WO2022050200A1 - Information processing device, information processing method, and information processing program - Google Patents

Information processing device, information processing method, and information processing program Download PDF

Info

Publication number
WO2022050200A1
WO2022050200A1 PCT/JP2021/031604 JP2021031604W WO2022050200A1 WO 2022050200 A1 WO2022050200 A1 WO 2022050200A1 JP 2021031604 W JP2021031604 W JP 2021031604W WO 2022050200 A1 WO2022050200 A1 WO 2022050200A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
driving
vehicle
information
automatic driving
Prior art date
Application number
PCT/JP2021/031604
Other languages
French (fr)
Japanese (ja)
Inventor
英史 大場
ヴァルーン アローラ
ウラディミール ズロコリッツァ
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022546298A priority Critical patent/JPWO2022050200A1/ja
Publication of WO2022050200A1 publication Critical patent/WO2022050200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • This disclosure relates to information processing devices, information processing methods and information processing programs.
  • a section where autonomous driving is possible which is a road section where autonomous driving control is possible by the vehicle control system
  • a manual driving section which is a road section where autonomous driving is not allowed. It is expected that a mixed situation will occur. That is, not only is the situation in which the vehicle control system completely autonomously and continuously performs automatic driving, but the driving control is not handed over from the above-mentioned automatic driving to manual driving in which the driver steers or the like. There can be situations where it shouldn't be.
  • Patent Document 1 describes a technique relating to the transfer of control from automatic operation to manual operation.
  • the object of the present disclosure is to provide an information processing device, an information processing method, and an information processing program capable of appropriately performing a transfer from automatic operation to manual operation.
  • the information processing apparatus includes an acquisition unit for acquiring the state of the driver of the vehicle and an automatic driving control unit for controlling automatic driving for autonomous driving of the vehicle. Based on the acquired driver's condition, the return quality, which is the quality of action when the vehicle returns from automatic driving to manual driving by the driver's driving, is obtained, and the obtained return quality is quantified. Monitor the driver for the driver.
  • Outline of the present disclosure 1. Configuration applicable to embodiments of the present disclosure 2. Outline of the level of automatic operation by SAE 3. Embodiment 3-1 according to the present disclosure. Outline of Embodiment 3-2. HCD (Human Centered Design) according to the embodiment 3-2-1. Outline of HCD according to the embodiment 3-2-2. Advantages of HCD in autonomous driving 3-2-2-1. Overdependence 3-2-2-2. About HCD 3-2-2-3. Benefits for drivers 3-2-2-4. About the driver's working memory and thinking during driving 3-2-2-5. About the "contract" between the system and the driver 3-2-2-6. Operation of automatic operation level 4 3-2-2-7. Effect of adopting HCD 3-2-3.
  • HCD According to the Embodiment 3-2-3-1. Operation example of automatic operation to which HCD according to the embodiment is applied 3-2-3-2. Evaluation of driver's return behavior 3-2-3-3. About the bird's-eye view display of the itinerary applicable to the embodiment 3-2-4. HCD control configuration example according to the embodiment 3-3. Regarding automatic operation level 4 applicable to the embodiment 3-3-1. Basic structure 3-3-2. About ODD at automatic operation level 4 3-3-3. Operation example of automatic operation level 4 according to the embodiment 3-4. Application example of HCD for automatic operation level 3 3-5. Determinants of ODD 3-6. About DMS (Driver Monitoring System) according to the Embodiment 3-6-1. Outline of DMS according to the embodiment 3-6-2.
  • DMS Driver Monitoring System
  • DMS Quantification of behavioral quality (QoA) according to the embodiment 3-6-4. Configuration applicable to DMS according to the embodiment 3-6-5. Specific example of evaluation of quality of behavior according to an embodiment 3-6-6. DMS summary according to the embodiment
  • the automatic driving function is only knowledge information obtained from desk explanations and materials at the beginning of its use, and it is an unknown function as a physical experience, so it is used due to psychological anxiety. It is still considered skeptical of inexperienced systems.
  • a normal action judgment when a person takes a certain risk to take an action in order to obtain something, he / she makes a selection judgment so as to balance with the risk.
  • the anxiety that the user of the autonomous driving is over-dependent on the autonomous driving disappears. It will be like.
  • the advanced automatic driving function which is about to be introduced in recent years, is an accident even if the driver is required to manually drive from automatic driving and it is difficult for the driver to return to manual driving under the conditions. It is required to have a function to avoid the problem and take countermeasures and minimize the influence even in the situation where an accident is unavoidable.
  • the purpose of this disclosure is to provide a mechanism that allows the driver to reflect the above-mentioned social impact as a sense of risk in the behavioral judgment when using the automatic driving function.
  • FIG. 1 is a block diagram showing a configuration example of a schematic function of a vehicle control system 10100, which is an example of a mobile control system applicable to the embodiment of the present disclosure.
  • a vehicle provided with the vehicle control system 10100 is distinguished from other vehicles, it is referred to as an own vehicle or an own vehicle.
  • the vehicle control system 10100 includes an input unit 10101, a data acquisition unit 10102, a communication unit 10103, an in-vehicle device 10104, an output control unit 10105, an output unit 10106, a drive system control unit 10107, and a drive system system 10108. , A body system control unit 10109, a body system system 10110, a storage unit 10111, and an automatic operation control unit 10112.
  • the input unit 10101, the data acquisition unit 10102, the communication unit 10103, the output control unit 10105, the drive system control unit 10107, the body system control unit 10109, the storage unit 10111, and the automatic operation control unit 10112 are via the communication network 10121. And are interconnected.
  • the communication network 10121 is, for example, from an in-vehicle communication network or bus compliant with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become.
  • each part of the vehicle control system 10100 may be directly connected without going through the communication network 10121.
  • the description of the communication network 10121 shall be omitted.
  • the input unit 10101 and the automatic operation control unit 10112 communicate with each other via the communication network 10121, it is described that the input unit 10101 and the automatic operation control unit 10112 simply communicate with each other.
  • the input unit 10101 is provided with a device used by the passenger to input various data, instructions, and the like.
  • the input unit 10101 includes an operation device such as a touch panel, a button, a switch, and a lever, and an operation device such as a microphone and a camera, which can be input by a method other than manual operation by voice or gesture.
  • the input unit 10101 may be, for example, a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 10100.
  • the input unit 10101 generates an input signal based on data, instructions, and the like input by the passenger (for example, the driver) and supplies the input signal to each unit of the vehicle control system 10100.
  • the data acquisition unit 10102 includes various sensors for acquiring data used for processing of the vehicle control system 10100, and supplies the acquired data to each unit of the vehicle control system 10100.
  • the data acquisition unit 10102 includes various sensors for detecting the state of the own vehicle and the like.
  • the data acquisition unit 10102 includes a gyro sensor, an acceleration sensor, an inertial measurement unit (IMU), an accelerator pedal operation amount, a brake pedal operation amount, a steering wheel steering angle, an engine speed, and the like. It is equipped with a sensor or the like for detecting the rotation speed of the motor, the rotation speed of the wheels, or the like.
  • IMU inertial measurement unit
  • the data acquisition unit 10102 is provided with various sensors for detecting information outside the own vehicle.
  • the data acquisition unit 10102 includes an image pickup device such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the data acquisition unit 10102 includes an environment sensor for detecting the weather or the weather, and a surrounding information detection sensor for detecting an object around the own vehicle.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • Ambient information detection sensors include, for example, ultrasonic sensors, radars, LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing), sonar, and the like.
  • the data acquisition unit 10102 is provided with various sensors for detecting the current position of the own vehicle.
  • the data acquisition unit 10102 includes a GNSS receiver or the like that receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 10102 is provided with various sensors for detecting information in the vehicle.
  • the data acquisition unit 10102 includes an image pickup device that captures an image of the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like.
  • the image pickup apparatus can image the front surface of the driver's head, the upper body, the lower back and the lower body, and the feet. It is also possible to provide a plurality of image pickup devices so as to image each part.
  • the biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
  • the communication unit 10103 communicates with the in-vehicle device 10104 and various devices, servers, base stations, etc. outside the vehicle, transmits data supplied from each unit of the vehicle control system 10100, and uses the received data as the vehicle control system. It is supplied to each part of 10100.
  • the communication protocol supported by the communication unit 10103 is not particularly limited, and the communication unit 10103 can also support a plurality of types of communication protocols.
  • the communication unit 10103 wirelessly communicates with the in-vehicle device 10104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Further, for example, the communication unit 10103 may be connected to a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (registered trademark) via a connection terminal (and a cable if necessary) (not shown). Wired communication is performed with the in-vehicle device 10104 by Mobile High-definition Link) or the like.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL registered trademark
  • the communication unit 10103 with a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point.
  • a device for example, an application server or a control server
  • an external network for example, the Internet, a cloud network, or a business-specific network
  • the communication unit 10103 uses P2P (Peer To Peer) technology to communicate with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) existing in the vicinity of the own vehicle.
  • P2P Peer To Peer
  • a terminal for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal
  • the communication unit 10103 performs vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-home (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Home) communication.
  • V2X communication such as Vehicle to Peer-to-Pedestrian
  • the communication unit 10103 is provided with a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and has a current position. Obtain information such as traffic congestion, traffic restrictions, or required time.
  • the in-vehicle device 10104 includes, for example, a mobile device or a wearable device owned by a passenger, an information device carried in or attached to the own vehicle, a navigation device for searching a route to an arbitrary destination, and the like.
  • the output control unit 10105 controls the output of various information to the passengers of the own vehicle or the outside of the vehicle.
  • the output control unit 10105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data) and supplies it to the output unit 10106 to output the output unit. It controls the output of visual and auditory information from 10106.
  • the output control unit 10105 synthesizes image data captured by different image pickup devices of the data acquisition unit 10102 to generate a bird's-eye view image, a panoramic image, or the like, and outputs a signal including the generated image. It is supplied to the output unit 10106.
  • the output control unit 10105 generates voice data including a warning sound or a warning message for dangers such as collision, contact, and entry into a danger zone, and outputs an output signal including the generated voice data to the output unit 10106. Supply.
  • the output unit 10106 is provided with a device capable of outputting visual information or auditory information to the passengers of the own vehicle or the outside of the vehicle.
  • the output unit 10106 includes a display device, an instrument panel, a HUD (Head Up Display), an audio speaker, headphones, a wearable device such as a spectacle-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 10106 displays visual information in the driver's field of view, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to the device having a normal display. It may be a display device.
  • the drive system control unit 10107 controls the drive system system 10108 by generating various control signals and supplying them to the drive system system 10108. Further, the drive system control unit 10107 supplies control signals to each unit other than the drive system system 10108 as necessary, and notifies the control state of the drive system system 10108.
  • the drive system system 10108 includes various devices related to the drive system of the own vehicle.
  • the drive system system 10108 includes a drive force generator for generating a drive force of an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle, and the like. It is equipped with a braking device that generates braking force, ABS (Antilock Brake System), ESC (Electronic Stability Control), and an electric power steering device.
  • the body system control unit 10109 controls the body system system 10110 by generating various control signals and supplying them to the body system system 10110. Further, the body system control unit 10109 supplies a control signal to each unit other than the body system 10110 as necessary, and notifies the control state of the body system 10110 and the like.
  • the body system 10110 is equipped with various body devices equipped on the vehicle body.
  • the body system 10110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, headlamps, back lamps, brake lamps, winkers, fog lamps) and the like. To prepare for.
  • the storage unit 10111 includes a storage medium for storing data and a controller for controlling reading and writing of data to the storage medium.
  • the storage medium included in the storage unit 10111 includes, for example, a magnetic storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, and an optical device. One or more of the magnetic storage devices can be applied.
  • the storage unit 10111 stores various programs, data, and the like used by each unit of the vehicle control system 10100.
  • the storage unit 10111 has map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle.
  • map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle.
  • LDM local dynamic map
  • the automatic operation control unit 10112 includes a detection unit 10131, a self-position estimation unit 10132, a situation analysis unit 10133, a planning unit 10134, and an operation control unit 10135.
  • the detection unit 10131, the self-position estimation unit 10132, the situation analysis unit 10133, the planning unit 10134, and the operation control unit 10135 are realized by operating a predetermined program on the CPU (Central Processing Unit).
  • a part or all of the detection unit 10131, the self-position estimation unit 10132, the situation analysis unit 10133, the planning unit 10134, and the operation control unit 10135 may be realized by a hardware circuit that operates in cooperation with each other. Is also possible.
  • the automatic driving control unit 10112 controls automatic driving such as autonomous driving or driving support. Specifically, for example, the automatic driving control unit 10112 issues collision avoidance or impact mitigation of the own vehicle, follow-up running based on the inter-vehicle distance, vehicle speed maintenance running, collision warning of the own vehicle, lane deviation warning of the own vehicle, and the like. Collision control is performed for the purpose of realizing the functions of ADAS (Advanced Driver Assistance System) including. Further, for example, the automatic driving control unit 10112 performs coordinated control for the purpose of automatic driving that autonomously travels without depending on the operation of the driver.
  • ADAS Advanced Driver Assistance System
  • the detection unit 10131 detects various information necessary for controlling automatic operation.
  • the detection unit 10131 includes an outside information detection unit 10141, an inside information detection unit 10142, and a vehicle state detection unit 10143.
  • the outside information detection unit 10141 performs detection processing of information outside the own vehicle based on data or signals from each part of the vehicle control system 10100.
  • the vehicle outside information detection unit 10141 performs detection processing, recognition processing, tracking processing, and distance detection processing for an object around the own vehicle.
  • Objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and the like.
  • the vehicle outside information detection unit 10141 performs detection processing of the environment around the own vehicle.
  • the surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition, and the like.
  • the vehicle outside information detection unit 10141 uses the self-position estimation unit 10132, the map analysis unit 10151 of the situation analysis unit 10133, the traffic rule recognition unit 10152, the situation recognition unit 10153, and the operation control unit to obtain data indicating the result of the detection process. It is supplied to the emergency situation avoidance unit 10171 and the like of 10135.
  • the in-vehicle information detection unit 10142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 10100.
  • the vehicle interior information detection unit 10142 performs driver authentication processing and recognition processing, driver status detection processing, passenger detection processing, vehicle interior environment detection processing, and the like.
  • the state of the driver to be detected includes, for example, physical condition, arousal degree, concentration degree, fatigue degree, line-of-sight direction, and the like.
  • the environment inside the vehicle to be detected includes, for example, temperature, humidity, brightness, odor, and the like.
  • the in-vehicle information detection unit 10142 supplies data indicating the result of the detection process to the situation recognition unit 10153 of the situation analysis unit 10133, the emergency situation avoidance unit 10171 of the operation control unit 10135, and the like.
  • the vehicle state detection unit 10143 performs detection processing of the state of the own vehicle based on data or signals from each part of the vehicle control system 10100.
  • the states of the vehicle to be detected include, for example, speed, acceleration, steering angle, presence / absence and content of abnormality, driving operation state, power seat position and tilt, door lock state, and other in-vehicle devices. The state etc. are included.
  • the vehicle state detection unit 10143 supplies data indicating the result of the detection process to the situation recognition unit 10153 of the situation analysis unit 10133, the emergency situation avoidance unit 10171 of the operation control unit 10135, and the like.
  • the self-position estimation unit 10132 estimates the position and attitude of the own vehicle based on data or signals from each unit of the vehicle control system 10100 such as the vehicle exterior information detection unit 10141 and the situation recognition unit 10153 of the situation analysis unit 10133. Perform processing. Further, the self-position estimation unit 10132 generates a local map (hereinafter, referred to as a self-position estimation map) used for self-position estimation, if necessary.
  • the map for self-position estimation is, for example, a highly accurate map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self-position estimation unit 10132 supplies data indicating the result of the estimation process to the map analysis unit 10151 of the situation analysis unit 10133, the traffic rule recognition unit 10152, the situation recognition unit 10153, and the like. Further, the self-position estimation unit 10132 stores the self-position estimation map in the storage unit 10111.
  • the situation analysis unit 10133 analyzes the situation of the own vehicle and the surroundings.
  • the situational analysis unit 10133 includes a map analysis unit 10151, a traffic rule recognition unit 10152, a situational awareness unit 10153, and a situational awareness unit 10154.
  • the map analysis unit 10151 uses data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132 and the vehicle exterior information detection unit 10141 as necessary, and stores various maps stored in the storage unit 10111. Perform analysis processing and build a map containing information necessary for automatic operation processing.
  • the map analysis unit 10151 uses the constructed map as a traffic rule recognition unit 10152, a situation recognition unit 10153, a situation prediction unit 10154, and a route planning unit 10161, an action planning unit 10162, an operation planning unit 10163, etc. of the planning unit 10134. Supply to.
  • the traffic rule recognition unit 10152 determines the traffic rules around the vehicle based on data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132, the vehicle outside information detection unit 10141, and the map analysis unit 10151. Perform recognition processing. By this recognition process, for example, the position and state of the signal around the own vehicle, the content of the traffic regulation around the own vehicle, the lane in which the vehicle can travel, and the like are recognized.
  • the traffic rule recognition unit 10152 supplies data indicating the result of the recognition process to the situation prediction unit 10154 and the like.
  • the situation recognition unit 10153 can be used for data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132, the vehicle exterior information detection unit 10141, the vehicle interior information detection unit 10142, the vehicle state detection unit 10143, and the map analysis unit 10151. Based on this, the situation recognition process related to the own vehicle is performed. For example, the situational awareness unit 10153 performs recognition processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver of the own vehicle. Further, the situational awareness unit 10153 generates a local map (hereinafter referred to as a situational awareness map) used for recognizing the situation around the own vehicle, if necessary.
  • the situational awareness map is, for example, an occupied grid map (Occupancy Grid Map).
  • the status of the own vehicle to be recognized includes, for example, the position, posture, movement (for example, speed, acceleration, moving direction, etc.) of the own vehicle, and the presence / absence and content of an abnormality.
  • the surrounding conditions of the vehicle to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (eg, speed, acceleration, direction of movement, etc.), and the surrounding road.
  • the composition and road surface condition, as well as the surrounding weather, temperature, humidity, brightness, etc. are included.
  • the state of the driver to be recognized includes, for example, physical condition, arousal level, concentration level, fatigue level, eye movement, driving operation, and the like.
  • the situational awareness unit 10153 supplies data indicating the result of the recognition process (including a situational awareness map, if necessary) to the self-position estimation unit 10132, the situation prediction unit 10154, and the like. Further, the situational awareness unit 10153 stores the situational awareness map in the storage unit 10111.
  • the situation prediction unit 10154 performs a situation prediction process regarding the own vehicle based on data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151, the traffic rule recognition unit 10152, and the situation recognition unit 10153. For example, the situation prediction unit 10154 performs prediction processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver.
  • the situation of the own vehicle to be predicted includes, for example, the behavior of the own vehicle, the occurrence of an abnormality, the mileage, and the like.
  • the situation around the own vehicle to be predicted includes, for example, the behavior of the animal body around the own vehicle, the change in the signal state, the change in the environment such as the weather, and the like.
  • the driver's situation to be predicted includes, for example, the driver's behavior and physical condition.
  • the situation prediction unit 10154 together with the data indicating the result of the prediction process, together with the data from the traffic rule recognition unit 10152 and the situation recognition unit 10153, has the route planning unit 10161, the action planning unit 10162, and the operation planning unit 10163 of the planning unit 10134. And so on.
  • the planning unit 10134 includes a route planning unit 10161, an action planning unit 162, and an operation planning unit 163.
  • the route planning unit 10161 plans a route (itinerary) to the destination based on data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. For example, the route planning unit 10161 sets a route from the current position to the specified destination based on the global map. Further, for example, the route planning unit 10161 appropriately changes the route based on the conditions such as traffic congestion, accidents, traffic restrictions, construction work, and the physical condition of the driver. The route planning unit 10161 supplies data indicating the planned route to the action planning unit 10162 and the like.
  • the action planning unit 10162 can safely route the route planned by the route planning unit 10161 based on the data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. Plan your vehicle's actions to drive. For example, the action planning unit 10162 plans starting, stopping, traveling direction (for example, forward, backward, left turn, right turn, turning, etc.), traveling lane, traveling speed, and overtaking. The action planning unit 10162 supplies data indicating the planned behavior of the own vehicle to the operation planning unit 10163 and the like.
  • the motion planning unit 10163 is an operation of the own vehicle for realizing the action planned by the action planning unit 10162 based on the data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. Plan. For example, the motion planning unit 10163 plans acceleration, deceleration, traveling track, and the like. The motion planning unit 10163 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 10172, the direction control unit 10173, and the like of the motion control unit 10135.
  • the motion control unit 10135 controls the motion of the own vehicle.
  • the operation control unit 10135 includes an emergency situation avoidance unit 10171, an acceleration / deceleration control unit 10172, and a direction control unit 10173.
  • the emergency situation avoidance unit 10171 may collide, contact, enter a danger zone, have a driver abnormality, or have a vehicle. Performs emergency detection processing such as abnormalities.
  • the emergency situation avoidance unit 10171 detects the occurrence of an emergency situation, the emergency situation avoidance unit 10171 plans the operation of the own vehicle to avoid an emergency situation such as a sudden stop or a sharp turn.
  • the emergency situation avoidance unit 10171 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 10172, the direction control unit 10173, and the like.
  • the acceleration / deceleration control unit 10172 performs acceleration / deceleration control for realizing the operation of the own vehicle planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171.
  • the acceleration / deceleration control unit 10172 calculates a control target value of a driving force generator or a braking device for realizing a planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 10107.
  • the direction control unit 10173 performs direction control for realizing the operation of the own vehicle planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171. For example, the direction control unit 10173 calculates a control target value of the steering mechanism for realizing a traveling track or a sharp turn planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171, and controls to indicate the calculated control target value. The command is supplied to the drive system control unit 10107.
  • FIG. 2 is a block diagram showing a configuration of an example of an information processing device in which the automatic operation control unit 10112 of FIG. 1 is configured.
  • the information processing apparatus 10000 is connected to each other by a bus 10020 so as to be communicable with each other. It includes an I / F 10014 and a control I / F 10015.
  • the storage device 10013 is a storage medium that stores data non-volatilely, and a hard disk drive, a flash memory, or the like can be applied.
  • the CPU 10010 uses the RAM 10012 as a work memory according to the programs stored in the storage devices 10013 and the ROM 10011 to control the operation of the information processing device 10000.
  • the input / output I / F 10014 is an interface that controls the input / output of data to the information processing apparatus 10000.
  • the control I / F 10015 is an interface for a device to be controlled by the information processing apparatus 10000.
  • the input / output I / F 10014 and the control I / F 10015 are connected to the communication network 10121.
  • the above-mentioned detection unit 10131, self-position estimation unit 10132, situation analysis unit 10133, planning unit 10134, and operation control unit 10135 are placed on the main storage area in the RAM 10012.
  • Each is configured as, for example, a module.
  • the information processing program is installed in the information processing device 10000 in advance when, for example, the information processing device 10000 is incorporated in a vehicle and shipped. Not limited to this, the information processing program may be installed in the information processing apparatus 10000 after the information processing apparatus 10000 is incorporated in the vehicle and shipped. Further, the information processing program can be supplied from the input / output I / O I / F 10014 via communication with an external device (server or the like) by the communication unit 10103 and installed in the information processing device 10000.
  • the automatic driving levels that a person needs to intervene in steering are classified into five stages, for example, from level 0 (Level 0) to level 4 (Level 4).
  • automatic driving level 5 (Level 5) is defined assuming only unmanned automatic driving, but in this disclosure, this automatic driving level 5 is because the driver is not involved in steering at all. It is out of scope.
  • Automatic driving level 0 is manual driving (driver's direct driving steering) without driving assistance by the vehicle control system, in which the driver performs all driving tasks and performs safe driving (for example, danger). Always monitor the actions to be avoided).
  • Automatic driving level 1 is manual driving (direct driving steering) in which driving support (automatic braking, ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assistant System), etc.) can be executed by the vehicle control system.
  • driving support automated braking, ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assistant System), etc.
  • the driver performs all driving tasks other than the assisted single function and also performs safe driving monitoring.
  • Automatic driving level 2 (Level 2) is also referred to as "automatic driving function under specific conditions", and under specific conditions, the vehicle control system subtasks the driving task related to vehicle control in both the front-rear direction and the left-right direction of the vehicle. Execute. For example, at the automatic driving level 2, the vehicle control system controls both steering operation and acceleration / deceleration in cooperation with each other (for example, cooperation between ACC and LKAS). However, even in the automatic driving level 2, the execution subject of the driving task is basically the driver, and the monitoring subject related to safe driving is also the driver.
  • Automatic driving level 3 (Level 3) is also called “conditional automatic driving", and the vehicle control system can execute all driving tasks within a limited area.
  • the driving task is executed by the vehicle control system, and the monitoring subject related to safe driving is basically the vehicle control system.
  • the "secondary task” refers to an operation other than the operation related to driving performed by the driver while driving, and is also called NDRA (Non-driving related activity).
  • the driver while driving at autonomous driving level 3, the driver performs tasks and actions other than steering, such as operating a mobile terminal, telephone conference, watching video, playing games, thinking, and talking with other passengers. It is considered possible to perform secondary tasks such as.
  • SAE's automatic driving level 3 it is appropriate for the driver to perform driving operations in response to requests from the vehicle control system side due to system failures, deterioration of the driving environment, etc. Is expected to be done. Therefore, at the automatic driving level 3, the driver can immediately return to the manual driving even in the situation where the secondary task as described above is being executed in order to ensure safe driving. It is expected that they will always be in a good state of preparation.
  • Automatic driving level 4 (Level 4) is also called “fully automatic driving under specific conditions", and the vehicle control system executes all driving tasks within a limited area. At the automatic driving level 4, the driving task is executed by the vehicle control system, and the monitoring subject related to safe driving is also the vehicle control system.
  • the driver performs a driving operation (manual driving) in response to a request from the vehicle control system side due to a system failure or the like. No action is expected. Therefore, at the automatic driving level 4, the driver can perform the secondary task as described above, and depending on the situation, for example, can take a nap.
  • the driver runs in the manual driving mode in which all or some of the driving tasks are independently executed. Therefore, at these three levels of autonomous driving, it is permissible for the driver to engage in secondary tasks other than manual driving and related movements that may reduce attention or impair forward attention while driving. It has not been.
  • the vehicle control system runs in the automatic driving mode in which all driving tasks are independently executed.
  • the automatic driving level 3 there may be a situation in which the driver performs a driving operation. Therefore, at the automatic driving level 3, when the driver is allowed to perform the secondary task, the driver is required to be in a ready state to return to the manual driving from the secondary task.
  • the vehicle control system will drive in the automatic driving mode in which all driving tasks are executed.
  • the section to which the automatic driving level 4 is originally applied there may be a section to which the automatic driving level 4 cannot be applied to a part of the section due to the actual development status of the road infrastructure or the like. Since it is assumed that such a section is set to, for example, the automatic driving level 2 or lower, the driver is required to independently execute the driving task. Therefore, even if the automatic driving by the automatic driving level 4 is being used at the planning stage of the traveling itinerary or after the start of the itinerary, if a situation occurs such that the conditions for which the use is permitted are not met, the automatic driving as described above occurs. A transition request to operation level 2 or lower may occur. Therefore, the driver is required to be ready to return to manual operation from the secondary task depending on the situation, even if it was not planned at the beginning of the itinerary plan, when these changes in conditions are found. Become.
  • ODD Operaation Design Domain
  • ODD is a driving environment condition that is a prerequisite for the operation of the automatic driving system by design, and when all the conditions shown in the ODD are satisfied, the automatic driving system operates normally and the vehicle is automatically operated. Driving is done. Further, when the condition shown in the ODD is lacking during driving, it is necessary to transfer the driving control of the vehicle from the automatic driving to the manual driving.
  • the conditions indicated by ODD generally differ depending on each automatic driving system, deterioration and dirt of sensors, etc., and performance fluctuations at that time due to the self-diagnosis result of the on-board device for controlling automatic driving. It will be a thing.
  • FIG. 3 is a schematic diagram for explaining a case where each automatic operation level of SAE is viewed from the user's point of view as a usage state.
  • the environment to which automatic driving level 0 (Level 0) can be applied is considered to be general social road infrastructure such as private roads, general roads, and highways.
  • the environment to which the automatic driving level 1 (Level 1) is applicable is a road equipped with a device for driving support and an environment, for example, some arterial roads and highways.
  • the driving support system such as ACC and LKAS described above by the vehicle control system is applied to the existing manually driven vehicle.
  • the driver's attention loss is an intuitive risk because the driver assistance system does not provide comprehensive support.
  • the environment to which the automatic driving level 2 (Level 2) can be applied is a fixed road section such as an expressway if the equipment and environment for driving support are in place.
  • driving control such as ACC
  • driving along the lane such as LKAS and lateral control with respect to the driving direction are also automatically performed. It is a generally acceptable classification and requires continued attention to the driver's driving.
  • the driving itself is established as it is if there is no obstructive factor, and if the driving support becomes too sophisticated, the driver's sense of risk may be lowered. Therefore, it can be said that the automatic driving level 2 is an automatic driving level for which preventive measures for lowering the driver's attention are required.
  • the section of automatic driving level 3 (Level 3) and the section of automatic driving level 4 (Level 4) are defined as sections where autonomous driving control is possible by the automatic driving system of the vehicle, as described above.
  • the environment to which the automatic driving level 4 can be applied may be realized by, for example, securing a section in which the information of each type in LDM is constantly updated and the road predictability is guaranteed.
  • the environment to which the automatic operation level 3 (Level 3) can be applied is, for example, a section where automatic operation is possible at the automatic operation level 4, but for some reason, the ODD corresponding to the automatic operation level 4 It may be a section that does not satisfy the conditions. For example, it is a section where only quasi-static data can be obtained in LDM, or a section where the running conditions of automatic driving level 4 cannot be continuously secured due to deterioration or lack of environmentally friendly performance of the system.
  • a temporary construction section As the section where the automatic operation level 4 cannot be secured, a temporary construction section, a flooded section, a complicated intersection section, an LDM missing section, a communication band temporary shortage section, a section in which a risk report is issued from a vehicle in front, and the like can be considered.
  • the environment to which the automatic driving level 3 can be applied is a section functionally passable under the control of the automatic driving level 4, but may include a section in which the application of the automatic driving level 4 is canceled for some reason. can.
  • a section a section, a construction section, or a railroad crossing crossing where there is a risk of causing a flow stack that stops the smooth flow of transportation infrastructure when the vehicle is stopped by MRM (Minimum Risk Maneuver) or the emergency evacuation is decelerated. , Etc. are conceivable.
  • automatic driving level 3 can also be applied to the institutional driver-free passage prohibited section (which is subject to penalties for use violated by institutional preventive operation), which is fixedly or actively set. It can be an environment.
  • the vehicle enters the applicable section of automatic driving level 2 from the applicable section of automatic driving level 2, and the driving control of the vehicle is switched from manual driving by the driver to automatic driving by the vehicle control system.
  • the driver does not have to concentrate on driving the vehicle, and attention maintenance is reduced. That is, it can be said that switching from manual driving to automatic driving is a usage mode that causes a decrease in the continuous attention maintenance of the driver.
  • the driver's attention maintenance is reduced in the section where automatic driving is performed by automatic driving level 4, and the driver's attention maintenance is reduced in advance. It can be said that this is a usage area where it is required to formulate the details of the time budget from the driver's monitoring information in the steady state to the return.
  • the driver is uniquely notified of the return to the automatic driving level of the automatic driving level 2 or lower, that is, the manual driving.
  • the role of the function corresponding to the automatic driving level 3 is to avoid the division between the section where the automatic driving is performed by the automatic driving level 4 and the section where the manual driving is performed by the automatic driving level of the automatic driving level 2 or lower. It can be said that it is the role of the connection. That is, the usage mode of automatic driving according to the automatic driving level 3 is a usage mode in which the driver continues to maintain attention to driving and is expected to return in a short time (for example, several seconds). In this automatic driving level 3, the DMS (Driver Monitoring System) that monitors the driver detects the decrease in the driver's attention maintenance and the continuation of the driver's attention maintenance is the automatic driving level of 3 or less. It is an essential requirement to use it.
  • DMS Driver Monitoring System
  • FIG. 4 is a schematic diagram for schematically explaining the application of the automatic operation level 3.
  • a case is shown in which the vehicle travels from the start point ST to the end point EP in the direction indicated by the arrow (counterclockwise, counterclockwise) in the figure according to the itinerary TP (filled in the figure). There is.
  • sections RA 1 , RA 2 and RA 3 indicate sections corresponding to, for example, automatic operation levels 0 to 2, and manual operation is indispensable in these sections.
  • the driving control is changed from automatic driving by the automatic driving system to manual driving by the driver's steering. It is necessary to take over to driving.
  • sections RB 1 to RB 5 indicate sections in which passing driving can be performed while the automatic driving is performed under the caution monitoring of the posture for returning from the automatic driving to the manual driving.
  • Sections RB 1 to RB 5 are sections corresponding to, for example, automatic operation level 3.
  • each section RB 1 , RB 4 and RB 5 corresponding to the automatic operation level 3 are set on the approach side of each section RA 1 , RA 2 and RA 3 , respectively.
  • sections RB 2 and RB 3 are functionally passable sections under the control of the automatic driving level 4, but are set as sections for canceling the application of the automatic driving level 4 for some reason.
  • Section RB 2 is, for example, a temporary construction section or a flooded section
  • section RB 3 is a section that requires attention to the running of the own vehicle due to, for example, a sharp curve.
  • the ODD is an ODD corresponding to the automatic operation level 4 and indicates a condition for the automatic operation level 4. Further, a traveling section satisfying the conditions indicated by ODD is simply referred to as an ODD section.
  • FIG. 5 is a flowchart of an example schematically showing a transfer process from automatic operation to manual operation by the existing technology. Prior to the start of the process according to the flowchart of FIG. 5, it is assumed that the vehicle on which the driver is boarding is traveling in the ODD section corresponding to the automatic driving level 4.
  • the automatic driving system mounted on the vehicle notifies the driver in step S10 that the end point of the ODD is approaching.
  • the driver prepares to take over the operation control from the automatic operation to the manual operation, for example, in response to this notification.
  • the automatic driving system issues an alarm to the driver when the transfer of the driving control from the automatic driving to the manual driving is delayed more than a predetermined time (step S11).
  • step S12 the automatic operation system determines whether or not the transfer of the operation control from the automatic operation to the manual operation has been performed within a predetermined time after notifying as the ODD end notice point in step S10.
  • the driver determines that the transfer is completed within a predetermined time (step S12, "OK")
  • the automatic operation system shifts the process to step S13 and evaluates the transfer completion.
  • step S12 determines in step S12 that the transfer of the operation control from the automatic operation to the manual operation is not completed within a predetermined time (step S12, "NG")
  • step S14 the autonomous driving system applies the MRM to the control of the vehicle and causes an evacuation run, for example, an emergency stop on the shoulder.
  • the concept of automatic driving control of a vehicle by the existing technology is that the level at which the vehicle can run in the automatic driving level classification of SAE is the range of the design assumption of the equipment mounted on the vehicle as ODD. It will be decided. The driver is required to always follow all the requirements and deal with all the requirements according to the level of autonomous driving that the vehicle can drive autonomously.
  • the automatic driving system urges the driver to return to manual driving (FIG. 5, step S10), and the response is delayed. If so, a warning is simply issued (FIG. 5, step S11). If the automatic driving system does not return to the manual driving at an appropriate timing even though the warning is issued in step S11, the automatic driving system is urgent in the ODD section where the driving can be performed by the automatic driving of the automatic driving level 4.
  • MRM control By shifting to the forced evacuation steering, so-called MRM control (FIG. 5, step S14), it is assumed that the system will prevent entry into a section that cannot be dealt with by automatic driving.
  • the automatic driving system In vehicle control using such existing technology, depending on the performance limit of the automatic driving system, if the automatic driving system is in a section where driving at the automatic driving level 4 is permitted, the driver can specify 2 other than driving. It is expected to engage in the next task (NDRA). On the other hand, when the automatic driving system reaches its own coping limit, it issues a compulsory return request from automatic driving to manual driving to the driver. From the user's point of view, this will force a forced return from the engagement of the secondary task.
  • NDRA next task
  • FIG. 6 is a flowchart of an example schematically showing the transfer process from the automatic operation to the manual operation according to the embodiment. Prior to the start of the process according to the flowchart of FIG. 6, it is assumed that the vehicle on which the driver is boarding is traveling in the ODD section corresponding to the automatic driving level 4.
  • step S20 the automatic driving system notifies the driver in advance of the end of the ODD section.
  • the autonomous driving system notifies the driver of the end of ODD at a time earlier than the time expected to be required from the notification to the return of the manual driving.
  • a "contract” regarding the transfer start point is signed between the automatic driving system and the driver.
  • the “contract” here refers to a series of flows in which the driver explicitly responds to the notification issued by the automatic driving system.
  • the automatic driving system presents to the driver information indicating the points where the transfer must be completed and the risk when the transfer is not completed.
  • the “contract” here is to share information about the transfer between the autonomous driving system and the driver, and does not impose any obligation on the driver, so it is actually a "provisional contract”. It should be called.
  • Working memory also called working memory, refers to the memory capacity of the human brain that temporarily stores and processes information necessary for work and operation.
  • the automatic driving system manages the process of handing over to manual driving by the driver. For example, the automatic driving system monitors the driver's condition, and based on the monitoring result and the vehicle condition at that time, in step S22, the margin from the current time (local point) to the transfer start point and the transfer start. Judge whether or not the grace period can be extended. The automatic driving system performs further notification and control such as transition to MRM according to the determination result.
  • the "margin” mentioned here is a vehicle around the road on which the vehicle is traveling compared to the time estimated for the driver to return to driving from the driver's status analysis detected through continuous passive monitoring. It is a time that can be secured longer than the time required to reach the takeover completion limit point when traveling at the cruising speed estimated from the flow of.
  • extension of the grace time until the start of takeover means, for example, deceleration of the traveling speed, shoulder, temporary evacuation, or low-speed traveling lane without obstructing the flow of the surrounding cruising vehicle. It refers to extending the time to reach the transfer completion limit point by moving, etc.
  • the automatic operation system determines whether or not the transfer of the operation control from the automatic operation to the manual operation is performed within a predetermined time set in, for example, the transfer process management in step S22.
  • the automatic driving system determines that the takeover has not been completed within a predetermined time, the vehicle is evacuated and traveled in the same manner as in step S14 of FIG. 5, and an emergency stop or the like by MRM is executed.
  • the automatic driving system evaluates the completion of handing over to manual driving by the driver.
  • the automatic driving system calculates the evaluation points according to the response of the driver involved in the takeover. For example, the automatic driving system adds evaluation points to operations that are preferable for taking over, such as when the takeover process is voluntarily performed by the driver or when a provisional contract is executed.
  • the driver gives up taking over in advance and chooses a break, etc., it is equivalent to selecting a means to prevent the driving of surrounding vehicles, which is a suitable process as an impact on social infrastructure, and is an evaluation point. Is added.
  • the automatic driving system gives an insensitive or a penalty to the driver according to the evaluation points calculated in the step S24.
  • the evaluation score calculated in step S24 is lower than 0, the automatic driving system imposes a penalty on the driver. The lower the rating, the heavier the penalty. Penalties may be, for example, restrictions on the use of the driver for automatic driving, restrictions on the driver's engagement in secondary tasks, and the like.
  • step S26 by giving the driver an incentive or a penalty according to the evaluation of the takeover process, the risk to the driver's working memory of the takeover work is included in the provisional contract in step S21 described above. Imprinting is possible (step S26).
  • the automatic driving system constantly monitors and observes the driver's condition, and evaluates the degree of possibility of the driver returning to manual driving.
  • the automatic driving system gives the driver a notice of advance return request necessary for returning to manual driving while the vehicle is being controlled by steering by automatic driving so that the return to manual driving can be performed properly without delay. Information is always presented to the driver.
  • the automatic operation system Prior to the actual return start timing, the automatic operation system concludes a "contract" with the driver regarding the determination of an appropriate return start timing, and manages the takeover process for the return start timing.
  • the automatic driving system unilaterally notifies the transition demand, which is a request for returning to manual driving, based only on the status in which the vehicle is placed, and prompts the driver to return. Instead, we aim for takeover control in which the system and the driver cooperate, sharing prior knowledge of takeover with the driver and working on the driver's memory.
  • the automatic driving system informs the driver of each takeover start point at a time earlier than the predicted time required for returning to manual operation after the driver is notified of the takeover start point. Notify (step S20 in FIG. 6). Then, the driver makes a "temporary contract" with the automatic driving system regarding the actual takeover start point (step S21 in FIG. 6). Based on the provisional contract, the autonomous driving system manages the takeover process, budgets the takeover sequence, and distributes the risk (step S22 in FIG. 6). As a result, the driver can appropriately prepare for the end of the secondary task and grasp the situation necessary for manual driving in advance (for example, grasp the surrounding environment necessary for driving control by manual driving).
  • the "contract” (FIG. 6, step S21) that the system makes with the driver in the embodiment of the present disclosure can be described later in the visual cortex memory of the driver by devising a method of providing the "contract” (FIG. 6, step S21). It also has the role of keeping that sense of time in memory.
  • the autonomous driving system can "reliably” convey the importance of the transfer to the driver. Can be realized.
  • the automatic driving system informs the driver in advance of the transmission of the required point for completion of the transfer and the risk when the transfer is incomplete, so that the judgment information related to the driver's behavior judgment is "notified” in the working memory. It can be reliably captured as "information”.
  • a certain amount of notice information to be noted in advance is once taken into the memory, and as a result, the driver inadvertently makes a mistake in the decision to start taking over. That can be prevented or at least reduced.
  • the driver's repeated return habits are monitored each time.
  • the effect based on this prior "contract” that is, the execution in which the return work is expected
  • dementia such as elderly people and the like It can also be used to grasp signs of dementia and the like.
  • HCD Human Centered Design
  • MCD Machine Centered Design
  • HCD Human Centered Design
  • the automatic driving system mechanically determines the ODD that can be used for automatic driving according to the performance of the on-board equipment mounted on the vehicle, and uniquely permits the use of the automatic driving function within the limited range. do.
  • the control performed by the system on the user is a one-sided notification of a control instruction, an alarm, or a case where it is impossible to respond. Only in MRM (Minimal Risk Maneuver).
  • the availability of the automatic driving function by the user when using the automatic driving is controlled so that the use proceeds within a socially acceptable range. That is, in the control of availability, the characteristics obtained from the behavioral habits of the driver are taken into consideration, and if there is an appropriate behavioral habit, the use is permitted.
  • HMI HMI
  • HMI Human-Machine Interface
  • the system provides these as visual information to the driver, and also provides changes after the start of each permitted section (as ancillary contracts) as visual information for confirming changes in the situation. For example, if the condition of the end point of automatic driving is different from the condition at the start of use, the system will be a factor to end the use of automatic driving and a risk if it does not correspond to the end of automatic driving.
  • Visual feedback to the driver is given using the visual information that describes.
  • the carrier disregards the return request as a behavioral judgment psychology because the information material of the risk judgment according to the situation that disregards the return behavior is reflected in the memory. Being affected, the memory becomes clearer.
  • NDRA Non-driving Related Activity
  • the transfer to manual driving will not be the main concern during that time. .. Therefore, it is the information that is processed in the subconscious by the activity of the brain that occurs outside the consciousness, which is responsible for the re-recognition of the necessary event. Therefore, it is important to have an HMI that incorporates risk memory into the subliminal consciousness of the brain by a subliminal method or the like and restores interest in taking over driving.
  • the system may request the driver to point and call for confirming the direction of travel and evaluate the result, forcibly looking ahead and urging the driver to confirm.
  • the existing concept of social introduction of autonomous driving is to gradually introduce the autonomous driving function according to the achievement level of the technology (SAE autonomous driving level, etc.), that is, the function that can be automatically performed according to the result of technological development.
  • the purpose is to gradually expand the use from the range and promote the introduction to society.
  • the concept of social introduction of existing autonomous driving is based on the results of technological development, that is, according to the achievement performance of machine development, the autonomous driving function defined by SAE etc. at autonomous driving levels 2 to 4. It refers to the idea of gradually promoting the social introduction of autonomous driving at the performance stage.
  • the function of the provided automatic driving is dynamically changed, and the allowable degree of the automatic driving control is dynamically controlled.
  • the present disclosure even if the mechanical and functional configurations of the automatic driving are exactly the same, the actual provision of the automatic driving function is behavioral suitability so that the driver who is the user can safely use the function. Dynamically change the automatic driving function that the user can actually use, depending on whether or not the vehicle is equipped with.
  • the present disclosure relates to a technique for applying such an idea of HCD to the control operation of an automatic driving system.
  • the advanced support allows the system to be able to operate under many driving conditions without frequent steering intervention by the driver.
  • the driver is content with the situation in which the system deals with the event, as it is possible to complete the itinerary without a direct decrease in attention when the vehicle is running, which is not directly linked to the sense of risk. And the driver may become accustomed to the dependent use of autonomous driving, and the driver's skepticism about system imperfections may diminish.
  • automatic driving level 2 or automatic driving level 3 the driver is required to take immediate action in an abnormal situation, so a decrease in attention is not allowed, whereas in automatic driving level 4, this caution is not allowed. It can fall into a decline. Furthermore, while this automatic driving level 2 and automatic driving level 3 require continuous attention to the driver, in reality, for example, from an ergonomic point of view, the driver can always fulfill this duty of care. Is not guaranteed.
  • This disclosure does not deal with this essential problem as a system that prevents the user's attention loss, etc. by simply considering it as a problem of lowering consciousness or attention (warning, return to awakening, etc.), but by the user. It relates to the technology necessary for introducing a series of mechanisms necessary for behavioral psychology to naturally self-learn and adapt to the limit performance of this automatic driving.
  • a series of controls necessary to encourage the user to improve / change the behavior that gradually changes the repeated use behavior by the user himself / herself are performed, and the hierarchy is used to promote the improvement of the use behavior. It provides a mechanism that acts on the driver with a modified mechanism.
  • the point of this disclosure is to change the relationship between the vehicle and the driver from the existing MCD to the HCD, and determine the operating area of the system depending on how the person behaves. Then, the determined operating area influences the benefits that the user can obtain when using the vehicle, depending on the behavior routine of the person.
  • the system is weighted so that the user can feel comfortable and the feedback loop is not unintentionally disturbed (traffic jam, rear-end collision, road blockage, etc.). I do.
  • the present disclosure relates to an HMI in which the system is effective in maintaining such weighted system control and fostering human behavioral habits in a virtuous cycle.
  • HCD behavior change of the user is indispensable, and HMI for producing the behavior change is also required.
  • HCD is not just a mechanism that allows users to use functions as they desire, but a mechanism that is expressed to encourage users to take necessary coping actions naturally in order to use the functions comfortably.
  • Human behavior is not designed to allow the use of animal instincts in humans as desired, but to adhere to (or to be followed) the rules required to maintain social order in modern society. It can be considered as a functional design required for that purpose after redefining it with a design that incorporates the necessary spontaneous behavior and a mechanism that involves behavior change.
