰は活性が低いが、粒度の小さい細粉ほど活性が高く、アルカリ金属含有量も高い。このため、上記方法のように、バイオマス灰を分級した後に得られる細粉が、セメントクリンカ又はセメントに対して混合されることで、ポゾラン反応が活性化する。従って、分級前のバイオマス灰(以下、「原灰」という。)をセメントクリンカやセメントに投入した場合よりも、セメント硬化物の強度が高められる。 Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is mixed with the cement clinker or cement to activate the pozzolan reaction. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification (hereinafter referred to as “raw ash”) is put into cement clinker or cement.
 前記セメント製造方法は、前記工程(a)で得られた前記細粉を水洗する工程(e)を有し、
 前記工程(d)は、前記工程(e)によって水洗された後の前記細粉を投入する工程であるものとしても構わない。
The cement manufacturing method includes a step (e) of washing the fine powder obtained in the step (a) with water.
The step (d) may be a step of adding the fine powder after being washed with water by the step (e).
 本発明者らの検討によれば、バイオマス灰は、セメントやコンクリートにおいて有害となる成分が含まれていたり、易反応性のカルシウム成分の存在により品質の安定性が悪く、このためにセメント原料等としての資源化に制約を受ける懸念があった。これに対し、上記方法によれば、水洗工程(e)を経たバイオマス灰がセメント原料(セメントクリンカ原料、セメントクリンカ)又はセメントに投入されるため、投入されるバイオマス灰はセメント忌避成分である塩素が効率よく除去されており、セメント硬化物としてのコンクリートの鉄筋腐食が抑制できる。また、環境汚染のおそれのあるセレンやクロム等の重金属類や、易反応性の酸化カルシウムや水酸化カルシウムが除かれて、セメントの品質を均質化できる。水洗工程(e)を経たバイオマス灰をクリンカ原料に用いた場合は、プレヒーターや窯尻、キルンへの低融点物質の付着による閉塞が抑制される。 According to the studies by the present inventors, biomass ash contains harmful components in cement and concrete, and the quality is not stable due to the presence of easily reactive calcium components. Therefore, cement raw materials and the like are used. There was a concern that it would be restricted by the recycling of resources. On the other hand, according to the above method, the biomass ash that has undergone the washing step (e) is charged into the cement raw material (cement clinker raw material, cement clinker) or cement, so that the charged biomass ash is chlorine, which is a cement repellent component. Is efficiently removed, and the corrosion of the reinforcing bars of concrete as a hardened cement product can be suppressed. In addition, heavy metals such as selenium and chromium, which may pollute the environment, and easily reactive calcium oxide and calcium hydroxide are removed, and the quality of cement can be homogenized. When the biomass ash that has undergone the water washing step (e) is used as a cleanser raw material, clogging due to adhesion of a low melting point substance to the preheater, the kiln butt, and the kiln is suppressed.
 特に、本発明者らの検討によれば、バイオマス灰を分級した後に得られる粗粉と細粉を対比すると、バイオマス灰に含まれる塩素分の多くは細粉に含まれることが確認された。このため、上記方法によれば、水洗に利用される水量を抑制しながら、効率的にバイオマス灰に含まれる塩素を除去できる。 In particular, according to the study by the present inventors, it was confirmed that most of the chlorine content contained in the biomass ash is contained in the fine powder when the coarse powder obtained after classifying the biomass ash and the fine powder are compared. Therefore, according to the above method, chlorine contained in the biomass ash can be efficiently removed while suppressing the amount of water used for washing with water.
 この水洗工程(e)は、バイオマス灰に水を加えてスラリーにする工程(e1)と、このスラリーに対して水洗水を供給して水洗する工程(e2)と、水洗後のスラリーを脱水する工程(e3)とを有するのが好適である。スラリーにした後に水洗し、その後に脱水することで脱水物を得るため、塩素、及び重金属を取り除くことができる。 The water washing step (e) includes a step (e1) of adding water to biomass ash to form a slurry, a step of supplying water washing water to the slurry and washing it with water (e2), and dehydration of the slurry after washing with water. It is preferable to have the step (e3). Chlorine and heavy metals can be removed because the dehydrated product is obtained by washing the slurry with water and then dehydrating it.
 前記セメント製造方法は、前記工程(e)の実行中又は前記工程(e)の実行後に、前記バイオマス灰を酸化処理する工程(f)を有するものとしても構わない。 The cement manufacturing method may include a step (f) of oxidizing the biomass ash during or after the execution of the step (e).
 上記方法によれば、水洗時のpHが酸性側に調整されるため、塩素をより効率的に取り除くことができる。また、バイオマス灰中に易反応性の酸化カルシウムや水酸化カルシウムが大量に含まれる場合であっても、炭酸カルシウムや硫酸カルシウムの形態に漏れなく置換できるため、セメントの流動性等の品質を均質化させることができる。 According to the above method, since the pH at the time of washing with water is adjusted to the acidic side, chlorine can be removed more efficiently. In addition, even if the biomass ash contains a large amount of easily reactive calcium oxide or calcium hydroxide, it can be replaced without omission in the form of calcium carbonate or calcium sulfate, so that the quality such as the fluidity of cement is uniform. Can be transformed into.
 工程(f)としては、バイオマス灰の水洗中に酸溶液を添加したり、二酸化炭素(CO2)含有ガスを吹き込むものとしても構わないし、水洗処理後のバイオマス灰に対してCO2含有ガスを吹き込むものとしても構わない。特に、CO2含有ガスとして、セメントキルンの燃焼排ガスや塩素バイパスの抽気ガス、バイオマスの焼却設備やバイオマス発電所の燃焼排ガスを用いることで、これらのガスに含まれるCO2を炭酸カルシウムに変化させてバイオマス灰に固定できるため、CO2排出量の削減効果も期待できる。加えて、前記排ガスに含まれる硫黄酸物(SOx)等の有害ガスについても、硫酸カルシウムに変化させてバイオマス灰に固定化できる。 In the step (f), an acid solution may be added during washing of the biomass ash, or a carbon dioxide (CO 2 ) -containing gas may be blown into the biomass ash, or the CO 2 -containing gas may be added to the biomass ash after the washing treatment. It does not matter if it is blown into it. In particular, by using the combustion exhaust gas of cement kiln, the bleed gas of chlorine bypass, and the combustion exhaust gas of biomass incineration equipment and biomass power plant as CO 2 containing gas, CO 2 contained in these gases can be changed to calcium carbonate. Since it can be fixed to biomass ash, it can be expected to reduce CO 2 emissions. In addition, harmful gases such as sulfur acid substances (SO x ) contained in the exhaust gas can be converted into calcium sulfate and immobilized on biomass ash.
 また、特に工程(f)において、工程(e)に係る水洗中にバイオマス灰を炭酸化処理することで、水洗後の廃液に多く含まれるカルシウム分が炭酸カルシウムとして析出できるため、スケールの発生が抑制される。これにより、排水処理のための配管等が閉塞するのを抑制できる。 Further, especially in the step (f), by carbonating the biomass ash during the washing with water according to the step (e), the calcium content contained in a large amount in the waste liquid after washing with water can be precipitated as calcium carbonate, so that scale is generated. It is suppressed. As a result, it is possible to prevent the piping for wastewater treatment from being blocked.
 前記セメント製造方法は、前記工程(e)の実行中に、前記バイオマス灰に含まれる未燃カーボンを除去する工程を有するものとしても構わない。 The cement manufacturing method may include a step of removing unburned carbon contained in the biomass ash during the execution of the step (e).
 バイオマス灰には、多くの未燃カーボンが含まれる可能性がある。このため、カーボンを多く含むバイオマス灰をセメントクリンカ原料として使用する場合には、プレヒータの高温化を招くおそれがあり、混合材として使用する場合はコンクリートの黒ずみや、減水剤がカーボンに吸着することによる流動性の低下を招くおそれがある。 Biomass ash may contain a lot of unburned carbon. For this reason, when biomass ash containing a large amount of carbon is used as a raw material for cement clinker, the temperature of the preheater may rise, and when used as a mixed material, darkening of concrete and a water reducing agent may be adsorbed on carbon. May cause a decrease in liquidity.
 これに対し、上記方法によれば、水洗中に未燃カーボンが除去できるため、前述したような課題の招来を抑制できる。具体的には、油や界面活性剤等の脱未燃炭素剤を混合して浮遊選鉱を行うことで、含有されている未燃カーボンの量を低下するものとして構わない。 On the other hand, according to the above method, unburned carbon can be removed during washing with water, so that the above-mentioned problems can be suppressed. Specifically, the amount of unburned carbon contained may be reduced by performing flotation by mixing a decombustible carbon agent such as oil or a surfactant.
 また、本発明に係るセメント混練体の製造方法は、バイオマス灰を粗粉と細粉に分級する工程(a)と、前記工程(a)で得られた前記粗粉を、粉砕することなくセメント及び水に混合する工程(g)とを有することを特徴とする。 Further, in the method for producing a cement kneaded body according to the present invention, the step (a) of classifying biomass ash into coarse powder and fine powder and the coarse powder obtained in the step (a) are cemented without crushing. It is characterized by having a step (g) of mixing with water.
 本明細書において、「セメント混練体」とはコンクリート及びモルタルを含む概念であって、硬化前の状態と硬化後の状態とを包括する。また、「セメント硬化物」とは前記セメント混練体が硬化された後の状態を指す。 In the present specification, the "cement kneaded body" is a concept including concrete and mortar, and includes the state before hardening and the state after hardening. Further, the "hardened cement product" refers to a state after the cement kneaded product is hardened.
 近年、環境保全の観点から、コンクリートの製造時に利用される骨材として、山砂や川砂に代わる材料が望まれている。一方、パームヤシ柄等のバイオマスはカーボンニュートラルな燃料として着目されており、使用量が増加傾向にある。この傾向に伴い多量のバイオマス灰が発生している。そこで、バイオマス灰の処分場の逼迫を防止するため、バイオマス灰の活用が求められている。そこで、本発明者らは、バイオマス灰を骨材の代替材料として利用することの検討も行った。 In recent years, from the viewpoint of environmental protection, a material that replaces mountain sand and river sand has been desired as an aggregate used in the production of concrete. On the other hand, biomass such as palm palm pattern is attracting attention as a carbon-neutral fuel, and the amount used is increasing. Along with this tendency, a large amount of biomass ash is generated. Therefore, in order to prevent the tightness of the biomass ash disposal site, the utilization of biomass ash is required. Therefore, the present inventors have also studied the use of biomass ash as a substitute material for aggregates.
 上記非特許文献1では、木質バイオマスを単独で燃焼した焼却灰を90μmを分級点として篩にて分類した上で、篩の残留分(粗粉)を細骨材質量に対して10%置換して得られたモルタルの供試体に対する圧縮強度の検証が行われている。 In Non-Patent Document 1 above, incinerated ash obtained by burning woody biomass alone is classified by a sieve with 90 μm as a classification point, and then the residual portion (coarse powder) of the sieve is replaced by 10% with respect to the amount of fine bone material. The compressive strength of the obtained mortar specimen has been verified.
 しかしながら、バイオマス灰には塩素が多く含まれる。非特許文献1に記載された方法で得られた細骨材代替物を利用してコンクリートを製造した場合、コンクリートの塩素含有量が規制値を超過し、場合によっては鉄筋腐食を生じさせるおそれがある。 However, biomass ash contains a lot of chlorine. When concrete is manufactured using the fine aggregate substitute obtained by the method described in Non-Patent Document 1, the chlorine content of the concrete may exceed the regulation value, and in some cases, rebar corrosion may occur. be.
 これに対し、上記方法によれば、工程(a)において分級された粗粉は、バイオマス灰のうち相対的に粒度の大きいものであるため、細粉と比べて塩素の含有率が低下されている。これにより、細骨材への代替材料として利用してセメント混練体を製造した場合であっても、得られたセメント混練体に含まれる塩素量を規制値以内に留めることが可能となる。 On the other hand, according to the above method, since the coarse powder classified in the step (a) has a relatively large particle size among the biomass ash, the chlorine content is lower than that of the fine powder. There is. This makes it possible to keep the amount of chlorine contained in the obtained cement kneaded product within the regulated value even when the cement kneaded product is produced by using it as an alternative material to the fine aggregate.
 この工程(a)は、水が添加されておらず水和物の形成反応が進行していない状態のバイオマス灰(好ましくは乾灰)に対して実行されるのが好ましい。例えば、バイオマス灰が湿灰であって、凝集したり水和物が形成されている状態の場合には、分級を行った場合においても、粗粉側にも塩素が多く含まれる可能性がある。 This step (a) is preferably carried out on biomass ash (preferably dry ash) in a state where water has not been added and the hydrate formation reaction has not progressed. For example, when the biomass ash is wet ash and aggregates or hydrates are formed, there is a possibility that a large amount of chlorine is contained on the coarse powder side even when the classification is performed. ..
 前記工程(a)を行うに際しては、バイオマス灰をμmオーダの分級点で分級できる装置であれば特に限定されず、例えば、篩、重力沈降、慣性分級装置、遠心分級装置、重力式分級装置等が好適に使用でき、特に分級精度の観点から、サイクロン型エアセパレータ、渦流型遠心分級装置、篩分け装置等の使用が好ましい。この際に、30μm~100μmの範囲内の基準値を分級点として分級するのが好ましい。 The step (a) is not particularly limited as long as it is an apparatus capable of classifying biomass ash at a classification point on the order of μm. Is preferably used, and particularly from the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a vortex type centrifugal classification device, a sieving device, or the like. At this time, it is preferable to classify using a reference value in the range of 30 μm to 100 μm as a classification point.
 前記工程(g)は、前記粗粉と共に調整用粉体を混合することで、前記粗粉及び前記調整用粉体の混合物内における非晶質の割合が60質量%以下を示すように調整された状態で、セメント及び水に混合する工程としても構わない。 In the step (g), the adjusting powder is mixed with the coarse powder, so that the proportion of amorphous material in the mixture of the coarse powder and the adjusting powder is adjusted to be 60% by mass or less. It may be a step of mixing with cement and water in a state of being.
 例えば、分級後に得られた粗粉の非晶質の割合が60質量%を超える場合には、非晶質の割合の低い調整用粉体(他のバイオマス灰等)を混合することで、混合物全体の非晶質割合を60質量%以下とすることができる。この混合物を、細骨材の一部代替材料として活用することで、アルカリシリカ反応による膨張が生じにくくなる。 For example, when the amorphous ratio of the crude powder obtained after classification exceeds 60% by mass, a mixture is mixed by mixing an adjusting powder (other biomass ash, etc.) having a low amorphous ratio. The total amorphous ratio can be 60% by mass or less. By utilizing this mixture as a partial substitute material for the fine aggregate, expansion due to the alkali-silica reaction is less likely to occur.
 なお、前記工程(a)で分級された粗粉は、水洗処理が行われた後に、前記工程(g)で混合されるものとしても構わない。これにより、粗粉に含まれる塩素、アルカリ金属、及び硫黄成分を更に低下させることができる。また、環境汚染のおそれのあるセレンやクロム等の重金属類や、易反応性の酸化カルシウムや水酸化カルシウムの量を減少させることができる。 The coarse powder classified in the step (a) may be mixed in the step (g) after being washed with water. This makes it possible to further reduce the chlorine, alkali metal, and sulfur components contained in the crude powder. In addition, it is possible to reduce the amounts of heavy metals such as selenium and chromium, which may pollute the environment, and easily reactive calcium oxide and calcium hydroxide.
 前記セメント混練体の製造方法は、前記工程(a)で得られた前記細粉を、セメントキルンに投入されるセメントクリンカ原料、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後に得られるセメント、の少なくともいずれかに投入する工程(d)を有するものとしても構わない。 In the method for producing the cement kneaded body, the fine powder obtained in the step (a) is crushed into a cement clinker raw material to be charged into a cement kiln, a cement clinker obtained from the cement kiln, or the cement clinker. It may have a step (d) of putting it into at least one of the cements obtained later.
 バイオマス灰は活性が低いが、粒度の小さい細粉ほど活性が高く、アルカリ金属含有量も高い。このため、上記方法のように、バイオマス灰を分級した後に得られる細粉が、セメントクリンカ原料やセメントクリンカ(以下、両者をまとめて「セメント原料」と称することがある。)、又はセメントに対して混合されることで、反応が活性化する。従って、分級前のバイオマス灰をセメント原料やセメントに投入した場合よりも、セメント硬化物の強度が高められる。 Biomass ash has low activity, but finer powder with smaller particle size has higher activity and higher alkali metal content. Therefore, as in the above method, the fine powder obtained after classifying the biomass ash is the cement clinker raw material, the cement clinker (hereinafter, both may be collectively referred to as "cement raw material"), or cement. The reaction is activated by mixing with the cement. Therefore, the strength of the hardened cement product is higher than that in the case where the biomass ash before classification is put into the cement raw material or cement.
 つまり、上記方法によれば、塩素含有率が相対的に低い粗粉は細骨材の一部代替材料として利用され、塩素含有率が相対的に高い細粉はセメント原料やセメント混合材の一部代替材料として利用される。これにより、バイオマス灰を余すことなく有効的に活用できる。 That is, according to the above method, the coarse powder having a relatively low chlorine content is used as a partial substitute material for the fine aggregate, and the fine powder having a relatively high chlorine content is one of the cement raw materials and the cement mixture. Used as a substitute material for parts. This makes it possible to effectively utilize the biomass ash without leaving it.
 セメント製造の際にバイオマス灰の分級後の細粉が投入されると、アルカリ金属含有量の高いセメントを生成することができる。このセメントと骨材を混合してセメント硬化物(コンクリート)を生成すると、アルカリシリカ反応が生じるおそれがある。これに対し、高炉スラグ等の潜在水硬性物質や、ポゾラン(珪石粉末、石粉等の天然ポゾランや、フライアッシュ、焼成粘土等の人工ポゾランを含む)を細粉と併せて投入することで、アルカリシリカ反応を抑制できる。 When fine powder after classification of biomass ash is added during cement production, cement with a high alkali metal content can be produced. When this cement and aggregate are mixed to form a hardened cement (concrete), an alkali-silica reaction may occur. On the other hand, by adding latent water-hardening substances such as blast furnace slag and pozzolan (including natural pozzolan such as silica stone powder and stone powder, and artificial pozzolan such as fly ash and calcined clay) together with fine powder, it is alkaline. The silica reaction can be suppressed.
 バイオマス灰粉粒物(粗粉)の非晶質の割合が60質量%を超える場合や、バイオマス灰粉粒物の細骨材の代替率が40質量%を超える場合には、同様にアルカリシリカ反応の抑制の観点から、前記工程(g)においても潜在水硬性物質及びポゾランの少なくとも一種を混和材として混合しても構わない。 When the amorphous ratio of the biomass ash powder granules (coarse powder) exceeds 60% by mass, or when the substitution rate of the fine aggregate of the biomass ash powder granules exceeds 40% by mass, alkaline silica is similarly applied. From the viewpoint of suppressing the reaction, at least one of the latent water-hardening substance and the pozzolan may be mixed as an admixture in the step (g).
 本発明に係るバイオマス灰粉粒物は、粒度分布の累積体積百分率が10%の値(D10)が35μm以上であることを特徴とする。 The biomass ash powder granules according to the present invention are characterized in that the value (D10) of the cumulative volume percentage of the particle size distribution of 10% is 35 μm or more.
 上記構成によれば、塩素(Cl)の含有率が抑制されたバイオマス灰粉粒物が実現される。このバイオマス灰粉粒物を、細骨材の一部代替材料として利用してセメント混練体を製造した場合、得られたセメント混練体に含まれる塩素量の上昇を抑制することが可能となる。すなわち、前記バイオマス灰粉粒物は、セメント硬化物用の細骨材への置換用途に利用されるものとしても構わない。 According to the above configuration, a biomass ash powder granule having a suppressed chlorine (Cl) content is realized. When a cement kneaded product is produced by using the biomass ash powder granules as a partial substitute material for the fine aggregate, it is possible to suppress an increase in the amount of chlorine contained in the obtained cement kneaded product. That is, the biomass ash powder granules may be used for replacement with fine aggregates for hardened cement products.
 この場合において、セメント硬化物(セメント混練体)に含まれる細骨材のうち、5質量%~40質量%が前記バイオマス灰粉粒物で構成されているのが好ましい。上記構成によれば、細骨材の一部をバイオマス灰粉粒物に置換しつつ、塩素含有率の上昇が抑制されたセメント混練体が実現される。 In this case, it is preferable that 5% by mass to 40% by mass of the fine aggregate contained in the hardened cement (cement kneaded body) is composed of the biomass ash powder granules. According to the above configuration, a cement kneaded product in which an increase in chlorine content is suppressed while replacing a part of the fine aggregate with biomass ash powder granules is realized.
 ただし、前記バイオマス灰粉粒物は、JIS A 5005「コンクリート用砕石及び砕砂」に規定されている一般的な細骨材の粒径よりも細かい。このため、細骨材全体の40質量%を超える割合でバイオマス灰粉粒物を混合した場合には、細骨材に含まれる微粉の割合が高まり過ぎて、セメント混練体の流動性に影響が生じる可能性がある。他方、細骨材全体の5質量%未満の割合でバイオマス灰粉粒物を混合した場合には、発生量が増加傾向にあるバイオマス灰を十分に活用できない。 However, the biomass ash powder granules are finer than the particle size of general fine aggregate specified in JIS A5005 "Crushed stone and crushed sand for concrete". Therefore, when the biomass ash powder granules are mixed in a proportion exceeding 40% by mass of the total fine aggregate, the proportion of the fine powder contained in the fine aggregate becomes too high, which affects the fluidity of the cement kneaded body. It can occur. On the other hand, when the biomass ash powder granules are mixed at a ratio of less than 5% by mass of the whole fine aggregate, the biomass ash whose amount is increasing cannot be fully utilized.
 バイオマス灰のうち、相対的に粒度の大きい粗粉は、相対的に粒度の小さい細粉に比べて、カルシウム、硫黄、塩素、及び炭素の含有率が低い。このため、D10を35μm以上とすることで、塩素含有率(塩素濃度)の低いバイオマス灰粉粒物が得られる。より好ましくは、前記バイオマス灰粉粒物のD10が50μm~115μmである。バイオマス灰粉粒物のD10を115μm以下とすることで、結合材としての作用(ポゾラン反応)が期待できるため、セメント硬化物の強度を確保できる。同様の観点から、前記バイオマス灰粉粒物の粒度分布の累積体積百分率が90%の値(D90)を、80μm~400μmとするのが好ましい。 Of the biomass ash, the coarse powder with a relatively large particle size has a lower content of calcium, sulfur, chlorine, and carbon than the fine powder with a relatively small particle size. Therefore, by setting D10 to 35 μm or more, biomass ash powder granules having a low chlorine content (chlorine concentration) can be obtained. More preferably, the D10 of the biomass ash powder is 50 μm to 115 μm. By setting the D10 of the biomass ash powder granules to 115 μm or less, the action as a binder (pozzolan reaction) can be expected, so that the strength of the hardened cement product can be ensured. From the same viewpoint, the value (D90) in which the cumulative volume percentage of the particle size distribution of the biomass ash powder is 90% is preferably 80 μm to 400 μm.
 また、前記バイオマス灰粉粒物の粒度分布の累積体積百分率が50%の値(D50)は、100μm~300μmとするのが好ましく、150μm~250μmとするのがより好ましく、175μm~200μmとするのが特に好ましい。 The value (D50) of the cumulative volume percentage of the particle size distribution of the biomass ash powder is preferably 100 μm to 300 μm, more preferably 150 μm to 250 μm, and 175 μm to 200 μm. Is particularly preferable.
 前記バイオマス灰粉粒物の粒度分布は、例えばレーザー回折・散乱式の粒度分布測定装置により測定できる。 The particle size distribution of the biomass ash powder can be measured by, for example, a laser diffraction / scattering type particle size distribution measuring device.
 前記バイオマス灰粉粒物の塩素(Cl)の含有率は、0.1質量%以下であるのが好ましく、0.05質量%以下であるのがより好ましい。 The chlorine (Cl) content of the biomass ash powder granules is preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
 前記バイオマス灰粉粒物に含まれる塩素の割合は、周知の方法で測定することができ、例えば、湿式定量分析、蛍光X線装置を用いた検量線法等が好ましく例示される。 The proportion of chlorine contained in the biomass ash powder granules can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve method using a fluorescent X-ray apparatus, and the like are preferably exemplified.
