WO2022050355A1 - Prophylactic/therapeutic agent for mental disorders involving seretonin transporters, said agent including docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid or derivative thereof - Google Patents

Prophylactic/therapeutic agent for mental disorders involving seretonin transporters, said agent including docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid or derivative thereof Download PDF

Info

Publication number
WO2022050355A1
WO2022050355A1 PCT/JP2021/032309 JP2021032309W WO2022050355A1 WO 2022050355 A1 WO2022050355 A1 WO 2022050355A1 JP 2021032309 W JP2021032309 W JP 2021032309W WO 2022050355 A1 WO2022050355 A1 WO 2022050355A1
Authority
WO
WIPO (PCT)
Prior art keywords
praja
activity
group
acid
obsessive
Prior art date
Application number
PCT/JP2021/032309
Other languages
French (fr)
Japanese (ja)
Inventor
郁夫 坂根
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2022546971A priority Critical patent/JPWO2022050355A1/ja
Publication of WO2022050355A1 publication Critical patent/WO2022050355A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to drugs such as prophylactic and therapeutic agents for the control of serotonin / 5-hydroxytryptamine (5-HT) transporter (SERT), obsessive-compulsive disorder (OCD), major depressive disorder, autism, integration. It relates to drugs for the prevention and treatment of ataxia, anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders, as well as foods having such effects.
  • drugs such as prophylactic and therapeutic agents for the control of serotonin / 5-hydroxytryptamine (5-HT) transporter (SERT), obsessive-compulsive disorder (OCD), major depressive disorder, autism, integration. It relates to drugs for the prevention and treatment of ataxia, anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders, as well as foods having such effects.
  • 5-HT 5-hydroxytryptamine
  • OCD obsessive-compulsive disorder
  • Serotonin / 5-hydroxytryptamine (5-HT) is known to be involved in anxiety, depression, obsessive-compulsiveness, and impulsivity [Non-Patent Document 1].
  • Serotonin / 5-HT transporter (SERT) reabsorbs 5-HT from synaptic clefts into presynaptic neurons for recycling and metabolic degradation [Non-Patent Document 2; Non-Patent Document 3].
  • Selective serotonin reabsorption (SERT) inhibitors (SSRIs) are used to treat obsessive-compulsive disorder (OCD) [Non-Patent Document 2; Non-Patent Document 3] and major depressive disorder [Non-Patent Document 4].
  • Non-Patent Document 5 Several studies with SERT-deficient rodents have demonstrated that SERT is associated with neurodevelopmental disorders such as depression, anxiety, and autism [Non-Patent Document 5]. Thus, the hyperactivity of SERT, which reduces the amount of 5-HT in the synaptic cleft, causes the various psychiatric disorders described above. However, the control mechanism of the SERT function is still not well understood.
  • DG Diacylglycerol
  • ⁇ - ⁇ Diacylglycerol
  • PA phosphatidic acid
  • DG and PA are established lipid second messengers, which control a wide variety of physiological and pathological events.
  • the present inventors have generated and analyzed brain-specific DGK ⁇ knockout (KO) mice, and have revealed that KO mice exhibit SSRI (fluoxetine) -sensitive OCD-like behavior [Non-Patent Document 11].
  • DGK ⁇ As SERT [Non-Patent Document 12; Non-Patent Document 13], melanoma antigen gene-D1 (MAGE-D1) [Non-Patent Document 13], and Praja-1 E3 ubiquitin.
  • -Protein ligase (This Praja-1 E3 ubiquitin-Protein ligase ubiquitinizes SERT [Non-Patent Document 14], and Praja-1-ubiquitin-proteasome system in a DGK activity-dependent manner. It was found that it interacts with [Non-Patent Document 13]), which induces SERT degradation mediated by. However, it remains unclear how Praja-1 activity is controlled by DGK ⁇ .
  • Serotonin transporter controls the serotonergic system, as well as serotonin / SERTs such as obsessive-compulsive disorder (OCD), depression, autism, and schizophrenia. Involved in the pathophysiology / therapeutics of related diseases.
  • SERT inhibitors SERT inhibitors
  • SSRIs SERT inhibitors
  • SERT-related diseases for example, depression, obsessive-compulsive disorder (OCD), schizophrenia, Alzheimer-type dementia, etc.
  • DG diacylglcerol
  • DGK diacylglcerol
  • DGK diacylglcerol
  • Praja-1 Praja-1 E3 ubiquitin-protein ligase
  • SERT is controlled to make serotonin / SERT-related diseases such as obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, anxiety, depression, obsessive-compulsive disorder, and impulsiveness. It is required to find a drug useful for the prevention and treatment of psychiatric disorders, and a drug having a similar effect and activity that can be easily ingested as a food.
  • OCD obsessive-compulsive disorder
  • impulsiveness impulsiveness
  • the present inventors have pursued research focusing on the molecular mechanism by which DGK ⁇ regulates Praja-1 activity.
  • PA phosphatidic acid
  • Y carbon atom of fatty acid acyl portion of gly
  • the present inventors have also found that 18: 0/22: 6-PA selectively interacts with Praja-1 to enhance its E3 ubiquitin-protein ligase activity. These results strongly suggest that DGK ⁇ activates Praja-1 and degrades SERT through 18: 0/22: 6-PA production. Our findings provide new insights into SERT level control and the pathophysiology / therapeutics of various psychiatric disorders such as OCD, depression, autism, and schizophrenia. .. We have found that 18: 0/22: 6-PA produced by DGK ⁇ binds to Praja-1 and activates it, destabilizing SERT.
  • Non-Patent Document 12 Since DGK ⁇ has been found to bind to SERT and Praja-1 in the brain [Non-Patent Document 12, Non-Patent Document 13], in the present invention, by 18: 0/22: 6-PA produced by DGK ⁇ . A new mechanism for controlling SERT protein levels by activated Praja-1 can be proposed (Fig. 4). In addition, the present invention provides new insights into SERT level control and pathophysiology and therapeutic strategies for OCD, depression, autism, and schizophrenia.
  • 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) [18: 0/22: 6-PA] is a serotonin transporter in the brain (serotonin). It is based on interacting with and activating Praja-1 [E3 ubiquitin-protein ligase] acting on transporter: SERT).
  • Drugs that promote squeezing include drugs such as preventive and therapeutic agents for the control of SERT, obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, and Alzheimer-type cognition.
  • OCD obsessive-compulsive disorder
  • the present invention has been completed by finding that it is excellent as a medicine for the prevention and treatment of illness and anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorder.
  • the present invention relates to serotonin transporter-related psychiatric disorders (depression, obsessive-compulsive disorder, schizophrenia, Alzheimer-type dementia, etc.) caused by those selected from docosahexaenoic acid and phosphatidic acid containing a docosahexaenoyl group or derivatives thereof.
  • serotonin transporter-related psychiatric disorders depression, obsessive-compulsive disorder, schizophrenia, Alzheimer-type dementia, etc.
  • serotonin transporter-related psychiatric disorders depression, obsessive-compulsive disorder, schizophrenia, Alzheimer-type dementia, etc.
  • serotonin transporter-related psychiatric disorders depression, obsessive-compulsive disorder, schizophrenia, Alzheimer-type dementia, etc.
  • the present invention provides the following: [1] docosahexaenoic acid (DHA) or its derivative, docosahexaenoyl group-containing phosphatidic acid or its derivative, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA)
  • DHA docosahexaenoic acid
  • PA 1-stearoyl-2-docosahexaenoyl
  • PA -phosphatidic acid
  • SERT activity inhibitor whose active ingredient is selected from the group consisting of salts thereof, selectively bound to Praja-1.
  • a Praja-1 activity enhancer that enhances its activity, or obsessive-compulsive disorder (OCD), obsessive-compulsive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive disorder, and urge.
  • OCD obsessive-compulsive disorder
  • Prophylactic / therapeutic agents for pathological symptoms selected from the group consisting of sexual psychiatric disorders, [2]
  • the SERT activity inhibitor is selected from the group consisting of DHA or a derivative thereof, docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, or a salt thereof as an active ingredient.
  • the agent of [1] above, [4] Selected from the group consisting of docosahexaenoic acid (DHA) or its derivative, docosahexaenoyl group-containing phosphatidic acid or its derivative, and a drug compound that mimics 18: 0/22: 6-PA, or a salt thereof.
  • DHA docosahexaenoic acid
  • [5] Effective one selected from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof.
  • OCD obsessive-compulsive disorder
  • major depressive disorder autism
  • schizophrenia Alzheimer-type dementia
  • anxiety depression
  • obsessive-compulsive and impulsive psychiatric disorders.
  • the agent of [1] above which is a preventive / therapeutic agent for selected pathological symptoms.
  • OCD Obsessive-compulsive disorder
  • major depressive disorder autism
  • the present invention provides the following: [7] A selection from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof.
  • a method of suppressing the activity of SERT which is characterized by administration to a subject, a method of enhancing the activity of Praja-1 that selectively binds to Praja-1 and enhances its activity, or obsessive-compulsive disorder (OCD), major depression.
  • pathological symptoms selected from the group consisting of pathological disorders, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
  • the method of [7] above which comprises administering 18: 0/22: 6-PA.
  • the method of [7] above which comprises administering to a subject and suppressing the activity of SERT.
  • OCD obsessive-compulsive disorder
  • major depressive disorder autism
  • schizophrenia Alzheimer-type dementia
  • anxiety depression
  • obsessive-compulsive and impulsive psychiatric disorders.
  • the method of the above-mentioned [7] which comprises preventing / treating a pathological symptom selected from the above group.
  • the present invention provides the following.
  • [12] By measuring the activity selected from the group consisting of the interaction activity with Praja-1, the binding activity with Praja-1, and the enhancing or promoting activity of Praja-1 with respect to the drug candidate substance.
  • a screening method which comprises selecting and / or determining an active substance.
  • the screening method according to the above [12] which comprises analyzing the reaction of a drug candidate substance to the fusion protein AcGFP-Praja-1 or GST-Praja-1.
  • the above-mentioned [12] wherein the drug candidate substance is selected and / or determined by measuring the activity of enhancing the E3 ubiquitin-protein ligase activity of Praja-1.
  • Screening method [15] Select from the group consisting of obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
  • OCD obsessive-compulsive disorder
  • the activity selected from the group consisting of the interaction activity with Praja-1, the binding activity with Praja-1, and the enhancing or promoting activity of Praja-1 was measured, and the activity thereof was measured.
  • a screening kit comprising a Praja-1 protein or a tagged Praja-1 protein for selecting and / or determining what to have.
  • Docosahexaenoic acid (DHA) or a derivative thereof according to the present invention docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA).
  • a drug compound that mimics [18: 0/22: 6-PA], or one that has an active ingredient selected from the group consisting of salts thereof, is a SERT activity inhibitor, selectively Praja-1.
  • Praja-1 activity enhancer that binds to and enhances its activity, or obsessive-compulsive disorder (OCD), obsessive-compulsive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive disorder. It is a prophylactic / therapeutic agent for pathological symptoms selected from the group consisting of sexual and impulsive psychiatric disorders, and controls serotonin / 5-hydroxytryptamine (5-HT) transporter (SERT), for example, SERT.
  • SERT serotonin / 5-hydroxytryptamine
  • the agent of the present invention can be expected to have the advantage of being highly safe as a pharmaceutical product or food.
  • various illnesses / diseases or pathological conditions can be treated as SERT.
  • Prevention and treatment of (related) are also provided.
  • an efficient screening method for active substances and compounds can be used, and useful active substances and active compounds can be analyzed and determined. Since 18: 0/22: 6-PA according to the present invention works through an action pathway different from SSRI and reduces SERT itself, a stronger action effect can be expected. It may also lead to increased drug choices for SERT-related psychiatric disorders.
  • COS-7 cells were transfected with AcGFP-Praja-1. After 48h incubation, cells are collected and cell lysates are placed in PC liposomes, 18: 1/18: 1-PS liposomes, 18: 0/22: 6-PG liposomes, 16: 0/18: 1-PA liposomes, 18: Incubate with 1/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, 18: 0/20: 4-PA liposomes, and 18: 0/22: 6-PA liposomes and then by ultracentrifugation.
  • DGK ⁇ selectively phosphorylates 18: 0/22: 6-DG to produce 18: 0/22: 6-PA.
  • 18: 0/22: 6-PA selectively bound to Praja-1 and enhanced its E3 ubiquitin-protein ligase activity.
  • Synaptic cleft indicates synaptic cleft
  • N-Terminal indicates N-terminal
  • C-Terminal indicates C-terminal
  • Proteasome indicates proteasome
  • Degradation indicates degradation
  • Presynapse indicates presynapse.
  • the present invention relates to docosahexaenoic acid (DHA) or a derivative thereof, docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA).
  • DHA docosahexaenoic acid
  • PA 1-stearoyl-2-docosahexaenoyl
  • PA 1-stearoyl-2-docosahexaenoyl
  • the present invention was selected from the group consisting of A) DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof.
  • DHA docosahexaenoic acid
  • ⁇ -3 fatty acid is also called all-cis-4,7,10,13,16,19-docosahexaenoic acid.
  • Examples of the DHA derivative include an ester derivative, an amide derivative, and a DHA derivative known to those skilled in the art, which are hydrolyzed in vivo to give DHA, and further used in vivo. Those that donate a possible docosahexaenoyl group may also be included.
  • DHA docosahexaenoyl group-containing phosphatidic acids, such as 18: 0/22: 6-PA, reduce the amount of serotonin transporter, 18: 0/22: 6-PA.
  • DHA can be ingested as a functional food, and the present invention may include those that can be ingested in the form of food as the above-mentioned preventive / therapeutic agent.
  • docosahexaenoyl group-containing phosphatidic acid or its derivative is, for example, the following general formula.
  • R 3 is a hydrogen atom, a group known to those skilled in the art of phospholipid chemistry, Examples thereof include groups that are hydrolyzed in vivo, such as choline residues, ethanolamine residues, serine residues, inositol residues, and glycerol residues, and groups that can be formed by in vivo metabolism.
  • the bond between the fatty acid and the glycerol skeleton is shown to be an ester bond [R- (CO) -OC], and the derivative thereof is the saturated aliphatic alkyl group or unsaturated fat described above.
  • the bond between a hydrocarbon residue including a group alkyl group and a glycerol skeleton is not only an ester bond but also an ether bond (ROC).
  • ROC ether bond
  • saturated fatty acids examples include formic acid, acetic acid, propionic acid, butyric acid (4: 0), valeric acid (5: 0), caproic acid (6: 0), enanthic acid (7: 0), and capric acid (8: 0).
  • Examples of the unsaturated fatty acid include ⁇ -3 fatty acid, ⁇ -6 fatty acid, ⁇ -7 fatty acid, ⁇ -9 fatty acid, and ⁇ -10 fatty acid.
  • Examples of the ⁇ -3 fatty acid include cis-7,10,13-hexadecatrienoic acid (16: 3), ⁇ -linolenic acid (ALA or 18: 3), stearidonic acid (STD or 18: 4), and the like.
  • ETE or 20: 3 Eicosatetraenoic acid
  • ETA or 20: 4 Eicosapentaenoic acid
  • EPA or 20: 5 Eicosapentaenoic acid
  • DPA or 22: 5 Eicosapentaenoic acid
  • DHA or 22: 6 Eicosahexaenoic acid
  • tetracosapentaenoic acid 24: 5
  • tetracosahexaenoic acid 24: 6 and the like.
  • Examples of the ⁇ -6 fatty acid include linoleic acid (18: 2), ⁇ -linolenic acid (18: 3), eikosazienoic acid (20: 2), dihomo- ⁇ -linolenic acid (20: 3), and arachidonic acid. (20: 4), docosadienoic acid (22: 2), docosatetraenoic acid (22: 4), docosapentaenoic acid (22: 5), calendic acid (18: 3) and the like.
  • Examples of the omega-7 fatty acid include palmitoleic acid (16: 1), vaccenic acid (18: 1), paullinic acid (20: 1) and the like.
  • Examples of the ⁇ -9 fatty acid include oleic acid (18: 1), elaidic acid (18: 1), eicosenoic acid (20: 1), mead acid (20: 3), erucic acid (22: 1), and the like. Examples include erucic acid (24: 1). Examples of the ⁇ -10 fatty acid include sapienic acid (16: 1).
  • O)- is a docosahexaenoyl group
  • R 3 is a hydrogen atom.
  • DHA docosahexaenoic acid
  • the docosahexaenoyl group at the 2-position is mostly derived from DHA ingested as food (ie, DHA is 18: 0 / Since it can be regarded as a precursor of 22: 6-PA), the prescribed medicinal effect can be obtained more effectively by ingesting DHA or administering DHA.
  • the above-mentioned DHA or a derivative thereof, and docosahexaenoyl group-containing phosphatidic acid or a derivative thereof can be synthesized by applying a chemical synthesis method.
  • these compounds can also be isolated and purified from in vivo metabolites when administered to mammals using conventional biochemical and chemical methods.
  • the chemical compounds that mimic 18: 0/22: 6-PA are not only those designed based on the chemical structural formula of 18: 0/22: 6-PA, but also their three-dimensional three-dimensional structural arrangement. It may be designed with reference to it, or it may be designed with reference to dynamic structural changes.
  • the drug compound that mimics the above 18: 0/22: 6-PA uses AI by analyzing the structural data of the Praja-1 protein and considering dynamic changes as necessary based on it. It may be obtained by the design.
  • the 1-position may be a shorter carbon chain corresponding to a fatty acid such as acetic acid, or the ester bond between the fatty acid and glycerol may be replaced with an ether bond.
  • the compound can be synthesized by applying a chemical synthesis method, or can be obtained by applying a biochemical method.
  • suitable salts include pharmaceutically acceptable salts such as salts with inorganic or organic bases, neutral, basic or acidic amino acids. Salt and the like.
  • salts with inorganic bases include alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, and salts with aluminum and ammonium.
  • salt with an organic base include salts with trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, N, N-dibenzylethylenediamine and the like.
  • salts with neutral amino acids include, for example, salts with glycine, valine, leucine and the like
  • suitable examples of salts with basic amino acids include, for example, salts with arginine, lysine, ornithine and the like.
  • the salt with an acidic amino acid for example, a salt with aspartic acid, glutamic acid and the like can be mentioned.
  • the drug containing the active ingredient of the present invention is an agent for controlling SERT, for example, an agent for controlling serotoninergic system through control of degradation and / or promotion of degradation of SERT, obsessive-compulsive disorder, depression. , Autism, and as a prophylactic / therapeutic agent for serotonin / SERT-related diseases such as schizophrenia.
  • the drugs containing the active ingredient of the present invention include SERT activity inhibitors, Praja-1 activity enhancers, and / or obsessive-compulsive disorder (OCD), major depressive disorder, autism, and schizophrenia.
  • Alzheimer-type dementia and useful as a prophylactic / therapeutic agent for pathological symptoms selected from the group consisting of anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
  • Disorders or disorders associated with the anxiety include neurosis, generalized anxiety disorder, social anxiety disorder, panic disorder, hyperactivity disorder, attention deficit disorder, personality disorder, bipolar disorder and the like.
  • the active ingredient of the present invention has sufficiently low toxicity and can be safely used as a pharmaceutical product.
  • the drug containing the active ingredient of the present invention is administered alone or in combination with other drugs as described later, preferably in the form of a preparation containing a pharmaceutically acceptable additive.
  • a preparation containing a pharmaceutically acceptable additive As the route of administration, oral, transdermal and injectable routes are adopted.
  • preparations of the above drugs external preparations (transdermal preparations, ointments, etc.), suppositories (rectal suppositories, vaginal suppositories, etc.), pellets, nasal preparations, inhalants (nebulizers, etc.), eye drops, liposomes. Examples include pharmaceutical products.
  • an ingredient selected from known preparation additives can be appropriately used regardless of the administration route.
  • Specific known pharmaceutical additives include, for example, (1) Handbook of Pharmaceutical Additives, Maruzen Co., Ltd., (1989), (2) Encyclopedia of Pharmaceutical Additives, 1st Edition, Yakuji Nippo Co., Ltd. (1994). , (3) Supplement to the Encyclopedia of Pharmaceutical Additives, 1st Edition, Yakuji Nippo Co., Ltd. (1995) and (4) Pharmaceutics, 5th Revised Edition, Nanedo Co., Ltd. (1997) Therefore, it can be appropriately selected according to the administration route and the intended use of the drug.
  • the additive may be any pharmaceutical component that can constitute an oral preparation and that can achieve the object of the present invention, but is usually an excipient or a binder.
  • Known pharmaceutical ingredients such as agents, disintegrants, lubricants, and coating agents (including taste masking) are selected.
  • Specific oral preparations include tablets (including sublingual tablets and orally disintegrating tablets), capsules (including soft capsules and microcapsules), granules, fine granules, powders, troches, syrups, and liposomes. And so on.
  • the oral preparation is a preparation in which the release of active drugs such as DHA and 18: 0/22: 6-PA, which are active ingredients, is controlled in the body by using known preparation ingredients (eg, immediate release). Formulations, sustained release preparations) are also included.
  • a pharmaceutical component that can constitute an aqueous injection or a non-aqueous injection is used, and usually, a solubilizing agent, a solubilizing agent, a suspending agent, an isotonicizing agent, and a buffering agent.
  • Stabilizers, preservatives and other known pharmaceutical ingredients are used, but they may also be known pharmaceutical ingredients constituting powder injections for use by dissolving or suspending them at the time of administration.
  • the pharmaceutical components of the aqueous injection include, for example, distilled water for injection, isotonic sterilized salt solution (1 sodium or 2 sodium phosphate, sodium chloride, potassium chloride, calcium chloride or magnesium chloride, etc., or such.
  • Examples of the pharmaceutical components of the non-aqueous injection include vegetable oils such as olive oil, sesame oil, cottonseed oil, and corn oil, propylene glycol, macrogold, and tricapryrin, which are dissolved in these. Manufactured by suspension or emulsification. Specific examples of the injection include a subcutaneous injection, an intravenous injection, an intramuscular injection, an intraperitoneal injection, a drip infusion, and a liposome.
  • the usage of the active drug or active compound such as DHA, 18: 0/22: 6-PA for preparing a drug (pharmaceutical or pharmaceutical composition) having the above-mentioned activity containing the active ingredient of the present invention is also possible. Provided.
  • the effective dose of the drug of the present invention varies depending on the age, weight, symptom of illness, presence or absence of complications, etc. of the patient to be administered, and is appropriately adjusted. However, in the case of oral administration, it is usually 0.1 mg to 3,000. Administer about mg / day, or in the case of injection, about 0.1 mg to 1,000 mg / day.
  • the drug as the active ingredient of the present invention can also be used in combination with one or more other drugs that do not adversely affect the effect for the purpose of enhancing the action, lowering the dose, reducing side effects and the like.
  • the concomitant drug that can be combined may be a small molecule compound, a polypeptide, an antibody, a vaccine or the like.
  • the administration form in combination with the concomitant drug is not particularly limited, and the drug may be simply used in combination.
  • both are formulated simultaneously and administered as a single formulation, both are formulated separately and administered simultaneously or at different time intervals on the same route of administration, and both are formulated separately and administered simultaneously or on different routes of administration.
  • the administration etc. may be mentioned.
  • the concomitant drug can be selected from, for example, a SERT inhibitor (SSRI), and the SERT inhibitor can be, for example, Fluvoxamine, fluoxetine, paroxetine, sertraline, citalopram, escitalopram and the like can be mentioned.
  • SERT inhibitor can be, for example, Fluvoxamine, fluoxetine, paroxetine, sertraline, citalopram, escitalopram and the like can be mentioned.
  • the present invention also provides a preventive / therapeutic method for diseases and the like using the active ingredient drug (compound), for example, by administering an effective amount of the 18: 0/22: 6-PA to a subject.
  • the preventive / therapeutic method can be implemented.
  • This prevention / treatment method can also be performed while monitoring the health condition and progress of symptoms of the subject.
  • the monitor may be performed at regular or irregular time intervals, or may be performed regularly. In a typical case, it is performed while monitoring blood HDL levels.
  • the administration may be performed at regular or irregular time intervals, or may be performed regularly.
  • prevention / treatment may refer to prevention and / or treatment, and includes cases where it means prevention and treatment, cases where it means prevention, and cases where it means treatment. is doing.
  • OCD obsessive-compulsive disorder
  • major depressive disorder autism
  • schizophrenia Alzheimer-type dementia
  • anxiety depression
  • Foods that have the preventive / therapeutic effect of the selected pathological symptoms include DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and 18: 0/22: 6-PA as its active ingredients. It contains a chemical compound selected from the group consisting of chemical compounds or salts thereof. In particular, foods containing DHA can be mentioned.
  • DHA is a fish oil obtained from fish such as herring, mackerel, sardines, tuna, bonito, saury, and yellowtail, and its content is known to be high. It is also known to be produced by microorganisms such as Euglena, which can also be obtained from fermentation products of such microorganisms.
  • the oil product containing DHA those having various DHA purity and DHA composition are commercially available or known, and those having the intended effect of the present invention can be selected and used from these products.
  • the food of the present invention may be provided as a composition in various forms, and the food itself containing a functional food, an additive used in producing a food containing various processed foods and functional foods, It can be in the form of an animal feed itself, an additive used in producing an animal feed, or the like. These various forms can be produced by a commonly used method.
  • the food to which the present invention is applied includes all foods including beverages, and in addition to general processed foods including so-called health foods, foods for specified health use and nutrition specified in the Health Function Food System of the Consumer Affairs Agency of Japan. Includes health functional foods such as functional foods, supplements, etc., as well as health functional foods such as specified health foods and nutritionally functional foods, supplements, etc. that are supported in countries other than Japan, and also includes feeds fed to animals. do.
  • Foods such as the functional foods of the present invention can take a solid, semi-solid or liquid form, for example, oral liquids (including drinks), biscuits, confectionery, candy, tablets (tablet confectionery, etc.). (Including), granules (including granular confectionery, etc.), powders (including powdered beverages, powdered confectionery, etc.), capsules, jelly and the like.
  • the food product form of the present invention includes, for example, beverages (soft beverages, tea beverages, coffee beverages, dairy beverages, fruit juice beverages, carbonated beverages, nutritional drinks, powdered beverages, alcoholic beverages, non-alcoholic beverages, sports drinks, etc.
  • Soybean processed foods, breads, noodles, rice, gel-like foods jelly drinks, jelly, bavarois, pudding, mousse, gummy candy, etc.
  • sweets variant snacks, baked goods, cakes, chocolate , Gum, candy, tablets, etc.
  • soups dairy products, frozen foods, processed marine products (fish sausage, kamaboko, chikuwa, hampen, etc.), processed livestock products (hamburger, ham, sausage, wiener, cheese, butter, yogurt) , Raw cream, margarine, fermented milk, etc.), instant foods, supplements, capsules, cereals, other processed foods, seasonings and their ingredients.
  • the food can further contain other necessary raw materials or additives as appropriate, as long as the effects of the present invention are not impaired. Examples of other raw materials or additives include fruit juices, sweeteners, acidulants, vitamins, amino acids, minerals, proteins, thickeners, flavors, pigments and the like.
  • Instructions can be attached to the product. This description can be provided by attaching the instruction manual prepared separately from the product to the product package, or by printing the instruction manual on the product itself or on the packaging of the product (including the inner bag that wraps the divided product). ..
  • information regarding the content of the active ingredient such as DHA of the product, the total intake amount of the active ingredient such as DHA within the ingestion time, the period of continuous ingestion, and the like can be described.
  • the products can be classified according to the amount to be ingested within the ingestion time range, and the required amount of the divided products can be stored in the product package.
  • the activity selected from the group consisting of the activity of interacting with Praja-1, the activity of binding to Praja-1, and the activity of enhancing or promoting the activity of Praja-1 is measured.
  • the Praja-1 protein is preferably used.
  • the Praja-1 used for screening may be in vivo or in vitro.
  • the fusion protein Praja-1 produced by applying genetic engineering technology is used.
  • a fusion protein or the like with a tag that binds to the ligand of.
  • the tag of the Praja-1 protein any suitable marker can be appropriately selected and applied as long as it is a marker that can be detected.
  • Typical examples of the fusion protein include AcGFP-Praja-1, GST-Praja-1 and the like. Detection can also be performed using an antibody (including a monoclonal antibody and a fragment thereof) that specifically recognizes the fusion tag. Expression and purification of such fusion polypeptides or fusion proteins can be performed using commercially available kits suitable for them and can also be performed according to the protocol disclosed by the kit manufacturer or kit distributor.
  • Performing this screening can be performed using standard techniques that are well known and conventional to those skilled in the art.
  • SERT activity inhibitor Praja-1 activity enhancer that selectively binds to Praja-1 and enhances its activity
  • OCD obsessive-compulsive disorder
  • Efficient active substances and active compounds useful as prophylactic / therapeutic agents for pathological symptoms selected from the group consisting of obsessive-compulsive disorder, anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders. It is possible to perform analysis with priority and priority and select it.
  • Examples of the above-mentioned pharmaceutical candidate substances include compounds or compositions obtained by chemical synthesis, naturally derived compounds or compositions thereof, metabolites, fermentation products, phospholipids, lipids, peptides, proteins, sugar chains and other biopolymer compounds. , Or a mixture thereof.
  • the test substance in the screening method of the present invention is not particularly limited. For example, it may be a compound such as a small molecule compound or a high molecular compound.
  • this screening involves (i) a system containing the test sample and the Praja-1 protein, and (ii) a system containing the Praja-1 protein but not adding the test sample.
  • the above reaction is allowed to proceed, the presence or absence of binding to the Praja-1 protein, the amount of binding, etc. are measured, and either of these is measured in (i) and (ii).
  • a suitable detection substrate may be present in the screening system so as to be convenient for measurement.
  • the substrate may be any substrate as long as it can be effectively used for measurement.
  • a compound known as a known substrate can be selected and used, and a synthesized compound or the like can be preferably used.
  • the substrate can be used as it is, but preferably a substrate labeled with a fluorescent, enzyme or radioactive substance such as fluoressein can be used.
  • the Praja-1 protein may be one in which the tagged Praja-1 protein is expressed in animal cells, for example, COS cells, CH0 cells, human-derived cell lines, iPS cells, and the like.
  • animal cells for example, COS cells, CH0 cells, human-derived cell lines, iPS cells, and the like.
  • an appropriate selection marker can be used to obtain a gene in which the target protein is expressed at a higher level, and the target protein is expressed. It can also be cultivated under possible conditions to produce and accumulate the desired product.
  • the transformant cells can be cultured in a medium widely used in the art.
  • a MEM medium containing about 5 to about 20% fetal bovine serum, PRMI1640 medium, DMEM medium, or the like may be used as the medium.
  • the pH is preferably about 6 to about 8.
  • Culturing is usually carried out at about 30 to about 40 ° C. for about 15 to about 72 hours, and aeration and stirring are added as necessary.
  • Transformed animal cells expressing a predetermined protein can be used as they are, but they can also be used as cell homodunates thereof, or a predetermined gene product protein can be isolated and used.
  • the cells When extracting from the above cultured cells, after culturing, the cells are collected by a known method, suspended in an appropriate buffer solution, destroyed by ultrasonic waves, lysozyme and / or freeze-thaw, and then centrifuged. A method of obtaining a crude extract by filtration or the like can be appropriately used.
  • a protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (trade name) or Twien-20 (trade name) may be added to the buffer solution.
  • the target protein can be purified by appropriately combining the separation / purification methods known per se.
  • This screening can be carried out according to a usual method for measuring binding activity or enzyme activity, and can be carried out with reference to, for example, a method known in the art.
  • various labels, buffer systems, other appropriate reagents, etc. can be used, and the operation can be performed according to the operation described therein.
  • the protein to be used can be treated with an activator, or its precursor or latent form can be converted into an active form in advance.
  • the measurement is usually carried out in a buffer solution such as Tris-HCl buffer solution or phosphate buffer solution which does not adversely affect the reaction, for example, at pH of about 4 to about 10 (preferably pH of about 6 to about 8). It can be carried out.
  • the screening kit of the present invention contains a Praja-1 protein or a tagged Praja-1 protein.
  • the screening kit of the present invention can screen a substance or compound having an activity selected from the group consisting of an interaction activity with Praja-1, a binding activity with Praja-1, and an enhancing or promoting activity of Praja-1. ..
  • the screening kit also includes obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. It is possible to screen substances or compounds having a preventive / therapeutic effect on pathological symptoms selected from the group.
  • the screening kit may include a buffer solution for a reaction, a reagent, or the like as described above as a set so that it is convenient to perform the required measurement.
  • a buffer solution for a reaction for a reaction, a reagent, or the like as described above as a set so that it is convenient to perform the required measurement.
  • the present invention will be specifically described with reference to examples, but the present invention is provided merely for the purpose of explaining the present invention and for reference in a specific embodiment thereof. These examples are for explaining specific specific embodiments of the present invention, but do not represent limiting or limiting the scope of the invention disclosed in the present application. It should be understood that in the present invention, various embodiments based on the ideas of the present specification are possible. All embodiments have been or can be carried out using standard techniques, except as described in detail elsewhere, which are well known and conventional to those of skill in the art. ..
  • Mouse Praja-1 (NCBI accession no. XM_011247544) cDNA was amplified from mouse brain cDNA and inserted into the EcoRI / SalI site of the pAcGFP vector [Non-Patent Document 13].
  • GST glutathione S-transferase
  • the Praja-1 cDNA should be used in pSF-CMV-Puro-NH2-GST-TEV (Oxford Genetics, Oxford, UK) EcoRI /. I also ligated to the XhoI site.
  • COS-7 cells are Dulbecco's modified Eagle's medium (D-MEM) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) and 100 U / mL penicillin + 100 ⁇ g / mL streptomycin; Wako Pure Chemical Industries, Osaka, Japan) maintained the temperature at 37 ° C in an atmosphere containing 5% CO 2 .
  • D-MEM Dulbecco's modified Eagle's medium
  • penicillin + 100 ⁇ g / mL streptomycin Wako Pure Chemical Industries, Osaka, Japan
  • pAcGFP-Praja-1 or pSF-CMV-Puro-NH2-GST-TEV-Praja-1 was transfected as shown in the legend in the figure in the kit manual.
  • the plasmid was transiently transfected with PolyFect (Qiagen, Hilden, Germany) according to the kit manufacturer's instructions.
  • Mouse cerebral cortex was homogenized in ice-cold Lysis buffer (50 mM HEPES, pH7.2, 150 mM NaCl, 5 mM MgCl 2 , cOmplete TM EDTA-free protease inhibitor) and then 1000 g at 4 ° C. Centrifuge for 5 minutes. Total lipids were extracted from mouse brain (cerebral cortex) according to Bligh and Dyer's method [Non-Patent Document 15]. 2 ml of methanol and 1 mL of chloroform were added to 700 ⁇ L of the sample.
  • Non-Patent Document 16 For PA analysis, 100 ⁇ L of 3M HCl was added to the sample to improve the recovery ratio of acidic phospholipids [Non-Patent Document 16].
  • the lipid-containing solvent was dried under N 2 gas and the extracted lipid was reconstituted in 100 ⁇ L chloroform / methanol (2: 1, v / v).
  • GST-Praja-1 was expressed by COS-7 cells. After cytolysis and centrifugation, affinity-chromatography with glutathione sepharose 4B (GE Healthcare, Chicago, IL, USA) was performed to purify GST fusion ⁇ -Syn-N. The column was washed with lysis buffer and the bound protein was eluted with buffer containing 50 mM Tris / HCl, 150 mM NaCl, and 10 mM reduced glutathione. For the lipid overlay assay, the purified protein was dialyzed against HEPES buffer (25 mM HEPES, pH 7.4, 100 mM NaCl). Protein concentration was measured by the Bicinchoninic Acid Protein Assay Kit (Thermo Fisher Scientific).
  • lipid binding properties of the Praja-1 protein were determined using the following lipid mixture: Control liposomes [Cholesterol (30 mol% (Wako Pure Chemical Industries, Ltd.)) and phosphatidylcholine (PC, from egg yolk (Avanti Polar Lipids, Alabaster, AL, USA)) (70 mol%)], phosphatidylserine (PS) liposomes [ Chol (30 mol%), PC (from egg yolk) (60 mol%), and 18: 1/18: 1-PS (10 mol% (Avanti Polar Lipids))], phosphatidylglycerol (PG) liposomes [Chol (30 mol%), PC (from egg yolk) (60 mol%), and 18: 0/22: 6-PG (10 mol% (Avanti Polar Lipids))], and PA liposomes [Chol (30 mol%), PC (from egg yolk) (60 mol%) , And each PA species (10 mol%)
  • PA species include 16: 0/18: 1-PA (Avanti Polar Lipids), 18: 1/18: 1-PA (Avanti Polar Lipids), 18: 0/18: 0-PA (Avanti Polar Lipids), 18: 0/20: 4-PA (Avanti Polar Lipids) and 18: 0/22: 6-PA (Avanti Polar Lipids) were used.
  • the combined dry lipid mixture was hydrated with HEPES buffer (25 mM HEPES, pH 7.4, 100 mM NaCl, 1 mM dithiothreitol) at 95 ° C for 45 min and 15 min during hydration. Vortexed once for 1 min. The liposomes were then thawed for 5 cycles (3 min -196 ° C, 3 min 95 ° C).
  • Liposomal formation [Non-Patent Document 21] was induced by sonication at 95 ° C using Branson Sonifier 450 (Branson Ultrasonics Corporation, Danbury, CT, USA).
  • COS-7 cells were transfected with pAcGFP-Praja-1. After incubation for 48 hours, cells were collected with HEPES buffer and the disrupted product (0.3 mg) was incubated with PA-containing liposomes or control liposomes at 4 ° C for 30 min. The sample was ultracentrifuged at 200000 g at 4 ° C for 1 h. The precipitate was dissolved in HEPES buffer. Then, using a CS100GXII centrifuge and an S100-AT4 angle rotor (Hitachi Koki, Tokyo, Japan), the sample was centrifuged at 200,000 g at 4 ° C for 1 h. The precipitate was dissolved in HEPES buffer.
  • E3 Ubiquitin-Protein Ligase Activity Assay Purified GST-Praja-1 fusion protein was added to PC liposomes, 18: 0/22: 6-PG liposomes, 18: 1/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, and 18 :. Incubated with 0/22: 6-PA liposomes.
  • the E3 ligase self-ubiquitination assay kit (BML-UW0970; Enzo Life Sciences, NY, NY, USA) was used to analyze E3 ubiquitin-protein ligase activity. The assay was performed according to the manufacturer's protocol.
  • each reaction (25 ⁇ L final volume) is 1.25 ⁇ L 20 ⁇ E1, 1.25 ⁇ L 20 ⁇ E2, 2.5 ⁇ L 10 ⁇ Ub E3 ligase buffer, 2.5 ⁇ L 10 ⁇ ubiquitin, 0.25 ⁇ L 100 mM. It was made to contain DTT and 1.25 ⁇ L of Mg-ATP.
  • the reaction mixture was incubated at 37 ° C for 1 h and SDS / PAGE using anti-ubiquitin antibody (included in the kit) and horseradish peroxyda-zeconjugated goat anti-mouse IgG (Bethyl Laboratories, Montgomery, AL, USA). / Analyzed by Western blotting.
  • LC-MS / MS analysis shows that 40: 6-PA contains docosahexaenoic acid (DHA, 22: 6, ⁇ -3) at the sn-2 position 18: 0/22: 6-PA (94.6). %) Shown that it is mainly (Table 1 and Table 2).
  • Tables 1 and 2 below show the results of identifying acyl species of each PA molecular species in the mouse cerebral cortex using LC-MS / MS.
  • Tables 3 and 4 below show the results of identifying acyl species of each DG molecular species in the mouse cerebral cortex using LC-MS / MS.
  • Praja-1 did not precipitate with mock control (without liposomes) (Fig. 2A).
  • Liposomes containing PC (neutral phospholipid) alone as a background control showed moderate precipitation ( ⁇ 50%) of Praja-1 (FIGS. 2A, B).
  • PS (acidic phospholipid) liposomes did not precipitate Praja-1 more strongly than PC-controlled liposomes.
  • 18: 0/22: 6-PG liposomes as acidic phospholipid controls containing the same fatty acid moieties as 18: 0/22: 6-PA also have almost the same Praja-1 binding activity as background controls. showed.
  • nearly 100% of Praja-1 co-precipitated with 18: 0/22: 6-PA liposomes (Fig. 2A, B).
  • AcGFP alone as a negative control was not detectable in precipitated 18: 0/22: 6-PA liposomes (Fig. 2A).
  • Fig. 2A, B the Praja-1 binding activity of other PA species was also determined. Unlike 18: 0/22: 6-PA liposomes, 16: 0/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, and 18: 1/18: 1-PA liposomes are PCs. Only the co-precipitation ability, which is almost the same as that of the control liposome, was shown (Fig. 2A, B). Liposomes containing 18: 0/20: 4-PA, also with polyunsaturated fatty acid (PUFA) arachidonic acid (20: 4, ⁇ -6), have stronger Praja-1 binding activity than PC control liposomes. Was not shown (Fig. 2A, B).
  • PUFA polyunsaturated fatty acid
  • Praja-1 is a liposome containing phospholipids, such as PS liposomes (acidic phospholipid control), 18: 0/22: 6-PG liposomes (acidic phospholipid control containing the same fatty acid moiety), and other PA species.
  • Non-Patent Document 16 Non-Patent Document 20, Non-Patent Document 22
  • DGK ⁇ -KO mouse cerebral cortex at 18: 0/22: 6 -It was demonstrated that PA and 18: 0/22: 6-DG were simultaneously decreasing and accumulating (Fig. 1).
  • DGK ⁇ utilizes 18: 0/22: 6-DG to generate 18: 0/22: 6-PA.
  • 18: 0/22: 6-PA selectively binds to Praja-1 and enhances the E3 ubiquitin-protein ligase activity of purified Praja-1. (Figs. 2 and 3).
  • Non-Patent Document 14 which ubiquitinates SERTs [Non-Patent Document 14]. It was clarified that Document 12, Non-Patent Document 13] and that Praja-1 induces SERT ubiquitination and degradation in a DGK activity-dependent manner [Non-Patent Document 13]. Therefore, the increase in 18: 0/22: 6-PA produced by DGK ⁇ directly enhances Praja-1 E3 ubiquitin-protein ligase activity, resulting in a decrease in SERT protein stability in the brain. Is possible (Fig. 4).
  • PI 4,5-bisphosphate which is made by PI turnover and consists primarily of 18: 0/20: 4-PI 4,5-diphosphate species
  • PI phosphatidylinositol
  • 6PA structurally simple lipid 18: 0/22: 6-PA was also Praja-1. It suggests that it plays an essential role in the central nervous system through the activation of E3 ubiquitin-protein ligase and the degradation of SERT.
  • DGK ⁇ produces 16: 0-containing PA species and 16: 1-containing PA species in C2C12 myoblasts in response to high glucose stimulation [Non-Patent Document 22]. .. However, the study of this example strongly suggested that DGK ⁇ produces 18: 0/22: 6-PA in the brain (Fig. 1). DGK ⁇ has no obvious DG species selectivity in vitro [Non-Patent Document 22]. Therefore, it can be said with some high possibility that DGK ⁇ utilizes different DG species pools in different cells and tissues.
  • DGK ⁇ is 30: 0 (14: 0/16: 0) -PA, 32: 0 (16: 0/16: 0) -PA, and 34: 0 (16: 0 / 18: 0)-PA was generated [Non-Patent Document 25]. Therefore, it is possible that different PA species are produced by DGK isozymes in different tissues and cells [Non-Patent Document 26]. Like DGK ⁇ , DGK ⁇ and DGK ⁇ showed no apparent DG species selectivity in vitro [Non-Patent Document 27, Non-Patent Document 28]. Therefore, they may also access different DG species pools.
  • Non-Patent Document 29 Since different DGK isozymes produce different PA species in different tissues and cells, it is speculated that these different PA species have their own unique targets. In fact, the present inventors have found that 18: 1/18: 1-PA selectively interacts with ⁇ -synuclein [Non-Patent Document 29, Non-Patent Document 30].
  • muscular creatine kinases are selectively 16: 0/16: 0-PA, 16: 0/18: 1-PA, 18: 1/18: 1-PA, and 18: 0/18: 0- Bound to PA [Non-Patent Document 31], L-lactic dehydrogenase A selectively 16: 0/16: 0-PA, 18: 0/18: 0-PA, 18: 0/20: 4-PA, And 18: 0/22: 6-bonded to PA.
  • DHA docosahexaenoic acid
  • ⁇ -3 PUFAs such as DHA have anxiolytic effects
  • DHA-containing PA selectively binds to and activates SERT (which is closely related to anxiety [Non-Patent Document 5]) E3 ubiquitin-protein ligase Praja-1. (Figs. 2 and 3). Therefore, it is possible that DHA incorporated into 18: 0/22: 6-PA, which enhances SERT degradation, could explain the anxiolytic effect of DHA. In addition to its free fatty acid form, it can be said with some high probability that DHA incorporated into PA also plays an important role in brain function.
  • Non-Patent Document 35 A female patient with DGK ⁇ gene disruption was recently investigated [Non-Patent Document 35]. Patients showed seizures and experienced self-stimulating behaviors such as pulling hair, tapping their feet, and fluttering their hands [Non-Patent Document 35]. These are observed in OCD and OC spectrum disorders [Non-Patent Document 36, Non-Patent Document 37]. Therefore, abnormalities in DGK ⁇ cause OCD-like psychiatric disorders in humans, meaning that DGK ⁇ is a key enzyme for maintaining mental health. However, the regulatory mechanism of DGK ⁇ activity / expression remains unknown.
  • PKC protein kinase C
  • DGK ⁇ phosphorus
  • PKC ⁇ can regulate the intracellular localization and activity of DGK ⁇ in the brain.
  • formal esters increased the expression level of DGK ⁇ [Non-Patent Document 43], suggesting that conventional PKC and Nobel PKC, including PKC ⁇ , regulate their expression.
  • SERT inhibitors have been used to treat depression or major depressive order and OCD [Non-Patent Documents 2-4], with excess SERT protein / activity in these. It means that it is closely related to the onset of the disorder. Moreover, SERT is associated with anxiety and autism [Non-Patent Document 5]. Hyperactivity of 5-HT is associated with negative signs of schizophrenia [Non-Patent Document 44]. In this regard, treatment with a potent 5-HT 2A receptor antagonist in combination with a weak dopamine D2 receptor antagonist is the first-line treatment for patients suffering from schizophrenia (negative symptoms) [Non-Patent Document 44]. ..
  • active substances and active compounds can be identified by using the interaction activity with Praja-1, the binding activity with Praja-1, the enhancing or promoting activity of Praja-1 as an index, and further.
  • Drugs with identified activity including DHA or derivatives thereof, docosahexaenoyl group-containing phosphatidic acid or derivatives thereof, drug compounds mimic 18: 0/22: 6-PA, or salts thereof, are SERTs.
  • Activity inhibitor Praja-1 activity enhancer that selectively binds to and enhances its activity, or obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, It can be used as a prophylactic / therapeutic agent for Alzheimer-type dementia and pathological symptoms selected from the group consisting of anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders, and is highly useful. It is clear that the present invention can be carried out other than those specifically described in the above description and examples. In view of the above teachings, many modifications and variations of the invention are possible, and thus they are also within the scope of the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)

Abstract

There is a problem that the effect of known seretonin transporter (SERT) inhibitors (SSRI) on diseases involving SERT (e.g., depression, obsessive-compulsive disorder (OCD), schizophrenia, and Alzheimer's dementia) is limited. In the present invention, a compound that works through a pathway that is separate from the pathway of SSRI and that has a function for reducing SERT itself (e.g., docosahexaenoic acid (DHA), 1-stearoyl-2-docosahexaenoil (18:0/22:6)-phosphatidic acid (PA)[18:0/22:6-PA], etc.) can be expected to exhibit a better function effect (e.g., a stronger effect), and thus the compound is promising for prevention/treatment of diseases involving SERT. In particular, it is expected that DHA serves as a functional food product.