  • the function of the vehicle to acquire information from the outside, supplement the information, grasp the environment, plan the driving of the own vehicle, and proceed with the planning is required at the minimum.
  • the system cannot confirm the guarantee that this series of processes can be executed under all conditions it depends on whether the driver is required to return to manual operation promptly or not. Therefore, automatic driving of automatic driving level 3 or automatic driving level 4 exceeding the automatic driving level 2 is permitted.
  • SAE defines automatic operation level 5, which is more sophisticated than automatic operation level 4.
  • Autonomous driving level 5 is operated after starting in a closed environment or investing a large amount of infrastructure in acquiring environment and environmental information and preparing an LDM that updates information with higher definition and higher refresh rate than the surroundings, for example, a robot. Applies to taxis, etc. Unless it is operated like a robot taxi at this automatic driving level 5, in a vehicle that enables the use of automatic driving level 4 for general users, the user who will be the driver will be asked to start automatic driving during the itinerary. There will be various demands for returning to manual operation.
  • the requirements for the automatic driving function of a vehicle are determined by the achievement limits that can be dealt with by the design and development of the vehicle. In this case, it is equipped with more cost, such as a large amount of information acquisition resources that can be given to the optimum processing, a large amount of resources for autonomous or external acquisition and income, and power and cost resources that can be given to operations. It is possible to extend the limit of autonomous driving by constructing and improving the infrastructure.
  • the frequency of requests for return and the available range in which automatic operation can be used are different, it is extremely difficult to eliminate the situation where return from automatic operation to manual operation is required. Therefore, an HCD that realizes appropriate driver intervention in response to these takeover requests that occur when using a vehicle is required in place of the existing MCD. It was
  • the system configuration When the system configuration is changed from MCD that depends on the performance of the device to HCD that emphasizes cooperation with humans, the user is encouraged to use it appropriately without overdependence.
  • the system allows the driver to self-learn the balance between the benefits obtained by using autonomous driving for the user and the loss and risk incurred to enjoy the benefits, and the user can use it comfortably. It is necessary to have a mechanism to bring out the benefits in the balance while bearing the necessary obligations.
  • Examples of the NDRA executed during the movement in the above item (11) include the following. (11-1) Eating and drinking (11-2) Browsing using mobile terminals, etc. (11-3) Email texting (11-4) Implementation of teleconference (11-5) Execution of leaving seats, sorting deliveries, etc. (11-6) Make up and adjust your personal taste. (11-7) Execution of karaoke, watching movies, watching sports TV broadcasts, etc. (11-8) Operation of terminal devices such as smartphones, mobile phones, tablet computers, notebook computers, etc.
  • actions to gain benefits include: (12) The function of automatic driving can be used continuously as much as possible (13) There is no usage loss due to the use (14) It does not bother interested parties.
  • Japanese Patent Application Laid-Open No. 2019-026247 and Japanese Patent Application Laid-Open No. 2016-153960 are known as publicly known examples that microscopically promote a return action in response to a return request.
  • Japanese Patent Application Laid-Open No. 2019-026247 discloses a technique of blowing cold air to a driver in order to maintain the driver's awakening.
  • Japanese Patent Application Laid-Open No. 2016-153960 discloses a technique for giving awakening notification to a driver step by step by using an alarm.
  • the quality of the return (takeover) action Since there are individual differences in driver behavior for each driver, the system learns the normal takeover behavior of the target driver, and based on the driver behavior learned from that behavior, the driver concerned. Estimate the time required for the return of.
  • the quality of the return action is that the driver promptly executes the return action in response to the return request from the system and completes the return action in time, or gives a notification that the return is completed in time.
  • Behavior quality such as delaying the start of return and taking actions that are not seen in normal learned return behavior due to slow movement, etc., without the driver taking the return behavior expected for normal return after learning.
  • the overall behavioral evaluation indexed from the evaluation is shown.
  • the autonomous driving system needs a mechanism to present to the user as a descriptive and embodied risk that allows the user to intuitively grasp the benefits and risks as a sense.
  • the human brain makes risk judgments from finite information, finds coping behaviors that reduce risk within a limited time, and takes action.
  • a human behavioral psychology whether or not a person can take the necessary coping action at the necessary timing depends on the necessity of the person taking the coping action and how the necessity is learned from past experience. , It depends on experience and background, and it varies from person to person.
  • autonomous driving becomes more sophisticated, it is expected that driving and steering will be able to continuously handle more diverse situations.
  • the driver's skepticism about the system is gradually diminishing, as the need for the driver to intervene in the return from automatic driving to manual driving is diminished, at least sensuously, in order for the autonomous driving system to cope with various situations.
  • the driver will gradually stop paying attention to the front, checking the side and rear, and checking the observation of the vehicle in front of him in preparation for driving and steering.
  • the system notifies the driver of a request to return to manual operation, and even if the driver catches the notification, the driver needs to provide the missing information in order to start from grasping the interrupted situation. It will take a long time before it becomes possible to grasp the uptake status and take action to avoid an actual takeover accident.
  • the driver as NDRA, starts an action / action that is physically separated from the driver's seat, it will take more time to move including the recovery of consciousness.
  • the information that the driver grasps in advance when stepping on the brake pedal is ⁇ How to apply the brakes of the vehicle according to the degree of depression of the brake pedal, ⁇ Cargo of own vehicle, ⁇ Judgment information on whether the distance required for braking required by the occupant load capacity is long, ⁇ Understand the risk of road slip (wetness, snow cover, etc.) and decelerate in advance to reach the relevant section.
  • the related prior storage information (working memory) required for driving steering control has not been acquired, that is, the situation is not grasped, and the automatic driving is manually performed.
  • the transfer to operation will be started. Even if a driver is mechanically and suddenly requested to take over, the driver may not always be able to instantly obtain prior judgment information.
  • the driver may fall into a panic state if he / she is required to make a decision on how to deal with the behavior while he / she is not fully aware of the situation.
  • the driver may be required to take action in the panic state.
  • HCD control that takes into account the process of human judgment, as a system, the time required to restore the state of the driver's thoughts, posture, etc., and a system that enables continuous driving with automatic driving. It can be said that there is a need for a mechanism to request the return of the driver who has secured the option of securing the remaining grace section that allows continuous driving by automatic driving at all times, in balance with grasping the situation of the road environment.
  • the driver's thinking may be assigned to an event completely different from driving, and the working memory may be in a situation where the information necessary for determining the driving behavior is insufficient.
  • the system needs to estimate the time (grace time) required for the driver to return to normal driving before the end of the section where the automatic driving function can be safely used.
  • time grace time
  • carelessness ahead by the driver may lead to oversight of danger and may directly lead to an accident. Therefore, in order not to inevitably fall into a situation where the driver neglects to pay attention to the front, basically, even if he / she is temporarily involved in work other than driving, he / she continuously collects information necessary for driving. There is no interruption.
  • the driver constantly pays attention to the eyes intermittently, and it is easy to index the withdrawal of attention such as drowsiness for driving based on the observation data by observing the decrease in their behavior. ..
  • the automatic driving function of automatic driving level 1 or higher the driver does not need to perform some work required for steering. Therefore, as the automatic driving function becomes more advanced to automatic driving level 1 or higher, the driver Gradually reduces the need to intervene in driving. As a result, the amount of information gathering and judgment behavior by the driver based on safe driving and steering judgment is gradually reduced, and additional information that is insufficient to grasp the situation and take judgment behavior after receiving the notification of returning to complete manual driving is required. It will be necessary and time consuming.
  • a trigger based on a thoughtful procedure There are two types of triggers for a person to take action: a trigger based on a thoughtful procedure and a trigger by a stimulus that is reflected in the action in order to avoid danger even if the thoughtful procedure is missing.
  • a trigger based on a thoughtful procedure and a trigger by a stimulus that is reflected in the action in order to avoid danger even if the thoughtful procedure is missing.
  • the latter behavior is a reflexive avoidance behavior and is a risk avoidance behavior based on limited information performed in an information contingency, thought feedback appropriate for the behavior works appropriately and effectively. Often the behavior is untouched.
  • the cause of this lack of appropriate behavioral control is considered to be the lack of information that enables the prediction of secondary damage to the working memory required to control the amount of behavior, and the excess of information that needs to be dealt with. Excessive information leads to a panic of thinking and makes it difficult to perform appropriate coping feedback actions such as controlling the degree of coping, resulting in an operation such as excessive steering for avoidance. Furthermore, human information collection also has a function to filter out unnecessary information by excluding such unnecessary information when continuously receiving unnecessary information for behavioral judgment or the like.
  • the system has a priority factor for actions for drivers in order to take over the autonomous driving with a margin before the end of the section where autonomous driving is available. It is necessary to provide the unique information to be used and to train the driver to measure the influence of the individual information on the driver. That is, in the case of simple information provision to the driver, the provided information may be equivalent to noise for the driver. Therefore, if the information provided makes sense in predicting results and there is a risk of detriment to the driver through learning, that information is important, high priority information in working memory. ..
  • This credit information will be used as a threshold for determining the availability of non-defective products with higher quality than the contract when switching to automatic driving and reusing in the next itinerary or the previous itinerary segment, and will be used by the driver each time. Reinforcement learning progresses as an intuitive sensation in the driver by feeding back the coping event, influence, and visual sensation.
  • this series of "contracts” is performed by responding to the notification, not just the passive information that the system has unilaterally notified to the driver.
  • the driver sees the response to the notification as an obligation to return to his manual driving for the contract.
  • the driver will be able to control the HCD that has voluntarily participated in the use of the autonomous driving system through a series of repetitive operations corresponding to the return obligation.
  • the method of presenting the individual information described in the embodiments of the present disclosure merely describes some representative means of the various means that can be used to achieve this HCD. It is not limited to the examples described. In particular, how drivers can remember the terms of a "contract”, remember their obligations over time, and fulfill them with high priority and without delay at the required time will vary from person to person. There is a difference and there is no need to limit it.
  • HCD is not a simple control that provides the driver with simple specific information.
  • HCD is a design from a broader perspective that incorporates consideration for fulfilling the functions associated with the intended use of the system, which is grasped from the perspective of human cognitive judgment behavior. More specifically, HCD needs to build a system that incorporates the mechanisms necessary for the development and development of desirable cognitive behavior.
  • Human behavioral psychology does not spontaneously and unconditionally promote desirable behavioral development.
  • a person has the merits of the desires, etc. that he or she seeks in accordance with the norms and rules that are required of an individual who is a member of a family, community, or society, and the disadvantages of punishment, etc. that the society has established as rules and norms.
  • a person's unique behavioral psychology develops and he / she comes to deal with things in a balance with the risk that he / she directly suffers regardless of social norms.
  • the psychological impact of human behavior brought about by the stage of driving support which is one of the automatic driving functions, is a demerit or risk of a sense of risk for a decrease in attention due to direct driving steering mistakes or fatigue. It is a reduction, and there is an unnecessary improvement in security.
  • the use of the driving support system in the first place improves comfort, and even if the driver who uses the vehicle with his / her original attention should lose his / her attention or overlook important information.
  • the ultimate goal is to enable accident prevention and avoidance, and to reduce the risk of accident aggravation in the worst case.
  • the use in accordance with the orderly social norms means the use of the automatic driving level 4 in which the driver is involved in NDRA only in the section where the automatic driving system allows the use in the automatic driving level 4.
  • the driver can quickly learn the behavior stipulated by social norms when the necessity arises due to the situation where the end is predicted or the situation change, and the strengthening learning of the habit progresses by daily use. It needs to have a mechanism.
  • the initial information of the "risk” necessary for human judgment thinking is the information that is unknowingly temporarily stored in the memory by the driver's approval of the "contract” presented to the driver by the system. Changes that may occur after the start of one section of autonomous driving level 4 use and the interaction between the system and the driver by the reconfirmation HMI become an "incidental contract" for reviewing the conditions for changes that occur over time.
  • the "contract” referred to in this disclosure may be an interaction between the system and the driver regardless of the actual exchange via physical documents or the like. Through the interaction, the driver's memory is informed of the necessity of recovery, the risk of its influence, and the severity of the result in case of violation, so that it becomes memory information that is hard to forget according to the importance of coping.
  • the driver cannot unconditionally use the automatic driving of the automatic driving level 4 permitted by the system, but can use the automatic driving by including the obligation to return from the automatic driving to the manual driving as an incidental condition.
  • the quality of the driver's compliance with the incidental conditions is the credit evaluation when the driver uses the automatic driving later.
  • the execution permission merit such as NDRA, which is the merit of using the automatic driving, cannot be obtained at all.
  • restrictions on the use of vehicles may be a disadvantage. Due to these disadvantages, the driver becomes more cognitively sensitive to the risk prediction notice information in the middle of the itinerary, and as reinforcement learning progresses, the driver becomes more sensitive to the notice information that contributes to maximization without losing the merit. It will be like.
  • the automatic operation control by the HCD incorporates into the system a mechanism by the conventional MCD that simply issues an alarm when the transfer point is imminent and forcibly restores the driver's consciousness.
  • the system periodically forces a return request because the driver's consciousness does not leave the driving steering loop in the first place.
  • this conventional MCD control concept is only intuitively annoying to the driver. Therefore, some drivers may weaken the function of the alarm in order to eliminate the annoyance, and it becomes a habit to become insensitive to the alarm and immerse themselves in NDRA without worrying too much about the alarm. It can lead to situations. This leads to a situation in which the driver ignores the alarm issued by the system, or if the alarm is, for example, a repeated monotonous buzzer sound, the driver's auditory filtering effect makes it unimportant.
  • the system described in detail above uses the risk information that affects the driver's near future as appropriate change information to the driver in a multidimensional and variable manner, that is, uniformly.
  • the driver actively reconfirms the "incidental conditions" in response to this presentation.
  • the risk information is distributed to different memories such as the auditory language center, the visual language center, and the visual field in the driver's working memory, and the memory stimulus for the driver's return is not monotonous.
  • HCD histone deficiency
  • the system machine-learns how to present the information that has grown up to the specific information group that is possessed as the individual characteristic of the person by artificial intelligence or the like, and makes an early judgment using the information that has an influence. Design the HMI to encourage.
  • information is presented to the driver by comprehensively stimulating using multiple different information.
  • the system gives the driver credit points as a good driver when the driver's response to this stimulus is quickly and accurately performed.
  • the credit points added to the good driver are not limited to simple additional points stored in the mechanical storage medium (memory, hard disk drive, etc.), but intuitive visual feedback to the driver on the spot via the HMI. Do it together.
  • the driver's psychological psychology is that the scheduled timing based on the driver's "contract" and the obligation to perform an accurate early return under the circumstances are intuitively linked, and the driver's own response is optimized. Reinforcement learning occurs.
  • neurons which are the optic nerves that trigger decisions, microscopically, synapses are stimulated by a large number of factors, and the memory that temporarily holds information that requires attention corresponds to this alert state of waiting for firing. .. Increase sensitivity to related information that has risks in the near future, and deal with important matters of memory so that you can take prompt action when you receive the necessary stimulus with the information necessary for judgment.
  • the state of waiting is the situation where related information is incorporated into the so-called action judgment working memory. And if this stimulus path is many and diverse, it will be an anchor effect to keep the priority high even if the floating of thought occurs temporarily due to mind wandering etc., and it will be a risk factor presented in parallel at the same time. The need can be strongly maintained by the visual and auditory information of.
  • the act of the driver confirming the "contract” or "incidental contract” presented to the driver by the system is a reconfirmation of the information by the driver.
  • the operation of reconfirming this information can be considered to play a role in activating the synaptic potential in the state before the ignition of the judgment. Since the judgment optic nerve is placed in this preparatory standby state, the driver's perceptual sensitivity to trivial information when approaching the end of the section permitted as ODD such as automatic driving level 4 is increased.
  • ODD automatic driving level 4
  • the driver gives up early on the continuous use of autonomous driving of autonomous driving level 4 and takes prompt and appropriate measures (return action).
  • the question is whether to take it.
  • the driver In order for the driver to interrupt the NDRA, which is considered to be a merit when using the automatic driving by the automatic driving level 4, and shift to the returning action to the manual driving, the working memory that controls the judgment should be used for the returning action. Information related to the migration needs to be remembered.
  • the trigger for storing the related information in the working memory is a "contract" between the system and the driver when the automatic operation level 4 is started to be used.
  • the driver once recognizes the liability obligation at the time of "contract” at the start of use.
  • the point at which the actual use section ends is some time ahead, it will be necessary to re-clear the memory in order to fulfill the return obligation before reaching the limit point for taking the action to return to manual driving.
  • the presence or absence of trigger information and the degree of risk importance greatly affect the success or failure.
  • driving at autonomous driving level 4 needs to be compatible with road use, which is actually an orderly social infrastructure.
  • road use which is actually an orderly social infrastructure.
  • leaving the functions up to that point to the system is also a problem related to the roots of human beings, and from a moral point of view, it is conceivable that the ultimate autonomous driving will not be performed. This is also the denial of a society in which humans are used by machines.
  • a person interrupts or intervenes in the steering of automatic driving, selects a priority, breaks the entangled state, and passes.
  • a person interrupts or intervenes in the steering of automatic driving, selects a priority, breaks the entangled state, and passes.
  • the progress of some vehicles that oppose each other was completely hindered. There are cases where it is prevented from being left behind and each section is passed.
  • each item Examples of factors that abandon the continuous use of automatic driving level 4 automatic driving are shown below as each item. These items can be a factor in this, either alone or in combination of multiple items.
  • the first factor is a factor that abandons continuous driving of automatic driving level 4 due to the availability of road environment information obtained in advance of the destination of the relevant road in use, and as an example, the following items. Can be mentioned.
  • the continuous driving of the automatic driving level 4 may be abandoned according to the information notified from the pre-update road environment information of the destination of the corresponding road in use.
  • factors in this case include the following items.
  • At least the first to fourth factors are the degree of impact and penalties for violations when the driver does not perform the return action according to different conditions according to the risk judgment.
  • Receive feedback in advance by HMI which can present sensory expressions such as applications, for example, expressions using visual stimuli.
  • the driver temporarily remains as a visual sensory stimulus because, for example, the visual stimulus is taken into the working memory at least once by this pre-feedback by the HMI.
  • By giving the driver a stimulus related to this visual and sensory stimulus it is possible to refresh the memory and maintain the memory of the need for the return behavior.
  • each of the above items are typical examples of the treatment required for important highways of social infrastructure, which may cause problems when the own vehicle stops in the driving zone of the road. Become. If the road is very unlikely to cause traffic obstruction even if the vehicle suddenly or completely stops due to MRM, such as a road with extremely low traffic volume or a road with a wide road width even if it is not an arterial road, the above-mentioned It is not limited to each item of.
  • the system will take measures for the driver's return. It is possible to have the vehicle continue the planned run as scheduled, without taking into account the availability or regardless of the driver's condition. That is, in this situation, even if the system encounters a difficult situation to deal with at the automatic driving level 4 and the driver cannot return properly, even if the vehicle is urgently stopped or evacuated to any place, the society This is because it does not obstruct the passage of roads as an infrastructure.
  • the essence of the control of the HCD according to the present disclosure is that the available section of the driver's automatic driving is variable, and the determination of the available section is the awake state at the time when the driver is observed. In addition to the observable evaluation value, it depends on the acquired credit information of the driver. Further, in the HCD according to the present disclosure, the information detected by the system and the result thereof are presented to the driver as near-future risk information using at least a visual representation in the intermediate process in determining the available section.
  • the driver learns how to engage in a way that suits him / herself, and if the behavior impedes social activities, the system imposes a penalty and suppresses the use of the driver. Can avoid detrimental behaviors that are an obstacle, and can suppress usage patterns with poor social acceptance.
  • the availability of the automatic driving function is basically provided according to whether the appropriate usage applicability of the driver is achieved.
  • HMI that promotes appropriate use is incorporated into the mechanism. This prevents the driver from being overly dependent on the system, and realizes a control technology for the driver to subjectively take an appropriate return behavior.
  • the present disclosure changes the method of usage control for automatic driving of a vehicle from an MCD that unilaterally issues an instruction from a conventional device to an HCD that performs usage control according to human behavior characteristics, and realizes this.
  • vehicle control with HMI introduced.
  • the driver uses the automatic driving function of the system, he concludes a "contract” with the system called “confirmation act” that the driver executes without neglecting the request when the "ceremonial” automatic driving is completed. Then, the validity of the contract will be reconfirmed as appropriate during the course of the use of autonomous driving.
  • An embodiment is an HMI that works with the driver to advance their reinforcement learning and maintains an appropriate early return as a sense of use for a long period of time.
  • the combination of execution means for feeding back to the driver is not limited to the examples described in this specification.
  • the allowable automatic driving level of conventional automatic driving was determined mechanically by the system according to the road environment conditions that the equipment can handle, and it was assumed that the driver would uniquely switch the usage selection at his / her own discretion.
  • the present disclosure provides support for the development of a habit in which the driver appropriately starts the return procedure without delay in response to the request of the system by repeated use, and the HMI necessary at that time.
  • the system will have an emergency deceleration or stop on the road due to an emergency MRM due to a delay in the driver's return work, etc. It has the effect of widely suppressing the occurrence of controls that lead to obstruction and preventing the obstruction of social activities.
  • NDRA mainly uses visual information of an electronic terminal. That is, in a terminal device having a monitor screen, short-term information related to automatic operation may be presented in the display image area as the original NDRA, and visual information related to the necessity of taking over may be displayed.
  • the visual information may be displayed in an extremely short period of time aiming at the so-called subliminal effect, which the viewer does not consciously notice. Further, apart from the presentation of information that remains completely out of consciousness, it is possible to present information that is clearly conscious by the driver, which is longer than when the subliminal effect is aimed at.
  • the subliminal effect affects behavioral judgment even if it is not consciously regarded as visual information.
  • the subliminal effect is an example of the ultimate short-time HMI, and a longer display that affects consciousness may be performed, and the display may be displayed until the driver cancels the display. By continuing it, you may work more strongly as a risk description.
  • the automatic operation shall be the automatic operation according to the automatic operation level 4 defined in SAE.
  • FIG. 7A is an example flowchart showing the flow from the itinerary setting to the transition to the automatic operation mode according to the embodiment.
  • the itinerary referred to here indicates a travel plan of the vehicle, and includes information indicating a starting point and a destination of traveling and information indicating a traveling route.
  • starting the itinerary means starting the running according to the itinerary.
  • step S100 the itinerary including the destination of travel is set by the user (driver) of the vehicle.
  • the set itinerary is input to the automatic driving control unit 10112 (see FIG. 1).
  • the automatic driving control unit 10112 acquires various information necessary for traveling according to the itinerary such as LDM.
  • the automatic driving control unit 10112 acquires information such as the LDM, the driver's return to manual driving characteristics, the local weather included in the itinerary, and the luggage loaded on the vehicle.
  • the characteristic of returning to manual operation of the driver for example, the characteristic based on the evaluation made for the driver in the past for the operation of returning to manual operation can be applied.
  • the automatic operation control unit 10112 presents a bird's-eye view of the entire itinerary to the driver.
  • the automatic operation control unit 10112 may, for example, map information indicating the entire travel route of the itinerary based on LDM, or information indicating a section of the travel route that can be traveled at the automatic operation level 4. Generate display information that visualizes such things.
  • the automatic operation control unit 10112 supplies the generated display information to the output unit 10106 via the output control unit 10105, and causes, for example, a display device connected to the output unit 10106 to display an image according to the display information.
  • This display is a navigation display that displays the itinerary settings recommended by the system, that is, the automatic operation control unit 10112.
  • the bird's-eye view display here does not need to be a bird's-eye view at a three-dimensional scale that combines the scale based on the physical distance, and if the driver can recognize the intervention point, the time-converted display is used. It may be present, it may be a stereoscopic display, or it may be in another display form.
  • the automatic operation control unit 10112 asks the driver whether or not he / she agrees with the itinerary setting recommended by the navigation display presented in step S102. For example, the automatic driving control unit 10112 determines whether or not there is an agreement according to the operation of the driver on the input unit 10101. Not limited to this, the automatic driving control unit 10112 can detect the movement of the driver by using a camera for capturing the inside of the vehicle and determine whether or not the agreement is reached according to the detected movement. The determination may be made according to the utterance of.
  • step S104 the automatic operation control unit 10112 adds another recommended travel route and presents the driver with an option to select this other travel route. Then, the automatic driving control unit 10112 returns the process to step S102, and presents the driver with a bird's-eye view of the entire itinerary by the other traveling route.
  • step S103 determines in step S103 that the driver agrees with the recommended setting (step S103, "Yes")
  • step S105 the process shifts to step S105.
  • the driver grasps the concept of the entire itinerary, and that fact is stored as storage information # 1 in the driver's working memory (WM10). ..
  • step S105 the driver starts driving the vehicle and the itinerary starts.
  • the automatic driving control unit 10112 updates the bird's-eye view of the itinerary according to the traveling of the vehicle at the start of the itinerary, and presents the updated bird's-eye view to the driver (step S106).
  • the automatic driving control unit 10112 controls the automatic driving for each section in the itinerary, and calculates the automatic driving mode for each ODD corresponding to each section in chronological order.
  • the driver can grasp the current state of the itinerary by confirming the updated bird's-eye view presented by the automatic driving control unit 10112, and is obliged to return to the manual driving for the latest selection. Can be grasped.
  • the grasped information is stored in the driver's working memory as storage information # 2 (WM11).
  • step S107 the automatic operation control unit 10112 determines whether or not the ODD section that allows automatic operation is approaching.
  • step S107 the process shifts to step S108, continuous monitoring of the situation change is performed, and the monitoring result.
  • Various risk information is updated based on the above, and the process is returned to step S106.
  • step S109 the automatic driving control unit 10112 presents a contract for dealing with the ODD section to the driver, and determines whether or not the driver has agreed to this contract.
  • This contract includes, for example, conditions for allowing automatic operation in the ODD section.
  • the automatic driving control unit 10112 makes this determination based on, for example, the presence or absence of an operation or action indicating an agreement on the presented contract by the driver. If the automatic operation control unit 10112 determines that no agreement has been obtained (step S109, "No"), the process returns to step S106.
  • step S109 determines that the agreement for the contract has been obtained in step S109 (step S109, "Yes")
  • the automatic operation control unit 10112 permits the use of automatic operation in the ODD and shifts the process to step S110.
  • step S110 when the own vehicle enters the ODD section that allows automatic driving, the automatic driving control unit 10112 shifts the driving mode from the manual driving mode to the automatic driving mode.
  • the driver is obliged to return to the manual operation for the selection in the step S109 by shifting the operation mode to the automatic operation mode in the step S110.
  • the driver By grasping the contents of the agreement (contract contents) with the system, the driver has agreed with the system regarding risk handling at the end of the ODD section.
  • a breach of fulfillment of the obligation to return is accompanied by a penalty for the driver.
  • Information # 3-1 and # 3-2, ... Showing each condition included in the agreed contract are stored as storage information # 3 in the driver's working memory (WM12). Further, this stored information # 3 is stored as ancillary contract when using automatic driving, and is stored as information related to dealing with a new unplanned incident occurring in the itinerary (WM13).
  • step S110 When the operation mode is selected and transitioned to the automatic operation mode in step S110, the process proceeds to the processing of the flowchart shown in FIG. 7B according to the reference numeral "A".
  • FIG. 7B is an example flowchart showing the flow of processing in the automatic operation mode according to the embodiment.
  • the process shifts from step S110 of FIG. 7A to step S120 of FIG. 7B, and in step S120, the automatic operation control unit 10112 carries out continuous monitoring of the situation change, and various risk information based on the monitoring result.
  • the update is performed and the process is shifted to step S121.
  • step S121 the automatic driving control unit 10112 determines whether or not an event requiring the intervention of the driver has occurred based on the result of the situation monitoring in step S120.
  • step S121 the automatic operation control unit 10112 determines in step S121 that the event has not occurred (step S121, "No"), the process shifts to step S122.
  • step S122 the automatic driving control unit 10112 determines whether or not the end point of the ODD section that allows automatic driving is approaching.
  • step S122 determines that the end points of the section are not approaching (step S122, "No")
  • step S122 determines that the end points of the section are approaching (step S122, “Yes”)
  • step S122 determines that the end points of the section are approaching (step S122, “Yes”)
  • loop processing according to steps S120 to S122 indicates processing within the ODD section in which the automatic operation according to the automatic operation level 4 can be stably used.
  • step S123 the automatic operation control unit 10112 notifies the driver that the transfer point for transferring the operation from the automatic operation to the manual operation is approaching.
  • step S124 the automatic driving control unit 10112 monitors the driver's behavior related to the transition from the automatic driving mode to the manual driving mode, that is, the quality of the driver's takeover operation from the automatic driving to the manual driving. Evaluation points are added or deducted to the driver according to the quality. The monitoring of the quality of the takeover operation and the calculation of the evaluation addition / subtraction points for the quality will be described later.
  • step S125 the automatic driving control unit 10112 determines whether or not the entire itinerary set in step S100 of FIG. 7A has been completed.
  • step S125 “Yes”
  • step S125 the automatic operation control unit 10112 ends a series of processes according to the flowcharts of FIGS. 7A to 7C.
  • step S125 the automatic operation control unit 10112 determines in step S125 that the entire itinerary has not been completed (step S125, "No")
  • step S106 shifts to step S106 in the flowchart of FIG. 7A according to the reference numeral "B". ..
  • step S121 determines that an event requiring the intervention of the driver has occurred in the above-mentioned step S121 (step S121, “Yes”)
  • the processing is performed according to the reference numeral “D” in the figure.
  • the process proceeds to step S130 in the flowchart of 7C.
  • FIG. 7C is an example flowchart showing the correspondence to the event generated during the automatic operation by the automatic operation level 4 according to the embodiment.
  • the automatic driving control unit 10112 notifies the driver of the occurrence of a new event.
  • the automatic operation control unit 10112 determines the urgency of the new event.
  • the automatic driving control unit 10112 determines the urgency according to, for example, the distance between the point where the own vehicle is traveling and the point where the new event occurs. This is substantially synonymous with determining the urgency according to the margin of time for the own vehicle to reach the new event occurrence point.
  • step S131 the automatic driving control unit 10112 determines that the urgency of the new event is high (step S131, “high”), and performs processing.
  • the process proceeds to step S160.
  • step S160 MRM by the system is started, and deceleration of the own vehicle, movement to a place where the vehicle can be evacuated such as a road shoulder, and the like are forcibly executed.
  • MRM is started in step S160, a series of processes according to the flowcharts of FIGS. 7A to 7C are temporarily terminated.
  • step S160 which is determined to be highly urgent in step S131, is subject to the deduction target (1) described later, in which the driver's evaluation is a light deduction.
  • step S131 described above the automatic operation control unit 10112 has a distance to a new event occurrence point within a predetermined range (the distance is longer than when it is determined that the urgency is high, and the distance is longer than when it is determined that the urgency is low. (Short), and if there is some time to spare, it is determined that the urgency is medium (step S131, "medium”), and the process is shifted to step S132.
  • step S132 the automatic driving control unit 10112 confirms the own vehicle and the surrounding conditions (presence or absence of a following vehicle, etc.) after securing time for deceleration in advance, and the surroundings when the traveling speed of the own vehicle decreases. Predict the impact on.
  • the automatic operation control unit 10112 confirms the situation of the driver and observes whether or not the driver can return to the emergency manual operation. Based on this observation result, the automatic operation control unit 10112 predicts the delay of the return action of the driver from the automatic operation to the manual operation.
  • step S133 the automatic operation control unit 10112 determines whether or not the grace time from the automatic operation to the return action to the manual operation can be extended based on the prediction result in the step S132.
  • step S133 “Yes”
  • step S140 the process shifts to step S140.
  • step S133 “No”
  • step S134 the process shifts to step S134.
  • step S134 the automatic operation control unit 10112 urgently starts braking the MRM.
  • the automatic operation control unit 10112 issues an alarm notification in advance to notify the surroundings of the own vehicle of the start of the MRM before the start of the MRM. Further, the automatic operation control unit 10112 instructs the driver to prepare a posture (position) corresponding to the MRM.
  • the automatic operation control unit 10112 shifts the processing to step S160 and starts MRM by the system.
  • step S134 the process of shifting from step S134 to step S160 is subject to deduction target (2), which will be described later, to deduct points from the driver's evaluation.
  • step S131 the automatic driving control unit 10112 determines that the urgency is low when the distance to the new event occurrence point is equal to or greater than a predetermined value and there is sufficient time to spare (step S131, “low”). , The process shifts to step S140.
  • step S140 the automatic operation control unit 10112 adds the new event to the bird's-eye view of the ODD section and updates the bird's-eye view.
  • step S141 the automatic operation control unit 10112 notifies the driver of the new event, and observes the driver's response to this notification.
  • step S142 the automatic operation control unit 10112 decides whether or not the driver accepts the added new event based on the driver's response observed in step S141, that is, agrees on the contract in the ODD section. Determine if it has been updated.
  • step S142 the automatic driving control unit 10112 shifts the process to step S143.
  • step S143 the automatic driving control unit 10112 adds insensitive points as the driver's evaluation in accordance with the recognition of the driver's excellent notification. Then, the automatic operation control unit 10112 shifts the process to step S122 in the flowchart of FIG. 7B according to the reference numeral “E”.
  • step S143 This transition from step S143 to step S122 is recognized by the driver as the addition of a takeover event because the driver has made a cognitive response to the notification at his / her own will. This becomes information acting on the working memory, and appropriate processing by the driver is expected. This also applies to the case of shifting from step S149 to step S122, which will be described later.
  • step S142 the transition of processing from step S142 to step S143 means that the driver has agreed to the contract presented by the system and consciously allowed the schedule of automatic operation. Therefore, the information regarding this contract is stored in the driver's working memory as storage information # 4 (WM14).
  • step S142 determines in step S142 that the driver has not renewed the agreement (step S142, "No")
  • step S144 the automatic operation control unit 10112 observes whether or not the driver can accept the notification from the system based on the state of the driver.
  • step S145 the automatic operation control unit 10112 determines the validity of the forced return notification for urging the driver to forcibly return to the manual operation based on the observation result of the step S144. Further, the automatic operation control unit 10112 calculates the evacuation point where the influence at the time of return is minimized.
  • step S146 the automatic operation control unit 10112 determines whether or not there is a grace time from the present time until the timing when the manual operation should be restored.
  • step S146 “Yes”
  • the process returns to step S144.
  • the automatic operation control unit 10112 repeats the processes of steps S144 to S146 until the grace time is exhausted.
  • step S146 determines in step S146 that there is no grace time from the present time until the timing for returning to manual operation (step S146, "No")
  • step S147 the automatic operation control unit 10112 adds a return point generation based on the determination result of validity regarding the forced return notification in step S145, and informs the driver of the return point step by step.
  • the automatic driving control unit 10112 issues preliminary alarms and notifications to the driver in stages.
  • the return operation earlier than originally expected in the new event does not store the return point information in the driver's return necessity memory, and prompts the driver's work memory to return to manual operation. This is because the information has not been memorized yet.
  • the limit of this judgment is the point where the RRR (Request Recovery Ratio) is high when MRM is activated, and the margin time ⁇ or more that the driver can return without causing the operation obstruction of the main road is secured. For example, when the driver is taking a nap, it is the time until he / she returns to the nap. Here, if the quality of recovery from the driver's nap is poor, the RRR is high, and the vehicle is approaching a section where there is a risk of traffic obstruction, the automatic driving control unit 10112 will move the MRM in front of it. Take proactive measures.
  • RRR indicates the desired probability that the transfer is desired to be completed at the transfer limit point when the driver is requested to return to the manual operation.
  • RRR will be explained in more detail. Ideally, it is desirable for the [1/1] driver to successfully complete the takeover at the takeover limit. In indicating the success rate, RRR is defined as [1/1].
  • This RRR includes various dynamic information defined as LDM as physical information on the road, and when a vehicle is stopped on the road section by invoking MRM for each lane of the road section, a following vehicle or the like is used. It is an index showing the success target value of takeover defined for each road section so that there is no collision accident with the own vehicle or the induction of congestion and the own vehicle does not have to stop suddenly in the middle of the road with a single lane. be. It is desirable that the RRR is used as a determinant that dynamically changes in response to changes in the temporal situation in association with the LDM.
  • RRR is used in road sections that do not have shoulders such as shoulders, such as the Metropolitan Expressway, and in situations where the slope is already filled with first-come-first-served vehicles. , It is desirable to set RRR to [1] in those sections.
  • RRR may be [0] as long as the influence of the emergency stop is related only to the own vehicle in the road section.
  • RRR is information that is constantly updated and provided to vehicles that use autonomous driving as part of LDM in order to suppress the obstruction of traffic by MRM to social infrastructure.
  • step S147 the automatic operation control unit 10112 shifts the process to step S148.
  • step S148 the automatic driving control unit 10112 determines whether or not the preliminary warning and notification according to step S147 have been recognized by the driver.
  • step S148 the automatic operation control unit 10112 detects the driver's predetermined response to the alarm / notification (operation for the input unit 10101, specific action, etc.), and determines that the alarm / notification has been recognized by the driver. If so (step S148, “Yes”), the process is transferred to step S149. In this case, since the driver responded to the call notification at an early stage, it is possible to shift to the normal takeover process.
  • step S149 the automatic operation control unit 10112 adds or subtracts insensitive points as a driver's evaluation according to the superiority or inferiority of the driver's response. Then, the automatic operation control unit 10112 shifts the process to step S122 in the flowchart of FIG. 7B according to the reference numeral “E”.
  • step S149 the shift of the process from step S148 to step S149 means that the driver can shift to the normal takeover process by responding to the call notification at an early stage. Therefore, the information indicating that the preliminary warning and notification have been recognized is stored in the driver's working memory as storage information # 5 (WM15).
  • the storage information # 5 stored in the working memory by the WM15 and the storage information # 4 stored in the working memory by the above-mentioned WM14 are shown by the reference numeral “C” in FIG. 7A. It is applied to the processing by WM13.
  • step S148 determines in step S148 that the alarm or notification is not recognized by the driver (step S148, "No")
  • the process shifts to step S150.
  • step S150 the automatic driving control unit 10112 determines whether or not there is a margin for waiting for recognition of the driver's return.
  • step S150, “Yes” the automatic operation control unit 10112 returns the process to step S132 in the figure according to the reference numeral “F”.
  • step S150 determines in step S150 that there is no such margin (step S150, "No")
  • step S150 determines in step S150 that there is no such margin
  • step S160 the process shifts to step S160.
  • the transition from step S150 to step S160 is a process in which the return of the driver is timed out and the soft MRM is executed. In this case, the points will be deducted from the driver's evaluation according to the delay and negligence of the driver's return, which will be described later (3).
  • the driver can be engaged in the NDRA which is more separated from the driving steering loop, for example, to take a nap or to the loading platform. You can move.
  • the ODD traveling section at the automatic driving level 4 includes, for example, a straight road and a plurality of continuous curves after traveling the straight road for a dozen minutes.
  • a minor incident occurs in a straight section of the section.
  • An example of such an incident is an insect strike where an insect hits the windshield. When an insect strike is encountered, the windshield may become dirty, which may interfere with the confirmation of forward visibility.
  • the system temporarily notifies the driver of the transfer from the automatic operation to the manual operation at a timing earlier than the normal transfer timing. Then, the system needs to observe the status of the confirmation response by the driver to the notification and take measures as described below.
  • the system forces the NDRA to be interrupted and prompts the driver to return to manual operation. What is requested is a useless return request from the viewpoint of the user who is the driver.
  • the driver is in a state of moving to the loading platform, taking a nap, etc., so that the interruption of NDRA is troublesome and there is no necessity for urgent return.
  • the interruption of NDRA is troublesome and there is no necessity for urgent return.
  • the driver it is nothing more than a risk-free, unnecessary and tedious task. Therefore, repeated unnecessary requests only increase the useless feeling of the driver, and the above-mentioned filtering effect on the notification is promoted, and its importance is gradually neglected.
  • step S146 a determination is made in step S146 to prepare for the return procedure at a certain margin and at the timing of issuing a notification or an alarm. Then, depending on whether the notification or the alarm is recognized by the driver, the determination of the countermeasure when the driver's response is delayed, such as whether to start the process equivalent to the normal return procedure, is performed in step 148. ..
  • steps S144 to S148 described above are for realizing such control.
  • the standard of the grace time in step S146 is parameterized for general passenger vehicles, vehicles loaded with heavy hazardous materials, large shared vehicles, etc., such as a safety coefficient according to the characteristics of the vehicle and a target value of RRR obtained in the road section. It may be operated as a reference value.
  • the information presented to the driver by the system via the information display unit 120 or the like is taken into the driver's working memory as risk judgment information by the driver, and is taken out from the working memory according to the awareness of the importance of taking over for operation. It will encourage people to judge their actions.
  • points are deducted [-1] for a single occurrence, and points are deducted [-2] for repeated occurrences within the same itinerary.
  • points are deducted [-4] for a single occurrence, and points are deducted [-4] for repeated occurrences within the same itinerary.
  • a deduction [-5] is applied to the occurrence of a single unit, and a deduction [-5] is applied to the occurrence of a single item repeatedly within the same itinerary.
  • the point deduction target (1) is the deduction when shifting from step S131 to step S160, and the degree of deduction is the deduction in an imminent situation. In this case, it is a response to an event that occurred immediately before the own vehicle on the road on which the own vehicle travels without prior notice, and does not attribute to the direct responsibility of the driver. However, if the start of MRM is predicted by the situation judgment when using automatic operation, a deduction is applied so that the use of automatic operation depending on the system is not repeated (third degree of deduction). Further, in the point deduction target (1), for example, as a deduction with a temporary conditional flag, the deduction can be canceled if it is not reapplied for a certain period of time.
  • the point deduction target (2) is a deduction when shifting from step S134 to step S160, and as a degree, it is a deduction in a situation where there is a little time to spare. In this case, even if the system slows down the traveling speed of the vehicle and extends the arrival time to the point where it is essential to take over, the recovery to manual operation becomes insufficient due to the driver's cause such as negligence, and MRM. Is an example of starting. In this case, since the responsibility for starting MRM lies with the driver, a heavier deduction than the above-mentioned deduction target (1) is imposed (second degree deduction).
  • the point deduction target (3) is the deduction when shifting from step S150 to step S160, and as a degree, it is a deduction in a situation where there is originally sufficient time to spare. In this case, it should be used with plenty of time, and it is a transfer that can be completed if it returns early.
  • MRM is executed by a method that is soft and has less influence on the surroundings. However, in order to prevent the driver from neglecting the takeover behavior and to encourage behavioral changes such as taking prompt action, a heavier deduction than the above-mentioned deduction target (2) is imposed (first degree). Deduction).
  • Table 3 An example of evaluation for the driver at the time of a normal transfer request from the system to the driver (also referred to as Request to Intervene or Transition Demand) will be described using Table 3.
  • the evaluation exemplified in this Table 3 is performed, for example, in step S124 of FIG. 7B, but the evaluation is not limited to this, and the evaluation according to this Table 3 can be performed at other timings of takeover or at other timings.
  • the first 1st to 4th rows are examples of adding points to the driver's evaluation
  • the 5th row is an example of not adding points and deducting points to the driver's evaluation
  • the 6th and subsequent rows are , This is an example of deducting points from the driver's evaluation.
  • deducting points when the driver starts returning with a return alarm, the driver disregards the situation, deducting points [-0.2] for a single occurrence, and 2 for repeated occurrences within the same itinerary. The points are doubled. This deduction has the meaning of preventing the driver from neglecting the situation and postponing high-priority processing. If there is no recognition detection by the driver in advance notification of the return request (leaving the notification not in memory), points will be added as a malicious measure regardless of whether it occurs once or repeatedly in the itinerary [-0.5] It is supposed to be. When the driver starts returning due to a compulsory return request, the deduction is [-1.0] for a single occurrence and double the deduction for repeated occurrences within the same itinerary as a lack of sense of risk.
  • the system (automatic driving control unit 10112) accumulates the addition / subtraction points shown in Table 3 for the same driver and uses it as the evaluation value of the driver.
  • the system accumulates the addition and subtraction points of the driver, for example, for all the itineraries set and executed by the driver in the system, or for the itineraries carried out within a predetermined period. In this way, by imposing a pay-as-you-go penalty according to the driver's history, even though the takeover request is issued from the system, it neglects to deal with it. This evaluation result is reflected in the control to prevent malicious use such as repetition.
  • the system can give a penalty to the driver's use of autonomous driving when the driver's evaluation value is low (for example, the evaluation value is a negative value).
  • NDRA secondary tasks
  • the usage restriction of the terminal device used by the driver for the secondary task can be considered.
  • the usage restriction for the terminal device it is conceivable to fill the screen displayed on the terminal device and to erode using an arbitrary image for the screen. According to these, for example, the driver can be made aware of the risk by a stepwise advance notice that appeals to the driver's intuition. Further, it is conceivable to replace the screen in use of the terminal device with the takeover information window (replacement of the sub screen and the parent screen). According to this, for example, the driver can be alerted to the takeover of driving.
  • the screen of the terminal device is forcibly frozen, and the work performed by the driver using the terminal device is invalidated retroactively.
  • These can give the driver a feeling that the work up to that point is wasted when the NDRA is forcibly performed by the forced interruption of the operation, and can further call attention to the takeover of the operation.
  • application software for using the system according to the embodiment (presentation of a bird's-eye view of the itinerary, advance notification of the end of the ODD section to the driver, etc.) is installed in the terminal device. It can be realized as a function of the application software.
  • FIG. 8 is a schematic diagram schematically showing an example of a bird's-eye view display of the itinerary applicable to the embodiment.
  • the bird's-eye view display 50 includes a short-distance display unit 51a, a medium-distance display unit 51b, and a long-distance display unit 51c.
  • the traveling direction of the own vehicle is shown from the lower end side to the upper end side.
  • the lower end portion is the current position of the own vehicle, but this is not limited to this example.
  • the icon 52 indicating the own vehicle is for facilitating the image of the itinerary, and the display can be omitted.
  • the short-distance display unit 51a displays a section from the current position of the own vehicle to a predetermined first distance.
  • the first distance is, for example, a distance of about 15 minutes from the own vehicle in terms of traveling time.
  • the vertical position on the screen and the actual distance can be in a linear relationship.
  • the medium-distance display unit 51b has a shape in which the width is narrowed according to the height on the screen so as to converge at the point at infinity VP from the upper end having the width W 1 of the short-distance display unit 51a.
  • the vertical position on the screen and the actual distance are regarded as a non-linear relationship, and the change in the actual distance with respect to the position on the screen is increased as, for example, upward on the screen. Can be done.
  • the reciprocal of the distance h diff from the point at infinity VP of the display can be displayed in proportion to the traveling time.
  • the medium-distance display unit 51b With a sense of perspective in this way, it is possible to efficiently present the display of the arrival time on a narrow screen.
  • the driver can intuitively grasp the time at each arrival point.