 前記バイオマス灰粉粒物は、非晶質の含有率が60質量%以下の粉粒物であるのが好ましい。 The biomass ash powder is preferably a powder having an amorphous content of 60% by mass or less.
 前記のように、バイオマス灰粉粒物はD10が35μm以上であり、セメント混練体の製造時に利用されるセメントと比べて、粒径は大きい。このような粒度を示すバイオマス灰粉粒物に含まれる非晶質の割合が高まると、このバイオマス灰粉粒物を利用してセメント混練体を製造した際、アルカリ金属(Na,K)との反応性が高まってアルカリシリカゲルの発生量が増え、この反応に伴う吸水膨張に起因して耐久性が低下する現象(アルカリシリカ反応)が生じやすくなる。バイオマス灰粉粒物に含まれる非晶質の割合を60質量%以下とすることで、アルカリ金属に対する反応性が低下し、アルカリシリカ反応が生じにくくなる。アルカリシリカ反応は、「アルカリ骨材反応」とも称される。 As described above, the biomass ash powder granules have a D10 of 35 μm or more, and have a larger particle size than the cement used in the production of the cement kneaded product. When the proportion of amorphous material contained in the biomass ash powder granules having such a particle size increases, when a cement kneaded body is produced using the biomass ash powder granules, it becomes possible to combine with alkali metals (Na, K). The reactivity increases and the amount of alkaline silica gel generated increases, and a phenomenon (alkali silica reaction) in which durability is lowered due to water absorption expansion accompanying this reaction is likely to occur. By setting the proportion of amorphous material contained in the biomass ash powder to 60% by mass or less, the reactivity with the alkali metal is lowered and the alkali silica reaction is less likely to occur. The alkali-silica reaction is also referred to as "alkali-aggregate reaction".
 上記観点から、前記バイオマス灰粉粒物に含まれる非晶質の割合は、50質量%以下であるのがより好ましく、40質量%以下であるのが更に好ましく、30質量%以下であるが特に好ましい。 From the above viewpoint, the proportion of amorphous material contained in the biomass ash powder granules is more preferably 50% by mass or less, further preferably 40% by mass or less, and particularly preferably 30% by mass or less. preferable.
 前記バイオマス灰粉粒物に含まれる非晶質の割合の測定に際しては、例えば、X線回折の測定結果をリートベルト解析により算定する方法(XRD-リートベルト法)が利用できる。 In measuring the proportion of amorphous material contained in the biomass ash powder, for example, a method of calculating the measurement result of X-ray diffraction by Rietveld analysis (XRD-Rietveld method) can be used.
 前記バイオマス灰粉粒物に含まれるSO3の含有率は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.2質量%以下が特に好ましい。前記バイオマス灰粉粒物に含まれるSO3の含有率が1質量%を超えると、セメント混練体の製造に利用した場合に、異常膨張を示す等、セメント硬化物の品質に対して影響を及ぼす可能性がある。 The content of SO 3 contained in the biomass ash powder is preferably 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.2% by mass or less. If the content of SO 3 contained in the biomass ash powder exceeds 1% by mass, it affects the quality of the hardened cement product, such as showing abnormal expansion when used in the production of a cement kneaded product. there is a possibility.
 前記バイオマス灰粉粒物に含まれるSO3の含有率の測定方法は、周知の方法で測定することができ、例えば、湿式定量分析、蛍光X線装置を用いた検量線等が好ましく例示される。 The method for measuring the content of SO 3 contained in the biomass ash powder can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve using a fluorescent X-ray apparatus, and the like are preferably exemplified. ..
 前記バイオマス灰粉粒物の強熱減量は、3質量%以下が好ましく、2質量%以下が特に好ましい。前記バイオマス灰粉粒物の強熱減量が3質量%を超えると、未燃カーボンの量が多くなり、セメント混練体の製造に利用した場合に、混練体に添加する化学混和剤を吸着し、流動性や空気量に悪影響を及ぼしたり、得られたセメント硬化物に黒ずみが生じる可能性がある。 The ignition loss of the biomass ash powder is preferably 3% by mass or less, and particularly preferably 2% by mass or less. When the ignition loss of the biomass ash powder granules exceeds 3% by mass, the amount of unburned carbon increases, and when used for the production of a cement kneaded body, the chemical admixture added to the kneaded body is adsorbed. It may adversely affect the fluidity and air volume, and may cause darkening of the obtained hardened cement product.
 前記バイオマス灰粉粒物の強熱減量の測定方法は、周知の方法で測定することができ、例えば、JIS R 5202「セメントの化学分析方法」に準拠した方法等が好ましく例示される。 The method for measuring the ignition loss of the biomass ash powder granules can be measured by a well-known method, and for example, a method based on JIS R5202 "Cement Chemical Analysis Method" is preferably exemplified.
 前記バイオマス灰粉粒物は、セメントキルンに投入されるセメントクリンカ原料への一部置換用途に利用されるものとしても構わない。 The biomass ash powder granules may be used for partial replacement with a cement clinker raw material to be put into a cement kiln.
 前記バイオマス灰粉粒物は、セメントクリンカ又は前記セメントクリンカを粉砕処理後のセメントに投入されるセメント混合材への一部置換用途に利用されるものとしても構わない。 The biomass ash powder granules may be used for partial replacement of cement clinker or a cement mixture to be charged into cement after crushing the cement clinker.
 特にバイオマス灰を分級後に得られた粗粉に含まれる非晶質の割合が、60質量%を超える程度に高い場合、この粗粉を細骨材の一部代替材料として利用すると、アルカリシリカ反応が生じるおそれがある。一方で、バイオマス灰を分級後に得られた粗粉は、カルシウム、硫黄、塩素、及び炭素の含有率が低く、石炭灰の組成に近いため、セメントクリンカ原料として利用した場合、従来のクリンカ原料に対する均質性が確保できる。この粗粉は、硫黄や塩素の含有率が特に低いため、セメントキルン内におけるコーチングが生成されにくく、塩素バイパスに対する負荷の増加が生じにくいという効果を有する。また、混合材として利用した場合であっても、コンクリートの品質に影響を与える硫黄、塩素、及び炭素の含有率が低く、粉砕により反応性が高められたセメント混合材又はコンクリート混和材として利用できる。 In particular, when the proportion of amorphous material contained in the coarse powder obtained after the classification of biomass ash is high to the extent of exceeding 60% by mass, if this coarse powder is used as a partial substitute material for fine aggregate, an alkaline silica reaction will occur. May occur. On the other hand, the crude powder obtained after classifying the biomass ash has a low content of calcium, sulfur, chlorine, and carbon and is close to the composition of coal ash. Uniformity can be ensured. Since this coarse powder has a particularly low content of sulfur and chlorine, it has the effect that coaching in the cement kiln is less likely to occur and the load on the chlorine bypass is less likely to increase. Further, even when it is used as a mixing material, it can be used as a cement mixing material or a concrete admixture having a low content of sulfur, chlorine, and carbon, which affect the quality of concrete, and whose reactivity is enhanced by pulverization. ..
 本発明によれば、生成されるセメント硬化物の強度低下を抑制しつつ、セメント製造の際にバイオマス灰を有効に活用することができる。 According to the present invention, it is possible to effectively utilize biomass ash during cement production while suppressing a decrease in the strength of the produced hardened cement product.
第一実施形態におけるセメント製造方法の処理フローを模式的に示す図面である。It is a figure which shows typically the processing flow of the cement manufacturing method in 1st Embodiment. 第一実施形態におけるセメント製造方法を実施するための処理システムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the processing system for carrying out the cement manufacturing method in 1st Embodiment. 検証1で利用されたバイオマス発電施設P1から得られた焼却飛灰の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the incinerator fly ash obtained from the biomass power generation facility P1 used in the verification 1. 前記処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the processing system. 第二実施形態におけるセメント製造方法の処理フローを模式的に示す図面である。It is a figure which shows typically the processing flow of the cement manufacturing method in 2nd Embodiment. 水洗工程の詳細な処理フローの一例を模式的に示す図面である。It is a figure which shows typically an example of the detailed processing flow of a water washing process. 第二実施形態におけるセメント製造方法を実施するための処理システムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the processing system for carrying out the cement manufacturing method in 2nd Embodiment. 図7に示す処理システムが備える水洗設備の構造の一例を模式的に示すブロック図である。It is a block diagram schematically showing an example of the structure of the washing equipment provided in the processing system shown in FIG. 7. 水洗工程と共に酸化工程と未燃カーボン除去工程が実行される場合の処理フローの一例を模式的に示す図面である。It is a figure which shows an example of the processing flow when the oxidation process and the unburned carbon removal process are executed together with a water washing process. 図7内の水洗設備の構造の別の一例を模式的に示すブロック図である。It is a block diagram schematically showing another example of the structure of the water washing facility in FIG. 7. 第二実施形態におけるセメント製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the cement manufacturing method in the second embodiment. 第二実施形態におけるセメント製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the cement manufacturing method in the second embodiment. 第二実施形態におけるセメント製造方法の別の処理フローを模式的に示す図面である。It is a figure which shows typically another processing flow of the cement manufacturing method in 2nd Embodiment. 第二実施形態におけるセメント製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the cement manufacturing method in the second embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法の処理フローを模式的に示す図面である。It is a figure which shows typically the process flow of the manufacturing method of a cement and a cement kneaded body in 3rd Embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法を実施するための処理システムの構成を模式的に示すブロック図である。It is a block diagram which shows typically the structure of the processing system for carrying out the manufacturing method of cement and a cement kneaded body in 3rd Embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法の別の処理フローを模式的に示す図面である。It is a drawing which shows another processing flow schematically of the manufacturing method of a cement and a cement kneaded body in 3rd Embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the method of manufacturing a cement and a cement kneaded body in a third embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法の別の処理フローを模式的に示す図面である。It is a drawing which shows another processing flow schematically of the manufacturing method of a cement and a cement kneaded body in 3rd Embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the method of manufacturing a cement and a cement kneaded body in a third embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the method of manufacturing a cement and a cement kneaded body in a third embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法の別の処理フローを模式的に示す図面である。It is a drawing which shows another processing flow schematically of the manufacturing method of a cement and a cement kneaded body in 3rd Embodiment. 第三実施形態におけるセメント及びセメント混練体の製造方法を実施するための処理システムの別構成を模式的に示すブロック図である。It is a block diagram schematically showing another configuration of the treatment system for carrying out the method of manufacturing a cement and a cement kneaded body in a third embodiment. バイオマス灰の偏光顕微鏡観察画像である。It is a polarizing microscope observation image of biomass ash.
 [バイオマス灰]
 本発明は、セメント又はセメント混練体(セメント硬化物)の製造の際にバイオマス灰を用いる技術に関する。まず、本発明が適用されるバイオマス灰について説明する。
[Biomass ash]
The present invention relates to a technique for using biomass ash in the production of cement or a cement kneaded product (hardened cement product). First, the biomass ash to which the present invention is applied will be described.
 本発明が適用されるバイオマス灰としては、広く一般にバイオマスの焼却灰であるものを含み、例えば草木竹の焼却灰や食品残渣の焼却灰を含む。バイオマス灰は、水溶性のアルカリ金属塩化物、アルカリ金属硫酸塩、アルカリ金属炭酸塩を含んでいる。バイオマス灰は、都市ごみ焼却灰や塩素バイパスダストに比べて、アルカリ金属硫酸塩、アルカリ金属炭酸塩の占める割合が多く、アルカリ塩素物濃度は低いという利点を有する。 The biomass ash to which the present invention is applied generally includes incinerator ash of biomass, and includes, for example, incinerator ash of plants and bamboo and incinerator ash of food residue. The biomass ash contains water-soluble alkali metal chloride, alkali metal sulfate, and alkali metal carbonate. Compared to municipal waste incineration ash and chlorine bypass dust, biomass ash has the advantage that the proportion of alkali metal sulfate and alkali metal carbonate is large and the concentration of alkaline chlorine is low.
 バイオマス灰は焼却灰であるので、石炭灰と同様にポゾラン反応性を有するガラス成分を含んでいる。バイオマス灰のうち、草木竹の焼却灰は、K2Oの含有率が比較的高く、カリウム(K2O)の半分以上はそのガラス相に包埋されて含まれている。従って、バイオマス灰は混合材として用いた場合の活性が高いので、セメント製造時に利用するのが好ましい。 Since the biomass ash is an incinerator ash, it contains a glass component having pozzolan reactivity like coal ash. Among the biomass ash, the incinerated ash of vegetation and bamboo has a relatively high content of K 2 O, and more than half of potassium (K 2 O) is contained in the glass phase. Therefore, since biomass ash has high activity when used as a mixed material, it is preferable to use it at the time of cement production.
 バイオマス灰のK2Oの含有率は、2質量%~10質量%であることが好ましく、3質量%~8質量%であることがより好ましく、3質量%~5質量%であることが更により好ましい。バイオマス灰のK2O含有率が2質量%未満であると、混合材として用いた場合のセメントの強度が低くなる可能性があり、また、そもそもセメントに添加する材料としての必要な量が確保できないおそれがある。一方、バイオマス灰のK2O含有率が10質量%を超えると、セメントクリンカの原料として用いた場合の使用量が制限されたり、混合材として用いた場合のアルカリ骨材反応の発生が増加するおそれがある。 The content of K 2 O in the biomass ash is preferably 2% by mass to 10% by mass, more preferably 3% by mass to 8% by mass, and further preferably 3% by mass to 5% by mass. More preferred. If the K 2 O content of the biomass ash is less than 2% by mass, the strength of the cement when used as a mixed material may be low, and the required amount as a material to be added to the cement is secured in the first place. It may not be possible. On the other hand, when the K 2 O content of biomass ash exceeds 10% by mass, the amount used as a raw material for cement clinker is limited, and the occurrence of alkaline aggregate reaction when used as a mixed material increases. There is a risk.
 バイオマス灰に含まれる全アルカリ濃度は、R2O換算(R2O=Na2O+0.658×K2O)で2質量%~11質量%が好ましく、3質量%~6質量%がより好ましい。また、バイオマス灰に含まれる硫黄酸化物(SO3)濃度は、0.5質量%~6質量%が好ましく、1質量%~5質量%がより好ましい。 The total alkali concentration contained in the biomass ash is preferably 2% by mass to 11% by mass, more preferably 3% by mass to 6% by mass in terms of R 2 O (R 2 O = Na 2 O + 0.658 × K 2 O). .. The sulfur oxide (SO 3 ) concentration contained in the biomass ash is preferably 0.5% by mass to 6% by mass, more preferably 1% by mass to 5% by mass.
 バイオマス発電所では、バイオマスと石炭との混焼を行う場合もあるが、本発明が適用されるバイオマス灰には、そのような混焼を行う場合に生じる灰も含まれる。ただし、一般に石炭を燃焼した石炭灰はK2O含有率が低くなるので、混焼時の石炭の使用量によりバイオマス灰の活性が異なる。そのため、セメント製造時の混合材として資源化する観点からは、石炭との混焼である場合、燃料中のバイオマスの比率が50質量%以上のものから得られた灰であることが好ましい。 In a biomass power plant, co-firing of biomass and coal may be carried out, and the biomass ash to which the present invention is applied includes ash generated when such co-firing is carried out. However, since coal ash obtained by burning coal generally has a low K 2 O content, the activity of biomass ash differs depending on the amount of coal used during co-firing. Therefore, from the viewpoint of recycling as a mixed material at the time of cement production, in the case of co-firing with coal, it is preferable that the ash is obtained from a fuel having a biomass ratio of 50% by mass or more.
 本発明が適用されるバイオマス灰としては、草木竹の焼却灰のなかでもパーム椰子殻を燃料として得られたパーム椰子殻灰(PKS灰)も好適に例示される。パーム椰子殻はパーム油生産の副産物であり、天然バイオマス・エネルギー産業で主に使用されている。パーム椰子殻は、灰分の少ない黄褐色の繊維状物質で、その粒径は5mm~40mm程度であり、発熱量は4000Kcal/kg程度であるため、再生可能資源を用いたエネルギー生産において、パーム椰子殻は、近年、バイオマス発電の燃料としての利用が増えている。 As the biomass ash to which the present invention is applied, palm coconut ash (PKS ash) obtained by using palm coconut husk as fuel is also preferably exemplified among the incinerated ash of vegetation and bamboo. Palm palm husks are a by-product of palm oil production and are primarily used in the natural biomass energy industry. Palm coconut shell is a yellowish brown fibrous substance with low ash content, its particle size is about 5 mm to 40 mm, and its calorific value is about 4000 Kcal / kg. Therefore, in energy production using renewable resources, palm coconut husks. In recent years, shells have been increasingly used as fuel for biomass power generation.
 一般に、バイオマス発電の燃焼炉には、ストーカ式や流動床式があるが、流動床式である循環流動床式や加圧式流動床式の燃焼炉では炉内で脱硫を行うために石灰石が投入される。そこで、そのような燃焼炉からのバイオマス灰には、カルシウム成分や硫黄成分が多く含まれており、例えばCaO含有率は、一般に5質量%~45質量%となっている。また、投入した石灰石由来のCa化合物の形態として、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)、CaSO4(石膏)等の形態が含まれる。 Generally, there are stoker type and fluidized bed type combustion furnaces for biomass power generation, but in fluidized bed type and pressurized fluidized bed type combustion furnaces, limestone is added to perform desulfurization in the furnace. Will be done. Therefore, the biomass ash from such a combustion furnace contains a large amount of calcium component and sulfur component, and for example, the CaO content is generally 5% by mass to 45% by mass. The morphology of the Ca compound derived from the added limestone includes forms such as CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaSO 4 (plaster).
 本発明が適用されるバイオマス灰のCaO含有率は、混合材として資源化した場合のセメントの強度の観点から、10質量%~40質量%であることが好ましく、15質量%~30質量%であることがより好ましい。 The CaO content of the biomass ash to which the present invention is applied is preferably 10% by mass to 40% by mass, preferably 15% by mass to 30% by mass, from the viewpoint of the strength of cement when recycled as a mixed material. It is more preferable to have.
 本発明が適用されるバイオマス灰の灰種別としては、バイオマス発電の燃焼炉等で炉底に燃え残る主灰であっても構わないし、燃焼排ガスに含まれて気体として浮遊する煤塵を集塵機により収集して得られる飛灰であっても構わない。このうち飛灰は、アルカリ金属や塩素濃度がより高い上に、水洗により塩素が分離しやすく、効率的なため好ましい。 The ash type of the biomass ash to which the present invention is applied may be the main ash that remains unburned at the bottom of the combustion furnace of biomass power generation, or soot dust that is contained in the combustion exhaust gas and floats as a gas is collected by a dust collector. It does not matter if it is the fly ash obtained by the above. Of these, fly ash is preferable because it has a higher concentration of alkali metal and chlorine, and chlorine is easily separated by washing with water, which is efficient.
 また、バイオマス灰は、乾灰であることが好ましい。一度水を噴霧されたバイオマス灰は、粒状になったり、生成した水和物に塩素が取り込まれて、分級や水洗により塩素が分離しにくい場合がある。乾灰としては、例えば、粉末X線回折法により水和物であるフリーデル氏塩、又はエトリンガイトが検出されないことが好ましい。また、乾灰としては、含水率が10質量%以下であることが好ましく、5%質量以下であることがより好ましい。または、強熱減量が10%以下であることが好ましい。含水率は、105℃で乾燥した際の質量減少率として求めることができる。また、強熱減量は、105℃で乾燥された対象物を975℃で加熱した際の質量減少率として求めることができる。 Further, the biomass ash is preferably dry ash. Biomass ash that has been sprayed with water once may become granular, or chlorine may be incorporated into the produced hydrate, making it difficult to separate chlorine by classification or washing with water. As the dry ash, for example, it is preferable that Friedel's salt or ettringite, which is a hydrate, is not detected by powder X-ray diffraction. Further, the dry ash preferably has a water content of 10% by mass or less, and more preferably 5% by mass or less. Alternatively, the ignition loss is preferably 10% or less. The water content can be determined as the mass reduction rate when dried at 105 ° C. The ignition loss can be determined as the mass loss rate when the object dried at 105 ° C. is heated at 975 ° C.
 また、強熱減量から炭酸カルシウムによる脱炭酸量を差し引いて、バイオマス灰中の水和物の構造水量を水和物生成量として求めてもよい。当該水和物生成量は、5%以下が好ましく、更に3%以下であることが好ましい。 Alternatively, the amount of structural water of the hydrate in the biomass ash may be obtained as the amount of hydrate produced by subtracting the amount of decarbonization by calcium carbonate from the loss on ignition. The amount of hydrate produced is preferably 5% or less, more preferably 3% or less.
 バイオマス灰の粒度は、例えば、セメントの強度がより高くなる、メジアン径(D50)が200μm以下であることが好ましく、150μm以下であることがより好ましく、90μm以下であることが更に好ましい。粒度は、レーザー回折・散乱式の粒度分布測定装置が使用でき、例えば、マイクロトラック・ベル社製 MW3300EXII にてエタノールを分散媒とし、1分間の超音波分散後に測定すること等により測定することができる。なお、D50値とは、体積基準の粒度分布において累積50%での粒径を意味する。 The particle size of the biomass ash is, for example, preferably 200 μm or less, more preferably 150 μm or less, and further preferably 90 μm or less, which increases the strength of the cement. The particle size can be measured by using a laser diffraction / scattering type particle size distribution measuring device, for example, by using ethanol as a dispersion medium with MW3300EXII manufactured by Microtrac Bell, and measuring after ultrasonic dispersion for 1 minute. can. The D 50 value means the particle size at a cumulative 50% in the volume-based particle size distribution.
 [第一実施形態]
 本発明に係るセメント製造方法、セメント混練体の製造方法、及びバイオマス灰粉粒物の第一実施形態について説明する。図1は、本実施形態におけるセメント製造方法の処理フローを模式的に示す図面である。図2は、本実施形態におけるセメント製造方法を実施するための処理システムの構成を模式的に示すブロック図である。
[First Embodiment]
The cement manufacturing method, the cement kneaded body manufacturing method, and the first embodiment of the biomass ash powder granules according to the present invention will be described. FIG. 1 is a drawing schematically showing a processing flow of the cement manufacturing method in the present embodiment. FIG. 2 is a block diagram schematically showing a configuration of a treatment system for implementing the cement manufacturing method in the present embodiment.
 図2に示す処理システム1は、セメントクリンカ原料Y1が貯槽された原料槽3と、バイオマス灰B1が貯槽された粉体貯槽5と、クリンカ製造設備10と、分級設備20と、第一粉砕設備30とを備える。クリンカ製造設備10は、セメントクリンカ原料Y1を焼成してセメントクリンカCn1を生成する設備であり、焼成用のセメントキルン12と、セメントキルン12に投入する前にセメントクリンカ原料Y1を事前に加熱するプレヒータ11と、焼成後のセメントクリンカCn1を冷却するクリンカクーラ13とを備える。本実施形態における処理システム1は、「セメント製造システム」と呼ぶこともできる。 The processing system 1 shown in FIG. 2 includes a raw material tank 3 in which the cement clinker raw material Y1 is stored, a powder storage tank 5 in which the biomass ash B1 is stored, a clinker production facility 10, a classification facility 20, and a first crushing facility. 30 and. The clinker manufacturing facility 10 is a facility for firing the cement clinker raw material Y1 to generate the cement clinker Cn1, and is a preheater that preheats the cement clinker 12 for firing and the cement clinker raw material Y1 before being charged into the cement kiln 12. 11 and a clinker cooler 13 for cooling the cement clinker Cn1 after firing. The treatment system 1 in the present embodiment can also be referred to as a "cement manufacturing system".
 図1に示すように、本実施形態のセメント製造方法は、バイオマス灰B1を分級する工程S10と、分級された後のバイオマス灰B1をセメント原料等に投入又は添加する工程S20とを有する。なお、以下では、投入又は添加工程を「投入」工程と総称する。 As shown in FIG. 1, the cement manufacturing method of the present embodiment includes a step S10 for classifying the biomass ash B1 and a step S20 for adding or adding the classified biomass ash B1 to a cement raw material or the like. In the following, the charging or adding process is collectively referred to as a “loading” process.