Description

ドコサヘキサエン酸、ドコサヘキサエノイル基含有ホスファチジン酸、又はその誘導体によるセロトニントランスポーター関連精神疾患の予防・治療剤Docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid, or a derivative thereof to prevent or treat serotonin transporter-related psychiatric disorders
 本発明は、セロトニン/5-ヒドロキシトリプタミン(5-HT)トランスポーター(SERT)の制御のための予防・治療剤といった医薬、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、不安、抑うつ、強迫性、および衝動性の精神医学的障害の予防・治療のための医薬、さらにそうした効能効果を有する食品に関する。 The present invention relates to drugs such as prophylactic and therapeutic agents for the control of serotonin / 5-hydroxytryptamine (5-HT) transporter (SERT), obsessive-compulsive disorder (OCD), major depressive disorder, autism, integration. It relates to drugs for the prevention and treatment of ataxia, anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders, as well as foods having such effects.
 セロトニン/5-ヒドロキシトリプタミン(5-HT)は、不安、抑うつ、強迫性、および衝動性に関わっていることが知られている[非特許文献1]。セロトニン/5-HTトランスポーター(SERT)は、リサイクルおよび代謝分解のために5-HTをシナプス間隙からプレシナプスニューロンへと再吸収する[非特許文献2; 非特許文献3]。選択的セロトニン再吸収(SERT)阻害剤(SSRI)は強迫性障害(OCD)[非特許文献2; 非特許文献3]および大うつ病性障害[非特許文献4]の処置に用いられる。SERT欠損げっ歯類を用いたいくつかの研究は、SERTが抑うつ、不安、および自閉症などの神経発達障害に関係しているということを実証した[非特許文献5]。よって、シナプス間隙の5-HT量を減らすSERTの機能亢進は、上述の種々の精神医学的障害を引き起こす。しかしながら、SERT機能の制御メカニズムは、依然、よく分かっていない。 Serotonin / 5-hydroxytryptamine (5-HT) is known to be involved in anxiety, depression, obsessive-compulsiveness, and impulsivity [Non-Patent Document 1]. Serotonin / 5-HT transporter (SERT) reabsorbs 5-HT from synaptic clefts into presynaptic neurons for recycling and metabolic degradation [Non-Patent Document 2; Non-Patent Document 3]. Selective serotonin reabsorption (SERT) inhibitors (SSRIs) are used to treat obsessive-compulsive disorder (OCD) [Non-Patent Document 2; Non-Patent Document 3] and major depressive disorder [Non-Patent Document 4]. Several studies with SERT-deficient rodents have demonstrated that SERT is associated with neurodevelopmental disorders such as depression, anxiety, and autism [Non-Patent Document 5]. Thus, the hyperactivity of SERT, which reduces the amount of 5-HT in the synaptic cleft, causes the various psychiatric disorders described above. However, the control mechanism of the SERT function is still not well understood.
 ジアシルグリセロール(DG)キナーゼ(DGK)は、10個のアイソザイム(α-κ)からなっているが、そのDGKはDGをリン酸化してホスファチジン酸(PA)を生成する脂質代謝酵素である[非特許文献6; 非特許文献7; 非特許文献8; 非特許文献9; 非特許文献10]。DGおよびPAは確立された脂質セカンドメッセンジャーであり、これらは幅広い種々の生理学的および病理学的事象を制御する。最近、本発明者等は脳特異的DGKδノックアウト(KO)マウスを作製して分析し、KOマウスがSSRI(フルオキセチン)感受性のOCD様挙動を示すということを明らかにした[非特許文献11]。その上、本発明者等はDGKδ欠損がマウス大脳皮質のSERT蛋白質量を増加させるということを実証した[非特許文献12]。これらの結果は、DGKδ-KOマウスにおけるOCD様挙動は増大したSERTレベルによって引き起こされているということを強く示唆した。 Diacylglycerol (DG) kinase (DGK), which consists of 10 isozymes (α-κ), is a lipid-metabolizing enzyme that phosphorylates DG to produce phosphatidic acid (PA) [non-patents. Patent Document 6; Non-Patent Document 7; Non-Patent Document 8; Non-Patent Document 9; Non-Patent Document 10]. DG and PA are established lipid second messengers, which control a wide variety of physiological and pathological events. Recently, the present inventors have generated and analyzed brain-specific DGKδ knockout (KO) mice, and have revealed that KO mice exhibit SSRI (fluoxetine) -sensitive OCD-like behavior [Non-Patent Document 11]. Moreover, the present inventors have demonstrated that DGKδ deficiency increases the mass of SERT protein in the mouse cerebral cortex [Non-Patent Document 12]. These results strongly suggested that OCD-like behavior in DGKδ-KO mice was caused by increased SERT levels.
 加えて、最近、本発明者等は、DGKδが、SERT[非特許文献12; 非特許文献13]、メラノーマ抗原遺伝子-D1(MAGE-D1)[非特許文献13]、およびPraja-1 E3ユビキチン-蛋白質リガーゼ[非特許文献13](このPraja-1 E3ユビキチン-蛋白質リガーゼは、SERTをユビキチン化して[非特許文献14]、そしてDGK活性依存的な様式でPraja-1-ユビキチン-プロテアソーム系を介するSERT分解を誘導する[非特許文献13])と相互作用するということを見出した。
 しかしながら、どのようにしてPraja-1活性がDGKδによってコントロールされているのかは不明なままである。
In addition, recently, the present inventors have described DGKδ as SERT [Non-Patent Document 12; Non-Patent Document 13], melanoma antigen gene-D1 (MAGE-D1) [Non-Patent Document 13], and Praja-1 E3 ubiquitin. -Protein ligase [Non-Patent Document 13] (This Praja-1 E3 ubiquitin-Protein ligase ubiquitinizes SERT [Non-Patent Document 14], and Praja-1-ubiquitin-proteasome system in a DGK activity-dependent manner. It was found that it interacts with [Non-Patent Document 13]), which induces SERT degradation mediated by.
However, it remains unclear how Praja-1 activity is controlled by DGKδ.
 セロトニントランスポーター(serotonin transporter: SERT)は、セロトニン作動性系(serotonergic system)の制御、ならびに強迫性障害(obsessive-compulsive disorder:OCD)、抑うつ、自閉症、および統合失調症などのセロトニン/SERT関連疾患の病態生理学/治療学に関わる。しかしながら、既知のSERT阻害剤(SSRI)によるSERT関連疾患(例えば、うつ病、強迫性障害(OCD)、統合失調症、アルツハイマー型認知症など)への効果は限定的という問題がある。
 本発明者等は、これまでに、ジアシルグリセロール(diacylglcerol: DG)キナーゼ(DGK)δがPraja-1 E3ユビキチン-蛋白質リガーゼ(Praja-1 E3 ubiquitin-protein ligase: Praja-1)を介してDGK活性依存的な様式でSERTのユビキチン化/分解を誘導するということを明らかにした。しかしながら、どのようにしてPraja-1活性がDGKδによって制御されているのかは尚不明である。
 こうした状況下、SERTを制御して、セロトニン/SERT関連疾患とされる、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、不安、抑うつ、強迫性、および衝動性の精神医学的障害の予防や治療に有用な薬物、さらには食品として簡便に摂取できる同様な効果活性を持つものを見出すことが求められている。
Serotonin transporter (SERT) controls the serotonergic system, as well as serotonin / SERTs such as obsessive-compulsive disorder (OCD), depression, autism, and schizophrenia. Involved in the pathophysiology / therapeutics of related diseases. However, there is a problem that known SERT inhibitors (SSRIs) have a limited effect on SERT-related diseases (for example, depression, obsessive-compulsive disorder (OCD), schizophrenia, Alzheimer-type dementia, etc.).
So far, we have found that diacylglcerol (DG) kinase (DGK) δ is DGK active via Praja-1 E3 ubiquitin-protein ligase (Praja-1). It was revealed that it induces ubiquitination / degradation of SERT in a dependent manner. However, it remains unclear how Praja-1 activity is regulated by DGKδ.
Under these circumstances, SERT is controlled to make serotonin / SERT-related diseases such as obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, anxiety, depression, obsessive-compulsive disorder, and impulsiveness. It is required to find a drug useful for the prevention and treatment of psychiatric disorders, and a drug having a similar effect and activity that can be easily ingested as a food.
 本発明者等は、上記問題を解決するために、DGKδがPraja-1活性を制御する分子メカニズムに焦点を当てて研究を推し進めた。
 先ず、本発明者等は、DGKδ-KOマウス大脳皮質において、1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕および1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ジアシルグリセロール〔18:0/22:6-DG〕(X:Y=グリセロールバックボーンの脂肪酸アシル部分の炭素原子の総数:その二重結合の総数)が、同時にそれぞれ減少せしめられおよび蓄積せしめられており、こうしたことで、DGKδが選択的に18:0/22:6-DGをリン酸化して18:0/22:6-PAを生成することを示しているということを明らかにした。
In order to solve the above problems, the present inventors have pursued research focusing on the molecular mechanism by which DGKδ regulates Praja-1 activity.
First, the present inventors in the DGKδ-KO mouse cerebral cortex, 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) [18: 0/22: 6- PA] and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -diacylglycerol [18: 0/22: 6-DG] (X: Y = carbon atom of fatty acid acyl portion of glycerol backbone Total number: total number of double bonds) are simultaneously reduced and accumulated, respectively, so that DGKδ selectively phosphorylates 18: 0/22: 6-DG at 18: 0. / 22: 6-Revealed that it indicates that PA is generated.
 また、本発明者等は、18:0/22:6-PAが選択的にPraja-1と相互作用して、そのE3ユビキチン-蛋白質リガーゼ活性を増強するということをも見出した。
 これらの結果は、DGKδが18:0/22:6-PA産生を介してPraja-1を活性化してSERTを分解するということを強く示唆するものである。本発明者等の発見は、SERTレベル制御、ならびにOCD、抑うつ、自閉症、および統合失調症などの種々の精神医学的障害の病態生理学/治療学についての新規の知見を提供するものである。
 本発明者等は、DGKδによって作られる18:0/22:6-PAがPraja-1に結合してそれを活性化して、SERTを不安定化するということを見出した。DGKδは脳においてSERTおよびPraja-1と結合することが見出されているので[非特許文献12, 非特許文献13]、本発明で、DGKδによって作られる18:0/22:6-PAによって活性化されたPraja-1によるSERT蛋白質レベル制御の新たなメカニズムを提案できる(図4)。さらに、本発明では、SERTレベル制御、ならびにOCD、抑うつ、自閉症、および統合失調症の病態生理学および治療処置の戦略について新規の知見を提供する。
The present inventors have also found that 18: 0/22: 6-PA selectively interacts with Praja-1 to enhance its E3 ubiquitin-protein ligase activity.
These results strongly suggest that DGKδ activates Praja-1 and degrades SERT through 18: 0/22: 6-PA production. Our findings provide new insights into SERT level control and the pathophysiology / therapeutics of various psychiatric disorders such as OCD, depression, autism, and schizophrenia. ..
We have found that 18: 0/22: 6-PA produced by DGKδ binds to Praja-1 and activates it, destabilizing SERT. Since DGKδ has been found to bind to SERT and Praja-1 in the brain [Non-Patent Document 12, Non-Patent Document 13], in the present invention, by 18: 0/22: 6-PA produced by DGKδ. A new mechanism for controlling SERT protein levels by activated Praja-1 can be proposed (Fig. 4). In addition, the present invention provides new insights into SERT level control and pathophysiology and therapeutic strategies for OCD, depression, autism, and schizophrenia.
 本発明は、1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA) 〔18:0/22:6-PA〕が、脳内のセロトニントランスポーター(serotonin transporter: SERT)で作用しているPraja-1〔E3ユビキチン-蛋白質リガーゼ(E3 ubiquitin-protein ligase)〕と相互作用し且つそれを活性化することに基づいてなされたものである。
 本発明において、DGKδノックアウトマウスの脳においては、1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕および18:0/22:6-DGが、同時にそれぞれ減少および蓄積されており、そのDGKδノックアウトマウスの脳はDGKδが選択的に18:0/22:6-DGをリン酸化して、18:0/22:6-PAを生成することを示しているということを明らかにし、さらにその上、18:0/22:6-PAが選択的にPraja-1に結合して、その活性を増強するということを見出した。これらの結果は、DGKδによって生成される18:0/22:6-PAが、Praja-1を活性化して脳のSERTを分解するということを強く示唆するものである。よって、本発明を利用すれば、SERTを制御、例えば、SERTの分解及び/又は分解の促進という制御を介して、セロトニン作動性系の制御、ならびに強迫性障害、抑うつ、自閉症、アルツハイマー型認知症および統合失調症などのセロトニン/SERT関連疾患の予防/治療用の薬物を得ることが可能となる。
 すなわち、本発明者等は、選択的にPraja-1に結合して、その活性を増強する薬物や、Praja-1を活性化して脳のSERTを分解せしめる、及び/又は、不安定化/分解せしめることを促進する作用などを持つ薬物が、SERT)の制御のための予防・治療剤といった医薬、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、そして不安、抑うつ、強迫性、および衝動性の精神医学的障害の予防・治療のための医薬として優れていることを見出して、本発明を完成した。特に、本発明は、ドコサヘキサエン酸及びドコサヘキサエノイル基含有ホスファチジン酸又はその誘導体から選択されたものによるセロトニントランスポーター関連精神疾患(うつ病、強迫性障害、統合失調症、アルツハイマー型認知症等)の予防・治療剤、さらには同様の作用効果を期待できる食品を提供する。
In the present invention, 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) [18: 0/22: 6-PA] is a serotonin transporter in the brain (serotonin). It is based on interacting with and activating Praja-1 [E3 ubiquitin-protein ligase] acting on transporter: SERT).
In the present invention, in the brain of DGKδ knockout mice, 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) [18: 0/22: 6-PA] and 18 0/22: 6-DG are simultaneously reduced and accumulated, respectively, and in the brain of the DGKδ knockout mouse, DGKδ selectively phosphorylates 18: 0/22: 6-DG and 18: 0 / It reveals that it is shown to produce 22: 6-PA, and moreover, 18: 0/22: 6-PA selectively binds to Praja-1 and enhances its activity. I found that. These results strongly suggest that 18: 0/22: 6-PA produced by DGKδ activates Praja-1 and degrades SERT in the brain. Thus, using the present invention, the control of serotonin-operated systems, as well as obsessive-compulsive disorder, depression, autism, Alzheimer's type, through control of SERT, eg, control of degradation of SERT and / or promotion of degradation. It will be possible to obtain drugs for the prevention / treatment of serotonin / SERT-related diseases such as dementia and schizophrenia.
That is, the present inventors selectively bind to Praja-1 to enhance its activity, activate Praja-1 to decompose SERT in the brain, and / or destabilize / decompose it. Drugs that promote squeezing include drugs such as preventive and therapeutic agents for the control of SERT, obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, and Alzheimer-type cognition. The present invention has been completed by finding that it is excellent as a medicine for the prevention and treatment of illness and anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorder. In particular, the present invention relates to serotonin transporter-related psychiatric disorders (depression, obsessive-compulsive disorder, schizophrenia, Alzheimer-type dementia, etc.) caused by those selected from docosahexaenoic acid and phosphatidic acid containing a docosahexaenoyl group or derivatives thereof. We will provide preventive and therapeutic agents for dementia, as well as foods that can be expected to have similar effects.
 代表的な態様では、本発明は、次のものを提供している。
 〔1〕ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とするSERTの活性抑制剤、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤、
 〔2〕DHAまたは18:0/22:6-PAを有効成分とすることを特徴とする、上記〔1〕の剤、
 〔3〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、またはそれらの塩からなる群から選択されたものを有効成分とするSERTの活性抑制剤であることを特徴とする、上記〔1〕の剤、
 〔4〕ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とする、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤であることを特徴とする、上記〔1〕の剤、
 〔5〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とする、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤であることを特徴とする、上記〔1〕の剤、
 〔6〕ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とし、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療効果を有している食品。
In a representative embodiment, the present invention provides the following:
[1] docosahexaenoic acid (DHA) or its derivative, docosahexaenoyl group-containing phosphatidic acid or its derivative, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) A drug compound that mimics [18: 0/22: 6-PA], or a SERT activity inhibitor whose active ingredient is selected from the group consisting of salts thereof, selectively bound to Praja-1. , A Praja-1 activity enhancer that enhances its activity, or obsessive-compulsive disorder (OCD), obsessive-compulsive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive disorder, and urge. Prophylactic / therapeutic agents for pathological symptoms selected from the group consisting of sexual psychiatric disorders,
[2] The agent of the above [1], which comprises DHA or 18: 0/22: 6-PA as an active ingredient.
[3] The SERT activity inhibitor is selected from the group consisting of DHA or a derivative thereof, docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, or a salt thereof as an active ingredient. The agent of [1] above,
[4] Selected from the group consisting of docosahexaenoic acid (DHA) or its derivative, docosahexaenoyl group-containing phosphatidic acid or its derivative, and a drug compound that mimics 18: 0/22: 6-PA, or a salt thereof. The agent according to the above [1], which is a Praja-1 activity enhancer that selectively binds to Praja-1 and enhances its activity, which comprises the above-mentioned active ingredient.
[5] Effective one selected from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof. From the group consisting of obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. The agent of [1] above, which is a preventive / therapeutic agent for selected pathological symptoms.
[6] Docosahexaenoic acid (DHA) or its derivative, docosahexaenoyl group-containing phosphatidic acid or its derivative, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA) Obsessive-compulsive disorder (OCD), major depressive disorder, autism, with the active ingredient selected from the group consisting of drug compounds mimic [18: 0/22: 6-PA] or salts thereof. , A food having a prophylactic / therapeutic effect on pathological symptoms selected from the group consisting of schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
 さらに、別の代表的な態様では、本発明は、次のものを提供している。
 〔7〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを、対象者に投与することを特徴とする、SERTの活性抑制方法、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強方法、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療方法、
 〔8〕18:0/22:6-PAを投与することを特徴とする、上記〔7〕の方法、
 〔9〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを、対象者に投与して、SERTの活性を抑制することを特徴とする、上記〔7〕の方法、
 〔10〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを、対象者に投与して、選択的にPraja-1に結合せしめ、その活性を増強することを特徴とする、上記〔7〕の方法、
 〔11〕DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを、対象者に投与して、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療をすることを特徴とする、上記〔7〕の方法。
Furthermore, in another representative embodiment, the present invention provides the following:
[7] A selection from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof. A method of suppressing the activity of SERT, which is characterized by administration to a subject, a method of enhancing the activity of Praja-1 that selectively binds to Praja-1 and enhances its activity, or obsessive-compulsive disorder (OCD), major depression. Prevention and treatment of pathological symptoms selected from the group consisting of pathological disorders, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
[8] The method of [7] above, which comprises administering 18: 0/22: 6-PA.
[9] DHA or a derivative thereof, a docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, and a chemical compound mimicking 18: 0/22: 6-PA, or a salt thereof selected from the group. The method of [7] above, which comprises administering to a subject and suppressing the activity of SERT.
[10] A product selected from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof. The method of [7] above, which comprises administering to a subject to selectively bind to Praja-1 and enhancing its activity.
[11] A selection from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof. Administered to subjects from obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. The method of the above-mentioned [7], which comprises preventing / treating a pathological symptom selected from the above group.
 また、別の代表的な態様では、本発明は、次のものを提供している。
 〔12〕医薬候補物質について、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を測定することにより、その活性を有するものを選択及び/又は決定することを特徴とする、スクリーニング法、
 〔13〕医薬候補物質について、融合蛋白質AcGFP-Praja-1又はGST-Praja-1に対する反応を分析することを特徴とする、上記〔12〕のスクリーニング法、
 〔14〕医薬候補物質について、Praja-1のE3ユビキチン-蛋白質リガーゼ活性を増強する活性を測定することにより、その活性を有するものを選択及び/又は決定することを特徴とする、上記〔12〕のスクリーニング法、
 〔15〕強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療用物質を選択及び/又は決定することを特徴とする、上記〔12〕のスクリーニング法、
 〔16〕医薬候補物質について、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を測定し、その活性を有するものを選択及び/又は決定するための、Praja-1蛋白質又はタグの付されたPraja-1蛋白質を含有していることを特徴とするスクリーニングキット。
Moreover, in another typical aspect, the present invention provides the following.
[12] By measuring the activity selected from the group consisting of the interaction activity with Praja-1, the binding activity with Praja-1, and the enhancing or promoting activity of Praja-1 with respect to the drug candidate substance. A screening method, which comprises selecting and / or determining an active substance.
[13] The screening method according to the above [12], which comprises analyzing the reaction of a drug candidate substance to the fusion protein AcGFP-Praja-1 or GST-Praja-1.
[14] The above-mentioned [12], wherein the drug candidate substance is selected and / or determined by measuring the activity of enhancing the E3 ubiquitin-protein ligase activity of Praja-1. Screening method,
[15] Select from the group consisting of obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. The screening method according to the above [12], which comprises selecting and / or determining a substance for preventing / treating a depressive pathological symptom.
[16] With respect to the drug candidate substance, the activity selected from the group consisting of the interaction activity with Praja-1, the binding activity with Praja-1, and the enhancing or promoting activity of Praja-1 was measured, and the activity thereof was measured. A screening kit comprising a Praja-1 protein or a tagged Praja-1 protein for selecting and / or determining what to have.
 本発明に係るドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とするものは、SERTの活性抑制剤、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤であり、セロトニン/5-ヒドロキシトリプタミン(5-HT)トランスポーター(SERT)を制御、例えば、SERTの不安定化、SERTの活性の抑制、SERTの分解などに効果を有し、SERTに起因する種々の疾患に対して改善効果があり、大うつ病性障害、OCD、統合失調症(陽性症状)、自閉症、アルツハイマー型認知症などの予防や治療に優れていると期待される。本発明の剤は、医薬品や食品として安全性が高いという利点が期待できる。 Docosahexaenoic acid (DHA) or a derivative thereof according to the present invention, docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA). ) A drug compound that mimics [18: 0/22: 6-PA], or one that has an active ingredient selected from the group consisting of salts thereof, is a SERT activity inhibitor, selectively Praja-1. Praja-1 activity enhancer that binds to and enhances its activity, or obsessive-compulsive disorder (OCD), obsessive-compulsive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive disorder. It is a prophylactic / therapeutic agent for pathological symptoms selected from the group consisting of sexual and impulsive psychiatric disorders, and controls serotonin / 5-hydroxytryptamine (5-HT) transporter (SERT), for example, SERT. It is effective in destabilizing SERT, suppressing SERT activity, degrading SERT, etc., and has an improving effect on various diseases caused by SERT, such as obsessive-compulsive disorder, OCD, and schizophrenia (positive symptoms). ), Autism, Alzheimer-type dementia, etc. are expected to be excellent in prevention and treatment. The agent of the present invention can be expected to have the advantage of being highly safe as a pharmaceutical product or food.