  • the long-distance display unit 51c is extended from the position of the width W 2 in front of the point at infinity VP while maintaining the width W 2 . Similar to the short-distance display unit 51a described above, the long-distance display unit 51c can have a linear relationship between the vertical position on the screen and the actual distance.
  • all the sections shown in FIG. 8 are sections that can be automatically operated at the automatic operation level 4.
  • the driver it is assumed that there is a section in the section in which it is preferable for the driver to return to manual driving due to reasons such as a narrow road width or a railroad crossing.
  • the RRR return request probability
  • the driver it is considered that the RRR (return request probability) for the driver is high, and if the driver does not properly return to manual driving, it may cause social harmful effects such as influence on the following vehicle. There is.
  • the bird's-eye view display 50 information indicating the section where the RRR becomes high is displayed. For example, a caution display 53 that narrows the road width is displayed for such a section. With this caution display 53, it is possible to call attention to the driver. In addition, a transfer start recommended point can be provided to the driver by a predetermined distance in front of the section, and the section 56 recommended for transfer can be highlighted and displayed.
  • a section display indicating a recommended operation mode for each section is performed with respect to the bird's-eye view display 50 shown in FIG. To add.
  • the bird's-eye view display 50 to which this section display is added will be described with reference to FIGS. 9A to 9C.
  • FIG. 9A is a schematic diagram showing an example of a bird's-eye view display 50a in which each section is color-coded according to the embodiment.
  • the bird's-eye view display 50a shows the automatic operation possible section 53a, the return posture maintenance section 53b, and the operation return essential section 53c by color coding.
  • the section 53a where automatic driving is possible indicates a section where automatic driving is possible according to the automatic driving level 4, and is displayed in green, for example, to give an image of safety and security.
  • the return posture maintenance section 53b is a section immediately before returning from the automatic driving to the manual driving, and indicates a section in which the driver is desired to maintain the posture for returning to the manual driving.
  • the return posture maintenance section 53b is displayed in yellow, for example, to call attention to the driver.
  • the operation return required section 53c indicates a section in which manual driving by the driver is required, and is displayed in red, for example, indicating caution.
  • the above-mentioned color coding of green, yellow and red is an example, and is not limited to this color combination. Further, as long as each section can be clearly distinguished, a single color may be used without color coding.
  • FIG. 9B is a schematic diagram showing an example of the bird's-eye view display 50b configured in an annular shape according to the embodiment.
  • the top of the head in the display of the ring is the position of the own vehicle, and the display is such that the distance from the own vehicle increases clockwise (rightward) from that position as the starting point. Also, as the distance from the vehicle increases, the width of the display is narrowed to emphasize the sense of distance.
  • the bird's-eye view display 50b configured in an annular shape in this way is suitable for display in a narrow area such as a display screen of a wearable device such as a wristwatch type.
  • FIG. 9C is a schematic diagram showing an example of the bird's-eye view display 50c including road information according to the embodiment.
  • the bird's-eye view display 50c shown in FIG. 9C is an example in which road information such as an icon 54a corresponding to a traffic sign and an icon 54b indicating a facility is added to the bird's-eye view display 50a shown in FIG. 9A.
  • the icon 54a indicates, for example, a location and content that the driver should pay attention to in an automatically driven vehicle.
  • the icon 54a is a display imitating a traffic sign actually installed on the road.
  • the icon 54b indicates a facility required for the vehicle to travel, and is displayed corresponding to a point such as a gas station, a parking area, or a service area.
  • sections such as a congested section where the time for passing greatly fluctuates are shown as section displays 55a and 55b.
  • the risk information at each approach time is taken into the visual field as the driver progresses to the memory of the above-mentioned consciousness, which is of high importance, that is, At high-risk points, it is a stimulus that acts on the driver's work memory when making behavioral decisions. Therefore, the driver can predict the timing to return from the automatic operation to the manual operation earlier, and the return to the manual operation is smoother than the case where only the monotonous course display is uniformly presented. It will be possible to execute.
  • the bird's-eye view display 50c and the bird's-eye view display 50a shown in FIG. 9A can be displayed on the screen of the terminal device used by the driver when using the automatic driving system according to the embodiment, for example.
  • the display of the bird's-eye view display 50a or the bird's-eye view display 50c is controlled by operating the application program related to the information processing program according to the embodiment mounted on the terminal device on the CPU 10010.
  • the bird's-eye view display 50a or the bird's-eye view display 50c is displayed, for example, on the right end or the left end of the screen in a state where the width direction is compressed.
  • the bird's-eye view display 50a or the bird's-eye view display 50c may be displayed over two sides sharing the vertices of the screen, or may be displayed over three sides of the screen or around the screen.
  • FIG. 10 is a functional block diagram of an example for explaining the function of control by HCD in the automatic operation control unit 10112 according to the embodiment.
  • the function for realizing the control by the HCD is focused on, and the other functions are omitted as appropriate.
  • the automatic driving control unit 10112 includes an HMI 100, a driver return delay evaluation unit 101, a travel path advance predictability acquisition range estimation unit 102, a remote support control / steering support support availability monitoring unit 103, and a driver. It includes a behavior change achievement level estimation unit 104, a vehicle road performance information provision unit 105, an ODD application estimation unit 106, an automatic driving use permission integrated control unit 107, and a driver behavior quality evaluation unit 108. Each of these parts is configured and realized as, for example, a module on the RAM 10012 which is the main storage device by operating the information processing program according to the embodiment on the CPU 10010.
  • the HMI 100 realizes an interface for the driver, and is connected to, for example, an information display unit 120, a terminal device 121, a vehicle interior light source 122, an acoustic device 123, and an actuator 124.
  • the information display unit 120 performs a predetermined display according to a command from the HMI 100.
  • the terminal device 121 may be a terminal device brought into the vehicle by the driver, or may be a terminal device installed in the vehicle in advance.
  • the HMI 100 can communicate bidirectionally with the terminal device 121.
  • the terminal device 121 can accept the user operation, and supplies the control signal corresponding to the accepted user operation to the HMI 100. Further, the terminal device 121 displays a predetermined screen on the display device of the terminal device 121 in accordance with the command from the HMI 100.
  • the vehicle interior installation light source 122 is a light source installed in the vehicle interior, and the lighting / extinguishing and the amount of light are controlled by the HMI 100.
  • the audio device 123 includes a speaker and a buzzer, and a drive circuit for driving the speaker and buzzer.
  • the sound device 123 emits a sound according to the control of the HMI 100.
  • the microphone can be included in the acoustic device 123.
  • the sound device 123 converts an analog sound signal based on the sound picked up by the microphone into a digital sound signal and supplies it to the HMI 100.
  • the actuator 124 drives a predetermined part in the vehicle according to the control of the HMI 100.
  • the actuator 124 applies vibration such as haptic vibration to the steering.
  • another actuator 124 can control the reclining of the seat on which the driver sits according to the command of the HMI 100.
  • the HMI 100 is based on information from the travel path advance predictability acquisition range estimation unit 102, the remote support control / steering support support availability monitoring unit 103, and the ODD application estimation unit 106, which will be described later, and these information display units 120, terminal device 121, and vehicle. It controls the operation of the indoor light source 122, the acoustic device 123, the actuator 124, and the like. As a result, the following visual and auditory notifications can be given to the driver.
  • the guidance sound gives an excessive stimulus that can be easily recognized by a person, such as an in-flight chime sound (for example, a "pawn" sound when a seatbelt wearing sign). It is preferable to use no sound.
  • the notification by the guidance sound can be applied to, for example, the advance notification of the return operation from the automatic operation to the manual operation.
  • the system may use this guidance sound notification when presenting an agreement to a "contract" to the driver.
  • the HMI 100 can perform an auditory notification by the sound emitted by the acoustic device 123 and a visual notification by the display of the information display unit 120. .. Further, the HMI 100 may drive the actuator 124 to give a haptic vibration to the steering to give a tactile notification at the time of the request. Further, the HMI 100 can instruct the driver to point and call the front of the road.
  • the HMI 100 can give a warning or warning to the driver audibly, visually, or tactilely.
  • the HMI 100 can control the acoustic device 123 to emit a warning sound and give an audible warning. In this case, it is conceivable to use a louder stimulating sound as the warning sound as compared with the above-mentioned induction sound.
  • the HMI 100 can control the information display unit 120 and the light source installed in the vehicle interior to give a visual warning by blinking a red light, emitting a warning in the vehicle interior, or the like. Further, the HMI 100 can control the actuator 124 to strongly vibrate the seat in which the driver sits to give a tactile warning.
  • the HMI 100 can control the driver to perform a penalty operation.
  • the HMI 100 can perform controls that may be offensive to the driver, such as visuals, operational restrictions, mild pain to the driver, blowing cold air, and moving the driver's seat forward. ..
  • the HMI 100 performs pseudo control such as occurrence of rolling of the vehicle, acceleration / deceleration that causes discomfort, pseudo deviation of the lane, etc., and directly or directly urges the driver to return early. You can give a penalty that affects later rather than the field.
  • the HMI100 presents fine information, compulsory entry into service areas as penalties and presentation of restraint time at that time, notification of unavailability due to penalties for autonomous driving, and warning presentation for next or repeated usage restrictions. It is possible to give a penalty according to the driver's knowledge information.
  • the driver return delay evaluation unit 101 evaluates the delay of the driver's return from automatic driving to manual driving, for example, a life log data information server 130, a wearable device log data 131, and a face / upper body / eyeball.
  • the camera 132, the biometric information index acquisition unit 134, the vehicle interior localizer 135, and the response evaluation input unit 136 are connected. Further, the driver return delay evaluation unit 101 acquires information indicating the return characteristic of the individual driver to manual operation from the remote remote server dictionary 137.
  • the wearable device log data 131 is log data acquired from the wearable device when the driver wears the wearable device.
  • the wearable device log data 131 includes, for example, a driver's behavior history and biometric information.
  • the face / upper body / eyeball camera 132 is a camera provided in the vehicle interior so as to image the upper body including the driver's head.
  • the face / upper body / eyeball camera 132 is provided in the vehicle interior so as to be able to capture the driver's facial expression, fine movement of the eyeball, and the behavior of the upper body.
  • the face / upper body / eyeball camera 132 is not limited to this, and may include a plurality of cameras that image the face, the eyeball, and the upper body, respectively.
  • the body posture / head camera 133 is provided in the vehicle interior and is a camera that captures the body posture including the driver's head. By analyzing the images captured by the body posture / head camera 133 in chronological order, the body posture of the driver and the position and orientation of the head can be tracked.
  • the camera is described so that the face / upper body / eyeball camera 132 and the body posture / head camera 133 are separated for convenience from the degree of freedom of installation.
  • a device in which these cameras are integrated may be used without limitation.
  • the biometric information index acquisition unit 134 acquires the biometric information of the driver based on the outputs of various sensors provided in the vehicle, for example. As the acquired biological information, respiration, pulse, exhalation, body temperature distribution, electrooculogram, and the like can be considered. Not limited to this, the biometric information index acquisition unit 134 can also acquire a part of the biometric information of the driver from the wearable device worn by the driver.
  • the vehicle interior localizer 135 is a localizer provided in the vehicle interior.
  • the response evaluation input unit 136 inputs a response by the driver to a request, a warning, or the like presented to the driver by the HMI 100.
  • the information acquired by the wearable device log data 131, the face / upper body / eyeball camera 132, the biological information index acquisition unit 134, the vehicle interior localizer 135, and the response evaluation input unit 136 can be used as a driver's life log. It is stored in the life log data information server 130.
  • FIG. 11 is a functional block diagram of an example for explaining the function of the driver return delay evaluation unit 101 according to the embodiment.
  • the driver return delay evaluation unit 101 includes a driver behavior response evaluation unit 1010, a correlation characteristic learning unit 1011, a condition-based return distribution individual characteristic / situation recognition decrease characteristic dictionary 1012, and a situation recognition decrease transition prediction unit. Includes 1013 and.
  • Conditional return distribution individual characteristic / situational awareness deterioration characteristic dictionary 1012 is a dictionary regarding the observable evaluation value of the individual driver and the characteristic of situational awareness deterioration.
  • the correlation characteristic learning unit 1011 includes information indicating the return characteristics of the individual driver to manual operation acquired from the remote remote server dictionary 137, and evaluation values and situations acquired from the condition-specific return distribution individual characteristics / situation recognition deterioration characteristic dictionary 1012. Based on the recognition deterioration characteristic, the correlation characteristic between the observation evaluation value of the individual driver and the return delay time distribution is learned.
  • the remote remote server dictionary 137 is arranged in the remote remote server outside the vehicle, but this is not limited to this example. That is, the reason why the remote remote server dictionary 137 is installed on an external server is that the use of the driver's characteristics that are not necessarily tied to the unique vehicle due to the spread of business vehicles and shared cars is one example of use.
  • the remote remote server dictionary 137 may be installed in the vehicle to be used.
  • the driver behavior response evaluation unit 1010 acquires each information about the driver from the HMI 100. For example, the driver behavior response evaluation unit 1010 acquires advance preliminary information from the HMI 100 by using a life log. Further, the driver behavior response evaluation unit 1010 acquires, for example, the following information regarding the driver from the HMI 100 based on the images of the face and body acquired by various sensors (cameras). -Facial expression and body posture recognition information. ⁇ Information about the eyes. In this example, an evaluation is obtained for the local behavior of the eye such as PERCLOS (percentage of closed eyes per unit time) and saccade (rapid eye movement). ⁇ Posture and transition of posture. In this example, the quality of the return behavior is evaluated based on the posture and the transition of the posture. ⁇ Position and posture of leaving the seat in the passenger compartment. -Biological information.
  • PERCLOS percentage of closed eyes per unit time
  • saccade rapid eye movement
  • Posture and transition of posture In this example, the quality of the return behavior is evaluated based on the
  • the driver behavior response evaluation unit 1010 evaluates the driver behavior response based on each information acquired from the HMI 100 and the correlation characteristic acquired from the correlation characteristic learning unit 1011. The evaluation result is passed to the situational awareness decline transition prediction unit 1013. Based on this evaluation result, the situational awareness decline transition prediction unit 1013 predicts the transition regarding the decline in situational awareness by the driver.
  • the driver behavior response evaluation unit 1010 uses the driver's life log data to estimate the driver's arousal level, etc., such as lack of sleep time in advance, overwork accumulation, apnea syndrome, and alcohol residue of drinking. The accuracy is improved, and the judgment accuracy of the driver's situation awareness ability is improved, which enables safer control against sudden occurrence of drowsiness such as microsleep.
  • the driver return delay evaluation unit 101 includes the life log data information server 130, the wearable device log data 131, the face / upper body / eyeball camera 132, the biometric information index acquisition unit 134, and the response evaluation input unit. It has a function as an acquisition unit that acquires the state of the driver based on the information acquired from 136 and the remote remote server dictionary 137.
  • the explanation returns to FIG. 10, and the travel path pre-predictability acquisition range estimation unit 102 acquires the high freshness update LDM 140, and estimates the acquisition range of the advance predictability for the travel path based on the acquired high freshness update LDM 140. That is, the travel path pre-predictability acquisition range estimation unit 102 acquires a range in which the event can be predicted in advance on the travel path based on the high freshness update LDM 140.
  • FIG. 12 is a schematic diagram for explaining the high freshness update LDM140 applicable to the embodiment.
  • LDM1400a, 1400b, ..., 1400n are arranged in each region.
  • These regional distributed layouts LDM1400a, 1400b, ..., 1400n correspond to each region, such as a stationary sensor 1401, a dedicated probe car information 1402, a general vehicle ADAS information 1403, a weather information 1404, and an emergency notification information 1405 (fall of dangerous goods). Etc.), etc., and will be updated from time to time.
  • the regional distributed layout LDMs 1400a to 1400n are transmitted by 5G (fifth generation communication), 4G (fourth generation communication), or another communication method.
  • the transmitted regional distributed arrangement LDMs 1400a to 1400n are received, for example, by the automatic operation control unit 10112, and are aggregated to form the high freshness update LDM140.
  • the emergency notification information 1405 is delivered by the broadcast 1406 and is received by the automatic operation control unit 10112 directly to the automatic operation control unit 10112 or included in the above-mentioned 5G or 4G communication.
  • the automatic operation control unit 10112 updates the high freshness update LDM 140 based on the received emergency call information 1405.
  • the explanation returns to FIG. 10, and the travel path pre-predictability acquisition range estimation unit 102 describes the range in which the event can be predicted in advance by the acquired high freshness update LDM 140 on the travel path based on the information and the situation exemplified below. presume.
  • the update frequency of the high freshness update LDM140 varies with the passage of time, for example, due to the passing presence density of a probing vehicle (for example, a dedicated probe car).
  • a probing vehicle for example, a dedicated probe car.
  • Information omission due to lack of regional wireless communication band. Insufficient passage of probing vehicles to supplement information against deterioration of predictability due to bad weather. ⁇ Reduced predictability due to temporary lack of information that occurs in information acquired from leading vehicles / vehicle groups that replaces and complements itinerary sections that lack information that are not provided by updated LDM due to infrastructure development.
  • the remote support control / steering support availability monitoring unit 103 monitors the availability of remote support control and the availability of steering support based on the information acquired from the remote support control I / F 150.
  • the monitoring by the remote support control / steering support availability monitoring unit 103 is expected to be used as an option such as regional traffic, platooning support, and limited connection support.
  • FIG. 13 is a schematic diagram for explaining the acquisition of information by the remote support control I / F 150, which is applicable to the embodiment.
  • the remote control commanders 1500a, ..., 1500n-1 collect information from the standby steering operator 1501 and the standby steering operator 1501n + 1, respectively, and the dedicated lead guidance contract vehicle 1502. Further, in this example, the remote control commander 1500a also collects information from the leading guidance vehicles 1503 m and 1503 m + 1.
  • the communication method here is not limited to 5G and may be 4G.
  • the guided leading vehicles 1503m and 1503m + 1 directly transmit the collected information to the remote support control I / F 150.
  • the explanation returns to FIG. 10, and the remote support control / steering support support availability monitoring unit 103 performs the following processing based on the information acquired from the remote support control I / F 150.
  • the driver behavior change achievement level estimation unit 104 estimates the achievement level of the change in the driver's behavior change with respect to the system limit.
  • FIG. 14 is a functional block diagram of an example for explaining the function of the driver behavior change achievement level estimation unit 104 according to the embodiment.
  • the driver behavior change achievement level estimation unit 104 includes an excellent return steering behavior evaluation point addition unit 1040 and a penalty behavior cumulative addition recording unit 1041.
  • the excellent return steering behavior evaluation point addition unit 1040 adds the evaluation value for the excellent driving operation when returning to the manual operation.
  • the penalty action cumulative addition recording unit 1041 deducts the evaluation value according to the violation of the return request to the manual operation from the system and the negligence of dealing with the return request. Further, the penalty action cumulative addition recording unit 1041 cumulatively adds the evaluation value to the action in which the penalty occurs.
  • the driver behavior change achievement level estimation unit 104 can acquire the evaluation value from, for example, the driver return delay evaluation unit 101.
  • the own vehicle travel road performance information providing unit 105 provides the own vehicle travel (passing) road performance information to the LDM regional cloud (for example, the regional distributed arrangement LDM1400a to 1400n). Specifically, the own vehicle travel road performance information providing unit 105 provides the following information and the like.
  • the own vehicle travel path performance information providing unit 105 can optionally provide information to the following vehicle, the waiting vehicle, etc. based on the information possessed by the own vehicle when it is difficult to provide the LDM.
  • the infrastructure will automatically update the freshness based on the LDM 140. Automatic driving by driving level 4 cannot be expected.
  • the driving is switched from automatic driving to manual driving, and pairing is performed for the supported vehicle (for example, the following vehicle or the standby vehicle) that requires assistance.
  • the environment acquisition data when the own vehicle is driving at the automatic driving level 2 or lower is provided to the supported vehicle as data necessary for driving at the automatic driving level 4, and further, the supported vehicle is specified.
  • LDM is provided by pairing with the vehicle, and information is provided when the vehicle behind is following and traveling in the state of automatic driving level 4.
  • the own vehicle track record information providing unit 105 can provide this information in cooperation with the above-mentioned remote support control / steering support support availability monitoring unit 103.
  • the paired partner is a leading support support vehicle
  • information can be provided as road guide information to the following and following vehicles of the partner.
  • the operation that combines these leading vehicles and remote support together with the high freshness update LDM140 will be further found to be useful especially when using platoon transportation including unmanned traveling vehicles, and the driver will operate the actual vehicle. It may be applied to use without boarding.
  • the ODD application estimation unit 106 determines whether or not the vehicle can travel at each automatic driving level (ODD section). The ODD application estimation unit 106 makes this determination based on the following information.
  • -History evaluation information such as driver's excellent credit evaluation, return violation, deductions, penalties, etc.
  • -Information on the return request probability (RRR) based on LDM such as the high freshness update LDM140, and information indicating the points that can be selected by the evacuation options.
  • RRR return request probability
  • -Information indicating the limits of the application of autonomous driving based on the diagnosis results of vehicle-loaded equipment.
  • the ODD application estimation unit 106 has an ODD section to which non-monitoring automatic operation at automatic operation level 4 can be applied according to LDM such as high freshness update LDM140 and other update status, and automatic operation equivalent to automatic operation level 3. Estimate the available ODD intervals.
  • the ODD application estimation unit 106 reviews and updates the applicable ODD section according to the risk information newly acquired during the travel itinerary, the adhesion of dirt on the equipment, the change in the state of the driver, and the like. At this time, the ODD application estimation unit 106 notifies the driver of the information update through the HMI 100, and evaluates the degree of understanding of the situation change based on the driver's response to the notification.
  • the automatic driving use permission integrated control unit 107 controls the automatic driving use permission in an integrated manner. For example, the automatic driving use permission integrated control unit 107 controls the automatic driving permission status for each traveling section in an integrated manner. Further, the automatic driving use permission integrated control unit 107 controls the execution of the MRM. Further, the autonomous driving use permission integrated control unit 107 controls to give penalties and penalties to the driver, such as forcibly suspending the use of the violation act while using the automatic driving. Examples of violations include delays in the driver's response to requests from the system to return to manual driving, and repeated and continuous use of automatic driving according to automatic driving level 3.
  • the driver behavior quality evaluation unit 108 evaluates the quality of behavior (behavior quality) of the driver during automatic driving.
  • the driver behavior quality evaluation unit 108 evaluates the quality of the driver's behavior based on, for example, the stability of the driver's steering.
  • the driver behavior quality evaluation unit 108 evaluates each item related to driving such as steering operation, accelerator and brake operation, and winker operation by the driver, for example.
  • the driver behavior quality evaluation unit 108 evaluates the designated operation such as pointing and calling by the driver and the behavior in response to the transfer request from the system to the manual driving.
  • the posture return evaluation may be performed when returning to the driving steering posture from the NDRA task in which the posture is broken.
  • FIG. 15 is a schematic diagram for explaining the basic structure of the automatic operation level 4 applicable to the embodiment.
  • each of the charts (a) to (g) has a horizontal axis as a position.
  • the chart (a) shows an example of the relationship between the return time ⁇ T drd and the position (or the arrival elapsed time calculated from the vehicle speed), and the chart (b) shows an example of the relationship between the grace time ⁇ T 2 lim and the position. ..
  • the return time ⁇ T drd and the grace time ⁇ T 2 lim will be described later.
  • Chart (c) shows an example of a constantly updated (high freshness update) LDM data section.
  • an LDM data section in which the freshness is deteriorated without being updated is included in the runnable section in the automatic operation of the automatic operation level 4 (described as Level 4 in the figure).
  • this freshness-reduced LDM data section is a section in which LDM maintenance is insufficiently announced in advance, and a section in which manual operation is temporarily indispensable.
  • the section 63 in the chart (b) is a section in which the provision of the high freshness update LDM140 cannot be maintained due to a decrease in passing vehicles and a shortage of communication bands due to excessive use of surrounding public communications. Manual operation is also essential in this section.
  • Chart (d) shows an example of RRR and return success rate.
  • the charts (e), (f), and (g) show examples of the presence / absence of a leading vehicle, the availability of a waiting area, and the availability of a control operator, respectively.
  • the system communicates with the LDM on the cloud network via the regional infrastructure communication network to request new information, and the cloud network provides the constantly updated high-precision status of the LDM for the planned travel section.
  • the leading vehicle provides highly fresh individual LDM information acquired in each situation such as V2V (Vehicle to Vehicle).
  • the system has a grace period that indicates the grace period during which it is presumed that the vehicle can drive safely, depending on the equipment status confirmed to be used in the latest self-diagnosis status of the vehicle.
  • ⁇ T 2lim Time to reach limit of MRM
  • the return time ⁇ T drd is only the distance corresponding to the return time ⁇ T drd at the position P61 from the position P61, for example, assuming that the current position of the own vehicle is the position P61. It indicates that it will return to manual operation at the advanced position.
  • the grace time ⁇ T 2lim corresponds to the grace time ⁇ T 2lim from this position P62a to the position P62a when the position P62a is a point where the return to the manual operation is indispensable. It shows the grace period for returning to manual operation at the position traced back from the position P62a by the distance.
  • the return time ⁇ T drd and the grace time ⁇ T 2 lim change according to the road environment during traveling and the state of the driver, as shown in the positions P62a and P62b of the chart (b), respectively.
  • the system compares these grace time ⁇ T 2 lim with the return time ⁇ T drd , and determines whether or not the grace time ⁇ T 2 lim and the return time ⁇ T drd satisfy the relationship of the following equation (1).
  • ⁇ T 2lim >> ⁇ T drd ...
  • the driver can use the vehicle for automatic driving at automatic driving level 4 while the vehicle is running. , The chances of encountering a situation that requires immediate action are low. Therefore, the risk is limited, and even if the driver is not in time to return to manual driving, it will fall back unless the MRM sharply increases other traffic risks.
  • the system determines the risk of causing traffic obstruction on the relevant road based on the information obtained from LDM or the like when the own vehicle makes an emergency stop or the like on the MRM in the traveling section. According to this judgment result, if there is a possibility, the system searches for a detour that can be evacuated, determines whether pairing with a leading guide vehicle, and a remote driving support controller before entering the section. -Execution operator-Determine the margin of required communication lines. The system provides risk selection information to users of detour or avoidance selection up to the limit of provision of automatic driving according to the presence or absence of provision of workarounds associated with MRM execution according to the result of this determination. Whether the operation is to prompt the decision or whether the system gives priority to the save selection in advance is a settable selection switchable item, and the process is completed according to the decision.
  • the system becomes one of the influences on the following vehicle, that is, the limit point of control that can be driven without causing a great social influence.
  • the information display unit 120 By presenting these as information prompting the driver to make a risk coping action decision by the information display unit 120, the information is taken into the driver's working memory, so that the driver approaches a point requiring coping.
  • situational awareness can be performed at an early stage.
  • the driver does not perform the return action requested by the system at these marginal points, and if the contract is violated, the driver is given a more familiar intuitive penalty to replace the secondary trigger accident in response to the violation. Imposing on the target. In other words, it imposes penalties such as speed limit during continuous driving, forced pit stop at parking, stink, etc., which act directly as a demerit, not a stochastic possibility that the driver is not aware of. As a result, the system can suppress the violation use of the automatic driving, or encourage the driver to change the behavior in which the violation is not positively performed when the automatic driving is used.
  • the grace time ⁇ T 2lim is information that changes with the running of the own vehicle, and it may not be possible to obtain a sufficiently long prediction as originally planned. It can happen.
  • the data of the high freshness update LDM140 provided from the infrastructure may change over time even if the data of the entire itinerary section is received at the start of the itinerary, and acquiring the high freshness update LDM140 each time is the communication band. There is a great risk of causing pressure.
  • the information acquired in advance by the system of the own vehicle is the confirmation information of the section where the automatic driving by the automatic driving level 4 cannot be used, and the prediction information of the grace time ⁇ T 2 lim in each section scheduled as a service.
  • the grace time ⁇ T 2lim is acquired as more accurate and immediately updated information before actually approaching each section.
  • the acquisition of such information may be acquired by directly requesting it from the regional management server, acquired by V2V from the leading guide vehicle, or acquired from the broadcasted information.
  • the RRR and return success rate of the chart (d) will be explained.
  • the section where the value of RRR (Request Recovery Ratio) is 100% is a section where there is an extremely high possibility that a sudden deceleration will be required for the following vehicle if the vehicle is stopped or a rapid deceleration is performed in that section. In this section, in order to ensure safety, we request the completion of the transfer in advance.
  • sections with high RRR are some special limited sections, such as one-way bridges, where traffic may stop at least halfway or completely prevent two-way traffic, and capitals without vehicle shelters.
  • Examples include special roads such as expressways, sections where general vehicles take time to grasp the situation, such as tunnel exits, roundabouts, and intersections.
  • the RRR can be set to 0% in a section where the traffic volume is extremely small and even if the vehicle is stopped on the road, the possibility of obstructing the view or traveling of the following vehicle is extremely small.
  • the RRR is set to a value lower than 100%
  • the RRR is set to 100%.
  • the section 65b is a section in which the stopping or sudden deceleration of the vehicle is extremely likely to have a great influence on the running of the following vehicle.
  • the section 65a in which the RRR is set to a value lower than 100% indicates that the influence of the vehicle stop or the sudden stop on the following vehicle is smaller than that in the section 65b.
  • the presence or absence of a leading vehicle in the chart (e) indicates the presence or absence of mutual assistance volunteer support for a dedicated standby vehicle or a general vehicle that guides and supports autonomous driving in sections where it is difficult to pass by own vehicle equipment and LDM. ing.
  • the waiting area on the chart (f) is vacant, for example, when the chart (e) indicates that there is a leading vehicle, the leading vehicle or the own vehicle arrives when the vehicle is assisted in a difficult-to-pass section. Indicates whether there is a waiting place to wait until.
  • the vacancy status of the controller in the chart (g) indicates the vacancy of the controller (whether or not it can be handled) and whether or not the actual pilot operator can be supplied. Affects the return request rate to.
  • FIG. 16 is a schematic diagram for explaining ODD at the automatic operation level 4 according to the embodiment.
  • FIG. 16 the direction in which the own vehicle travels is shown from the left to the right in the figure.
  • the upper figure shows an example of a section provided as static information on the road 70, which can be driven by automatic driving at automatic driving level 4 (Level 4).
  • Level 4 automatic driving level 4
  • the lower part of FIG. 16 shows a case where the lane width is limited due to, for example, road construction, the automatic driving of the automatic driving level 4 is difficult, and the section 71 having a limited lane width occurs in the travelable section.
  • An example of is shown schematically.
  • the section 71 is between the point R and the point S, and in this section 71, the driver needs to drive by manual operation. From the point S at the end of the section 71 to the section 72 having a predetermined length, the manual operation can be shifted to the automatic operation.
  • automatic driving of automatic driving level 4 can always be used in the physical road section from the conditions confirmed before the start of the itinerary.
  • continuous status monitoring should be performed in case of an abnormal situation. From the user's point of view, the existence and significance of autonomous driving will diminish.
  • MRM Mobility Management Remote Access
  • the information provided to the driver is, for example, vehicle dynamics characteristic displacement, self-diagnosis and status presentation of vehicle-mounted equipment, information presentation regarding predictability of the preceding road (including temporary deterioration of sensing performance, etc.), evacuation. ⁇ It is conceivable to provide information on the availability of evacuation (temporary acceptable amount due to accommodation fluctuations) in advance.
  • the system it is necessary for the system to be able to obtain in advance the high freshness update LDM140 of the destination of the assumed itinerary. Then, the acquired high freshness update LDM140 contains information indicating the return success rate (RRR) for each road section of the traveling course, and the system is manually operated by the transfer limit point assumed by the driver.
  • the estimated delay time that can be restored is calculated as the delay time from the notification that achieves this RRR to the restoration.
  • whether or not the driver takes the expected return behavior in response to the notification from the system is an area determined by the behavioral psychology of the person that the system cannot directly detect.
  • the delay time from the notification of the necessity of returning to manual driving to the completion of the actual return is the driver's method of providing these advance information and the importance of the notified content.
  • Accurate cognitive status by, elapsed time when the importance in memory from notification of the need for new takeover to notification of implementation declines, presence or absence of concentration matters outside the driver, and the driver's It is determined largely depending on the individual ability difference of memory retention in the working memory of important matters.
  • step S70 when new takeover information is generated by the high freshness update LDM140 (step S70), the takeover information is acquired by the system via the regional LDM cloud network as shown in step S71.
  • the system may receive an abnormality notification signal from a leading vehicle or the like (step S72). Based on the acquired takeover information or abnormality notification signal, the system notifies the driver of the information on the points (points) involved in the takeover and the importance of dealing with the takeover in step S73 (provisional contract). Presentation).
  • the driver decides the importance according to this notification (step S74), and agrees and responds to the provisional contract.
  • the system detects the driver's response (step S75). As a result, a provisional contract is concluded. Further, in the driver, the information regarding the takeover is stored in the working memory by the agreement response to this provisional contract (step S76).
  • Step S77 the correspondence branches, for example, as shown at point P.
  • the timing of the driver's return to manual operation differs depending on the driver's recognition of the importance of taking over. For example, if the driver does not detect the driver's response to the provisional contract in step S75, the driver is requested to return to manual driving at the point (position) Q1 .
  • the system gives a reconfirmation notice (step S77), and depending on whether or not the driver recognizes this notice, the point Q 2 ahead of the point Q 1 and closer to the section 71, or a section further ahead. Issue a return request at point Q3 near 71.
  • the road is based on the high freshness update LDM140 and the preceding information of the route destination obtained by V2V communication from the leading vehicle. It is assumed that an event fluctuation that approaches a section where manual operation is essential occurs at the end of the section over time. Furthermore, if there is a narrow road section in front of it that is difficult to evacuate, for example, considering the maintenance of social order, it is required that the transfer be successful even before that. And the delay from notification to successful takeover largely depends on how awake each driver is and remembers the prior information needed to make a decision.
  • the driver is aware of the need, captures advance information with a degree of tension, recognizes the information in the initial notification and responds (that is, the system detects cognition in the form of response), and its importance is the driver's. If it remains in the working memory as important for memory, the time from notification to recovery can be shortened, and notification just before the limit point is sufficient.
  • working memory conceptually captures the function of the brain that controls human thinking and judgment, and if the upper limit that can be memorized by each person is different, the health condition and age. For example, some people immediately forget their priorities even if they are important information.
  • the driver receives such information due to the change sufficiently before the relevant point R (for example, at the corresponding point Q1 ), and it takes several tens of minutes to reach the corresponding point R after receiving this notification.
  • the relevant point R for example, at the corresponding point Q1
  • a long time From an ergonomic point of view, when controlled by HCD, one basically stores information in working memory based on the importance of the information. At this time, if the information is not obtained as a direct sense of the importance of the near future, the priority of the information such as NDRA, which is highly important at that time, will be lowered.
  • the system shows the driver the urgency of the takeover request and the penalty for failing to fulfill the takeover request, and detects the response by the driver.
  • the driver's working memory enables information injection in a reliable form.
  • the observation state evaluation of the intentional gesture of the driver's awakening cognitive state by pointing and calling shown in Japanese Patent Application Laid-Open No. 2019-021229 and International Publication No. 19/017215 is applied. It is possible. Since pointing and calling has cognitive feedback in its gestures, it can play an extremely large number of roles of confirmatory cognition. Not limited to this, a simpler cognitive response means such as the driver answering a question presented by the system may be used.
  • the driver who received the return notification at an early stage is expected to lose the importance of the necessity of return due to insufficient response to the advance notification.
  • the required time is calculated based on the return success rate to a certain manual operation at the required transfer completion limit point. Then, while the time from the notification of the return request to the completion of the return can be long in this case, the quality of the return action that quickly returns from the notification is managed and indexed. Therefore, in the case of low-quality return behavior, points are deducted and a penalty is incurred. Therefore, the driver's psychology is expected to be an early return behavior.
  • the driver's advance notice and accurate action judgment for the notification are determined by whether the prior information presented by the information display unit 120 or the like is correctly and appropriately performed according to the risk and is incorporated into the judgment memory. It will be possible for the first time.
  • Use case # 1 the permitted route of the automatic operation level 4 updated by the quasi-static LDM is automatically controlled by the automatic operation level 4 without active monitoring control by constantly receiving the latest data such as the high freshness update LDM140.
  • This is an example when a driving plan is made assuming that the route is a viable route for driving. In this case, depending on the state of the driver, the driver will be taken over for a new situation that requires the intervention of the driver, which has not been acquired from the quasi-static LDM and the update information has not been obtained. The return to manual operation has not been completed within the permissible limit period. This is an emergency response by MRM, and in some cases, it may obstruct the passage of the following vehicle or induce a rear-end collision risk.
  • Use case # 2 the driving environment information of the road ahead is appropriately received in advance from the high freshness update LDM140 or the like and notified to the driver, and the information is accurately recognized by the driver and the response is detected. This is an example when it is not done. In this case, it is uncertain whether the importance of the necessary intervention and the timing of occurrence are stored in the driver's working memory, and there is a risk that the transfer will not be completed safely in time, so it is early for the driver. Will be notified to (Point Q1 in Fig. 16). Therefore, the time that the driver can be involved in work other than driving (NDRA, etc.) is squeezed. Among them, if the work of taking over from the return notification is not performed quickly and the return quality is low, the penalty evaluation will be deducted, which is a disadvantage of future use.
  • Use case # 3 Unlike the above-mentioned usage case # 2, the usage case # 3 is an example in which the driver correctly recognizes the recognition at the notification stage.
  • the automatic operation by the automatic operation level 4 is continued for a long time until the notification of these new events is received at an early stage and the actual corresponding point is reached (point Q 2 ).
  • point Q 2 the actual corresponding point is reached.
  • the memory may be fading.
  • step S77 the system issues a reconfirmation notice (step S77) to the driver and sees the driver's response, so that the remaining state of the driver's memory is less than that of use case # 4, which will be described later. It turns out that it is, and an early notification is given.
  • step S74 since the driver has once made a cognitive response to the situation change in step S74, there is no residual memory, and the time to reach the situation awareness (Situation Awareness) is shorter than that of the above-mentioned use case # 2. Therefore, the notification is made at an intermediate time between the above-mentioned use case # 2 and the later-described use case 43.
  • Use case # 4 is an example in which the driver receives a notification, understands the importance, receives a response in the reconfirmation notification (step S77) to the driver, and the memory is held in the working memory. .. In this case, even if there is time to reach the relevant point, the driver can check the situation due to the approach to the relevant point (for example, for the front or the notification screen) as appropriate before reaching the relevant point. By performing pointing and calling), the driver's working memory memory is refreshed, and risk awareness increases as the driver approaches. As a result, the system can accurately detect the driver's condition and behavior for reconfirmation, even immediately before the notified transfer point (point Q3 ), based on the undeclined residual information in the working memory. Accurate takeover return is possible, and as a result, high-quality return action can be realized, and the evaluation is an excellent point.
  • Use case # 5 is the same as the above-mentioned use case # 4 until the recognition when receiving the next transfer necessary information during the automatic operation use for the working memory.
  • so-called mind wandering causes the driver's consciousness to move away from other thoughts due to the retention of new information in the working memory and the transition of time, and the driver's consciousness breaks out of the loop. is seperated.
  • the timing of reconfirmation for returning at the required timing differs greatly from person to person.
  • the system utilizes observable evaluation indicators such as the awake state and health status of individual drivers, including autonomic imbalance, and provides feedback to the driver continuously with merits and penalties. It is carried out in a form that works intuitively.
  • the system repeatedly presents to the driver appropriate leading risks, information on options for avoiding the risks, and near-future drawable information on the degree of risk impact if the risks are not avoided.
  • the driver is psychologically strengthened and learned about the early return to manual driving and the habit of performing follow-up observation necessary for the return, and the psychology of grasping the situation before reaching the transfer point is more reliably worked. Can be formed in memory.
  • the usage case will differ depending on the response (response) status to the information.
  • HCD In autonomous driving based on HCD, risk information that serves as a standard for human behavior judgment is added to the timely update information provided by the system, and a penalty is imposed depending on the response at the time of use, or a merit is obtained by a good response. That, the driver will experience it repeatedly over the long term. If the driver enjoys the merits of autonomous driving and becomes over-dependent, the risk that can be intuitively described for the use of the state can be realized by introducing the HCD according to the embodiment of the present disclosure. This allows drivers to rest assured that they will be involved in the return from aggressive autonomous driving to manual driving in order to take advantage of the appropriate and comfortable NDRA, and the system will constantly provide risk information. While confirming information during automatic driving, the benefits of using automatic driving will be utilized.
  • the HMI that promotes the driver's independent action which is created by the balance between the driver's merits of using NDRA and the penalties, is the control by the HCD, instead of such a compulsory confirmation request to the driver.
  • FIGS. 17A and 17B are flowcharts for explaining an operation example of the automatic operation level 4 according to the embodiment. Note that in FIGS. 17A and 17B, the reference numeral "G" indicates that the process shifts to the corresponding reference numerals in FIGS. 17A and 17B.
  • step S200 the automatic driving control unit 10112 acquires and holds various information such as the LDM initial data 80, the driver personal return characteristic dictionary 81, the RRR 82, and the vehicle dynamics characteristic 83. Further, the automatic operation control unit 10112 also acquires updated LDM information (# 1, # 2, %), Acquires updated diagnostic information, and acquires other updated information (N).
  • the automatic operation control unit 10112 identifies the initial ODD and approves the setting for the automatic operation based on the information acquired in the step S200.
  • the automatic driving control unit 10112 presents the itinerary to the driver and requests the driver to select a route or the like.
  • the automatic driving control unit 10112 requests the driver to select a route for whether or not NDRA is possible.
  • the driver starts driving the own vehicle.
  • the automatic driving control unit 10112 acquires each information described in step S200, and constantly updates the information accompanying the running after the start of the itinerary. Further, the automatic driving control unit 10112 visually displays the driving inhibition information at each automatic driving level including the arrival time (see FIGS. 8, 9A to 9C).
  • step S205 the automatic driving control unit 10112 determines whether or not the vehicle has entered the ODD section where the automatic driving by the automatic driving level 4 is approved.
  • step S205 the process returns to step S204.
  • step S205 the process shifts to step S206.
  • step S204 the same process is repeated from step S204 (not shown) when once exiting the section where automatic driving is possible and entering the section where it is determined that a new ODD is available.
  • step S206 the automatic driving control unit 10112 determines whether or not the driver has requested to switch the automatic driving mode.
  • step S206 determines that there is no such switching request (step S206, "No")
  • the process returns to step S204.
  • step S206 determines that the switching request is met (step S206, "Yes")
  • step S207 the automatic operation control unit 10112 shifts the process to step S207.
  • step S207 the automatic driving control unit 10112 determines the probability of the driver's ability to return to manual driving.
  • the automatic driving control unit 10112 has an advantage due to automatic driving (NDRA, etc.) when the driver is a good automatic driving user driver who positively performs a returning operation based on, for example, the driver's individual return characteristic dictionary 81. ) Is allowed to be used.
  • the automatic driving control unit 10112 prohibits or limits the use of the automatic driving function when the driver is prone to drug dependence or sleep disorder even if the deduction or penalty is small.
  • many drivers are self-learning to avoid violations in order to obtain the benefits of NDRA during autonomous driving.
  • the usage permitted for the driving route is not always the environment in which the use of automatic driving according to the automatic driving level 4 can be provided even if the use of automatic driving is permitted.
  • the determination process in step S207 is the determination of the use of automatic driving at the driver's automatic driving level 3 (Level 3). The operation and the like of the automatic operation level 3 according to the embodiment will be described later.
  • step S207, "OK" When the automatic driving control unit 10112 determines that the driver's ability to return to manual driving is promising (step S207, "OK"), the process shifts to the flowchart of FIG. 17B according to the reference numeral "G" in the figure. Let me. On the other hand, when the automatic operation control unit 10112 determines that the return capability is unlikely (step S207, "NG"), the automatic operation control unit 10112 shifts the process to step S208.
  • step S208 the automatic driving control unit 10112 presents the driver with a notice of disapproval of the use of automatic driving with a reason.
  • Reasons presented to the driver may be, for example, driver fatigue, drowsiness, a driver's penalty history in which the cumulative addition value of overdependence violations in the past history is equal to or higher than a predetermined value.
  • Drivers who want to get the benefits of autonomous driving can learn to improve their behavior by presenting a disapproval notice from the system with a reason, such as improvement learning and a limited number of excellent boost permission requests (described later). There is expected.
  • step S208 After the processing in step S208, the processing is returned to step S204.
  • the system loops the processes of steps S204 to S208 and continuously monitors the state of the driver and the like.
  • step S220 the automatic driving control unit 10112 is the latest after the start of the itinerary. Update the information. After entering the ODD section where the automatic driving of the automatic driving level 4 is permitted, as long as the conditions do not change, the driving can be continued as it is by using the automatic driving of the automatic driving level 4.
  • step S220 shows a state in which monitoring is performed in the steady state, that is, a loop process for updating the latest information accompanying traveling.
  • step S220 When some change in the situation along the route is detected in step S220 or the end point of the ODD is approached, the automatic operation control unit 10112 shifts the process to step S221.
  • step S221 the automatic driving control unit 10112 determines whether or not information related to the latest route, which is indispensable for continuous automatic driving driving, is updated.
  • step S221, “No” the automatic operation control unit 10112 shifts the process to step S226.
  • step S226 the automatic operation control unit 10112 starts executing a safe takeover sequence as scheduled due to the approaching end of the automatic operation section (NDRA use section). Then, the takeover sequence is executed.
  • the automatic driving control unit 10112 evaluates a good driver, for example, a driver who is faithful to the return request by the system, does not constantly neglect the return request, and confirms the status change during the itinerary. Add points to the value. Further, the automatic driving control unit 10112 permits the excellent driver to select the next automatic driving mode without going through complicated confirmation approval procedures such as multiple authentication. The excellent driver can also preferentially receive the usage guidance of the automatic driving of the automatic driving level 4. In this way, a good driver can receive various merits.
  • a good driver for example, a driver who is faithful to the return request by the system, does not constantly neglect the return request, and confirms the status change during the itinerary. Add points to the value. Further, the automatic driving control unit 10112 permits the excellent driver to select the next automatic driving mode without going through complicated confirmation approval procedures such as multiple authentication. The excellent driver can also preferentially receive the usage guidance of the automatic driving of the automatic driving level 4. In this way, a good driver can receive various merits.
  • the driver In order to realize HCD for the driver to take the best confirmation action, the driver has the "memory” necessary for making these confirmation judgments and judgments that cause accurate behaviors from the system. It is the process of capturing and is the "quality" of the information that the system provides to the HMI. For example, it works on the information such as when, what, what should be done and what kind of effect is caused, that is, the working memory, which is exemplified in FIG. 9C.
  • the driver's return behavior in the safe takeover sequence in step S226 is evaluated for its quality, acquired as return behavior data, and stored. This return behavior data affects the evaluation points for the driver.