 (分級工程S10)
 粉体貯槽5に貯槽されたバイオマス灰B1は、分級設備20によって、所定の分級点を基準として粒度の粗い粗粉B1Cと、粒度の細かい細粉B1Fとに分級される。分級工程S10において定められる分級点は、好ましくは20μm~100μmであり、より好ましくは30μm~90μmであり、特に好ましくは38μm~75μm以下である。
(Classification step S10)
The biomass ash B1 stored in the powder storage tank 5 is classified into coarse powder B1C having a coarse particle size and fine powder B1F having a fine particle size based on a predetermined classification point by the classification equipment 20. The classification point defined in the classification step S10 is preferably 20 μm to 100 μm, more preferably 30 μm to 90 μm, and particularly preferably 38 μm to 75 μm or less.
 分級設備20としては、バイオマス灰B1を上述したようなμmオーダの分級点で分級できる装置であれば特に限定されず、例えば、ふるい、慣性分級装置、遠心分級装置、重力式分級装置等が好適に使用でき、特に分級精度の観点から、サイクロン型エアセパレータやふるい分け装置等の使用が好ましい。ただし、後述する水洗工程S30が行われる場合には、湿式で分級を行うと効率的である。 The classification equipment 20 is not particularly limited as long as it can classify the biomass ash B1 at the classification points on the order of μm as described above, and for example, a sieve, an inertial classification device, a centrifugal classification device, a gravity type classification device, or the like is suitable. From the viewpoint of classification accuracy, it is preferable to use a cyclone type air separator, a sieving device, or the like. However, when the water washing step S30 described later is performed, it is efficient to perform the classification in a wet manner.
 流動床式である焼却炉には、流動媒体としての石英を主成分とした砂と脱硫用の石灰石が投入される。そのような焼却炉からのバイオマス灰の飛灰には、比較的粗粒な溶融固化や凝集したガラスや砂由来物と、比較的細粒な揮発したアルカリ金属塩や前述の石灰石由来物、細かいガラス粒子とが含まれる。そこで、バイオマス灰を粒度分布を頻度で表した場合の、細粒側の山と粗粒側の山の間を分級点とすると、塩素分、硫黄分、カルシウム分を効率よく分離することができる。 In the fluidized bed type incinerator, sand mainly composed of quartz as a fluidized medium and limestone for desulfurization are put into the incinerator. The fly ash of biomass ash from such an incinerator includes relatively coarse-grained melt-solidified and aggregated glass and sand-derived substances, relatively fine-grained volatile alkali metal salts, and the above-mentioned limestone-derived substances, and fine particles. Includes glass particles. Therefore, when the particle size distribution of biomass ash is expressed by frequency, if the classification point is set between the peaks on the fine grain side and the peaks on the coarse grain side, chlorine, sulfur, and calcium can be efficiently separated. ..
 図3は、後述する検証1で利用される、バイオマス発電施設P1から得られた焼却飛灰の粒度分布を示すグラフである。図3のグラフによれば、粒度が相対的に細かい細粉側と、粒度が相対的に粗い粗粉側とに、それぞれ頻度値の高い山が現れていることが確認される。細粉側は、石灰類、アルカリ金属塩に由来するものであり、粗粉側は、石英や長石に由来するものであると考えられる。よって、これらの山の間の領域(谷の領域)の粒度を分級点として分級することで、塩素分、硫黄分、カルシウム分を効率よく分離できることが分かる。流動床式である焼却炉には、ボイラ、空気予熱器及び高温ガス流路等に沈降した焼却灰を回収する設備や、サイクロンやバグフィルタ等の焼却灰を回収する設備が備えられている場合がある。これらの回収設備で回収された焼却灰の粒度は異なることから、これらを分別回収することで分級装置に代えることもできる。 FIG. 3 is a graph showing the particle size distribution of incinerated fly ash obtained from the biomass power generation facility P1 used in the verification 1 described later. According to the graph of FIG. 3, it is confirmed that peaks having high frequency values appear on the fine powder side having a relatively fine particle size and the coarse powder side having a relatively coarse particle size. It is considered that the fine powder side is derived from limes and alkali metal salts, and the coarse powder side is derived from quartz and feldspar. Therefore, it can be seen that chlorine, sulfur, and calcium can be efficiently separated by classifying the particle size of the region between these mountains (the region of the valley) as the classification point. When the incinerator that is a fluidized bed type is equipped with equipment for recovering incinerator ash that has settled in boilers, air preheaters, high-temperature gas channels, etc., and equipment for recovering incinerator ash such as cyclones and bag filters. There is. Since the particle size of the incinerator ash collected by these collection facilities is different, it is possible to replace them with a classification device by separating and collecting them.
 分級設備20には、バイオマス灰B1の貯槽が付設されていてもよい。更に、この貯槽からバイオマス灰B1を定量的に分級設備20に供給するための供給装置が付設されていてもよい。これらの貯槽や供給装置は、受入れたバイオマス灰B1の状態に応じて適宜に使用するようにしてもよい。 The classification equipment 20 may be equipped with a storage tank for biomass ash B1. Further, a supply device for quantitatively supplying the biomass ash B1 from this storage tank to the classification facility 20 may be attached. These storage tanks and supply devices may be appropriately used depending on the state of the received biomass ash B1.
 分級工程S10における分級の目安としては、第一に分級後に得られる粗粉B1Cの粒度が挙げられる。具体的には、分級後に得られる粗粉B1Cの粒度のD10値が35μm以上となるように、分級工程S10において分級される。より好ましくは、分級後の粗粉B1CのD10値が50μm~115μmである。 As a guideline for classification in the classification step S10, first, the particle size of the coarse powder B1C obtained after classification can be mentioned. Specifically, the coarse powder B1C obtained after the classification is classified in the classification step S10 so that the D10 value of the particle size is 35 μm or more. More preferably, the D10 value of the crude powder B1C after classification is 50 μm to 115 μm.
 粗粉B1Cの粒度のメジアン値(D50)は、好ましくは100μm~300μmであり、より好ましくは150μm~250μmであり、特に好ましくは175μm~200μmである。また、粗粉B1Cの粒度のD90値は、好ましくは80μm~400μmである。 The median value (D50) of the particle size of the coarse powder B1C is preferably 100 μm to 300 μm, more preferably 150 μm to 250 μm, and particularly preferably 175 μm to 200 μm. The D90 value of the particle size of the coarse powder B1C is preferably 80 μm to 400 μm.
 上記の粒度分布を示す粗粉B1Cによれば、典型的には塩素(Cl)の含有率が0.2質量%以下にまで低減される。好ましくは、粗粉B1Cの塩素の含有率は0.01質量%~0.1質量%であり、更に好ましくは0.01質量%~0.05質量%である。 According to the coarse powder B1C showing the above particle size distribution, the chlorine (Cl) content is typically reduced to 0.2% by mass or less. The chlorine content of the crude powder B1C is preferably 0.01% by mass to 0.1% by mass, and more preferably 0.01% by mass to 0.05% by mass.
 なお、粗粉B1Cに対する細粉B1Fの塩素濃度比(塩素含有率の比)は、4以上であることが好ましく、8以上であることがより好ましく、12以上であることが更に好ましい。細粉B1Fの塩素の含有率は、例えば典型的には0.2質量%~2質量%となり、より典型的には0.3質量%~1.5質量%となる。すなわちこの分級工程S10によって、バイオマス灰B1(原灰)が、相対的に塩素の含有率が低い粗粉B1Cと相対的に塩素の含有率が高い細粉B1Fとに分離される。 The chlorine concentration ratio (ratio of chlorine content) of the fine powder B1F to the coarse powder B1C is preferably 4 or more, more preferably 8 or more, and further preferably 12 or more. The chlorine content of the fine powder B1F is, for example, typically 0.2% by mass to 2% by mass, and more typically 0.3% by mass to 1.5% by mass. That is, by this classification step S10, the biomass ash B1 (raw ash) is separated into a coarse powder B1C having a relatively low chlorine content and a fine powder B1F having a relatively high chlorine content.
 分級工程S10で得られる細粉B1Fの活性度指数は、バイオマス灰(原灰)B1より高い値となり、典型的には7日で70%以上、28日で65%以上となり、より典型的には7日で75%以上、28日で70%以上となる。バイオマス灰B1(B1C,B1F)に含まれる活性度指数については、周知の方法で測定することができ、例えば、JISA 6201:2015「コンクリート用フライアッシュ」に準拠した方法が好ましく例示される。 The activity index of the fine powder B1F obtained in the classification step S10 is higher than that of biomass ash (raw ash) B1, typically 70% or more in 7 days, 65% or more in 28 days, and more typically. Will be 75% or more in 7 days and 70% or more in 28 days. The activity index contained in the biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, a method based on JIS A 6201: 2015 “Fly ash for concrete” is preferably exemplified.
 細粉B1Fの収率は、10質量%~80質量%であることが好ましく、20質量%~70質量%であることがより好ましく、30質量%~60質量%であることが更に好ましい。細粉B1Fの収率は、分級工程S10の実行前のバイオマス灰B1の全質量に対する、得られた細粉B1Fの全質量の割合として構わない。一方、粗粉B1Cの収率は、20質量%~90質量%であることが好ましく、30質量%~80質量%であることがより好ましく、40質量%~70質量%であることが更に好ましい。 The yield of the fine powder B1F is preferably 10% by mass to 80% by mass, more preferably 20% by mass to 70% by mass, and further preferably 30% by mass to 60% by mass. The yield of the fine powder B1F may be the ratio of the total mass of the obtained fine powder B1F to the total mass of the biomass ash B1 before the execution of the classification step S10. On the other hand, the yield of the crude powder B1C is preferably 20% by mass to 90% by mass, more preferably 30% by mass to 80% by mass, and further preferably 40% by mass to 70% by mass. ..
 粗粉B1Cに対する細粉B1Fの全アルカリ濃度比は、R2O換算(R2O=Na2O+0.658×K2O)で1.05以上であることが好ましく、1.1以上であることがより好ましく、1.2以上であることが更に好ましい。細粉B1Fの全アルカリ濃度は、例えば典型的には2質量%~10質量%であり、より典型的には3質量%~8質量%である。一方、粗粉B1Cの全アルカリ濃度は、典型的には0.5質量%~6質量%にまで低減され、より典型的には2質量%~5質量%にまで低減される。バイオマス灰B1(B1C,B1F)に含まれる全アルカリ濃度については、周知の方法で測定することができ、例えば、湿式定量分析、蛍光X線装置を用いた検量線等が好ましく例示される。塩素、硫黄酸化物、酸化カルシウム等の濃度の測定に際しても、同様の方法が利用できる。 The total alkali concentration ratio of the fine powder B1F to the coarse powder B1C is preferably 1.05 or more, preferably 1.1 or more in terms of R 2 O (R 2 O = Na 2 O + 0.658 × K 2 O). More preferably, it is more preferably 1.2 or more. The total alkali concentration of the fine powder B1F is, for example, typically 2% by mass to 10% by mass, and more typically 3% by mass to 8% by mass. On the other hand, the total alkali concentration of the crude powder B1C is typically reduced to 0.5% by mass to 6% by mass, and more typically to 2% by mass to 5% by mass. The total alkali concentration contained in the biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, wet quantitative analysis, calibration curve using a fluorescent X-ray apparatus, and the like are preferably exemplified. A similar method can be used for measuring the concentrations of chlorine, sulfur oxides, calcium oxide and the like.
 粗粉B1Cに対する細粉B1Fの硫黄酸化物(SO3)の含有率の比は、5以上であることが好ましく、10以上であることがより好ましく、20以上であることが更に好ましい。細粉B1Fの硫黄酸化物の含有率は、例えば典型的には1質量%~6質量%となり、より典型的には2質量%~5質量%となる。一方、粗粉B1Cの硫黄酸化物の含有率は、典型的には1質量%以下にまで低減され、より好ましくは0.5質量%以下であり、特に好ましくは0.2質量%以下である。 The ratio of the sulfur oxide (SO 3 ) content of the fine powder B1F to the coarse powder B1C is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more. The sulfur oxide content of the fine powder B1F is, for example, typically 1% by mass to 6% by mass, and more typically 2% by mass to 5% by mass. On the other hand, the sulfur oxide content of the crude powder B1C is typically reduced to 1% by mass or less, more preferably 0.5% by mass or less, and particularly preferably 0.2% by mass or less. ..
 粗粉B1Cに対する細粉B1Fの酸化カルシウム濃度比は、1.5以上であることが好ましく、2以上であることがより好ましく、3以上であることが更に好ましい。細粉B1Fの酸化カルシウム濃度は、例えば典型的には8質量%~40質量%となり、より典型的には15質量%~35質量%となる。一方、粗粉B1Cの酸化カルシウム濃度は、典型的には3質量%~15質量%にまで低減され、より典型的には5質量%~10質量%にまで低減される。 The calcium oxide concentration ratio of the fine powder B1F to the coarse powder B1C is preferably 1.5 or more, more preferably 2 or more, and further preferably 3 or more. The calcium oxide concentration of the fine powder B1F is, for example, typically 8% by mass to 40% by mass, and more typically 15% by mass to 35% by mass. On the other hand, the calcium oxide concentration of the crude powder B1C is typically reduced to 3% by mass to 15% by mass, and more typically reduced to 5% by mass to 10% by mass.
 粗粉B1Cの強熱減量は、3質量%以下が好ましく、2質量%以下が特に好ましい。一方、細粉B1Fの強熱減量は、典型的には、5質量%~15質量%であり、より典型的には、5質量%~10質量%である。すなわち、この分級工程S10によって、相対的に強熱減量が低い粗粉B1Cと、相対的に強熱減量が高い細粉B1Fとに分離される。バイオマス灰B1(B1C,B1F)の強熱減量の測定方法は、周知の方法で測定することができ、例えば、JIS R 5202「セメントの化学分析方法」に準拠した方法等が好ましく例示される。 The ignition loss of the crude powder B1C is preferably 3% by mass or less, and particularly preferably 2% by mass or less. On the other hand, the ignition loss of the fine powder B1F is typically 5% by mass to 15% by mass, and more typically 5% by mass to 10% by mass. That is, by this classification step S10, the coarse powder B1C having a relatively low ignition loss and the fine powder B1F having a relatively high ignition loss are separated. The method for measuring the ignition loss of biomass ash B1 (B1C, B1F) can be measured by a well-known method, and for example, a method based on JIS R5202 "Chemical analysis method for cement" is preferably exemplified.
 この分級工程S10が、工程(a)に対応する。 This classification step S10 corresponds to the step (a).
 (投入工程S20)
 分級工程S10で得られた粗粉B1Cは、セメントクリンカの原料としてや、セメントクリンカ又はセメントに混合材として投入(添加)される。図2の例では、粗粉B1Cが、クリンカ製造設備10に投入される場合と、クリンカ製造設備10から得られるセメントクリンカCn1を必要に応じて石膏と共に混合して粉砕する第一粉砕設備30に投入される場合が図示されている。後者の場合、粗粉B1Cに対してセメントクリンカCn1と共に粉砕処理が行われることで、混合セメントが生成される。その際、必要に応じて散水や粉砕助剤が添加される。ただし、粗粉B1Cは、クリンカ製造設備10と第一粉砕設備30のいずれか一方に投入されるものとしても構わない。
(Injection step S20)
The crude powder B1C obtained in the classification step S10 is added (added) as a raw material for cement clinker or as a mixed material to cement clinker or cement. In the example of FIG. 2, the coarse powder B1C is charged into the clinker manufacturing facility 10, and the cement clinker Cn1 obtained from the clinker manufacturing facility 10 is mixed with gypsum as needed and crushed into the first crushing facility 30. The case of being thrown in is illustrated. In the latter case, the coarse powder B1C is pulverized together with the cement clinker Cn1 to produce mixed cement. At that time, watering and crushing aids are added as needed. However, the coarse powder B1C may be charged into either the clinker production facility 10 or the first crushing facility 30.
 第一粉砕設備30としては、チューブミル等の仕上げ工程で利用される一般的なミルが利用できる。ミルは仕上げ粉砕機とも呼ばれ、円筒状のドラムの中で鋼鉄のボールと、セメントクリンカCn1、及び必要に応じて付加される石膏がドラムの回転によって互いに衝突しながら粉砕される。石膏を使用する場合、その石膏は、特に限定されるものではなく、例えば、天然二水石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏等が例示できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the first crushing equipment 30, a general mill used in the finishing process such as a tube mill can be used. The mill is also called a finish crusher, and in a cylindrical drum, a steel ball, cement clinker Cn1, and gypsum added as needed are crushed while colliding with each other by the rotation of the drum. When gypsum is used, the gypsum is not particularly limited, and examples thereof include natural dihydrate gypsum, flue gas desulfurized gypsum, phosphoric acid gypsum, titanium gypsum, and phosphoric acid gypsum. These may be used alone or in combination of two or more.
 粗粉B1Cは、セメント原料の一部と置換するものであり、セメント原料の質量に対して0.5質量%~30質量%添加することが好ましい。また、石膏は、SO3換算で好ましくは1.5質量%~5.0質量%添加することが、セメントの強度発現性及び流動性を向上する上で好ましい。 The crude powder B1C replaces a part of the cement raw material, and it is preferable to add 0.5% by mass to 30% by mass with respect to the mass of the cement raw material. Further, it is preferable to add gypsum in an SO 3 equivalent of 1.5% by mass to 5.0% by mass in order to improve the strength development and fluidity of the cement.
 別の方法として、分級工程S10で得られた粗粉B1Cをクリンカクーラ13に直接投入しても構わない。投入方法としては、クリンカクーラ13内の所望の温度の位置に、クリンカクーラ13の上部から落下させる方法が挙げられる。投入量は、セメントの質量に対して0.5質量%~20質量%程度となるように設定されるのが好ましい。なお、クリンカクーラ13として、エアクエンチングクーラーを使用すれば、クリンカクーラ13内の所定の位置に粗粉B1Cを投入できるので、好適である。 As another method, the coarse powder B1C obtained in the classification step S10 may be directly charged into the clinker cooler 13. Examples of the charging method include a method of dropping from the upper part of the clinker cooler 13 at a position of a desired temperature in the clinker cooler 13. The input amount is preferably set to be about 0.5% by mass to 20% by mass with respect to the mass of the cement. If an air-quenching cooler is used as the clinker cooler 13, the coarse powder B1C can be charged at a predetermined position in the clinker cooler 13, which is preferable.
 粗粉B1Cを水洗してからクリンカクーラ13に投入する場合、セメントクリンカCn1の製造とは直接関係のない熱エネルギーを利用して水分を蒸発除去することができ好都合である。また、クリンカクーラ13内に粉塵が大量に発生することを防ぐ意味から、粗粉B1Cは含水率を好ましくは50質量%以下とし、塊状か粒状のまま投入することが好ましい。 When the coarse powder B1C is washed with water and then put into the clinker cooler 13, it is convenient because the water can be evaporated and removed by using heat energy which is not directly related to the production of the cement clinker Cn1. Further, in order to prevent a large amount of dust from being generated in the clinker cooler 13, the coarse powder B1C preferably has a water content of 50% by mass or less, and is preferably added in the form of lumps or granules.
 分級工程S10後に得られた粗粉B1Cは、アルカリ金属濃度、カルシウム濃度、塩素濃度、硫黄濃度についても細粉B1Fより低減される。このため、図2に示すように、セメントクリンカ原料Y1と共にクリンカ製造設備10で利用することができる。例えばクリンカ製造設備10における、セメントクリンカ原料Y1の調合のための混合機への投入、プレヒータ11や仮焼炉への投入、セメントキルン12の窯尻や窯前への投入等が可能であり、様々なセメント製造段階に投入可能なセメントクリンカCn1の原料として好適に使用され得る。 The crude powder B1C obtained after the classification step S10 is also reduced in alkali metal concentration, calcium concentration, chlorine concentration, and sulfur concentration as compared with the fine powder B1F. Therefore, as shown in FIG. 2, it can be used in the clinker manufacturing facility 10 together with the cement clinker raw material Y1. For example, in the clinker manufacturing facility 10, it is possible to put the cement clinker raw material Y1 into a mixer for preparation, put it into a preheater 11 or a calcination furnace, put the cement kiln 12 into a kiln butt or a kiln front, and the like. It can be suitably used as a raw material for cement clinker Cn1 that can be put into various cement manufacturing stages.
 別の例として、図4に図示されるように、処理システム1が、セメントクリンカCn1を粉砕するための第一粉砕設備30とは別の粉砕設備(第二粉砕設備35)を備えるものとしても構わない。分級設備20において分級された粗粉B1Cは、第二粉砕設備35において粉砕された後、クリンカクーラ13や第一粉砕設備30に投入されるものとしても構わない。なお、第二粉砕設備35は、第一粉砕設備30と同様の設備で実現できる。第二粉砕設備35において粗粉B1Cを粉砕する工程が、工程(c)に対応する。粉砕により粒度が細かくされた状態でセメントクリンカやセメントに投入されることで、セメントの強度が高められる。 As another example, as shown in FIG. 4, even if the processing system 1 is provided with a crushing facility (second crushing facility 35) different from the first crushing facility 30 for crushing the cement clinker Cn1. I do not care. The coarse powder B1C classified in the classification facility 20 may be crushed in the second crushing facility 35 and then charged into the clinker cooler 13 or the first crushing facility 30. The second crushing equipment 35 can be realized by the same equipment as the first crushing equipment 30. The step of crushing the coarse powder B1C in the second crushing facility 35 corresponds to the step (c). The strength of cement is enhanced by putting it into a cement clinker or cement in a state where the particle size is made finer by crushing.
 更に、この粉砕後の粗粉B1Cは、第一粉砕設備30においてセメントクリンカCn1が粉砕された後に得られるセメントに対して混合されても構わない。この混合のタイミングは、第一粉砕設備30の後段においてセメントが貯槽されるセメントサイロまでの経路上であっても構わないし、セメントサイロ内であっても構わないし、更には、セメントを利用する際のコンクリート練り混ぜ工程時であっても構わない。粗粉B1Cは、塩素の含有率が低いため、粗粉B1Cの混合のタイミングに関わらず、バイオマス灰B1を利用しながらもセメント硬化物の塩素含有率の上昇を抑制する効果が得られる。 Further, the coarse powder B1C after crushing may be mixed with the cement obtained after the cement clinker Cn1 is crushed in the first crushing equipment 30. The timing of this mixing may be on the route to the cement silo in which the cement is stored in the subsequent stage of the first crushing facility 30, may be in the cement silo, and further, when the cement is used. It does not matter even during the cement mixing process. Since the crude powder B1C has a low chlorine content, the effect of suppressing an increase in the chlorine content of the hardened cement product can be obtained while using the biomass ash B1 regardless of the timing of mixing the crude powder B1C.
 粗粉B1Cは、ポゾラン反応が活性化してセメント硬化物の強度を高めるために、ブレーン比表面積が4000cm2/g以上となるように粉砕するのが好ましく、4500cm2/g以上となるように粉砕することが特に好ましい。また、粉砕後の粗粉B1Cの活性度指数は、バイオマス灰(原灰)B1より高い値となり、典型的には7日で65%以上、28日で70%以上となり、より典型的には7日で68%以上、28日で70%以上となる。 The crude powder B1C is preferably pulverized so that the specific surface area of the brain is 4000 cm 2 / g or more in order to activate the pozzolan reaction and increase the strength of the hardened cement product. It is particularly preferable to do so. The activity index of the coarse powder B1C after pulverization is higher than that of biomass ash (raw ash) B1, typically 65% or more in 7 days, 70% or more in 28 days, and more typically. It will be 68% or more in 7 days and 70% or more in 28 days.
 また、上述したように、分級工程S10によって粗粉B1Cは塩素濃度が大きく低減され、更に硫黄分も大きく低減されるため、プレヒータや窯尻、キルンへの低融点物質の付着による閉塞が抑制される。また、第二粉砕設備35で粉砕されることで反応性が高められた状態の粗粉B1Cが、セメント混合材として利用されても構わない。 Further, as described above, the chlorine concentration of the crude powder B1C is greatly reduced by the classification step S10, and the sulfur content is also greatly reduced, so that clogging due to the adhesion of the low melting point substance to the preheater, the kiln bottom, and the kiln is suppressed. To. Further, the coarse powder B1C in a state where the reactivity is enhanced by being crushed by the second crushing equipment 35 may be used as a cement mixture.
 上記のように、分級後の粗粉B1C、又はこれに対して粉砕処理が行われた後の粗粉B1Cをセメント製造過程に投入する工程S20が、工程(b)に対応する。 As described above, the step S20 in which the coarse powder B1C after classification or the coarse powder B1C after pulverization treatment is put into the cement manufacturing process corresponds to the step (b).