 また、本発明の医薬・食品を投与又は摂取することにより、様々な病気・疾患、あるいは病的な状態(特には、不安、抑うつ、強迫性、および衝動性の精神医学的障害など、SERTに関連しているもの)の予防・治療法も提供される。さらに、本発明で、効率的な活性物質や化合物のスクリーニング法を利用でき、有用な活性物質・活性化合物を分析・決定することが可能となる。
 本発明に係る18:0/22:6-PAは、SSRIとは別の作用経路を通じて働き、SERTそのものを減少させるので、より強い作用効果が期待できる。SERT関連精神疾患における選択薬を増やすことにもつながる可能性がある。また、従来のSSRIと併用することで、上記SERT関連精神疾患の治療がより効果的になる可能性がある。DHAの摂取により、SERT関連精神疾患の予防が期待できる機能性食品の提供も可能となる。
 本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当業者にとっては明白であろう。しかしながら、以下の記載及び具体的な実施例等の記載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のためにのみ示されているものであることを理解されたい。本明細書に開示した本発明の意図及び範囲内で、種々の変化及び/又は改変(あるいは修飾)をなすことは、以下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明らかであろう。本明細書で引用されている全ての文献は、説明の目的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて解釈されるべきものである。
In addition, by administering or ingesting the pharmaceuticals / foods of the present invention, various illnesses / diseases or pathological conditions (particularly anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders, etc.) can be treated as SERT. Prevention and treatment of (related) are also provided. Further, in the present invention, an efficient screening method for active substances and compounds can be used, and useful active substances and active compounds can be analyzed and determined.
Since 18: 0/22: 6-PA according to the present invention works through an action pathway different from SSRI and reduces SERT itself, a stronger action effect can be expected. It may also lead to increased drug choices for SERT-related psychiatric disorders. In addition, the treatment of the above SERT-related psychiatric disorders may become more effective when used in combination with conventional SSRIs. Ingestion of DHA also makes it possible to provide functional foods that can be expected to prevent SERT-related mental illness.
Other objects, features, excellence and viewpoints thereof of the present invention will be apparent to those skilled in the art from the following description. However, it is understood that the description of the present specification including the following description and the description of specific examples and the like shows a preferable aspect of the present invention and is shown only for the purpose of explanation. sea bream. Making various changes and / or modifications (or modifications) within the intent and scope of the invention disclosed herein will be appreciated by those skilled in the art with the following description and knowledge from other parts of the specification. Will be easy to see. All documents cited herein are cited for purposes of illustration only, and their contents are to be included herein as part of this specification.
マウス大脳皮質におけるPA分子種およびDG分子種の分析を示す。 DGKδ-KO(右側のカラム) マウス大脳皮質および野生型(左側のカラム)マウス大脳皮質中の主要なPA分子種(A)およびDG分子種(B)の量をLC-MSを用いて定量した(PA: n=3, DG: n=4)。値は平均±SDで示してある。*P<0.05。なお、図中、例えば、「36:1」とは、「36」(=X)が、グリセロールバックボーンの脂肪酸アシル部分の炭素原子の総数を示し、「1」(=Y)が、グリセロールバックボーンの脂肪酸アシル部分にある二重結合の総数を示している。The analysis of PA molecular species and DG molecular species in the mouse cerebral cortex is shown. DGKδ-KO (right column) Mouse cerebral cortex and wild-type (left column) The amounts of major PA molecular species (A) and DG molecular species (B) in the mouse cerebral cortex were quantified using LC-MS. (PA: n = 3, DG: n = 4). Values are shown as mean ± SD. * P <0.05. In the figure, for example, "36: 1" means that "36" (= X) indicates the total number of carbon atoms in the fatty acid acyl portion of the glycerol backbone, and "1" (= Y) indicates the total number of carbon atoms in the glycerol backbone. It shows the total number of double bonds in the fatty acid acyl moiety. 種々のリン脂質に対するAcGFP-Praja-1の結合活性を示す。 (A)COS-7細胞をAcGFP-Praja-1によってトランスフェクションした。48hのインキュベーション後に、細胞を集め、細胞ライセートをPCリポソーム、18:1/18:1-PSリポソーム、18:0/22:6-PGリポソーム、16:0/18:1-PAリポソーム、18:1/18:1-PAリポソーム、18:0/18:0-PAリポソーム、18:0/20:4-PAリポソーム、および18:0/22:6-PAリポソームとインキュベーションし、それから超遠心によって分離した。AcGFP単独をコードするpAcGFPをコントロールとしてトランスフェクションし、細胞ライセートをPCリポソームまたは18:0/22:6-PAリポソームとインキュベーションした。AcGFP-Praja-1を抗GFP抗体によるウエスタンブロットによって検出した。図中、Size markerはサイズマーカー、mockはモック、そしてAcGFP aloneはAcGFP単独を示す。 (B)上清(S)および沈殿物(P)のAcGFP-Praja-1蛋白質の量を、ImageJを用いるデンシトメトリーによって定量した。結合活性は総バンド強度と比較した沈殿バンド強度のパーセンテージとして計算した。値は3から6つの独立した実験の平均±SDで示してある。***PC(コントロール)リポソームに対してP<0.005。 なお、図中、例えば、「18:0/22:6」とは、「18」(=X)や「22」(=X)が、グリセロールバックボーンの各脂肪酸アシル部分の炭素原子の総数を示し、「0」(=Y)や「6」(=Y)が、グリセロールバックボーンの各脂肪酸アシル部分にある二重結合の総数を示している。また、図中、mockはモック、そしてAcGFP aloneはAcGFP単独を示す。It shows the binding activity of AcGFP-Praja-1 to various phospholipids. (A) COS-7 cells were transfected with AcGFP-Praja-1. After 48h incubation, cells are collected and cell lysates are placed in PC liposomes, 18: 1/18: 1-PS liposomes, 18: 0/22: 6-PG liposomes, 16: 0/18: 1-PA liposomes, 18: Incubate with 1/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, 18: 0/20: 4-PA liposomes, and 18: 0/22: 6-PA liposomes and then by ultracentrifugation. separated. PAcGFP, which encodes AcGFP alone, was transfected as a control and cell lysates were incubated with PC liposomes or 18: 0/22: 6-PA liposomes. AcGFP-Praja-1 was detected by Western blotting with anti-GFP antibody. In the figure, Size marker indicates a size marker, mock indicates a mock, and AcGFP alone indicates AcGFP alone. (B) The amount of AcGFP-Praja-1 protein in the supernatant (S) and the precipitate (P) was quantified by densitometry using ImageJ. Binding activity was calculated as a percentage of precipitation band strength compared to total band strength. Values are shown as the mean ± SD of 3 to 6 independent experiments. *** P <0.005 for PC (control) liposomes. In the figure, for example, "18: 0/22: 6" means that "18" (= X) and "22" (= X) indicate the total number of carbon atoms in each fatty acid acyl portion of the glycerol backbone. , "0" (= Y) and "6" (= Y) indicate the total number of double bonds in each fatty acid acyl moiety of the glycerol backbone. In the figure, mock indicates a mock, and AcGFP alone indicates AcGFP alone. 種々のリン脂質の存在下におけるPraja-1のE3ユビキチンリガーゼ活性のアッセイを示す。 (A)精製したGST-Praja-1融合蛋白質をPCリポソーム、18:0/22:6-PGリポソーム、18:1/18:1-PAリポソーム、18:0/18:0-PAリポソーム、および18:0/22:6-PAリポソームとインキュベーションし、それから試薬キット製造者の説明書に従ってE1、E2、ATP、およびユビキチンとインキュベーションした(左パネル)。反応を、抗ユビキチン抗体を用いるイムノブロッティングによって分析した。GST単独を負のコントロールとして用いた(右パネル)。図中、mockはモック、Size markerはサイズマーカー、conjugatesはコンジュゲート、そしてGST aloneはGST単独を示す。 (B)GST-Praja-1のユビキチン化度(>180kDa)を、ImageJを用いるデンシトメトリーによって定量した。ユビキチン化されたGST-Praja-1のレベルはモック(100に設定)と比較したバンド強度のパーセンテージとして計算した。値は3つの独立した実験の平均±SDで示してある。**P<0.01; ***P<0.005。図中、mockはモック、そしてGST aloneはGST単独を示す。An assay of E3 ubiquitin ligase activity of Praja-1 in the presence of various phospholipids is shown. (A) Purified GST-Praja-1 fusion protein in PC liposomes, 18: 0/22: 6-PG liposomes, 18: 1/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, and It was incubated with 18: 0/22: 6-PA liposomes and then with E1, E2, ATP, and ubiquitin according to the instructions of the reagent kit manufacturer (left panel). The reaction was analyzed by immunoblotting with anti-ubiquitin antibody. GST alone was used as a negative control (right panel). In the figure, mock indicates a mock, Size marker indicates a size marker, conjugates indicates a conjugate, and GST alone indicates GST alone. (B) The degree of ubiquitination (> 180 kDa) of GST-Praja-1 was quantified by densitometry using ImageJ. Ubiquitinated GST-Praja-1 levels were calculated as a percentage of band intensity compared to mock (set to 100). Values are shown as the mean ± SD of three independent experiments. ** P <0.01; *** P <0.005. In the figure, mock indicates a mock, and GST alone indicates GST alone. DGKδによるPraja-1およびSERT制御の模式図を示す。 DGKδは、SERT[非特許文献12]、MAGE-D1[非特許文献13]、およびPraja-1 E3ユビキチン-蛋白質リガーゼ[非特許文献13](このものはSERTをユビキチン化する[非特許文献14])と相互作用し、DGK活性依存的な様式でユビキチン(Ub)-プロテアソーム系を介してSERT分解を誘導する[非特許文献13]。本研究では、DGKδが選択的に18:0/22:6-DGをリン酸化して、18:0/22:6-PAを生成するということを明らかにした。その上、18:0/22:6-PAは選択的にPraja-1に結合し、そのE3ユビキチン-蛋白質リガーゼ活性を増強した。図中、Synaptic cleftはシナプス間隙、N-TerminalはN末端、C-TerminalはC末端、Proteasomeは、プロテアソーム、Degradationは分解、そしてPresynapseはプレシナプスを示す。The schematic diagram of Praja-1 and SERT control by DGKδ is shown. DGKδ ubiquitinizes SERT [Non-Patent Document 12], MAGE-D1 [Non-Patent Document 13], and Praja-1 E3 ubiquitin-protein ligase [Non-Patent Document 13]. ]) And induces SERT degradation via the ubiquitin (Ub) -proteasome system in a DGK activity-dependent manner [Non-Patent Document 13]. In this study, we show that DGKδ selectively phosphorylates 18: 0/22: 6-DG to produce 18: 0/22: 6-PA. Moreover, 18: 0/22: 6-PA selectively bound to Praja-1 and enhanced its E3 ubiquitin-protein ligase activity. In the figure, Synaptic cleft indicates synaptic cleft, N-Terminal indicates N-terminal, C-Terminal indicates C-terminal, Proteasome indicates proteasome, Degradation indicates degradation, and Presynapse indicates presynapse.
 本発明は、ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とする薬剤、及び/又は、それを、対象者に投与することを特徴とする病気などの予防・治療法を提供している。
 本発明は、A) DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とすることを特徴とする医薬、及びB) DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものの医薬としての有効量と、薬剤学的に許容される添加物とを含有していることを特徴とする医薬組成物も提供する。
The present invention relates to docosahexaenoic acid (DHA) or a derivative thereof, docosahexaenoyl group-containing phosphatidic acid or a derivative thereof, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6) -phosphatidic acid (PA). ) A drug containing a drug compound that mimics [18: 0/22: 6-PA] or a drug selected from the group consisting of salts thereof as an active ingredient, and / or administering it to a subject. It provides preventive and therapeutic methods for diseases characterized by.
The present invention was selected from the group consisting of A) DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or salts thereof. Pharmaceuticals characterized by the active ingredient, and B) DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds mimic 18: 0/22: 6-PA, or Also provided are pharmaceutical compositions characterized by containing pharmaceutically effective amounts of those selected from the group consisting of salts thereof and pharmaceutically acceptable additives.
 上記ドコサヘキサエン酸(DHA)は、ω-3脂肪酸の一種として知られ、all-cis-4,7,10,13,16,19-ドコサヘキサエン酸ともいわれ、簡略しての数理表現では、22:6(n-3)あるいは単に22:6とも表記される。DHAの誘導体としては、エステル誘導体、アミド誘導体、当該分野で当業者に知られているDHA誘導体が挙げられるが、これらには生体内で加水分解されてDHAをあたえるもの、さらに、生体内で利用可能なドコサヘキサエノイル基を供与するものも含まれてよい。
 本発明では、ドコサヘキサエノイル基含有ホスファチジン酸、例えば、18:0/22:6-PAがセロトニントランスポーターの量を減少させることを見出しているので、18:0/22:6-PAの前駆体であるDHAの摂取は、セロトニントランスポーターの量の減少に繋がり、これによりセロトニントランスポーター関連疾患の予防・治療、さらには症状改善を可能とする。DHAは、機能性食品として摂取することができ、本発明では上記した予防・治療剤として、食品形態で摂取できるものも包含されて良い。
The above docosahexaenoic acid (DHA) is known as a kind of ω-3 fatty acid and is also called all-cis-4,7,10,13,16,19-docosahexaenoic acid. Also written as (n-3) or simply 22: 6. Examples of the DHA derivative include an ester derivative, an amide derivative, and a DHA derivative known to those skilled in the art, which are hydrolyzed in vivo to give DHA, and further used in vivo. Those that donate a possible docosahexaenoyl group may also be included.
Since the present invention has found that docosahexaenoyl group-containing phosphatidic acids, such as 18: 0/22: 6-PA, reduce the amount of serotonin transporter, 18: 0/22: 6-PA. Ingestion of the precursor DHA leads to a decrease in the amount of serotonin transporter, which enables prevention and treatment of serotonin transporter-related diseases and improvement of symptoms. DHA can be ingested as a functional food, and the present invention may include those that can be ingested in the form of food as the above-mentioned preventive / therapeutic agent.
 上記ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体は、例えば、次の一般式 The above-mentioned docosahexaenoyl group-containing phosphatidic acid or its derivative is, for example, the following general formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
〔上式中、R1は、水素原子、飽和脂肪族アルキル基、又は不飽和脂肪族アルキル基で、典型的にはR1-(C=O)-は、飽和脂肪酸から誘導されるアシル残基、又は不飽和脂肪酸から誘導されるアシル残基であり、R2は、水素原子、飽和脂肪族アルキル基、又は不飽和脂肪族アルキル基で、典型的にはR2-(C=O)-は、飽和脂肪酸から誘導されるアシル残基、又は不飽和脂肪酸から誘導されるアシル残基であり、そしてR3は、水素原子、リン脂質化学の分野で当業者に知られている基、例えば、コリン残基、エタノールアミン残基、セリン残基、イノシトール残基、グリセロール残基など、生体内で加水分解される基、生体内代謝で形成可能な基などが挙げられる。但し、ここで、R1-(C=O)-及びR2-(C=O)-のいずれか一方は、ドコサヘキサエン酸から誘導されるアシル残基、すなわち、ドコサヘキサエノイル基である〕
を有する化合物であってよい。
 上記の一般式では脂肪酸とグリセロール骨格との結合は、エステル結合〔R-(CO)-O-C〕であるものが示してあるが、当該誘導体としては、上記の飽和脂肪族アルキル基又は不飽和脂肪族アルキル基を含めた炭化水素残基などとグリセロール骨格との結合が、そのエステル結合であるものの他に、エーテル結合(R-O-C)であるものも挙げられる。当該エステル結合に代えてエ-テル結合になっている場合、一つの結合が置き換わったものであっても良いし、複数の結合が置き換わったものであっても良い。
[In the above formula, R 1 is a hydrogen atom, a saturated aliphatic alkyl group, or an unsaturated aliphatic alkyl group, and typically R 1- (C = O)-is an acyl residue derived from a saturated fatty acid. A group or acyl residue derived from an unsaturated fatty acid, where R 2 is a hydrogen atom, a saturated aliphatic alkyl group, or an unsaturated aliphatic alkyl group, typically R 2- (C = O). -Is an acyl residue derived from a saturated fatty acid or an acyl residue derived from an unsaturated fatty acid, and R 3 is a hydrogen atom, a group known to those skilled in the art of phospholipid chemistry, Examples thereof include groups that are hydrolyzed in vivo, such as choline residues, ethanolamine residues, serine residues, inositol residues, and glycerol residues, and groups that can be formed by in vivo metabolism. However, here, either R 1- (C = O)-and R 2- (C = O)-is an acyl residue derived from docosahexaenoic acid, that is, a docosahexaenoyl group].
It may be a compound having.
In the above general formula, the bond between the fatty acid and the glycerol skeleton is shown to be an ester bond [R- (CO) -OC], and the derivative thereof is the saturated aliphatic alkyl group or unsaturated fat described above. The bond between a hydrocarbon residue including a group alkyl group and a glycerol skeleton is not only an ester bond but also an ether bond (ROC). When an ether bond is used instead of the ester bond, one bond may be replaced or a plurality of bonds may be replaced.
 上記飽和脂肪酸としては、ギ酸、酢酸、プロピオン酸、酪酸(4:0)、吉草酸(5:0)、カプロン酸(6:0)、エナント酸(7:0)、カプリル酸(8:0)、ペラルゴン酸(9:0)、カプリン酸(10:0)、ウンデシル酸(11:0)、ラウリン酸(12:0)、トリデシル酸(13:0)、ミリスチン酸(14:0)、ペンタデシル酸(15:0)、パルミチン酸(16:0)、マルガリン酸(17:0)、ステアリン酸(18:0)、ノナデシル酸(19:0)、アラキジン酸(20:0)、ヘンイコシル酸(21:0)、ベヘン酸(22:0)、トリコシル酸(23:0)、リグノセリン酸(24:0)などが挙げられる。 Examples of the saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid (4: 0), valeric acid (5: 0), caproic acid (6: 0), enanthic acid (7: 0), and capric acid (8: 0). ), Perargonic acid (9: 0), Capric acid (10: 0), Undecic acid (11: 0), Lauric acid (12: 0), Tridecic acid (13: 0), Myristic acid (14: 0), Pentadecylic acid (15: 0), palmitic acid (16: 0), margaric acid (17: 0), stearic acid (18: 0), nonadesilic acid (19: 0), arachidic acid (20: 0), henicosyl acid (21: 0), behenic acid (22: 0), tricosyl acid (23: 0), lignoseric acid (24: 0) and the like.
 上記不飽和脂肪酸としては、ω-3脂肪酸、ω-6脂肪酸、ω-7脂肪酸、ω-9脂肪酸、ω-10脂肪酸などが挙げられる。該ω-3脂肪酸としては、例えば、cis-7,10,13-ヘキサデカトリエン酸(16:3)、α-リノレン酸(ALA又は18:3)、ステアリドン酸(STD又は18:4)、エイコサトリエン酸(ETE又は20:3)、エイコサテトラエン酸(ETA又は20:4)、エイコサペンタエン酸(EPA又は20:5)、ドコサペンタエン酸(DPA又は22:5)、ドコサヘキサエン酸(DHA又は22:6)、テトラコサペンタエン酸(24:5)、テトラコサヘキサエン酸(24:6)などが挙げられる。該ω-6脂肪酸としては、例えば、リノール酸(18:2)、γ-リノレン酸(18:3)、エイコサジエン酸(20:2)、ジホモ-γ-リノレン酸(20:3)、アラキドン酸(20:4)、ドコサジエン酸(22:2)、ドコサテトラエン酸(22:4)、ドコサペンタエン酸(22:5)、カレンジン酸(18:3)などが挙げられる。該ω-7脂肪酸としては、例えば、パルミトレイン酸(16:1)、バクセン酸(18:1)、パウリン酸(20:1)などが挙げられる。該ω-9脂肪酸としては、例えば、オレイン酸(18:1)、エライジン酸(18:1)、エイコセン酸(20:1)、ミード酸(20:3)、エルカ酸(22:1)、ネルボン酸(24:1)などが挙げられる。該ω-10脂肪酸としては、例えば、サピエン酸(16:1)などが挙げられる。 Examples of the unsaturated fatty acid include ω-3 fatty acid, ω-6 fatty acid, ω-7 fatty acid, ω-9 fatty acid, and ω-10 fatty acid. Examples of the ω-3 fatty acid include cis-7,10,13-hexadecatrienoic acid (16: 3), α-linolenic acid (ALA or 18: 3), stearidonic acid (STD or 18: 4), and the like. Eicosatrienoic acid (ETE or 20: 3), Eicosatetraenoic acid (ETA or 20: 4), Eicosapentaenoic acid (EPA or 20: 5), Docosapentaenoic acid (DPA or 22: 5), Docosahexaenoic acid (DHA or 22: 6), tetracosapentaenoic acid (24: 5), tetracosahexaenoic acid (24: 6) and the like. Examples of the ω-6 fatty acid include linoleic acid (18: 2), γ-linolenic acid (18: 3), eikosazienoic acid (20: 2), dihomo-γ-linolenic acid (20: 3), and arachidonic acid. (20: 4), docosadienoic acid (22: 2), docosatetraenoic acid (22: 4), docosapentaenoic acid (22: 5), calendic acid (18: 3) and the like. Examples of the omega-7 fatty acid include palmitoleic acid (16: 1), vaccenic acid (18: 1), paullinic acid (20: 1) and the like. Examples of the ω-9 fatty acid include oleic acid (18: 1), elaidic acid (18: 1), eicosenoic acid (20: 1), mead acid (20: 3), erucic acid (22: 1), and the like. Examples include erucic acid (24: 1). Examples of the ω-10 fatty acid include sapienic acid (16: 1).
 上記一般式の化合物のうち、典型的なドコサヘキサエノイル基含有ホスファチジン酸としては、1位のR1-(C=O)-基が、ステアロイル基で、2位のR2-(C=O)- が、ドコサヘキサエノイル基で、R3が、水素原子のものが挙げられる。さらに、1位がアセチル基などのような、より短い炭素鎖のものでは、膜の透過性が増してより効果が増大することが期待でき、脂肪酸とグリセロール間のエステル結合をエーテル結合に置き換えたものでは、その結合が切断されにくく、安定性が増し、より持続した効果を得られることが期待できる。
 ドコサヘキサエン酸(DHA)は、必須脂肪酸として知られていることから、2位のドコサヘキサエノイル基は、大部分が、食品として摂取されたDHAに由来するもの(すなわち、DHAは18:0/22:6-PAの前駆体)と看做すことができるので、このことより、DHAの摂取あるいはDHAの投与により、所定の薬効がより効果的に得られる。
 上記DHAまたはその誘導体、そしてドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体は、化学的合成法を適用して合成することができる。また、これらの化合物は、哺乳動物へ投与した場合の生体内代謝物から通常の生化学的手法および化学的手法を用いて単離、精製することも可能である。
Among the compounds of the above general formula, as a typical docosahexaenoyl group-containing phosphatidic acid, the 1-position R 1- (C = O) -group is a stearoyl group and the 2-position R 2- (C =). O)-is a docosahexaenoyl group, and R 3 is a hydrogen atom. Furthermore, for shorter carbon chains such as acetyl groups at the 1-position, it can be expected that the permeability of the membrane will increase and the effect will increase, and the ester bond between fatty acid and glycerol was replaced with an ether bond. It can be expected that the bond is not easily broken, the stability is increased, and a longer-lasting effect can be obtained.
Since docosahexaenoic acid (DHA) is known as an essential fatty acid, the docosahexaenoyl group at the 2-position is mostly derived from DHA ingested as food (ie, DHA is 18: 0 / Since it can be regarded as a precursor of 22: 6-PA), the prescribed medicinal effect can be obtained more effectively by ingesting DHA or administering DHA.
The above-mentioned DHA or a derivative thereof, and docosahexaenoyl group-containing phosphatidic acid or a derivative thereof can be synthesized by applying a chemical synthesis method. In addition, these compounds can also be isolated and purified from in vivo metabolites when administered to mammals using conventional biochemical and chemical methods.
 上記18:0/22:6-PAをミミックする薬品化合物は、18:0/22:6-PAの化学構造式を基礎にデザインされたものだけでなく、その三次元的な立体構造配置を参考にデザインされたり、さらには動的な構造変化を参考にデザインされたものであってよい。また上記18:0/22:6-PAをミミックする薬品化合物は、Praja-1蛋白質の構造データを解析し、それを基礎に、必要に応じて動的な変化も考慮して、AIを利用したデザインによって得られたものであってよい。例えば、1位を酢酸などの脂肪酸に対応する、より短い炭素鎖のものにしたり、脂肪酸とグリセロ-ル間のエステル結合をエーテル結合に置き換えたりしたものなどであってよい。当該化合物は、化学的合成法を適用して合成することができるし、生化学的な手法を応用して得ることも可能である。 The chemical compounds that mimic 18: 0/22: 6-PA are not only those designed based on the chemical structural formula of 18: 0/22: 6-PA, but also their three-dimensional three-dimensional structural arrangement. It may be designed with reference to it, or it may be designed with reference to dynamic structural changes. In addition, the drug compound that mimics the above 18: 0/22: 6-PA uses AI by analyzing the structural data of the Praja-1 protein and considering dynamic changes as necessary based on it. It may be obtained by the design. For example, the 1-position may be a shorter carbon chain corresponding to a fatty acid such as acetic acid, or the ester bond between the fatty acid and glycerol may be replaced with an ether bond. The compound can be synthesized by applying a chemical synthesis method, or can be obtained by applying a biochemical method.
 上記の有効成分である化合物の中で、造塩可能な場合、適当な塩としては、薬理学的に許容し得る塩、例えば無機または有機塩基との塩、中性、塩基性または酸性アミノ酸との塩等が挙げられる。無機塩基との塩の好適な例としては、例えばナトリウム,カリウム等のアルカリ金属、カルシウム,マグネシウム等のアルカリ土類金属、ならびにアルミニウム、アンモニウム等との塩が挙げられる。有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N-ジベンジルエチレンジアミン等との塩が挙げられる。中性アミノ酸との塩の好適な例としては、例えばグリシン、バリン、ロイシン等との塩が挙げられ、塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。 Among the above-mentioned active ingredient compounds, if salt-forming is possible, suitable salts include pharmaceutically acceptable salts such as salts with inorganic or organic bases, neutral, basic or acidic amino acids. Salt and the like. Preferable examples of salts with inorganic bases include alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, and salts with aluminum and ammonium. Preferable examples of the salt with an organic base include salts with trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, N, N-dibenzylethylenediamine and the like. Suitable examples of salts with neutral amino acids include, for example, salts with glycine, valine, leucine and the like, and suitable examples of salts with basic amino acids include, for example, salts with arginine, lysine, ornithine and the like. As a preferred example of the salt with an acidic amino acid, for example, a salt with aspartic acid, glutamic acid and the like can be mentioned.