  • step S221 determines in step S221 that the information is updated (step S221, "Yes")
  • step S22b determines in step S221, "Yes"
  • step S221 when it is determined that the information is updated (step S221, "Yes"), the allowable ODD condition at the time of entering the section of ODD is a sudden deterioration of the weather during traveling, a malfunction of the vehicle, or the like. , It is assumed that measures will be taken when an unexpected event such as a load collapse occurs. When the occurrence of such an unexpected event is found, it is necessary to take measures according to the grace period required to deal with the event.
  • the flowchart of FIG. 17B shows an example of a series of processes related to this measure applicable to the embodiment.
  • the quality of the driver's event coping behavior at the time of an abnormality is also learned by the driver through the driver's appropriate risk judgment behavior, and is an important factor for producing an appropriate behavior change for the driver.
  • step S222a the automatic driving control unit 10112 monitors the driver's condition including the response judgment to the notification recognition, obtains an estimated value of the delay time required for returning to the manual driving based on the monitoring result, and obtains an estimated value of the existing estimated value. To update. Further, in step S222b, the automatic driving control unit 10112 updates the RRR information for the road, and from this update, calculates the review of the usage allowance limit of the MRM.
  • step S223 the automatic operation control unit 10112 displays the review ODD calculation based on the information determined to be updated in step S221, the updated and acquired information in steps S222a and S222b, the self-diagnosis information, and the like. Further, the automatic driving control unit 10112 confirms the driver's response to this display.
  • the automatic driving control unit 10112 calculates the predicted arrival time T L4ODDEND until the end of the ODD section related to the automatic driving level 4 and the predicted time T MDR of the return delay to the manual driving. Then, in the next step S225, the automatic operation control unit 10112 determines whether or not the calculated predicted arrival time T L4ODDEND and the predicted time T MDR satisfy the relationship of [ TL4ODDEND > T MDR + ⁇ ].
  • the value ⁇ is the margin time to the point required to start taking over.
  • step S225 When the automatic operation control unit 10112 determines in step S225 that the relationship of [ TL4ODDEND > TMDR + ⁇ ] is not satisfied (step S225, “No”), the process shifts to step S226.
  • step S225 when the automatic operation control unit 10112 determines in step S225 that the relationship of [ TL4ODDEND > TMDR + ⁇ ] is satisfied (step S225, “Yes”), the process shifts to the next step S227.
  • step S227 the automatic driving control unit 10112 determines whether or not the driver has largely left the driving based on the monitoring result of the driver's condition.
  • the process returns to step S220. In this case, the driver has not deviated significantly from the driving and can expect a response to the notification from the system.
  • step S227 determines in step S227 that the driver has largely left the operation (step S227, "Yes"), the process shifts to step S228.
  • step S2208 the automatic operation control unit 10112 determines whether or not there is a section beyond which a high return success rate is required.
  • the process returns to step S220. In this case, it means that even if the own vehicle is suddenly stopped by, for example, MRM, the situation in which the influence on the surrounding vehicles and the like is extremely small continues for the period of the margin ⁇ in the future.
  • step S228, "Yes" the automatic operation control unit 10112 shifts the process to step S229.
  • step S229 the automatic operation control unit 10112 determines whether or not there is still a workaround such as a runaway slope or a waiting pool area on the way to the takeover start point.
  • a workaround such as a runaway slope or a waiting pool area on the way to the takeover start point.
  • step S229 determines that there is no workaround (step S229, "No")
  • the process shifts to step S230.
  • the own vehicle travels as it is, there is a high possibility that the evacuation means will be cut off and the MRM will be activated, and there is a risk of inducing traffic obstruction to the following vehicle or a rear-end collision.
  • step S230 the automatic driving control unit 10112 notifies the driver of the approach of the essential point for returning from the automatic driving to the manual driving, and detects the response by the driver to approve this notification.
  • step S231 the automatic operation control unit 10112 determines whether or not there is a remaining time until the takeover. When the automatic operation control unit 10112 determines that there is no remaining time (step S231, “No”), the automatic operation control unit 10112 shifts the processing to the sequence of MRM execution.
  • step S231, "Yes” the process shifts to step S232 and attempts to return to manual operation within the allowable time by the driver. do. In this case, a success rate higher than RRR cannot be expected.
  • step S233 the automatic operation control unit 10112 determines whether or not the takeover attempted in step S232 succeeded before the limit.
  • the automatic driving control unit 10112 determines that the transfer is successful (step S233, "Yes"), it is assumed that the use of one section of the entered automatic driving use is completed.
  • step S233, "No" the automatic operation control unit 10112 shifts the processing to the MRM execution sequence.
  • the driver's return behavior at the time of the transition of the MRM execution sequence from step S231 or step S233 and the transition from step S233 to the end of use of one section is acquired and saved as return behavior data. ..
  • This return behavior data affects the evaluation points for the driver.
  • each determination process in FIG. 17B for example, the determination process of steps S225 to S229 is shown to be performed as a sequential process in chronological order, but this is not limited to this example.
  • the processes of steps S225 to S229 are executed in parallel in chronological order to determine whether or not the driver can return, and at least one of the determinations of steps S225 to S229 cannot be expected to return.
  • the process may be directly transferred to the MRM execution sequence. You may fly.
  • Automatic driving level 3 is defined as a mode in which the driver can always respond to abnormal situations. Therefore, in order for the vehicle to drive safely without disturbing the social order at the automatic driving level 3, the driver can always quickly return to the manual driving while using the vehicle at the automatic driving level 3. It is necessary to pay attention to the condition of the driving road environment in advance and to prepare the posture and posture to return to manual driving. In other words, if the driver cannot expect these situations, it is no longer appropriate to use the vehicle at autonomous driving level 3. That is, in this case, considering the state of the driver, it is hard to say that the vehicle can be driven at the automatic driving level 3.
  • the ODD of the automatic operation level 3 handled in the definition of the automatic operation level 3 according to the embodiment is an operation design area that can be used after these conditions are satisfied.
  • the ODD of automatic driving level 3 corresponds to the automatic driving level 3 up to the range where the driver can be expected to deal with the situation after continuing to drive under the current state of the driver. It becomes the limit of the area.
  • the available ODDs of autonomous driving level 3 will leave the driver's attention and the continuous surrounding environment necessary for driving when the driver is withdrawn from long-term driving steering work that does not intervene in the driving. This will lead to a decline in the ability to collect information, and it will be difficult to take action to deal with an urgent transfer from automatic driving to manual driving.
  • the driver continuously collects the information necessary to perceive, recognize and judge the situation when he / she is responsible for driving.
  • the reason is that action judgment requires predictability in the near future associated with the selected action action, and in order to ensure the predictability in a more reliable state, the driver should use continuous manual driving.
  • the information collected here includes not only the behavior of the vehicle in front, but also the cargo loaded by the vehicle, the road conditions further ahead of the vehicle in front, the presence or absence of traffic congestion, and the manual warning of the section by road signs. It contains a lot of information that cannot be obtained instantaneously after notification of a request to return to driving.
  • the automatic driving level 3 is determined according to how long the driver's unique thinking characteristics and states are continuously grasping the surrounding environment and the own vehicle status close to the caution state of manual driving.
  • the ODD is set by limiting the driving in.
  • the ODD design of the vehicle is determined by taking into consideration the driver's current state and future prediction estimation in addition to the vehicle's environmental recognition performance, acquisition of prior information on the driving route, and the self-diagnosis result of the own vehicle.
  • the ODD that defines this automatic driving level 3 based on the HCD according to the embodiment is different from the existing ODD defined as a design based on the performance limit of the system, the maintenance status of the road, the prior information of the road, and the like. Become. That is, a section that can be expected to be dealt with even if the driver receives a request to take over from automatic driving to manual driving is determined from the driver's awakening state and the history of continuous grasp of the surrounding situation.
  • the range defined as a design from the system performance limit, road maintenance status, road advance information, etc. is the automatic driving level 3 that is allowed by the driver's current situation grasping and coping ability. It is a travelable area.
  • the extension of the section of automatic driving level 3 will be explained.
  • the driver is allowed to use the automatic driving level 3 for a short period of time, which can be expected to return in that state, and after grasping the situation, an extension application is made to the system, and the automatic driving level 3 is interrupted. It is assumed that it will be used in a similar manner.
  • FIG. 18A is a diagram schematically showing how a driver traveling on a road 70 with his / her own vehicle extends a section of automatic driving level 3.
  • the driver repeatedly executes short-term automatic driving by automatic driving level 3 by an extension application in a section where automatic driving of automatic driving level 3 (Level 3) can be used conditionally. It is shown. That is, the driver performs automatic driving according to the short-term automatic driving level 3, applies for an extension at the end of the period, and further performs automatic driving according to the short-term automatic driving level 3. In the example in the figure, the driver repeats this action.
  • the system allows the extension by a simple extension request by the driver, for example, by operating a button, the driver needs to be careful about the actual continuous safety confirmation and take over. Prerequisite information necessary for grasping the situation ahead is not taken into the working memory. Therefore, there is a possibility that the system may allow the extension while the prediction information is faded in the driver's working memory.
  • the system detects the behavior of confirmation such as pointing and calling by the driver to the front of the road together with the extension request by button operation or the like.
  • a "re-contract" agreement is reached between the system and the driver regarding the situation grasp and the responsibility as a result, and the driver is re-incorporated into the working memory with a sense of responsibility, that is, a memory of the need for return. It will be possible to make it.
  • the issues are whether or not the driver is in an appropriate return system, posture, and awake state during the use, and the driver is continuously. It depends on whether or not he has fulfilled his duty of due care. From an ergonomic point of view, there are no penalties for neglecting those original obligations, and if the driver is not careful just because he / she may be at risk, these obligations are not necessarily obeyed. do not have.
  • HMI perceptual feedback that influences these judgments acts as an HMI that indicates the risks of the near future based on HCD, and its psychological effect is on the driver's intuitive future, which cannot be obtained only by introducing stricter penalties such as legislation. It is reflected as an influence on the movement behavior.
  • HMI feedback information on risks in the brain is a variety of stimuli, such as risk information acting directly on the visual cortex, even when it is difficult to convey information in words. Through this, it is possible to evolve into a mechanism that avoids danger by lowering the probability of overlooking danger. All drivers have the mechanism of the brain and body to avoid risks in the near future without overlooking them, although there are individual differences.
  • FIG. 18B is an example flowchart showing the processing in the conditional automatic operation level 3 available section shown in FIG. 18A according to the embodiment.
  • the automatic driving control unit 10112 learns the return characteristics of the driver of the own vehicle based on the past information.
  • the driver is constantly monitored, and the driver's arousal level and attention level are indexed.
  • the driver's individual return characteristic dictionary 81 can include, for example, a driver's body model and a head model described later, and each part of the body, the head, when the driver returns from automatic driving to manual driving. It can contain information indicating an action including the time required for the eyes, etc.
  • the indexing in step S301 is, for example, an automatic driving level that is permissible from the driver's arousal state, fatigue accumulation state, and psychological burden level detected based on the driver's past recoverable attention duration.
  • the maximum time for using the automatic driving according to 3 is predicted, and this maximum time is used as an index of the driver's arousal level and attention level.
  • step S302 the automatic driving control unit 10112 determines whether or not the driver has applied for the start of automatic driving according to the automatic driving level 3.
  • step S302, "No" the process returns to step S301.
  • step S302, "Yes" the automatic operation control unit 10112 shifts the process to step S303.
  • step S303 the automatic operation control unit 10112 turns on the timer and starts measuring the time.
  • step S304 the automatic driving control unit 10112 monitors the driver, detects the wakefulness state and the state of reduced attention due to the continuous use of the automatic driving by the driver's automatic driving level 3, and also detects the driver's state. Monitor the standby status for returning to manual operation.
  • step S305 the automatic driving control unit 10112 determines whether the measurement start time in step S303 exceeds a predetermined time and the use of the automatic driving level 3 has timed out, or the driver's wakefulness has decreased. To judge. When the automatic driving control unit 10112 determines that the use of the automatic driving level 3 has not timed out and the driver's wakefulness has not deteriorated (step S305, "No"), the process is set to step S304. return.
  • step S305 determines that the use of the automatic driving level 3 has timed out or the driver's wakefulness has deteriorated (step S305, "Yes")
  • step S305 determines that the use of the automatic driving level 3 has timed out or the driver's wakefulness has deteriorated (step S305, "Yes")
  • step S305 determines that the use of the automatic driving level 3 has timed out or the driver's wakefulness has deteriorated (step S305, "Yes")
  • the process shifts to step S306. ..
  • step S306 to step S310 is the processing in the conditional automatic operation level 3 available section shown in FIG. 18A.
  • step S306 the automatic driving control unit 10112 monitors the driver and detects the notification of the driver's request to return to manual driving and the behavior of the driver.
  • the automatic driving control unit 10112 displays a warning to the driver and voluntarily early to manual driving when a decrease in arousal is detected even within the period in which the driver is presumed to be able to maintain awakening. Present a display prompting you to return.
  • the automatic driving control unit 10112 determines whether or not a normal return to manual driving by the driver has been detected.
  • step S307 When the automatic operation control unit 10112 determines that a normal return is detected (step S307, "Yes"), the process shifts to step S308.
  • step S308 the automatic driving control unit 10112 gives the driver excellent function utilization points, assuming that the driver has used the function of the automatic driving level 3 excellently. Further, the automatic driving control unit 10112 updates the characteristic learning dictionary (for example, the driver individual return characteristic dictionary 81) of the pre-detection evaluation index.
  • the characteristic learning dictionary for example, the driver individual return characteristic dictionary 81
  • step S307 When the automatic operation control unit 10112 determines that a normal return is not detected in step S307 (step S307, "No"), the process shifts to step S309.
  • step S309 the automatic driving control unit 10112 records a penalty for the driver for violating the function of the automatic driving level 3. Further, the automatic driving control unit 10112 updates the characteristic learning dictionary (for example, the driver individual return characteristic dictionary 81) of the pre-detection evaluation index.
  • the characteristic learning dictionary for example, the driver individual return characteristic dictionary 81
  • the automatic driving control unit 10112 causes the driver's awakening state, fatigue accumulation state, psychological burden degree, etc. predicted from the driver's past recoverable attention duration.
  • the maximum time allowed based on the automatic driving level 3 automatic driving is displayed and presented to the driver.
  • step S310 After the processing of step S308 or step S309 is completed, the use of automatic operation by the automatic operation level 3 (Level 3) in the individual times is terminated (step S310).
  • step S307 when the automatic driving control unit 10112 detects an extension application from the driver in step S307 to extend the usage time of the automatic driving of the automatic driving level 3 (step S307, "extension application”), the usage time. Is extended by a predetermined time, and the process is returned to step S306.
  • the extension application is made, for example, by the driver operating a predetermined operator provided in the input unit 10101.
  • the automatic driving control unit 10112 detects that the driver has made a forward confirmation such as pointing and calling for the operation, and then approves the application for extension of the section to be used individually.
  • FIG. 19A is an example flowchart showing the flow of automatic operation processing applicable to the embodiment, paying attention to ODD.
  • the automatic driving control unit 10112 uses the automatic driving according to the automatic driving level 3 on the target road in step S400.
  • the possible condition is determined by the determination process described later, and the availability section (ODD) of the automatic operation according to the automatic operation level 3 is set. That is, the automatic driving control unit 10112 includes road environment data 85 indicating the road environment included in the itinerary such as LDM as the vehicle travels, own vehicle information 86 regarding the vehicle driven by the driver, and further, the driver. Get the status of whether or not to return. Of these, at least the status of whether or not the driver can return is always acquired while the driver is using the automatic driving according to the automatic driving level 3.
  • the ODD is set from the current state based on the self-diagnosis result for perception, recognition, judgment, and control of the performance of the on-board equipment of the vehicle.
  • step S401 based on the latest self-diagnosis result of the vehicle, whether or not the automatic driving control unit 10112 can maintain the driving within the ODD section even if the vehicle continues on the course, that is, ODD. As a result, it is determined whether or not the conditions under which the continuous use of the automatic operation of the automatic operation level 3 is permitted are continuously maintained.
  • step S401 "Yes"
  • the process returns to step S400.
  • the automatic operation permitted by automatic operation level 3 can be continued to be used as long as the state continues.
  • the usage actually permitted to the automatic driving level 3 is limited to a specific time range, and when a driver's consciousness decline or the like is observed in the determination of step S401, the system automatically drives the driver. The use permission judgment for level 3 automatic driving will be cancelled.
  • step S401 determines in step S401 that the vehicle cannot maintain running in the ODD section when the vehicle continues on the course (step S401, "No"), the process shifts to step S402. Let me.
  • the automatic driving control unit 10112 will proceed outside the ODD section that can handle automatic driving if it continues on the course, or due to changes in the weather or a decrease in the driver's awakening state.
  • the ODD It is determined that the traveling cannot be maintained in the section (step S401, "No"), and the process is shifted to step S402.
  • step S402 the automatic driving control unit 10112 predicts the remaining time until the vehicle reaches the ODD end point based on the latest updated information such as LDM.
  • the automatic operation control unit 10112 can notify the driver of the remaining time until the arrival time at the predicted transfer completion point.
  • the automatic driving control unit 10112 explicitly indicates to the driver that the vehicle concerned is requested to return to the outside of the ODD, that is, from the automatic driving state to the manual driving state. At the same time, the automatic driving control unit 10112 causes sudden deceleration or sudden excessive steering of the driver in the surrounding vehicles toward the outside of the vehicle when the transfer to manual driving is not performed normally and smoothly. Disseminate information to notify the possibility of risk factors.
  • the automatic operation control unit 10112 records the state. This record serves to help prevent over-reliance on the driver's autonomous driving system. Repeated violations of autonomous driving by drivers and inappropriate use that deviates from ODD will be regulated depending on the local approval system. Even if the user (driver) of autonomous driving does not have a direct accident due to excessive dependence on autonomous driving, the penalties retroactively based on the recorded information act directly on the driver as a psychological risk. , It becomes a factor of direct behavior change for improvement in the driver.
  • step S404 the automatic operation control unit 10112 determines whether or not the margin (for example, time) required for taking over the manual operation is equal to or less than the limit by the end of the ODD section.
  • the margin for example, time
  • the process returns to step S400.
  • step S404 determines that the margin is equal to or less than the limit.
  • step S404 determines that the margin is equal to or less than the limit.
  • step S405 the automatic driving control unit 10112 presents a notification requesting the driver to take over to manual driving, and confirms the driver's response response to the notification.
  • the automatic driving control unit 10112 presents a warning regarding use outside the ODD where automatic driving is permitted inside and outside the vehicle, and records the progress state.
  • step S406 the automatic driving control unit 10112 determines whether or not the completion of the appropriate return action to the manual driving by the driver has been confirmed.
  • step S406, “Yes” the process is returned to step S400.
  • step S407 the automatic operation control unit 10112 executes the MRM and records the progress and the result of the execution of the MRM. Then, in step S408, the control of the vehicle is transferred to the MRM as an emergency response.
  • stepwise MRM execution is performed during a period in which safety can be guaranteed, instead of sudden braking by the MRM.
  • FIG. 19B is an example flowchart showing in more detail an example of the ODD setting process applicable to the embodiment according to step S400 in the flowchart of FIG. 19A described above.
  • the automatic driving control unit 10112 acquires the road environment static data 90 such as LDM, and if possible, the high freshness update LDM 140, and in step S420, for example, the conditions are set for each section included in the road environment static data 90. If it is arranged, it is determined whether or not the section can be used for automatic driving. When the automatic operation control unit 10112 determines that each section does not include a section in which automatic operation can be used even if the conditions are met (step S420, "No"), the process shifts to step S429.
  • step S429 the automatic driving control unit 10112 indicates to the driver in the next step S430 that the automatic driving cannot be used, assuming that there is no section in which the automatic driving can be used.
  • the automatic driving control unit 10112 may display a symbol of the limited support function, a required predicted time until a section where automatic driving can be used, and the like.
  • step S430 After the process of step S430, a series of processes according to the flowchart of FIG. 19B is completed, and the process is transferred to step S401 of FIG. 19A.
  • step S420 When the automatic operation control unit 10112 determines in step S420 that there is a section in which automatic operation becomes available (step S420, "Yes"), the process shifts to step S421.
  • step S421 for example, from each section included in the road environment static data 90, a section in which automatic driving becomes available when the conditions are met is extracted as an ODD.
  • the process proceeds to step S422, and at that time, the automatic driving control unit 10112 acquires the mounted device information 91, which is the information of the device mounted on the vehicle.
  • the mounted device information 91 includes information indicating a response limit by self-diagnosis that can be detected by the mounted device of the vehicle.
  • step S422 the automatic driving control unit 10112 determines, based on the mounted device information 91, whether or not there is a section in the section extracted in step S421 that the mounted device of the vehicle cannot handle.
  • the automatic driving control unit 10112 determines that all the sections extracted in step S421 are sections that cannot be dealt with by the on-board equipment of the vehicle (step S422, "all sections"), the process shifts to step S429.
  • step S422 When the automatic driving control unit 10112 determines in step S422 that there is no section that can be dealt with by the on-board equipment of the vehicle in the section extracted in step S421 or that it exists in a part of the section (step S422, "none or part”. Section "), the process is shifted to step S423.
  • step S423 the automatic operation control unit 10112 limits the ODD to the section that the on-board device can handle with respect to the section extracted in step S421.
  • step S424 the automatic driving control unit 10112 acquires the road correspondence availability information 92 indicating whether or not the corresponding road can be supported for automatic driving based on the weather information and the like.
  • step S424 the automatic driving control unit 10112 determines, based on the road compatibility information 92, whether or not there is a section in the section restricted in step S423 where the handling of the on-board equipment is restricted due to weather or the like.
  • the processing is performed in step S429. To migrate to.
  • step S424 When the automatic operation control unit 10112 determines in step S424 that there is no section in the section restricted in step S423 for which the handling of the on-board equipment is restricted due to weather or the like, or that it exists in a part of the section (step S424, "None". or a part of the section "), the process is shifted to step S425.
  • step S425 the automatic driving control unit 10112 imposes on the ODD the use of the ODD for events in which the handling of the on-board equipment is restricted due to the weather, such as reduced visibility, road surface freezing, and backlight.
  • the process proceeds to step S426, and at that time, the automatic driving control unit 10112 acquires the driver response availability information 93 indicating whether or not the driver can return from the automatic operation to the manual operation.
  • the driver response availability information 93 is information based on the driver's condition such as the degree of fatigue.
  • step S426 the automatic driving control unit 10112 determines whether or not the driver can deal with the return to manual driving as necessary, based on the driver support availability information 93.
  • step S426, “No” the process shifts to step S429.
  • step S426 When the automatic operation control unit 10112 determines in step S426 that the return to manual operation can be dealt with (step S426, "Yes"), the process shifts to step S427.
  • step S427 when the use of automatic driving is prohibited due to the state of the driver, the automatic driving control unit 10112 excludes it from the usage permission ODD of automatic driving. Examples of driver states where the use of autonomous driving is prohibited include wakefulness, poor health, and drinking alcohol.
  • the psychology of the driver who wants to continue driving with the support of automatic driving works because the wakefulness is lowered.
  • the driver will be repeatedly used for the support function, and as a result, the risk psychology will be lowered.
  • step S426, "No" requires the driver to develop a psychology that the automatic driving function cannot be used depending on the response. Further, the determination notification may be explicitly presented.
  • the automatic driving control unit 10112 displays a map of the ODD that permits the use of automatic driving, which is comprehensively judged based on each of the above-mentioned judgment results.
  • step S428 After the process of step S428, a series of processes according to the flowchart of FIG. 19B is completed, and the process is transferred to step S401 of FIG. 19A.
  • FIG. 20 is a schematic diagram for more specifically explaining an example of setting an ODD section applicable to the embodiment.
  • the chart (a) shows an example of an allowable section for automatic driving in an infrastructure, and assumes a predetermined section of a specific highway as an example.
  • the chart (b) shows an example of the average vehicle speed due to the traffic flow of the vehicle group in the section shown in the chart (a).
  • the average vehicle speed in the section from point U 0 to point U 1 is 90 [km / h].
  • the average vehicle speed from point U 1 is 60 [km / h].
  • the average vehicle speed is 60 [km / h] or more at point U 2 due to the elimination of traffic congestion.
  • chart (c) shows an example of a section within the performance limit of the equipment mounted on the target vehicle, which can be dealt with in a steady state during the daytime by judgment based on information acquired in advance.
  • chart (d) shows an example of a case where the ODD is out of the applicable section.
  • the conditions for using the automatic driving function are allowed only when there is a traffic jam of 60 [km / h] or less as stipulated by law.
  • the section on the map where the use of the automatic driving function is permitted is a certain section of the expressway as shown in the chart (a), for example, the section where the use of the automatic driving is actually permitted. Is limited to the section (points U 1 to U 2 in the example of FIG. 20) and the timing in which the average vehicle speed of the vehicle group drops to 60 [km / h] or less due to, for example, the occurrence of traffic congestion within the fixed section. ..
  • the section from the points U 0 to U 1 is not applicable to the ODD because the average vehicle speed due to the traffic flow is 90 [km / h] (ODD). Outside). Since the average vehicle speed is 60 [km / h] in the section between points U 1 and U 2 , ODD is applied (within ODD).
  • ODD is applied (within ODD).
  • the driver needs to return from the automatic operation to the manual operation during the period indicated by the diagonal line from the point U 11 . For example, when the poor visibility started from the point U 11 at the point U 12 is resolved, the ODD is applied and the manual operation can be shifted to the automatic operation.
  • the section to which the ODD is applied is the section within points U 1 to U 2 , and starts from U 12 which is the starting point of the handling limit of the onboard equipment. It is necessary to return from automatic operation to manual operation during the indicated period.
  • U 12 which is the starting point of the handling limit of the onboard equipment. It is necessary to return from automatic operation to manual operation during the indicated period.
  • the on-board equipment is within the handling limit. No, ODD is not applied.
  • MRM may be activated.
  • the ODD conditions change due to various causes such as the driving of the vehicle group, the weather, and the driver's condition, and the ODD application range changes accordingly. Changes can occur. Therefore, as described with reference to the flowcharts of FIGS. 19A and 19B, the actual ODD is determined by sequentially setting the conditions as the vehicle travels.
  • ODD ODD-ODD
  • control sequence for each automatic operation mode described in the present embodiment is a use case, and is not limited to these.
  • MRM serves as a fallback function in the event of a failed migration.
  • improper use of MRM in the social environment can often result in unnecessary rear collisions, traffic jams and other unwanted and unexpected consequences. Therefore, constant monitoring of the driver as described above is required.
  • the system is driver-specific in order to maximize the probability that the return will be successful and to minimize the probability that the driver will not be able to return to manual operation when the system requests the driver to return to manual operation. You must be able to make appropriate judgments about your ability.
  • Notifying the driver of the request for return to manual operation early means that there is time to return to the timing and it is not necessary to immediately start the return procedure. Also, the slow notification to the driver may increase the risk and fail to recover, and the cause of the migration failure is the delay in notification by the system. It will give the driver the opportunity to take responsibility for the system.
  • a person's behavioral psychology is selfish and selfish. Therefore, if the system cannot issue notifications and warnings at appropriate times, the driver does not have much sense of risk for notifications from the system when using autonomous driving. Therefore, when taking over the actual manual operation, the driver does not recognize the importance of starting the takeover until the takeover limit is reached, and the situation awareness (Situation Awareness) including the confirmation of the surrounding situation required before the start of the manual operation is lowered. It creates the risk of reaching the limit of handing over.
  • the driver prioritizes the return to the requested manual operation and the driver is often unable to complete the return to the manual operation in time before the system initiates the MRM. It is up to the driver's choice and intention to accept that the system may perform MRM.
  • the challenge is how to increase the driver's involvement and correctly recognize the state transitions required for the system to start taking over to manual operation.
  • the system requests the driver to return to manual operation, it is necessary for the driver to appropriately and voluntarily return to manual operation without delay.
  • the system provides the driver with control equivalent to the benefits of proper return behavior by the driver, and if the driver is late in the start of the return or does not take the return action promptly, or if there is a violation. If this is the case, it is effective to impose a penalty on the driver and encourage the driver to change his / her behavior.
  • a head-mounted optical topography observation device such as a head gear for observing cerebral blood flow
  • a cerebral blood flow table device such as fNIR (functional Near-Infrared Spectroscopy)
  • fNIR functional Near-Infrared Spectroscopy
  • fMRI functional Magnetic Resonance Imaging
  • the driver can enjoy the comfort of autonomous driving and not be content with overuse for autonomous driving by gaining the merit of executing appropriate recovery measures in response to the request from the system. It is expected that this will eliminate the harmful effects of the widespread introduction of autonomous driving functions in society.
  • DMS as a technique for quantifying the "Quality of Action" together with a plurality of assumed examples in which a driver-involved parameter group, which is a parameter group involved in the driver, can be obtained.
  • a driver-involved parameter group which is a parameter group involved in the driver.
  • QoA Quality of action
  • the following two targets are calculated and monitored by the DMS according to the embodiment.
  • the DMS according to the embodiment calculates the estimated required time allocation required for the driver to return to an appropriate and safe driving posture from the current posture. Monitoring targets for this include, but are not limited to, deviations resulting from head, hand, eye, and postural movements in the driver's conscious or unconscious non-driving movements. Further, the DMS according to the embodiment estimates a real-time deviation by the driver from the driving posture that the driver deems appropriate.
  • the DMS is the boundary of the road division of automatic driving level 3 or can be automatically driven by automatic driving level 4.
  • the driver can greatly enjoy the benefits of autonomous driving on certain road sections.
  • a road section is limited to a certain section of the road where traffic information is dynamically monitored and updated information can be provided in advance to vehicles approaching the road section.
  • the driver is not required to be fully responsive to immediate intervention requests requesting the driver to return to manual operation as a fallback.
  • the driver of a particular vehicle with the ability can enjoy autonomous driving at autonomous driving level 4.
  • the system may change the automatic driving level allowed for the road section from the automatic driving level 4 to the automatic driving level 3 or a lower automatic driving level.
  • the system will respond to the driver's request to return from autonomous driving to manual control before the vehicle reaches the boundary of the road section that allows the modified and updated autonomous driving level 4 autonomous driving. It is necessary to be able to predict the driver's readiness and the time it will take for the driver to return to the driving position so that the response is in time.
  • the sensitivity or threshold of the driver attention index required to warn the driver will also need to be adjusted according to environmental conditions (including risk factors or personalized controls).
  • automatic driving of automatic driving level 3 can be used, and a specific ODD to which automatic driving of automatic driving level 3 can be applied. It can be defined as a section. Further, in some sections of the road where the system can predict the scheduled driving operation task to continue the scheduled driving without the intervention of the driver, the automatic driving of the automatic driving level 4 is possible. The system can extend this section to a predictable range, and a specific ODD to which automatic driving of automatic driving level 4 can be applied is newly set.
  • the road section that specifies the ODD is dynamically specified regardless of which level of automatic driving is used. Since it is extremely difficult to control the external environment of the vehicle and the entire performance of the system functions of the vehicle system itself, the road section is constantly changing over time.
  • MRM is considered a safe fallback in current autonomous driving systems, but is used in certain situations (eg construction work, certain weather conditions, unexpected sudden behavior of nearby vehicles, etc.) When it is done, it is not suitable as a fallback and is not really practical. If the use of large-scale MRM cannot be minimized, various events that significantly reduce social activities such as traffic congestion, rear collisions, and obstacles on the road of vehicles will occur, depending on traffic conditions. The social impact will increase. From such a social point of view, it is strongly required in autonomous driving to find measures for drivers to at least not use MRM excessively as much as possible.
  • the driver needs to be able to return to manual operation in advance for an appropriate time that can be estimated and determined from the extreme point in time that triggers the use of the MRM.
  • the time required to return to manual operation differs depending on the initial state of the driver at the time of notification of the return request by the system. Alternatively, if the system senses that the level of attention required of the driver is not sufficient, it must make a decision to stop immediately, regardless of the level of autonomous driving.
  • the system that controls automatic driving uses the behavior characteristics peculiar to the driver who learned the behavior by collecting the behavior of the driver so that the driver can return to the manual driving in response to the request for returning to the manual driving. Then, a sign indicating a decrease in the driver's ability to return to manual driving is estimated, and the time required for returning to manual driving is estimated based on the detected situation.
  • the system decides whether to notify, request intervention, or warn, depending on the situation. Can be decided.
  • the system can continue the safe and calm driving task as appropriate when safe driving is required, without the driver relying on MRM. To be able to do so, you need to make sure that the driver maintains a certain level of readiness / attention.
  • the driver when the driver is notified of the request to return to manual driving, the driver does not panic in response to the request to return, and takes over the situation awareness (Situation Awareness) for action judgment necessary for near future prediction.
  • the analysis of the behavior secured by the start is also a judgment factor for the system to notify the return request.
  • the driver can always fall back, and even if that is not possible, the driver should resume manual driving in a timely manner before reaching the boundaries of the ODD.
  • the MRM function can completely stop the vehicle. Therefore, the system must be able to accurately detect the driver's attention level and readiness level when requesting intervention from the driver.
  • the ODD which regulates autonomous driving at a particular level of autonomous driving, is the driver's estimated ability to respond to intervention requests and the creditworthiness of the return collected based on the driver's past use of autonomous driving. Score history needs to be considered.
  • the system has sufficient minimum information to continue driving without driver intervention for the time being. If it can be predicted that the vehicle is currently traveling on a certain road section, the driver can be made to use the automatic driving by the automatic driving level 4 of the system. Alternatively, if the performance of the automatic operation level deteriorates due to an insect strike on the front view camera, and it is necessary to shift to the automatic operation of the automatic operation level 3 until the automatic cleaning is completely completed, or the automatic cleaning takes a long time. In such a case, it may be difficult for the driver to keep his / her attention and wait, and it is necessary to set again to completely return to the manual operation.
  • the autonomous driving system keeps track of the driver's performance appropriately from various perspectives. This is to ensure that the driver is still able to resume manual operation.
  • the system may cause a delay from the time when the driver is notified of the request for return from automatic driving to manual driving until the driver completes the transition without any trouble with a success rate exceeding the target value without switching to MRM mode. Can be predicted.
  • the system constantly monitors (a) the driver's mental readiness and (b) the estimated time it takes for the driver to return to the driving position. There is a need.
  • the system will uniformly adapt to the behavior of the driver over a period of time, for example, from the time obtained from the statistically evaluated behavioral evaluation of the new driver to the time-consuming behavior of the driver. Give the driver permission to use. That is, the system first learns the behavior characteristics of a specific driver in an offline manner based on the return observation evaluation data regarding the driver. The system utilizes the dictionary generated from the repetition to obtain the recognized driver's return characteristics by real-time analysis for the driver's behavior observation, and estimates the driver's awakening state each time.
  • Whether or not the driver needs to be prepared to maintain his or her attention depends on whether forecast information can be obtained from the infrastructure or whether the embedded system can automatically navigate and predict road safety. As mentioned above, the time required for recovery is used by the system for recovery notification, so that warning processing and fallback processing are determined in a timely manner, and some time is required for the system to start MRM. Always secured.
  • the system can be adapted to the online system by constantly monitoring the driver's behavior and parameterizing and storing the data.
  • Pre-notification behavior monitoring which monitors driver behavior in response to prior notification to the driver, captures trends and characteristics that correlate with different levels of behavioral quality (QoA) required for the process of returning to manual driving. can.
  • QoA behavioral quality
  • the operation related to the driver's individual behavioral characteristics is performed online using the latest learning dictionary without relying on the offline outside the vehicle, because the behavioral characteristics of the person are fatigue and physical condition at that time. This is because there are fluctuating factors, and if behavior analysis is performed uniformly depending on the dictionary generated by learning offline, offsets such as physical condition fluctuations cannot be corrected.
  • Predicting the driver's readiness will help achieve a high level of transition between different autonomous driving levels. This allows the driver to stay away from the driving task for extended periods of time, allowing the driver to be further away from the driving position, an existing method for detecting arousal and fatigue. No mere monitoring of the driver's facial features or eye condition is required. By monitoring the driver's movements with posture tracking, the system determines whether the driver can resume manual driving and accurately estimates the driving position and time required to return to a suitable driving position and posture for safe driving. Many parameters can be accumulated.
  • the DMS monitors the driver and drives the driver by considering the input information regarding the driver's current position, the driver's movement (movement), and the conditions outside the vehicle (ODD and weather conditions). Estimate the time required to return to position.
  • the driver needs some advantage in following the notification requesting that the manual operation be restarted with high accuracy, smoothly and promptly.
  • This feedback loop is greatly involved in the development of human natural movements when using the automatic driving function. Ratings such as multiple levels of penalties imposed by delayed message feedback and, conversely, high performance good drivers for responding to highly accurate driving transitions, are punished by drivers for poor return performance or autonomous driving. Educate drivers little by little to raise awareness of the benefits of promptly requesting advance notice or notification, not because they are deprived of usage opportunities.
  • the data collected by the DMS sensing system according to the embodiment is parameterized and converted into motion values corresponding to different types of motion / motion in the vehicle as a QoA index (quantification of return quality performance).
  • the intermediate analysis of the movement corresponding to the correction of the body movement to return to the driving position is given a high score in consideration of the speed of correction in addition to the evaluation of the initial state.
  • a foot return index that can be evaluated by the orientation vector of the foot movement. For example, if the initial position of the driver's foot is off the pedal while engaged in autonomous driving level 4, the time it takes for the driver to return to the natural position of normal driving is estimated. There is a need. When assessing speed, not only the physical speed, but also how quickly and accurately the driver can return the foot to the proper position. At this time, since the behavioral habit differs depending on the driver, the detected return procedure flow is provided to the learning function and combined with the delay time when the transfer is successful.
  • Posture return index that evaluates the body returning from the non-driving position of the backrest. (3) The position of the hand in three dimensions with respect to the steering is tracked, and how far the hand is from the steering is estimated. At this time, it can be estimated whether both hands or one hand is free or closed.
  • the advantage of converting the raw data acquired as described above into indicators that characterize the return performance according to the return stage of manual operation is that the system accurately tracks the return performance and the driver's behavior is actual.
  • the fact that they are categorized according to performance means that they can give immediate visual feedback to the driver. Note that this actual performance directly affects the permission level at which the system subsequently switches back to the automated driving level.
  • the driver's dynamic action in the return procedure is quantified by a quantification method and a parameterization method, and each time an RTI (operation change request) event occurs, the result of the return event is used to directly correlate with the driver return performance. ..
  • the self-learning method is not a method of learning by forcing the required movement, but the driver attempts a quick and good recovery process using the analysis type given as an example here. It is a method of learning unconsciously by repeating use due to rewards for things and disadvantages and penalties imposed for improper return processing of the driver.
  • the driver's condition varies greatly depending on the driver's ethnicity, age, personal habits, physique, gender, etc. Therefore, for example, eye condition monitoring needs to be changed according to the person.
  • the surveillance system should be customizable to the characteristics of the driver.
  • the driver should make adjustments and settings as the driver feels comfortable with personalization, such as setting the height and setting of the driver's seat position and adjusting the orientation of the rearview mirror.
  • the system observes the driver's behavior through repeated use, calculates the return time distribution by learning based on the data of the observation result, and gives advance notice necessary for achieving the target RRR. It is a process to decide the notification timing. That is, the customization process according to the embodiment is a process performed by the system after observing the usage of the driver, and is not set according to the driver's preference.
  • auxiliary notification functions such as advance notification and re-notification may be further added to notifications such as a return request.
  • the system must be able to learn and adjust (fit) new drivers.
  • the process of learning a part of the pipeline includes the process of acquiring reference data when the driver's information is first fetched into the system.
  • a general (average) model is determined based on a plurality of drivers and their behavior. At this time, the model may include a plurality of base models.
  • the driver's database is constructed, transformed, and adjusted for a new driver.
  • Driver models include head and face models with 3D data adapted to extract head and face features more accurately.
  • high-level driver model definitions are parameterized to a group of driver descriptors for body shape, physique, behavior, and the like.
  • the depth and luminance information generate a 3D model of the driver's head and face, which can be adapted to the driver as the depth and luminance information is input.
  • a driver's 3D mesh model can be obtained with a limited number of control points. This makes it possible to detect rigid transformation (head position) and facial gestures and eye conditions due to non-rigid deformation with high accuracy.
  • Head position and orientation alignment for whole body skeletal tracking plays an important supportive role in driver motion monitoring used to assess driver behavior with respect to expected behavior in known ODDs. Fulfill.
  • the driver is in a situation where it is necessary to dynamically change the expected ODD according to the weather, the condition of the in-vehicle device, other situations notified to the driver, and the driver's reaction to the notification.
  • the driver's "situational awareness” is dynamically that, for example, the manual driving must be restarted in a state different from the state agreed and approved by the driver before starting the automatic driving mode. Includes recognition that the vehicle is in a changed new state.
  • the system may also detect that the driver has received the notification, for example by pointing to the notification menu or destination on the information panel.
  • FIG. 21 is a functional block diagram of an example for explaining the function of the driver behavior evaluation unit 200 applicable to the DMS according to the embodiment.
  • the driver behavior evaluation unit 200 shown in FIG. 21 is included in an automatic driving system of a vehicle such as an automatic driving control unit 10112.
  • the driver behavior evaluation unit 200 includes a learning unit 201a and an evaluation unit 202.
  • the learning unit 201a learns and parameterizes the characteristics and actions of a specific driver, and stores the parameterized driver information in a database.
  • the evaluation unit 202 refers to the database based on the information obtained by monitoring the driver in the vehicle with various sensors, acquires the corresponding parameters, and obtains the quality of the driver's behavior based on the acquired parameters.
  • the learning unit 201a includes a driver information generation unit 2000, a parameter generation unit 2001, and a driver database (DB) 2002.
  • DB driver database
  • the driver information generation unit 2000 inputs static information and dynamic information about the driver.
  • the static information input to the driver information generation unit 2000 is, for example, an image of the driver's head, face, and body at a fixed reference position facing the direction of the in-vehicle camera with the in-vehicle camera. It is a captured image (called a reference image) obtained by the above.
  • the dynamic information input to the driver information generation unit 2000 is an captured image (referred to as an operation image) obtained by capturing an image of a driver performing a defined series of operations with the in-vehicle camera.
  • these reference images and motion images can be acquired as information having depth information.
  • the driver information generation unit 2000 extracts the feature amount of the head or face from each of the input reference image and the motion image, and personalizes the driver based on the extracted feature amount, and the individualized driver. Generate information. Further, the driver information generation unit 2000 generates an N-dimensional model of the driver based on these reference images and motion images. The driver information generation unit 2000 further adjusts each generated information to reduce the dimension of the information.
  • the parameter generation unit 2001 generates parameters based on each information generated by the driver information generation unit 2000, and parameterizes the driver.
  • Parameter generation unit The generated driver parameters are stored in the driver DB 2002.
  • the evaluation unit 202 includes a conforming unit 2003, a monitoring / extraction / conversion unit 2004, a preparation state evaluation unit 2005, and a buffer memory 2006.
  • the matching unit 2003 is input with an image captured by a camera in the vehicle of a driver who performs a series of random movements.
  • the driver who performs this series of random movements is, for example, a driver who is driving the vehicle.
  • This captured image is also passed to the driver information generation unit 2000.
  • the driver information generation unit 2000 further performs driver individualization and N-dimensional model generation using this captured image.
  • the parameter generation unit 2001 parameterizes the N-dimensional model generated using this captured image, and adds the generated parameters to the driver DB 2002.
  • the matching unit 2003 identifies the driver by performing face recognition with reference to the driver DB 2002 based on the 3D information generated from the input captured image. Further, the matching unit 2003 passes the fitted 3D model to the monitoring / extraction / conversion unit 2004 based on the 3D information.
  • the monitoring / extraction / conversion unit 2004 refers to the driver DB 2002 based on the 3D model passed from the conforming unit 2003, and extracts parameters from the 3D data.
  • the monitoring / extraction / conversion unit 2004 converts the extracted parameters into the format used by the preparation state evaluation unit 2005 and stores them in the buffer memory 2006.
  • the arrow on the right side of the buffer memory 2006 shows the transition of time inside the buffer memory 2006, and the lower end side in the figure shows the newer (latest stored) parameter.
  • the processing in the evaluation unit 202 is updated, for example, every predetermined time cycle T, and the parameters stored in the buffer memory 2006 are sequentially moved to an earlier time domain (upper side in the figure) for each time cycle T. ..
  • the buffer memory 2006 has a capacity for four cycles of the time cycle T, and when the capacity is filled by a new parameter input, for example, the first stored parameter is discarded.
  • Region 2006a schematically shows the parameters of the last, that is, the latest stored time period T.
  • the preparation state evaluation unit 2005 evaluates the preparation state of the driver based on the parameters stored in this area 2006a.
  • This preparatory state is, for example, a preparatory state for the driver's return operation from automatic driving to manual driving when the driving mode of the vehicle is switched from the automatic driving mode to the manual driving mode.
  • the evaluation value indicating this evaluation is added or subtracted for each driver and serves as an index of reward or penalty for the driver.
  • the learning unit 201a shown in FIG. 21 is configured in the system, that is, in the automatic operation control unit 10112, but this is not limited to this example. That is, the function of the learning unit 201a may be realized outside the system, that is, offline.
  • FIG. 22 is an example functional block diagram for explaining the function of the learning unit configured offline, which is applicable to the embodiment.
  • the learning unit 201b includes a 3D head model generation unit 2100, a face identification information extraction unit 2101, a body model generation unit 2102, a model expansion unit 2103, a parameter generation unit 2104, and a storage unit 2105. including.
  • the captured images captured by the in-vehicle camera of the driver looking at the direction of the in-vehicle camera are input to the 3D head model generation unit 2100 and the face identification information extraction unit 2101, respectively.
  • the 3D head model generation unit 210 generates a 3D model of the driver's head based on the input captured image.
  • the generated 3D model is passed to the model extension unit 2103.
  • the face recognition information extraction unit 2101 extracts face identification information for identifying the driver's face from the input captured image.
  • the face recognition information extraction unit 2101 extracts a feature amount from the input captured image to specify a face, and acquires face identification information based on the feature amount related to the specified face.
  • the acquired face recognition information is passed to the model extension unit 2103.
  • the body model generation unit 2102. Fixed driver's body sensing information is input to the body model generation unit 2102.
  • the body sensing information for example, an image captured by a camera of a driver having a fixed posture can be applied from a certain direction.
  • the body model generation unit 2102 generates a driver's body model (for example, a body model based on 3D information) based on the input body sensing information.
  • the generated body model is passed to the model extension 2103.
  • model expansion unit 2103 is input with an captured image acquired by capturing an image of a driver performing a specified series of operations with the in-vehicle camera and information indicating different environmental conditions.
  • the model expansion unit 2103 expands the driver's head and body model to an N-dimensional model based on each input information. Further, the model expansion unit 2103 personalizes and customizes the expanded N-dimensional model and passes it to the parameter generation unit 2104.
  • the parameter generation unit 2104 performs parameterization of the N-dimensional model passed from the model expansion unit 2103, and stores the generated parameters in the storage unit 2105.