 なお、本実施形態の処理システム1では、分級設備20において分級された細粉B1Fについては、その利用が制限されない。例えば、後述するように、粗粉B1Cと同様に、セメントクリンカの原料として、又はセメントクリンカやセメントに混合材として投入(添加)されるものとしても構わないし、肥料や細骨材として利用されるものとしても構わない。特に、細粉B1Fは、粗粉B1Cと比べて粒度が細かく高い反応性を示すため、この細粉B1Fを回収してセメント混合材として利用することで、ポゾラン反応が活性化してセメント硬化物の強度を高める効果が期待される。得られた細粉B1Fを粗粉B1Cと同じ個所に同じ量比でそのまま投入するとバイオマス灰の原粉(原灰B1)を投入することと同じことになる。したがって、分級後のバイオマス灰(すなわち、粗粉B1Cや細粉B1F)の化学組成等の特性が異なることを利用して、異なる箇所に投入したり、量比を変えたり、水洗等の処理を行ってから投入するものとしてよい。 In the processing system 1 of the present embodiment, the use of the fine powder B1F classified in the classification facility 20 is not restricted. For example, as will be described later, like the coarse powder B1C, it may be used as a raw material for cement clinker, or may be added (added) to cement clinker or cement as a mixed material, and may be used as fertilizer or fine aggregate. It doesn't matter if it is a thing. In particular, the fine powder B1F has a finer particle size and exhibits higher reactivity than the coarse powder B1C. Therefore, by recovering the fine powder B1F and using it as a cement mixture, the pozzolan reaction is activated and the cement cured product is obtained. The effect of increasing the strength is expected. When the obtained fine powder B1F is directly added to the same place as the coarse powder B1C at the same amount ratio, it is the same as adding the raw powder of biomass ash (raw ash B1). Therefore, taking advantage of the different characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder B1C and fine powder B1F), it is possible to put it in different places, change the amount ratio, wash it with water, etc. It may be put in after going.
 [第二実施形態]
 セメント製造方法及びセメント製造システムの第二実施形態について、第一実施形態と異なる箇所を中心に説明する。図5は、本実施形態におけるセメント製造方法の処理フローを模式的に示す図面である。図6は、後述する水洗工程S30の詳細な処理フローの一例を模式的に示す図面である。図7は、本実施形態のセメント製造方法を実施する処理システム1の構造を、図2にならって模式的に示すブロック図である。
[Second Embodiment]
The cement manufacturing method and the second embodiment of the cement manufacturing system will be described focusing on the parts different from the first embodiment. FIG. 5 is a drawing schematically showing a processing flow of the cement manufacturing method in the present embodiment. FIG. 6 is a drawing schematically showing an example of a detailed processing flow of the water washing step S30 described later. FIG. 7 is a block diagram schematically showing the structure of the processing system 1 that implements the cement manufacturing method of the present embodiment, following FIG. 2.
 図7に示す本実施形態の処理システム1は、第一実施形態と比較して、水洗設備40を備える点が異なる。水洗設備40は、バイオマス灰B1を水洗する設備であり、バイオマス灰B1に含まれる塩素等のセメント忌避成分の濃度を低下する目的で設けられている。水洗設備40の詳細な構造の一例については、図8を参照して後述される。本実施形態における処理システム1は、第一実施形態と同様に、「セメント製造システム」と呼ぶこともできる。 The treatment system 1 of the present embodiment shown in FIG. 7 is different from the first embodiment in that it is provided with a water washing facility 40. The water washing facility 40 is a facility for washing the biomass ash B1 with water, and is provided for the purpose of reducing the concentration of cement repellent components such as chlorine contained in the biomass ash B1. An example of the detailed structure of the water washing facility 40 will be described later with reference to FIG. The treatment system 1 in the present embodiment can also be referred to as a "cement manufacturing system" as in the first embodiment.
 なお、図5及び図7によれば、本実施形態では、分級工程S10後に得られた細粉B1Fに対してのみ水洗工程S30が行われる場合が示されている。これは、第一実施形態で上述したように、分級工程S10によってバイオマス灰(原灰)B1が分級されることで、粗粉B1Cについては塩素含有率が低下される一方、細粉B1Fについては塩素含有率が相対的に高くなっているためである。しかし、後述するように、粗粉B1Cに対しても水洗工程S30が実行されても構わないし、分級工程S10と共に水洗工程S30が実行されても構わない。分級工程S10と水洗工程S30とが同時に実行される場合には、湿式による分級が行われるものとして構わない。 Note that, according to FIGS. 5 and 7, in the present embodiment, it is shown that the water washing step S30 is performed only on the fine powder B1F obtained after the classification step S10. This is because, as described above in the first embodiment, the biomass ash (raw ash) B1 is classified by the classification step S10, so that the chlorine content of the crude powder B1C is lowered, while that of the fine powder B1F is reduced. This is because the chlorine content is relatively high. However, as will be described later, the water washing step S30 may be executed for the coarse powder B1C, or the water washing step S30 may be executed together with the classification step S10. When the classification step S10 and the water washing step S30 are executed at the same time, the wet classification may be performed.
 (水洗工程S30)
 本実施形態では、分級工程S10でバイオマス灰(原灰)B1が分級されることで得られた細粉B1Fに対し、水洗設備40によって水洗処理が施される。より詳細には、図6に示すように、細粉B1Fをスラリー化する工程S31と、スラリーを水洗する工程S32と、脱水する工程S33とが実行される。
(Water washing step S30)
In the present embodiment, the fine powder B1F obtained by classifying the biomass ash (raw ash) B1 in the classification step S10 is subjected to a water washing treatment by the water washing equipment 40. More specifically, as shown in FIG. 6, a step S31 for slurrying the fine powder B1F, a step S32 for washing the slurry with water, and a step S33 for dehydrating are executed.
 一例として、図8に示す水洗設備40には、分級後に得られた細粉B1Fに水W2を加えてスラリーLr1にして水洗するための粉体溶解槽43と、水洗後に粉体溶解槽43から排出されたスラリーLr2を脱水するための固液分離装置46と、固液分離装置46で分離された脱水物Ck1を搬送するための搬送装置47を備えている。 As an example, in the water washing facility 40 shown in FIG. 8, a powder dissolving tank 43 for adding water W2 to the fine powder B1F obtained after classification to form a slurry Lr1 and washing with water, and a powder dissolving tank 43 after washing with water It is provided with a solid-liquid separation device 46 for dehydrating the discharged slurry Lr2 and a transfer device 47 for transporting the dehydrated product Ck1 separated by the solid-liquid separation device 46.
 更に、図8に示す水洗設備40の例では、水W2を供給するための液体供給装置42が付設されている。また、細粉B1Fと水W2の混合、及びその混合によって生成されたスラリーLr1の攪拌のために、攪拌翼を備えたスラリー攪拌装置44が付設されている。 Further, in the example of the water washing facility 40 shown in FIG. 8, a liquid supply device 42 for supplying water W2 is attached. Further, a slurry stirring device 44 equipped with a stirring blade is attached for mixing the fine powder B1F and water W2 and stirring the slurry Lr1 generated by the mixing.
 粉体溶解槽43では、細粉B1Fと水W2を混合撹拌してスラリーLr1を生成するスラリー化工程S31、及びそのスラリーLr1中で塩素等のセメント忌避成分を液相に溶出させる水洗工程S32が行われる。そのためのスラリー攪拌装置44としては、例えば、パドル型やスクリュー型の一般的な撹拌装置を使用できる。 In the powder dissolution tank 43, a slurrying step S31 for mixing and stirring fine powder B1F and water W2 to generate a slurry Lr1 and a water washing step S32 for eluting a cement repellent component such as chlorine into the liquid phase in the slurry Lr1 are performed. Will be done. As the slurry agitator 44 for that purpose, for example, a paddle type or screw type general agitator can be used.
 スラリー化工程S31における、細粉B1Fと水W2との質量比(W2/B1F)は、2~10が好ましく、3~7がより好ましく、4~5が特に好ましい。質量比(W2/B1F)が2よりも小さいと、細粉B1Fからの塩素等の水溶性成分の溶出が不十分となる等、改質効果が不十分となる場合がある。また、質量比(W2/B1F)が10よりも大きいと、排水W4の量が多くなってしまう。 The mass ratio (W2 / B1F) of the fine powder B1F and water W2 in the slurrying step S31 is preferably 2 to 10, more preferably 3 to 7, and particularly preferably 4 to 5. If the mass ratio (W2 / B1F) is smaller than 2, the reforming effect may be insufficient, such as insufficient elution of water-soluble components such as chlorine from the fine powder B1F. Further, if the mass ratio (W2 / B1F) is larger than 10, the amount of wastewater W4 becomes large.
 水洗工程S32は、スラリーLr1を所定時間にわたって静置又は攪拌することによりなされる。これにより、細粉B1Fの溶解性成分がスラリーの液相に溶出した状態のスラリーLr2が得られる。 The water washing step S32 is performed by allowing the slurry Lr1 to stand or stir for a predetermined time. As a result, slurry Lr2 in which the soluble component of the fine powder B1F is eluted in the liquid phase of the slurry can be obtained.
 水洗工程S32の所要時間は、細粉B1Fを水W2で十分に改質するため、30分間以上とすることが好ましく、45分間以上がより好ましい。水洗工程S32の実行時の温度は高いほど、細粉B1Fからの塩素等の水溶性成分の溶出効率がよくなるが、処理に係るコストの観点からは、前記温度は5℃~50℃とすることが好ましく、25℃~50℃がより好ましい。 The time required for the water washing step S32 is preferably 30 minutes or more, more preferably 45 minutes or more, because the fine powder B1F is sufficiently reformed with water W2. The higher the temperature at the time of executing the water washing step S32, the better the elution efficiency of water-soluble components such as chlorine from the fine powder B1F, but from the viewpoint of the cost related to the treatment, the temperature should be 5 ° C to 50 ° C. Is preferable, and 25 ° C to 50 ° C is more preferable.
 水洗工程S32の後、塩素等のセメント忌避成分がスラリー中で液相に溶出された状態となったスラリーLr2は、粉体溶解槽43から排出され、固液分離装置46に移送される。スラリーLr2の移送には、スラリー用渦巻きポンプ、ピストンポンプ、モーノポンプ等の通常のスラリー液用輸送装置(不図示)を用いればよい。 After the water washing step S32, the slurry Lr2 in which the cement repellent component such as chlorine is eluted in the liquid phase in the slurry is discharged from the powder dissolution tank 43 and transferred to the solid-liquid separation device 46. For the transfer of the slurry Lr2, a normal slurry liquid transport device (not shown) such as a centrifugal pump for slurry, a piston pump, and a mono pump may be used.
 固液分離装置46は、スラリーLr2を固液分離して脱水物Ck1を得る(脱水工程S33)。固液分離装置46としては、フィルタープレス、加圧葉状ろ過装置、スクリュープレス、ベルトプレス、ベルトフィルター、沈降分離等の通常のろ過装置等を用いることができる。 The solid-liquid separation device 46 separates the slurry Lr2 into solid and liquid to obtain a dehydrated product Ck1 (dehydration step S33). As the solid-liquid separation device 46, a filter press, a pressurized leaf filter device, a screw press, a belt press, a belt filter, a normal filtration device such as sedimentation separation, or the like can be used.
 脱水工程S33においては、スラリーLr2中に含まれる塩素等の水溶性成分が液相と共に残留することを防ぐため、脱水物の水分は20質量%~90質量%とすることが好ましく、30質量%~70質量%とすることがより好ましい。 In the dehydration step S33, in order to prevent water-soluble components such as chlorine contained in the slurry Lr2 from remaining together with the liquid phase, the water content of the dehydrated product is preferably 20% by mass to 90% by mass, preferably 30% by mass. It is more preferably to be about 70% by mass.
 スラリーLr2の液相に溶出させた成分は排水W4へと除かれるので、得られる脱水物Ck1は、水洗工程S30の実行前の細粉B1Fに比べて塩素等のセメント忌避成分の量が低下される。一方で、排水W4には、バイオマス灰B1に含まれていた重金属類等も溶出されているので、適宜に水質浄化処理を行った後に環境中に放流してもよい。 Since the components eluted in the liquid phase of the slurry Lr2 are removed to the waste water W4, the amount of the cement repellent component such as chlorine is reduced in the obtained dehydrated product Ck1 as compared with the fine powder B1F before the execution of the washing step S30. Ru. On the other hand, since heavy metals and the like contained in the biomass ash B1 are also eluted in the wastewater W4, they may be discharged into the environment after being appropriately treated for water quality.
 なお、図7に示すように、固液分離装置46に水洗浄装置49を付設し、脱水物Ck1に対して水W3を加えた後に再度脱水するものとしても構わない。これによれば、スラリーLr2の液相がほとんど水に置き換わるので、溶出させた成分をより確実に除去ができる。 As shown in FIG. 7, a water cleaning device 49 may be attached to the solid-liquid separation device 46, and water W3 may be added to the dehydrated product Ck1 and then dehydrated again. According to this, since the liquid phase of the slurry Lr2 is almost replaced with water, the eluted components can be removed more reliably.
 この水洗工程S30が、工程(e)に対応する。 This water washing step S30 corresponds to the step (e).
 水洗工程S30を経て得られた脱水物Ck1は、塩素等のセメント忌避成分が減じられ、且つセメントCn2の強度発現性や流動性に影響を及ぼす易反応性の酸化カルシウムや水酸化カルシウムの含有量が十分に減じられている。よって、この細粉B1F由来の脱水物Ck1を用いて、セメントクリンカCn1の原料に対して、又は、セメントクリンカCn1若しくはセメントCn2に対して投入されることで、得られるセメントCn2の品質を均質に保つことが容易となる。図7の例では、水洗後の細粉B1Fが、セメントクリンカCn1に投入される例が示されている。この工程が、工程(d)に対応する。 The dehydrated product Ck1 obtained through the washing step S30 has a reduced content of cement repellent components such as chlorine, and contains easily reactive calcium oxide and calcium hydroxide that affect the strength development and fluidity of cement Cn2. Is sufficiently reduced. Therefore, the quality of the cement Cn2 obtained by using the dehydrated anhydride Ck1 derived from the fine powder B1F is uniformly added to the raw material of the cement clinker Cn1 or to the cement clinker Cn1 or the cement Cn2. It will be easier to keep. In the example of FIG. 7, an example in which the fine powder B1F after washing with water is put into the cement clinker Cn1 is shown. This step corresponds to step (d).
 特に、原灰として、カルシウム成分を含む石灰石が投入された流動床式燃焼炉から排出されたバイオマス灰B1が用いられる場合には、上記効果を顕著に実現できる。 In particular, when the biomass ash B1 discharged from the fluidized bed type combustion furnace into which the limestone containing a calcium component is charged is used as the raw ash, the above effect can be remarkably realized.
 また、水洗工程S30を経て得られた細粉B1F由来の脱水物Ck1は、第一実施形態で得られた細粉B1Fと比べて水分を含む可能性がある。従って、この脱水物Ck1を第一粉砕設備30内に投入することで第一粉砕設備30内の温度制御にも利用できる。この脱水物Ck1に含まれる水分が過剰である場合には、沈降分離等で簡易的に脱水可能であるし、逆に水分が不足する場合には適切な量を第一粉砕設備30に散水すればよい。 Further, the dehydrated product Ck1 derived from the fine powder B1F obtained through the washing step S30 may contain water as compared with the fine powder B1F obtained in the first embodiment. Therefore, by putting this dehydrated product Ck1 into the first crushing equipment 30, it can also be used for temperature control in the first crushing equipment 30. If the water content in the dehydrated product Ck1 is excessive, it can be easily dehydrated by sedimentation separation or the like, and conversely, if the water content is insufficient, an appropriate amount is sprinkled on the first crushing facility 30. Just do it.
 脱水工程S33で得られる排水W4は、イオン交換樹脂、膜分離、銀や鉛イオンによる沈殿形成等の周知の方法で含有塩素イオンを低減した状態で、セメントクリンカCn1に混合しても構わない。これにより、鉄筋腐食を生じる塩素を除去しながら、排水W4に含まれる強度増進効果を示すアルカリ金属を有効活用できる。本実施形態のように、水洗工程S30を実行して得られる細粉B1F由来の脱水物Ck1は、水洗によって活性が低くなるので、水洗後の排水W4をセメント添加剤として添加することで活性度の低下を補うことができる。 The wastewater W4 obtained in the dehydration step S33 may be mixed with cement clinker Cn1 in a state where the contained chlorine ions are reduced by a well-known method such as ion exchange resin, membrane separation, and precipitation formation by silver or lead ions. This makes it possible to effectively utilize the alkali metal contained in the wastewater W4, which has a strength-enhancing effect, while removing chlorine that causes corrosion of the reinforcing bars. As in the present embodiment, the dehydrated product Ck1 derived from the fine powder B1F obtained by executing the water washing step S30 becomes less active by washing with water. Therefore, the activity is increased by adding the waste water W4 after washing with water as a cement additive. Can be compensated for.
 バイオマス灰B1は、都市ごみ焼却灰よりは塩素含有率が低い。このため、排水W4に含まれる塩素の分離が容易であり、且つ排水W4には多くのアルカリ金属硫酸塩や炭酸塩が得られる。このため、クリンカクーラ13から第一粉砕設備30までの経路上において、排水W4を投入することで、セメント添加剤としてより多くのアルカリ金属を活用することもできる。 Biomass ash B1 has a lower chlorine content than municipal waste incinerator ash. Therefore, the chlorine contained in the wastewater W4 can be easily separated, and a large amount of alkali metal sulfates and carbonates can be obtained in the wastewater W4. Therefore, by charging the wastewater W4 on the route from the clinker cooler 13 to the first crushing facility 30, more alkali metals can be utilized as the cement additive.
 クリンカクーラ13から第一粉砕設備30までの経路上で排水W4を投入することで、乾燥や固形化することなく、セメントクリンカCn1の冷却用や第一粉砕設備30内の温度調整用の散水を兼ねることもできる。より具体的な投入箇所としては、クリンカ製造設備10における、400℃以下のクリンカクーラ13や、クリンカクーラ13から後段に搬送するための搬送装置、及び第一粉砕設備30が挙げられる。投入箇所の温度が400℃を超えると、瞬時に蒸発してしまうため、セメント添加剤としてのアルカリ金属がセメントCn2に含まれにくくなる。また、第一粉砕設備30より後段で排水W4が投入されると、セメントCn2に水分が残り、風化や水和の影響によって品質が低下するおそれがある。 By inputting the wastewater W4 on the route from the clinker cooler 13 to the first crushing facility 30, water for cooling the cement clinker Cn1 and for adjusting the temperature in the first crushing facility 30 can be sprinkled without drying or solidifying. It can also be used. More specific charging points include a clinker cooler 13 having a temperature of 400 ° C. or lower in the clinker manufacturing facility 10, a transport device for transporting from the clinker cooler 13 to a subsequent stage, and a first crushing facility 30. When the temperature of the charging point exceeds 400 ° C., it evaporates instantly, so that the alkali metal as a cement additive is less likely to be contained in the cement Cn2. Further, if the wastewater W4 is introduced after the first crushing facility 30, water remains in the cement Cn2, and the quality may deteriorate due to the influence of weathering and hydration.
 排水W4に対して乾燥処理等を施して水分を減らした状態で、クリンカクーラ13から第一粉砕設備30の間に投入しても構わない。これによれば、セメントCn2を風化等させることなくセメント添加剤としてより多くのアルカリ金属を活用できる。特に、排水W4に対して乾燥固化を行えば、第一粉砕設備30における粉砕後に得られるセメントCn2に対して投入したり、セメント混練体の製造時の混練工程の際にも投入することが可能となり、任意の量を容易に添加することもできる。 The wastewater W4 may be drained between the clinker cooler 13 and the first crushing facility 30 in a state where the water content has been reduced by performing a drying treatment or the like. According to this, more alkali metals can be utilized as a cement additive without weathering the cement Cn2. In particular, if the wastewater W4 is dried and solidified, it can be added to the cement Cn2 obtained after crushing in the first crushing facility 30, or can be added to the kneading step at the time of manufacturing the cement kneaded body. Therefore, any amount can be easily added.
 含有塩素イオンを低減する手段としては、特に両性イオン交換樹脂やナノろ過膜によるものが好ましい。これによれば、選択的に硫酸イオン・炭酸イオンと塩素イオンを分離でき、硫酸イオン・炭酸イオン濃度が高くなり塩素イオン濃度が低くなった水と、硫酸イオン・炭酸イオン濃度が低くなり塩素イオン濃度が高くなった水を得ることができる。 As a means for reducing the contained chlorine ions, an amphoteric ion exchange resin or a nanofiltration membrane is particularly preferable. According to this, sulfate ion / carbonate ion and chlorine ion can be selectively separated, and water having a high sulfate ion / carbonate ion concentration and a low chlorine ion concentration and water having a low sulfate ion / carbonate ion concentration and a chlorine ion can be separated. Highly concentrated water can be obtained.
 細粉B1Fの水洗後に得られる排水W4には、セレンと六価クロムが含まれる場合が多い。上記の両性イオン交換樹脂やナノろ過膜を利用することで、硫酸イオンと同様の形態を示すセレンと六価クロムが塩素濃度の低い水側に分離される。塩素濃度が高い水は処分されるが、当該水はセレンと六価クロム濃度も低く、排水処理が容易となる。また、乾燥することなく水量を減らす(アルカリ金属濃度を高める)ことができ、クリンカクーラ13から第一粉砕設備30の間に投入する場合は、同じ散水量でセメント添加剤としてより多くのアルカリ金属を活用できる。 The wastewater W4 obtained after washing the fine powder B1F with water often contains selenium and hexavalent chromium. By using the above-mentioned amphoteric ion exchange resin and nanofiltration membrane, selenium and hexavalent chromium, which have the same morphology as sulfate ions, are separated on the water side with a low chlorine concentration. Water with a high chlorine concentration is disposed of, but the water has a low concentration of selenium and hexavalent chromium, which facilitates wastewater treatment. In addition, the amount of water can be reduced (increasing the concentration of alkali metal) without drying, and when charged between the clinker cooler 13 and the first crushing facility 30, more alkali metal can be used as a cement additive with the same amount of water sprinkled. Can be utilized.
 以上のように、水洗水から得られた排水W4(セメント添加剤)と、細粉B1Fの水洗後に得られる脱水物Ck1の双方を、セメントCn2の製造過程で利用できる。また、第一実施形態で上述したように、粗粉B1Cについても、セメントクリンカの原料としてや、セメントクリンカ又はセメントに混合材として利用できる。すなわち、本実施形態によれば、セメントCn2の製造のためにバイオマス灰B1を余すことなく利用できる。また、処分される排水量やその排水処理負荷を削減する効果も期待できる。 As described above, both the wastewater W4 (cement additive) obtained from the washing water and the dehydrated product Ck1 obtained after washing the fine powder B1F with water can be used in the manufacturing process of the cement Cn2. Further, as described above in the first embodiment, the crude powder B1C can also be used as a raw material for cement clinker or as a mixed material for cement clinker or cement. That is, according to the present embodiment, the biomass ash B1 can be fully utilized for the production of cement Cn2. In addition, the effect of reducing the amount of wastewater to be disposed of and the load of wastewater treatment can be expected.
 なお、本実施形態において、水洗工程S30と共に、酸化工程S41や未燃カーボン除去工程S42を実行することも可能である(図9,図10参照)。これらの工程は、水洗工程S30の実行と並行して行われても構わないし、水洗工程S30の実行後に行われても構わない。なお、酸化工程S41と未燃カーボン除去工程S42は、いずれか一方だけが行われても構わない。 In the present embodiment, it is also possible to execute the oxidation step S41 and the unburned carbon removing step S42 together with the water washing step S30 (see FIGS. 9 and 10). These steps may be performed in parallel with the execution of the water washing step S30, or may be performed after the execution of the water washing step S30. In addition, only one of the oxidation step S41 and the unburned carbon removal step S42 may be performed.
 図9は、本実施形態において、酸化工程S41及び未燃カーボン除去工程S42の双方が実行される場合における処理フローを模式的に示す図面である。図10は、これらの工程S41及びS42が実行される場合における水洗設備40の構造を、図8にならって模式的に示す図面である。なお、図10には、水洗設備40と共に、ガス供給装置51及び浮遊選鉱装置53についても図示されている。 FIG. 9 is a drawing schematically showing a processing flow when both the oxidation step S41 and the unburned carbon removing step S42 are executed in the present embodiment. FIG. 10 is a drawing schematically showing the structure of the water washing facility 40 when these steps S41 and S42 are executed, following FIG. 8. Note that FIG. 10 shows the gas supply device 51 and the flotation device 53 as well as the water washing facility 40.