 本発明の活性成分を含有する薬物は、SERTを制御用剤、例えば、SERTの分解及び/又は分解の促進という制御を介した、セロトニン作動性系の制御のための剤、強迫性障害、抑うつ、自閉症、および統合失調症などのセロトニン/SERT関連疾患の予防/治療剤などとして有用である。また、本発明の活性成分を含有する薬物は、SERTの活性抑制剤、Praja-1活性増強剤、及び/又は、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤として有用である。該不安に関連する障害又は疾患としては、神経症、全般性不安障害、社交不安障害、パニック障害、多動性障害、注意欠陥、人格障害、双極性障害などが挙げられる。本発明の活性成分は、その毒性は十分に低いものであり、医薬品として安全に使用することができる。 The drug containing the active ingredient of the present invention is an agent for controlling SERT, for example, an agent for controlling serotoninergic system through control of degradation and / or promotion of degradation of SERT, obsessive-compulsive disorder, depression. , Autism, and as a prophylactic / therapeutic agent for serotonin / SERT-related diseases such as schizophrenia. In addition, the drugs containing the active ingredient of the present invention include SERT activity inhibitors, Praja-1 activity enhancers, and / or obsessive-compulsive disorder (OCD), major depressive disorder, autism, and schizophrenia. , Alzheimer-type dementia, and useful as a prophylactic / therapeutic agent for pathological symptoms selected from the group consisting of anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. Disorders or disorders associated with the anxiety include neurosis, generalized anxiety disorder, social anxiety disorder, panic disorder, hyperactivity disorder, attention deficit disorder, personality disorder, bipolar disorder and the like. The active ingredient of the present invention has sufficiently low toxicity and can be safely used as a pharmaceutical product.
 本発明の活性成分を含有する薬物は、単独で、もしくは、後述するように他の薬剤と組み合わせて、好ましくは薬剤学的に許容される添加物を加えた製剤の形で投与される。その投与経路としては、経口、経皮および注射による経路が採用される。さらに、上記薬物の製剤として、外用剤(経皮製剤、軟膏剤等)、坐剤(直腸坐剤、膣坐剤等)、ペレット、経鼻剤、吸入剤(ネブライザー等)、点眼剤、リポソーム製剤等が挙げられる。また、上記製剤においては、いずれの投与経路による場合も、公知の製剤添加物から選択された成分(以下「製剤成分」ということもある)を適宜使用することができる。具体的な公知の製剤添加物は、例えば、(1)医薬品添加物ハンドブック、丸善(株)、(1989)、(2)医薬品添加物事典、第1版、(株)薬事日報社(1994)、(3)医薬品添加物事典追補、第1版、(株)薬事日報社(1995)および(4)薬剤学、改訂第5版、(株)南江堂(1997)に記載されている成分の中から、投与経路および製剤用途に応じて適宜選択することができる。 The drug containing the active ingredient of the present invention is administered alone or in combination with other drugs as described later, preferably in the form of a preparation containing a pharmaceutically acceptable additive. As the route of administration, oral, transdermal and injectable routes are adopted. Furthermore, as the preparations of the above drugs, external preparations (transdermal preparations, ointments, etc.), suppositories (rectal suppositories, vaginal suppositories, etc.), pellets, nasal preparations, inhalants (nebulizers, etc.), eye drops, liposomes. Examples include pharmaceutical products. Further, in the above-mentioned preparation, an ingredient selected from known preparation additives (hereinafter, also referred to as “formulation component”) can be appropriately used regardless of the administration route. Specific known pharmaceutical additives include, for example, (1) Handbook of Pharmaceutical Additives, Maruzen Co., Ltd., (1989), (2) Encyclopedia of Pharmaceutical Additives, 1st Edition, Yakuji Nippo Co., Ltd. (1994). , (3) Supplement to the Encyclopedia of Pharmaceutical Additives, 1st Edition, Yakuji Nippo Co., Ltd. (1995) and (4) Pharmaceutics, 5th Revised Edition, Nanedo Co., Ltd. (1997) Therefore, it can be appropriately selected according to the administration route and the intended use of the drug.
 例えば、経口投与による場合、上記添加物としては、経口剤を構成できる製剤成分であって本発明の目的を達成し得るものならばどのようなものでも良いが、通常は、賦形剤、結合剤、崩壊剤、滑沢剤、コーティング剤(味のマスキングを含む)等公知の製剤成分が選択される。具体的な経口剤としては、錠剤(舌下錠、口腔内崩壊錠を含む)、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、細粒剤、散剤、トローチ剤、シロップ剤、リポソーム剤等が挙げられる。なお、当該経口剤には、公知の製剤成分を用いて、有効成分であるDHA、18:0/22:6-PAなどの活性薬物の体内での放出をコントロールした製剤(例:速放性製剤、徐放性製剤)も含まれる。 For example, in the case of oral administration, the additive may be any pharmaceutical component that can constitute an oral preparation and that can achieve the object of the present invention, but is usually an excipient or a binder. Known pharmaceutical ingredients such as agents, disintegrants, lubricants, and coating agents (including taste masking) are selected. Specific oral preparations include tablets (including sublingual tablets and orally disintegrating tablets), capsules (including soft capsules and microcapsules), granules, fine granules, powders, troches, syrups, and liposomes. And so on. The oral preparation is a preparation in which the release of active drugs such as DHA and 18: 0/22: 6-PA, which are active ingredients, is controlled in the body by using known preparation ingredients (eg, immediate release). Formulations, sustained release preparations) are also included.
 また、注射による場合、上記添加物としては、水性注射剤もしくは非水性注射剤を構成できる製剤成分が使用され、通常は溶解剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、安定剤、保存剤等の公知の製剤成分が使用されるが、さらに投与時に溶解あるいは懸濁して使用するための粉末注射剤を構成する公知の製剤成分であっても良い。水性注射剤の製剤成分としては、例えば、注射用蒸留水、等張の滅菌された塩溶液(リン酸1ナトリウムまたは2ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウムまたは塩化マグネシウム等、もしくはこのような塩の混合物を含む)等が、非水性注射剤の製剤成分としては、例えば、オリーブ油、ゴマ油、綿実油、コーン油等の植物油、プロピレングリコール、マクロゴールド、トリカプリリン等が挙げられ、これらに溶解、懸濁あるいは乳化することにより製造される。具体的な注射剤としては、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤、リポソーム剤等が挙げられる。かくして、本発明の活性成分を含有する上記活性を有する薬剤(医薬または医薬組成物)を調製するための該DHA、18:0/22:6-PAなどの活性薬物や活性化合物の使用法も提供される。 In the case of injection, as the above additive, a pharmaceutical component that can constitute an aqueous injection or a non-aqueous injection is used, and usually, a solubilizing agent, a solubilizing agent, a suspending agent, an isotonicizing agent, and a buffering agent. , Stabilizers, preservatives and other known pharmaceutical ingredients are used, but they may also be known pharmaceutical ingredients constituting powder injections for use by dissolving or suspending them at the time of administration. The pharmaceutical components of the aqueous injection include, for example, distilled water for injection, isotonic sterilized salt solution (1 sodium or 2 sodium phosphate, sodium chloride, potassium chloride, calcium chloride or magnesium chloride, etc., or such. Examples of the pharmaceutical components of the non-aqueous injection (including a mixture of salts) include vegetable oils such as olive oil, sesame oil, cottonseed oil, and corn oil, propylene glycol, macrogold, and tricapryrin, which are dissolved in these. Manufactured by suspension or emulsification. Specific examples of the injection include a subcutaneous injection, an intravenous injection, an intramuscular injection, an intraperitoneal injection, a drip infusion, and a liposome. Thus, the usage of the active drug or active compound such as DHA, 18: 0/22: 6-PA for preparing a drug (pharmaceutical or pharmaceutical composition) having the above-mentioned activity containing the active ingredient of the present invention is also possible. Provided.
 本発明の薬物の効果的な投与量は、投与される患者の年齢、体重、病気の症状、合併症の有無等によって異なり、適宜調整されるが、通常、経口投与の場合、0.1mg~3,000mg/日程度、または注射の場合、0.1mg~1,000mg/日程度投与される。
 本発明の活性成分である薬物は、作用の増強、投与量の低下および副作用の低減等を目的として、その効果に悪影響を及ぼさない1種以上の他の薬剤と組み合わせて用いることもできる。組み合わせることができる併用薬剤は、低分子化合物、ポリペプチド、抗体またはワクチン等であってもよい。
The effective dose of the drug of the present invention varies depending on the age, weight, symptom of illness, presence or absence of complications, etc. of the patient to be administered, and is appropriately adjusted. However, in the case of oral administration, it is usually 0.1 mg to 3,000. Administer about mg / day, or in the case of injection, about 0.1 mg to 1,000 mg / day.
The drug as the active ingredient of the present invention can also be used in combination with one or more other drugs that do not adversely affect the effect for the purpose of enhancing the action, lowering the dose, reducing side effects and the like. The concomitant drug that can be combined may be a small molecule compound, a polypeptide, an antibody, a vaccine or the like.
 本発明の活性成分を含有する薬物は、他の医薬又は薬剤と併用する場合、併用薬剤との組み合わせによる投与形態は特に限定されるものではなく、単に併用されていればよい。例えば、両者を同時に製剤化して単一の製剤としての投与、両者を別々に製剤化して同一投与経路で同時あるいは時間差をおいての投与、両者を別々に製剤化して異なる投与経路で同時あるいは時間差をおいての投与等が挙げられる。
 本発明の活性成分を含有する薬物を他の医薬と併用する場合、その併用薬としては、例えば、SERT阻害剤(SSRI)から選択することが可能であり、そのSERT阻害剤としては、例えば、フルボキサミン、フルオキセチン、パロキセチン、セルトラリン、シタロプラム、エスシタロプラムなどが挙げられる。
When the drug containing the active ingredient of the present invention is used in combination with another drug or drug, the administration form in combination with the concomitant drug is not particularly limited, and the drug may be simply used in combination. For example, both are formulated simultaneously and administered as a single formulation, both are formulated separately and administered simultaneously or at different time intervals on the same route of administration, and both are formulated separately and administered simultaneously or on different routes of administration. The administration etc. may be mentioned.
When a drug containing the active ingredient of the present invention is used in combination with another drug, the concomitant drug can be selected from, for example, a SERT inhibitor (SSRI), and the SERT inhibitor can be, for example, Fluvoxamine, fluoxetine, paroxetine, sertraline, citalopram, escitalopram and the like can be mentioned.
 本発明では、該活性成分である薬物(化合物)を利用した病気などの予防・治療法も提供され、例えば、該18:0/22:6-PAの有効量を対象者に投与することにより、該予防・治療法を実施できる。本予防・治療法では、対象者の健康状態・症状の進行状態をモニターしながら行うこともできる。当該モニターは、一定あるいは不定期の時間間隔を置いて行われるものであってよいし、定期的になされるものであってもよい。代表的な場合では、血中HDLレベルをモニターしながら行われる。投与も、一定あるいは不定期の時間間隔を置いて行われるものであってよいし、定期的になされるものであってもよい。明細書中、「予防・治療」とは、予防及び/又は治療を指していてよく、予防及び治療を意味する場合、あるいは、予防を意味する場合、又は治療を意味する場合の、それぞれを包含している。 The present invention also provides a preventive / therapeutic method for diseases and the like using the active ingredient drug (compound), for example, by administering an effective amount of the 18: 0/22: 6-PA to a subject. , The preventive / therapeutic method can be implemented. This prevention / treatment method can also be performed while monitoring the health condition and progress of symptoms of the subject. The monitor may be performed at regular or irregular time intervals, or may be performed regularly. In a typical case, it is performed while monitoring blood HDL levels. The administration may be performed at regular or irregular time intervals, or may be performed regularly. In the specification, "prevention / treatment" may refer to prevention and / or treatment, and includes cases where it means prevention and treatment, cases where it means prevention, and cases where it means treatment. is doing.
 本発明の、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療効果を有している食品は、その有効成分としてDHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを含有しているものである。特には、DHAを含有している食品が挙げられる。DHAは、ニシン、サバ、イワシ、マグロ、カツオ、サンマ、ブリ等の魚から得られる魚油で、その含有量が高いことが知られている。また、ユーグレナなどの微生物が産生することも知られており、そうした微生物の醗酵産物からも得ることができる。DHAを含有する油製品は、種々のDHA純度やDHA組成のものが市販あるいは公知となっており、これらのものから本発明の目的効果が得られるものを選択して用いることができる。 From the group of the present invention consisting of obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. Foods that have the preventive / therapeutic effect of the selected pathological symptoms include DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and 18: 0/22: 6-PA as its active ingredients. It contains a chemical compound selected from the group consisting of chemical compounds or salts thereof. In particular, foods containing DHA can be mentioned. DHA is a fish oil obtained from fish such as herring, mackerel, sardines, tuna, bonito, saury, and yellowtail, and its content is known to be high. It is also known to be produced by microorganisms such as Euglena, which can also be obtained from fermentation products of such microorganisms. As the oil product containing DHA, those having various DHA purity and DHA composition are commercially available or known, and those having the intended effect of the present invention can be selected and used from these products.
 本発明の食品は、種々の形態の組成物として提供されるものであってよく、機能性食品を含む食品そのもの、各種の加工食品や機能性食品を含む食品を製造する際に用いる添加剤、動物用飼料そのもの、動物用飼料を製造する際に用いる添加剤などの形態とすることができる。これらの各種形態は、通常行われている方法によって製造することができる。
 本発明の適用対象としての食品は、飲料を含む食品全般を包含し、いわゆる健康食品を含む一般加工食品の他、日本国消費者庁の保健機能食品制度に規定される特定保健用食品や栄養機能食品等の保健機能食品、サプリメント等、並びに日本国以外の国において対応する特定保健用食品や栄養機能食品等の保健機能食品、サプリメント等を包含し、さらには動物に給餌される飼料も包含する。
The food of the present invention may be provided as a composition in various forms, and the food itself containing a functional food, an additive used in producing a food containing various processed foods and functional foods, It can be in the form of an animal feed itself, an additive used in producing an animal feed, or the like. These various forms can be produced by a commonly used method.
The food to which the present invention is applied includes all foods including beverages, and in addition to general processed foods including so-called health foods, foods for specified health use and nutrition specified in the Health Function Food System of the Consumer Affairs Agency of Japan. Includes health functional foods such as functional foods, supplements, etc., as well as health functional foods such as specified health foods and nutritionally functional foods, supplements, etc. that are supported in countries other than Japan, and also includes feeds fed to animals. do.
 本発明の機能性食品等の食品は、固形、半固形又は液状の形態をとることができ、例えば、経口用液剤(ドリンクを含む)、ビスケット、菓子、飴(キャンディー)、錠剤(タブレット菓子などを含む)、顆粒剤(顆粒状菓子などを含む)、散剤(粉末飲料、粉末菓子などを含む)、カプセル剤、ゼリー等として提供することができる。
 また、本発明の食品の製品形態としては、例えば、飲料(清涼飲料、茶飲料、コーヒー飲料、乳飲料、果汁飲料、炭酸飲料、栄養ドリンク、粉末飲料、アルコール飲料、ノンアルコール飲料、スポーツドリンクなど)、大豆加工飲食品、パン類、麺類、ご飯類、ゲル状飲食品(ゼリー飲料、ゼリー、ババロア、プリン、ムース、グミキャンディーなど)、菓子類(各種スナック類、焼き菓子、ケーキ類、チョコレート、ガム、飴、タブレットなど)、スープ類、乳製品、冷凍食品、水産加工品(魚肉ソーセージ、かまぼこ、ちくわ、はんぺんなど)、畜産加工品(ハンバーグ、ハム、ソーセージ、ウィンナー、チーズ、バター、ヨーグルト、生クリ-ム、マーガリン、発酵乳など)、インスタント食品、サプリメント、カプセル、シリアル、その他加工食品、調味料及びそれらの材料等が挙げられる。該食品は、本発明による作用効果を損なわない範囲で、適宜必要な他の原料または添加物を更に含有させることができる。他の原料または添加物としては、例えば、果汁、甘味料、酸味料、ビタミン類、アミノ酸、ミネラル、たんぱく質、増粘剤、香料、色素等が挙げられる。
Foods such as the functional foods of the present invention can take a solid, semi-solid or liquid form, for example, oral liquids (including drinks), biscuits, confectionery, candy, tablets (tablet confectionery, etc.). (Including), granules (including granular confectionery, etc.), powders (including powdered beverages, powdered confectionery, etc.), capsules, jelly and the like.
The food product form of the present invention includes, for example, beverages (soft beverages, tea beverages, coffee beverages, dairy beverages, fruit juice beverages, carbonated beverages, nutritional drinks, powdered beverages, alcoholic beverages, non-alcoholic beverages, sports drinks, etc. ), Soybean processed foods, breads, noodles, rice, gel-like foods (jelly drinks, jelly, bavarois, pudding, mousse, gummy candy, etc.), sweets (various snacks, baked goods, cakes, chocolate , Gum, candy, tablets, etc.), soups, dairy products, frozen foods, processed marine products (fish sausage, kamaboko, chikuwa, hampen, etc.), processed livestock products (hamburger, ham, sausage, wiener, cheese, butter, yogurt) , Raw cream, margarine, fermented milk, etc.), instant foods, supplements, capsules, cereals, other processed foods, seasonings and their ingredients. The food can further contain other necessary raw materials or additives as appropriate, as long as the effects of the present invention are not impaired. Examples of other raw materials or additives include fruit juices, sweeteners, acidulants, vitamins, amino acids, minerals, proteins, thickeners, flavors, pigments and the like.
 本発明の組成物を各種の形態の食品や医薬等の製品として提供する際に、利用者がその効能効果を認識できるように、所定の目的に必須であり、かつ必要に応じて従うべき事項に関する説明を製品に添付することができる。この説明は、製品と別途用意した説明書の製品パッケージ内への添付や、製品自体あるいは製品の包装(区分けした製品を包装する中袋を含む)への説明書の印刷により提供することができる。この説明には、製品のDHAなどの活性成分の含有量、摂取時間内でのDHAなどの活性成分の摂取総量、あるいは継続的に摂取する期間等に関する情報を記載することができる。また、製品は、摂取用時間範囲内に摂取する分量ごとに区分して、区分けされた製品の必要量を製品パッケージ内に収納することができる。 Matters that are essential for a predetermined purpose and should be followed as necessary so that the user can recognize the efficacy and effect when the composition of the present invention is provided as a product such as a food product or a pharmaceutical product in various forms. Instructions can be attached to the product. This description can be provided by attaching the instruction manual prepared separately from the product to the product package, or by printing the instruction manual on the product itself or on the packaging of the product (including the inner bag that wraps the divided product). .. In this description, information regarding the content of the active ingredient such as DHA of the product, the total intake amount of the active ingredient such as DHA within the ingestion time, the period of continuous ingestion, and the like can be described. In addition, the products can be classified according to the amount to be ingested within the ingestion time range, and the required amount of the divided products can be stored in the product package.
 本発明のスクリーニング法では、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を測定するが、その場合、好適にはPraja-1蛋白質を利用する。スクリーニングに利用するPraja-1としては、in vivoのものであってもよく、またin vitroのものであてよい。典型的な場合にあっては、遺伝子操作技術を応用して作出された融合蛋白質Praja-1を利用する。例えば、Praja-1にオワンクラゲ由来の蛍光蛋白質をタグとして付けた融合蛋白質、グルタチオン-S-トランスフェラーゼ(GST)、マルトース結合蛋白質(MBP)、セルロース結合蛋白質(CBP)、チオレドキシン(TRX),Hisタグなどのリガンド結合性のものをタグとして付けた融合蛋白質などを利用すると便利である。Praja-1蛋白質のタグとしては、検出可能なものとなるようなマーカーであれば、適宜、好適なものを選択して適用できる。代表的には、融合蛋白質としては、AcGFP-Praja-1、GST-Praja-1などが挙げられる。また、上記融合タグを特異的に認識する抗体(モノクローナル抗体及びそのフラグメントを含む)を使用して検出を行うこともできる。こうした融合ポリペプチドあるいは融合蛋白質の発現及び精製は、それに適した市販のキットを用いて行うことができ、キット製造業者あるいはキット販売業者により明らかにされているプロトコルに従って実施することもできる。 In the screening method of the present invention, the activity selected from the group consisting of the activity of interacting with Praja-1, the activity of binding to Praja-1, and the activity of enhancing or promoting the activity of Praja-1 is measured. The Praja-1 protein is preferably used. The Praja-1 used for screening may be in vivo or in vitro. In a typical case, the fusion protein Praja-1 produced by applying genetic engineering technology is used. For example, a fusion protein tagged with a fluorescent protein derived from Owan jellyfish, glutathione-S-transferase (GST), maltose-binding protein (MBP), cellulose-binding protein (CBP), thioredoxin (TRX), His tag, etc. It is convenient to use a fusion protein or the like with a tag that binds to the ligand of. As the tag of the Praja-1 protein, any suitable marker can be appropriately selected and applied as long as it is a marker that can be detected. Typical examples of the fusion protein include AcGFP-Praja-1, GST-Praja-1 and the like. Detection can also be performed using an antibody (including a monoclonal antibody and a fragment thereof) that specifically recognizes the fusion tag. Expression and purification of such fusion polypeptides or fusion proteins can be performed using commercially available kits suitable for them and can also be performed according to the protocol disclosed by the kit manufacturer or kit distributor.
 本スクリーニングの実施は、当業者にとり周知で慣用的で、標準的な技術を用いてできる。本のスクリーニング法により、SERTの活性抑制剤、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤などとして有用な活性物質や活性化合物を、効率的且つ優先的に分析をし、それを選別することが可能となる。
 上記医薬候補物質としては、化学合成で得られた化合物あるいは組成物、天然由来の化合物あるいはその組成物、代謝産物、醗酵産物、リン脂質、脂質、ペプチド、蛋白質、糖鎖等の生体高分子化合物、またはそれらの混合物などが挙げられる。本発明のスクリーニング方法における被験物質は、特に制限はされない。例えば、低分子化合物、高分子化合物等の化合物であり得る。
Performing this screening can be performed using standard techniques that are well known and conventional to those skilled in the art. According to the screening method of the book, SERT activity inhibitor, Praja-1 activity enhancer that selectively binds to Praja-1 and enhances its activity, or obsessive-compulsive disorder (OCD), major depressive disorder, self. Efficient active substances and active compounds useful as prophylactic / therapeutic agents for pathological symptoms selected from the group consisting of obsessive-compulsive disorder, anxiety, depression, obsessive-compulsive disorder, and impulsive psychiatric disorders. It is possible to perform analysis with priority and priority and select it.
Examples of the above-mentioned pharmaceutical candidate substances include compounds or compositions obtained by chemical synthesis, naturally derived compounds or compositions thereof, metabolites, fermentation products, phospholipids, lipids, peptides, proteins, sugar chains and other biopolymer compounds. , Or a mixture thereof. The test substance in the screening method of the present invention is not particularly limited. For example, it may be a compound such as a small molecule compound or a high molecular compound.