  • the parameters stored in the storage unit 2105 can be used, for example, as the initial data of the driver DB 2002 shown in FIG.
  • FIG. 23A is a schematic diagram for schematically explaining the generation of the 3D head model applicable to the embodiment.
  • the 3D head model generation process 220 uses the information of a plurality of different types of drivers, and is a database of the head models of a specific driver. With reference to the DB 2200 and the general head model 2201, a meshed head model 2202 for the driver is generated.
  • the meshed head model 2202 generated by the 3D head model generation process 220 has 3D + 1D information.
  • the 3D information is three-dimensional information in a three-dimensional space, and the 1D information is time-dimensional information. That is, the meshed head model 2202 is a head model based on 3D information with time information added.
  • the chart (b) of FIG. 23A is a schematic diagram showing the meshed head model 2202 more specifically.
  • Model 2210 shows an example in which a 3D mesh is applied to a face image
  • model 2211 shows an example in which a face image is removed from the model 2210 to make only a 3D mesh.
  • 3D control points 2212a, 2212b, 2212c, ... Generate a 3D deformable head model that can be adapted to facial expressions and features.
  • FIG. 23B is a schematic diagram for schematically explaining the generation of a body model applicable to the embodiment.
  • the driver body model DB 2300 which is a database of a specific driver's body model
  • the driver body model DB 2300 which is a database of a specific driver's body model
  • the driver's body model 2302 is generated with reference to the general body model 2301.
  • the body model 2302 generated by the 3D body model generation process 230 has 3D + 1D information like the meshed head model 2202 described above. That is, the body model 2302 is a body model with time information added.
  • Model 2310 shows an example in which a skeletal model (skeleton) is used to determine 3D control points 2311a, 2311b, 2311c, ... ing.
  • the 3D control points 2311a, 2311b, 2311c, ... Generate a 3D deformable head model that can be adapted to different people and their body gestures and characteristics.
  • the model 2320 in the chart (b) of FIG. 23B schematically shows a state in which the driver is seated in the driver's seat of the vehicle.
  • the angle is ⁇
  • the driver's seat is in the reclining (non-driving position) state, and it can be determined that immediate return is difficult.
  • FIG. 24 is a schematic diagram for explaining a method for determining a driver's wakefulness, which is applicable to the embodiment.
  • the driver's face 261 is extracted from the captured image 260 captured by the in-vehicle camera, and the right eye 262R and the left eye 262L are further extracted from the extracted face 261. Further, the captured image 260 is predeterminedly adjusted by the driver adjustment process 251.
  • the feature amount is extracted by the feature extraction process 2500 by the user agnostic classification process 250, and the eye condition is classified by the eye condition classification process 2501. ..
  • various methods such as combination of HoG (Histograms of Oriented Gradients) and principal component analysis, detection of EAR (Eyes Aspect Ratio), measurement of corneal reflex point, and the like can be applied.
  • various classification methods such as SVM (Support Vector Machine), K-means method, and classification using a neural network can be applied to the eye condition classification process 2501.
  • the arousal degree of the driver is estimated by fusing the physical information acquired by the physical monitoring 2520 and the head information acquired by the head monitoring 2521.
  • FIG. 25 is an example flowchart showing a process for evaluating the quality of behavior according to an embodiment.
  • the automatic driving control unit 10112 performs personal authentication of the driver in step S500.
  • Personal authentication can be performed, for example, based on the driver's face image captured by the in-vehicle camera. Not limited to this, it may be performed based on biometric information that can be obtained from fingers or the like.
  • the automatic driving control unit 10112 acquires, for example, a statistical standard model 95 regarding the head and body (posture) of the human body stored in advance in the storage unit 10111, and the acquired statistical standard model 95 is used by the driver. Applies as a standard model of head and posture.
  • the automatic driving control unit 10112 estimates the state of the driver's head and the joint position of the body using the skeleton. In the next step S503, the automatic driving control unit 10112 uses the skeleton to estimate the position state of the lower body of the driver. In the next step S504, the automatic driving control unit 10112 estimates the driver's state by facial expressions using the captured image obtained by capturing the driver's face with the in-vehicle camera. More specifically, the automatic driving control unit 10112 estimates fixation, fatigue, emotions, etc. based on the facial expression of the driver.
  • the automatic driving control unit 10112 acquires the driver's self-awakening / return behavior learning data 96 and the driver's normal driving posture data 97, and starts monitoring the driver's activity state in step S505. do.
  • the automatic driving control unit 10112 monitors the activity state of the driver such as NDRA by this monitoring.
  • the driver's self-awakening / return behavior learning data 96 and the driver's normal driving posture data 97 are, for example, the driver. It can be obtained from the personal return characteristic dictionary 81.
  • steps S500 to S504 are the processes for the driver who does not have the self-awakening / return behavior learning data 96.
  • information such as a body model included in the driver's individual return characteristic dictionary 81 can be used instead of the statistical standard model 95.
  • the automatic operation control unit 10112 calculates the return notification timing for notifying the driver of the return from the automatic operation to the manual operation.
  • the automatic driving control unit 10112 can calculate the return notification timing based on, for example, LDM, information acquired in the driver's activity state monitoring started in step S505, and the like. Then, the automatic driving control unit 10112 gives various notifications such as a return request to the driver according to the calculated timing. This notification is made, for example, in the processing of the flowchart of FIG. 17B, and in particular in step S230.
  • the automatic operation control unit 10112 weights each evaluation item. That is, the automatic driving control unit 10112 is based on the driver's response to various notifications made in step S506, and based on the relationship with the monitoring result regarding the priority evaluation item according to the activity state of the driver such as NDRA. Weight the priority evaluation items.
  • the set of steps S508a and S508b, the set of steps S509a and S509b, ..., The set of steps S513a and S513b show specific examples of weighting to the evaluation items, respectively. Of these, the set of steps S508a and S508b has the highest importance, and the more to the right in the figure, the lower the importance, and the set of steps S513a and S513b has the lowest importance.
  • the automatic driving control unit 10112 tracks the position of the driver in the vehicle in step S508a. For example, in step S508a, the position where the driver leaves the driver's seat and moves is tracked. In step S508b, the automatic driving control unit 10112 compares the tracking result acquired in step S508a with the expected value for tracking by the driver, and obtains an evaluation value normalized by the expected value.
  • the expected value can be the parameter value when the driver is in perfect condition. That is, the expected value is the unique characteristic of the driver in the target item.
  • the automatic driving control unit 10112 evaluates the movement of the driver's foot in step S509a. This makes it possible to know, for example, the operating state of the accelerator pedal and the brake pedal by the driver.
  • the automatic driving control unit 10112 compares the evaluation value obtained in step S509a with the expected value for the movement of the foot in the driver, and normalizes the evaluation value with the expected value as the driver's unique characteristic. Ask.
  • the automatic driving control unit 10112 evaluates the posture and posture of the driver based on the body model of the driver in step S510a. This makes it possible to know, for example, whether or not the driver is in the reclining state of the driver's seat, and whether or not the driver is facing the steering.
  • the automatic driving control unit 10112 compares the evaluation value obtained in step S510a with the expected value as the driver's unique characteristics with respect to the posture and posture of the driver, and determines the evaluation value normalized by the expected value. Ask.
  • step S5102 the automatic driving control unit 10112 responds to various notifications such as a return request made in step S506 based on the driver's body model, especially the arms and fingers (“OK”].
  • the automatic driving control unit 10112 evaluates the evaluation value obtained in step S510a in step S510b and the expected value as the driver's unique characteristics for the arm and finger in the driver. Compare and find the evaluation value normalized by the expected value.
  • the automatic driving control unit 10112 evaluates the driver's facial expression based on the driver's facial expression model in step S511a.
  • the driver's head model can be applied. This makes it possible to estimate, for example, the driver's current emotions (normal, drowsy, irritated, angry, etc.).
  • the automatic driving control unit 10112 compares the evaluation value obtained in step S510a with the expected value as the driver's unique characteristic for the facial expression of the driver, and obtains the evaluation value normalized by the expected value. ..
  • the automatic driving control unit 10112 evaluates the details of the behavior of the driver's eyeball in step S512a. For example, as described with reference to FIG. 24, the automatic driving control unit 10112 performs eye condition classification processing 2501 on the right eye 262R and the left eye 262L extracted from the driver's face 261 and performs eyeballs such as PERCLOS and saccade. Behavior can be obtained. This makes it possible to estimate, for example, whether the driver is concentrated in the front of the driving direction or is in a mind wandering state. In step S512b, the automatic driving control unit 10112 compares the evaluation value obtained in step S512a with the expected value as the driver's unique characteristic for the eyeball behavior of the driver, and obtains the evaluation value normalized by the expected value. ..
  • the automatic operation control unit 10112 evaluates other items in step S513a.
  • the automatic operation control unit 10112 compares the evaluation value obtained in step S513a with the expected value for the other items, and obtains an evaluation value normalized by the expected value.
  • the automatic operation control unit 10112 needs to switch the notification to the driver performed in step S506 to an alarm in step S514 after processing each of the set of steps S508a and S508b to the set of steps S513a and 513b. To judge. That is, based on the normalized evaluation values obtained in each of the set of steps S508a and S508b to the set of steps S513a and 513b, it is said that the quality of the return operation of the driver is deteriorated due to the delay of the operation or the like. If so, escalate from notification to alert.
  • step S514 When the automatic operation control unit 10112 determines in step S514 that switching is necessary (step S514, "Yes"), the process shifts to step S516.
  • step S516 the automatic driving control unit 10112 issues an alarm urging the driver to return to manual driving. Further, the automatic driving control unit 10112 deducts the evaluation value of the driver and applies a penalty to the driver.
  • the automatic operation control unit 10112 may also start MRM depending on the situation.
  • the automatic operation control unit 10112 returns the process to step S506 after the process of step S516.
  • step S514 determines in step S514 that switching is unnecessary (step S514, "No")
  • step S515 the automatic operation control unit 10112 performs a comprehensive evaluation regarding whether or not to return to manual operation based on the normalized evaluation values in each of the set of steps S508a and S508b to the set of steps S513a and 513b.
  • the automatic operation control unit 10112 calculates the comprehensive evaluation value nt according to the following equation (2).
  • "Ev” indicates the evaluation value for each evaluation item normalized by the expected value as the driver's unique characteristic.
  • the evaluation value is, for example, 100%. It is subject to priority evaluation.
  • step S508a Although the position tracking in step S508a does not detect leaving the seat, a secondary task with an inappropriate posture for driving, such as the driver sitting in the driver's seat and rotating the direction of the driver's seat, is used. Execution may be detected. In this case, paying attention to the evaluation of the foot movement in step S509a, emphasis is placed on the evaluation of the return behavior such that the driver's foot can step on the pedal such as the accelerator pedal and the brake pedal, and weighting of, for example, 80% is performed. Further, the return behavior based on the lower body of the body model is evaluated by weighting, for example, 20%.
  • the return movement speed is calculated from the observation information dropped into the foot skeleton model, and it takes time for the posture and posture movement normally expected of the driver, or the expected movement is not performed. It can happen.
  • the evaluation value in the driver's normally successful return behavior is used by referring to the learning dictionary generated through repeated use based on the absolute observation value. Use the normalized evaluation value.
  • the evaluation by steps S508a and S508b and steps S509a and S509b is weighted, and the return behavior of the driver is observed.
  • the weight for steps S508a and S508b is set to 0%, and instead, the evaluation by steps S511a and S511b and the evaluation by steps S512a and S512b are added up. The weight is 100%. In this way, each evaluation value is weighted and the total evaluation value nt is obtained.
  • step S517 the automatic operation control unit 10112 determines whether or not the procedure for returning to the manual operation by the driver has been completed.
  • step S517 “No”
  • the process returns to step S506.
  • the priority point of monitoring shifts from the left to the right in the figure, that is, step S508a and The process shifts to the right one by one from the set of S508b, and the priority points are sequentially changed.
  • step S517 determines that the return procedure is completed in step S517 (step S517, "Yes")
  • the process shifts to step S518.
  • step S518 the automatic driving control unit 10112 calculates addition / subtraction points such as rewards and penalties for the driver based on the comprehensive evaluation value nt calculated in step S515.
  • Table 4 shows an example of QoA evaluation based on a driver-specific head model.
  • the "coefficient of determination / relevance coefficient” is a "weight” for the evaluation value of the item, and is a coefficient indicating the relevance of the item to QoA, as well as the QoA of the item. It is also the coefficient of determination used for the judgment of.
  • the target acquisition information is personal authentication and the extracted features and information are personal authentication information. And, it is the feature information of the face such as eyes, nose, and mouth.
  • the weight is set to 10%.
  • the desired acquisition information is the driver's duty of care fulfillment, confirmation implementation rate determination, forward carelessness factor, Inattentiveness, forward confirmation, operation confirmation of parallax designation, evaluation confirmation of confirmation operation to system notification instruction, etc.
  • the extracted feature amounts and information are, for example, driver's attention direction analysis, forward gaze, road sign confirmation, inattentiveness, side mirror line-of-sight movement, use of brought-in terminal, terminal browsing, navigation screen operation, and the like.
  • the weight is 25%.
  • the target acquired information is emotional evaluation.
  • emotional evaluation include aggressive driving psychology, calm driving psychology, and evaluation of the degree of immersion in NDRA by bringing in terminal devices (watching sports, watching movies, games, etc.).
  • the extracted features and information are the condition of the eyes and the condition of other facial parts.
  • the extracted features and information are the condition where the eyes are open, the eyelids are lower than usual, the eye opening speed is slowed down (sleepiness index), blinking, PERCLOS, fatigue due to eye movement, and sleepiness estimation. , And so on.
  • the extracted feature quantities and information include deficiency, fatigue estimation by facial expression analysis, emotion estimation, disease estimation such as seizures (open mouth situation, painful facial expression, etc.), calmness and calmness. Deposition psychology, aggressive driving psychology, a state where the situation is not grasped due to waking up, etc.
  • the weight is 25% regardless of whether the extracted feature amount and information are in the state of the eyes or the state of other facial parts.
  • Table 5 shows an example of QoA evaluation based on the driver's body model.
  • the target acquisition information is Indexing of behavioral evaluations that lead to violations of driving steering and duty of care, eating and drinking, reading, unacceptable behavior during driving (navigation operation, mail, searching for cigarettes, wallets, cameras, etc.), degree of hand blockage, etc.
  • the extracted features and information include whether or not the steering is touched, eating and drinking while talking, smoking, what to look for, operation of the mobile terminal, and so on.
  • the weight is said to be 15%.
  • the NDRA immersiveness evaluation of the behavior is extracted as a variable, and the confirmation motion evaluation such as pointing and calling such as road front confirmation is also used as a variable. Be extracted.
  • the target acquisition information is normal behavior, return transition behavior evaluation after return request, notification content confirmation operation after notification, and so on.
  • the return transition behavior evaluation includes a behavior quality evaluation that evaluates whether the driver has swiftly returned to the driver's seat and returned to the driving posture after the return notification from the movement analysis of the limbs.
  • the return request notification is designed to be issued at the required time due to the harmful effect of issuing it earlier than necessary, and the driver's behavior evaluation is incorporated as a return preparation from the advance notification sound that will be notified to the driver from now on.
  • the situation in front of the road may change as the itinerary progresses, such as the scenery, the situation of surrounding vehicles, and even the weather immediately after receiving the return request. be.
  • the target acquisition information also includes delays based on steady-state stable return and quick return quality evaluation by learning. Even if it is a fast movement, it is determined whether or not it is a hasty movement, and if it is determined to be a hasty movement, it is classified as a low quality return behavior. That is, if the start of the return is delayed and an attempt is made to recover in a hurry, the risk of impairing safety increases, so the purpose is to avoid such a rushed return.
  • the extracted features and information are the driving steering posture (whether driving steering is possible or not), and if it is outside the driving posture, the return delay prediction, etc.
  • the weight is set to 20%.
  • Table 6 shows an example of QoA evaluation based on the driver's foot movement evaluation and an example of QoA evaluation based on the detailed evaluation of eyeball behavior.
  • the extracted variable is the evaluation of the movement based on the skeleton model of the foot, and the target acquired information is whether or not the brake pedal and accelerator pedal can be operated immediately. If not, the time required for recovery is predicted. As for the time required for recovery, the delay time required from the initial state is estimated by learning.
  • the extracted feature amount and information are the occurrence of a posture change that takes time to return to the driving posture, such as moving away from the driving steering behavior, crossing the legs, rotating the driver's seat, and the like. The weight is said to be 15%.
  • the extracted variables are the expression evaluation of saccade, microsaccade, and fixation. These are extracted based on the evaluation of the coordinates of the eyeball behavior and the polar coordinates.
  • the target acquired information is whether or not the degree of arousal can be searched by visual information, whether or not the degree of attentiveness is high, and the like.
  • the extracted feature amount and information include the presence / absence of visual information search, the presence / absence of reference to visual information storage, the presence / absence of notification information confirmation, and the like.
  • the weight is an index of the degree of arousal depending on the presence or absence of the behavior of the information confirmation search, and is 0% for undetected eyeball behavior, 80% for continuous linear confirmation, and 100% for high-frequency confirmation by task response. ..
  • the extracted variables and the target acquired information are the same as described above, the extracted feature amount and information are different from the above, and the visual information search for the content of the notification information is performed.
  • the weights are also different from the above. In this case, the weight is 0% without response to the transfer point change notification or update notification, and 100% when the notification content is promptly notified after the notification and the cause is visually confirmed.
  • the driver is monitored by using the method described below.
  • the detected driver readiness and response are used to design the optimal driver system with the best response to warnings and interventions at automated driving levels 3 and 4.
  • (7) Obtain a 3D model of the driver's head or face, upper body, legs, arms, and hands, and adapt it to the conditions of a specific person and driver (for example, emotions, fatigue, illness, distraction, etc.). Let me.
  • (8) In order to estimate the driver's behavior with high accuracy, the movement of the entire body skeleton of the driver is tracked.
  • (9) Estimate driver attitudes and behaviors now and in the near future based on common driver behaviors, personalized general behaviors, and a series of behaviors in the near past in specific situations (such as ODD and environmental conditions). do.
  • a 3D information acquisition technique for acquiring luminance (or RGB) information and depth information is required.
  • a D-ToF (Direct-Time of Flight) camera can be applied.
  • 3D information acquisition and processing accurately identifies and recognizes a particular driver's condition (eg, wakefulness, distraction, lesions, etc.) and dynamically characterizes the driver's posture, body and body parts. Enables.
  • a 3D mesh model of the driver can be obtained with a limited number of control points. This makes it possible to perform rigid transformation (head position) and face gesture and eye condition monitoring by non-rigid deformation with high accuracy.
  • the arms, legs and hands can be aligned with high accuracy in the 3D domain using 3D information acquisition technology. This not only makes it possible to predict future driver behavior with higher accuracy, but also makes it possible to greatly simplify the acquisition of body postures and movements related to driver behavior.
  • the above-mentioned DMS that can be customized for each driver needs to be learned for each driver about the features extracted from the luminance information and depth information of the 3D sensing technology.
  • the following items can be considered as examples of the contents to be learned by the driver.
  • the position of the camera is a position where the entire body of the driver can be imaged. Further, it is more preferable to arrange the camera so that the occlusion is minimized with respect to the body of the driver who is the subject.
  • the field of view of the camera is preferably wide enough to simultaneously monitor different parts of the body and its surroundings (eg, passengers).
  • surveillance camera technology that can simultaneously acquire 3D information necessary for accurate 3D model positioning and 2D images or texture contents. That is, in order to detect the driver's behavior with high accuracy, 3D information that is important for reliably monitoring all body parts of the driver, and 2D images and textures that are important for extracting facial features. You need to be able to get the content.
  • the compatibility with noise variables is high because it is easy to detect the behavior of the driver with high accuracy. For example, it is conceivable to improve the robustness against fluctuating lighting conditions in combination with the multiple exposure method. It is also effective to arrange the camera so that the occlusion is minimized as described above in terms of compatibility with noise variables. In addition, learning different types of drivers (age, ethnicity, etc.) and their behavior is also effective.
  • the automatic driving level 3 and the automatic driving level 4 are automatically performed.
  • the system can evaluate and predict the driver's behavior when the system requires the driver to resume manual driving after automatic driving.
  • the system can appropriately determine the evaluation value of the personalized reward and penalty for the driver's movement based on the result obtained from this series of evaluation processes.
  • the driver will provide it as automatic driving support, which is the "automatic driving function under specific conditions" of automatic driving level 2. Even in the ODD state, if the risk remains extremely small in a stable road driving section, the feeling of using "conditional automatic driving" of automatic driving level 3 will be the use of this more advanced automatic driving level 2. In addition to having little difference from the sensation, it is also required to monitor the decrease in the alert state of the driver for preventive safety caused by the decrease in attention that occurs when using the automatic driving level 2.
  • the automatic driving function is a change in behavioral judgment psychology caused by a psychological sense of security that can occur by introducing these functions. It provides measures to reduce the attention assigned for safe steering behavior judgment required during existing manual driving due to excessive dependence on.
  • the system feeds back to the driver according to the conditions allowed by the driving conditions. More specifically, the influence of the driver's own behavior, how it is reflected on the behavioral result, one or more of visual, auditory, tactile, and odor. It is fed back to the driver.
  • This feedback gives the driver the influence of his or her own behavior as a direct or indirect reward or penalty through physical, psychological and institutional means, thereby giving the driver a behavioral psychology.
  • the present invention relates to a technique for promoting behavior change to prevent or reduce dependence on the above-mentioned automatic driving system through repeated use.
  • the driver may be overly dependent on the automatic driving function provided by the system through the use of automatic driving, and may not be able to expect the driver's manual driving response beyond the limit range that the system can provide the automatic driving function.
  • the system provides an emergency stop of the vehicle in the road section of the vehicle, for example, by MRM as a risk minimization process according to the necessity of the road environment which may be the key to social activities.
  • MRM a risk minimization process according to the necessity of the road environment which may be the key to social activities.
  • the behavioral psychology works correctly and the hierarchy according to the importance. It relates to a technology that can provide information presentation that enables objective risk judgment with a change in circumstances, that is, an intuitive sense of approaching time with the passage of time.
  • the automatic driving system according to the present disclosure is composed of the following series of technologies that provide a control method in line with human behavioral psychology while drawing out the advantages of the automatic driving function required by society from an ergonomic point of view. Will be done.
  • Driver's behavior quality evaluation technology ⁇ Driver's behavior evaluation result indexing technology ⁇ HMI that predicts risk judgment and its progress to be provided to the driver ⁇ HMI that provides non-monotonic risk information in chronological order by providing hierarchical risk-specific information to drivers ⁇ Visualization of future risks at the time of action judgment for the driver (future penalties for addition / subtraction display, feedback display of restrictions) Memory projection to working memory by HMI ⁇ Use of automatic driving such as ODD for the driver Intuitive and timely provision of tolerances
  • the autonomous driving system provides the driver with time-series risk fluctuations, risk importance, and options through HMI through these technologies, etc., so that the driver feels when using autonomous driving. It provides a function that enables the driver's behavior change and self-learning to maximize the merit on the risk balance.
  • the autonomous driving system according to the present disclosure has negative social impacts such as traffic congestion that cannot be directly felt and may be caused by excessive dependence on MRM when using autonomous driving, and as a result, a rear-end collision. Can be projected onto the driver with the appropriate HMI.
  • the automatic driving system according to the present disclosure can provide a control suitable for use for the purpose of incorporating human behavioral psychology and not hindering social activities. Other effects and methods of implementation that are obvious to those skilled in the art can be achieved.
  • the present technology can also have the following configurations.
  • (1) The acquisition unit that acquires the state of the driver of the vehicle, An automatic driving control unit that controls automatic driving to drive the vehicle autonomously, Equipped with The automatic operation control unit is Based on the state of the driver acquired by the acquisition unit, the return quality, which is the quality of action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver. Information processing equipment.
  • the automatic operation control unit is Control is performed to evacuate the vehicle according to the situation during the automatic driving of the vehicle, and the driver is monitored in order to return from the automatic driving to the manual driving before the evacuating driving.
  • the information processing apparatus according to (1) above.
  • the acquisition unit Obtaining the skeleton information and face information of the driver
  • the automatic operation control unit is The driver monitoring is performed based on the skeleton information and the face information of the driver.
  • the automatic operation control unit is The skeleton information and the face information acquired by the acquisition unit are parameterized, and the return quality is quantified based on the parameters generated by the parameterization.
  • the automatic operation control unit is The position of the driver in the vehicle is tracked based on the skeletal information, and the return quality is obtained based on the tracked position.
  • the automatic operation control unit is The movement of the driver's foot is detected based on the skeletal information, and the return quality is obtained based on the detected movement of the foot.
  • the information processing apparatus according to any one of (3) to (5).
  • the automatic operation control unit is The position and orientation of the driver's head are detected based on the skeleton information and the face information, and the return quality is obtained based on the detected position and orientation of the head.
  • the information processing apparatus according to any one of (3) to (6).
  • the automatic operation control unit is The behavior of the driver's eyeball is detected based on the facial information, and the return quality is obtained based on the detected behavior of the eyeball.
  • the information processing apparatus according to any one of (3) to (7).
  • the automatic operation control unit is The driver's wakefulness is estimated based on the behavior of the eyeball, and the return quality is obtained based on the estimated wakefulness.
  • the information processing apparatus according to (8) above.
  • the automatic operation control unit is The seated state of the driver in the driver's seat of the vehicle is detected based on the skeleton information, and the return quality is obtained based on the detected seated state.
  • the information processing apparatus according to any one of (3) to (9).
  • the automatic operation control unit is Based on the skeleton information, it is detected as the seated state whether the driver's seat is in the non-driving position state or the driving position state.
  • the information processing apparatus according to (10) above.
  • the automatic operation control unit is Based on the skeleton information, the response operation to the notification issued to the driver is detected, and the return quality is obtained based on the detected response operation.
  • the skeleton information and the face information each include time information.
  • the automatic operation control unit is The quantified return quality is weighted for each evaluation item for which the return quality is evaluated, and the return quality for each of the quantified and weighted evaluation items is added up to obtain the driver. To obtain the comprehensive evaluation value of the return quality of The information processing apparatus according to any one of (1) to (13).
  • the acquisition process to acquire the state of the driver of the vehicle and An automatic driving control process that controls automatic driving to drive the vehicle autonomously, Including The automatic operation control process is Based on the state of the driver acquired in the acquisition process, the return quality, which is the quality of the action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver. Information processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

This information processing device comprises an acquisition unit (101) that acquires the state of an operator of a vehicle and an automatic operation control unit (10112) that controls automatic operation that makes the vehicle travel autonomously. On the basis of the state of the operator as acquired by the acquisition unit, the automatic operation control unit finds a return quality that is the quality of behavior when the vehicle returns to manual operation by the operator from automatic operation. The automatic operation control unit quantifies the return quality found and thereby monitors the operator.

Description

情報処理装置、情報処理方法および情報処理プログラムInformation processing equipment, information processing methods and information processing programs
 本開示は、情報処理装置、情報処理方法および情報処理プログラムに関する。 This disclosure relates to information processing devices, information processing methods and information processing programs.
 近年では、車両制御システム(情報処理システム)が車両を制御する自動運転技術の開発が盛んに行われている。しかしながら、このような自動運転技術が普及した場合であっても、自律単独制御のみの自動運転により既存の手動運転と同等な走行速度で走行が可能となるまでには、技術的に課題がまだ多く残ると考えられている。そこで、自動運転を、例えば道路環境の整備や恒常的な道路環境の事前モニタリング情報が取得可能な走行区間に限ることで、それら事前のモニタリング情報を活用した協調型の自動運転を試みることが検討されている。 In recent years, the development of automatic driving technology in which a vehicle control system (information processing system) controls a vehicle has been actively carried out. However, even if such automatic driving technology becomes widespread, there are still technical issues before it becomes possible to drive at a running speed equivalent to that of existing manual driving by automatic driving with only autonomous independent control. It is believed that many will remain. Therefore, it is considered to try cooperative automatic driving that utilizes the advance monitoring information by limiting the automatic driving to, for example, the driving section where the road environment maintenance and the constant advance monitoring information of the road environment can be obtained. Has been done.
 その場合、実際の道路インフラの整備状況等により、当該車両制御システムによる自律的な自動運転制御が可能な道路区間である自動運転可能区間と、自動運転が許容されない道路区間である手動運転区間とが混在する状況が生じることが予想される。すなわち、当該車両制御システムによって完全に自律して連続的に自動運転走行を行う状況ばかりではなく、運転制御を、上述のような自動運転から、運転者が操舵等を行う手動運転に引き継がなくてはならない状況が生じ得る。 In that case, depending on the actual development status of the road infrastructure, etc., there are a section where autonomous driving is possible, which is a road section where autonomous driving control is possible by the vehicle control system, and a manual driving section, which is a road section where autonomous driving is not allowed. It is expected that a mixed situation will occur. That is, not only is the situation in which the vehicle control system completely autonomously and continuously performs automatic driving, but the driving control is not handed over from the above-mentioned automatic driving to manual driving in which the driver steers or the like. There can be situations where it shouldn't be.
 特許文献1には、この自動運転から手動運転への制御の引継ぎに関する技術が記載されている。 Patent Document 1 describes a technique relating to the transfer of control from automatic operation to manual operation.
特開2018-180594号公報Japanese Unexamined Patent Publication No. 2018-180594
 このような自動運転から手動運転への制御の引継ぎを、運転者側の手動運転に対する準備が不十分な状態で実行すると、後続車等に対する事故の誘発等の社会的弊害を引き起こしてしまうおそれがあった。 If the transfer of control from automatic driving to manual driving is executed in a state where the driver is not sufficiently prepared for manual driving, there is a risk of causing social adverse effects such as inducing an accident to the following vehicle. there were.
 本開示は、自動運転から手動運転への引継ぎを適切に実行可能な情報処理装置、情報処理方法および情報処理プログラムを提供することを目的とする。 The object of the present disclosure is to provide an information processing device, an information processing method, and an information processing program capable of appropriately performing a transfer from automatic operation to manual operation.
 本開示に係る情報処理装置は、車両の運転者の状態を取得する取得部と、車両を自律走行させる自動運転を制御する自動運転制御部と、を備え、自動運転制御部は、取得部に取得された運転者の状態に基づき、車両の走行が自動運転から運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた復帰品質を数値化することで、運転者に対する運転者監視を行う。 The information processing apparatus according to the present disclosure includes an acquisition unit for acquiring the state of the driver of the vehicle and an automatic driving control unit for controlling automatic driving for autonomous driving of the vehicle. Based on the acquired driver's condition, the return quality, which is the quality of action when the vehicle returns from automatic driving to manual driving by the driver's driving, is obtained, and the obtained return quality is quantified. Monitor the driver for the driver.
本開示の実施形態に適用可能な車両制御システムの概略的な機能の構成例を示すブロック図である。It is a block diagram which shows the structural example of the schematic function of the vehicle control system applicable to the embodiment of this disclosure. 実施形態に適用可能な自動運転制御部が構成される情報処理装置の一例の構成を示すブロック図である。It is a block diagram which shows the structure of an example of the information processing apparatus which comprises the automatic operation control part applicable to an embodiment. SAEの各自動運転レベルを、利用状態として利用者視点で見た場合について説明するための模式図である。It is a schematic diagram for demonstrating the case where each automatic operation level of SAE is seen from the user's point of view as a usage state. 自動運転レベル3の適用について概略的に説明するための模式図である。It is a schematic diagram for schematically explaining the application of the automatic operation level 3. 既存技術による自動運転から手動運転への引継ぎ処理を概略的に示す一例のフローチャートである。It is an example flowchart which outlines the transfer process from the automatic operation to the manual operation by the existing technology. 実施形態に係る自動運転から手動運転への引継ぎ処理を概略的に示す一例のフローチャートである。It is an example flowchart which schematically shows the transfer process from the automatic operation to the manual operation which concerns on embodiment. 実施形態に係る、旅程設定から自動運転モードに遷移するまでの流れを示す一例のフローチャートである。It is an example flowchart which shows the flow from the itinerary setting to the transition to the automatic operation mode which concerns on embodiment. 実施形態に係る、自動運転モードによる処理の流れを示す一例のフローチャートである。It is an example flowchart which shows the flow of the process by the automatic operation mode which concerns on embodiment. 実施形態に係る、自動運転レベル4による自動運転中に発生したイベントへの対応を示す一例のフローチャートである。It is an example flowchart which shows the correspondence to the event which occurred in the automatic operation by the automatic operation level 4 which concerns on embodiment. 実施形態に適用可能な旅程の俯瞰表示の例を概略的に示す模式図である。It is a schematic diagram schematically showing an example of the bird's-eye view display of the itinerary applicable to the embodiment. 実施形態に係る、各区間を色分けした俯瞰表示の例を示す模式図である。It is a schematic diagram which shows the example of the bird's-eye view display which color-coded each section which concerns on embodiment. 実施形態に係る、円環状に構成された俯瞰表示の例を示す模式図である。It is a schematic diagram which shows the example of the bird's-eye view display configured in an annular shape which concerns on embodiment. 実施形態に係る、道路情報を含む俯瞰表示の例を示す模式図である。It is a schematic diagram which shows the example of the bird's-eye view display including the road information which concerns on embodiment. 実施形態に係る自動運転制御部におけるHCDによる制御の機能を説明するための一例の機能ブロック図である。It is a functional block diagram of an example for demonstrating the function of the control by HCD in the automatic operation control part which concerns on embodiment. 実施形態に係る運転者復帰遅延評価部の機能を説明するための一例の機能ブロック図である。It is a functional block diagram of an example for demonstrating the function of the driver return delay evaluation unit which concerns on embodiment. 実施形態に適用可能な高精度更新LDMについて説明するための模式図である。It is a schematic diagram for demonstrating the high-precision update LDM applicable to an embodiment. 実施形態に適用可能な遠隔支援制御I/Fによる情報の取得について説明するための模式図である。It is a schematic diagram for demonstrating the acquisition of information by the remote support control I / F applicable to an embodiment. 実施形態に係る運転者行動変容達成レベル推定部の機能を説明するための一例の機能ブロック図である。It is a functional block diagram of an example for explaining the function of the driver behavior change achievement level estimation part which concerns on embodiment. 実施形態に適用可能な自動運転レベル4の基本的な構造について説明するための模式図である。It is a schematic diagram for demonstrating the basic structure of the automatic operation level 4 applicable to an embodiment. 実施形態に係る自動運転レベル4におけるODDについて説明するための模式図である。It is a schematic diagram for demonstrating the ODD in the automatic operation level 4 which concerns on embodiment. 実施形態に係る自動運転レベル4の運用例を説明するための一例のフローチャートである。It is an example flowchart for demonstrating the operation example of the automatic operation level 4 which concerns on embodiment. 実施形態に係る自動運転レベル4の運用例を説明するための一例のフローチャートである。It is an example flowchart for demonstrating the operation example of the automatic operation level 4 which concerns on embodiment. 自車にて道路7を走行中の運転者が、自動運転レベル3の区間を延長する様子を模式的に示す図である。It is a figure which shows typically the mode that the driver who is traveling on the road 7 by his own vehicle extends the section of the automatic driving level 3. 実施形態に係る、条件付き自動運転レベル3利用可能区間における処理を示す一例のフローチャートである。It is an example flowchart which shows the process in the conditional automatic operation level 3 available section which concerns on embodiment. 実施形態に適用可能な自動運転の処理の流れを、ODDに注目して示した一例のフローチャートである。It is an example flowchart which showed the flow of the process of automatic operation applicable to an embodiment paying attention to ODD. 実施形態に適用可能なODD設定処理の例をより詳細に示す一例のフローチャートである。It is an example flowchart which shows the example of the ODD setting process applicable to an embodiment in more detail. 実施形態に適用可能なODD区間の設定例をより具体的に説明するための模式図である。It is a schematic diagram for more concretely explaining the setting example of the ODD section applicable to an embodiment. 実施形態に係るDMSに適用可能な運転者行動評価部の機能を説明するための一例の機能ブロック図である。It is a functional block diagram of an example for demonstrating the function of the driver behavior evaluation part applicable to DMS which concerns on embodiment. 実施形態に適用可能な、オフラインで構成される学習部の機能を説明するための一例の機能ブロック図である。It is a functional block diagram of an example for demonstrating the function of the learning part configured offline which is applicable to an embodiment. 実施形態に適用可能な3D頭部モデルの生成について概略的に説明するための模式図である。It is a schematic diagram for schematically explaining the generation of the 3D head model applicable to an embodiment. 実施形態に適用可能な身体モデルの生成について概略的に説明するための模式図である。It is a schematic diagram for schematically explaining the generation of a body model applicable to an embodiment. 実施形態に適用可能な、運転者の覚醒状態を判定する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of determining the wakefulness of a driver applicable to an embodiment. 実施形態に係る行動の質の評価を行う処理を示す一例のフローチャートである。It is an example flowchart which shows the process which evaluates the quality of behavior which concerns on embodiment.
 以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following embodiments, the same parts are designated by the same reference numerals, so that duplicate description will be omitted.
 以下、本開示の実施形態について、下記の順序に従って説明する。
0.本開示の概要
1.本開示の実施形態に適用可能な構成
2.SAEによる自動運転のレベルの概略
3.本開示に係る実施形態
 3-1.実施形態の概要
 3-2.実施形態に係るHCD(Human Centered Design)について
  3-2-1.実施形態に係るHCDの概要
  3-2-2.自動運転におけるHCDの優位性について
   3-2-2-1.過剰依存について
   3-2-2-2.HCDについて
   3-2-2-3.運転者におけるベネフィットについて
   3-2-2-4.運転の際の運転者の作業記憶(ワーキングメモリ)、思考について
   3-2-2-5.システムと運転者との間の「契約」について
   3-2-2-6.自動運転レベル4の運用について
   3-2-2-7.HCDを採用した場合の効果
  3-2-3.実施形態に係るHCDの具体例
   3-2-3-1.実施形態に係るHCDを適用した自動運転の運用例
   3-2-3-2.運転者の復帰行動に対する評価
   3-2-3-3.実施形態に適用可能な旅程の俯瞰表示について
  3-2-4.実施形態に係るHCDの制御構成例
 3-3.実施形態に適用可能な自動運転レベル4について
  3-3-1.基本構造
  3-3-2.自動運転レベル4におけるODDについて
  3-3-3.実施形態に係る自動運転レベル4の運用例
 3-4.自動運転レベル3に対するHCDの適用例
 3-5.ODDの決定要素について
 3-6.実施形態に係るDMS(Driver Monitoring System)について
  3-6-1.実施形態に係るDMSの概要
  3-6-2.実施形態に係るDMSのより具体的な説明
  3-6-3.実施形態に係る行動の質(QoA)の定量化について
  3-6-4.実施形態に係るDMSに適用可能な構成
  3-6-5.実施形態に係る行動の質の評価の具体例
  3-6-6.実施形態に係るDMSまとめ
Hereinafter, embodiments of the present disclosure will be described in the following order.
0. Outline of the present disclosure 1. Configuration applicable to embodiments of the present disclosure 2. Outline of the level of automatic operation by SAE 3. Embodiment 3-1 according to the present disclosure. Outline of Embodiment 3-2. HCD (Human Centered Design) according to the embodiment 3-2-1. Outline of HCD according to the embodiment 3-2-2. Advantages of HCD in autonomous driving 3-2-2-1. Overdependence 3-2-2-2. About HCD 3-2-2-3. Benefits for drivers 3-2-2-4. About the driver's working memory and thinking during driving 3-2-2-5. About the "contract" between the system and the driver 3-2-2-6. Operation of automatic operation level 4 3-2-2-7. Effect of adopting HCD 3-2-3. Specific Examples of HCD According to the Embodiment 3-2-3-1. Operation example of automatic operation to which HCD according to the embodiment is applied 3-2-3-2. Evaluation of driver's return behavior 3-2-3-3. About the bird's-eye view display of the itinerary applicable to the embodiment 3-2-4. HCD control configuration example according to the embodiment 3-3. Regarding automatic operation level 4 applicable to the embodiment 3-3-1. Basic structure 3-3-2. About ODD at automatic operation level 4 3-3-3. Operation example of automatic operation level 4 according to the embodiment 3-4. Application example of HCD for automatic operation level 3 3-5. Determinants of ODD 3-6. About DMS (Driver Monitoring System) according to the Embodiment 3-6-1. Outline of DMS according to the embodiment 3-6-2. More specific description of DMS according to the embodiment 3-6-3. Quantification of behavioral quality (QoA) according to the embodiment 3-6-4. Configuration applicable to DMS according to the embodiment 3-6-5. Specific example of evaluation of quality of behavior according to an embodiment 3-6-6. DMS summary according to the embodiment
<<0.本開示の概要>>
 本開示は、車両の走行制御が、車両に自律走行させる自動運転から、車両の操舵等を運転者が行う手動運転へと引き継がれる場合の、車両の自動運転システムから運転者に対する手動運転への引継ぎを行う際の処理に関する。より具体的には、本開示では、車両から運転者への運転の引継ぎを潤滑に行うことが可能となるように、運転者の繰り返し利用を通じて自然と運転者の自己学習が進むように支援する仕組みを提供する。
<< 0. Summary of the present disclosure >>
In the present disclosure, when the driving control of a vehicle is taken over from the automatic driving in which the vehicle is autonomously driven to the manual driving in which the driver steers the vehicle, etc., the automatic driving system of the vehicle is changed to the manual driving for the driver. Regarding the processing when taking over. More specifically, in this disclosure, we support the self-learning of the driver naturally through the repeated use of the driver so that the transfer of driving from the vehicle to the driver can be performed smoothly. Provide a mechanism.
 すなわち、運転者にとって自動運転機能は、その利用開始の当初では、机上の説明や資料によって得られた知識情報に過ぎず、体感としては未知の機能であるために、心理的な不安から、利用経験の無いシステムにはまだ懐疑的であると考えられる。なお、人は、通常の行動判断として、何かを得るために一定のリスクを負って行動を起こす際に、そのリスクとのバランスを取るように選択判断を行う。 In other words, for the driver, the automatic driving function is only knowledge information obtained from desk explanations and materials at the beginning of its use, and it is an unknown function as a physical experience, so it is used due to psychological anxiety. It is still considered skeptical of inexperienced systems. In addition, as a normal action judgment, when a person takes a certain risk to take an action in order to obtain something, he / she makes a selection judgment so as to balance with the risk.
 そのため、自動運転を利用し始めた運転者は、自動運転の走行時に対する不安感がまだ残っている間は、そのリスク感覚の軽減のために、自動運転機能の利用中でも一定の注意意識が残り、自動運転機能の利用時で求められる必要な意識が完全には消失せずに保持される。 Therefore, drivers who have begun to use autonomous driving will remain aware of a certain level of caution even while using the autonomous driving function in order to reduce their sense of risk while they still have a sense of anxiety about driving. , The necessary consciousness required when using the automatic driving function is not completely lost and is maintained.
 ここで、自動運転システムの事象対処性能が次第に向上し、自動運転の繰り返しての利用でリスクと感じる不安が低減すると、自動運転の利用者は、自動運転に過剰依存することに対する不安が消滅するようになる。特に、近年導入が始まろうとしている高度な自動運転機能は、条件が整った状況下で仮に運転者が自動運転から手動運転が求められ運転者が手動運転への復帰が困難な状況下でも事故を回避して対処処理をし、事故が不可避な状況下でもその影響を最小化する機能を備えることが求められている。 Here, when the event coping performance of the autonomous driving system is gradually improved and the anxiety that the user feels as a risk due to repeated use of the autonomous driving is reduced, the anxiety that the user of the autonomous driving is over-dependent on the autonomous driving disappears. It will be like. In particular, the advanced automatic driving function, which is about to be introduced in recent years, is an accident even if the driver is required to manually drive from automatic driving and it is difficult for the driver to return to manual driving under the conditions. It is required to have a function to avoid the problem and take countermeasures and minimize the influence even in the situation where an accident is unavoidable.
 このような高度な機能を有する自動運転が実現された場合、運転者において、自動運転の過剰依存に対するリスクとしての不安が次第に消失し、手動運転に対する引継ぎ要請に対し、運転者の準備が不十分な状態な状況が発生するおそれがある。そのため、運転者が期限内に必要な対処を取ることが困難な場合に、影響リスクの最小化処理として、自動運転による緊急停車等が安全な対策として導入が検討されている。 When autonomous driving with such advanced functions is realized, the driver's anxiety as a risk of excessive dependence on autonomous driving gradually disappears, and the driver's preparation is insufficient for the request to take over for manual driving. There is a risk that a situation will occur. Therefore, when it is difficult for the driver to take necessary measures within the deadline, the introduction of emergency stop by automatic driving as a safe measure is being considered as a process for minimizing the risk of impact.
 しかしながら、車両が多くの道路環境で頻繁に減速や緊急停車を行うことになると、後続車の急減速、視界の悪い道路環境での停車、通行帯域が狭い橋などの狭い道路の封鎖といった、他の車両の走行を阻害するような状況が、運転者自身には直接的に影響が見えない形で発生し、その影響が社会活動の動脈となる道路環境の効率低下を招く可能性がある。つまり、既存の自動運転の制御の仕組みには、運転者がこれら社会的な影響を、自動運転機能を利用した際の行動判断にリスク感覚として反映する手段を有していなかった。 However, when a vehicle frequently decelerates or makes an emergency stop in many road environments, there are other factors such as sudden deceleration of the following vehicle, stop in a road environment with poor visibility, and blockage of narrow roads such as bridges with narrow traffic bands. A situation that hinders the driving of a vehicle may occur in a form in which the driver himself / herself cannot directly see the effect, and the effect may lead to a decrease in the efficiency of the road environment, which is an artery of social activity. In other words, the existing autonomous driving control mechanism did not have a means for the driver to reflect these social impacts as a sense of risk in the behavioral judgment when using the autonomous driving function.
 本開示では、運転者が、上述のような社会的な影響を、自動運転機能を利用した際の行動判断にリスク感覚として反映することができるような仕組みを提供することを目的とする。 The purpose of this disclosure is to provide a mechanism that allows the driver to reflect the above-mentioned social impact as a sense of risk in the behavioral judgment when using the automatic driving function.
<<1.本開示の実施形態に適用可能な構成>>
 先ず、本開示の実施形態に適用可能な構成について説明する。
<< 1. Configuration applicable to embodiments of the present disclosure >>
First, the configuration applicable to the embodiment of the present disclosure will be described.
 図1は、本開示の実施形態に適用可能な移動体制御システムの一例である車両制御システム10100の概略的な機能の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of a schematic function of a vehicle control system 10100, which is an example of a mobile control system applicable to the embodiment of the present disclosure.
 なお、以下、車両制御システム10100が設けられている車両を他の車両と区別する場合、自車または自車両と称する。 Hereinafter, when a vehicle provided with the vehicle control system 10100 is distinguished from other vehicles, it is referred to as an own vehicle or an own vehicle.