 (酸化工程S41)
 酸化工程S41は、細粉B1Fを酸化する工程である。一例として、水洗工程S30において、粉体溶解槽43内にpH調整剤を加えて水洗を行うことで実行できる。これにより、水洗工程S30と酸化工程S41とが並行して行われる。
(Oxidation step S41)
The oxidation step S41 is a step of oxidizing the fine powder B1F. As an example, in the washing step S30, it can be carried out by adding a pH adjuster to the powder dissolving tank 43 and washing with water. As a result, the washing step S30 and the oxidizing step S41 are performed in parallel.
 水洗の際のpHを低減することで、pH調整しない場合に比べて、細粉B1Fに含まれる塩素をより効率よく水溶できる。また、細粉B1F中に含まれるカルシウム成分を、遅速反応性の炭酸カルシウムや、セメントCn2の製造時にセメントクリンカCn1に添加される硫酸カルシウムの形態へと変化させやすくなる。これにより、水洗工程S30後に得られる細粉B1F由来の脱水物Ck1が、品質変動の小さいセメント混合材として好適となる。 By reducing the pH at the time of washing with water, chlorine contained in the fine powder B1F can be water-soluble more efficiently than when the pH is not adjusted. In addition, the calcium component contained in the fine powder B1F can be easily changed into the form of slow-reactive calcium carbonate or calcium sulfate added to the cement clinker Cn1 during the production of the cement Cn2. As a result, the dehydrated product Ck1 derived from the fine powder B1F obtained after the washing step S30 is suitable as a cement mixed material having a small quality variation.
 酸化工程S41におけるスラリーLr1のpH条件としては、pH4~13であることが好ましく、pH5~12であることがより好ましい。 The pH condition of the slurry Lr1 in the oxidation step S41 is preferably pH 4 to 13, and more preferably pH 5 to 12.
 pH調整剤としては、スラリーLr1のpHを低減できるものであれば特に制限はなく、例えば、硫酸等の酸溶液やCО2含有ガス等が挙げられる。CО2含有ガスとしては、セメントキルン12の燃焼排ガスや、バイオマスの焼却設備やバイオマス発電所の燃焼排ガスを利用できる。これらの排ガスには二酸化炭素(CО2)が含まれているので、その燃焼排ガスをスラリーLr1に吹き込むことにより、pHを中性から弱アルカリ性に調整できる。これによれば、細粉B1F中に含まれるカルシウム成分を炭酸化して炭酸カルシウムの形態へとより反応させやすくなる。 The pH adjuster is not particularly limited as long as it can reduce the pH of the slurry Lr1, and examples thereof include an acid solution such as sulfuric acid and a CO2 -containing gas. As the CO2 - containing gas, the combustion exhaust gas of the cement kiln 12 and the combustion exhaust gas of a biomass incineration facility or a biomass power plant can be used. Since these exhaust gases contain carbon dioxide ( CO2 ), the pH can be adjusted from neutral to weakly alkaline by blowing the combustion exhaust gas into the slurry Lr1. According to this, the calcium component contained in the fine powder B1F is carbonated, and it becomes easier to react with the form of calcium carbonate.
 図10では、一例として、ガス供給装置51からCО2含有ガスG1が粉体溶解槽43内のスラリーLr1に供給される場合が図示されている。この場合、ガス供給装置51は、前述した、セメントキルン12の燃焼排ガスや、バイオマスの焼却設備やバイオマス発電所の燃焼排ガス等を粉体溶解槽43に供給するための装置に対応する。 In FIG. 10, as an example, a case where the CO2 -containing gas G1 is supplied from the gas supply device 51 to the slurry Lr1 in the powder dissolution tank 43 is shown. In this case, the gas supply device 51 corresponds to the above-mentioned device for supplying the combustion exhaust gas of the cement kiln 12, the combustion exhaust gas of the biomass incineration facility, the biomass power plant, and the like to the powder melting tank 43.
 CО2含有ガスG1は二酸化炭素が含まれていればよいが、効率的な炭酸化を促すためには、二酸化炭素濃度は10%以上が好ましく、20%以上がより好ましい。また、燃焼排ガスのなかでも、特にクリンカ製造設備10の塩素バイパスダストを捕集後のガスには硫黄酸化物(SOx)等の有害ガスが含まれるので、このガスをスラリーLr1に吹き込むことで、硫黄酸化物を固定化する効果も期待できる。 The CO2 - containing gas G1 may contain carbon dioxide, but in order to promote efficient carbonation, the carbon dioxide concentration is preferably 10% or more, more preferably 20% or more. In addition, among the combustion exhaust gas, the gas after collecting the chlorine bypass dust of the clinker manufacturing facility 10 contains harmful gas such as sulfur oxide (SO x ), so by blowing this gas into the slurry Lr1. , The effect of immobilizing sulfur oxides can also be expected.
 このようにクリンカ製造設備10の燃焼排ガスを用いれば、その場で二酸化炭素を含有する燃焼排ガスを得て細粉B1Fの改質に利用でき、改質された細粉B1F(脱水物Ck1)はセメント混合材として利用できる。また、バイオマスの焼却設備やバイオマス発電所の燃焼排ガスを用いれば、その場で得た二酸化炭素を含有する燃焼排ガスを用いて細粉B1Fを改質でき、これをクリンカ製造設備10や第一粉砕設備30等に輸送すれば、すぐさまセメント混合材として利用できる。 By using the combustion exhaust gas of the clinker production facility 10 in this way, the combustion exhaust gas containing carbon dioxide can be obtained on the spot and used for reforming the fine powder B1F, and the reformed fine powder B1F (dehydrated product Ck1) can be obtained. It can be used as a cement mixture. Further, if the combustion exhaust gas of the biomass incineration facility or the biomass power plant is used, the fine powder B1F can be reformed by using the combustion exhaust gas containing carbon dioxide obtained on the spot, and this can be reformed by the clinker production facility 10 or the first crushing. If it is transported to equipment 30 or the like, it can be immediately used as a cement mixture.
 更に、水洗工程S30において、粉体溶解槽43内にアミン系二酸化炭素回収装置から得た廃液を加えて水洗を行ってもよい。工場等の排ガスから二酸化炭素を回収するためのアミン系二酸化炭素回収装置では、通常、劣化したアミン類を含む液は廃棄されるが、この方法によればその廃液を有効に活用できる。 Further, in the water washing step S30, the waste liquid obtained from the amine-based carbon dioxide recovery device may be added to the powder dissolution tank 43 and washed with water. In an amine-based carbon dioxide recovery device for recovering carbon dioxide from exhaust gas of a factory or the like, a liquid containing deteriorated amines is usually discarded, but according to this method, the waste liquid can be effectively utilized.
 アミン類は、二酸化炭素と反応して炭酸イオンの生成を促進する作用があることが知られており、効率よくカルシウム成分の炭酸化を進めることができる。また、アミン類は、第一粉砕設備30においてセメントクリンカCn1を粉砕する際に、粉砕助剤として機能することも知られている。アミン類としては、分子内にアミノ基とヒドロキシル基を有するものであり、特に、粉砕助剤として使用されるアミン類としては、例えば、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、ジグリコールアミン(DGA)、ジイソプロパノールアミン(DIPA)、メチルジエタノールアミン(MDEA)、トリイソプロパノールアミン(TIPA)等が挙げられる。従って、添加した廃液から持ち込まれたアミン類が取り込まれた状態の、細粉B1F由来の脱水物Ck1は、後工程での粉砕助剤としての機能性の付与が期待できるため、セメント混合材として好適となる。 Amines are known to have the effect of promoting the production of carbonate ions by reacting with carbon dioxide, and can efficiently promote the carbonation of calcium components. It is also known that amines function as a pulverizing aid when pulverizing cement clinker Cn1 in the first pulverizing equipment 30. The amines have an amino group and a hydroxyl group in the molecule, and in particular, the amines used as a grinding aid include, for example, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine. (TEA), diglycolamine (DGA), diisopropanolamine (DIPA), methyldiethanolamine (MDEA), triisopropanolamine (TIPA) and the like can be mentioned. Therefore, the dehydrated Ck1 derived from the fine powder B1F in the state where the amines brought in from the added waste liquid are taken in can be expected to impart functionality as a pulverizing aid in the subsequent process, and thus can be used as a cement mixture. It becomes suitable.
 なお、脱水工程S33を経て得られる脱水物Ck1に対して、CО2含有ガスG1を吹き込むものとしても構わない。これによれば、脱水物Ck1中に残る易反応性のカルシウム成分が炭酸化されるため、この脱水物Ck1を利用して製造されたセメントCn2に対して、品質の均質化を更に高めることができる。また、この方法によれば、脱水物Ck1中に含まれる水分を乾燥させる効果も期待される。 The dehydrated product Ck1 obtained through the dehydration step S33 may be blown with the CO2 -containing gas G1. According to this, since the easily reactive calcium component remaining in the dehydrated product Ck1 is carbonated, it is possible to further enhance the homogenization of the quality of the cement Cn2 produced by using the dehydrated product Ck1. can. Further, according to this method, the effect of drying the water contained in the dehydrated product Ck1 is also expected.
 ガスの吹込み手段(ガス供給装置51)としては、脱水物Ck1をCО2含有ガスと接触できればよく、その方法は問わない。例えば、脱水物Ck1を充填した容器にCО2含有ガスを流通させたり、排ガス煙道中に脱水物Ck1を通過させたりする等の手段を使用できる。また、上記したスラリーLr1への吹込みと同様に、セメントキルン12の燃焼排ガスや、バイオマスの焼却設備やバイオマス発電所の燃焼排ガスを、脱水物Ck1に吹き込むものとしても構わない。 As the gas blowing means (gas supply device 51), any method may be used as long as the dehydrated anhydride Ck1 can be brought into contact with the CO2 -containing gas. For example, means such as circulating the CO2 -containing gas in a container filled with the dehydrated product Ck1 or passing the dehydrated product Ck1 through the exhaust gas flue can be used. Further, similarly to the above-mentioned blowing into the slurry Lr1, the combustion exhaust gas of the cement kiln 12 or the combustion exhaust gas of the biomass incineration facility or the biomass power plant may be blown into the dehydrated product Ck1.
 この酸化工程S41が、工程(f)に対応する。 This oxidation step S41 corresponds to the step (f).
 (未燃カーボン除去工程S42)
 未燃カーボン除去工程S42は、細粉B1Fに含まれる未燃カーボンを除去する工程である。上述したように、分級後に得られる細粉B1Fは、粗粉B1Cと比べて強熱減量が高く、多くの未燃カーボンが含まれる。このため、細粉B1FをセメントクリンカCn1の原料として使用する場合にはプレヒータ11の高温化を招く場合があり、また混合材として使用する場合にはコンクリートの黒ずみや流動性の低下を招く場合がある。
(Unburned carbon removal step S42)
The unburned carbon removing step S42 is a step of removing unburned carbon contained in the fine powder B1F. As described above, the fine powder B1F obtained after classification has a high ignition loss as compared with the coarse powder B1C and contains a large amount of unburned carbon. Therefore, when the fine powder B1F is used as a raw material for the cement clinker Cn1, the temperature of the preheater 11 may increase, and when it is used as a mixed material, the concrete may darken or the fluidity may decrease. be.
 具体的には、水洗工程S30の実行時に、脱未燃炭素剤供給装置52から粉体溶解槽43内に、油や界面活性剤等の脱未燃炭素剤D1を加えた状態で撹拌等の処理を行う方法が採用できる。得られたスラリーLr2aは、浮遊選鉱装置53において、例えば所定の起泡剤を添加して浮遊選鉱処理が行われ、未燃カーボンを含むフロスと、未燃カーボンが除去又は低減されたテールとに分離される。そして、テールとしてのスラリーLr2bが固液分離装置46に送られて固液分離される。 Specifically, at the time of executing the washing step S30, stirring or the like is performed with the deburned carbon agent D1 such as oil or a surfactant added from the deburned carbon agent supply device 52 into the powder dissolution tank 43. A method of processing can be adopted. The obtained slurry Lr2a is subjected to a flotation treatment by adding a predetermined foaming agent, for example, in a flotation apparatus 53 to form a floss containing unburned carbon and a tail from which unburned carbon has been removed or reduced. Be separated. Then, the slurry Lr2b as a tail is sent to the solid-liquid separation device 46 for solid-liquid separation.
 これにより、水洗工程S30と未燃カーボン除去工程S42とが並行的、連続的に行われる。 As a result, the washing step S30 and the unburned carbon removing step S42 are performed in parallel and continuously.
 水洗工程S30が実行されることで、細粉B1Fに含まれる塩素濃度(塩素含有率)は、例えば典型的には0.01質量%~0.2質量%まで低減され、より典型的には0.02質量%~0.1質量%まで低減される。 By executing the water washing step S30, the chlorine concentration (chlorine content) contained in the fine powder B1F is typically reduced to, for example, 0.01% by mass to 0.2% by mass, and more typically. It is reduced from 0.02% by mass to 0.1% by mass.
 水洗工程S30が実行されることで、細粉B1Fに含まれる全アルカリ金属濃度は、例えば典型的には1質量%~8質量%まで低減され、より典型的には3質量%~6質量%まで低減される。 By executing the water washing step S30, the total alkali metal concentration contained in the fine powder B1F is typically reduced to, for example, 1% by mass to 8% by mass, and more typically 3% by mass to 6% by mass. Is reduced to.
 水洗工程S30が実行されることで、細粉B1Fに含まれる硫黄酸化物濃度は、例えば典型的には0.5質量%~4質量%まで低減され、より典型的には1質量%~3質量%まで低減される。 By executing the water washing step S30, the sulfur oxide concentration contained in the fine powder B1F is typically reduced to, for example, 0.5% by mass to 4% by mass, and more typically 1% by mass to 3%. It is reduced to mass%.
 水洗工程S30が実行されることで、細粉B1Fのセレン(Se)の溶出量は、例えば典型的には0.002mg/L~0.02mg/L、より典型的には0.005mg/L~0.01mg/Lにまで低減される。また、細粉B1Fの六価クロム(Cr6+)溶出量は、例えば典型的には0.01mg/L~0.1mg/L、より典型的には0.02mg/L~0.05mg/Lにまで低減される。これらのセレン及び六価クロムの溶出量は、周知の方法で測定できる。測定方法の好適な一例としては、JISK 0058-1「スラグ類の化学物質試験方法-第1部:溶出試験方法 5.利用有姿による試験」に準拠し検液を作成した後、セレンについてはICP質量分析法によって、六価クロムについてはジフェニルカルバジド吸光光度法によって、それぞれ測定する方法が挙げられる。 By executing the washing step S30, the elution amount of selenium (Se) of the fine powder B1F is typically 0.002 mg / L to 0.02 mg / L, and more typically 0.005 mg / L. It is reduced to ~ 0.01 mg / L. The amount of hexavalent chromium (Cr 6+ ) eluted from the fine powder B1F is typically 0.01 mg / L to 0.1 mg / L, more typically 0.02 mg / L to 0.05 mg / L. It is reduced to L. The elution amount of these selenium and hexavalent chromium can be measured by a well-known method. As a suitable example of the measurement method, after preparing the test solution in accordance with JISK 0058-1 "Test method for chemical substances of slag-Part 1: Dissolution test method 5. Test by actual use", for selenium Examples thereof include a method of measuring hexavalent chromium by the ICP mass analysis method and a method of measuring the hexavalent chromium by the diphenylcarbazide absorptiometry method.
 なお、本実施形態の方法で得られる細粉B1F由来の脱水物Ck1は、水洗工程S30が実行されることでアルカリ金属含有量は低減しているものの、依然として石炭灰よりはアルカリ金属含有量が高い場合が想定される。このため、脱水物Ck1をセメントクリンカCn1の原料として用いるとアルカリ金属含有量の高いセメントCn2が製造される場合がある。また、排水W4から得られるセメント添加剤の主成分はアルカリ金属塩である。従って、これらがコンクリート(セメント混練体)に多く含まれると、利用される骨材(CA,FA)によってはアルカリシリカ反応を起こす可能性がある。 Although the alkali metal content of the dehydrated product Ck1 derived from the fine powder B1F obtained by the method of the present embodiment is reduced by executing the washing step S30, the alkali metal content is still higher than that of coal ash. It is expected to be high. Therefore, when the dehydrated product Ck1 is used as a raw material for the cement clinker Cn1, cement Cn2 having a high alkali metal content may be produced. The main component of the cement additive obtained from the wastewater W4 is an alkali metal salt. Therefore, if these are contained in a large amount in concrete (cement kneaded body), an alkali-silica reaction may occur depending on the aggregate (CA, FA) used.
 そこで、セメントCn2の製造工程において細粉B1F由来の脱水物Ck1を投入する場合には、アルカリシリカ反応の可能性を低減するために、高炉スラグ等の潜在水硬性物質、フライアッシュ、火山灰、火山岩、焼成粘土等のポゾラン物質についても、セメント混合材やコンクリート混和材として併せて投入(添加)するものとしても構わない。なお、このような潜在水硬性物質やポゾラン物質の投入(添加)は、水洗工程S30が実施されていない細粉B1Fが利用される場合にも適用できる。 Therefore, when the dehydrated product Ck1 derived from fine powder B1F is added in the cement Cn2 manufacturing process, latent hydraulic substances such as blast furnace slag, fly ash, volcanic ash, and volcanic rock are used to reduce the possibility of alkali silica reaction. , Pozzolan substances such as calcined clay may also be added (added) as a cement mixture or a concrete admixture. It should be noted that such addition (addition) of a latent hydraulic substance or a pozzolan substance can also be applied to the case where the fine powder B1F in which the water washing step S30 has not been carried out is used.
 (変形例)
 本実施形態では、いくつかのバリエーションが可能である。
(Modification example)
In this embodiment, some variations are possible.
 〈1〉図11に示すように、水洗設備40で水洗された後の細粉B1Fがクリンカ製造設備10に投入され、粗粉B1Cがクリンカ製造設備10又は第一粉砕設備30に投入さえるものとしても構わない。 <1> As shown in FIG. 11, the fine powder B1F after being washed with water in the water washing equipment 40 is charged into the clinker manufacturing equipment 10, and the coarse powder B1C is charged into the clinker manufacturing equipment 10 or the first crushing equipment 30. It doesn't matter.
 〈2〉図12に示すように、分級設備20においてバイオマス灰B1が分級されることで得られる粗粉B1Cと細粉B1Fのうち、粗粉B1Cに対して水洗設備40によって水洗されるものとしても構わない。分級工程S10によって粗粉B1Cは塩素や硫黄の含有濃度が低下されているが、水洗工程S30が行われることで、これらの濃度が更に低下される。このため、セメントクリンカCn1の原料として活用できる。なお、図12に示すように、この水洗処理後の粗粉B1Cを、クリンカ製造設備10に加えて、第一粉砕設備30に投入するものとしても構わない。また、図4に示した例と同様に、第二粉砕設備35によって水洗処理後の粗粉B1Cが粉砕された後に、クリンカ製造設備10に投入されるものとしても構わない。 <2> As shown in FIG. 12, of the coarse powder B1C and the fine powder B1F obtained by classifying the biomass ash B1 in the classification equipment 20, the coarse powder B1C is to be washed with water by the water washing equipment 40. It doesn't matter. The content concentrations of chlorine and sulfur in the crude powder B1C are reduced by the classification step S10, but these concentrations are further reduced by performing the washing step S30. Therefore, it can be used as a raw material for cement clinker Cn1. As shown in FIG. 12, the crude powder B1C after the washing treatment may be added to the clinker production facility 10 and charged into the first crushing facility 30. Further, as in the example shown in FIG. 4, the coarse powder B1C after the washing treatment may be crushed by the second crushing facility 35 and then charged into the clinker manufacturing facility 10.
 図12に示す態様においては、図8~図10を参照して上述した水洗工程S30に関する内容は、細粉B1Fに関する記載が粗粉B1Cに関する記載に置き換えられた上で、同様に説明される。 In the embodiment shown in FIG. 12, the contents related to the water washing step S30 described above with reference to FIGS. 8 to 10 are similarly described after the description regarding the fine powder B1F is replaced with the description regarding the coarse powder B1C.
 水洗工程S30で得られる排水W4は、もともと塩素が少ない粗粉B1Cに対する水洗後に得られたものであるため、含有塩素濃度が低い状態である。従って、上述したような、含有塩素イオンを低減する手段を講じることなく、排水W4をセメントクリンカCn1に混合しても構わない。 The wastewater W4 obtained in the water washing step S30 was originally obtained after washing with water for the coarse powder B1C having a small amount of chlorine, so that the chlorine content is low. Therefore, the waste water W4 may be mixed with the cement clinker Cn1 without taking measures for reducing the contained chlorine ions as described above.
 一方、細粉B1Fについては、必要に応じて別途の水洗処理が行われた後、セメントクリンカCn1やセメントに混合されるものとしても構わないし、肥料や細骨材として利用されるものとしても構わない。 On the other hand, the fine powder B1F may be mixed with cement clinker Cn1 or cement after being separately washed with water as necessary, or may be used as fertilizer or fine aggregate. do not have.
 〈3〉本実施形態では、バイオマス灰(原灰B1)を分級後に、水洗工程S30が実行されるものとした。しかし、原灰B1に対して水洗工程S30が行われた後、又は水洗工程S30と同時に分級工程S10が実行されるものとしても構わない。図13は、本実施形態におけるセメント製造方法の変形例の処理フローを模式的に示す図面である。また、図14は、図13に示す処理フローに基づくセメント製造方法を実施するための処理システムの構成を、図7にならって模式的に示すブロック図である。 <3> In the present embodiment, it is assumed that the washing step S30 is executed after the biomass ash (raw ash B1) is classified. However, the classification step S10 may be executed after the water washing step S30 is performed on the raw ash B1 or at the same time as the water washing step S30. FIG. 13 is a drawing schematically showing a processing flow of a modified example of the cement manufacturing method in the present embodiment. Further, FIG. 14 is a block diagram schematically showing the configuration of a treatment system for carrying out the cement manufacturing method based on the treatment flow shown in FIG. 13, following FIG. 7.
 図14に示す態様においては、図8~図10を参照して上述した水洗工程S30に関する内容は、細粉B1Fに関する記載が原灰B1に関する記載に置き換えられた上で、同様に説明される。 In the embodiment shown in FIG. 14, the contents related to the water washing step S30 described above with reference to FIGS. 8 to 10 will be similarly described after the description regarding the fine powder B1F is replaced with the description regarding the raw ash B1.
 なお、水洗工程S30と分級工程S10は、湿式分級機で同時に行うものとしても構わない。具体的には、水ふるい、液体サイクロン、又は遠心分離等の方法が挙げられる。 The water washing step S30 and the classification step S10 may be performed simultaneously by the wet classifying machine. Specific examples thereof include methods such as water sieving, liquid cyclone, and centrifugation.
 [第三実施形態]
 本発明に係るセメント製造方法、セメント混練体の製造方法、及びバイオマス灰粉粒物の第三実施形態について、上記実施形態と異なる箇所を中心に説明する。図15は、本実施形態におけるセメント及びセメント混練体の製造方法の処理フローを模式的に示す図面である。図16は、この製造方法を実施するシステムの構造を模式的に示すブロック図である。
[Third Embodiment]
The cement manufacturing method, the cement kneaded body manufacturing method, and the third embodiment of the biomass ash powder granules according to the present invention will be described focusing on the parts different from the above embodiments. FIG. 15 is a drawing schematically showing a processing flow of a method for producing cement and a cement kneaded body in the present embodiment. FIG. 16 is a block diagram schematically showing the structure of a system that implements this manufacturing method.
 図16に示す処理システム1は、セメントクリンカ原料Y1が貯槽された原料槽3と、バイオマス灰B1が貯槽された粉体貯槽5と、クリンカ製造設備10と、分級設備20と、第一粉砕設備30と、混合設備33とを備える。 The processing system 1 shown in FIG. 16 includes a raw material tank 3 in which the cement clinker raw material Y1 is stored, a powder storage tank 5 in which the biomass ash B1 is stored, a clinker production facility 10, a classification facility 20, and a first crushing facility. 30 and mixing equipment 33 are provided.