 典型的な場合では、本スクリーニングは、(i)被験試料とPraja-1蛋白質とを含んでいる系と(ii) Praja-1蛋白質を含んでいるが、被験試料を添加していない系との間での、2種類の反応系において、上記反応を進行させ、Praja-1蛋白質との結合の有無、結合量などを測定し、(i)と(ii)とで、これらのいずれかの測定値を比較することによって、該被験物質のPraja-1結合活性などを測定できる。該スクリーニング系には、測定に便利となるよう適当な検知用基質を存在せしめてもよい。該基質としては、測定に有効に利用できるものであれば何れのものであってよい。例えば、公知の基質として知られているものの中から選んで用いることができるが、好ましくは合成された化合物などを使用できる。基質は、そのまま使用できるが、好ましくはフルオレッセインなどの蛍光、酵素や放射性物質で標識したものを使用できる。 In the typical case, this screening involves (i) a system containing the test sample and the Praja-1 protein, and (ii) a system containing the Praja-1 protein but not adding the test sample. In the two types of reaction systems between, the above reaction is allowed to proceed, the presence or absence of binding to the Praja-1 protein, the amount of binding, etc. are measured, and either of these is measured in (i) and (ii). By comparing the values, the Praja-1 binding activity of the test substance and the like can be measured. A suitable detection substrate may be present in the screening system so as to be convenient for measurement. The substrate may be any substrate as long as it can be effectively used for measurement. For example, a compound known as a known substrate can be selected and used, and a synthesized compound or the like can be preferably used. The substrate can be used as it is, but preferably a substrate labeled with a fluorescent, enzyme or radioactive substance such as fluoressein can be used.
 本スクリーニングでは、Praja-1蛋白質としてはタグの付されたPraja-1蛋白質を動物細胞、例えば、COS 細胞、CH0 細胞、ヒト由来株化細胞、iPS細胞などにおいて発現させたものであってよい。例えば、 宿主細胞として動物細胞を用いた形質転換体で発現させた場合、適切な選択マーカーを利用して、目的蛋白質がより高く発現しているものを得ることができ、また、目的蛋白質が発現可能な条件下で培養し、 目的物を生成、 蓄積せしめることもできる。 該形質転換体細胞は、 当該分野で汎用されて いる培地中で培養することができる。 In this screening, the Praja-1 protein may be one in which the tagged Praja-1 protein is expressed in animal cells, for example, COS cells, CH0 cells, human-derived cell lines, iPS cells, and the like. For example, when expressed in a transformant using an animal cell as a host cell, an appropriate selection marker can be used to obtain a gene in which the target protein is expressed at a higher level, and the target protein is expressed. It can also be cultivated under possible conditions to produce and accumulate the desired product. The transformant cells can be cultured in a medium widely used in the art.
 動物細胞を培養する際、培地としては、例えば、約5~約20%の胎児牛血清を含むMEM培地、PRMI1640培地、DMEM培地などが用いられてよい。pHは約6~約8であるのが好ましい。培養は通常約30~約40℃で約15~約72時間行ない、必要に応じて通気や攪拌を加える。所定の蛋白質を発現している形質転換体動物細胞はそのまま利用可能であるが、その細胞ホモジュネートとしても利用できるし、 所定の遺伝子産物蛋白質を単離して用いることもできる。上記培養細胞から抽出するに際しては、培養後、公知の方法で細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチーム及び/又は凍結融解などによって細胞を破壊したのち、遠心分離やろ過により粗抽出液を得る方法などを適宜用いることができる。緩衝液の中には尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトン X-100(商品名)、ツウィーンー20(商品名)などの界面活性剤を加えてあってもよい。目的蛋白質は、 自体公知の分離・精製法を適切に組み合わせてその精製を行なうことができる。 When culturing animal cells, for example, a MEM medium containing about 5 to about 20% fetal bovine serum, PRMI1640 medium, DMEM medium, or the like may be used as the medium. The pH is preferably about 6 to about 8. Culturing is usually carried out at about 30 to about 40 ° C. for about 15 to about 72 hours, and aeration and stirring are added as necessary. Transformed animal cells expressing a predetermined protein can be used as they are, but they can also be used as cell homodunates thereof, or a predetermined gene product protein can be isolated and used. When extracting from the above cultured cells, after culturing, the cells are collected by a known method, suspended in an appropriate buffer solution, destroyed by ultrasonic waves, lysozyme and / or freeze-thaw, and then centrifuged. A method of obtaining a crude extract by filtration or the like can be appropriately used. A protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (trade name) or Twien-20 (trade name) may be added to the buffer solution. The target protein can be purified by appropriately combining the separation / purification methods known per se.
 本スクリーニングは、通常の結合活性あるいは酵素活性の測定法に準じて実施することができ、例えば当該分野で公知の方法などを参考にして行うことができる。また、各種標識、緩衝液系、その他適当な試薬等を使用したり、そこで説明した操作等に準じて行うことができる。使用蛋白質などは、活性化剤で処理したり、その前駆体あるいは潜在型のものを活性型のものに予め変換しておくこともできる。測定は通常Tris-HCl緩衝液、リン酸塩緩衝液などの反応に悪影響を与えないような緩衝液等中で、例えば、pH約4~約10(好ましくは、pH約6~約8)において行うことができる。これら個々のスクリーニングにあたっては、それぞれの方法における通常の条件、操作法に当業者の通常の技術的配盧を加えて、当該蛋白質あるいはそれと実質的に同等な活性をする蛋白質に関連した測定系を構築すればよい。これらの一 般的な技術手段の詳細については、総説、成書などを参照することができる〔例えば、Methods in Enzymology, Academic Press社(USA)発行)など参照〕。 This screening can be carried out according to a usual method for measuring binding activity or enzyme activity, and can be carried out with reference to, for example, a method known in the art. In addition, various labels, buffer systems, other appropriate reagents, etc. can be used, and the operation can be performed according to the operation described therein. The protein to be used can be treated with an activator, or its precursor or latent form can be converted into an active form in advance. The measurement is usually carried out in a buffer solution such as Tris-HCl buffer solution or phosphate buffer solution which does not adversely affect the reaction, for example, at pH of about 4 to about 10 (preferably pH of about 6 to about 8). It can be carried out. In these individual screenings, a measurement system related to the protein or a protein having substantially the same activity as that of the protein is prepared by adding the usual technical arrangements of those skilled in the art to the usual conditions and operating methods in each method. Just build it. For details of these general technical means, review articles, books, etc. can be referred to [for example, Methods in Enzymology, published by Academic Press (USA), etc.].
 本発明のスクリーニングキットは、Praja-1蛋白質又はタグの付されたPraja-1蛋白質を含有している。本発明のスクリーニングキットは、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を有する物質又は化合物をスクリーニングできる。また、該スクリーニングキットは、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療作用を有する物質又は化合物をスクリーニングできる。
 該スクリーニングキットは、所要の測定を行うのが便利なように、上記で説明したような反応用の緩衝液や試薬などがセットになっているものであってよい。
 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。
全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。
The screening kit of the present invention contains a Praja-1 protein or a tagged Praja-1 protein. The screening kit of the present invention can screen a substance or compound having an activity selected from the group consisting of an interaction activity with Praja-1, a binding activity with Praja-1, and an enhancing or promoting activity of Praja-1. .. The screening kit also includes obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. It is possible to screen substances or compounds having a preventive / therapeutic effect on pathological symptoms selected from the group.
The screening kit may include a buffer solution for a reaction, a reagent, or the like as described above as a set so that it is convenient to perform the required measurement.
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is provided merely for the purpose of explaining the present invention and for reference in a specific embodiment thereof. These examples are for explaining specific specific embodiments of the present invention, but do not represent limiting or limiting the scope of the invention disclosed in the present application. It should be understood that in the present invention, various embodiments based on the ideas of the present specification are possible.
All embodiments have been or can be carried out using standard techniques, except as described in detail elsewhere, which are well known and conventional to those of skill in the art. ..
〔材料および方法〕
マウス
 本実施例の実験研究は千葉大学動物実験委員会からの許可を受けた(承認番号: 29-195)ものである。動物の管理および処置に関する全ての手続きは、委員会の動物管理ガイドラインに適合したものである。用いられる動物の苦痛および頭数は、両方ともできるだけ最小化するように努めた。
 動物は12h間の明暗サイクル下において24±2°Cで収容し(7:00から19:00まで照明点灯)、餌および水は自由食とした。
 脳特異的DGKδ欠損マウス[非特許文献11]は以前に記載の通り作製した。
 簡単に説明すると、DGKδのエキソン9を挟み込んでいるLoxP部位を挿入することによって、ターゲティングコンストラクトを作製した。カルモジュリン依存性キナーゼIIα-Cre+の雄を利用して脳特異的DGKδ-KOを得た。Cre-/-:loxP+/+マウスをcre+/-:loxP-/-と交配して脳特異的DGKδ欠損マウスを作製した。cre+/-:loxP+/+(脳特異的DGKδ欠損)マウスのコントロール群としてはcre-/-:loxP+/+同腹仔を使用した。遺伝子型(脳特異的DGKδ-KOマウスおよび兄弟コントロール)あたり7匹の雄マウスを用いた。
〔material and method〕
Mice The experimental study of this example was approved by the Animal Care and Use Committee of Chiba University (approval number: 29-195). All animal care and treatment procedures comply with the Commission's Animal Care Guidelines. Both the distress and the number of animals used were sought to be minimized as much as possible.
Animals were housed at 24 ± 2 ° C under a 12-hour light-dark cycle (lit from 7:00 to 19:00), and food and water were free food.
Brain-specific DGKδ-deficient mice [Non-Patent Document 11] were prepared as described above.
Briefly, a targeting construct was created by inserting the LoxP site sandwiching exon 9 of DGKδ. Males of calmodulin-dependent kinase IIα-Cre + were used to obtain brain-specific DGKδ-KO. Cre -/- : loxP +/+ mice were mated with cre +/- : loxP -/- to generate brain-specific DGKδ-deficient mice. cre +/- : loxP +/+ (brain-specific DGKδ deficiency) As a control group for mice, cre -/- : loxP +/+ littermates were used. Seven male mice per genotype (brain-specific DGKδ-KO mice and sibling controls) were used.
〔プラスミド構築物〕
 マウスPraja-1(NCBIアクセッションno. XM_011247544)cDNAは、マウス脳cDNAから増幅し、pAcGFPベクターのEcoRI/SalI部位に挿入した[非特許文献13]。また、哺乳類細胞によってグルタチオンS-トランスフェラーゼ(GST)融合Praja-1を発現するためには、Praja-1 cDNAをpSF-CMV-Puro-NH2-GST-TEV(Oxford Genetics, オックスフォード, UK)のEcoRI/XhoI部位にもライゲーションした。
[Plasmid construct]
Mouse Praja-1 (NCBI accession no. XM_011247544) cDNA was amplified from mouse brain cDNA and inserted into the EcoRI / SalI site of the pAcGFP vector [Non-Patent Document 13]. In addition, in order to express glutathione S-transferase (GST) fusion Praja-1 by mammalian cells, the Praja-1 cDNA should be used in pSF-CMV-Puro-NH2-GST-TEV (Oxford Genetics, Oxford, UK) EcoRI /. I also ligated to the XhoI site.
〔細胞培養およびトランスフェクション〕
 COS-7細胞は、10%ウシ胎児血清(Thermo Fisher Scientific, ウォルサム, MA, USA)および100U/mLペニシリン+100μg/mLストレプトマイシンを添加したダルベッコ改変イーグル培地(Dulbecco’s modified Eagle’s medium (D-MEM); 和光純薬工業, 大阪, 日本)によって、5%CO2を含有する雰囲気下において37°Cで維持した。COS-7細胞をポリ-L-リジンコ-ティングしたカバ-スリップ搭載6ウェルーに1×105細胞/ウェルの密度で播種した。
 pAcGFP-Praja-1またはpSF-CMV-Puro-NH2-GST-TEV-Praja-1を、当該キット説明書の図のレジェンドに示されている通りトランスフェクションした。プラスミドはキット製造者の説明書に従ってPolyFect(Qiagen, ヒルデン, ドイツ)を用いて一過的にトランスフェクションした。
[Cell culture and transfection]
COS-7 cells are Dulbecco's modified Eagle's medium (D-MEM) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) and 100 U / mL penicillin + 100 μg / mL streptomycin; Wako Pure Chemical Industries, Osaka, Japan) maintained the temperature at 37 ° C in an atmosphere containing 5% CO 2 . COS-7 cells were seeded in 6 wells with poly-L-lysine coated coverslips at a density of 1 × 10 5 cells / well.
pAcGFP-Praja-1 or pSF-CMV-Puro-NH2-GST-TEV-Praja-1 was transfected as shown in the legend in the figure in the kit manual. The plasmid was transiently transfected with PolyFect (Qiagen, Hilden, Germany) according to the kit manufacturer's instructions.
〔脂質抽出〕
 マウスの大脳皮質を、氷冷リシス緩衝液(50mM HEPES, pH7.2, 150mM NaCl, 5mM MgCl2, cOmpleteTM EDTA不含プロテア-ゼ阻害剤)中でホモジナイズし、次に4°Cにおいて1000 gで5min遠心した。総脂質を、BlighおよびDyerの方法に従ってマウス脳(大脳皮質)から抽出した[非特許文献15]。2ミリリットルのメタノールおよび1mLのクロロホルムを700μLのサンプルに加えた。
 PA分析のためには、酸性リン脂質の回収比を改善するために100μLの3M HClをサンプルに加えた[非特許文献16]。脂質を含有する溶媒をN2ガス下で乾燥し、抽出された脂質を100μLのクロロホルム/メタノール(2:1, v/v)中で再構成するように戻した。
[Lipid extraction]
Mouse cerebral cortex was homogenized in ice-cold Lysis buffer (50 mM HEPES, pH7.2, 150 mM NaCl, 5 mM MgCl 2 , cOmplete TM EDTA-free protease inhibitor) and then 1000 g at 4 ° C. Centrifuge for 5 minutes. Total lipids were extracted from mouse brain (cerebral cortex) according to Bligh and Dyer's method [Non-Patent Document 15]. 2 ml of methanol and 1 mL of chloroform were added to 700 μL of the sample.
For PA analysis, 100 μL of 3M HCl was added to the sample to improve the recovery ratio of acidic phospholipids [Non-Patent Document 16]. The lipid-containing solvent was dried under N 2 gas and the extracted lipid was reconstituted in 100 μL chloroform / methanol (2: 1, v / v).
〔液体クロマトグラフィー(LC)-質量分析(MS)およびLC-タンデム質量分析(MS/MS) 〕
 抽出された脂質(10μL)中のホスファチジン酸種は、以前の文献 [非特許文献16~19]に記載の通り、LC-MSおよびLC-MS/MSによって分析した。抽出された脂質(10μL)中のジアシルグリセロール種は、以前[非特許文献20]に記載の通り、LC-MSおよびLC-MS/MSによって分析した。
[Liquid Chromatography (LC) -Mass Spectrometry (MS) and LC-Tandem Mass Spectrometry (MS / MS)]
Phosphatidic acid species in the extracted lipid (10 μL) were analyzed by LC-MS and LC-MS / MS as described in previous literature [Non-Patent Documents 16-19]. The diacylglycerol species in the extracted lipid (10 μL) were analyzed by LC-MS and LC-MS / MS as previously described in [Non-Patent Document 20].
〔GST-Praja-1の精製〕
 GST-Praja-1をCOS-7細胞によって発現した。細胞溶解および遠心後に、グルタチオンセファロース4B(GE Healthcare, シカゴ, IL, USA)を用いるアフィニティ-クロマトグラフィーを行って、GST融合α-Syn-Nを精製した。カラムを溶解緩衝液によって洗浄し、結合した蛋白質を50mM Tris/HCl、150mM NaCl、および10mM還元型グルタチオンを含有する緩衝液によって溶出した。脂質オーバーレイアッセイのためには、精製した蛋白質をHEPES緩衝液(25mM HEPES, pH7.4, 100mM NaCl)に対して透析した。蛋白質濃度はビシンコニン酸蛋白質アッセイキット(Thermo Fisher Scientific)によって測定した。
[Purification of GST-Praja-1]
GST-Praja-1 was expressed by COS-7 cells. After cytolysis and centrifugation, affinity-chromatography with glutathione sepharose 4B (GE Healthcare, Chicago, IL, USA) was performed to purify GST fusion α-Syn-N. The column was washed with lysis buffer and the bound protein was eluted with buffer containing 50 mM Tris / HCl, 150 mM NaCl, and 10 mM reduced glutathione. For the lipid overlay assay, the purified protein was dialyzed against HEPES buffer (25 mM HEPES, pH 7.4, 100 mM NaCl). Protein concentration was measured by the Bicinchoninic Acid Protein Assay Kit (Thermo Fisher Scientific).
〔リポソーム共沈降アッセイ〕
 次の脂質混合物を用いてPraja-1蛋白質の脂質結合特性を判定した:
 コントロールリポソーム[コレステロール(Chol)(30mol%(和光純薬工業))およびホスファチジルコリン(PC, 卵黄から(Avanti Polar Lipids, アラバスター, AL, USA))(70mol%)]、ホスファチジルセリン(PS)リポソーム[Chol(30mol%)、PC(卵黄から)(60mol%)、および18:1/18:1-PS(10mol%(Avanti Polar Lipids))]、ホスファチジルグリセロール(PG)リポソーム[Chol(30mol%)、PC(卵黄から)(60mol%)、および18:0/22:6-PG(10mol%(Avanti Polar Lipids))]、ならびにPAリポソーム[Chol(30mol%)、PC(卵黄から)(60mol%)、および各PA種(10mol%)]。
 PA種としては、16:0/18:1-PA(Avanti Polar Lipids)、18:1/18:1-PA(Avanti Polar Lipids)、18:0/18:0-PA(Avanti Polar Lipids)、18:0/20:4-PA(Avanti Polar Lipids)、および18:0/22:6-PA(Avanti Polar Lipids)を用いた。
[Liposome co-precipitation assay]
The lipid binding properties of the Praja-1 protein were determined using the following lipid mixture:
Control liposomes [Cholesterol (30 mol% (Wako Pure Chemical Industries, Ltd.)) and phosphatidylcholine (PC, from egg yolk (Avanti Polar Lipids, Alabaster, AL, USA)) (70 mol%)], phosphatidylserine (PS) liposomes [ Chol (30 mol%), PC (from egg yolk) (60 mol%), and 18: 1/18: 1-PS (10 mol% (Avanti Polar Lipids))], phosphatidylglycerol (PG) liposomes [Chol (30 mol%), PC (from egg yolk) (60 mol%), and 18: 0/22: 6-PG (10 mol% (Avanti Polar Lipids))], and PA liposomes [Chol (30 mol%), PC (from egg yolk) (60 mol%) , And each PA species (10 mol%)].
PA species include 16: 0/18: 1-PA (Avanti Polar Lipids), 18: 1/18: 1-PA (Avanti Polar Lipids), 18: 0/18: 0-PA (Avanti Polar Lipids), 18: 0/20: 4-PA (Avanti Polar Lipids) and 18: 0/22: 6-PA (Avanti Polar Lipids) were used.
 脂質結合アッセイのためには、組み合わせた乾燥脂質混合物を95°CでHEPES緩衝液(25mM HEPES, pH7.4, 100mM NaCl, 1mMジチオトレイトール)によって45min水和し、水和の間には15min毎に1回1minボルテックスした。それから、リポソームは5サイクルの凍結融解(3minの-196°C, 3minの95°C)を行った。Bransonソニファイアー450(Branson Ultrasonics Corporation, ダンベリー, CT, USA)を用いる95°Cでの超音波処理によって、リポソーム形成[非特許文献21]を誘導した。 For the lipid binding assay, the combined dry lipid mixture was hydrated with HEPES buffer (25 mM HEPES, pH 7.4, 100 mM NaCl, 1 mM dithiothreitol) at 95 ° C for 45 min and 15 min during hydration. Vortexed once for 1 min. The liposomes were then thawed for 5 cycles (3 min -196 ° C, 3 min 95 ° C). Liposomal formation [Non-Patent Document 21] was induced by sonication at 95 ° C using Branson Sonifier 450 (Branson Ultrasonics Corporation, Danbury, CT, USA).
 COS-7細胞をpAcGFP-Praja-1によってトランスフェクションした。48h間のインキュベーション後に、細胞をHEPES緩衝液によって集め、その破砕物(0.3mg)を4°CでPA含有リポソームまたはコントロールリポソームと30min間インキュベーションした。当該サンプルを4°Cにおいて200000 gで1h間超遠心した。その沈殿物をHEPES緩衝液に溶解した。それから、CS100GX II遠心機およびS100-AT4アングルローター(日立工機, 東京, 日本)を用いて、サンプルを4°Cにおいて200000 gで1h間遠心した。その沈殿をHEPES緩衝液に溶解した。その上清およびペレットを、SDS/PAGEに引き継いで、抗GFP抗体(Santa Cruz Biotechnology, サンタクルーズ, CA, USA)を用いるウエスタンブロッティングによって分析した。定量的デンシトメトリーはIMAGEJソフトウェア(アメリカ国立衛生研究所, ベセスダ, MD, USA)を用いて行った。脂質は二重層を形成するので、実際の濃度の半分を考慮した[非特許文献21]。 COS-7 cells were transfected with pAcGFP-Praja-1. After incubation for 48 hours, cells were collected with HEPES buffer and the disrupted product (0.3 mg) was incubated with PA-containing liposomes or control liposomes at 4 ° C for 30 min. The sample was ultracentrifuged at 200000 g at 4 ° C for 1 h. The precipitate was dissolved in HEPES buffer. Then, using a CS100GXII centrifuge and an S100-AT4 angle rotor (Hitachi Koki, Tokyo, Japan), the sample was centrifuged at 200,000 g at 4 ° C for 1 h. The precipitate was dissolved in HEPES buffer. The supernatants and pellets were carried over to SDS / PAGE and analyzed by Western blotting using an anti-GFP antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Quantitative densitometry was performed using IMAGEJ software (National Institutes of Health, Bethesda, MD, USA). Since lipids form a bilayer, half of the actual concentration was considered [Non-Patent Document 21].
〔E3ユビキチン-蛋白質リガーゼ活性アッセイ〕
 精製したGST-Praja-1融合蛋白質を、PCリポソーム、18:0/22:6-PGリポソーム、18:1/18:1-PAリポソーム、18:0/18:0-PAリポソーム、および18:0/22:6-PAリポソームとインキュベーションした。E3ユビキチン-蛋白質リガーゼ活性を分析するためには、E3リガーゼ自己ユビキチン化アッセイキット(BML-UW0970; Enzo Life Sciences, ニューヨーク, NY, USA)を使用した。アッセイは製造者のプロトコールに従って行った。簡単に説明すると、各反応(25μL最終体積)は、1.25μLの20×E1、1.25μLの20×E2、2.5μLの10×Ub E3リガーゼ緩衝液、2.5μLの10×ユビキチン、0.25μLの100mM DTT、および1.25μLのMg-ATPを含有するようにした。反応混合物を37°Cで1h間インキュベーションし、抗ユビキチン抗体(キットに含まれる)および西洋ワサビペルオキシダ-ゼコンジュゲートヤギ抗マウスIgG(Bethyl Laboratories, モンゴメリー, AL, USA)を用いてSDS/PAGE/ウエスタンブロッティングによって分析した。
[E3 Ubiquitin-Protein Ligase Activity Assay]
Purified GST-Praja-1 fusion protein was added to PC liposomes, 18: 0/22: 6-PG liposomes, 18: 1/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, and 18 :. Incubated with 0/22: 6-PA liposomes. The E3 ligase self-ubiquitination assay kit (BML-UW0970; Enzo Life Sciences, NY, NY, USA) was used to analyze E3 ubiquitin-protein ligase activity. The assay was performed according to the manufacturer's protocol. Briefly, each reaction (25 μL final volume) is 1.25 μL 20 × E1, 1.25 μL 20 × E2, 2.5 μL 10 × Ub E3 ligase buffer, 2.5 μL 10 × ubiquitin, 0.25 μL 100 mM. It was made to contain DTT and 1.25 μL of Mg-ATP. The reaction mixture was incubated at 37 ° C for 1 h and SDS / PAGE using anti-ubiquitin antibody (included in the kit) and horseradish peroxyda-zeconjugated goat anti-mouse IgG (Bethyl Laboratories, Montgomery, AL, USA). / Analyzed by Western blotting.
〔ウエスタンブロッティング〕
 等量の蛋白質をポリアクリルアミドゲルにローディングした。分離後に、蛋白質をポリフッ化ビニリデン膜(Millipore, バーリントン, MA, USA)上に転写し、4°Cで次の一次抗体: GFP(Santa Cruz Biotechnology)およびβ-アクチン(Sigma-Aldrich, セントルイス, MO, USA)と一晩インキュベーションした。洗浄後に、膜を二次抗体溶液[西洋ワサビペルオキシダ-ゼコンジュゲートヤギ抗マウスIgG(Bethyl Laboratories)]と室温で1h間インキュベーションし、次に増強化学発光法を用いて検出した。
[Western blotting]
Equal amounts of protein were loaded on a polyacrylamide gel. After separation, the protein is transferred onto a polyvinylidene fluoride membrane (Millipore, Burlington, MA, USA) and at 4 ° C the following primary antibodies: GFP (Santa Cruz Biotechnology) and β-actin (Sigma-Aldrich, St. Louis, MO). , USA) overnight incubation. After washing, the membrane was incubated with a secondary antibody solution [Horseradish peroxydase-zeconjugated goat anti-mouse IgG (Bethyl Laboratories)] for 1 h at room temperature and then detected using enhanced chemiluminescence.
〔統計分析〕
 データは平均±SDとして表し、2群の比較についてはスチューデントのt検定によって、そして多重比較については一元配置ANOVAに引き続いてのテューキーの事後検定(Tukey’s post hoc test)によって、GRAPHPAD PRISM 8(GraphPad Software, サンディエゴ, CA, USA)を用いて分析して、有意差を判定した。P<0.05を有意であると見なした。
[Statistical analysis]
Data are expressed as mean ± SD, GRAPHPAD PRISM 8 (GraphPad Software) by Student's t-test for comparison of two groups, and by Tukey's post hoc test following one-way ANOVA for multiple comparisons. , San Diego, CA, USA) was used for analysis to determine significant differences. P <0.05 was considered significant.
〔結果〕
〔DGKδ-KOマウスの大脳皮質のPA分子種およびDG分子種の分析〕
 最近確立されたLC-MS法[非特許文献16; 非特許文献22]を適用して、先ず、PA分子種(DGK産物)の量が野生型マウスと比較してDGKδ-KOマウスの脳(大脳皮質)において減少しているかどうかを検討した。結果を図1Aに示す。図1Aに示されている通り、ほとんど全てのPA種のレベルは影響されなかった。しかしながら、野生型マウスと比較してDGKδ-KOマウスの大脳皮質においては40:6-PAが有意に減っていた(図1A)。その上、LC-MS/MS分析は、40:6-PAが、ドコサヘキサエン酸(DHA, 22:6, ω-3)をsn-2位に含有する18:0/22:6-PA(94.6%)から主としてなるということを示した(表1及び表2)。
〔result〕
[Analysis of PA and DG molecular species in the cerebral cortex of DGKδ-KO mice]
Applying the recently established LC-MS method [Non-Patent Document 16; Non-Patent Document 22], first, the amount of PA molecular species (DGK product) is higher in the brain of DGKδ-KO mice compared to wild-type mice (Non-Patent Document 16; It was examined whether it decreased in the cerebral cortex). The results are shown in Figure 1A. As shown in Figure 1A, the levels of almost all PA species were unaffected. However, 40: 6-PA was significantly reduced in the cerebral cortex of DGKδ-KO mice compared to wild-type mice (Fig. 1A). Moreover, LC-MS / MS analysis shows that 40: 6-PA contains docosahexaenoic acid (DHA, 22: 6, ω-3) at the sn-2 position 18: 0/22: 6-PA (94.6). %) Shown that it is mainly (Table 1 and Table 2).