 車両制御システム10100は、入力部10101と、データ取得部10102と、通信部10103と、車内機器10104と、出力制御部10105と、出力部10106と、駆動系制御部10107と、駆動系システム10108と、ボディ系制御部10109と、ボディ系システム10110と、記憶部10111と、自動運転制御部10112と、を備える。 The vehicle control system 10100 includes an input unit 10101, a data acquisition unit 10102, a communication unit 10103, an in-vehicle device 10104, an output control unit 10105, an output unit 10106, a drive system control unit 10107, and a drive system system 10108. , A body system control unit 10109, a body system system 10110, a storage unit 10111, and an automatic operation control unit 10112.
 これらのうち、入力部10101、データ取得部10102、通信部10103、出力制御部10105、駆動系制御部10107、ボディ系制御部10109、記憶部10111および自動運転制御部10112は、通信ネットワーク10121を介して、相互に接続されている。通信ネットワーク10121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、または、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム10100の各部は、通信ネットワーク10121を介さずに、直接接続される場合もある。 Of these, the input unit 10101, the data acquisition unit 10102, the communication unit 10103, the output control unit 10105, the drive system control unit 10107, the body system control unit 10109, the storage unit 10111, and the automatic operation control unit 10112 are via the communication network 10121. And are interconnected. The communication network 10121 is, for example, from an in-vehicle communication network or bus compliant with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 10100 may be directly connected without going through the communication network 10121.
 なお、以下、車両制御システム10100の各部が、通信ネットワーク10121を介して通信を行う場合、通信ネットワーク10121の記載を省略するものとする。例えば、入力部10101と自動運転制御部10112が、通信ネットワーク10121を介して通信を行う場合、単に入力部10101と自動運転制御部10112が通信を行うと記載する。 Hereinafter, when each part of the vehicle control system 10100 communicates via the communication network 10121, the description of the communication network 10121 shall be omitted. For example, when the input unit 10101 and the automatic operation control unit 10112 communicate with each other via the communication network 10121, it is described that the input unit 10101 and the automatic operation control unit 10112 simply communicate with each other.
 入力部10101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部10101は、タッチパネル、ボタン、スイッチ、および、レバー等の操作デバイスと、マイクロホンやカメラ等、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等と、を備える。また、入力部10101は、例えば、赤外線若しくはその他の電波を利用したリモートコントロール装置、あるいは、車両制御システム10100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部10101は、搭乗者(例えば運転者)により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム10100の各部に供給する。 The input unit 10101 is provided with a device used by the passenger to input various data, instructions, and the like. For example, the input unit 10101 includes an operation device such as a touch panel, a button, a switch, and a lever, and an operation device such as a microphone and a camera, which can be input by a method other than manual operation by voice or gesture. Further, the input unit 10101 may be, for example, a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 10100. The input unit 10101 generates an input signal based on data, instructions, and the like input by the passenger (for example, the driver) and supplies the input signal to each unit of the vehicle control system 10100.
 データ取得部10102は、車両制御システム10100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム10100の各部に供給する。 The data acquisition unit 10102 includes various sensors for acquiring data used for processing of the vehicle control system 10100, and supplies the acquired data to each unit of the vehicle control system 10100.
 例えば、データ取得部10102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部10102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、および、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。 For example, the data acquisition unit 10102 includes various sensors for detecting the state of the own vehicle and the like. Specifically, for example, the data acquisition unit 10102 includes a gyro sensor, an acceleration sensor, an inertial measurement unit (IMU), an accelerator pedal operation amount, a brake pedal operation amount, a steering wheel steering angle, an engine speed, and the like. It is equipped with a sensor or the like for detecting the rotation speed of the motor, the rotation speed of the wheels, or the like.
 また、例えば、データ取得部10102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部10102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、および、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部10102は、天候または気象等を検出するための環境センサ、および、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。 Further, for example, the data acquisition unit 10102 is provided with various sensors for detecting information outside the own vehicle. Specifically, for example, the data acquisition unit 10102 includes an image pickup device such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. Further, for example, the data acquisition unit 10102 includes an environment sensor for detecting the weather or the weather, and a surrounding information detection sensor for detecting an object around the own vehicle. The environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like. Ambient information detection sensors include, for example, ultrasonic sensors, radars, LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing), sonar, and the like.
 さらに、例えば、データ取得部10102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部10102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。 Further, for example, the data acquisition unit 10102 is provided with various sensors for detecting the current position of the own vehicle. Specifically, for example, the data acquisition unit 10102 includes a GNSS receiver or the like that receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite.
 また、例えば、データ取得部10102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部10102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、および、車室内の音声を集音するマイクロホン等を備える。この場合、撮像装置は、運転者の頭部正面と、上半身、腰部および下半身と、足元とを撮像可能であると好ましい。それぞれの部位を撮像するように複数の撮像装置を設けることもできる。生体センサは、例えば、座面またはステアリングホイール等に設けられ、座席に座っている搭乗者またはステアリングホイールを握っている運転者の生体情報を検出する。 Further, for example, the data acquisition unit 10102 is provided with various sensors for detecting information in the vehicle. Specifically, for example, the data acquisition unit 10102 includes an image pickup device that captures an image of the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like. In this case, it is preferable that the image pickup apparatus can image the front surface of the driver's head, the upper body, the lower back and the lower body, and the feet. It is also possible to provide a plurality of image pickup devices so as to image each part. The biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
 通信部10103は、車内機器10104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム10100の各部から供給されるデータを送信したり、受信したデータを車両制御システム10100の各部に供給したりする。なお、通信部10103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部10103が、複数の種類の通信プロトコルをサポートすることも可能である。 The communication unit 10103 communicates with the in-vehicle device 10104 and various devices, servers, base stations, etc. outside the vehicle, transmits data supplied from each unit of the vehicle control system 10100, and uses the received data as the vehicle control system. It is supplied to each part of 10100. The communication protocol supported by the communication unit 10103 is not particularly limited, and the communication unit 10103 can also support a plurality of types of communication protocols.
 例えば、通信部10103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、または、WUSB(Wireless USB)等により、車内機器10104と無線通信を行う。また、例えば、通信部10103は、図示しない接続端子(および、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、または、MHL(Mobile High-definition Link)等により、車内機器10104と有線通信を行う。 For example, the communication unit 10103 wirelessly communicates with the in-vehicle device 10104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Further, for example, the communication unit 10103 may be connected to a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), or MHL (registered trademark) via a connection terminal (and a cable if necessary) (not shown). Wired communication is performed with the in-vehicle device 10104 by Mobile High-definition Link) or the like.
 さらに、例えば、通信部10103は、基地局またはアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワークまたは事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバまたは制御サーバ)との通信を行う。また、例えば、通信部10103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、または、MTC(Machine Type Communication)端末との通信を行う。さらに、例えば、通信部10103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、自車と家との間(Vehicle to Home)の通信、および、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部10103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制または所要時間等の情報を取得する。 Further, for example, the communication unit 10103 with a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point. Communicate. Further, for example, the communication unit 10103 uses P2P (Peer To Peer) technology to communicate with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) existing in the vicinity of the own vehicle. Further, for example, the communication unit 10103 performs vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-home (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Home) communication. V2X communication such as Vehicle to Peer-to-Pedestrian) communication. For example, the communication unit 10103 is provided with a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and has a current position. Obtain information such as traffic congestion, traffic restrictions, or required time.
 車内機器10104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、および、任意の目的地までの経路探索を行うナビゲーション装置等を含む。 The in-vehicle device 10104 includes, for example, a mobile device or a wearable device owned by a passenger, an information device carried in or attached to the own vehicle, a navigation device for searching a route to an arbitrary destination, and the like.
 出力制御部10105は、自車の搭乗者または車外に対する各種の情報の出力を制御する。例えば、出力制御部10105は、視覚情報(例えば、画像データ)および聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部10106に供給することにより、出力部10106からの視覚情報および聴覚情報の出力を制御する。具体的には、例えば、出力制御部10105は、データ取得部10102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像またはパノラマ画像等を生成し、生成した画像を含む出力信号を出力部10106に供給する。また、例えば、出力制御部10105は、衝突、接触、危険地帯への進入等の危険に対する警告音または警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部10106に供給する。 The output control unit 10105 controls the output of various information to the passengers of the own vehicle or the outside of the vehicle. For example, the output control unit 10105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data) and supplies it to the output unit 10106 to output the output unit. It controls the output of visual and auditory information from 10106. Specifically, for example, the output control unit 10105 synthesizes image data captured by different image pickup devices of the data acquisition unit 10102 to generate a bird's-eye view image, a panoramic image, or the like, and outputs a signal including the generated image. It is supplied to the output unit 10106. Further, for example, the output control unit 10105 generates voice data including a warning sound or a warning message for dangers such as collision, contact, and entry into a danger zone, and outputs an output signal including the generated voice data to the output unit 10106. Supply.
 出力部10106は、自車の搭乗者または車外に対して、視覚情報または聴覚情報を出力することが可能な装置を備える。例えば、出力部10106は、表示装置、インストルメントパネル、HUD(Head Up Display)、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部10106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。 The output unit 10106 is provided with a device capable of outputting visual information or auditory information to the passengers of the own vehicle or the outside of the vehicle. For example, the output unit 10106 includes a display device, an instrument panel, a HUD (Head Up Display), an audio speaker, headphones, a wearable device such as a spectacle-type display worn by a passenger, a projector, a lamp, and the like. The display device included in the output unit 10106 displays visual information in the driver's field of view, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to the device having a normal display. It may be a display device.
 駆動系制御部10107は、各種の制御信号を生成し、駆動系システム10108に供給することにより、駆動系システム10108の制御を行う。また、駆動系制御部10107は、必要に応じて、駆動系システム10108以外の各部に制御信号を供給し、駆動系システム10108の制御状態の通知等を行う。 The drive system control unit 10107 controls the drive system system 10108 by generating various control signals and supplying them to the drive system system 10108. Further, the drive system control unit 10107 supplies control signals to each unit other than the drive system system 10108 as necessary, and notifies the control state of the drive system system 10108.
 駆動系システム10108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム10108は、内燃機関または駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。 The drive system system 10108 includes various devices related to the drive system of the own vehicle. For example, the drive system system 10108 includes a drive force generator for generating a drive force of an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle, and the like. It is equipped with a braking device that generates braking force, ABS (Antilock Brake System), ESC (Electronic Stability Control), and an electric power steering device.
 ボディ系制御部10109は、各種の制御信号を生成し、ボディ系システム10110に供給することにより、ボディ系システム10110の制御を行う。また、ボディ系制御部10109は、必要に応じて、ボディ系システム10110以外の各部に制御信号を供給し、ボディ系システム10110の制御状態の通知等を行う。 The body system control unit 10109 controls the body system system 10110 by generating various control signals and supplying them to the body system system 10110. Further, the body system control unit 10109 supplies a control signal to each unit other than the body system 10110 as necessary, and notifies the control state of the body system 10110 and the like.
 ボディ系システム10110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム10110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、および、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ)等を備える。 The body system 10110 is equipped with various body devices equipped on the vehicle body. For example, the body system 10110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, headlamps, back lamps, brake lamps, winkers, fog lamps) and the like. To prepare for.
 記憶部10111は、データを記憶する記憶媒体と、当該記憶媒体に対するデータの読み書きを制御するコントローラとを含む。記憶部10111に含まれる記憶媒体としては、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、および、光磁気記憶デバイスのうち1以上を適用可能である。記憶部10111は、車両制御システム10100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部10111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、および、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。 The storage unit 10111 includes a storage medium for storing data and a controller for controlling reading and writing of data to the storage medium. The storage medium included in the storage unit 10111 includes, for example, a magnetic storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, and an optical device. One or more of the magnetic storage devices can be applied. The storage unit 10111 stores various programs, data, and the like used by each unit of the vehicle control system 10100. For example, the storage unit 10111 has map data such as a three-dimensional high-precision map such as a dynamic map, a global map which is less accurate than the high-precision map and covers a wide area, and a local map including information around the own vehicle. Remember.
 なお、記憶部10111に記憶されるマップの一つに、ローカルダイナミックマップ(以下、LDM)がある。LDMは、概念的には、扱うデータを、変化の速さに応じて、静的データ(タイプ1)、準静的データ(タイプ2)、準動的データ(タイプ3)および動的データ(タイプ4)の4つの階層からなるものとしている。 Note that one of the maps stored in the storage unit 10111 is a local dynamic map (hereinafter, LDM). Conceptually, the LDM treats the data to be handled as static data (type 1), quasi-static data (type 2), quasi-dynamic data (type 3), and dynamic data (type 3), depending on the speed of change. It consists of four layers of type 4).
 図1において、自動運転制御部10112は、検出部10131と、自己位置推定部10132と、状況分析部10133と、計画部10134と、動作制御部10135と、を備える。これら検出部10131、自己位置推定部10132、状況分析部10133、計画部10134および動作制御部10135は、CPU(Central Processing Unit)上で所定のプログラムが動作することで実現される。これに限らず、これら検出部10131、自己位置推定部10132、状況分析部10133、計画部10134および動作制御部10135の一部または全部を、互いに協働して動作するハードウェア回路により実現することも可能である。 In FIG. 1, the automatic operation control unit 10112 includes a detection unit 10131, a self-position estimation unit 10132, a situation analysis unit 10133, a planning unit 10134, and an operation control unit 10135. The detection unit 10131, the self-position estimation unit 10132, the situation analysis unit 10133, the planning unit 10134, and the operation control unit 10135 are realized by operating a predetermined program on the CPU (Central Processing Unit). Not limited to this, a part or all of the detection unit 10131, the self-position estimation unit 10132, the situation analysis unit 10133, the planning unit 10134, and the operation control unit 10135 may be realized by a hardware circuit that operates in cooperation with each other. Is also possible.
 自動運転制御部10112は、自律走行または運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部10112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、または、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部10112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。 The automatic driving control unit 10112 controls automatic driving such as autonomous driving or driving support. Specifically, for example, the automatic driving control unit 10112 issues collision avoidance or impact mitigation of the own vehicle, follow-up running based on the inter-vehicle distance, vehicle speed maintenance running, collision warning of the own vehicle, lane deviation warning of the own vehicle, and the like. Collision control is performed for the purpose of realizing the functions of ADAS (Advanced Driver Assistance System) including. Further, for example, the automatic driving control unit 10112 performs coordinated control for the purpose of automatic driving that autonomously travels without depending on the operation of the driver.
 検出部10131は、自動運転の制御に必要な各種の情報の検出を行う。検出部10131は、車外情報検出部10141と、車内情報検出部10142と、車両状態検出部10143と、を備える。 The detection unit 10131 detects various information necessary for controlling automatic operation. The detection unit 10131 includes an outside information detection unit 10141, an inside information detection unit 10142, and a vehicle state detection unit 10143.
 車外情報検出部10141は、車両制御システム10100の各部からのデータまたは信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部10141は、自車の周囲の物体の検出処理、認識処理、および、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部10141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、および、路面の状態等が含まれる。 The outside information detection unit 10141 performs detection processing of information outside the own vehicle based on data or signals from each part of the vehicle control system 10100. For example, the vehicle outside information detection unit 10141 performs detection processing, recognition processing, tracking processing, and distance detection processing for an object around the own vehicle. Objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and the like. Further, for example, the vehicle outside information detection unit 10141 performs detection processing of the environment around the own vehicle. The surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition, and the like.
 車外情報検出部10141は、検出処理の結果を示すデータを、自己位置推定部10132、状況分析部10133のマップ解析部10151、交通ルール認識部10152、および、状況認識部10153、並びに、動作制御部10135の緊急事態回避部10171等に供給する。 The vehicle outside information detection unit 10141 uses the self-position estimation unit 10132, the map analysis unit 10151 of the situation analysis unit 10133, the traffic rule recognition unit 10152, the situation recognition unit 10153, and the operation control unit to obtain data indicating the result of the detection process. It is supplied to the emergency situation avoidance unit 10171 and the like of 10135.
 車内情報検出部10142は、車両制御システム10100の各部からのデータまたは信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部10142は、運転者の認証処理および認識処理、運転者の状態の検出処理、搭乗者の検出処理、および、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部10142は、検出処理の結果を示すデータを状況分析部10133の状況認識部10153、および、動作制御部10135の緊急事態回避部10171等に供給する。 The in-vehicle information detection unit 10142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 10100. For example, the vehicle interior information detection unit 10142 performs driver authentication processing and recognition processing, driver status detection processing, passenger detection processing, vehicle interior environment detection processing, and the like. The state of the driver to be detected includes, for example, physical condition, arousal degree, concentration degree, fatigue degree, line-of-sight direction, and the like. The environment inside the vehicle to be detected includes, for example, temperature, humidity, brightness, odor, and the like. The in-vehicle information detection unit 10142 supplies data indicating the result of the detection process to the situation recognition unit 10153 of the situation analysis unit 10133, the emergency situation avoidance unit 10171 of the operation control unit 10135, and the like.
 車両状態検出部10143は、車両制御システム10100の各部からのデータまたは信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無および内容、運転操作の状態、パワーシートの位置および傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部10143は、検出処理の結果を示すデータを状況分析部10133の状況認識部10153、および、動作制御部10135の緊急事態回避部10171等に供給する。 The vehicle state detection unit 10143 performs detection processing of the state of the own vehicle based on data or signals from each part of the vehicle control system 10100. The states of the vehicle to be detected include, for example, speed, acceleration, steering angle, presence / absence and content of abnormality, driving operation state, power seat position and tilt, door lock state, and other in-vehicle devices. The state etc. are included. The vehicle state detection unit 10143 supplies data indicating the result of the detection process to the situation recognition unit 10153 of the situation analysis unit 10133, the emergency situation avoidance unit 10171 of the operation control unit 10135, and the like.
 自己位置推定部10132は、車外情報検出部10141、および、状況分析部10133の状況認識部10153等の車両制御システム10100の各部からのデータまたは信号に基づいて、自車の位置および姿勢等の推定処理を行う。また、自己位置推定部10132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部10132は、推定処理の結果を示すデータを状況分析部10133のマップ解析部10151、交通ルール認識部10152、および、状況認識部10153等に供給する。また、自己位置推定部10132は、自己位置推定用マップを記憶部10111に記憶させる。 The self-position estimation unit 10132 estimates the position and attitude of the own vehicle based on data or signals from each unit of the vehicle control system 10100 such as the vehicle exterior information detection unit 10141 and the situation recognition unit 10153 of the situation analysis unit 10133. Perform processing. Further, the self-position estimation unit 10132 generates a local map (hereinafter, referred to as a self-position estimation map) used for self-position estimation, if necessary. The map for self-position estimation is, for example, a highly accurate map using a technique such as SLAM (Simultaneous Localization and Mapping). The self-position estimation unit 10132 supplies data indicating the result of the estimation process to the map analysis unit 10151 of the situation analysis unit 10133, the traffic rule recognition unit 10152, the situation recognition unit 10153, and the like. Further, the self-position estimation unit 10132 stores the self-position estimation map in the storage unit 10111.
 状況分析部10133は、自車および周囲の状況の分析処理を行う。状況分析部10133は、マップ解析部10151、交通ルール認識部10152、状況認識部10153、および、状況予測部10154を備える。 The situation analysis unit 10133 analyzes the situation of the own vehicle and the surroundings. The situational analysis unit 10133 includes a map analysis unit 10151, a traffic rule recognition unit 10152, a situational awareness unit 10153, and a situational awareness unit 10154.
 マップ解析部10151は、自己位置推定部10132および車外情報検出部10141等の車両制御システム10100の各部からのデータまたは信号を必要に応じて用いながら、記憶部10111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部10151は、構築したマップを、交通ルール認識部10152、状況認識部10153、状況予測部10154、並びに、計画部10134のルート計画部10161、行動計画部10162、および、動作計画部10163等に供給する。 The map analysis unit 10151 uses data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132 and the vehicle exterior information detection unit 10141 as necessary, and stores various maps stored in the storage unit 10111. Perform analysis processing and build a map containing information necessary for automatic operation processing. The map analysis unit 10151 uses the constructed map as a traffic rule recognition unit 10152, a situation recognition unit 10153, a situation prediction unit 10154, and a route planning unit 10161, an action planning unit 10162, an operation planning unit 10163, etc. of the planning unit 10134. Supply to.
 交通ルール認識部10152は、自己位置推定部10132、車外情報検出部10141、および、マップ解析部10151等の車両制御システム10100の各部からのデータまたは信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置および状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部10152は、認識処理の結果を示すデータを状況予測部10154等に供給する。 The traffic rule recognition unit 10152 determines the traffic rules around the vehicle based on data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132, the vehicle outside information detection unit 10141, and the map analysis unit 10151. Perform recognition processing. By this recognition process, for example, the position and state of the signal around the own vehicle, the content of the traffic regulation around the own vehicle, the lane in which the vehicle can travel, and the like are recognized. The traffic rule recognition unit 10152 supplies data indicating the result of the recognition process to the situation prediction unit 10154 and the like.
 状況認識部10153は、自己位置推定部10132、車外情報検出部10141、車内情報検出部10142、車両状態検出部10143、および、マップ解析部10151等の車両制御システム10100の各部からのデータまたは信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部10153は、自車の状況、自車の周囲の状況、および、自車の運転者の状況等の認識処理を行う。また、状況認識部10153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。 The situation recognition unit 10153 can be used for data or signals from each unit of the vehicle control system 10100 such as the self-position estimation unit 10132, the vehicle exterior information detection unit 10141, the vehicle interior information detection unit 10142, the vehicle state detection unit 10143, and the map analysis unit 10151. Based on this, the situation recognition process related to the own vehicle is performed. For example, the situational awareness unit 10153 performs recognition processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver of the own vehicle. Further, the situational awareness unit 10153 generates a local map (hereinafter referred to as a situational awareness map) used for recognizing the situation around the own vehicle, if necessary. The situational awareness map is, for example, an occupied grid map (Occupancy Grid Map).
 認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無および内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類および位置、周囲の動物体の種類、位置および動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成および路面の状態、並びに、周囲の天候、気温、湿度、および、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。 The status of the own vehicle to be recognized includes, for example, the position, posture, movement (for example, speed, acceleration, moving direction, etc.) of the own vehicle, and the presence / absence and content of an abnormality. The surrounding conditions of the vehicle to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (eg, speed, acceleration, direction of movement, etc.), and the surrounding road. The composition and road surface condition, as well as the surrounding weather, temperature, humidity, brightness, etc. are included. The state of the driver to be recognized includes, for example, physical condition, arousal level, concentration level, fatigue level, eye movement, driving operation, and the like.
 状況認識部10153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部10132および状況予測部10154等に供給する。また、状況認識部10153は、状況認識用マップを記憶部10111に記憶させる。 The situational awareness unit 10153 supplies data indicating the result of the recognition process (including a situational awareness map, if necessary) to the self-position estimation unit 10132, the situation prediction unit 10154, and the like. Further, the situational awareness unit 10153 stores the situational awareness map in the storage unit 10111.
 状況予測部10154は、マップ解析部10151、交通ルール認識部10152および状況認識部10153等の車両制御システム10100の各部からのデータまたは信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部10154は、自車の状況、自車の周囲の状況、および、運転者の状況等の予測処理を行う。 The situation prediction unit 10154 performs a situation prediction process regarding the own vehicle based on data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151, the traffic rule recognition unit 10152, and the situation recognition unit 10153. For example, the situation prediction unit 10154 performs prediction processing such as the situation of the own vehicle, the situation around the own vehicle, and the situation of the driver.
 予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、および、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、および、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動および体調等が含まれる。 The situation of the own vehicle to be predicted includes, for example, the behavior of the own vehicle, the occurrence of an abnormality, the mileage, and the like. The situation around the own vehicle to be predicted includes, for example, the behavior of the animal body around the own vehicle, the change in the signal state, the change in the environment such as the weather, and the like. The driver's situation to be predicted includes, for example, the driver's behavior and physical condition.
 状況予測部10154は、予測処理の結果を示すデータを、交通ルール認識部10152および状況認識部10153からのデータとともに、計画部10134のルート計画部10161、行動計画部10162、および、動作計画部10163等に供給する。 The situation prediction unit 10154, together with the data indicating the result of the prediction process, together with the data from the traffic rule recognition unit 10152 and the situation recognition unit 10153, has the route planning unit 10161, the action planning unit 10162, and the operation planning unit 10163 of the planning unit 10134. And so on.
 計画部10134は、ルート計画部10161と、行動計画部162と、動作計画部163と、を備える。 The planning unit 10134 includes a route planning unit 10161, an action planning unit 162, and an operation planning unit 163.
 ルート計画部10161は、マップ解析部10151および状況予測部10154等の車両制御システム10100の各部からのデータまたは信号に基づいて、目的地までのルート(旅程)を計画する。例えば、ルート計画部10161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部10161は、渋滞、事故、通行規制、工事等の状況、および、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部10161は、計画したルートを示すデータを行動計画部10162等に供給する。 The route planning unit 10161 plans a route (itinerary) to the destination based on data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. For example, the route planning unit 10161 sets a route from the current position to the specified destination based on the global map. Further, for example, the route planning unit 10161 appropriately changes the route based on the conditions such as traffic congestion, accidents, traffic restrictions, construction work, and the physical condition of the driver. The route planning unit 10161 supplies data indicating the planned route to the action planning unit 10162 and the like.
 行動計画部10162は、マップ解析部10151および状況予測部10154等の車両制御システム10100の各部からのデータまたは信号に基づいて、ルート計画部10161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部10162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、および、追い越し等の計画を行う。行動計画部10162は、計画した自車の行動を示すデータを動作計画部10163等に供給する。 The action planning unit 10162 can safely route the route planned by the route planning unit 10161 based on the data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. Plan your vehicle's actions to drive. For example, the action planning unit 10162 plans starting, stopping, traveling direction (for example, forward, backward, left turn, right turn, turning, etc.), traveling lane, traveling speed, and overtaking. The action planning unit 10162 supplies data indicating the planned behavior of the own vehicle to the operation planning unit 10163 and the like.
 動作計画部10163は、マップ解析部10151および状況予測部10154等の車両制御システム10100の各部からのデータまたは信号に基づいて、行動計画部10162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部10163は、加速、減速、および、走行軌道等の計画を行う。動作計画部10163は、計画した自車の動作を示すデータを、動作制御部10135の加減速制御部10172および方向制御部10173等に供給する。 The motion planning unit 10163 is an operation of the own vehicle for realizing the action planned by the action planning unit 10162 based on the data or signals from each unit of the vehicle control system 10100 such as the map analysis unit 10151 and the situation prediction unit 10154. Plan. For example, the motion planning unit 10163 plans acceleration, deceleration, traveling track, and the like. The motion planning unit 10163 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 10172, the direction control unit 10173, and the like of the motion control unit 10135.
 動作制御部10135は、自車の動作の制御を行う。動作制御部10135は、緊急事態回避部10171と、加減速制御部10172と、方向制御部10173と、を備える。 The motion control unit 10135 controls the motion of the own vehicle. The operation control unit 10135 includes an emergency situation avoidance unit 10171, an acceleration / deceleration control unit 10172, and a direction control unit 10173.
 緊急事態回避部10171は、車外情報検出部10141、車内情報検出部10142、および、車両状態検出部10143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部10171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部10171は、計画した自車の動作を示すデータを加減速制御部10172および方向制御部10173等に供給する。 Based on the detection results of the outside information detection unit 10141, the inside information detection unit 10142, and the vehicle condition detection unit 10143, the emergency situation avoidance unit 10171 may collide, contact, enter a danger zone, have a driver abnormality, or have a vehicle. Performs emergency detection processing such as abnormalities. When the emergency situation avoidance unit 10171 detects the occurrence of an emergency situation, the emergency situation avoidance unit 10171 plans the operation of the own vehicle to avoid an emergency situation such as a sudden stop or a sharp turn. The emergency situation avoidance unit 10171 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 10172, the direction control unit 10173, and the like.
 加減速制御部10172は、動作計画部10163または緊急事態回避部10171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部10172は、計画された加速、減速、または、急停車を実現するための駆動力発生装置または制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部10107に供給する。 The acceleration / deceleration control unit 10172 performs acceleration / deceleration control for realizing the operation of the own vehicle planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171. For example, the acceleration / deceleration control unit 10172 calculates a control target value of a driving force generator or a braking device for realizing a planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 10107.
 方向制御部10173は、動作計画部10163または緊急事態回避部10171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部10173は、動作計画部10163または緊急事態回避部10171により計画された走行軌道または急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部10107に供給する。 The direction control unit 10173 performs direction control for realizing the operation of the own vehicle planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171. For example, the direction control unit 10173 calculates a control target value of the steering mechanism for realizing a traveling track or a sharp turn planned by the motion planning unit 10163 or the emergency situation avoidance unit 10171, and controls to indicate the calculated control target value. The command is supplied to the drive system control unit 10107.
 図2は、図1の自動運転制御部10112が構成される情報処理装置の一例の構成を示すブロック図である。 FIG. 2 is a block diagram showing a configuration of an example of an information processing device in which the automatic operation control unit 10112 of FIG. 1 is configured.
 図2において、情報処理装置10000は、それぞれバス10020により互いに通信可能に接続された、CPU10010と、ROM(Read Only Memory)10011と、RAM(Random Access Memory)10012と、ストレージ装置10013と、入出力I/F10014と、制御I/F10015と、を備える。 In FIG. 2, the information processing apparatus 10000 is connected to each other by a bus 10020 so as to be communicable with each other. It includes an I / F 10014 and a control I / F 10015.
 ストレージ装置10013は、不揮発にデータを記憶する記憶媒体であって、ハードディスクドライブやフラッシュメモリ等を適用することができる。CPU10010は、ストレージ装置10013およびROM10011に記憶されたプログラムに従い、RAM10012をワークメモリとして用いて、この情報処理装置10000の動作を制御する。 The storage device 10013 is a storage medium that stores data non-volatilely, and a hard disk drive, a flash memory, or the like can be applied. The CPU 10010 uses the RAM 10012 as a work memory according to the programs stored in the storage devices 10013 and the ROM 10011 to control the operation of the information processing device 10000.
 入出力I/F10014は、この情報処理装置10000に対するデータの入出力を制御するインタフェースである。制御I/F10015は、この情報処理装置10000による制御対象となる機器に対するインタフェースである。例えば、入出力I/F10014および制御I/F10015は、通信ネットワーク10121に接続される。 The input / output I / F 10014 is an interface that controls the input / output of data to the information processing apparatus 10000. The control I / F 10015 is an interface for a device to be controlled by the information processing apparatus 10000. For example, the input / output I / F 10014 and the control I / F 10015 are connected to the communication network 10121.
 例えば、CPU10010、実施形態に係る情報処理プログラムが実行されることにより、上述した検出部10131、自己位置推定部10132、状況分析部10133、計画部10134および動作制御部10135をRAM10012における主記憶領域上に、それぞれ例えばモジュールとして構成する。 For example, by executing the CPU 10010 and the information processing program according to the embodiment, the above-mentioned detection unit 10131, self-position estimation unit 10132, situation analysis unit 10133, planning unit 10134, and operation control unit 10135 are placed on the main storage area in the RAM 10012. Each is configured as, for example, a module.
 当該情報処理プログラムは、例えば、情報処理装置10000が車両に組み込まれて出荷される際に、予め当該情報処理装置10000にインストールされる。これに限らず、当該情報処理プログラムは、情報処理装置10000が車両に組み込まれて出荷された後に、当該情報処理装置10000にインストールされてもよい。また、当該情報処理プログラムは、通信部10103による外部の機器(サーバ等)との通信を介して、入出力I/F10014から供給されて、当該情報処理装置10000にインストールするようにもできる。 The information processing program is installed in the information processing device 10000 in advance when, for example, the information processing device 10000 is incorporated in a vehicle and shipped. Not limited to this, the information processing program may be installed in the information processing apparatus 10000 after the information processing apparatus 10000 is incorporated in the vehicle and shipped. Further, the information processing program can be supplied from the input / output I / O I / F 10014 via communication with an external device (server or the like) by the communication unit 10103 and installed in the information processing device 10000.
<<2.SAEによる自動運転のレベルの概略>>
 次に、実施形態に適用される車両の自動運転について説明する。車両の自動運転については、SAE(Society of Automotive Engineers)により、自動運転レベルが定義されている。表1は、SAEにより定義される自動運転レベルを示している。
<< 2. Outline of the level of automatic driving by SAE >>
Next, the automatic driving of the vehicle applied to the embodiment will be described. Regarding the automatic driving of vehicles, the automatic driving level is defined by SAE (Society of Automotive Engineers). Table 1 shows the automated driving levels defined by SAE.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下、表1に示す、SAEで定義された自動運転レベルを基本的に参照して説明する。ただし、表1に示される自動運転レベルの検討においては、自動運転技術が広く普及した場合の課題や妥当性が検討し尽くされていないことから、以下の説明においては、これら課題等を踏まえ、必ずしもSAEの定義通りの解釈で説明していない個所も存在する。 Hereinafter, the automatic operation level defined by SAE shown in Table 1 will be basically referred to and explained. However, in the examination of the automatic driving level shown in Table 1, the issues and validity when the automatic driving technology has become widespread have not been fully examined. Therefore, in the following explanation, based on these issues, etc. There are some parts that are not necessarily explained by the interpretation as defined by SAE.
 表1に示すように、SAEによれば、人が操舵に介在を要する自動運転レベルは、例えばレベル0(Level0)からレベル4(Level4)までの5段階に分類される。なお、SAEでは、無人での自動運転のみを想定した自動運転レベル5(Level5)定義されているが、本開示では、この自動運転レベル5は、運転者が操舵に関わることが皆無なため、対象外としている。 As shown in Table 1, according to SAE, the automatic driving levels that a person needs to intervene in steering are classified into five stages, for example, from level 0 (Level 0) to level 4 (Level 4). In SAE, automatic driving level 5 (Level 5) is defined assuming only unmanned automatic driving, but in this disclosure, this automatic driving level 5 is because the driver is not involved in steering at all. It is out of scope.
 自動運転レベル0(Level0)は、車両制御システムによる運転支援の無い手動運転(運転者の直接運転操舵)であって、運転者が、全ての運転タスクを実行し、安全運転(例えば、危険を回避する行動)に係る監視を常に実行する。 Automatic driving level 0 (Level 0) is manual driving (driver's direct driving steering) without driving assistance by the vehicle control system, in which the driver performs all driving tasks and performs safe driving (for example, danger). Always monitor the actions to be avoided).
 自動運転レベル1(Level1)は、車両制御システムによる運転支援(自動ブレーキ、ACC(Adaptive Cruise Control)、LKAS(Lane Keeping Assistant System)等)が実行され得る手動運転(直接運転操舵)であって、運転者が、援助された単一機能以外の全ての運転タスクを実行し、安全運転に係る監視も実行する。 Automatic driving level 1 (Level 1) is manual driving (direct driving steering) in which driving support (automatic braking, ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assistant System), etc.) can be executed by the vehicle control system. The driver performs all driving tasks other than the assisted single function and also performs safe driving monitoring.
 自動運転レベル2(Level2)は、「特定条件下自動運転機能」とも称され、特定の条件下で、車両制御システムが車両の前後方向及び左右方向の両方の車両制御に係る運転タスクのサブタスクを実行する。例えば、当該自動運転レベル2においては、車両制御システムが、ステアリング操作と加減速との両方を連携しながら制御する(例えば、ACCとLKASとの連携)。ただし、当該自動運転レベル2においても、運転タスクの実行主体は基本的には運転者であり、安全運転に係る監視の主体も運転者となる。 Automatic driving level 2 (Level 2) is also referred to as "automatic driving function under specific conditions", and under specific conditions, the vehicle control system subtasks the driving task related to vehicle control in both the front-rear direction and the left-right direction of the vehicle. Execute. For example, at the automatic driving level 2, the vehicle control system controls both steering operation and acceleration / deceleration in cooperation with each other (for example, cooperation between ACC and LKAS). However, even in the automatic driving level 2, the execution subject of the driving task is basically the driver, and the monitoring subject related to safe driving is also the driver.
 自動運転レベル3(Level3)は、「条件付自動運転」とも称され、車両制御システムが限られた領域内で全ての運転タスクを実行することができる。当該自動運転レベル3においては、運転タスクの実行主体は車両制御システムであり、安全運転に係る監視の主体も基本的には車両制御システムである。 Automatic driving level 3 (Level 3) is also called "conditional automatic driving", and the vehicle control system can execute all driving tasks within a limited area. In the automatic driving level 3, the driving task is executed by the vehicle control system, and the monitoring subject related to safe driving is basically the vehicle control system.
 この、SAEで定義された自動運転レベル3においては、運転者が実際にどのような2次タスクを実行可能かについては明確に定義されていない。なお、「2次タスク」とは、走行中に運転者が行う、運転に関する動作以外の動作を指すもので、NDRA(Non-driving related activity)とも呼ばれる。 In this automatic driving level 3 defined by SAE, what kind of secondary task the driver can actually perform is not clearly defined. The "secondary task" refers to an operation other than the operation related to driving performed by the driver while driving, and is also called NDRA (Non-driving related activity).
 より詳細には、運転者は、自動運転レベル3での走行中に、操舵以外の作業や行動、例えば、携帯端末の操作、電話会議、ビデオ鑑賞、ゲーム、思考、他の搭乗者との会話等の2次タスクを行うことができると考えられる。一方、SAEの自動運転レベル3の定義の範囲においては、システム障害や走行環境の悪化等に起因する車両制御システム側からの要求等に応じて、運転者が運転操作を行う等の対応を適切に行うことが期待されている。したがって、当該自動運転レベル3においては、安全走行を確保するために、上述のような2次タスクを実行している状況であっても、運転者は、すぐに手動運転に復帰可能であるような準備状態に常時あることが期待されることとなる。 More specifically, while driving at autonomous driving level 3, the driver performs tasks and actions other than steering, such as operating a mobile terminal, telephone conference, watching video, playing games, thinking, and talking with other passengers. It is considered possible to perform secondary tasks such as. On the other hand, within the scope of the definition of SAE's automatic driving level 3, it is appropriate for the driver to perform driving operations in response to requests from the vehicle control system side due to system failures, deterioration of the driving environment, etc. Is expected to be done. Therefore, at the automatic driving level 3, the driver can immediately return to the manual driving even in the situation where the secondary task as described above is being executed in order to ensure safe driving. It is expected that they will always be in a good state of preparation.
 自動運転レベル4(Level4)は、「特定条件下完全自動運転」とも称され、車両制御システムが限られた領域内で全ての運転タスクを実行する。当該自動運転レベル4においては、運転タスクの実行主体は車両制御システムであり、安全運転に係る監視の主体も車両制御システムとなる。 Automatic driving level 4 (Level 4) is also called "fully automatic driving under specific conditions", and the vehicle control system executes all driving tasks within a limited area. At the automatic driving level 4, the driving task is executed by the vehicle control system, and the monitoring subject related to safe driving is also the vehicle control system.
 ただし、当該自動運転レベル4においては、上述の自動運転レベル3とは異なり、システム障害等に起因する車両制御システム側からの要求等に応じて運転者が運転操作(手動運転)を行う等の対応を行うことは期待されていない。従って、当該自動運転レベル4においては、運転者は、上述のような2次タスクを行うことが可能となり、状況次第では、例えば、仮眠をとることも可能である。 However, at the automatic driving level 4, unlike the above-mentioned automatic driving level 3, the driver performs a driving operation (manual driving) in response to a request from the vehicle control system side due to a system failure or the like. No action is expected. Therefore, at the automatic driving level 4, the driver can perform the secondary task as described above, and depending on the situation, for example, can take a nap.
 以上のように、自動運転レベル0から自動運転レベル2においては、運転手が全てあるいは一部の運転タスクを主体的に実行する手動運転モードで走行することとなる。したがって、これら3つの自動運転レベルにおいては、運転者が、走行時の注意低下や前方注意を損なうような、手動運転およびそれに関係する動作以外の行為である2次タスクに従事することは、許容されていない。 As described above, from the automatic driving level 0 to the automatic driving level 2, the driver runs in the manual driving mode in which all or some of the driving tasks are independently executed. Therefore, at these three levels of autonomous driving, it is permissible for the driver to engage in secondary tasks other than manual driving and related movements that may reduce attention or impair forward attention while driving. It has not been.
 一方、自動運転レベル3においては、車両制御システムが全ての運転タスクを主体的に実行する自動運転モードで走行することとなる。ただし、先に説明したように、自動運転レベル3では、運転者が運転操作を行う状況が生じ得る。したがって、自動運転レベル3においては、運転者に対して2次タスクを許容した場合には、運転者に対して、2次タスクから手動運転に復帰できる準備状態にあることが求められる。 On the other hand, at the automatic driving level 3, the vehicle control system runs in the automatic driving mode in which all driving tasks are independently executed. However, as described above, at the automatic driving level 3, there may be a situation in which the driver performs a driving operation. Therefore, at the automatic driving level 3, when the driver is allowed to perform the secondary task, the driver is required to be in a ready state to return to the manual driving from the secondary task.
 さらに、自動運転レベル4においても、車両制御システムが全ての運転タスクを実行する自動運転モードで走行することとなる。ここで、本来は自動運転レベル4が適用される区間において、実際の道路インフラの整備状況等により、当該区間の一部に自動運転レベル4を適用することができない区間が存在する場合がある。そのような区間は、例えば自動運転レベル2以下に設定されると想定されることから、運転手が主体的に運転タスクを実行することが求められることとなる。したがって、走行旅程の計画段階やその旅程開始後に自動運転レベル4による自動運転を利用中であっても、利用が許可される条件から外れるなどの事態が発生した場合には、上述したような自動運転レベル2以下への遷移要請が発生し得る。そのため、運転者に対して、これら条件変化が判明した場合に、旅程計画当初に予定されていなくとも、状況に応じて2次タスクから手動運転に復帰できる準備状態にあることが求められることとなる。 Furthermore, even at the automatic driving level 4, the vehicle control system will drive in the automatic driving mode in which all driving tasks are executed. Here, in the section to which the automatic driving level 4 is originally applied, there may be a section to which the automatic driving level 4 cannot be applied to a part of the section due to the actual development status of the road infrastructure or the like. Since it is assumed that such a section is set to, for example, the automatic driving level 2 or lower, the driver is required to independently execute the driving task. Therefore, even if the automatic driving by the automatic driving level 4 is being used at the planning stage of the traveling itinerary or after the start of the itinerary, if a situation occurs such that the conditions for which the use is permitted are not met, the automatic driving as described above occurs. A transition request to operation level 2 or lower may occur. Therefore, the driver is required to be ready to return to manual operation from the secondary task depending on the situation, even if it was not planned at the beginning of the itinerary plan, when these changes in conditions are found. Become.
 ここで、これら異なる自動運転レベル毎に許容される自動運転レベル毎の実際の利用範囲を、ODD(Operation Design Domain:運行設計領域)と呼ぶ。より詳細には、ODDは、設計上、自動運転システムが作動する前提となる走行環境条件であり、ODDに示される全ての条件を満たす場合に、自動運転システムが正常に作動し、車両の自動運転が行われる。また、ODDに示される条件が走行中に欠けた場合、車両の運転制御を、自動運転から手動運転に引継がせる必要がある。なお、ODDが示す条件は、一般的に、各自動運転システム毎や、センサ等の劣化、汚れ、自動運転を制御するための搭載装置の自己診断結果によるその時々の性能変動などに応じて異なるものとなる。 Here, the actual usage range for each automatic driving level allowed for each of these different automatic driving levels is called ODD (Operation Design Domain). More specifically, ODD is a driving environment condition that is a prerequisite for the operation of the automatic driving system by design, and when all the conditions shown in the ODD are satisfied, the automatic driving system operates normally and the vehicle is automatically operated. Driving is done. Further, when the condition shown in the ODD is lacking during driving, it is necessary to transfer the driving control of the vehicle from the automatic driving to the manual driving. The conditions indicated by ODD generally differ depending on each automatic driving system, deterioration and dirt of sensors, etc., and performance fluctuations at that time due to the self-diagnosis result of the on-board device for controlling automatic driving. It will be a thing.
 図3は、SAEの各自動運転レベルを、利用状態として利用者視点で見た場合について説明するための模式図である。 FIG. 3 is a schematic diagram for explaining a case where each automatic operation level of SAE is viewed from the user's point of view as a usage state.
 自動運転レベル0(Level0)が適用可能な環境は、私道、一般道、高速道路等社会道路インフラ全般とされる。自動運転レベル1(Level1)が適用可能な環境は、運転支援のための装置および環境が整った道路、例えば一部の幹線道路や高速道路とされる。この自動運転レベル1では、既存の手動運転車両に、車両制御システムによる上述したACC、LKASといった運転支援システムが適用されている必要がある。この場合には、運転者の注意低下は、運転支援システムがサポートを包括的に行わないために、直観的なリスクとなる。 The environment to which automatic driving level 0 (Level 0) can be applied is considered to be general social road infrastructure such as private roads, general roads, and highways. The environment to which the automatic driving level 1 (Level 1) is applicable is a road equipped with a device for driving support and an environment, for example, some arterial roads and highways. In this automatic driving level 1, it is necessary that the driving support system such as ACC and LKAS described above by the vehicle control system is applied to the existing manually driven vehicle. In this case, the driver's attention loss is an intuitive risk because the driver assistance system does not provide comprehensive support.
 また、自動運転レベル2(Level2)が適用可能な環境は、運転支援のための装置および環境が整っていれば、高速道路等の一定道路区間とされる。自動運転レベル2が適用される区間では、ACCなどの走行制御による走行方向の加減速に加え、LKAS等の車線に沿った走行を行う、走行方向に対する横方向の制御も自動で行うことが複合的に許容される分類とされ、運転者の運転に対する継続的な注意が引き続き求められる。一方で、自動運転レベル2が適用される区間では、走行自体は阻害要因が無ければそのまま成り立つため、運転支援が高度化し過ぎると、運転者のリスク感覚の低下を招くおそれがある。そのため、自動運転レベル2は、運転者の注意低下の予防策が求められる自動運転レベルであるともいえる。 In addition, the environment to which the automatic driving level 2 (Level 2) can be applied is a fixed road section such as an expressway if the equipment and environment for driving support are in place. In the section to which automatic driving level 2 is applied, in addition to acceleration / deceleration in the driving direction by driving control such as ACC, driving along the lane such as LKAS and lateral control with respect to the driving direction are also automatically performed. It is a generally acceptable classification and requires continued attention to the driver's driving. On the other hand, in the section to which the automatic driving level 2 is applied, the driving itself is established as it is if there is no obstructive factor, and if the driving support becomes too sophisticated, the driver's sense of risk may be lowered. Therefore, it can be said that the automatic driving level 2 is an automatic driving level for which preventive measures for lowering the driver's attention are required.
 上述したように、これら自動運転レベル0~2の区間では、車両の走行が運転者の手動運転により制御される。 As described above, in these sections of automatic driving level 0 to 2, the running of the vehicle is controlled by the manual driving of the driver.