 本実施形態では、バイオマス灰(原灰)B1が分級された後、後述するようにセメントCn2の製造過程(セメントクリンカCn1の製造過程を含む。)で投入されたり、セメント混練体Cn3の製造過程で投入されることが想定されている。つまり、本実施形態における処理システム1は、「セメント及びセメント混練体の製造システム」と呼ぶこともできる。 In the present embodiment, after the biomass ash (raw ash) B1 is classified, it is added in the cement Cn2 manufacturing process (including the cement clinker Cn1 manufacturing process) as described later, or the cement kneaded body Cn3 is manufactured. It is expected to be introduced at. That is, the treatment system 1 in the present embodiment can also be referred to as a "cement and cement kneaded body manufacturing system".
 本実施形態において利用されるバイオマス灰B1として好ましい条件は、上述した内容と共通する。つまり、バイオマス灰B1は、セメントCn2又はセメント混練体Cn3の強度を高くする観点から、粒度のメジアン径(D50)が200μm以下であることが好ましく、150μm以下であることがより好ましく、90μm以下であることが更に好ましい。 The preferred conditions for the biomass ash B1 used in this embodiment are the same as those described above. That is, from the viewpoint of increasing the strength of the cement Cn2 or the cement kneaded body Cn3, the biomass ash B1 preferably has a particle size median diameter (D50) of 200 μm or less, more preferably 150 μm or less, and 90 μm or less. It is more preferable to have.
 混合設備33は、セメントCn2、水W1、細骨材FA、及び粗骨材CAを混練してセメント混練体Cn3を生成する設備であり、公知のミキサで構成される。混合設備33は、例えばコンクリート工場内に設置される。ここでは、セメント混練体Cn3はコンクリートである。 The mixing facility 33 is a facility for kneading cement Cn2, water W1, fine aggregate FA, and coarse aggregate CA to produce a cement kneaded body Cn3, and is composed of a known mixer. The mixing equipment 33 is installed in, for example, a concrete factory. Here, the cement kneaded body Cn3 is concrete.
 図15に示すように、本実施形態の製造方法は、バイオマス灰B1を分級する工程S10と、分級された細粉B1FをセメントCn2の製造工程で投入する工程S20と、分級された粗粉B1Cをセメント混練体Cn3の製造工程で投入する工程S60と、を有する。 As shown in FIG. 15, the production method of the present embodiment includes a step S10 for classifying the biomass ash B1, a step S20 for charging the classified fine powder B1F in the production process for cement Cn2, and a classified coarse powder B1C. S60, which is added in the manufacturing process of the cement kneaded body Cn3.
 バイオマス灰B1を分級する工程S10及び、分級後のバイオマス灰(ここでは細粉B1F)をセメントCn2の製造工程で投入する工程S20については、第一実施形態又は第二実施形態で上述した内容と共通するため、詳細な説明は割愛される。 The step S10 for classifying the biomass ash B1 and the step S20 for charging the classified biomass ash (here, fine powder B1F) in the manufacturing step of the cement Cn2 are the same as those described above in the first embodiment or the second embodiment. Since it is common, detailed explanation is omitted.
 (分級工程S10)
 ただし、本実施形態においては、分級後に得られるバイオマス灰(ここでは粗粉B1C)が、細骨材FAの代替材として利用されることも想定されている。このため、分級工程S10における分級の目安項目としては、上記各実施形態で上述した内容に加えて、非晶質の含有率が挙げられる。
(Classification step S10)
However, in the present embodiment, it is also assumed that the biomass ash (here, coarse powder B1C) obtained after classification is used as a substitute material for the fine aggregate FA. Therefore, as a guideline item for classification in the classification step S10, in addition to the contents described above in each of the above embodiments, an amorphous content rate can be mentioned.
 分級後に得られた粗粉B1Cは、典型的には非晶質の含有率が60質量%以下である。粗粉B1Cの非晶質の含有率は、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、特に好ましくは30質量%以下である。なお、細粉B1Fに含まれる非晶質の含有率は、典型的には50質量%~80質量%であり、より典型的には、60質量%~70質量%である。すなわち、この分級工程S10によって、相対的に非晶質の含有率が低い粗粉B1Cと、相対的に非晶質の含有率が高い細粉B1Fとに分離される。この点は、実施例を参照して後述される。 The crude powder B1C obtained after classification typically has an amorphous content of 60% by mass or less. The amorphous content of the crude powder B1C is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less. The content of the amorphous substance contained in the fine powder B1F is typically 50% by mass to 80% by mass, and more typically 60% by mass to 70% by mass. That is, by this classification step S10, the coarse powder B1C having a relatively low amorphous content and the fine powder B1F having a relatively high amorphous content are separated. This point will be described later with reference to Examples.
 この分級工程S10が工程(a)に対応し、この分級工程S10で得られた粗粉B1Cが「バイオマス灰粉粒物」に対応する。 This classification step S10 corresponds to the step (a), and the coarse powder B1C obtained in this classification step S10 corresponds to the “biomass ash powder granules”.
 (投入工程S20:セメントCn2製造時)
 分級工程S10で得られた細粉B1Fは、セメントクリンカCn1の原料に対して、又は、セメントクリンカCn1若しくはセメントCn2に対して投入(添加)される。図16の例では、細粉B1Fが、クリンカ製造設備10に投入される場合と、セメントCn2を製造するための第一粉砕設備30に投入される場合が図示されている。後者の場合、細粉B1Fに対してセメントクリンカCn1と共に粉砕処理が行われることで、混合セメントが生成される。その際、必要に応じて散水や粉砕助剤が添加される。ただし、細粉B1Fは、クリンカ製造設備10と第一粉砕設備30のいずれか一方に投入されるものとしても構わない。得られた細粉B1Fを全て投入するとバイオマス灰の原粉(原灰B1)をそのまま投入することと同じことになる。したがって、分級後のバイオマス灰(すなわち、粗粉B1Cや細粉B1F)の化学組成等の特性が異なることを利用して、細粉B1FをセメントクリンカCn1の原料又はセメント混合材、コンクリート混和材に一部投入したり、後述の水洗を行ってから投入するものとしてよい。
(Charging step S20: At the time of manufacturing cement Cn2)
The fine powder B1F obtained in the classification step S10 is added (added) to the raw material of the cement clinker Cn1 or to the cement clinker Cn1 or the cement Cn2. In the example of FIG. 16, the case where the fine powder B1F is charged into the clinker production equipment 10 and the case where the fine powder B1F is charged into the first crushing equipment 30 for producing cement Cn2 are illustrated. In the latter case, mixed cement is produced by pulverizing the fine powder B1F together with the cement clinker Cn1. At that time, watering and crushing aids are added as needed. However, the fine powder B1F may be charged into either the clinker production facility 10 or the first crushing facility 30. When all the obtained fine powder B1F is added, it is the same as adding the raw powder of biomass ash (raw ash B1) as it is. Therefore, by utilizing the difference in characteristics such as the chemical composition of the classified biomass ash (that is, coarse powder B1C and fine powder B1F), the fine powder B1F can be used as a raw material for cement clinker Cn1, a cement mixture, or a concrete admixture. It may be partially added or washed with water as described later before being added.
 なお、第二実施形態で上述したのと同様に、細粉B1Fを水洗した後に投入しても構わない。この場合、クリンカクーラ13に投入することにより、セメントクリンカCn1の製造とは直接関係のない熱エネルギーを利用して水分を蒸発除去できるため好都合である。また、クリンカクーラ13内に粉塵が大量に発生することを防ぐ意味から、細粉B1Fは含水率を好ましくは50質量%以下とし、塊状か粒状のまま投入することが好ましい。 It should be noted that the fine powder B1F may be added after washing with water in the same manner as described above in the second embodiment. In this case, it is convenient because the water can be evaporated and removed by using the heat energy which is not directly related to the production of the cement clinker Cn1 by putting it in the clinker cooler 13. Further, in order to prevent a large amount of dust from being generated in the clinker cooler 13, the fine powder B1F preferably has a water content of 50% by mass or less, and is preferably added in the form of lumps or granules.
 なお、図16には図示されていないが、第一粉砕設備30において粉砕されて得られたセメントCn2に対して細粉B1Fが投入されても構わない。具体的には、この投入のタイミングは、第一粉砕設備30の後段においてセメントが貯槽されるセメントサイロまでの経路上であっても構わないし、セメントサイロ内であっても構わない。ただし、より厳密にいえば、細粉B1Fは、第一粉砕設備30においてセメントクリンカCn1が粉砕された後に得られるセメントCn2に対して混合する場合よりも、セメントクリンカCn1又は第一粉砕設備30に投入する場合の方が、より粒度が細かく反応性が高くなるので好ましい。 Although not shown in FIG. 16, fine powder B1F may be added to the cement Cn2 obtained by crushing in the first crushing equipment 30. Specifically, the timing of this charging may be on the route to the cement silo in which the cement is stored in the subsequent stage of the first crushing facility 30, or may be in the cement silo. However, more strictly speaking, the fine powder B1F is added to the cement clinker Cn1 or the first crushing equipment 30 rather than being mixed with the cement Cn2 obtained after the cement clinker Cn1 is crushed in the first crushing equipment 30. The case of charging is preferable because the particle size is finer and the reactivity is higher.
 上述した、セメントCn2の製造過程における投入工程S20が、工程(d)に対応する。 The above-mentioned charging step S20 in the cement Cn2 manufacturing process corresponds to the step (d).
 (投入工程S60:セメント混練体製造時)
 分級工程S10で得られた粗粉B1Cは、コンクリート等のセメント混練体Cn3の製造時に、細骨材FAの一部代替材料として投入される。図16の例では、混合設備33内において、セメントCn2、水W1、細骨材FA、及び粗骨材CAと共に、粗粉B1Cが混合される場合が図示されている。混合設備33としては、上記のとおり一般的なミキサが用いられる。
(Charging step S60: At the time of manufacturing the cement kneaded body)
The coarse powder B1C obtained in the classification step S10 is added as a partial substitute material for the fine aggregate FA at the time of manufacturing the cement kneaded body Cn3 such as concrete. In the example of FIG. 16, the case where the coarse powder B1C is mixed together with the cement Cn2, the water W1, the fine aggregate FA, and the coarse aggregate CA is shown in the mixing facility 33. As the mixing equipment 33, a general mixer is used as described above.
 セメント混練体Cn3の製造に際し、細骨材FAに対する粗粉B1Cの代替率は、5質量%~40質量%とするのが好ましく、10質量%~30質量%とするのがより好ましく、15質量%~25質量%とするのが特に好ましい。 In the production of the cement kneaded body Cn3, the substitution rate of the coarse powder B1C with respect to the fine aggregate FA is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass, and 15% by mass. It is particularly preferable to use% to 25% by mass.
 上述したように、分級工程S10においてバイオマス灰(原灰)B1から分離された粗粉B1Cは、塩素含有率が低い。よって、セメント混練体Cn3の製造時に、細骨材FAの一部代替材料としてセメントCn2と共に混合しても、セメント混練体Cn3に含まれる塩素量を規制値以内に留めることができる。 As described above, the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a low chlorine content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, the amount of chlorine contained in the cement kneaded body Cn3 can be kept within the regulated value.
 上述したように、分級工程S10においてバイオマス灰(原灰)B1から分離された粗粉B1Cは、非晶質の含有率が相対的に低い。よって、セメント混練体Cn3の製造時に、細骨材FAの一部代替材料としてセメントCn2と共に混合しても、アルカリシリカ反応による膨張が生じにくい。 As described above, the coarse powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low amorphous content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, expansion due to the alkali-silica reaction is unlikely to occur.
 上述したように、分級工程S10においてバイオマス灰(原灰)B1から分離された粗粉B1Cは、硫黄酸化物の含有率が相対的に低い。よって、セメント混練体Cn3の製造時に、細骨材FAの一部代替材料としてセメントCn2と共に混合しても、セメント混練体Cn3の凝結が所望の状態から促進されるということがなく、セメント硬化物の品質を均質化できる。 As described above, the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low sulfur oxide content. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA at the time of manufacturing, the cement kneaded body Cn3 is not promoted from the desired state, and the cement hardened product is not promoted. The quality of can be homogenized.
 上述したように、分級工程S10においてバイオマス灰(原灰)B1から分離された粗粉B1Cは、強熱減量が相対的に低く未燃カーボンの量が少ない。よって、セメント混練体Cn3の製造時に、細骨材FAの一部代替材料としてセメントCn2と共に混合しても、得られたセメント硬化物に黒ずみが生じさせる可能性が低い。 As described above, the crude powder B1C separated from the biomass ash (raw ash) B1 in the classification step S10 has a relatively low ignition loss and a small amount of unburned carbon. Therefore, even if the cement kneaded body Cn3 is mixed with the cement Cn2 as a partial substitute material for the fine aggregate FA, it is unlikely that the obtained hardened cement product will be darkened.
 上述した、セメント混練体Cn3の製造過程における投入工程S60が、工程(g)に対応する。 The charging step S60 in the manufacturing process of the cement kneaded body Cn3 described above corresponds to the step (g).
 (変形例)
 本実施形態では、いくつかのバリエーションが可能である。
(Modification example)
In this embodiment, some variations are possible.
 〈1〉図17に示すように、分級工程S10によって分級された細粉B1Fに対して、水洗工程S30が実行された後に、セメント製造工程で投入されるものとしても構わない。図18は、図17のフローを実施する処理システム1の構成の一例を、図16にならって模式的に示すブロック図である。 <1> As shown in FIG. 17, the fine powder B1F classified by the classification step S10 may be charged in the cement manufacturing step after the washing step S30 is executed. FIG. 18 is a block diagram schematically showing an example of the configuration of the processing system 1 that implements the flow of FIG. 17 following FIG.
 この水洗工程S30については、第二実施形態で上述した内容と共通するため、詳細な説明は割愛される。なお、この水洗工程S30が工程(e)に対応する点も、上述した通りである。 Since this water washing step S30 has the same contents as those described above in the second embodiment, detailed description thereof will be omitted. It should be noted that the point that the water washing step S30 corresponds to the step (e) is also as described above.
 この方法によれば、第二実施形態と同様に、水洗水から得られた排水W4(セメント添加剤)と、細粉B1Fの水洗後に得られる脱水物Ck1の双方を、セメントCn2の製造過程で利用できる。また、本実施形態において上述したように、粗粉B1Cについては、セメント混練体Cn3の製造時に細骨材FAの一部代替材料として利用できる。これにより、バイオマス灰B1を余すことなくセメントCn2やセメント混練体Cn3の製造に利用できる。また、処分される排水量やその排水処理負荷を削減する効果も期待できる。 According to this method, as in the second embodiment, both the wastewater W4 (cement additive) obtained from the washing water and the dehydrated product Ck1 obtained after washing the fine powder B1F with water are used in the process of producing the cement Cn2. Available. Further, as described above in the present embodiment, the coarse powder B1C can be used as a partial substitute material for the fine aggregate FA at the time of producing the cement kneaded body Cn3. As a result, the biomass ash B1 can be fully used in the production of cement Cn2 and cement kneaded product Cn3. In addition, the effect of reducing the amount of wastewater to be disposed of and the load of wastewater treatment can be expected.
 〈2〉図19に示すように、分級工程S10の後に得られる粗粉B1Cに対しても、水洗工程が実行されてもよい(水洗工程S30a)。この場合、図20に示すように、処理システム1は、分級後の粗粉B1Cを水洗するための水洗設備40aを備えるものとしても構わない。粗粉B1Cに対する水洗工程S30aの実行に際しては、上述した細粉B1Fに対する水洗工程S30と同様の方法が利用できる。この粗粉B1Cに対して水洗した後に得られる脱水物Ck1が、投入工程S60においてセメント混練体Cn3の製造時に細骨材FAの一部代替材料として投入される。 <2> As shown in FIG. 19, a water washing step may be executed on the coarse powder B1C obtained after the classification step S10 (water washing step S30a). In this case, as shown in FIG. 20, the treatment system 1 may be provided with a water washing facility 40a for washing the coarse powder B1C after classification with water. In executing the water washing step S30a for the coarse powder B1C, the same method as the water washing step S30 for the fine powder B1F described above can be used. The dehydrated product Ck1 obtained after washing the coarse powder B1C with water is charged as a partial substitute material for the fine aggregate FA during the production of the cement kneaded product Cn3 in the charging step S60.
 上述したように、粗粉B1Cについては細粉B1Fと比べて塩素含有率が低下しているものの、この実施形態のように水洗工程S30aを施すことによって、更なる塩素含有率の低下が期待される。 As described above, although the chlorine content of the coarse powder B1C is lower than that of the fine powder B1F, it is expected that the chlorine content will be further reduced by performing the washing step S30a as in this embodiment. To.
 〈3〉図19に示す処理フローにおいて、分級工程S10と水洗工程(S30,S30a)とが並行的に実行されても構わない。この場合には、処理システム1として、水洗機能が搭載された分級設備20(40)が備えられる(図21参照)。この場合には、湿式分級機が好適に利用される。 <3> In the processing flow shown in FIG. 19, the classification step S10 and the water washing step (S30, S30a) may be executed in parallel. In this case, the treatment system 1 is provided with a classification facility 20 (40) equipped with a water washing function (see FIG. 21). In this case, a wet classifier is preferably used.
 更に、分級前の原灰(バイオマス灰B1)に対して水洗工程S30を行った後、分級工程S10を行っても構わない。この場合、分級工程S10は湿式による分級が採用される。この点は、上記各実施形態においても同様である。 Further, the raw ash (biomass ash B1) before classification may be subjected to the water washing step S30 and then the classification step S10. In this case, wet classification is adopted in the classification step S10. This point is the same in each of the above embodiments.
 〈4〉図22に示すように、分級工程S10によって分級された粗粉B1Cに対して、分析工程S61が実行されるものとしても構わない。図23は、図22のフローを実施する処理システム1の構成の一例を、図16にならって模式的に示すブロック図である。図23に示す処理システム1は、図16と比較して、分析設備61及び第二粉砕設備35を備える点が異なる。 <4> As shown in FIG. 22, the analysis step S61 may be executed on the crude powder B1C classified by the classification step S10. FIG. 23 is a block diagram schematically showing an example of the configuration of the processing system 1 that implements the flow of FIG. 22 following FIG. The processing system 1 shown in FIG. 23 is different from FIG. 16 in that it includes an analysis facility 61 and a second crushing facility 35.
 (分析工程S61)
 分級工程S10で得られた粗粉B1Cが、分析設備61において分析され、非晶質の割合が計測される。この計測は、得られた粗粉B1Cから抽出された一部に対して行われるものとしても構わない。分析設備61は、X線回折装置及び演算処理装置を含み、計測方法としては、X線回折の測定結果をリートベルト解析により算定する方法(XRD-リートベルト法)が好適に利用できる。
(Analysis step S61)
The crude powder B1C obtained in the classification step S10 is analyzed in the analysis facility 61, and the proportion of amorphous material is measured. This measurement may be performed on a part extracted from the obtained crude powder B1C. The analysis equipment 61 includes an X-ray diffractometer and an arithmetic processing unit, and as a measurement method, a method of calculating the measurement result of X-ray diffraction by Rietveld analysis (XRD-Rietveld method) can be preferably used.
 (粉砕工程S62)
 第一実施形態で上述したように、分級工程S10で得られた粗粉B1Cは、典型的には非晶質の割合が60質量%以下である。この非晶質の割合は、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、特に好ましくは30質量%以下である。しかしながら、バイオマス灰(原灰)B1の性状によっては、分級工程S10で得られた粗粉B1Cの非晶質の割合が比較的高くなる場合も考えられる。
(Crushing step S62)
As described above in the first embodiment, the crude powder B1C obtained in the classification step S10 typically has an amorphous ratio of 60% by mass or less. The proportion of the amorphous material is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less. However, depending on the properties of the biomass ash (raw ash) B1, the proportion of amorphous crude powder B1C obtained in the classification step S10 may be relatively high.
 分析工程S61における分析結果に基づき、粗粉B1Cの非晶質の割合が基準値よりも高い場合には、第二粉砕設備35によって粉砕される。第二粉砕設備35が、第一粉砕設備30と同様の設備を利用できる点については、第一実施形態で上述した通りである。 Based on the analysis result in the analysis step S61, when the amorphous ratio of the crude powder B1C is higher than the reference value, it is crushed by the second crushing equipment 35. The point that the second crushing equipment 35 can use the same equipment as the first crushing equipment 30 is as described above in the first embodiment.
 非晶質の割合が基準値を上回る粗粉B1Cを、セメント混練体Cn3の製造時に細骨材FAの一部代替材料として利用されると、セメント混練体Cn3がアルカリシリカ反応を生じさせる可能性がある。一方で、この粗粉B1Cは、バイオマス灰B1を分級後に得られたものであり、カルシウム、硫黄、塩素、及び炭素の含有率が低く、石炭灰の組成に近い。このため、セメントクリンカCn1の原料やセメントCn2の製造時の混合材として活用できる。 If the coarse powder B1C having an amorphous ratio exceeding the standard value is used as a partial substitute material for the fine aggregate FA during the production of the cement kneaded body Cn3, the cement kneaded body Cn3 may cause an alkali-silica reaction. There is. On the other hand, this crude powder B1C is obtained after the biomass ash B1 is classified, and has a low content of calcium, sulfur, chlorine, and carbon, and has a composition close to that of coal ash. Therefore, it can be used as a raw material for cement clinker Cn1 or as a mixed material for manufacturing cement Cn2.
 粗粉B1Cはそのままでは粒径が大きいため、粉砕工程S62で粉砕された後、得られた粉砕粗粉B2CがセメントCn2の製造工程で投入される。この粉砕工程S62が工程(c)に対応し、粉砕粗粉B2CをセメントCn2の製造過程で投入する工程S20が工程(b)に対応する。 Since the coarse powder B1C has a large particle size as it is, it is crushed in the crushing step S62, and then the obtained crushed coarse powder B2C is added in the cement Cn2 manufacturing process. This crushing step S62 corresponds to the step (c), and the step S20 in which the crushed coarse powder B2C is added in the manufacturing process of the cement Cn2 corresponds to the step (b).
 ただし、粗粉B1Cが第一粉砕設備30に投入される場合には、第二粉砕設備35は必ずしも不要である。なお、粗粉B1CをセメントクリンカCn1の原料とする場合は、粉砕設備62は、クリンカ製造設備10における原料粉砕機としてもよい。 However, when the coarse powder B1C is put into the first crushing equipment 30, the second crushing equipment 35 is not always necessary. When the coarse powder B1C is used as a raw material for the cement clinker Cn1, the crushing facility 62 may be a raw material crusher in the clinker manufacturing facility 10.
 〈5〉本実施形態において、バイオマス灰B1を分級後に得られた粗粉B1Cが、少なくともセメント混練体Cn3の製造時に利用されていれば、細粉B1Fについては他の用途に利用されても構わない。 <5> In the present embodiment, as long as the crude powder B1C obtained after classifying the biomass ash B1 is used at least during the production of the cement kneaded product Cn3, the fine powder B1F may be used for other purposes. do not have.
 [別実施形態]
 上述した各実施形態の内容は、適宜組み合わせられても構わない。
[Another Embodiment]
The contents of each of the above-described embodiments may be combined as appropriate.
 [検証1]
 パーム椰子殻を燃料にして循環流動床炉による発電を実施しているバイオマス発電施設P1から焼却飛灰BA-1(粒度D50が47.2μm、975℃における強熱減量(ig.loss)が4.17%)を入手し(バイオマス灰B1)、これを分級することによるバイオマス灰の成分組成に与える影響を検討した。パーム椰子殻と石炭の混合燃料中の石炭の含有率は10質量%であった。なお、この焼却飛灰BA-1の粒度分布(レーザー回析式粒度分布測定装置:マイクロトラック・ベル製MT3300EX IIを利用)は、図3に示した通りである。
[Verification 1]
Incinerator fly ash BA-1 (grain size D50 is 47.2 μm, ignition loss (ig.loss) at 975 ° C. is 4 from the biomass power generation facility P1 that uses palm coconut shells as fuel to generate electricity with a circulating fluidized bed furnace. .17%) was obtained (biomass ash B1), and the effect of classifying it on the composition of biomass ash was investigated. The content of coal in the mixed fuel of palm coconut shell and coal was 10% by mass. The particle size distribution of this incinerated fly ash BA-1 (laser diffraction type particle size distribution measuring device: using MT3300EX II manufactured by Microtrac Bell) is as shown in FIG.