 次に、DG分子種(DGK基質)がDGKδ-KOマウスの大脳皮質に蓄積しているかどうかを評価した。結果を図1B に示す。図1Bに示されている通り、DGKδ-KOマウス大脳皮質においては、40:6-DGのみが有意に増大しており、他のDG種のレベルは有意には影響されていなかった(図1B)。40:6-PA(表1及び表2)と同様に、40:6-DGは主に18:0/22:6-DG(76.1%)からなり(表3及び表4)、これはDGKδ欠損大脳皮質においては、同じ脂肪酸部分を含有するPA種およびDG種の18:0/22:6-PAおよび18:0/22:6-DGが同時にそれぞれ減少および増大しているということを意味している。よって、これらの結果は、DGKδがマウス大脳皮質の18:0/22:6-PAを作るための基質として選択的に18:0/22:6-DGを利用するということを強く示唆した。 Next, it was evaluated whether or not the DG molecular species (DGK substrate) was accumulated in the cerebral cortex of DGKδ-KO mice. The results are shown in Figure 1B. As shown in Figure 1B, only 40: 6-DG was significantly increased in the DGKδ-KO mouse cerebral cortex, and the levels of other DG species were not significantly affected (Figure 1B). ). Similar to 40: 6-PA (Tables 1 and 2), 40: 6-DG mainly consists of 18: 0/22: 6-DG (76.1%) (Tables 3 and 4), which is DGKδ. In the defective cerebral cortex, it means that 18: 0/22: 6-PA and 18: 0/22: 6-DG of PA and DG species containing the same fatty acid moiety are simultaneously decreased and increased, respectively. is doing. Therefore, these results strongly suggest that DGKδ selectively uses 18: 0/22: 6-DG as a substrate for making 18: 0/22: 6-PA in the mouse cerebral cortex.
 下記表1及び表2には、LC-MS/MSを用いての、マウス大脳皮質中の各PA分子種のアシル種を同定した結果を示す。 Tables 1 and 2 below show the results of identifying acyl species of each PA molecular species in the mouse cerebral cortex using LC-MS / MS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 下記表3及び表4には、LC-MS/MSを用いての、マウス大脳皮質中の各DG分子種のアシル種を同定した結果を示す。 Tables 3 and 4 below show the results of identifying acyl species of each DG molecular species in the mouse cerebral cortex using LC-MS / MS.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
〔Praja-1は選択的に18:0/22:6-PAと相互作用する〕
 DGKδはマウス大脳皮質では18:0/22:6-PAを作り出すということ(図1)が強く示唆されたので、リポソーム沈降アッセイを用いて18:0/22:6-PAに対するAcGFPタグ付きPraja-1(COS-7細胞によって発現)の結合活性を判定した。
[Praja-1 selectively interacts with 18: 0/22: 6-PA]
Since it was strongly suggested that DGKδ produces 18: 0/22: 6-PA in the mouse cerebral cortex (Fig. 1), the AcGFP-tagged Praja for 18: 0/22: 6-PA using the liposome sedimentation assay was used. The binding activity of -1 (expressed by COS-7 cells) was determined.
 Praja-1はモックコントロール(リポソームなし)では沈降しなかった(図2A)。バックグランドコントロールとしてPC(中性リン脂質)単独を含有するリポソームは、Praja-1のほどほどの沈降(~50%)を示した(図2A,B)。PS(酸性リン脂質)リポソームは、PCコントロールリポソームと比較してPraja-1を強くは沈殿させなかった。その上、18:0/22:6-PAと同じ脂肪酸部分を含有する酸性リン脂質コントロールとしての18:0/22:6-PGリポソームもまた、バックグランドコントロールとほとんど同じPraja-1結合活性を見せた。
 対照的に、Praja-1の100%近くが、18:0/22:6-PAリポソームと共沈殿した(図2A,B)。しかしながら、負のコントロールとしてのAcGFP単独のものは、沈降した18:0/22:6-PAリポソーム中には検出可能ではなかった(図2A)。
Praja-1 did not precipitate with mock control (without liposomes) (Fig. 2A). Liposomes containing PC (neutral phospholipid) alone as a background control showed moderate precipitation (~ 50%) of Praja-1 (FIGS. 2A, B). PS (acidic phospholipid) liposomes did not precipitate Praja-1 more strongly than PC-controlled liposomes. Moreover, 18: 0/22: 6-PG liposomes as acidic phospholipid controls containing the same fatty acid moieties as 18: 0/22: 6-PA also have almost the same Praja-1 binding activity as background controls. showed.
In contrast, nearly 100% of Praja-1 co-precipitated with 18: 0/22: 6-PA liposomes (Fig. 2A, B). However, AcGFP alone as a negative control was not detectable in precipitated 18: 0/22: 6-PA liposomes (Fig. 2A).
 また、他のPA種のPraja-1結合活性をも判定した(図2A,B)。
 18:0/22:6-PAリポソームとは違って、16:0/18:1-PAリポソーム、18:0/18:0-PAリポソーム、および18:1/18:1-PAリポソームはPCコントロールリポソームとほとんど同じ共沈降能のみを示した(図2A,B)。同じく多価不飽和脂肪酸(PUFA)であるアラキドン酸(20:4, ω-6)を有する18:0/20:4-PAを含有するリポソームは、PCコントロールリポソームよりも強いPraja-1結合活性を見せられなかった(図2A,B)。
 よって、これらの結果は、本実施例の実験において評価した種々のリン脂質を含有する次なるリポソーム〔PSリポソーム(酸性リン脂質コントロール)、18:0/22:6-PGリポソーム(同じ脂肪酸部分を含有する酸性リン脂質コントロール)、他のPA種(16:0/18:1-PA、18:0/18:0-PA、18:1/18:1-PA、および18:0/20:4-PA)含有リポソーム、ならびにPC単独リポソーム(中性脂質/バックグランドコントロール)〕のうち、18:0/22:6-PAリポソームと最も強くかつ高度に選択的に相互作用したということを意味している(図2)。
In addition, the Praja-1 binding activity of other PA species was also determined (Fig. 2A, B).
Unlike 18: 0/22: 6-PA liposomes, 16: 0/18: 1-PA liposomes, 18: 0/18: 0-PA liposomes, and 18: 1/18: 1-PA liposomes are PCs. Only the co-precipitation ability, which is almost the same as that of the control liposome, was shown (Fig. 2A, B). Liposomes containing 18: 0/20: 4-PA, also with polyunsaturated fatty acid (PUFA) arachidonic acid (20: 4, ω-6), have stronger Praja-1 binding activity than PC control liposomes. Was not shown (Fig. 2A, B).
Therefore, these results show that the following liposomes containing various phospholipids evaluated in the experiments of this example [PS liposome (acidic phospholipid control), 18: 0/22: 6-PG liposome (same fatty acid moiety). Contains acidic phospholipid controls), other PA species (16: 0/18: 1-PA, 18: 0/18: 0-PA, 18: 1/18: 1-PA, and 18: 0/20: 4-PA) -containing liposomes, as well as PC-only liposomes (neutral lipid / background control)], which means that they interacted most strongly and highly selectively with 18: 0/22: 6-PA liposomes. (Fig. 2).
〔Praja-1は18:0/22:6-PAによって選択的に活性化される〕
 次に、PCリポソーム、18:0/22:6-PGリポソーム、18:0/18:0-PAリポソーム、18:1/18:1-PAリポソーム、または18:0/22:6-PAリポソームの存在下において、COS-7細胞によって発現してグルタチオンセファロースアフィニティ-クロマトグラフィーによって精製したGSTタグ付きPraja-1を用いて、E3リガーゼ自己ユビキチン化アッセイを行った。
 図3に示されている通り、PCリポソームはPraja-1の自己E3ユビキチン-蛋白質リガーゼ活性を控え目にのみ活性化した。その上、PCリポソームのものとほとんど同じPraja-1結合活性を見せる18:0/22:6-PG、18:0/18:0-PA、あるいは18:1/18:1-PAを含有するリポソーム(図2)は、PC単独と比較してPraja-1活性を増強させられなかった(図3)。面白いことに、Praja-1結合活性と同様に(図2)、18:0/22:6-PAリポソームは、PC単独リポソーム、18:0/22:6-PGリポソーム、18:0/18:0-PAリポソーム、および18:1/18:1-PAリポソームと比較して、Praja-1の自己ユビキチン化をより強く増強した(図3)。しかしながら、GST単独は18:0/22:6-PAリポソームの存在下においてさえも自己ユビキチン化しなかった(図3)。
 よって、これらの結果は、18:0/22:6-PAが、Praja-1のE3ユビキチン-蛋白質リガーゼ活性を選択的にかつ高度に増強するということを意味している。総合すると、DGKδによって作られる18:0/22:6-PAはSERTをユビキチン化して不安定化するPraja-1を活性化するということが強く示唆される(図4)。
[Praja-1 is selectively activated by 18: 0/22: 6-PA]
Then PC liposomes, 18: 0/22: 6-PG liposomes, 18: 0/18: 0-PA liposomes, 18: 1/18: 1-PA liposomes, or 18: 0/22: 6-PA liposomes. An E3 ligase self-ubiquitination assay was performed using GST-tagged Praja-1 expressed by COS-7 cells and purified by glutathione Sepharose affinity-chromatography.
As shown in FIG. 3, PC liposomes only conservatively activated the self-E3 ubiquitin-protein ligase activity of Praja-1. Moreover, it contains 18: 0/22: 6-PG, 18: 0/18: 0-PA, or 18: 1/18: 1-PA, which exhibit almost the same Praja-1 binding activity as that of PC liposomes. Liposomes (Fig. 2) were not able to enhance Praja-1 activity compared to PC alone (Fig. 3). Interestingly, as with Praja-1 binding activity (Figure 2), 18: 0/22: 6-PA liposomes are PC-only liposomes, 18: 0/22: 6-PG liposomes, 18: 0/18 :. Compared with 0-PA liposomes and 18: 1/18: 1-PA liposomes, Praja-1 self-ubiquitination was more strongly enhanced (Fig. 3). However, GST alone did not self-ubiquitinate even in the presence of 18: 0/22: 6-PA liposomes (Fig. 3).
Thus, these results mean that 18: 0/22: 6-PA selectively and highly enhances the E3 ubiquitin-protein ligase activity of Praja-1. Taken together, it is strongly suggested that 18: 0/22: 6-PA produced by DGKδ activates Praja-1, which ubiquitinates and destabilizes SERT (Fig. 4).
〔考察〕
 本実施例の研究では、SERTをユビキチン化するE3ユビキチン-蛋白質リガーゼPraja-1が18:0/22:6-PA種と選択的にかつ強度に相互作用するということを初めて実証した(図2)。
 Praja-1は、リン脂質を含有するリポソーム、例えばPSリポソーム(酸性リン脂質コントロール)、18:0/22:6-PGリポソーム(同じ脂肪酸部分を含有する酸性リン脂質コントロール)、ならびに他のPA種(16:0/18:1-PA、18:0/18:0-PA、18:1/18:1-PA、および18:0/20:4-PA)含有リポソームのうち、18:0/22:6-PAリポソームと最も強く相互作用した(図2)。よって、Praja-1に対する18:0/22:6-PAの結合は高度に選択的であるということがある程度の高い可能性をもって言える。面白いことに、Praja-1は18:0/22:6-PA種によって選択的に活性化された(図3)。
[Discussion]
The study of this example demonstrated for the first time that the E3 ubiquitin-protein ligase Praja-1, which ubiquitinates SERT, interacts selectively and strongly with 18: 0/22: 6-PA species (Fig. 2). ).
Praja-1 is a liposome containing phospholipids, such as PS liposomes (acidic phospholipid control), 18: 0/22: 6-PG liposomes (acidic phospholipid control containing the same fatty acid moiety), and other PA species. Of the liposomes containing (16: 0/18: 1-PA, 18: 0/18: 0-PA, 18: 1/18: 1-PA, and 18: 0/20: 4-PA), 18: 0 / 22: 6-The strongest interaction with PA liposomes (Fig. 2). Therefore, it can be said with some high possibility that the binding of 18: 0/22: 6-PA to Praja-1 is highly selective. Interestingly, Praja-1 was selectively activated by the 18: 0/22: 6-PA species (Fig. 3).
 新たに開発したLC-MS法[非特許文献16, 非特許文献20, 非特許文献22]を用いた本発明者等の結果は、DGKδ-KOマウス大脳皮質において、18:0/22:6-PAおよび18:0/22:6-DGが同時にそれぞれ減少および蓄積しているということを実証した(図1)。この結果は、DGKδが18:0/22:6-DGを利用して18:0/22:6-PAを生成するということを強く示唆すものである。興味深いことに、本発明者等は、18:0/22:6-PAが選択的にPraja-1に結合し、精製されたPraja-1のE3ユビキチン-蛋白質リガーゼ活性を増強するということを見出した(図2および3)。 The results of the present inventors using the newly developed LC-MS method [Non-Patent Document 16, Non-Patent Document 20, Non-Patent Document 22] are obtained in the DGKδ-KO mouse cerebral cortex at 18: 0/22: 6 -It was demonstrated that PA and 18: 0/22: 6-DG were simultaneously decreasing and accumulating (Fig. 1). This result strongly suggests that DGKδ utilizes 18: 0/22: 6-DG to generate 18: 0/22: 6-PA. Interestingly, we found that 18: 0/22: 6-PA selectively binds to Praja-1 and enhances the E3 ubiquitin-protein ligase activity of purified Praja-1. (Figs. 2 and 3).
 その上、本発明者等は、これまでに、DGKδが脳およびニューロン細胞においてSERTと相互作用する、およびSERTをユビキチン化するPraja-1[非特許文献14]と相互作用するということ[非特許文献12, 非特許文献13]と、Praja-1がDGK活性依存的な様式でSERTユビキチン化および分解を誘導するということ[非特許文献13]とを明らかにした。よって、DGKδによって生成する18:0/22:6-PAの増大は直接的にはPraja-1 E3ユビキチン-蛋白質リガーゼ活性を増強し、結果的に脳のSERT蛋白質安定性を減らしているということがあり得ることである(図4)。図1に示されている通り、18:0/22:6-PAの量は低いものである。しかしながら、DGKδはPraja-1と相互作用し、かつPraja-1と共に共局在している[非特許文献13]。よって、18:0/22:6-PAはDGKδおよびPraja-1が存在する局所的領域に濃縮されていて、近位においてPraja-1の活性に影響し得るということが高い可能性をもって言える。 Moreover, we have previously stated that DGKδ interacts with SERTs in brain and neuronal cells, and with Praja-1 [Non-Patent Document 14], which ubiquitinates SERTs [Non-Patent Document 14]. It was clarified that Document 12, Non-Patent Document 13] and that Praja-1 induces SERT ubiquitination and degradation in a DGK activity-dependent manner [Non-Patent Document 13]. Therefore, the increase in 18: 0/22: 6-PA produced by DGKδ directly enhances Praja-1 E3 ubiquitin-protein ligase activity, resulting in a decrease in SERT protein stability in the brain. Is possible (Fig. 4). As shown in Figure 1, the amount of 18: 0/22: 6-PA is low. However, DGKδ interacts with Praja-1 and co-localizes with Praja-1 [Non-Patent Document 13]. Therefore, it can be said with high possibility that 18: 0/22: 6-PA is concentrated in the local region where DGKδ and Praja-1 are present and may affect the activity of Praja-1 in the proximal region.
 脳およびニューロンにおいては、ホスファチジルイノシトール(PI) 4,5-ビスリン酸(これはPIターンオーバーによって作られて、主として18:0/20:4-PI 4,5-二リン酸種からなる)が、制御上必須の役割を果たすことが実証されている[非特許文献23, 非特許文献24]。しかしながら、本実施例の研究では、本発明者等の結果は、PI 4,5-二リン酸に加えて、構造的に単純な脂質の18:0/22:6-PAもまたPraja-1 E3ユビキチン-蛋白質リガーゼの活性化およびSERTの分解を介して中枢神経系に必須の役割を果たすということを示唆する。 In the brain and neurons, phosphatidylinositol (PI) 4,5-bisphosphate (which is made by PI turnover and consists primarily of 18: 0/20: 4-PI 4,5-diphosphate species) , Has been demonstrated to play an essential role in control [Non-Patent Document 23, Non-Patent Document 24]. However, in the study of this example, the results of the present inventors found that in addition to PI 4,5-diphosphate, the structurally simple lipid 18: 0/22: 6-PA was also Praja-1. It suggests that it plays an essential role in the central nervous system through the activation of E3 ubiquitin-protein ligase and the degradation of SERT.
 以前に、本発明者等は、DGKδがC2C12筋芽細胞において高グルコース刺激に応答して16:0含有PA種および16:1含有PA種を生成するということを報告した[非特許文献22]。しかしながら、本実施例の研究では、脳ではDGKδは18:0/22:6-PAを作るということが強く示唆された(図1)。DGKδはインビトロでは明らかなDG種選択性を有さない[非特許文献22]。よって、DGKδは別々の細胞および組織においては異なるDG種プールを利用しているということがある程度の高い可能性をもって言える。他方で、DGKη欠損マウスの脳では、36:3(18:1/18:2)-PA、38:3(18:0/20:3)-PA、40:5(18:0/22:5)-PA、40:4(18:0/22:4)-PA、および40:3(18:0/22:3)-PAは有意に減っていた[非特許文献18]。このプロファイルはDGKδ-KOマウスの脳のものとは明瞭に異なる(図1)。 Previously, the present inventors reported that DGKδ produces 16: 0-containing PA species and 16: 1-containing PA species in C2C12 myoblasts in response to high glucose stimulation [Non-Patent Document 22]. .. However, the study of this example strongly suggested that DGKδ produces 18: 0/22: 6-PA in the brain (Fig. 1). DGKδ has no obvious DG species selectivity in vitro [Non-Patent Document 22]. Therefore, it can be said with some high possibility that DGKδ utilizes different DG species pools in different cells and tissues. On the other hand, in the brains of DGKη-deficient mice, 36: 3 (18: 1/18: 2) -PA, 38: 3 (18: 0/20: 3) -PA, 40: 5 (18: 0/22:: 5)-PA, 40: 4 (18: 0/22: 4)-PA, and 40: 3 (18: 0/22: 3) -PA were significantly reduced [Non-Patent Document 18]. This profile is distinctly different from that of the brain of DGKδ-KO mice (Fig. 1).
 加えて、神経芽腫細胞では、DGKζは30:0(14:0/16:0)-PA、32:0(16:0/16:0)-PA、および34:0(16:0/18:0)-PAを生成した[非特許文献25]。よって、異なる組織および細胞のDGKアイソザイムによって異なるPA種が生成されるということがあり得る[非特許文献26]。DGKδと同様に、DGKηおよびDGKζはインビトロで明白なDG種選択性を示さなかった[非特許文献27, 非特許文献28]。それゆえに、それらもまた異なるDG種プールにアクセスする可能性がある。異なるDGKアイソザイムは異なる組織および細胞において別々のPA種を生成するので、これらの別々のPA種はそれらの固有の標的を有するということが推測される。実際に、本発明者等は18:1/18:1-PAが選択的にα-シヌクレインと相互作用するということを見出した[非特許文献29, 非特許文献30]。
 その上、筋肉型クレアチンキナーゼは選択的に16:0/16:0-PA、16:0/18:1-PA、18:1/18:1-PA、および18:0/18:0-PAに結合し[非特許文献31]、L-乳酸デヒドロゲナーゼAは選択的に16:0/16:0-PA、18:0/18:0-PA、18:0/20:4-PA、および18:0/22:6-PAに結合した。
In addition, in neuroblastoma cells, DGKζ is 30: 0 (14: 0/16: 0) -PA, 32: 0 (16: 0/16: 0) -PA, and 34: 0 (16: 0 / 18: 0)-PA was generated [Non-Patent Document 25]. Therefore, it is possible that different PA species are produced by DGK isozymes in different tissues and cells [Non-Patent Document 26]. Like DGKδ, DGKη and DGKζ showed no apparent DG species selectivity in vitro [Non-Patent Document 27, Non-Patent Document 28]. Therefore, they may also access different DG species pools. Since different DGK isozymes produce different PA species in different tissues and cells, it is speculated that these different PA species have their own unique targets. In fact, the present inventors have found that 18: 1/18: 1-PA selectively interacts with α-synuclein [Non-Patent Document 29, Non-Patent Document 30].
Moreover, muscular creatine kinases are selectively 16: 0/16: 0-PA, 16: 0/18: 1-PA, 18: 1/18: 1-PA, and 18: 0/18: 0- Bound to PA [Non-Patent Document 31], L-lactic dehydrogenase A selectively 16: 0/16: 0-PA, 18: 0/18: 0-PA, 18: 0/20: 4-PA, And 18: 0/22: 6-bonded to PA.
 主として魚油に由来するドコサヘキサエン酸(DHA)は脳の発達および機能に必須であることが知られている[非特許文献32, 非特許文献33]。DHAは膜流動性を増大させ、重要な抗炎症、抗酸化、および抗アルツハイマー病の役割を有する[非特許文献32, 非特許文献33]。その上、多くの報告が、DHAなどのω-3 PUFA類は抗不安効果を有するということを繰り返し実証している[非特許文献34]。本実施例の研究では、DHA含有PAが、SERT(このものは、不安に密接に関係する[非特許文献5])のE3ユビキチン-蛋白質リガーゼPraja-1に選択的に結合し、それを活性化した(図2および3)。よって、SERT分解を増強する18:0/22:6-PAに組み込まれたDHAが、DHAの抗不安効果を説明し得るということがあり得る。その遊離脂肪酸形態に加えて、PAに組み込まれたDHAもまた脳機能に重要な役割を果たすということがある程度の高い可能性をもって言える。 It is known that docosahexaenoic acid (DHA), which is mainly derived from fish oil, is essential for the development and function of the brain [Non-Patent Document 32, Non-Patent Document 33]. DHA increases membrane fluidity and has important anti-inflammatory, antioxidant, and anti-Alzheimer's disease roles [Non-Patent Document 32, Non-Patent Document 33]. Moreover, many reports have repeatedly demonstrated that ω-3 PUFAs such as DHA have anxiolytic effects [Non-Patent Document 34]. In the study of this example, DHA-containing PA selectively binds to and activates SERT (which is closely related to anxiety [Non-Patent Document 5]) E3 ubiquitin-protein ligase Praja-1. (Figs. 2 and 3). Therefore, it is possible that DHA incorporated into 18: 0/22: 6-PA, which enhances SERT degradation, could explain the anxiolytic effect of DHA. In addition to its free fatty acid form, it can be said with some high probability that DHA incorporated into PA also plays an important role in brain function.
 DGKδ遺伝子破壊を有する女性患者が最近調べられた[非特許文献35]。患者は発作を示し、髪を引っ張る、足を叩く、および手をひらひらさせるなどの自己刺激行動を経験した[非特許文献35]。これらはOCDおよびOCスペクトラム障害において観察される[非特許文献36, 非特許文献37]。よって、DGKδの異常はヒトのOCD様の精神医学的障害を引き起こし、DGKδが精神衛生を維持するための鍵酵素であるということを意味している。しかしながら、DGKδ活性/発現の制御メカニズムは、依然、未知のものである。本発明者等は、蛋白質キナ-ゼC(PKC)α(このものは、SERT活性を制御する[非特許文献38~40])がDGKδと相互作用し[非特許文献41]、それをリン酸化し[非特許文献42]、その形質膜局在を制御する[非特許文献42]ということを報告した。よって、PKCαは脳のDGKδの細胞内局在および活性を制御し得る。その上、ホルボ-ルエステルはDGKδの発現レベルを増大させ[非特許文献43]、このことはPKCαを含めた、コンベンショナルPKCおよびノーベルPKCが、その発現を制御するということを示唆した。 A female patient with DGKδ gene disruption was recently investigated [Non-Patent Document 35]. Patients showed seizures and experienced self-stimulating behaviors such as pulling hair, tapping their feet, and fluttering their hands [Non-Patent Document 35]. These are observed in OCD and OC spectrum disorders [Non-Patent Document 36, Non-Patent Document 37]. Therefore, abnormalities in DGKδ cause OCD-like psychiatric disorders in humans, meaning that DGKδ is a key enzyme for maintaining mental health. However, the regulatory mechanism of DGKδ activity / expression remains unknown. In the present inventors, the protein kinase C (PKC) α (which regulates SERT activity [Non-Patent Documents 38-40]) interacts with DGKδ [Non-Patent Document 41], and phosphorus is used. It was reported that it oxidizes [Non-Patent Document 42] and controls the localization of its plasma membrane [Non-Patent Document 42]. Thus, PKCα can regulate the intracellular localization and activity of DGKδ in the brain. Moreover, formal esters increased the expression level of DGKδ [Non-Patent Document 43], suggesting that conventional PKC and Nobel PKC, including PKCα, regulate their expression.
 SERT阻害剤(SSRI)は、うつ病または大うつ病性障害(major depressive order)およびOCDを処置するために用いられており[非特許文献2~4]、過剰なSERT蛋白質/活性がこれらの障害の発病に密接に関係しているということを意味している。その上、SERTは不安および自閉症に関係している[非特許文献5]。5-HTの機能亢進は統合失調症の陰性症状に関係している[非特許文献44]。これに関係して、弱いドーパミンD2受容体アンタゴニストと併せた強力な5-HT2A受容体アンタゴニストによる処置が、統合失調症(陰性症状)を患う患者にとっての一次治療である[非特許文献44]。
 よって、本発明者等の新たな発見は、これらの精神障害の発病の分子メカニズムと治療戦略の開発とについての新規の知見を提供する。
 例えば、18:0/22:6-PAをミミックする薬品化合物は大うつ病性障害、OCD、統合失調症(陽性症状)、および自閉症の治療薬になり得る。対照的に、DGKδ阻害剤は可能性として統合失調症の陰性症状を処置するために用いられ得る。
 本願は、2020年3月5日に発行のFEBS Letters 2020 Jun;594(11):1787-1796に基づく利益を主張し、当該論文誌における開示は、その全体がそれを参照することにより本明細書に組み込まれる。
SERT inhibitors (SSRIs) have been used to treat depression or major depressive order and OCD [Non-Patent Documents 2-4], with excess SERT protein / activity in these. It means that it is closely related to the onset of the disorder. Moreover, SERT is associated with anxiety and autism [Non-Patent Document 5]. Hyperactivity of 5-HT is associated with negative signs of schizophrenia [Non-Patent Document 44]. In this regard, treatment with a potent 5-HT 2A receptor antagonist in combination with a weak dopamine D2 receptor antagonist is the first-line treatment for patients suffering from schizophrenia (negative symptoms) [Non-Patent Document 44]. ..
Therefore, the new discoveries of the present inventors provide new findings on the molecular mechanism of the onset of these mental disorders and the development of therapeutic strategies.
For example, drug compounds that mimic 18: 0/22: 6-PA can be therapeutic agents for obsessive-compulsive disorder, OCD, schizophrenia (positive symptoms), and autism. In contrast, DGKδ inhibitors can potentially be used to treat the negative sign of schizophrenia.
This application claims benefits under FEBS Letters 2020 Jun; 594 (11): 1787-1796, published March 5, 2020, and the disclosure in this journal is hereby by reference in its entirety. Incorporated into the book.
  本発明に従い、Praja-1との相互作用活性、Praja-1との結合活性、Praja-1の活性の増強又は促進活性などを指標に、活性物質や活性化合物を同定することができ、さらにその同定された活性を有する薬物(DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩を含む)は、SERTの活性抑制剤、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤として利用可能で、有用性が高い。
 本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らかである。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従ってそれらも本件添付の請求の範囲の範囲内のものである。
According to the present invention, active substances and active compounds can be identified by using the interaction activity with Praja-1, the binding activity with Praja-1, the enhancing or promoting activity of Praja-1 as an index, and further. Drugs with identified activity, including DHA or derivatives thereof, docosahexaenoyl group-containing phosphatidic acid or derivatives thereof, drug compounds mimic 18: 0/22: 6-PA, or salts thereof, are SERTs. Activity inhibitor, Praja-1 activity enhancer that selectively binds to and enhances its activity, or obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, It can be used as a prophylactic / therapeutic agent for Alzheimer-type dementia and pathological symptoms selected from the group consisting of anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders, and is highly useful.
It is clear that the present invention can be carried out other than those specifically described in the above description and examples. In view of the above teachings, many modifications and variations of the invention are possible, and thus they are also within the scope of the appended claims.