 一方、自動運転レベル3(Level3)の区間と、自動運転レベル4(Level4)の区間は、上述したように、車両の自動運転システムによる自律的な運転制御が可能な区間とされる。これらのうち、自動運転レベル4が適用可能な環境は、例えばLDMにおける各タイプの情報が常時更新され、道路予測性が担保された区間を確保することで実現してもよい。 On the other hand, the section of automatic driving level 3 (Level 3) and the section of automatic driving level 4 (Level 4) are defined as sections where autonomous driving control is possible by the automatic driving system of the vehicle, as described above. Of these, the environment to which the automatic driving level 4 can be applied may be realized by, for example, securing a section in which the information of each type in LDM is constantly updated and the road predictability is guaranteed.
 これに対して、自動運転レベル3(Level3)が適用可能な環境は、例えば本来は自動運転レベル4での自動運転が可能な区間であるが、何らかの理由で自動運転レベル4に対応するODDの条件を満たせない区間であってもよい。例えば、LDMにおいて準静的データしか情報が得られない区間、あるいは、システムの環境対応性能の低下や不足で自動運転レベル4の走行条件が継続的に確保できない区間である。自動運転レベル4が確保できない区間としては、一時工事区間、冠水区間、複雑交差区間、LDM欠落区間、通信帯域一時不足区間、前走行車よりリスク通報が発せられた区間、等が考えられる。 On the other hand, the environment to which the automatic operation level 3 (Level 3) can be applied is, for example, a section where automatic operation is possible at the automatic operation level 4, but for some reason, the ODD corresponding to the automatic operation level 4 It may be a section that does not satisfy the conditions. For example, it is a section where only quasi-static data can be obtained in LDM, or a section where the running conditions of automatic driving level 4 cannot be continuously secured due to deterioration or lack of environmentally friendly performance of the system. As the section where the automatic operation level 4 cannot be secured, a temporary construction section, a flooded section, a complicated intersection section, an LDM missing section, a communication band temporary shortage section, a section in which a risk report is issued from a vehicle in front, and the like can be considered.
 また、自動運転レベル3が適用可能な環境としては、機能的には自動運転レベル4の制御で通過可能な区間であるが、何らかの理由で自動運転レベル4の適用をキャンセルする区間を含むことができる。このような区間の例として、MRM(Minimum Risk Maneuver)による車両停車や緊急退避の減速等をした場合に交通インフラの円滑な流れを止めるフロースタックを引き起こすリスクのある区間、工事区間、線路踏切横断、等が考えられる。さらに、固定的あるいは能動的に設定される、制度上の運転者不介在通過禁止区間(制度的な予防運用により違反した利用に対して罰則対象となる)も、自動運転レベル3が適用可能な環境となり得る。 Further, the environment to which the automatic driving level 3 can be applied is a section functionally passable under the control of the automatic driving level 4, but may include a section in which the application of the automatic driving level 4 is canceled for some reason. can. As an example of such a section, a section, a construction section, or a railroad crossing crossing where there is a risk of causing a flow stack that stops the smooth flow of transportation infrastructure when the vehicle is stopped by MRM (Minimum Risk Maneuver) or the emergency evacuation is decelerated. , Etc. are conceivable. Furthermore, automatic driving level 3 can also be applied to the institutional driver-free passage prohibited section (which is subject to penalties for use violated by institutional preventive operation), which is fixedly or actively set. It can be an environment.
 なお、図3において、黒矢印により示されるように、利用者視点で通常の道路利用範囲が流れのスムースな、渋滞等が発生していない条件下において高速走行時に自動運転レベル2までの自動運転レベルによる自動運転しか許容されない区間であっても、渋滞などにより平均車速が落ち一時的に自動運転レベル3などによる自動運転が許容される条件が整うことで、ACSF(Automatically Commanded Steering Function)等の自動運転機能を利用可能となる運用が検討されている。例えば、自動運転レベル2が適用される高速道路における渋滞区間等、本来なら自動運転走行を想定していない区間であっても、自動運転レベル3や自動運転レベル4による自動運転が可能となり得る。特に、自動運転レベル4による自動運転が許容される場合であれば、NDRAの安全な実行が可能となる。この場合、渋滞終了点の予測と、手動運転への復帰動作の管理ができることが必要となる。 In addition, as shown by the black arrow in FIG. 3, automatic driving up to automatic driving level 2 at high speed under the condition that the normal road usage range is smooth from the user's point of view and no traffic jam occurs. Even in sections where only automatic driving by level is allowed, the average vehicle speed will drop due to traffic jams, etc., and if the conditions for temporarily allowing automatic driving by automatic driving level 3 etc. are met, ACSF (Automatically Commanded Steering Function) etc. Operation that enables the use of the automatic driving function is being considered. For example, even in a section where automatic driving is not originally assumed, such as a congested section on a highway to which automatic driving level 2 is applied, automatic driving by automatic driving level 3 or automatic driving level 4 may be possible. In particular, if automatic operation according to automatic operation level 4 is permitted, NDRA can be safely executed. In this case, it is necessary to be able to predict the end point of traffic congestion and manage the operation of returning to manual operation.
 ここで、自動運転の利用形態として、車両が自動運転レベル2の適用区間から自動運転レベル4の適用区間に進入し、車両の走行制御が運転者による手動運転から車両制御システムによる自動運転に切り替わる場合について考える。この場合、運転者は、車両の運転に集中する必要が無くなり、注意維持が低下する。すなわち、手動運転から自動運転への切り替えは、運転者の継続的な注意維持の低下を招く利用形態といえる。 Here, as a usage pattern of automatic driving, the vehicle enters the applicable section of automatic driving level 2 from the applicable section of automatic driving level 2, and the driving control of the vehicle is switched from manual driving by the driver to automatic driving by the vehicle control system. Think about the case. In this case, the driver does not have to concentrate on driving the vehicle, and attention maintenance is reduced. That is, it can be said that switching from manual driving to automatic driving is a usage mode that causes a decrease in the continuous attention maintenance of the driver.
 また、自動運転レベル4から自動運転レベル2への切り替え(手動運転の復帰)を考慮すると、自動運転レベル4による自動運転が行われている区間は、運転者の注意維持が低下し、事前の定常状態における運転者のモニタリング情報から、復帰までのタイムバジェットの詳細を組むことが求められる利用領域であるといえる。既存技術においては、自動運転レベル4では、自動運転レベル2以下の自動運転レベルすなわち手動運転への復帰通知を、運転者に対して一意に行っていた。 In addition, considering the switching from automatic driving level 4 to automatic driving level 2 (return to manual driving), the driver's attention maintenance is reduced in the section where automatic driving is performed by automatic driving level 4, and the driver's attention maintenance is reduced in advance. It can be said that this is a usage area where it is required to formulate the details of the time budget from the driver's monitoring information in the steady state to the return. In the existing technology, at the automatic driving level 4, the driver is uniquely notified of the return to the automatic driving level of the automatic driving level 2 or lower, that is, the manual driving.
 自動運転レベル3に相当する機能の役割は、自動運転レベル4による自動運転が行われる区間と、自動運転レベル2以下の自動運転レベルによる手動運転が行われる区間とが分断されることを避けるための繋ぎの役割であるといえる。すなわち、自動運転レベル3による自動運転の利用形態は、運転者が運転への注意維持を継続し、短時間(例えば数秒)での復帰行動が期待される利用形態となる。この自動運転レベル3においては、運転者の監視を行うDMS(Driver Monitoring System)による運転者の注意維持の低下の検出と、運転者における注意維持の継続が自動運転レベル3以下の自動運転レベルを利用するための必須の要件となる。 The role of the function corresponding to the automatic driving level 3 is to avoid the division between the section where the automatic driving is performed by the automatic driving level 4 and the section where the manual driving is performed by the automatic driving level of the automatic driving level 2 or lower. It can be said that it is the role of the connection. That is, the usage mode of automatic driving according to the automatic driving level 3 is a usage mode in which the driver continues to maintain attention to driving and is expected to return in a short time (for example, several seconds). In this automatic driving level 3, the DMS (Driver Monitoring System) that monitors the driver detects the decrease in the driver's attention maintenance and the continuation of the driver's attention maintenance is the automatic driving level of 3 or less. It is an essential requirement to use it.
 図4は、自動運転レベル3の適用について概略的に説明するための模式図である。図4に示されるマップにおいて、出発点STから終点EPまで、旅程TP(図中で塗り潰して示す)に従い図中に矢印で示す方向(反時計回り、左回り)に走行する場合が示されている。 FIG. 4 is a schematic diagram for schematically explaining the application of the automatic operation level 3. In the map shown in FIG. 4, a case is shown in which the vehicle travels from the start point ST to the end point EP in the direction indicated by the arrow (counterclockwise, counterclockwise) in the figure according to the itinerary TP (filled in the figure). There is.
 図4において、区間RA1、RA2およびRA3は、例えば自動運転レベル0~2に対応する区間を示しており、これらの区間では、手動運転が必須となる。車両の自動運転システムは、例えば自動運転レベル4による自動運転で走行中にこれらの区間RA1~RA3進入する場合、走行制御を、自動運転システムによる自動運転から、運転手の操舵等による手動運転に引継ぐ必要がある。一方、区間RB1~RB5は、自動運転から手動運転への復帰体勢の注意監視下において、自動運転のままの通過走行が可能な区間を示している。区間RB1~RB5は、例えば自動運転レベル3に対応する区間である。 In FIG. 4, sections RA 1 , RA 2 and RA 3 indicate sections corresponding to, for example, automatic operation levels 0 to 2, and manual operation is indispensable in these sections. When the vehicle's automatic driving system enters these sections RA 1 to RA 3 while driving, for example, by automatic driving according to automatic driving level 4, the driving control is changed from automatic driving by the automatic driving system to manual driving by the driver's steering. It is necessary to take over to driving. On the other hand, sections RB 1 to RB 5 indicate sections in which passing driving can be performed while the automatic driving is performed under the caution monitoring of the posture for returning from the automatic driving to the manual driving. Sections RB 1 to RB 5 are sections corresponding to, for example, automatic operation level 3.
 手動運転が必須の各区間RA1、RA2およびRA3に進入するためには、運転者が自動運転から手動運転に復帰するための体勢等を整える必要がある。そのため、各区間RA1、RA2およびRA3の進入側に、例えば自動運転レベル3に対応する各区間RB1、RB4およびRB5がそれぞれ設定される。 In order to enter each section RA 1 , RA 2 and RA 3 where manual driving is essential, it is necessary for the driver to be in a position to return from automatic driving to manual driving. Therefore, for example, each section RB 1 , RB 4 and RB 5 corresponding to the automatic operation level 3 are set on the approach side of each section RA 1 , RA 2 and RA 3 , respectively.
 一方、区間RB2およびRB3は、例えば機能的には自動運転レベル4の制御で通過可能な区間であるが、何らかの理由で自動運転レベル4の適用をキャンセルする区間として設定されている。区間RB2は、例えば一時工事区間や冠水区間であり、区間RB3は、例えば急カーブにより自車の走行に注意が必要な区間である。 On the other hand, the sections RB 2 and RB 3 are functionally passable sections under the control of the automatic driving level 4, but are set as sections for canceling the application of the automatic driving level 4 for some reason. Section RB 2 is, for example, a temporary construction section or a flooded section, and section RB 3 is a section that requires attention to the running of the own vehicle due to, for example, a sharp curve.
 このように、自動運転レベル4での走行中に手動運転への復帰が発生する場合には、システムから復帰要請が出て引継ぎ完了が求められる該当箇所に差し掛かるまでの時間に余裕があれば、その手前で自動運転レベル3の区間、または、運転者の運転可能能力が覚醒して周辺注意が可能で運転能力が復帰した状態を経由することになる。自動運転レベル3は、運転者が運転に直接的に関与しない一方で、状況への注意を維持する必要があるため、長時間にわたり実際の運転操舵をせずに注意のみして待機を求められる運用では、運転者が苦痛に感じる場合が起こり得る。 In this way, if a return to manual operation occurs while driving at automatic operation level 4, if there is time to reach the relevant location where the return request is issued from the system and the transfer is required to be completed. Before that, the vehicle goes through the section of automatic driving level 3 or the state where the driver's driving ability is awakened and attention to the surrounding area is possible and the driving ability is restored. At autonomous driving level 3, the driver is not directly involved in driving, but it is necessary to maintain attention to the situation, so it is required to wait only with caution without actual driving steering for a long time. In operation, the driver may feel distressed.
<<3.本開示に係る実施形態>>
 次に、本開示に係る実施形態について説明する。なお、以下では、特に記載の無い限り、ODDは、自動運転レベル4に対応するODDであり、自動運転レベル4に対する条件を示すものであるとする。また、ODDが示す条件を満たす走行区間を、単にODD区間と呼ぶ。
<< 3. Embodiments of the present disclosure >>
Next, an embodiment according to the present disclosure will be described. In the following, unless otherwise specified, the ODD is an ODD corresponding to the automatic operation level 4 and indicates a condition for the automatic operation level 4. Further, a traveling section satisfying the conditions indicated by ODD is simply referred to as an ODD section.
<3-1.実施形態の概要>
 先ず、実施形態の概要について、既存技術と対比させながら説明する。図5は、既存技術による自動運転から手動運転への引継ぎ処理を概略的に示す一例のフローチャートである。この図5のフローチャートによる処理の開始に先立って、運転者が搭乗する車両が自動運転レベル4に対応するODD区間を走行中であるものとする。
<3-1. Outline of embodiment>
First, the outline of the embodiment will be described in comparison with the existing technology. FIG. 5 is a flowchart of an example schematically showing a transfer process from automatic operation to manual operation by the existing technology. Prior to the start of the process according to the flowchart of FIG. 5, it is assumed that the vehicle on which the driver is boarding is traveling in the ODD section corresponding to the automatic driving level 4.
 ODD区間の終了点が近付くと、車両に搭載される自動運転システムは、ステップS10で、ODDの終了点が接近していることを運転者に通知する。運転者は、例えばこの通知に応じて運転制御を自動運転から手動運転に引継ぐための準備を行う。自動運転システムは、運転制御の自動運転から手動運転への引継ぎが所定より遅延している場合、運転者に対してアラームを発する(ステップS11)。 When the end point of the ODD section is approaching, the automatic driving system mounted on the vehicle notifies the driver in step S10 that the end point of the ODD is approaching. The driver prepares to take over the operation control from the automatic operation to the manual operation, for example, in response to this notification. The automatic driving system issues an alarm to the driver when the transfer of the driving control from the automatic driving to the manual driving is delayed more than a predetermined time (step S11).
 ステップS12で、自動運転システムは、運転制御の自動運転から手動運転への引継ぎが、ステップS10でODD終了予告点として通知を行ってから所定の時間内で行われたか否かを判定する。自動運転システムは、運転者が所定の時間内で引継ぎを完了したと判定した場合(ステップS12、「OK」)、処理をステップS13に移行させ、引継ぎ完了に対する評価を行う。 In step S12, the automatic operation system determines whether or not the transfer of the operation control from the automatic operation to the manual operation has been performed within a predetermined time after notifying as the ODD end notice point in step S10. When the driver determines that the transfer is completed within a predetermined time (step S12, "OK"), the automatic operation system shifts the process to step S13 and evaluates the transfer completion.
 一方、自動運転システムは、ステップS12で運転制御の自動運転から手動運転への引継ぎが所定時間内に完了してないと判定した場合(ステップS12、「NG」)、処理をステップS14に移行させる。ステップS14で、自動運転システムは、当該車両の制御にMRMを適用し、退避走行、例えば路肩への緊急停車を実行させる。 On the other hand, when the automatic operation system determines in step S12 that the transfer of the operation control from the automatic operation to the manual operation is not completed within a predetermined time (step S12, "NG"), the process shifts to step S14. .. In step S14, the autonomous driving system applies the MRM to the control of the vehicle and causes an evacuation run, for example, an emergency stop on the shoulder.
 ここで、既存技術による車両の自動運転制御の概念は、その車両がSAEの自動運転レベル区分におけるどのレベルで走行が可能であるかは、その車両の搭載機器の設計想定の範囲であるODDとして決まる。運転者は、その車両が自動運転で走行が可能な自動運転レベルに応じて、常に従属的に従い、全ての要求状況に対処が求められる。 Here, the concept of automatic driving control of a vehicle by the existing technology is that the level at which the vehicle can run in the automatic driving level classification of SAE is the range of the design assumption of the equipment mounted on the vehicle as ODD. It will be decided. The driver is required to always follow all the requirements and deal with all the requirements according to the level of autonomous driving that the vehicle can drive autonomously.
 例えば、特定の高速道路が自動運転レベル4の自動運転走行を許容し、且つ、車両の搭載機器の自動運転性能が自動運転レベル4相当の自動運転走行を許容しているものとする。この場合、運転者は、その区間で、車両の自動運転レベルをレベル4として利用、走行することができる。自動運転システムは、当該車両が自動運転レベル4での走行の可能なODD区間を外れる状況に接近すると、運転者に対して手動運転への復帰を促し(図5、ステップS10)、対応が遅れれば単純に警告を発する(図5、ステップS11)。自動運転システムは、ステップS11で警告を発したにも関わらず、適切なタイミングで手動運転への復帰がなされない場合には、自動運転レベル4の自動運転で走行が可能なODD区間内で緊急の強制退避操舵、いわゆるMRMと呼ばれる制御に移行する(図5、ステップS14)ことで、システムによる自動運転が対処できない区間への進入を防ぐ想定である。 For example, it is assumed that a specific highway allows automatic driving of automatic driving level 4, and the automatic driving performance of the on-board equipment of the vehicle allows automatic driving equivalent to automatic driving level 4. In this case, the driver can use and drive the automatic driving level of the vehicle as level 4 in the section. When the vehicle approaches a situation outside the ODD section where driving at automatic driving level 4 is possible, the automatic driving system urges the driver to return to manual driving (FIG. 5, step S10), and the response is delayed. If so, a warning is simply issued (FIG. 5, step S11). If the automatic driving system does not return to the manual driving at an appropriate timing even though the warning is issued in step S11, the automatic driving system is urgent in the ODD section where the driving can be performed by the automatic driving of the automatic driving level 4. By shifting to the forced evacuation steering, so-called MRM control (FIG. 5, step S14), it is assumed that the system will prevent entry into a section that cannot be dealt with by automatic driving.
 このような既存技術による車両制御では、自動運転システムの性能限界に応じて、当該自動運転システムが自動運転レベル4での走行の許容する区間であれば、運転者は、運転以外の特定の2次タスク(NDRA)に従事することが想定されている。その一方で、自動運転システムは、自身の対処限界を迎えると、自動運転から手動運転への強制的な復帰要請を運転者に対して発する。これは、利用者視点では、2次タスクの従事から強制的な復帰を強いられることになる。 In vehicle control using such existing technology, depending on the performance limit of the automatic driving system, if the automatic driving system is in a section where driving at the automatic driving level 4 is permitted, the driver can specify 2 other than driving. It is expected to engage in the next task (NDRA). On the other hand, when the automatic driving system reaches its own coping limit, it issues a compulsory return request from automatic driving to manual driving to the driver. From the user's point of view, this will force a forced return from the engagement of the secondary task.
 このように、既存技術による車両の自動運転システムを利用する場合、運転者は、自動運転システムに対して従属的な関係を強いられる。したがって、運転手にとって、自動運転機能を利用した2次タスクの従事は、ストレスを伴う利用あるいは制御形態であった。 In this way, when using the automatic driving system of the vehicle by the existing technology, the driver is forced to have a subordinate relationship with the automatic driving system. Therefore, for the driver, the engagement of the secondary task using the automatic driving function has been a stressful use or control form.
 図6は、実施形態に係る自動運転から手動運転への引継ぎ処理を概略的に示す一例のフローチャートである。この図6のフローチャートによる処理の開始に先立って、運転者が搭乗する車両が自動運転レベル4に対応するODD区間を走行中であるものとする。 FIG. 6 is a flowchart of an example schematically showing the transfer process from the automatic operation to the manual operation according to the embodiment. Prior to the start of the process according to the flowchart of FIG. 6, it is assumed that the vehicle on which the driver is boarding is traveling in the ODD section corresponding to the automatic driving level 4.
 ステップS20で、自動運転システムは、ODD区間の終了を、事前に運転者に通知する。例えば、自動運転システムは、運転者が通知を受けてから手動運転の復帰までに要すると予測される時間よりも早い時点で、運転者に対してODD終了を通知する。 In step S20, the automatic driving system notifies the driver in advance of the end of the ODD section. For example, the autonomous driving system notifies the driver of the end of ODD at a time earlier than the time expected to be required from the notification to the return of the manual driving.
 次のステップS21で、自動運転システムと運転者との間で、引継ぎ開始点に関する「契約」が交わされる。ここでいう「契約」は、自動運転システムが発する通知に対して運転者が明示的に応答する、一連の流れをいう。このとき、自動運転システムは、運転者に対して、引継ぎ完了必須の地点を示す情報と、引継ぎが完了しない場合のリスクを提示する。なお、ここでの「契約」は、自動運転システムと運転者との間で引継ぎに関する情報を共有するもので、運転者に対して何らかの義務を負わせるものではないので、実際には「仮契約」と称すべきものである。 In the next step S21, a "contract" regarding the transfer start point is signed between the automatic driving system and the driver. The "contract" here refers to a series of flows in which the driver explicitly responds to the notification issued by the automatic driving system. At this time, the automatic driving system presents to the driver information indicating the points where the transfer must be completed and the risk when the transfer is not completed. The "contract" here is to share information about the transfer between the autonomous driving system and the driver, and does not impose any obligation on the driver, so it is actually a "provisional contract". It should be called.
 このように、自動運転システムと運転者との間で、運転者の明示的な応答により引継ぎ開始点に関する仮契約を交わすことで、引継ぎ作業を運転者のワーキングメモリに刷り込ませることができる。ワーキングメモリ(Working Memory)は、作業記憶とも呼ばれ、作業や動作に必要な情報を一時的に記憶および処理する、人の脳が有する記憶能力をいう。 In this way, by concluding a temporary contract regarding the transfer start point between the automatic driving system and the driver by the driver's explicit response, the transfer work can be imprinted on the driver's working memory. Working memory, also called working memory, refers to the memory capacity of the human brain that temporarily stores and processes information necessary for work and operation.
 次のステップS22で、自動運転システムは、運転者による手動運転への引継ぎの工程を管理する。例えば、自動運転システムは、運転者の状態を監視し、監視結果とその時点の車両の状態等に基づき、ステップS22で、現時点(現地点)から引継ぎ開始点までの余裕度や、引継ぎ開始までの猶予時間の延長の可否等を判定する。自動運転システムは、判定結果に応じてさらなる通知や、MRMへの移行等の制御を行う。 In the next step S22, the automatic driving system manages the process of handing over to manual driving by the driver. For example, the automatic driving system monitors the driver's condition, and based on the monitoring result and the vehicle condition at that time, in step S22, the margin from the current time (local point) to the transfer start point and the transfer start. Judge whether or not the grace period can be extended. The automatic driving system performs further notification and control such as transition to MRM according to the determination result.
 ここで述べる「余裕度」とは、継続的なパッシブモニタリングを通して検出される運転者のステータス解析から、運転者が運転復帰に要すると推定される時間と比べ、車両が走行中の道路の周囲車両の流れから推定される巡航速度で走行した場合に引継ぎ完了限界点に達するのに要する時間より長く確保が出来る時間である。また、上述の「引継ぎ開始までの猶予時間の延長」とは、車両の走行速度を周囲巡航走行車両の流れを妨害することなく、例えば走行速度の減速や、路肩、一時退避あるいは低速走行レーンに移動する、などにより引継ぎ完了限界点に達する時間を引き延ばすことを指す。 The "margin" mentioned here is a vehicle around the road on which the vehicle is traveling compared to the time estimated for the driver to return to driving from the driver's status analysis detected through continuous passive monitoring. It is a time that can be secured longer than the time required to reach the takeover completion limit point when traveling at the cruising speed estimated from the flow of. In addition, the above-mentioned "extension of the grace time until the start of takeover" means, for example, deceleration of the traveling speed, shoulder, temporary evacuation, or low-speed traveling lane without obstructing the flow of the surrounding cruising vehicle. It refers to extending the time to reach the transfer completion limit point by moving, etc.
 次のステップS23で、自動運転システムは、運転制御の自動運転から手動運転への引継ぎが、例えばステップS22の引継ぎ工程管理で設定された所定の時間内で行われたか否かを判定する。自動運転システムは、所定の時間内に引き継ぎが完了しなかったと判定した場合、図5のステップS14と同様に、車両を退避走行させ、MRMによる緊急停車等を実行させる。 In the next step S23, the automatic operation system determines whether or not the transfer of the operation control from the automatic operation to the manual operation is performed within a predetermined time set in, for example, the transfer process management in step S22. When the automatic driving system determines that the takeover has not been completed within a predetermined time, the vehicle is evacuated and traveled in the same manner as in step S14 of FIG. 5, and an emergency stop or the like by MRM is executed.
 次のステップS24で、自動運転システムは、運転者による手動運転への引継ぎ完了に対する評価を行う。このとき、自動運転システムは、引継ぎに係る運転者の対応に応じて評価点を算出する。例えば、自動運転システムは、運転者により自主的に引継ぎ処理がなされた場合や、仮契約が実行された場合等、引継ぎとして好ましい動作に対しては、評価点を加算する。また、運転者が事前に引継ぎを断念し、休憩等を選択した場合も周辺車両の走行妨害を防ぐ手段が選択されたことに相当し、社会インフラへの影響として好適な処理であり、評価点を加算する。一方、自動運転システムは、再三の警告に対して引継ぎ処理が開始された場合、差し迫った状況も陥ってから引継ぎ処理が開始された場合、車両がMRMによる制御を行い引継ぎに失敗するリスクの増大、等の引継ぎとして好ましくない動作に対しては、評価点をその影響度に応じて減点する。 In the next step S24, the automatic driving system evaluates the completion of handing over to manual driving by the driver. At this time, the automatic driving system calculates the evaluation points according to the response of the driver involved in the takeover. For example, the automatic driving system adds evaluation points to operations that are preferable for taking over, such as when the takeover process is voluntarily performed by the driver or when a provisional contract is executed. In addition, even if the driver gives up taking over in advance and chooses a break, etc., it is equivalent to selecting a means to prevent the driving of surrounding vehicles, which is a suitable process as an impact on social infrastructure, and is an evaluation point. Is added. On the other hand, in the automatic driving system, if the takeover process is started in response to repeated warnings, or if the takeover process is started after an imminent situation occurs, the risk of the vehicle controlling by MRM and failing to take over increases. For operations that are not desirable for taking over, etc., evaluation points are deducted according to the degree of influence.
 次のステップS25で、自動運転システムは、ステップS24で算出した評価点に応じて、運転者に対してインセンシティブあるいはペナルティを付与する。一例として、自動運転システムは、例えば評価点=0を基準として評価点の加減を行う場合、ステップS24で算出した評価点が0を超えた値であれば、運転者に対してインセンシティブを与える。一方、自動運転システムは、ステップS24で算出した評価点が0より低い値であれば、運転者に対してペナルティを課す。評価点がより低い値であるほど、より重いペナルティを課す。ペナルティは、例えば当該運転者の自動運転に対する利用制限や、運転者による2次タスクの従事に対する制限等が考えられる。 In the next step S25, the automatic driving system gives an insensitive or a penalty to the driver according to the evaluation points calculated in the step S24. As an example, when the automatic driving system adjusts the evaluation points based on the evaluation points = 0, for example, if the evaluation points calculated in step S24 exceed 0, the automatic driving system gives the driver insensitivity. .. On the other hand, if the evaluation score calculated in step S24 is lower than 0, the automatic driving system imposes a penalty on the driver. The lower the rating, the heavier the penalty. Penalties may be, for example, restrictions on the use of the driver for automatic driving, restrictions on the driver's engagement in secondary tasks, and the like.
 このように、引継ぎ処理に対する評価に応じて運転者に対してインセンシティブまたはペナルティを付与することで、上述したステップS21における仮契約の際に、引継ぎ作業の運転者のワーキングメモリに対する、リスクを含めた刷り込みが可能となる(ステップS26)。 In this way, by giving the driver an incentive or a penalty according to the evaluation of the takeover process, the risk to the driver's working memory of the takeover work is included in the provisional contract in step S21 described above. Imprinting is possible (step S26).
 本開示の実施形態では、自動運転システムは、運転者の状態を常時監視モニタリングをして観測し、運転者の手動運転への復帰可能性の度合いを評価する。自動運転システムは、手動運転への復帰が遅延なく適正に行えるように、運転者に対して、車両が自動運転による操舵で走行制御中に、手動運転への復帰に必要な、事前復帰要請予告情報を常時、運転者に対して提示する。自動運転システムは、実際の復帰開始タイミングに先立ち、適正な復帰開始タイミングの決定に関する「契約」を運転者との間で結び、その復帰開始タイミングに対する引継ぎ工程の管理を行う。 In the embodiment of the present disclosure, the automatic driving system constantly monitors and observes the driver's condition, and evaluates the degree of possibility of the driver returning to manual driving. The automatic driving system gives the driver a notice of advance return request necessary for returning to manual driving while the vehicle is being controlled by steering by automatic driving so that the return to manual driving can be performed properly without delay. Information is always presented to the driver. Prior to the actual return start timing, the automatic operation system concludes a "contract" with the driver regarding the determination of an appropriate return start timing, and manages the takeover process for the return start timing.
 本開示の実施形態では、このようにして、滑らかで失敗の少ない手動運転への復帰を実現するための、自動運転の人間中心のインタラクティブ制御を行うことで、自動運転の心地よい利用を目指す。つまり、本開示の実施形態では、自動運転システムが車両の置かれたステータスのみを元に手動運転への復帰要請であるトランジションデマンド(Transition Demand)を一方的に通知して運転者の復帰を促すのではなく、運転者と引継ぎの事前知識を共有し、運転者の記憶にも働きかける、システムと運転者とが協調した引継ぎ制御を目指す。 In the embodiment of the present disclosure, in this way, human-centered interactive control of automatic driving is performed in order to realize a smooth return to manual driving with few failures, thereby aiming at comfortable use of automatic driving. That is, in the embodiment of the present disclosure, the automatic driving system unilaterally notifies the transition demand, which is a request for returning to manual driving, based only on the status in which the vehicle is placed, and prompts the driver to return. Instead, we aim for takeover control in which the system and the driver cooperate, sharing prior knowledge of takeover with the driver and working on the driver's memory.
 すなわち、本開示の実施形態に係る自動運転システムは、個々の引継ぎ開始点について、運転者が引継ぎ開始点に関する通知を受けてから手動運転への復帰に要する予測時間より早い時点で、運転者に通知する(図6のステップS20)。そして、運転者は、自動運転システムとの間で、実際の引継ぎ開始点に関して「仮契約」を行う(図6のステップS21)。自動運転システムは、その仮契約に基づいて、引継ぎ工程を管理し、引継ぎのシーケンスのバジェッティングとリスク分散を行う(図6のステップS22)。これにより、運転者は、2次タスクの適切な終了準備と、手動運転に必要な状況の事前把握(例えば手動運転による走行制御に必要な周囲環境の把握)を実行できる。 That is, the automatic driving system according to the embodiment of the present disclosure informs the driver of each takeover start point at a time earlier than the predicted time required for returning to manual operation after the driver is notified of the takeover start point. Notify (step S20 in FIG. 6). Then, the driver makes a "temporary contract" with the automatic driving system regarding the actual takeover start point (step S21 in FIG. 6). Based on the provisional contract, the autonomous driving system manages the takeover process, budgets the takeover sequence, and distributes the risk (step S22 in FIG. 6). As a result, the driver can appropriately prepare for the end of the secondary task and grasp the situation necessary for manual driving in advance (for example, grasp the surrounding environment necessary for driving control by manual driving).
 本開示の実施形態でシステムが運転者と交わす「契約」(図6、ステップS21)は、提供方法を工夫することで、後述するように運転者の視覚野記憶にその引継ぎに対する重要性と凡その時間感覚とを記憶に留めさせる役割もある。 The "contract" (FIG. 6, step S21) that the system makes with the driver in the embodiment of the present disclosure can be described later in the visual cortex memory of the driver by devising a method of providing the "contract" (FIG. 6, step S21). It also has the role of keeping that sense of time in memory.
 自動運転システムと運転者との間で、自動運転から手動運転への引継ぎに必要な事前の契約を結ぶことで、自動運転システムは、運転者に対して引継ぎの重要性の「確実」な伝達を実現できる。自動運転システムは、引継ぎ完了必須地点の伝達と、引継ぎが不完全な場合のリスクとを、事前に運転者に提示することで、運転者の行動判断に関わる判断情報を、ワーキングメモリに「予告情報」として確実に取り込ませることができる。これにより、運転者は、既存技術による、通知を受けてから状況把握を始める状況とは異なり、事前に一定の注意すべき予告情報が一旦記憶に取り込まれる結果、不注意で引継ぎ開始判断を誤ることを予防または少なくとも低減することができる。 By concluding the advance contracts between the autonomous driving system and the driver necessary for the transfer from automatic driving to manual driving, the autonomous driving system can "reliably" convey the importance of the transfer to the driver. Can be realized. The automatic driving system informs the driver in advance of the transmission of the required point for completion of the transfer and the risk when the transfer is incomplete, so that the judgment information related to the driver's behavior judgment is "notified" in the working memory. It can be reliably captured as "information". As a result, unlike the situation in which the driver starts grasping the situation after receiving the notification by the existing technology, a certain amount of notice information to be noted in advance is once taken into the memory, and as a result, the driver inadvertently makes a mistake in the decision to start taking over. That can be prevented or at least reduced.
 また、本開示に係る実施形態によれば、運転者の認知症や痴呆症等により、引継ぎ開始判断に誤りが発生し見落としのリスクがある場合でも、都度、運転者の繰り返される復帰習慣を監視し、それらの誤りの予兆を検知することが可能である。そのため、実施形態に係る自動運転システムによれば、この事前「契約」に基づく効果(すなわち復帰作業が期待される実行)が低下することで、副次的には、高齢者等の認知症や痴呆症等の予兆把握にも利用可能である。 Further, according to the embodiment of the present disclosure, even if there is a risk of oversight due to an error in the decision to start taking over due to dementia or dementia of the driver, the driver's repeated return habits are monitored each time. However, it is possible to detect signs of such errors. Therefore, according to the automatic driving system according to the embodiment, the effect based on this prior "contract" (that is, the execution in which the return work is expected) is reduced, and as a side effect, dementia such as elderly people and the like It can also be used to grasp signs of dementia and the like.
<3-2.実施形態に係るHCD(Human Centered Design)について>
 実施形態に係る自動運転システムは、既存のシステムにおいて一般的に用いられる、装置やシステムを中心とする設計思想であるMCD(Machine Centered Design)に代えて、人(運転者等)を中心とする設計思想であるHCD(Human Centered Design)を適用する。換言すれば、実施形態に係る自動運転システムは、車両制御に人の行動特性を取り入れた協調制御を行う。
<3-2. About HCD (Human Centered Design) according to the embodiment>
The automatic driving system according to the embodiment is centered on people (drivers, etc.) instead of MCD (Machine Centered Design), which is a design concept centered on devices and systems generally used in existing systems. HCD (Human Centered Design), which is a design concept, is applied. In other words, the automatic driving system according to the embodiment performs cooperative control that incorporates human behavior characteristics into vehicle control.
<3-2-1.実施形態に係るHCDの概要>
 先ず、実施形態に係るHCDの概要について説明する。既存のMCDでは、車両に搭載される搭載機器の性能に応じて、自動運転システムが自動運転の利用できるODDを機械的に判定し、その限定した範囲で一意的に自動運転機能の利用を許可する。この場合、利用者が自動運転機能に対して過剰依存利用等を行っても、システムが利用者に対して行う制御は、一方的な制御指示の通知や、警報、あるいは、対応不可能な場合に限り、MRM(Minimal Risk Maneuver)に留まる。
<3-2-1. Outline of HCD according to the embodiment>
First, the outline of the HCD according to the embodiment will be described. In the existing MCD, the automatic driving system mechanically determines the ODD that can be used for automatic driving according to the performance of the on-board equipment mounted on the vehicle, and uniquely permits the use of the automatic driving function within the limited range. do. In this case, even if the user makes excessive dependence on the automatic driving function, the control performed by the system on the user is a one-sided notification of a control instruction, an alarm, or a case where it is impossible to respond. Only in MRM (Minimal Risk Maneuver).
 これに対し、本開示に係るHCDでは、自動運転を利用する際の、利用者による自動運転機能の利用可否を、社会受容性のある範囲で利用が進むように制御する。すなわち、利用可否の制御に、運転者の行動習慣から得られた特性を考慮し、適切な行動習慣がある場合は利用を許容する。一方、不適切な行動習慣(手動運転への復帰要請に応じない、手動運転への復帰行動が遅延する、復帰行動の品質低下、等)に対しては、利用者の行動変容を促すHMI(Human-Machine Interface)を取り入れ、その適応度合いに合わせて、自動運転機能の利用可能範囲を能動的に個人適用する。 On the other hand, in the HCD according to the present disclosure, the availability of the automatic driving function by the user when using the automatic driving is controlled so that the use proceeds within a socially acceptable range. That is, in the control of availability, the characteristics obtained from the behavioral habits of the driver are taken into consideration, and if there is an appropriate behavioral habit, the use is permitted. On the other hand, for inappropriate behavioral habits (not responding to requests for returning to manual driving, delaying returning to manual driving, deterioration of quality of returning behavior, etc.), HMI (HMI) that encourages users to change their behavior. Human-Machine Interface) is adopted, and the usable range of the automatic driving function is actively applied to individuals according to the degree of adaptation.
 このようなHCDの具現化は、単純な機能導入では実現が困難であり、人の利用行動変容を促す多段階の階層的、多次元的でダイナミックな情報のフィードバックが必要となる。本開示では、「契約」の概念を取り入れ、HCDを具現化するための情報のフィードバックを、システムと人(運転者)との間の契約により行う。 It is difficult to realize such HCD by simply introducing a function, and it is necessary to provide multi-step hierarchical, multi-dimensional and dynamic information feedback that promotes changes in human usage behavior. In this disclosure, the concept of "contract" is adopted, and feedback of information for embodying HCD is provided by a contract between the system and a person (driver).
 具体的には、次のようになる。
・自動運転機能の各許容区間の利用開始にあたり、システムと運転者との間で「契約」を交わす。
・その契約に伴う利用区間終了地点への到達前に、急停車や徐行することなく、速やかで安全な手動運転への引継ぎを完了する「付随契約」の確認をシステムと運転者との間で行う。
・利用時間経過に伴う変化状況の再確認に関する付随義務の運転者による履行。
・自動運転の繰り返し利用に伴う「契約」における付随義務の個人実効性評価となる与信付与を、運転者に対して行う(運転者与信)。
・過去の手動運転への復帰義務に関する履行性の評価履歴、つまり、運転者与信から、運転者の復帰個人特性を加味した直近利用中の道路での自動運転許容範囲のODDの再定義を行う。
Specifically, it is as follows.
-Conclude a "contract" between the system and the driver when starting to use each allowable section of the automatic driving function.
-Before reaching the end point of the section used by the contract, the system and the driver confirm the "incidental contract" that completes the transfer to prompt and safe manual driving without sudden stop or slowing down. ..
-Fulfillment by the driver of the incidental obligation regarding reconfirmation of the change status with the passage of usage time.
-Give credit to the driver as an individual effectiveness evaluation of the incidental obligation in the "contract" that accompanies the repeated use of autonomous driving (driver credit).
-Redefine the ODD of the allowable range of automatic driving on the road currently in use, taking into account the personal characteristics of the driver's return from the evaluation history of performance regarding the obligation to return to manual driving in the past, that is, the driver's credit. ..
 システムは、これらを視覚的な情報として運転者に対して提供し、各許可可能区間開始以降の変化も(付帯契約として)、状況変化の変更確認のための視覚的な情報として提供する。例えば、システムは、仮に自動運転の終了点の条件が利用開始時の条件と異なった場合、自動運転の利用を終了すべき要因と、自動運転の終了に対応しなかった場合のリスクとなる結果を描写した視覚情報を用いて、運転者に対する視覚的なフィードバックを行う。HMIを通して運転者に提示された情報により、運手者は、復帰行動を軽視した状況に応じたリスク判断の情報材料が記憶に反映されるために、行動判断心理として復帰要請を軽視した場合の影響を受けることから、記憶がより鮮明化される。 The system provides these as visual information to the driver, and also provides changes after the start of each permitted section (as ancillary contracts) as visual information for confirming changes in the situation. For example, if the condition of the end point of automatic driving is different from the condition at the start of use, the system will be a factor to end the use of automatic driving and a risk if it does not correspond to the end of automatic driving. Visual feedback to the driver is given using the visual information that describes. Based on the information presented to the driver through the HMI, the carrier disregards the return request as a behavioral judgment psychology because the information material of the risk judgment according to the situation that disregards the return behavior is reflected in the memory. Being affected, the memory becomes clearer.
 ところで、ワーキングメモリに残る記憶は、時間の経過に応じて衰退する。特に、手動運転による対処の必要が差し迫っていない状況下において、テレビ放送を鑑賞したり等のNDRA(Non-driving Related Activity)が続くと、その間に手動運転への引継ぎは、主要な関心ではなくなる。そのため、必要性事象の再認識を担うのは、意識外で起こる脳の活動に、潜在意識の中で処理される情報である。したがって、サブリミナル手法等により脳の潜在意識にリスクの記憶を取り込み、運転の引継ぎへの関心を復活させるHMIが重要となる。 By the way, the memory that remains in the working memory declines with the passage of time. In particular, if NDRA (Non-driving Related Activity) such as watching TV broadcasts continues in a situation where there is no urgent need to deal with manual driving, the transfer to manual driving will not be the main concern during that time. .. Therefore, it is the information that is processed in the subconscious by the activity of the brain that occurs outside the consciousness, which is responsible for the re-recognition of the necessary event. Therefore, it is important to have an HMI that incorporates risk memory into the subliminal consciousness of the brain by a subliminal method or the like and restores interest in taking over driving.
 また、システムは、運転者に対して、強制的に前方を注視し確認を促す、走行進行方向確認のための指差呼称の要請と、結果に対する評価を行ってもよい。 In addition, the system may request the driver to point and call for confirming the direction of travel and evaluate the result, forcibly looking ahead and urging the driver to confirm.
 このHCDに基づく制御を実現するために、人の個人差やその置かれた状況のワーキングメモリへの記憶能力に応じた、復帰に必要な記憶の再構築を継続的に行う必要がある。ここで問題となるのは、ヒトの記憶は、外部から直接観測ができる情報ではない点である。そのため、本開示では、システムは、復帰に必要な記憶の継続的な再構築を、運転者との間で交わされる「契約」により実現する。 In order to realize the control based on this HCD, it is necessary to continuously reconstruct the memory necessary for recovery according to the individual difference of the person and the memory ability in the working memory of the situation. The problem here is that human memory is not information that can be directly observed from the outside. Therefore, in the present disclosure, the system realizes the continuous reconstruction of the memory necessary for restoration by the "contract" made with the driver.
<3-2-2.自動運転におけるHCDの優位性について>
 次に、本開示に係るHCDの、自動運転における優位性について説明する。
<3-2-2. About the superiority of HCD in autonomous driving>
Next, the superiority of the HCD according to the present disclosure in automatic driving will be described.
 自動運転技術の社会的導入は、その導入手順によっては、長期的な利用者への影響や関わり方に大きな影響を与える。自動運転技術の導入が社会的に悪い副作用なく成功して導入されるためには、自動運転による弊害を適宜抑制して導入を進める必要がある。すなわち、技術開発が可能とした機能を、人間の行動心理を考慮せずに無制限に提供した場合に、利用者は、必ずしも社会受容性がある範囲でその技術を利用するとは限らない。 The social introduction of autonomous driving technology has a great impact on long-term users and how they are involved, depending on the introduction procedure. In order for the introduction of autonomous driving technology to be successfully introduced without any socially adverse side effects, it is necessary to appropriately suppress the harmful effects of autonomous driving and proceed with the introduction. That is, when the functions made possible by technological development are provided indefinitely without considering human behavioral psychology, the user does not necessarily use the technology to the extent that it is socially acceptable.
 既存の自動運転の社会導入の概念は、技術の到達レベル(SAEの自動運転レベル等)に合わせて段階的に自動運転機能の導入を進める、すなわち、技術開発の成果に伴い自動で行える機能の範囲から順次利用を拡大して社会導入を進めるものである。換言すれば、既存の自動運転の社会導入の概念とは、技術開発の成果を基準にして、つまり機械の開発達成性能に応じて、SAE等で自動運転レベル2~4に定める自動運転機能の性能段階で、自動運転の社会導入を順次進める考えを指している。 The existing concept of social introduction of autonomous driving is to gradually introduce the autonomous driving function according to the achievement level of the technology (SAE autonomous driving level, etc.), that is, the function that can be automatically performed according to the result of technological development. The purpose is to gradually expand the use from the range and promote the introduction to society. In other words, the concept of social introduction of existing autonomous driving is based on the results of technological development, that is, according to the achievement performance of machine development, the autonomous driving function defined by SAE etc. at autonomous driving levels 2 to 4. It refers to the idea of gradually promoting the social introduction of autonomous driving at the performance stage.
 これに対して、本開示に係る技術では、自動運転機能を利用する運転者の装置に対する順応の力量に応じて、つまりは、運転者が技術を適切に利用できる受動能力が備わっているかに応じて、提供する自動運転の機能を動的に変え、自動運転制御の許容度合いを動的に制御する。 On the other hand, in the technology according to the present disclosure, it depends on the ability of the driver to adapt to the device using the automatic driving function, that is, whether the driver has a passive ability to appropriately use the technology. Therefore, the function of the provided automatic driving is dynamically changed, and the allowable degree of the automatic driving control is dynamically controlled.
 すなわち、本開示においては、自動運転の機械的、機能的構成が全く同じであったとしても、実際の自動運転の機能提供は、利用者である運転者が機能を安全に利用できる行動適合性を備えているかに応じて、その利用者が実際に利用できる自動運転の機能を動的に変更する。本開示は、このようなHCDの考えを、自動運転システムの制御運用に適用する技術に関する。 That is, in the present disclosure, even if the mechanical and functional configurations of the automatic driving are exactly the same, the actual provision of the automatic driving function is behavioral suitability so that the driver who is the user can safely use the function. Dynamically change the automatic driving function that the user can actually use, depending on whether or not the vehicle is equipped with. The present disclosure relates to a technique for applying such an idea of HCD to the control operation of an automatic driving system.