  《試験方法》
 以下、試験方法を説明する。
"Test method"
The test method will be described below.
 〈1.分級〉
 表1に示す分級点となるように設定された目開きの篩(スピンエアシーブ:セイシン企業製SAR-75/200)を用いてバイオマス灰B1を篩に掛け、篩通過分として細粉B1Fを、篩残分として粗粉B1Cを得た。この処理が分級工程S10に対応する。この分級点は、図3に示した粒度分布に基づいて設定されたものである。試験では、32μm、45μm、及び90μmの3種類の分級点において、それぞれバイオマス灰B1が分級された。なお、以下では、バイオマス灰B1が分級前であることを明確にするために、「原灰B1」と表記することがある。
<1. Classification>
Sieve the biomass ash B1 using an open sieve (spin air sheave: SAR-75 / 200 manufactured by Seishin Enterprise Co., Ltd.) set to be the classification point shown in Table 1, and use the fine powder B1F as the sieve passing component. , Crude powder B1C was obtained as a sieve residue. This process corresponds to the classification step S10. This classification point is set based on the particle size distribution shown in FIG. In the test, biomass ash B1 was classified at three classification points of 32 μm, 45 μm, and 90 μm, respectively. In the following, in order to clarify that the biomass ash B1 is before classification, it may be referred to as "raw ash B1".
 分級後のバイオマス灰の粒度分布は表1の通りである。なお、表1には、バイオマス発電施設P1とは別のバイオマス発電施設P2から入手した焼却飛灰BA-2に対して、45μmを分級点として分級した後に得られた粗粉B1Cについても併せて示されている。粒度分布は、レーザー回析式粒度分布測定装置(マイクロトラック・ベル製MT3300EX II)によって、測定された。 Table 1 shows the particle size distribution of biomass ash after classification. Table 1 also shows the crude powder B1C obtained after classifying the incinerated fly ash BA-2 obtained from the biomass power generation facility P2, which is different from the biomass power generation facility P1, with a classification point of 45 μm. It is shown. The particle size distribution was measured by a laser diffraction type particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〈2.鉱物組成分析〉
 焼却飛灰BA-1由来の原灰B1(符号#1)、原灰B1を45μmで分級した粗粉B1C(符号#2)、原灰B1を45μmで分級した細粉B1F(符号#3)、原灰B1を90μmで分級した粗粉B1C(符号#6)、焼却飛灰BA-2由来の粗粉B1C(符号#8)の鉱物組成を、XRD/リートベルト法を用いて測定した。
<2. Mineral composition analysis>
Raw ash B1 (reference numeral # 1) derived from incinerated fly ash BA-1, coarse powder B1C (reference numeral # 2) obtained by classifying raw ash B1 by 45 μm, and fine powder B1F (reference numeral # 3) obtained by classifying raw ash B1 by 45 μm. The mineral composition of the crude powder B1C (reference numeral # 6) obtained by classifying the raw ash B1 at 90 μm and the crude powder B1C (reference numeral # 8) derived from the incinerated fly ash BA-2 was measured using the XRD / Rietbelt method.
 なお、焼却飛灰BA-1由来の原灰B1(符号#1)については、更に外割で20質量%(含水率16.7質量%)の水を添加した後に20℃で3日間保管し、105℃で乾燥させることで湿灰とした上で、同様の方法で鉱物組成を測定した。このバイオマス灰は「符号#1W」と表記される。更に、この湿灰化された原灰B1(#1W)を45μmで分級した粗粉B1C(「符号#2W」と表記される。)についても同様の方法で鉱物組成を測定した。なお、湿灰化した原灰B1(#1W)を分級するに際しては、エアジェットシーブ(ホソカワミクロン社製、e200LS)が用いられた。 The raw ash B1 (reference numeral # 1) derived from incinerated fly ash BA-1 is further stored at 20 ° C. for 3 days after adding 20% by mass (water content 16.7% by mass) of water by external percentage. The mineral composition was measured by the same method after making a wet ash by drying at 105 ° C. This biomass ash is described as "reference numeral # 1W". Further, the mineral composition of the crude powder B1C (denoted as "reference numeral # 2W") obtained by classifying the wet ashized raw ash B1 (# 1W) by 45 μm was measured by the same method. When classifying the wet ash raw ash B1 (# 1W), an air jet sheave (manufactured by Hosokawa Micron Corporation, e200LS) was used.
 まず、上記各符号(#1,#2,#3,#6,#8,#1W,#2W)に対応するバイオマス灰に対し、内部標準物質としてコランダム(Al23)を内割りで10%添加した試料を用いて、X線回折装置(ブルカー・エイエックスエス社製D8 ADVANCE A-25)によってX線回折パターンを測定した。X線回折の測定条件は、CuKα線、管電圧50kV、管電流40mA、走査範囲5°~65°(2θ)、ステップ幅0.0234、スキャンスピード0.13sec/stepとした。次に、得られた回折パターンを用いてソフトウェア(ブルカー・エイエックス社製TOPAS Ver.6.0)によりリートベルト解析を行い、鉱物組成の定量結果を得た。 First, corundum (Al 2 O 3 ) is internally divided as an internal standard substance for the biomass ash corresponding to each of the above codes (# 1, # 2, # 3, # 6, # 8, # 1W, # 2W). The X-ray diffraction pattern was measured by an X-ray diffractometer (D8 ADVANCE A-25 manufactured by Bruker AXS Co., Ltd.) using a sample to which 10% was added. The measurement conditions for X-ray diffraction were CuKα ray, tube voltage 50 kV, tube current 40 mA, scanning range 5 ° to 65 ° (2θ), step width 0.0234, and scanning speed 0.13 sec / step. Next, Rietveld analysis was performed using software (TOPAS Ver.6.0 manufactured by Bruker AEX Co., Ltd.) using the obtained diffraction pattern, and quantitative results of the mineral composition were obtained.
 得られた結果のうち、コランダム定量値より、以下の式(1)を用いて非晶質量を算出した。
 G = 100・(A-R)/{A・(100-R)/100}  …(1)
 なお、(1)式において、Gは非晶質量(%)、RはAl233混合率(%)、AはAl23の定量値(%)である。
From the obtained results, the amorphous amount was calculated from the corundum quantitative value using the following formula (1).
G = 100 · (AR) / {A · (100-R) / 100} ... (1)
In the formula (1), G is an amorphous amount (%), R is a 3 mixing ratio (%) of Al 2 O 3 , and A is a quantitative value (%) of Al 2 O 3 .
 また、リートベルト解析から得られた定量結果を、コランダムの定量値を除いた組成の合計量が100%となるように標準化した上で、更にこの値から非晶質量を除いた割合で標準化した値をもって、各バイオマス灰(#1,#2,#3,#6,#8,#1W,#2W)の鉱物組成とした。 In addition, the quantification results obtained from the Rietbelt analysis were standardized so that the total amount of the composition excluding the quantified value of corundum was 100%, and then standardized at the ratio obtained by subtracting the amorphous amount from this value. The value was used as the mineral composition of each biomass ash (# 1, # 2, # 3, # 6, # 8, # 1W, # 2W).
 鉱物組成分析の結果を、表2に示す。 Table 2 shows the results of the mineral composition analysis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2によれば、#1~#3の対比結果から、分級工程S10によって得られる粗粉B1Cは、細粉B1Fよりも非晶質割合が低下することが確認される。なお、#1Wと#2Wの対比結果によれば、湿灰においても同様に、分級工程S10によって得られる粗粉B1Cは、細粉B1Fよりも非晶質割合が低下することが確認される。 According to Table 2, from the comparison results of # 1 to # 3, it is confirmed that the coarse powder B1C obtained by the classification step S10 has a lower amorphous ratio than the fine powder B1F. According to the comparison results of # 1W and # 2W, it is confirmed that the coarse powder B1C obtained by the classification step S10 also has a lower amorphous ratio than the fine powder B1F in the wet ash.
 なお、図24は、焼却飛灰BA-1由来の原灰B1の偏光顕微鏡観察画像である。詳細には、原灰B1を抽出してエポキシ樹脂で固めた後、20mm×30mm程度のチップを切り出して厚さ20μm程度の鏡面研磨薄片を作製した。この鏡面研磨薄片を偏光顕微鏡下で観察し、試料を構成する物質を確認した。 Note that FIG. 24 is a polarizing microscope observation image of the raw ash B1 derived from the incinerated fly ash BA-1. Specifically, after extracting the raw ash B1 and hardening it with an epoxy resin, a chip having a size of about 20 mm × 30 mm was cut out to prepare a mirror-polished slice having a thickness of about 20 μm. The mirror-polished flakes were observed under a polarizing microscope to confirm the substances constituting the sample.
 図24に示す画像によれば、石英粒子の周囲の一部のみが溶融してガラス化(非晶質化)していることが確認されており、粒径が相対的に大きい粗粉側に含まれる非晶質の割合が低いことが分かる。 According to the image shown in FIG. 24, it is confirmed that only a part around the quartz particles is melted and vitrified (amorphized), and the coarse powder side having a relatively large particle size is confirmed. It can be seen that the proportion of amorphous contained is low.
 〈3.圧縮強度試験,4.アルカリシリカ反応試験〉
 JIS R 5201「セメントの物理試験方法」に準拠して、普通ポルトランドセメントと、水、及び細骨材を混合して供試体としてのモルタルを製作し、このモルタルに対して圧縮強度試験を行った。
<3. Compressive strength test, 4. Alkaline silica reaction test>
In accordance with JIS R 5201 "Physical test method for cement", ordinary Portland cement, water, and fine aggregate were mixed to produce a mortar as a specimen, and a compressive strength test was performed on this mortar. ..
 また、JIS A 1146「骨材のアルカリシリカ反応性試験方法(モルタルバー法)」に準拠して、普通ポルトランドセメントと、水、及び細骨材を混合して供試体としてのモルタルを製作し、このモルタルに対してアルカリシリカ反応性試験を行った。 In addition, in accordance with JIS A 1146 "Alkaline Silica Reactivity Test Method for Aggregate (Mortar Bar Method)", ordinary Portland cement, water, and fine aggregate were mixed to produce a mortar as a specimen. An alkali silica reactivity test was performed on this mortar.
 比較例1は、細骨材として山砂のみが利用された。また、実施例1~5は、細骨材の一部を山砂から上記表2内のバイオマス灰の粗粉B1C(#2,#6,#8)に所定の置換率で置換したものが利用された。試験に利用された山砂NSの性状を表3に示す。実施例1~5及び比較例1における、圧縮強度試験及びアルカリシリカ反応試験の結果を表4に示す。 In Comparative Example 1, only mountain sand was used as the fine aggregate. Further, in Examples 1 to 5, a part of the fine aggregate was replaced with the coarse powder B1C (# 2, # 6, # 8) of the biomass ash in Table 2 above from the mountain sand at a predetermined substitution rate. It was used. Table 3 shows the properties of the mountain sand NS used in the test. Table 4 shows the results of the compressive strength test and the alkali-silica reaction test in Examples 1 to 5 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4によれば、焼却飛灰BA-1由来の粗粉B1C(#2,#6)を用いた実施例1~4、及び焼却飛灰BA-2由来の粗粉B1C(#8)を用いた実施例5のいずれにおいても、アルカリシリカ反応性試験の結果が区分Aであり、山砂NSのみを用いた比較例1と同様に、アルカリシリカ反応が生じにくいことが確認される。これは、いずれの粗粉B1C(#2,#6,#8)についても、非晶質の割合が60質量%以下に抑制されていることで、アルカリ金属に対する反応性が低く抑えられていることによると考えられる。ただし、実施例1~5の中では相対的に非晶質の割合が高い(48.2%)、実施例5においては、モルタルバー法における膨張率が他の実施例よりも高くなっている。 According to Table 4, Examples 1 to 4 using the coarse powder B1C (# 2, # 6) derived from the incinerated fly ash BA-1 and the coarse powder B1C (# 8) derived from the incinerated fly ash BA-2 were used. In any of the 5 examples used, the result of the alkali silica reactivity test is Category A, and it is confirmed that the alkali silica reaction is unlikely to occur as in Comparative Example 1 using only the fly ash NS. This is because the amorphous ratio of any of the crude powders B1C (# 2, # 6, # 8) is suppressed to 60% by mass or less, so that the reactivity with the alkali metal is suppressed to be low. It is thought that this is the case. However, the proportion of amorphous material is relatively high in Examples 1 to 5 (48.2%), and in Example 5, the expansion rate in the mortar bar method is higher than in other Examples. ..
 また、同じ分級点(45μm)で分級されて得られた粗粉B1C(#2)の置換率を変えた実施例1~3を対比すると、置換率を高めるほど供試体のモルタルの圧縮強度が高められていることが分かる。これは、置換率が高められたことで、非晶質の量がアルカリシリカ反応を促進しない範囲内で増え、セメントペーストとの反応性が高まってセメントペーストと細骨材との付着強度が高まったことによるものと推察される。D10が110μmを超える実施例4では、他の実施例よりも膨張率と圧縮強度が低い。 Further, comparing Examples 1 to 3 in which the substitution rates of the crude powder B1C (# 2) obtained by classification at the same classification point (45 μm) were changed, the compressive strength of the mortar of the specimen increased as the substitution rate increased. You can see that it has been enhanced. This is because the amount of amorphous increases within the range that does not promote the alkali-silica reaction due to the increased substitution rate, the reactivity with the cement paste increases, and the adhesion strength between the cement paste and the fine aggregate increases. It is presumed that this is due to the fact. In Example 4 in which D10 exceeds 110 μm, the expansion rate and the compressive strength are lower than those in the other examples.
 〈5.化学組成分析〉
 焼却飛灰BA-1由来の原灰B1(#1)、各粗粉B1C(#2,#4)、各細粉B1F(#3,#5)、原灰B1を湿灰化したもの(#1W)、湿灰化した原灰B1(#1W)を45μmで分級した粗粉B1C(#2W)のそれぞれに対し、化学成分を測定した。また、原灰B1を20μmを分級点として分級した粗粉B1C(#9)及び細粉B1F(#10)を得て、これらに対しても同様に化学成分を測定した。更に、原灰B1(#1)及び45μmで分級した細粉B1F(#3)に対しては、以下の方法で水洗処理を施したものを準備し(#1Wp,#3Wp)、同様に化学成分を測定した。
<5. Chemical composition analysis>
Raw ash B1 (# 1) derived from incinerated fly ash BA-1, each coarse powder B1C (# 2, # 4), each fine powder B1F (# 3, # 5), and raw ash B1 are wet ashed ( The chemical composition was measured for each of # 1W) and the crude powder B1C (# 2W) obtained by classifying the wet ashed raw ash B1 (# 1W) at 45 μm. Further, coarse powder B1C (# 9) and fine powder B1F (# 10), which were classified by classifying the raw ash B1 with 20 μm as a classification point, were obtained, and the chemical components of these were also measured in the same manner. Further, for the raw ash B1 (# 1) and the fine powder B1F (# 3) classified by 45 μm, those which have been washed with water by the following method are prepared (# 1Wp, # 3Wp) and similarly chemicalized. The components were measured.
 湿灰化の方法は、次の通りである。原灰B1(符号#1)に対して、外割で20質量%(含水率16.7質量%)の水を添加した後に20℃で3日間保管し、105℃で乾燥させることで湿灰とした。この方法で湿灰化された原灰B1が「符号#1W」に対応し、この湿灰化された原灰#1Wを分級して得られた粗粉B1Cが「符号#2W」に対応する。なお、湿灰化した原灰B1(#1W)を分級するに際しては、エアジェットシーブ(ホソカワミクロン社製、e200LS)が用いられた。 The method of moist ashing is as follows. Wet ash by adding 20% by mass (water content 16.7% by mass) of water to the raw ash B1 (reference numeral # 1), storing at 20 ° C for 3 days, and drying at 105 ° C. And said. The raw ash B1 moistened by this method corresponds to "reference numeral # 1W", and the crude powder B1C obtained by classifying the wet ashed raw ash # 1W corresponds to "reference numeral # 2W". .. When classifying the wet ash raw ash B1 (# 1W), an air jet sheave (manufactured by Hosokawa Micron Corporation, e200LS) was used.
 水洗処理の手順は以下の通りである。なお、この水洗処理は工程S30に対応する。
 (手順1)バイオマス灰(B1,B1F)100gと水道水400gをビーカーに投入し、スラリーにして、攪拌機にて400rpmで30分間攪拌した。このとき、水洗時にCO2ガスを流入してpH調整を行う場合には、pHメータで液中pHを監視しながら流量を調整した。
 (手順2)攪拌を停止後、ブフナーロートを使用して濾別し、得られた濾紙上のケーキに対して更に水道水400gを投入してスラリーを洗浄後、回収した。
 (手順3)回収したケーキを自然乾燥後、質量を測定し、各種分析を行った。
The procedure for washing with water is as follows. This water washing process corresponds to step S30.
(Procedure 1) 100 g of biomass ash (B1, B1F) and 400 g of tap water were put into a beaker to make a slurry, which was stirred with a stirrer at 400 rpm for 30 minutes. At this time, when adjusting the pH by inflowing CO 2 gas during washing with water, the flow rate was adjusted while monitoring the pH in the liquid with a pH meter.
(Procedure 2) After stopping stirring, filtration was performed using a Büchner funnel, and 400 g of tap water was further added to the obtained cake on the filter paper to wash the slurry and then recovered.
(Procedure 3) After the collected cake was naturally dried, the mass was measured and various analyzes were performed.
 また、得られた粗粉に対しては、ボールミルを用いて粉砕を行った。 The obtained coarse powder was pulverized using a ball mill.
 化学成分の測定は、以下の方法で行われた。
 準備された各試料(#1~#5,#9~#10,#1W,#2W,#1Wp,#3Wp)に対し、蛍光X線装置(リガク社製、ZSX Primus II)を用いて、検量線(石炭灰)法によって化学成分を測定した。その結果を表5に示す。
The measurement of the chemical composition was carried out by the following method.
For each prepared sample (# 1 to # 5, # 9 to # 10, # 1W, # 2W, # 1Wp, # 3Wp), a fluorescent X-ray apparatus (Rigaku, ZSX Primus II) was used. The chemical composition was measured by the calibration curve (coal ash) method. The results are shown in Table 5.
 なお、それぞれの強熱減量は、JIS R 5202 「セメントの化学分析方法」に準じた方法で測定した。また、焼却飛灰と得られた試料の炭酸化カルシウム量は、窒素雰囲気中で試料約50mgを昇温速度20℃/分にて1000℃まで昇温したときの600℃~700℃付近の質量減少量を求め、試薬との重量減少との比率により求めた(NETZSCH社製TG-DTA 2000SRを利用)。また、焼却飛灰と得られた試料の水酸化カルシウム量は、窒素雰囲気中で試料約50mgを昇温速度10℃/分にて1000℃まで昇温したときの400℃付近の吸熱量を求め、試薬との重量減少との比率により求めた(NETZSCH社製 DSC404F3を利用)。 Each ignition loss was measured by a method according to JIS R5202 "Cement Chemical Analysis Method". The amount of incinerated fly ash and the amount of calcium carbonate in the obtained sample is about 600 ° C to 700 ° C when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C at a heating rate of 20 ° C / min. The amount of decrease was calculated and calculated by the ratio of the weight reduction with the reagent (using TG-DTA2000SR manufactured by NETZSCH). As for the amount of calcium hydroxide in the incinerated fly ash and the obtained sample, the amount of heat absorption around 400 ° C. when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C. at a heating rate of 10 ° C./min is obtained. , Determined by the ratio of weight loss with the reagent (using DSC404F3 manufactured by NETZSCH).
 水和物生成量は、上記強熱減量より上記炭酸化カルシウム量から揮発する脱炭酸分を除いたものとした。なお、原灰B1の水和物生成量は1.8%、湿灰化したもの(#1W)では6.0%であった。 The amount of hydrate produced was the above-mentioned loss on ignition minus the amount of decarboxylation that volatilized from the amount of calcium carbonate. The amount of hydrate produced from the raw ash B1 was 1.8%, and that of the wet ash (# 1W) was 6.0%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果によれば、乾灰である原灰B1を、粒度分布を頻度で表した場合の細粒側の山と粗粒側の山の間を分級点として分級すると、細粉(B1F)側に塩素成分と硫黄成分(SO3)のほとんどが含まれた。また、これを水洗することで効率的に塩素成分が除去できていることが確認された。このため、特に水洗後の細粉については、セメント混合材として好適であることが分かる。一方、粗粉B1Cは分級を行うのみでも効率的に塩素成分が除去できていることが確認された。 According to the results in Table 5, when the raw ash B1 which is a dry ash is classified with the peaks on the fine grain side and the peaks on the coarse grain side as the classification points when the particle size distribution is expressed in frequency, fine powder (B1F). ) Side contained most of the chlorine and sulfur components (SO 3 ). In addition, it was confirmed that the chlorine component could be efficiently removed by washing this with water. Therefore, it can be seen that the fine powder after washing with water is particularly suitable as a cement mixture. On the other hand, it was confirmed that the crude powder B1C was able to efficiently remove the chlorine component only by classifying.
 原灰を分級した粗粉(B1C)側のアルカリ金属の減少量は小さいが、塩素成分と硫黄成分をほとんど含まない上、原灰と比べてCaOが減少し、SiO2が増加している。よって、粗粉は石炭灰の化学組成に近くなり、セメントクリンカの原料として好適であることが分かる。 Although the amount of decrease in alkali metal on the crude powder (B1C) side obtained by classifying the raw ash is small, it contains almost no chlorine component and sulfur component, CaO is reduced and SiO 2 is increased as compared with the raw ash. Therefore, it can be seen that the crude powder has a chemical composition close to that of coal ash and is suitable as a raw material for cement clinker.
 一方、原灰B1を湿灰化したもの(#1W)と、これを45μmで分級した粗粉B1C(#2W)とを対比すると、分級による塩素濃度の低下の程度は低いことが確認される。これは、原灰B1が湿灰化されたことで凝集と水和反応が生じており、生成された水和物に塩素(Cl)分が取り込まれた結果、分級による除去率が低下したものと推定される。原灰B1を湿灰化したもの(#1W)は水和反応が生じており、乾灰である原灰B1よりも強熱減量が増加していた。 On the other hand, when the raw ash B1 that has been moistened (# 1W) is compared with the crude powder B1C (# 2W) that has been classified by 45 μm, it is confirmed that the degree of decrease in chlorine concentration due to the classification is low. .. This is because the raw ash B1 was moistened to cause agglutination and hydration reaction, and chlorine (Cl) was incorporated into the produced hydrate, resulting in a decrease in the removal rate by classification. It is estimated to be. The wet ash of the raw ash B1 (# 1W) had a hydration reaction, and the ignition loss was increased as compared with the dry ash B1.
 〈6.物理試験〉
 焼却飛灰BA-1由来の原灰B1(#1)、分級点を45μmとして得られた粗粉B1C(#2)及び細粉B1F(#3)につき、ブレーン比表面積、フロー値比、及び活性度指数を、JIS A 6201「コンクリート用フライアッシュ」の附属書Cに準拠した方法で、測定した。更に、粗粉B1C(#2)に対しては細粉B1Fと同等程度の粒度になるようにミルで粉砕し、同様にブレーン比表面積、フロー値比、及び活性度指数を測定した。なお、粗粉B1Cを粉砕して得られた粉砕物(#2C)は、図22~図23内の符号B2Cを模擬したものである。この測定結果を表6に示す。
<6. Physical test>
For the raw ash B1 (# 1) derived from incinerated fly ash BA-1, the coarse powder B1C (# 2) and the fine powder B1F (# 3) obtained with a classification point of 45 μm, the brain specific surface area, flow value ratio, and The activity index was measured by a method according to Annex C of JIS A 6201 "Fly Ash for Concrete". Further, the coarse powder B1C (# 2) was pulverized with a mill so as to have a particle size equivalent to that of the fine powder B1F, and the brain specific surface area, flow value ratio, and activity index were measured in the same manner. The crushed product (# 2C) obtained by crushing the coarse powder B1C is a simulation of the reference numeral B2C in FIGS. 22 to 23. The measurement results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6によれば、原灰B1を分級して得られた細粉B1Fを混合材として用いた場合は、原灰B1を用いた場合よりも活性度指数が高くなることが確認された。なお、粗粉B1Cについては、ブレーン比表面積が4000cm2/g以上になるまで粉砕を行えば、原灰B1よりも反応性の高いポゾラン混合材として利用できることが明らかとなった。よって、非晶質の割合が比較的高い粗粉B1Cを粉砕したものは、より反応性の高いセメントCn2の混合材として活用できることが示唆される。 According to Table 6, it was confirmed that when the fine powder B1F obtained by classifying the raw ash B1 was used as a mixed material, the activity index was higher than that when the raw ash B1 was used. It was clarified that the crude powder B1C can be used as a pozzolan mixture having higher reactivity than the raw ash B1 if it is pulverized until the brain specific surface area becomes 4000 cm 2 / g or more. Therefore, it is suggested that the crushed coarse powder B1C having a relatively high amorphous ratio can be used as a mixed material of cement Cn2 having higher reactivity.