Claims (8)

  1.  ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とするSERTの活性抑制剤、選択的にPraja-1に結合して、その活性を増強するPraja-1活性増強剤、または強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤。 Docosahexaenoic acid (DHA) or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6)-phosphatidic acid (PA) [18: 0/22: 6-PA] is a drug compound that mimics], or a SERT activity inhibitor whose active ingredient is selected from the group consisting of salts thereof, selectively binds to Praja-1 and its activity. Praja-1 activity enhancer, or obsessive-compulsive disorder (OCD), obsessive-compulsive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatry. A prophylactic / therapeutic agent for pathological symptoms selected from the group consisting of medical disorders.
  2.  DHAまたは18:0/22:6-PAを有効成分とすることを特徴とする、請求項1に記載の剤。 The agent according to claim 1, which comprises DHA or 18: 0/22: 6-PA as an active ingredient.
  3.  DHAまたはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び18:0/22:6-PAをミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とする、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療剤であることを特徴とする、請求項1に記載の剤。 The active ingredient is selected from the group consisting of DHA or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and chemical compounds that mimic 18: 0/22: 6-PA, or salts thereof. , Obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. The agent according to claim 1, wherein the agent is a preventive / therapeutic agent for pathological symptoms.
  4. ドコサヘキサエン酸(DHA)またはその誘導体、ドコサヘキサエノイル基含有ホスファチジン酸またはその誘導体、及び1-ステアロイル-2-ドコサヘキサエノイル(18:0/22:6)-ホスファチジン酸(PA)〔18:0/22:6-PA〕をミミックする薬品化合物、またはそれらの塩からなる群から選択されたものを有効成分とし、強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療効果を有している食品。 Docosahexaenoic acid (DHA) or its derivatives, docosahexaenoyl group-containing phosphatidic acid or its derivatives, and 1-stearoyl-2-docosahexaenoyl (18: 0/22: 6)-phosphatidic acid (PA) [18: 0/22: 6-PA] as the active ingredient selected from the group consisting of drug compounds mimic or salts thereof, obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia Foods having prophylactic / therapeutic effects selected from the group consisting of illness, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders.
  5.  医薬候補物質について、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を測定することにより、その活性を有するものを選択及び/又は決定することを特徴とする、スクリーニング法。 The drug candidate substance has the activity by measuring the activity selected from the group consisting of the activity of interacting with Praja-1, the activity of binding to Praja-1, and the activity of enhancing or promoting the activity of Praja-1. A screening method comprising selecting and / or determining one.
  6.  医薬候補物質について、融合蛋白質AcGFP-Praja-1又はGST-Praja-1に対する反応を分析することを特徴とする、請求項5に記載のスクリーニング法。 The screening method according to claim 5, wherein the reaction of the drug candidate substance to the fusion protein AcGFP-Praja-1 or GST-Praja-1 is analyzed.
  7.  強迫性障害(OCD)、大うつ病性障害、自閉症、統合失調症、アルツハイマー型認知症、及び不安、抑うつ、強迫性、および衝動性の精神医学的障害からなる群から選択された病的症状の予防・治療用物質を選択及び/又は決定することを特徴とする、請求項5に記載のスクリーニング法。 Diseases selected from the group consisting of obsessive-compulsive disorder (OCD), major depressive disorder, autism, schizophrenia, Alzheimer-type dementia, and anxiety, depression, obsessive-compulsive, and impulsive psychiatric disorders. The screening method according to claim 5, wherein a substance for preventing / treating a depressive symptom is selected and / or determined.
  8. 医薬候補物質について、Praja-1との相互作用活性、Praja-1との結合活性及びPraja-1の活性の増強又は促進活性からなる群から選択された活性を測定し、その活性を有するものを選択及び/又は決定するための、Praja-1蛋白質又はタグの付されたPraja-1蛋白質を含有していることを特徴とするスクリーニングキット。 For drug candidate substances, the activity selected from the group consisting of the activity of interacting with Praja-1, the activity of binding to Praja-1, and the activity of enhancing or promoting the activity of Praja-1 was measured, and those having the activity were measured. A screening kit comprising a Praja-1 protein or a tagged Praja-1 protein for selection and / or determination.
PCT/JP2021/032309 2020-09-04 2021-09-02 Prophylactic/therapeutic agent for mental disorders involving seretonin transporters, said agent including docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid or derivative thereof WO2022050355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546971A JPWO2022050355A1 (en) 2020-09-04 2021-09-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149427 2020-09-04
JP2020-149427 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050355A1 true WO2022050355A1 (en) 2022-03-10

Family

ID=80491124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032309 WO2022050355A1 (en) 2020-09-04 2021-09-02 Prophylactic/therapeutic agent for mental disorders involving seretonin transporters, said agent including docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid or derivative thereof

Country Status (2)

Country Link
JP (1) JPWO2022050355A1 (en)
WO (1) WO2022050355A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509131A (en) * 2003-10-22 2007-04-12 エンジィモテック リミテッド Glycerophospholipids containing omega-3 and omega-6 fatty acids
JP2007518764A (en) * 2004-01-21 2007-07-12 ブルツツエーゼ,テイベリオ Use of highly concentrated compositions of selected n-3 fatty acids for the treatment of central nervous system disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509131A (en) * 2003-10-22 2007-04-12 エンジィモテック リミテッド Glycerophospholipids containing omega-3 and omega-6 fatty acids
JP2007518764A (en) * 2004-01-21 2007-07-12 ブルツツエーゼ,テイベリオ Use of highly concentrated compositions of selected n-3 fatty acids for the treatment of central nervous system disorders

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NISHI DAISUKE J, YUTAKA MATSUOKA: "Evidence of omega-3 fatty acids against depression and PTSD", JPN J GENERAL HOSPITAL PSYCHIATRY, vol. 25, no. 3, 1 January 2013 (2013-01-01), pages 248 - 253, XP055906688 *
QIANG LU; CHIAKI MURAKAMI; YUKI MURAKAMI; FUMI HOSHINO; MAHO ASAMI; TAKAKO USUKI; HIROMICHI SAKAI; FUMIO SAKANE: "1‐Stearoyl‐2‐docosahexaenoyl‐phosphatidic acid interacts with and activates Praja‐1, the E3 ubiquitin ligase acting on the serotonin transporter in the brain", FEBS LETTERS, vol. 594, no. 11, 19 March 2020 (2020-03-19), NL , pages 1787 - 1796, XP071256985, ISSN: 0014-5793, DOI: 10.1002/1873-3468.13765 *
陸強 ほか, ジアシルグリセロールキナーゼδが産生する18:0/22:6-ホスファチジン酸を介してセロトニントランスポーターのユビキチン化を亢進しそのタンパク質量を制御する, 日本生化学会第93回日本生化学会大会要旨, 01 September 2020, pp. 0881-0882, [P-089] *
陸強 ほか, ジアシルグリセロールキナーゼδが産生する18:0/22:6-ホスファチジン酸を介してセロトニントランスポーターのユビキチン化を亢進しそのタンパク質量を制御する, 脂質生化学研究, 01 May 2020, vol. 62, pp. 208-211, 2-23 *

Also Published As

Publication number Publication date
JPWO2022050355A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
Kim et al. Phosphatidylserine in the brain: metabolism and function
Zhang et al. Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond
Naquet et al. Regulation of coenzyme A levels by degradation: the ‘Ins and Outs’
Escribá Membrane-lipid therapy: A historical perspective of membrane-targeted therapies—From lipid bilayer structure to the pathophysiological regulation of cells
Hsu et al. Regulation of autophagy by mitochondrial phospholipids in health and diseases
Török et al. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications
Rådmark et al. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease
Rådmark et al. Regulation of the activity of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis
He et al. Cellular uptake, metabolism and sensing of long-chain fatty acids
Qu et al. Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development
Holler et al. Dietary choline supplementation in pregnant rats increases hippocampal phospholipase D activity of the offspring
Yao et al. Minimally modified low-density lipoprotein induces macrophage endoplasmic reticulum stress via toll-like receptor 4
Cacabelos et al. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis
Fontaine et al. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease
Lu et al. 1‐Stearoyl‐2‐docosahexaenoyl‐phosphatidic acid interacts with and activates Praja‐1, the E3 ubiquitin ligase acting on the serotonin transporter in the brain
Liu et al. Synergistic effects of lotus seed resistant starch and sodium lactate on hypolipidemic function and serum nontargeted metabolites in hyperlipidemic rats
Tsushima et al. Lysophosphatidylserine form DHA maybe the most effective as substrate for brain DHA accretion
WO2022050355A1 (en) Prophylactic/therapeutic agent for mental disorders involving seretonin transporters, said agent including docosahexaenoic acid, docosahexaenoyl group-containing phosphatidic acid or derivative thereof
EP2957285B1 (en) Phospholipid compound containing unsaturated fatty acid derivative having cyclopropane ring
Wei et al. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism
Abumrad et al. Moving Beyond “Good Fat, Bad Fat”: The Complex Roles of Dietary Lipids in Cellular Function and Health
JP2008260743A (en) Nqo1 expression promoter
Basak et al. Maternal supply of both arachidonic and docosahexaenoic acids is required for optimal neurodevelopment. Nutrients. 2021; 13: 2061
Hussain et al. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition
Liu et al. Phosphatidylserine: biology, technologies, and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864408

Country of ref document: EP

Kind code of ref document: A1