 [検証2]
 木質バイオマス(間伐材)を燃料にして循環流動床炉による発電を実施しているバイオマス発電施設P2から飛灰(粒度D50(頻度)が45.3μm、750℃における強熱減量(ig. loss)が2.3%)を入手し、これを水洗すること、及びその水洗の際の酸化工程(特には炭酸化工程)の有無が成分組成に与える影響を検討した。なお、水洗方法については検証1と同様である。
[Verification 2]
Fly ash (grain size D50 (frequency) 45.3 μm, ignition loss at 750 ° C) from biomass power generation facility P2 that uses woody biomass (thinned wood) as fuel to generate electricity with a circulating fluidized bed furnace. 2.3%) was obtained, and the effect of washing it with water and the presence or absence of an oxidation step (particularly a carbonation step) at the time of washing with water was examined. The washing method is the same as in Verification 1.
 以下の表7は、各水洗条件の水準を示す。 Table 7 below shows the level of each washing condition.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 《分析》
 得られた試料につき、それぞれ以下の方法で分析を行った。
 Clの定量:試料を硝酸分解処理した後、電位差滴定法により測定した。
 K,Naの定量:試料を酸分解処理した後、ICP発光分光分析法により測定した。
 Se,Cr6+の溶出試験:JIS K 0058-1「スラグ類の化学物質試験方法-第1部:溶出試験方法 5.利用有姿による試験」に準拠した方法で検液を作成した後、SeについてはICP質量分析法によって、Cr6+はジフェニルカルバジド吸光光度法によってそれぞれ測定した。
 C,Mg,Al,Si,P,S,Ca,Feの定量:40℃乾燥処理を施した試料を蛍光X線装置(FP法:ファンダメンタルパラメータ法)によって測定した。
"analysis"
The obtained samples were analyzed by the following methods.
Quantification of Cl: After the sample was subjected to nitric acid decomposition treatment, it was measured by a potentiometric titration method.
Quantification of K and Na: After the sample was acid-decomposed, it was measured by ICP emission spectroscopy.
Dissolution test of Se, Cr 6+ : After preparing the test solution by the method based on JIS K 0058-1 "Test method for chemical substances of slag-Part 1: Dissolution test method 5. Test by appearance" Se was measured by the ICP mass analysis method, and Cr 6+ was measured by the diphenylcarbazide absorptiometry.
Quantification of C, Mg, Al, Si, P, S, Ca, Fe: The sample subjected to the drying treatment at 40 ° C. was measured by a fluorescent X-ray apparatus (FP method: fundamental parameter method).
 また、原灰及び得られた試料の炭酸化カルシウム量は、窒素雰囲気中で試料約50mgを昇温速度20℃/分にて1000℃まで昇温したときの600℃~700℃付近の質量減少量を求め、試薬との重量減少との比率により求めた(NETZSCH社製 TG-DTA 2000SRを利用)。また、原灰(飛灰)及び得られた試料に含まれる水酸化カルシウム量は、窒素雰囲気中で試料約50mgを昇温速度10℃/分にて1000℃まで昇温したときの400℃付近の吸熱量を求め、試薬との重量減少との比率により求めた(NETZSCH社製 DSC404F3を利用)。 The amount of calcium carbonate in the raw ash and the obtained sample decreased by about 600 ° C to 700 ° C when the temperature of the sample was raised to 1000 ° C at a heating rate of 20 ° C / min in a nitrogen atmosphere. The amount was calculated and calculated by the ratio of the weight reduction with the reagent (using TG-DTA2000SR manufactured by NETZSCH). The amount of calcium hydroxide contained in the raw ash (fly ash) and the obtained sample is around 400 ° C. when the temperature of the sample is about 50 mg in a nitrogen atmosphere and the temperature is raised to 1000 ° C. at a heating rate of 10 ° C./min. The amount of heat absorbed was determined by the ratio of the weight reduction with the reagent (using DSC404F3 manufactured by NETZSCH).
 測定結果を表8及び表9に示す。 The measurement results are shown in Tables 8 and 9.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表8によれば、原灰を水洗することにより塩素のほとんどが有効に除かれ、混合材として用いた場合のセメントを水硬化した後、鉄筋等への腐食作用のおそれがないと評価される許容基準の0.035質量%以下を満たすことが確認された。つまり、水洗後のバイオマス灰を分級した場合、細粉側及び粗粉側の双方にも塩素がほとんど含まれないことが分かる。 According to Table 8, most of the chlorine is effectively removed by washing the raw ash with water, and it is evaluated that there is no risk of corrosive action on the reinforcing bars, etc. after the cement is hydrohardened when used as a mixed material. It was confirmed that the allowable standard of 0.035% by mass or less was satisfied. That is, it can be seen that when the biomass ash after washing with water is classified, chlorine is hardly contained on both the fine powder side and the coarse powder side.
 また、表8によれば、原灰に含まれる水溶性セレンや六価クロムも水洗により有効に除かれており、混合材として用いた場合の重金属類の溶出のおそれが低減することが明らかとなった。 Further, according to Table 8, it is clear that water-soluble selenium and hexavalent chromium contained in the raw ash are also effectively removed by washing with water, and the risk of elution of heavy metals when used as a mixed material is reduced. became.
 表9に示すように、このバイオマス灰は、SiO2やCaOが主要な構成成分であり、反応性の高いポゾラン混合材として有用であることが明らかとなった。 As shown in Table 9, it was clarified that this biomass ash contains SiO 2 and CaO as main constituents and is useful as a highly reactive pozzolan mixture.
 水準2-2の結果によれば、CO2ガスを吹き込みながら水洗を行うことで、水洗後のバイオマス灰のCO2含有率が上昇することが明らかとなった。よって、pH調整のための成分は、水洗の操作後にはその少なくとも一部が灰中に固定化され、炭酸カルシウムが生成されたものと考えられる。また、CO2ガスを吹き込みながら水洗を行うことで、水酸化カルシウムが消失していた。表9において、水酸化カルシウムの含有量が0.01%未満であることは、検出限界未満であることを意味している。 According to the results of Level 2-2, it was clarified that the CO 2 content of the biomass ash after washing with water was increased by washing with water while blowing CO 2 gas. Therefore, it is considered that at least a part of the component for pH adjustment was immobilized in the ash after the operation of washing with water to generate calcium carbonate. In addition, calcium hydroxide disappeared by washing with water while blowing CO 2 gas. In Table 9, a calcium hydroxide content of less than 0.01% means below the detection limit.
 下記表10には、XRD法により灰中のカルシウム成分の存在形態を調べた結果を示す。 Table 10 below shows the results of examining the existence form of the calcium component in the ash by the XRD method.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9及び表10によれば、原灰ではカルシウム成分の形態として、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(炭酸カルシウム)、CaSO4(石膏)の各Ca化合物の存在が確認された。これに対して、pH調整せずに水洗した水準2-1では、CaO(生石灰)の存在は消失し、Ca(OH)2(消石灰)の存在の減少が確認された。また、CO2ガスを吹込みながらpH9の条件で水洗した水準2-2では、CaO(生石灰)とCa(OH)2(消石灰)の存在が消失し、炭酸カルシウムが増加したことが確認された。 According to Tables 9 and 10, the presence of each Ca compound of CaO (quicklime), Ca (OH) 2 (slaked lime), CaCO 3 (calcium carbonate), and CaSO 4 (plaster) as the form of calcium component in raw ash. Was confirmed. On the other hand, at level 2-1 washed with water without adjusting the pH, the presence of CaO (quick lime) disappeared, and the presence of Ca (OH) 2 (slaked lime) was confirmed to decrease. In addition, it was confirmed that the presence of CaO (quick lime) and Ca (OH) 2 (slaked lime) disappeared and calcium carbonate increased at level 2-2, which was washed with water under the condition of pH 9 while injecting CO 2 gas. ..
 [検証3]
 木質ペレット及びパーム椰子殻を燃料にしてストーカ炉による発電を実施しているバイオマス発電施設P3から焼却飛灰(粒度D50(頻度)が20.0μm、750℃における強熱減量(ig. loss)6.1%)を入手して、検証と同様の試験を行った。その結果を表11及び表12に示す。なお、水準3-2では、水洗時にpH調整のための硫酸が添加されている。
[Verification 3]
Incinerator fly ash (grain size D50 (frequency) 20.0 μm, ignition loss at 750 ° C. (ig. Loss) 6 from a biomass power generation facility P3 that uses wood pellets and palm coconut shells as fuel to generate electricity with a stoker furnace. .1%) was obtained and the same test as the verification was performed. The results are shown in Tables 11 and 12. At level 3-2, sulfuric acid for pH adjustment is added at the time of washing with water.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11によれば、検証2と同様に原灰を水洗することにより塩素のほとんどが有効に除かれ、混合材として用いた場合のセメントを水硬化した後、鉄筋等への腐食作用のおそれがないと評価される許容基準0.035質量%以下を満たすことが確認された。つまり、水洗後のバイオマス灰を分級した場合、細粉側及び粗粉側の双方にも塩素がほとんど含まれないことが分かる。なお、この点は、分級後の粗粉及び細粉のそれぞれを水洗した場合も同様であると結論付けることができる。 According to Table 11, most of the chlorine is effectively removed by washing the raw ash with water as in Verification 2, and there is a risk of corrosive action on the reinforcing bars, etc. after the cement is water-cured when used as a mixed material. It was confirmed that it meets the permissible standard of 0.035% by mass or less, which is evaluated as not. That is, it can be seen that when the biomass ash after washing with water is classified, chlorine is hardly contained on both the fine powder side and the coarse powder side. It can be concluded that this point is the same when each of the coarse powder and the fine powder after classification is washed with water.
 表12によれば、このバイオマス灰は、SiO2やCaOが主要な構成成分であり、反応性の高いポゾラン混合材として有用であることが明らかとなった。更に、硫酸を添加して水洗を行うことでSO3含有率が上昇することが明らかとなった。よって、pH調整のための硫酸成分は、水洗の操作後にはその少なくとも一部が灰中に固定化されているものと考えられる。 According to Table 12, it was clarified that this biomass ash contains SiO 2 and CaO as main constituents and is useful as a highly reactive pozzolan mixture. Furthermore, it was clarified that the SO 3 content was increased by adding sulfuric acid and washing with water. Therefore, it is considered that at least a part of the sulfuric acid component for pH adjustment is immobilized in the ash after the washing operation.
1    :処理システム
3    :原料槽
5    :粉体貯槽
10   :クリンカ製造設備
11   :プレヒータ
12   :セメントキルン
13   :クリンカクーラ
20   :分級設備
30   :第一粉砕設備
33   :混合設備
35   :第二粉砕設備
40,40a   :水洗設備
42   :液体供給装置
43   :粉体溶解槽
44   :スラリー攪拌装置
46   :固液分離装置
47   :搬送装置
49   :水洗浄装置
51   :ガス供給装置
52   :脱未燃炭素剤供給装置
53   :浮遊選鉱装置
61   :分析設備
62   :粉砕設備
B1   :バイオマス灰(原灰)
B1C  :粗粉
B1F  :細粉
B2C  :粉砕粗粉
CA   :粗骨材
Ck1  :脱水物
Cn1  :セメントクリンカ
Cn2  :セメント
Cn3  :セメント混練体
D1   :脱未燃炭素剤
FA   :細骨材
G1   :CО2含有ガス
Lr1,Lr2,Lr2a,Lr2b  :スラリー
W1,W2,W3   :水
W4   :排水
Y1   :セメントクリンカ原料
 
1: Processing system 3: Raw material tank 5: Powder storage tank 10: Cleaner manufacturing equipment 11: Preheater 12: Cement kiln 13: Cleaner cooler 20: Classification equipment 30: First crushing equipment 33: Mixing equipment 35: Second crushing equipment 40 , 40a: Water washing equipment 42: Liquid supply device 43: Powder dissolution tank 44: Slurry stirring device 46: Solid-liquid separation device 47: Transfer device 49: Water washing device 51: Gas supply device 52: Decombustible carbon agent supply device 53: Floating beneficiation equipment 61: Analytical equipment 62: Crushing equipment B1: Biomass ash (raw ash)
B1C: Coarse powder B1F: Fine powder B2C: Crushed coarse powder CA: Coarse aggregate Ck1: Dehydrated product Cn1: Cement clinker Cn2: Cement Cn3: Cement kneaded body D1: Decombustible carbon agent FA: Fine aggregate G1: CO2 Containing gas Lr1, Lr2, Lr2a, Lr2b: Slurry W1, W2, W3: Water W4: Drainage Y1: Cement clinker raw material

Claims (18)

  1.  バイオマス灰を、粗粉と細粉に分級する工程(a)と、
     前記工程(a)で得られた前記粗粉を、セメントキルンに投入されるセメントクリンカ原料、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメント、の少なくともいずれかに投入する工程(b)とを有することを特徴とする、セメント製造方法。
    Step (a) of classifying biomass ash into coarse powder and fine powder,
    The coarse powder obtained in the step (a) is applied to at least one of a cement clinker raw material to be charged into a cement kiln, a cement clinker obtained from the cement kiln, or a cement obtained by crushing the cement clinker. A cement manufacturing method comprising the step (b) of charging.
  2.  前記工程(a)は、20μm~100μmを分級点として分級する工程であることを特徴とする、請求項1に記載のセメント製造方法。 The cement manufacturing method according to claim 1, wherein the step (a) is a step of classifying with 20 μm to 100 μm as a classification point.
  3.  前記バイオマス灰は、流動床式燃焼炉から発生した飛灰であり、かつ乾灰であることを特徴とする、請求項1又は2に記載のセメント製造方法。 The cement manufacturing method according to claim 1 or 2, wherein the biomass ash is fly ash generated from a fluidized bed type combustion furnace and is dry ash.
  4.  前記工程(b)は、前記工程(a)で得られた前記粗粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程であることを特徴とする、請求項1~3のいずれか1項に記載のセメント製造方法。 The step (b) is characterized in that the coarse powder obtained in the step (a) is put into a cement clinker obtained from the cement kiln or the cement clinker is put into the cement after the pulverization treatment. The cement manufacturing method according to any one of claims 1 to 3.
  5.  前記工程(a)で得られた前記粗粉の少なくとも一部を粉砕する工程(c)を有し、
     前記工程(b)は、前記工程(c)によって粉砕された後の前記粗粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程であることを特徴とする、請求項1~4のいずれか1項に記載のセメント製造方法。
    It has the step (c) of pulverizing at least a part of the said coarse powder obtained in the said step (a), and has | said.
    The step (b) is a step of putting the coarse powder after being crushed by the step (c) into a cement clinker obtained from the cement kiln or the cement clinker after the crushing treatment. The cement manufacturing method according to any one of claims 1 to 4, wherein the cement manufacturing method is characterized.
  6.  前記工程(a)で得られた前記細粉を、前記セメントクリンカ原料に投入する工程(d)を有することを特徴とする、請求項1~5のいずれか1項に記載のセメント製造方法。 The cement manufacturing method according to any one of claims 1 to 5, further comprising a step (d) of feeding the fine powder obtained in the step (a) into the cement clinker raw material.
  7.  前記工程(b)は、前記工程(a)で得られた前記粗粉を、セメントキルンに投入されるセメントクリンカ原料に投入する工程であることを特徴とする、請求項1又は2に記載のセメント製造方法。 The step 1 or 2, wherein the step (b) is a step of putting the coarse powder obtained in the step (a) into a cement clinker raw material to be put into a cement kiln. Cement manufacturing method.
  8.  前記工程(a)で得られた前記細粉を、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後のセメントに投入する工程(d)を有することを特徴とする、請求項7に記載のセメント製造方法。 The present invention is characterized by having a step (d) of putting the fine powder obtained in the step (a) into a cement clinker obtained from the cement kiln or the cement clinker after the pulverization treatment. Item 7. The cement manufacturing method according to Item 7.
  9.  前記工程(a)で得られた前記細粉を水洗する工程(e)を有し、
     前記工程(d)は、前記工程(e)によって水洗された後の前記細粉を投入する工程であることを特徴とする、請求項6又は8に記載のセメント製造方法。
    The step (e) of washing the fine powder obtained in the step (a) with water is provided.
    The cement manufacturing method according to claim 6 or 8, wherein the step (d) is a step of adding the fine powder after being washed with water by the step (e).
  10.  前記工程(e)の実行中又は前記工程(e)の実行後に、前記バイオマス灰を酸化処理する工程(f)を有することを特徴とする、請求項9に記載のセメント製造方法。 The cement manufacturing method according to claim 9, further comprising a step (f) for oxidizing the biomass ash during or after the execution of the step (e).
  11.  バイオマス灰を粗粉と細粉に分級する工程(a)と、
     前記工程(a)で得られた前記粗粉を、粉砕することなくセメント及び水に混合する工程(g)とを有することを特徴とする、セメント混練体の製造方法。
    Step (a) of classifying biomass ash into coarse powder and fine powder,
    A method for producing a cement kneaded body, which comprises a step (g) of mixing the coarse powder obtained in the step (a) with cement and water without crushing.
  12.  前記工程(a)で得られた前記細粉を、セメントキルンに投入されるセメントクリンカ原料、前記セメントキルンから得られたセメントクリンカ、又は前記セメントクリンカを粉砕処理後に得られるセメント、の少なくともいずれかに投入する工程(d)を有することを特徴とする、請求項11に記載のセメント混練体の製造方法。 At least one of a cement clinker raw material to be put into a cement kiln, a cement clinker obtained from the cement kiln, or a cement obtained after crushing the cement clinker from the fine powder obtained in the step (a). The method for producing a cement kneaded product according to claim 11, further comprising a step (d) of charging into the cement kneaded product.
  13.  粒度分布の累積体積百分率が10%の値(D10)が35μm以上であることを特徴とする、バイオマス灰粉粒物。 Biomass ash powder granules characterized in that the cumulative volume percentage of the particle size distribution is 10% and the value (D10) is 35 μm or more.
  14.  塩素(Cl)の含有率が0.1質量%以下の化学組成を示すことを特徴とする、請求項13に記載のバイオマス灰粉粒物。 The biomass ash powder granule according to claim 13, characterized in that it exhibits a chemical composition having a chlorine (Cl) content of 0.1% by mass or less.
  15.  セメント硬化物用の細骨材への置換用途に利用されることを特徴とする、請求項13又は14に記載のバイオマス灰粉粒物。 The biomass ash powder granule according to claim 13 or 14, characterized in that it is used for replacement with a fine aggregate for a hardened cement product.
  16.  非晶質の含有率が60質量%以下の粉粒物であることを特徴とする、請求項13~15のいずれか1項に記載のバイオマス灰粉粒物。 The biomass ash powder granule according to any one of claims 13 to 15, characterized in that the content of amorphous material is 60% by mass or less.
  17.  セメントキルンに投入されるセメントクリンカ原料への一部置換用途に利用されることを特徴とする、請求項13又は14に記載のバイオマス灰粉粒物。 The biomass ash powder granule according to claim 13 or 14, which is used for partial replacement with a cement clinker raw material to be charged into a cement kiln.
  18.  セメントクリンカ又は前記セメントクリンカを粉砕処理後のセメントに投入されるセメント混合材への一部置換用途に利用されることを特徴とする、請求項13又は14に記載のバイオマス灰粉粒物。
     
    The biomass ash powder granule according to claim 13 or 14, wherein the cement clinker or the cement clinker is used for partial replacement with a cement mixture to be charged into the cement after the pulverization treatment.
PCT/JP2021/032653 2020-09-07 2021-09-06 Cement production method, production method for kneaded cement product, and biomass ash powdery material WO2022050407A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-150126 2020-09-07
JP2020150126 2020-09-07
JP2020-194544 2020-11-24
JP2020194544 2020-11-24
JP2021-053696 2021-03-26
JP2021053696A JP2022044542A (en) 2020-09-07 2021-03-26 Biomass ash granule, cement mix, manufacturing method of cement mix

Publications (1)

Publication Number Publication Date
WO2022050407A1 true WO2022050407A1 (en) 2022-03-10

Family

ID=80492273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032653 WO2022050407A1 (en) 2020-09-07 2021-09-06 Cement production method, production method for kneaded cement product, and biomass ash powdery material

Country Status (1)

Country Link
WO (1) WO2022050407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907069A (en) * 2022-05-10 2022-08-16 黑龙江省建筑材料工业规划设计研究院 Preparation method of biomass ash and coal gangue composite aggregate mortar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245404A (en) * 2010-05-26 2011-12-08 Central Res Inst Of Electric Power Ind Method for producing solidified body
CN106396551A (en) * 2016-08-31 2017-02-15 苏州赛华仪控股份有限公司 Biomass-ash-residue brick as well as preparation method and application thereof
JP2017122550A (en) * 2016-01-08 2017-07-13 株式会社タクマ Combustion device and combustion ash treatment method
JP2018058717A (en) * 2016-10-04 2018-04-12 三井造船株式会社 Burned ash particle, organosilicon material, abrasive, and method for manufacturing organosilicon material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245404A (en) * 2010-05-26 2011-12-08 Central Res Inst Of Electric Power Ind Method for producing solidified body
JP2017122550A (en) * 2016-01-08 2017-07-13 株式会社タクマ Combustion device and combustion ash treatment method
CN106396551A (en) * 2016-08-31 2017-02-15 苏州赛华仪控股份有限公司 Biomass-ash-residue brick as well as preparation method and application thereof
JP2018058717A (en) * 2016-10-04 2018-04-12 三井造船株式会社 Burned ash particle, organosilicon material, abrasive, and method for manufacturing organosilicon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907069A (en) * 2022-05-10 2022-08-16 黑龙江省建筑材料工业规划设计研究院 Preparation method of biomass ash and coal gangue composite aggregate mortar

Similar Documents

Publication Publication Date Title
Viet et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials
AU2018382566B2 (en) Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitious material
WO2021193668A1 (en) Biomass ash modification method, system for converting biomass ash into cement starting material, and modified biomass ash
JP7450409B2 (en) Method for producing cement mixture, mixed cement and carbon dioxide adsorbent
JP7406994B2 (en) Method for manufacturing cement composition
JP2022044571A (en) Manufacturing method of cement, cement manufacturing system, manufacturing method of cement hardened material
JP2019011223A (en) Gypsum and manufacturing method therefor, cement composition and manufacturing method therefor, and foundation improvement material
WO2022050407A1 (en) Cement production method, production method for kneaded cement product, and biomass ash powdery material
JP6763419B2 (en) Cement composition manufacturing method and cement composition manufacturing system
JP2022044570A (en) Cement production method, cement production system, and cement hardened material production method
JP2023181518A (en) Cement manufacturing method
JP3702385B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment method
JP7398349B2 (en) Method for producing cement or cured cement and its production system
JP6958682B2 (en) Cement composition manufacturing method and cement composition manufacturing system
EP4124609A1 (en) Separation of hardened concrete paste from aggregate
JP5824719B2 (en) Method for producing solidifying agent
JP7316817B2 (en) Method for producing sulfur-based composition and cement composition, and production system for cement composition
JP6693542B2 (en) Cement composition manufacturing method and cement composition manufacturing system
EP4241874A1 (en) Improvement of reactivity by oxidation
JP6977788B2 (en) Cement composition manufacturing method and cement composition manufacturing system
JP6927377B2 (en) Cement composition manufacturing method and cement composition manufacturing system
JP2022150926A (en) Sulfur-containing composition, cement composition, and method of producing soil improving material
JP6977801B2 (en) Sulfur-containing compound and its production method, cement composition and its production method, and sulfur-containing compound production equipment
WO2023170202A1 (en) Improvement of reactivity by oxidation
JP5824718B2 (en) Method for producing solidifying agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864458

Country of ref document: EP

Kind code of ref document: A1