<3-2-2-1.過剰依存について>
 適切な自動運転機能の利用には、運転者が自動運転機能に過剰に依存をしない利用が必要となる。自動運転機能に対する過剰な依存に関する最も単純なケースとして、例えば、設計上で明らかに運転者が制御に携わる想定であるにも関わらず、運転者が走行に必要な前方注意や周囲監視義務を怠る場合が挙げられる。この場合、運転者による前走車に対する注意が低下し、車間距離に対する不注意状態に陥るおそれがある。すなわち、例えば車線維持支援システム等の機能に限定された自動運転機能を利用中に、それが限られた補助機能であるにも関わらず、自車の前後に自車に干渉する他車両や障害が接近していなければ、運転者がこの自動運転機能に依存してしまう事態が発生し得る。運転者がこれらの支援に安心感を覚えた場合には、運転注意が低下することにも繋がり、緊急時の対処行動において、判断の遅延や過剰回避行動を生じさせてしまう可能性がある。
<3--2-2-1. About overdependence>
In order to use the appropriate automatic driving function, it is necessary for the driver not to be overly dependent on the automatic driving function. The simplest case of excessive reliance on autonomous driving functions is, for example, the driver neglecting the forward attention and surrounding monitoring obligations necessary for driving, even though the design clearly assumes that the driver is involved in control. There are cases. In this case, the driver's attention to the vehicle in front may be reduced, and the driver may be inattentive to the inter-vehicle distance. That is, while using an automatic driving function limited to functions such as a lane keeping support system, other vehicles or obstacles that interfere with the own vehicle before and after the own vehicle even though it is a limited auxiliary function. If they are not close to each other, it may happen that the driver depends on this automatic driving function. If the driver feels reassured by these types of support, it may lead to a decrease in driving attention, which may lead to delays in judgment and excessive avoidance behavior in emergency coping behavior.
 このような注意低下に係る事態が起こると、運転者は、緊急事態に対する対処の遅延や過剰回避動作、対処不能といった事態に陥ってしまう可能性があり、その場合、慌てて緊急減速をすることもあり、その減速や慌てた動作で後続車の追突や渋滞発生等の2次被害を引き起こすおそれがある。自動運転レベル2の自動運転のように、より複合的で複雑な状況でも自動で操舵制御の対応が可能となると、運転者が操舵に直接関与する頻度が減る。運転者は、それら運転支援機能に安心感を覚えてしまい、本来対処が必要な場合に備えて継続注意等必要であるにも関わらず、必要な注意が疎かになりがちとなる。 When such a situation related to a decrease in attention occurs, the driver may fall into a situation such as a delay in dealing with an emergency situation, an excessive avoidance action, or an inability to deal with it. There is also a risk that the deceleration or rushed operation will cause secondary damage such as a rear-end collision with a following vehicle or the occurrence of traffic congestion. If it becomes possible to automatically handle steering control even in more complex and complicated situations such as automatic driving of automatic driving level 2, the frequency with which the driver is directly involved in steering is reduced. The driver feels reassured by these driving support functions, and the necessary attention tends to be neglected even though continuous caution is required in case the driver originally needs to take measures.
 自動運転レベル2より高度な自動運転の導入となると、運転者は必ずしも常時前方注意が求められなくなることから、この問題はより複雑になる。システムが自動制御のまま走行を継続すると搭載機器の状況判断対処能力の限界を超え危険と判断した場合、自動運転レベル4で走行している車両であれば、システムにより、自動運転を継続することを断念して運転者に運転を適切に引き継いでもらうための手順を開始する必要がある。あるいは、緊急性のある突発事象で運転者による引継ぎが困難であれば、自動でリスクの最小化処置を開始する必要がある。この場合において、運転者がシステムからの指示に従い速やかに手動運転への復帰を開始せず、手動運転への復帰等の対処を疎かにすることで、システムが限界点に到達するための時間を遅らせるために、車両を周囲の車両の走行速度に逆らい減速させたり、MRMを開始したり、システムが事故予防対策を講じた状況を招く事態が生じ得る。これは、自動運転の過剰依存の好例である。 When the introduction of autonomous driving higher than the autonomous driving level 2 is introduced, the driver is not always required to pay attention to the front, so this problem becomes more complicated. If it is judged that it is dangerous to continue driving with the system under automatic control, the limit of the situation judgment coping ability of the on-board equipment is exceeded, if the vehicle is running at automatic driving level 4, the system should continue automatic driving. It is necessary to give up and start the procedure to have the driver take over the driving properly. Alternatively, if it is difficult for the driver to take over due to an urgent sudden event, it is necessary to automatically start the risk minimization procedure. In this case, the driver does not promptly start the return to the manual operation according to the instruction from the system, and neglects the measures such as the return to the manual operation to allow the system to reach the limit point. In order to delay, the vehicle may be decelerated against the traveling speed of surrounding vehicles, MRM may be started, or the system may lead to a situation where accident prevention measures are taken. This is a good example of overdependence in autonomous driving.
 同じように、自動運転レベル2や自動運転レベル3の自動運転であっても、支援が高度化することで、多くの走行中条件下で運転者による頻繁な操舵介入を行わなくとも、システムが適切且つ無難に事象対処を実行することを体感することになる。車両走行時の継続注意低下がリクス感覚に直結せずに旅程をこなすことが可能となることから、運転者は、システムが事象を対処する状況に甘んじしまう。そして、運転者は、自動運転の依存利用に慣れ、運転者によるシステムの不完全性に対する懐疑心が薄れることが起こり得る。 Similarly, even in autonomous driving level 2 and autonomous driving level 3, the advanced support allows the system to be able to operate under many driving conditions without frequent steering intervention by the driver. You will experience the appropriate and safe implementation of event handling. The driver is content with the situation in which the system deals with the event, as it is possible to complete the itinerary without a direct decrease in attention when the vehicle is running, which is not directly linked to the sense of risk. And the driver may become accustomed to the dependent use of autonomous driving, and the driver's skepticism about system imperfections may diminish.
 自動運転レベル2や自動運転レベル3の場合であれば、運転者に対して異常事態の即時対処が求められるために、注意の低下が許容されないのに対して、自動運転レベル4では、この注意低下に陥りかねない。さらには、この自動運転レベル2や自動運転レベル3では運転者に対して継続的な注意が求められる一方で、実際には、例えば人間工学的に見て運転者がこの注意義務を常に履行可能かは保証されるものではない。 In the case of automatic driving level 2 or automatic driving level 3, the driver is required to take immediate action in an abnormal situation, so a decrease in attention is not allowed, whereas in automatic driving level 4, this caution is not allowed. It can fall into a decline. Furthermore, while this automatic driving level 2 and automatic driving level 3 require continuous attention to the driver, in reality, for example, from an ergonomic point of view, the driver can always fulfill this duty of care. Is not guaranteed.
 すなわち、機械の設計機能が開発で達成できた性能に合わせて、利用者がその個々の設計限界を正しく理解して利用することを利用者に一方的に強いた状況であり、その設計性能に沿って利用者が期待通り技術を使いこなして貰える想定で、技術の社会導入をした場合、その技術に対する過剰依存の課題が残る。一般的には、人間心理としては、新しい未知の技術に対しては懐疑心を抱き、無意識的に予防策を講じて対処する。しかしながら、自動運転の開発と普及が進むことより、自動運転の機能が高度・多様化して利用に際して不安感や懐疑心が次第に低下すると、この過剰依存の課題はますます大きくなり、問題となりうる。 In other words, it is a situation in which the user is unilaterally forced to understand and use the individual design limits correctly according to the performance that the design function of the machine can achieve in the development, and the design performance is affected. If the technology is introduced into society on the assumption that the user will be able to use the technology as expected, the problem of overdependence on the technology remains. In general, human psychology is skeptical of new and unknown technologies and unconsciously takes preventive measures to deal with them. However, as the development and spread of autonomous driving progresses, the functions of autonomous driving become more sophisticated and diversified, and anxiety and skepticism in using it gradually decrease, and this problem of overdependence becomes even greater and can become a problem.
 本開示は、この本質的な課題を、単に意識の低下や注意低下する課題と捉えて利用者の注意低下等を防止するシステムとして対処(警告、覚醒復帰等)するのではなく、利用者の行動心理がこの自動運転の限界性能に合わせて自然と自己学習し適合していくために必要な、一連の仕組みの導入に必要な技術に関する。つまり、本開示では、利用者に対して、利用者自身による繰り返し利用行動を次第に変化させる行動改善・行動変容を促すのに必要な一連の制御を行い、その利用行動の改善を促すために階層化された仕組みで運転者に作用をする機構を提供する。 This disclosure does not deal with this essential problem as a system that prevents the user's attention loss, etc. by simply considering it as a problem of lowering consciousness or attention (warning, return to awakening, etc.), but by the user. It relates to the technology necessary for introducing a series of mechanisms necessary for behavioral psychology to naturally self-learn and adapt to the limit performance of this automatic driving. In other words, in this disclosure, a series of controls necessary to encourage the user to improve / change the behavior that gradually changes the repeated use behavior by the user himself / herself are performed, and the hierarchy is used to promote the improvement of the use behavior. It provides a mechanism that acts on the driver with a modified mechanism.
<3-2-2-2.HCDについて>
 本開示のポイントは、車両と運転者の関係を、既存のMCDから、HCDとし、人がどう行動するかでシステムの稼働領域を決定する。そして、決定された稼働領域が、人の行動ルーチンの如何で、利用者が得られる車両利用時のベネフィットに影響を与える。システムは、利用者が心地よいと感じることができる状況であって、且つ、そのフィードバックループに、社会的活動に意図せずとも阻害(渋滞や追突事故、道路封鎖等)を及ぼさない、ための重み付けを行う。本開示では、システムが、このように重み付けを行ったシステム制御と人の行動習慣の育成とを好循環で維持する上で有効なHMIに関する。
<3-2-2-2. About HCD>
The point of this disclosure is to change the relationship between the vehicle and the driver from the existing MCD to the HCD, and determine the operating area of the system depending on how the person behaves. Then, the determined operating area influences the benefits that the user can obtain when using the vehicle, depending on the behavior routine of the person. The system is weighted so that the user can feel comfortable and the feedback loop is not unintentionally disturbed (traffic jam, rear-end collision, road blockage, etc.). I do. The present disclosure relates to an HMI in which the system is effective in maintaining such weighted system control and fostering human behavioral habits in a virtuous cycle.
 つまり、既存の自動運転機能を搭載した車両の利用が提供される機能への単純依存型から脱却し、協調利用する行動変容が利用者には求められる。この利用行動の変容を生み出すには、その変化を生み出す仕組みが必要である。本開示は、この協調利用の行動変容を生み出す個々要素の仕組みとその全体の運用に関する技術を提案する。 In other words, users are required to move away from the simple dependence on the functions provided by the use of vehicles equipped with existing autonomous driving functions, and to change their behavior in a coordinated manner. In order to create this change in usage behavior, a mechanism to create that change is necessary. This disclosure proposes the mechanism of each element that produces the behavior change of this cooperative use and the technology related to its overall operation.
 このHCDの利用形態を可能とするには、利用者の行動変容が不可欠であり、行動変容を生み出すためのHMIも必要となる。HCDとは、単に利用者に対し、欲望のあるがままに機能の利用をさせる仕組みでではなく、利用者が機能を快適に使いこなすために自然と必要な対処動作等を促すために発現させる仕組み全体である。人間的な行動とは、人間における動物的本能の欲するがままに利用を許容するための設計ではなく、現代社会の中で社会的秩序を保つために求められるルールを守るために(または守られるために)必要な自発的な行動と行動変容を伴う仕組みを取り込んだデザインと再定義をした上で、そのために求められる機能設計と考えることができる。 In order to enable this usage pattern of HCD, behavior change of the user is indispensable, and HMI for producing the behavior change is also required. HCD is not just a mechanism that allows users to use functions as they desire, but a mechanism that is expressed to encourage users to take necessary coping actions naturally in order to use the functions comfortably. The whole. Human behavior is not designed to allow the use of animal instincts in humans as desired, but to adhere to (or to be followed) the rules required to maintain social order in modern society. It can be considered as a functional design required for that purpose after redefining it with a design that incorporates the necessary spontaneous behavior and a mechanism that involves behavior change.
 より具体的に説明する。先ず、自動運転を社会に導入するに際して条件如何で使用可否が変わることになるが、システムが自動で車両の操舵制御を行う機能を備えていることが前提となる。 I will explain more specifically. First, when introducing autonomous driving into society, the availability will change depending on the conditions, but it is a prerequisite that the system has a function to automatically control the steering of the vehicle.
 車両が外部より情報を取得して情報の補完を行いながら環境を把握し、自車の走行プラニングを行いそのプラニングに沿って走行を進める機能は、最低限に必要となる。その上で、システムとして、全ての条件でこの一連の処理を実行できる保証の確認が取れない場合、運転者による手動運転への速やかな復帰を求めるか、復帰を求める必要がないか、に応じて、自動運転レベル2を超える、自動運転レベル3あるいは自動運転レベル4の自動運転走行が許容される。 The function of the vehicle to acquire information from the outside, supplement the information, grasp the environment, plan the driving of the own vehicle, and proceed with the planning is required at the minimum. In addition, if the system cannot confirm the guarantee that this series of processes can be executed under all conditions, it depends on whether the driver is required to return to manual operation promptly or not. Therefore, automatic driving of automatic driving level 3 or automatic driving level 4 exceeding the automatic driving level 2 is permitted.
 さらには、例えば自動運転レベル4の自動運転走行において、自動走行中の車両が旅程走行の終了点到達までに、1回以上の自動運転終了が発生する可能性がある。この場合、必然的に、自動運転終了の際の手動運転への引継ぎシーケンスが、旅程内に複数回にわたり含まれることになる。 Furthermore, for example, in automatic driving of automatic driving level 4, there is a possibility that one or more automatic driving ends will occur before the vehicle in automatic driving reaches the end point of the itinerary driving. In this case, inevitably, the transfer sequence to the manual operation at the end of the automatic operation will be included in the itinerary multiple times.
 ここで、自動運転レベル4よりさらに高機能な自動運転レベル5がSAEにより定義されている。自動運転レベル5は、閉鎖環境における起動、あるいは、環境や環境情報取得に多額のインフラ投資をして周囲より高精細、高リフレッシュレートの情報更新を行うLDMを整えた上で運用され、例えばロボットタクシー等に適用される。この自動運転レベル5におけるロボットタクシーのような運用とならない限り、一般利用者向けの、自動運転レベル4利用を可能とした車両では、運転者となる利用者には、旅程途中で、自動運転から手動運転への復帰が多様に求められることとなる。 Here, SAE defines automatic operation level 5, which is more sophisticated than automatic operation level 4. Autonomous driving level 5 is operated after starting in a closed environment or investing a large amount of infrastructure in acquiring environment and environmental information and preparing an LDM that updates information with higher definition and higher refresh rate than the surroundings, for example, a robot. Applies to taxis, etc. Unless it is operated like a robot taxi at this automatic driving level 5, in a vehicle that enables the use of automatic driving level 4 for general users, the user who will be the driver will be asked to start automatic driving during the itinerary. There will be various demands for returning to manual operation.
 車両の自動運転の機能の必要条件は、その車両の設計と開発により対処できる達成限界として決まる。この場合において、その最適処理に付与できる情報入手リソースの多さ、自律またや外部取得と所得のリソースの多さ、演算に付与できるパワーやコストリソースといったように、よりコストを掛けた上で装備を構築し、インフラ整備をすることで自動運転走行が可能な限界を引き延ばすことは可能である。一方で、復帰の要請頻度や自動運転が利用できる利用可能範囲は違えども、自動運転から手動運転への復帰が求められる状況を皆無にすることは、極めて難しい。そのため、車両を利用する際に発生するこれら引継ぎ要請に対して適切な運転者介在が実現されるHCDが、既存のMCDの代わりに求められる。  The requirements for the automatic driving function of a vehicle are determined by the achievement limits that can be dealt with by the design and development of the vehicle. In this case, it is equipped with more cost, such as a large amount of information acquisition resources that can be given to the optimum processing, a large amount of resources for autonomous or external acquisition and income, and power and cost resources that can be given to operations. It is possible to extend the limit of autonomous driving by constructing and improving the infrastructure. On the other hand, although the frequency of requests for return and the available range in which automatic operation can be used are different, it is extremely difficult to eliminate the situation where return from automatic operation to manual operation is required. Therefore, an HCD that realizes appropriate driver intervention in response to these takeover requests that occur when using a vehicle is required in place of the existing MCD. It was
 システムの構成を、装置の性能に従属的に従うMCDから人との協調を重視したHCDに変更した場合において、利用者に対して過剰依存をせずに適切な利用を促す。そのためには、利用者にとり自動運転を利用することで得られるベネフィットとそのベネフィットを享受するために負う損失やリスクとのバランスをシステムが利用を通して運転者に自己学習させ、利用者が心地よく利用し必要な義務を負いながら、そのバランスの中でベネフィットを引き出す仕組みが必要である。 When the system configuration is changed from MCD that depends on the performance of the device to HCD that emphasizes cooperation with humans, the user is encouraged to use it appropriately without overdependence. For that purpose, the system allows the driver to self-learn the balance between the benefits obtained by using autonomous driving for the user and the loss and risk incurred to enjoy the benefits, and the user can use it comfortably. It is necessary to have a mechanism to bring out the benefits in the balance while bearing the necessary obligations.
<3-2-2-3.運転者におけるベネフィットについて>
 では、車両利用者にとってのベネフィットは何になるかという視点で見ると、次に示すように、その目指すベネフィットは、1つか、あるいはそれ以上の複合的なものとなる。
<3-2-2-3. Benefits for drivers>
Then, from the viewpoint of what the benefits for vehicle users will be, as shown below, the benefits to be aimed at will be one or more complex.
 先ず、ベネフィットを得るための行動の例を以下に記述する。
(1)出発とするA地点から目的とするB地点までの移動を純粋に達成する。
(2)その2地点の移動を快適な移動で達成する。
(3)より低予算で移動を達成する。
(4)より短時間で移動を達成する。
(5)予定した時間で移動を達成する。
(6)より低疲労で移動を達成する。
(7)疲労困憊な状態や体調不良でも目的とする移動を成し遂げる。
(8)ともかく現場を離れる。
(9)必要な物品輸送の目的を達成する。
(10)娯楽として天気の良い屋外や景色の良好なドライブを実行する。
(11)移動の間に運転以外の作業(2次タスクすなわちNDRA)に適宜携わることができる。
First, examples of actions to obtain benefits are described below.
(1) Purely achieve the movement from the starting point A to the target point B.
(2) Achieve the movement of the two points with comfortable movement.
(3) Achieve movement with a lower budget.
(4) Achieve movement in a shorter time.
(5) Achieve the move at the scheduled time.
(6) Achieve movement with less fatigue.
(7) Achieve the desired movement even in a state of exhaustion or poor physical condition.
(8) Leave the site anyway.
(9) Achieve the purpose of transporting necessary goods.
(10) As entertainment, drive outdoors in good weather or in a scenic view.
(11) During the movement, it is possible to appropriately engage in work other than driving (secondary task, that is, NDRA).
 上述の項目(11)における、移動の間に実行するNDRAの例としては、次のようなものを挙げることができる。
(11-1)飲食
(11-2)モバイル端末等によるブラウジング
(11-3)メールのテキスティング
(11-4)テレカンファレンスの実施
(11-5)離席、配送物梱包の振り分け等の実行
(11-6)化粧や、身嗜みを整える。
(11-7)カラオケ、映画鑑賞、スポーツテレビ中継の閲覧等の実行
(11-8)スマートフォン、携帯電話、タブレット型コンピュータ、ノート型コンピュータ、…といった端末装置の操作
(11-9)移動中の景色の鑑賞
(11-10)鞄等の中身確認、失せ物の探索
(11-11)同席者との会話ややり取り、クロスワード等のゲーム
(11-12)その他e-スポーツ
(11-13)渋滞時等に限った負担軽減としての自動運転利用ベネフィット
(11-14)一時的な体調不良(足のつり等)への一次対処
(11-15)一時的な視力低下
(11-16)目薬の点眼利用、目薬点眼に伴う一時的な視力低下のサポート
(11-17)喘息や癲癇の発作対応
(11-18)自動運転レベル4で安全に走行が可能な区間走行中であれば、その間の一時的な仮眠
(11-19)未定義処理の実施
Examples of the NDRA executed during the movement in the above item (11) include the following.
(11-1) Eating and drinking (11-2) Browsing using mobile terminals, etc. (11-3) Email texting (11-4) Implementation of teleconference (11-5) Execution of leaving seats, sorting deliveries, etc. (11-6) Make up and adjust your personal taste.
(11-7) Execution of karaoke, watching movies, watching sports TV broadcasts, etc. (11-8) Operation of terminal devices such as smartphones, mobile phones, tablet computers, notebook computers, etc. (11-9) On the move Appreciating the scenery (11-10) Checking the contents of bags, searching for lost items (11-11) Conversations and exchanges with attendees, games such as crosswords (11-12) Other e-sports (11-13) Congestion Benefits of using automatic driving to reduce the burden only at times (11-14) Primary measures for temporary poor physical condition (foot swelling, etc.) (11-15) Temporary deterioration of eyesight (11-16) Eye drops Use of eye drops, support for temporary deterioration of eyesight due to eye drops (11-17) Response to seizures of asthma and epilepsy (11-18) If you are driving in a section where you can drive safely at automatic driving level 4, during that period Temporary nap (11-19) Implementation of undefined processing
  ベネフィットを得るための行動の例として、さらに、下記も考えられる。
(12)自動運転の機能を最大限継続的に利用可能
(13)利用に伴う利用損失が発生しない
(14)利害関係者に迷惑を掛けない。
Further examples of actions to gain benefits include:
(12) The function of automatic driving can be used continuously as much as possible (13) There is no usage loss due to the use (14) It does not bother interested parties.
 自動運転利用の走行中に自動運転から手動運転への復帰の必要性が発生した場合、システムより復帰要請が発せられた際に運転者の手動運転への適切な復帰ができないと、上述したように、MRMとしての緊急減速や退避停車等を行う必要が出てくる。そのため、社会的な人や物流幹線道路の遮断や渋滞、追突事故誘発等の、自動運転の負の側面が露呈するおそれがある。 As mentioned above, if there is a need to return from automatic driving to manual driving while driving using automatic driving, the driver cannot properly return to manual driving when a return request is issued by the system. In addition, it becomes necessary to perform emergency deceleration and evacuation stop as MRM. Therefore, there is a risk that the negative aspects of autonomous driving, such as the interruption of social people and distribution arterial roads, traffic congestion, and the induction of rear-end collisions, will be exposed.
 利用者個人から見た場合に、これら緊急制御に対して2次的に発生する損失は、自身の車両が追突される事故に合う場合を除けば、後続車へのみ影響を及ぼすに過ぎず、自身の適切な復帰対処行動を促すベネフィットを損なう要因とはならないと考えられる。つまり、HCDの視点で自動運転の利用を単純に運転者の良識に委ねると、社会的な秩序が保てないという事態を招くおそれがある。 From the individual user's point of view, the secondary losses to these emergency controls only affect the following vehicle, except in the case of a rear-end collision with their own vehicle. It is not considered to be a factor that impairs the benefits of encouraging one's proper reinstatement coping behavior. In other words, if the use of autonomous driving is simply entrusted to the driver's good sense from the perspective of HCD, there is a risk that social order cannot be maintained.
 そこで、HCDの制御を導入しつつ、社会的な秩序を保ち適切な利用者行動を促すには、例えば上述した(1)~(14)の各項に挙げたベネフィットを得る中で、要請された復帰に対して遅延なく復帰を動機付ける仕組みが必要となってくる。しかしながら、道徳的な動機付けは理念でしかなく、自動運転を利用する運転者に対し、復帰要請の無視や遅延対応を行わない、道徳に基づく行動を期待して教育を行っても、適切な復帰の実効性が伴うとは限らない。 Therefore, in order to maintain social order and promote appropriate user behavior while introducing HCD control, for example, it is requested while obtaining the benefits listed in the above-mentioned items (1) to (14). It is necessary to have a mechanism to motivate the return without delay. However, moral motivation is only an idea, and it is appropriate to educate drivers who use autonomous driving with the expectation of moral behavior without ignoring return requests or responding to delays. The effectiveness of the return is not always accompanied.
 運転者がシステムの復帰要請に対して適切で速やかな対応を取るための行動変容を引き出すには、ベネフィットを得る代わりに復帰要請を軽視した際のリスクを負い、そのバランスとして、復帰要請が運転者の行動心理に直接的に作用する必要がある。つまり、何かしらの形で、実効性のあるリスク側面の入力が運転者に対して働く仕組みが必要である。メリット、ベネフィットと、その際のリスクを被るバランスとして行動が決まるからである。 In order to elicit a behavior change for the driver to take an appropriate and prompt response to the system return request, he / she bears the risk of neglecting the return request instead of gaining benefits, and the balance is that the return request is driving. It needs to act directly on the behavioral psychology of the person. In other words, there needs to be a mechanism in which effective risk aspect input works for the driver in some way. This is because the behavior is determined by the balance between the merits and benefits and the risks involved.
 復帰要請に対する復帰行動をミクロ的に促す公知例は、例えば特開2019-026247号公報や特開2016-153960号公報が知られている。特開2019-026247号公報には、運転者の覚醒維持のため、冷風を運転者に吹き付ける技術が開示されている。また、特開2016-153960号公報には、アラームを用いて運転者に対して段階的に覚醒通知を与える技術が開示されている。これらの公知例は、運転者の自動運転機能の使用や利用の仕方に対するマクロ的な行動変容を促す仕組みではなかった。 For example, Japanese Patent Application Laid-Open No. 2019-026247 and Japanese Patent Application Laid-Open No. 2016-153960 are known as publicly known examples that microscopically promote a return action in response to a return request. Japanese Patent Application Laid-Open No. 2019-026247 discloses a technique of blowing cold air to a driver in order to maintain the driver's awakening. Further, Japanese Patent Application Laid-Open No. 2016-153960 discloses a technique for giving awakening notification to a driver step by step by using an alarm. These publicly known examples were not mechanisms for promoting macroscopic behavioral changes in the use and usage of the driver's automatic driving function.
 例えば、早く到達するベネフィットを得るために、高速道路を利用する際に利用料金を払うデメリットとのバランスで、高速道路を、利用料金が高いときは利用せずに、利用料金の安いときにのみ利用する、等の例が思考的に行うバランスとなる。また、自動運転中にNDRAとしてスポーツ中継を観戦し、引継ぎ要請を受けても直ちに中断せずに観戦を継続した場合に、運転者に対するデメリットとして、運転者に対してペナルティを与えることができる。この場合、ペナルティとして、放送の閲覧権限の一定期間または同日閲覧禁止、車両の退避スペース強制停車処置等一定期間の自動運転再利用の禁止等を与えることが考えられ、その利用者にとってのデメリットは人それぞれとなる。 For example, in order to obtain the benefit of arriving early, in balance with the disadvantage of paying the usage fee when using the highway, do not use the highway when the usage fee is high, but only when the usage fee is low. Examples such as using are thoughtful balances. In addition, if a sports broadcast is watched as NDRA during automatic driving and the watch is continued without interruption immediately after receiving a transfer request, a penalty can be given to the driver as a demerit to the driver. In this case, as a penalty, it is conceivable to give a certain period of viewing authority of the broadcast or prohibition of viewing on the same day, prohibition of automatic driving reuse for a certain period such as forced stop of the vehicle evacuation space, and the disadvantage for the user. It will be different for each person.
<3-2-2-4.運転の際の運転者の作業記憶(ワーキングメモリ)、思考について>
 ここで、HCDの制御で社会インフラの崩壊を招かないためには、個々の利用者にとってのメリットやデメリットが何であろうと、最終的には人間の行動に帰結し、引継ぎ要請時刻から復帰限界地点までに、基本走行巡行速度を下げることなく、スムースで且つ高品質な手動運転走行への引継ぎが求められる。
<3-2-2-4. About the driver's working memory and thinking when driving>
Here, in order not to cause the collapse of social infrastructure by controlling HCD, whatever the advantages and disadvantages for individual users, it will eventually result in human behavior, and the return limit point from the time when the transfer request is made. By then, it is required to take over to smooth and high-quality manual driving without lowering the basic cruising speed.
 ここで、復帰(引継ぎ)行動の品質について説明する。運転者の行動には、運転者毎に個人差があることから、システムは、対象の運転者の通常の引継ぎ行動の学習を行い、その行動により学習した運転者行動に基づいて、当該運転者の復帰に要する時間推定を行う。復帰行動の品質とは、運転者がシステムからの復帰要請に応じて速やかに復帰行動を実行し時間内に復帰動作を完了する、あるいは、復帰を時間内に終える通知を行ったにも関わらず、学習して通常復帰に期待される復帰行動を運転者が取らずに、復帰開始の引き延ばし、緩慢な動作などにより通常の学習された復帰行動には見られない行動を取る、などの行動品質評価より指標化した行動評価全体を示す。 Here, the quality of the return (takeover) action will be explained. Since there are individual differences in driver behavior for each driver, the system learns the normal takeover behavior of the target driver, and based on the driver behavior learned from that behavior, the driver concerned. Estimate the time required for the return of. The quality of the return action is that the driver promptly executes the return action in response to the return request from the system and completes the return action in time, or gives a notification that the return is completed in time. Behavior quality such as delaying the start of return and taking actions that are not seen in normal learned return behavior due to slow movement, etc., without the driver taking the return behavior expected for normal return after learning. The overall behavioral evaluation indexed from the evaluation is shown.
 つまり、HCD視点でこの利用者による復帰に必要な制御を、次の視点でとらえる必要がある。 In other words, it is necessary to grasp the control necessary for this user's return from the HCD viewpoint from the next viewpoint.
 利用者が機器や車両の性能等、高度で緻密な設計により実現した自動運転システムが決定する、見えないODDの詳細状況を理解したうえで行動判断をして対応することは、余り期待できない。そのために、自動運転システムは、利用者にベネフィットやリスクを感覚として直感的に捉えさせることが可能な、描写可能な具現化したリスクとして、利用者に提示する仕組みが必要となる。 It cannot be expected that the user will make an action decision after understanding the detailed situation of the invisible ODD, which is determined by the automatic driving system realized by the advanced and precise design such as the performance of the equipment and the vehicle. Therefore, the autonomous driving system needs a mechanism to present to the user as a descriptive and embodied risk that allows the user to intuitively grasp the benefits and risks as a sense.
 ヒトの脳は、有限な情報からリスク判断を行い、限られた時間内でリスクを下げる対処行動を見いだして行動に移す。人間の行動心理として、必要なタイミングで必要な対処行動を取ることができるかは、その人がその対処行動を取る必要性、およびその必然性がどのように過去の経験から習得学習されているかで、経験や経歴に依存することになり、個人毎に異なる。他方で、自動運転が高度化すると、より多様な状況にも自動で運転操舵が継続的に対処可能となることが期待される。 The human brain makes risk judgments from finite information, finds coping behaviors that reduce risk within a limited time, and takes action. As a human behavioral psychology, whether or not a person can take the necessary coping action at the necessary timing depends on the necessity of the person taking the coping action and how the necessity is learned from past experience. , It depends on experience and background, and it varies from person to person. On the other hand, as autonomous driving becomes more sophisticated, it is expected that driving and steering will be able to continuously handle more diverse situations.
 自動運転システムが多様な状況に対処するために、運転者の自動運転から手動運転への復帰介在の必要性が、少なくとも感覚的には薄れることから、運転者のシステムに対する懐疑心も次第に薄らいでいき、運転者は、いざ必要な事態が生じた際に、咄嗟の運転操舵に備えての前方注意や側後方確認、追従する前方の車両の観測確認を次第に行わなくなる。 The driver's skepticism about the system is gradually diminishing, as the need for the driver to intervene in the return from automatic driving to manual driving is diminished, at least sensuously, in order for the autonomous driving system to cope with various situations. In the meantime, when a necessary situation arises, the driver will gradually stop paying attention to the front, checking the side and rear, and checking the observation of the vehicle in front of him in preparation for driving and steering.
 そのため、運転者は、手動運転への急な復帰要請をシステムから要求されても、運転手による主体的な操舵作業ループから一旦離れると、思考が運転以外の注意や興味事項に移行してしまう。これにより、システムから運転者に対して手動運転への復帰要請が通知され、運転手がその通知を捉えたとしても、運転者は、一旦途切れた状況の把握から始めるために、不足した情報を取り込み状況把握が可能となり、実際の引継ぎ事故を回避する為の行動を起こせるまでに、長い時間が必要となる。また、運転者が、NDRAとして、物理的に運転席から離れて行う行動・行為を開始すると、意識復帰までを含む移動にはさらに多くの時間を要することとなる。 Therefore, even if the system requests a sudden return to manual driving, the driver shifts his thinking to attention and interests other than driving once he leaves the driver's independent steering work loop. .. As a result, the system notifies the driver of a request to return to manual operation, and even if the driver catches the notification, the driver needs to provide the missing information in order to start from grasping the interrupted situation. It will take a long time before it becomes possible to grasp the uptake status and take action to avoid an actual takeover accident. In addition, when the driver, as NDRA, starts an action / action that is physically separated from the driver's seat, it will take more time to move including the recovery of consciousness.
 人が手動で車を運転する場合には、進路上で発生した様々な事象や、その都度発生するその多くの発生事象に対して、無難に対処を成し遂げて事故無く、進行の滞留も控え運転作業をこなしている。しかしながら、一見この何気なく無難に運転をこなす作業の裏には、実際には、無意識ながら多くの情報を事前に確認し、その情報から操作に伴う影響の未来予測を行うために、都度判断に必要な情報を事前に探査してある程度の安心感を取得し、事故予防に必要な行動判断の遅延を防ぐ工夫をしている。 When a person drives a car manually, he / she can safely deal with various events that occur in the course and many of the events that occur each time, without any accidents, and refrain from staying in progress. I'm doing the work. However, behind the seemingly casual and safe driving work, in reality, it is necessary to unknowingly confirm a lot of information in advance and make a judgment each time in order to predict the future of the impact of the operation from that information. We are devising ways to prevent delays in action decisions necessary for accident prevention by exploring various information in advance to obtain a certain degree of security.
 例えば、ブレーキペダルを踏む動作一つをとっても、そのブレーキペダルを踏む際に運転者が事前に把握する情報は、
・ブレーキペダルの踏み具合に伴う車両の制動の掛かり方、
・自車車両の貨物、
・乗員積載量で要する制動に必要な距離が長くなっているかの判断情報、
・路面スリップのリスク(濡れ、積雪等)を把握し、事前に減速して該当区間に差し掛かるか、
・前走車の振る舞いからの予測、
・後続車の存在やその車種にともなる急減速の危険性判断、
・走行先の霧の発生状況、
・逆光等の視界阻害要因で判断が遅れるリスクの有無、
等、多数の情報を組み合わせ、最終的な危険予防のために、最終制動ブレーキを掛けることになる。
For example, even if one action of stepping on the brake pedal is taken, the information that the driver grasps in advance when stepping on the brake pedal is
・ How to apply the brakes of the vehicle according to the degree of depression of the brake pedal,
・ Cargo of own vehicle,
・ Judgment information on whether the distance required for braking required by the occupant load capacity is long,
・ Understand the risk of road slip (wetness, snow cover, etc.) and decelerate in advance to reach the relevant section.
・ Prediction from the behavior of the vehicle in front,
・ Judgment of the danger of sudden deceleration due to the existence of the following vehicle and its model,
・ Fog generation at the destination,
・ Whether there is a risk that judgment will be delayed due to factors that obstruct visibility such as backlight.
Etc., a lot of information will be combined and the final braking brake will be applied for the final danger prevention.
 つまり、自動運転で運転者が運転操舵ループから一旦大きく外れると、運転操舵制御に必要な関連事前の記憶情報(ワーキングメモリ)が未取得、すなわち、状況を未把握な状態で、自動運転から手動運転への引継ぎを開始することになる。運転者に対して機械的に、急に引継ぎ要請を出しても、その運転者がこれまでで事前の判断情報を瞬時に取得することできるとは限らない。 In other words, once the driver deviates significantly from the driving steering loop in automatic driving, the related prior storage information (working memory) required for driving steering control has not been acquired, that is, the situation is not grasped, and the automatic driving is manually performed. The transfer to operation will be started. Even if a driver is mechanically and suddenly requested to take over, the driver may not always be able to instantly obtain prior judgment information.
 そのため、運転者は、状況の把握が不足したまま咄嗟の行動対処判断が求められると、パニック状態に陥るおそれがあり、この場合、パニック状態のまま行動対処が求められる状況になりかねない。つまり、人の判断の過程を考慮したHCDの制御を可能にするには、システムとして、この運転者の思考、姿勢等の状態の復帰に要する時間と、自動運転のまま継続走行が可能なシステムや道路環境の状況把握とのバランスを取り、常に自動運転で継続走行が可能な残存猶予区間が確保される選択肢を確保した運転者の復帰要請を出す仕組みが求められるといえる。 Therefore, the driver may fall into a panic state if he / she is required to make a decision on how to deal with the behavior while he / she is not fully aware of the situation. In this case, the driver may be required to take action in the panic state. In other words, in order to enable HCD control that takes into account the process of human judgment, as a system, the time required to restore the state of the driver's thoughts, posture, etc., and a system that enables continuous driving with automatic driving. It can be said that there is a need for a mechanism to request the return of the driver who has secured the option of securing the remaining grace section that allows continuous driving by automatic driving at all times, in balance with grasping the situation of the road environment.
 このとき、人の思考状態を推定することは、実際には極めて困難である。例えば、運転者を外見から観測しただけでは、一見すると運転者の視線は前方に向け意識的に見て思考は注意をしているように見えても、実際には運転に関わらない別の事を考えている等が起こり得る。このような場合、運転者の思考(ワーキングメモリ)が運転とは全く異なる事象に割り当てられ、ワーキングメモリには運転行動判断に必要な情報が不足した状況に陥っている可能性がある。 At this time, it is actually extremely difficult to estimate the thinking state of a person. For example, just by observing the driver from the outside, the driver's line of sight looks forward and the thought seems to be paying attention, but it is not actually related to driving. It may happen that you are thinking about. In such a case, the driver's thinking (working memory) may be assigned to an event completely different from driving, and the working memory may be in a situation where the information necessary for determining the driving behavior is insufficient.
 システムは、自動運転機能を安全に利用できる区間が終了する前に、運転者が手動運転に正常に復帰するのに要する時間(猶予時間)を推定する必要がある。既存の手動運転の場合であれば、例えば運転者による前方不注意は、危険性の見落としに繋がり、事故に直結するおそれがある。そのために、運転者は、必然的に前方に対する注意を怠った事態に陥らないように、基本的には、運転以外の作業に一時的に関わったとしても、運転に必要な情報収集を継続的に中断することはない。 The system needs to estimate the time (grace time) required for the driver to return to normal driving before the end of the section where the automatic driving function can be safely used. In the case of existing manual operation, for example, carelessness ahead by the driver may lead to oversight of danger and may directly lead to an accident. Therefore, in order not to inevitably fall into a situation where the driver neglects to pay attention to the front, basically, even if he / she is temporarily involved in work other than driving, he / she continuously collects information necessary for driving. There is no interruption.
 そのため、既存の手動運転時には、運転者は絶え間なく目視注意を断続的に行うため、運転に対する眠気等の注意離脱は、それら行動の低下を観測することで観測データに基づき指標化が容易である。一方、自動運転レベル1以上の自動運転機能を利用すると、運転者は操舵に求められる一部作業が不要になることから、自動運転機能が自動運転レベル1以上に高度になるに連れ、運転者が運転に介在する必要性が次第に少なくなる。これにより、運転者による安全な運転操舵判断による情報収集と判断行動が次第に減り、完全な手動運転へ復帰の通知を受けてから状況把握し判断行動に及ぶには、不足した追加情報の取得が必要となり、時間を要するようになる。 Therefore, during the existing manual driving, the driver constantly pays attention to the eyes intermittently, and it is easy to index the withdrawal of attention such as drowsiness for driving based on the observation data by observing the decrease in their behavior. .. On the other hand, if the automatic driving function of automatic driving level 1 or higher is used, the driver does not need to perform some work required for steering. Therefore, as the automatic driving function becomes more advanced to automatic driving level 1 or higher, the driver Gradually reduces the need to intervene in driving. As a result, the amount of information gathering and judgment behavior by the driver based on safe driving and steering judgment is gradually reduced, and additional information that is insufficient to grasp the situation and take judgment behavior after receiving the notification of returning to complete manual driving is required. It will be necessary and time consuming.
 人が行動を起こすトリガには、思考的な手順に基づいたトリガと、思考的な手順が欠落しても危険回避のために咄嗟に行動に反映される刺激によるトリガとがある。ここで、後者の行動は、反射的な回避行動であり、情報不測の中で行う限られた情報に基づくリスク回避行動となることから、行動に適切な思考的フィードバックが適切且つ有効に働いていないままの行動になることが多い。 There are two types of triggers for a person to take action: a trigger based on a thoughtful procedure and a trigger by a stimulus that is reflected in the action in order to avoid danger even if the thoughtful procedure is missing. Here, since the latter behavior is a reflexive avoidance behavior and is a risk avoidance behavior based on limited information performed in an information contingency, thought feedback appropriate for the behavior works appropriately and effectively. Often the behavior is untouched.
 つまり、通常の手動運転制御を継続的に行っている場合、運転者は、走行前方を常に監視確認しつつ制御を行うために、ステアリングを急操作したり、ブレーキペダルを急に踏んだり、あるいは、それらを必要以上に過剰に行ったりすることは、通常はない。一方で、脇見や不注意で自車が車線を外れようとしていたり、前走車のブレーキに気付かずに状況把握ができていないままリスクだけに気を取られていたりしたような場合、必要以上の過剰なステアリングの急操作や、急ブレーキ等により、車両の横転、後続車追突、車のスピン等思わぬ惨事を招くこともある。 In other words, when the normal manual operation control is continuously performed, the driver suddenly operates the steering, suddenly depresses the brake pedal, or suddenly presses the brake pedal in order to control while constantly monitoring and confirming the front of the vehicle. , It is not usually the case to overdo them more than necessary. On the other hand, if your vehicle is trying to get out of the lane due to inattentiveness or carelessness, or if you are distracted only by the risk without noticing the brakes of the vehicle in front and not being able to grasp the situation, it is more than necessary. Excessive steering operation or sudden braking may cause unexpected disasters such as vehicle rollover, rear-end collision with the following vehicle, and vehicle spin.
 この適切な行動制御の欠如の要因としては、行動量の抑制に必要なワーキングメモリに対する二次被害予測を可能とする情報の不足や、対処を必要とする情報の過多等が考えられる。情報の過多が起こると、思考のパニックに至り、対処の度合いの制御といった適切な対処フィードバック行動が困難となるために、例えば回避のための過剰操舵といった動作になる。さらには、人の情報収集には、行動判断等に不要な情報を継続的に受け続けた場合に、それら不要な情報を除外して不要な情報をフィルタリングする機能も備わっている。 The cause of this lack of appropriate behavioral control is considered to be the lack of information that enables the prediction of secondary damage to the working memory required to control the amount of behavior, and the excess of information that needs to be dealt with. Excessive information leads to a panic of thinking and makes it difficult to perform appropriate coping feedback actions such as controlling the degree of coping, resulting in an operation such as excessive steering for avoidance. Furthermore, human information collection also has a function to filter out unnecessary information by excluding such unnecessary information when continuously receiving unnecessary information for behavioral judgment or the like.
 そのため、引継ぎに関連する情報であっても、通常の利用において判断に不要な情報も変化なく継続的、機械的に、システムから運転者に一方的に提供をし続けると、それらの情報が運転者のワーキングメモリを占有することになる。これは、他の重要である可能性のある情報を得るための阻害要因となるため、そのような不要な情報は、脳で無意識のうちにノイズとして認識されて重要性の重みを失い、フィルタリングされることとなる。このように、ヒトが物理的には取得された外界情報のうち、脳の思考に入る前の段階でフィルタリング処理される良い事例として、心理学等の分野で「カクテルパーティー効果」と呼ばれる、騒音の中でも特定の人の会話はよく聞こえる効果が知られている。 Therefore, even if the information is related to the transfer, if the information that is not necessary for judgment in normal use is continuously and mechanically provided to the driver unilaterally from the system, the information will be operated. It will occupy the working memory of the person. Such unwanted information is unknowingly perceived as noise by the brain and loses its weight of importance and is filtered, as this is an obstacle to obtaining other potentially important information. Will be done. In this way, among the external world information physically acquired by humans, noise, which is called the "cocktail party effect" in the field of psychology, is a good example of filtering processing before entering the thinking of the brain. Among them, it is known that the conversation of a specific person can be heard well.
 この、人の脳が情報の選別利用する仕組みを踏まえ、走行に伴って多用に繰り広げられ、更新され、それら新たなルート上に現れる事象を迫りくる継続的な情報として、どのようして運転者に与え、システムが与える情報を元に運転者が引継ぎに重要となる関連情報をどのように判断するかを決定するワーキングメモリに重要とに沿って割り当て、判断につなげていく仕組みが必要となる。 Based on this mechanism by which the human brain selects and uses information, how is the driver as continuous information that is frequently unfolded and updated as the vehicle travels, and that the events that appear on these new routes are urged? It is necessary to allocate it to the working memory, which determines how the driver decides how to judge the related information that is important for taking over based on the information given by the system, and to connect it to the judgment. ..
 ここで、人のワーキングメモリという脳の領域は、直接的に観測を行い可視化できるものではなく、ワーキングメモリに対して直接的に作用することは、今日の技術では明示的な形での実現は極めて困難である。運転者のその時々に置かれた状況で、運転者の思考活動の優先事情は千差万別であり、このワーキングメモリというものは、直接的にシステムが情報を残せるものではない。 Here, the brain region of human working memory cannot be directly observed and visualized, and the fact that it acts directly on working memory is not explicitly realized by today's technology. It's extremely difficult. There are many different priorities for the driver's thinking activities depending on the situation of the driver at that time, and this working memory is not something that the system can directly leave information on.
 システムには、人のこれら特性を踏まえた上で、自動運転中の運転者が自動運転利用可能な区間が終了する前に余裕をもって引継ぎを行うために、運転者に対して行動の優先度ファクタとなる固有情報を提供し、且つ、その個々の情報がその運転者にとって意味合いを成す影響の尺度を運転者に学習させる必要がある。つまり、運転者への単純な情報提供では、提供された情報がその運転者にとってノイズと同等となってしまう可能性がある。したがって、提供された情報が結果予測で意味を成し、学習を通して運転者にとってデメリットとなるリスクがあれば、その情報は、重要度のある、ワーキングメモリ上の優先度の高い情報ということになる。 Based on these characteristics of human beings, the system has a priority factor for actions for drivers in order to take over the autonomous driving with a margin before the end of the section where autonomous driving is available. It is necessary to provide the unique information to be used and to train the driver to measure the influence of the individual information on the driver. That is, in the case of simple information provision to the driver, the provided information may be equivalent to noise for the driver. Therefore, if the information provided makes sense in predicting results and there is a risk of detriment to the driver through learning, that information is important, high priority information in working memory. ..
<3-2-2-5.システムと運転者との間の「契約」について>
 ここで、システムが通知した情報を運転者が受け取り、その受け取りに責任を取って対処する、最初のシステムと運転者との通知のやり取りと確認動作を、システムと運転者との「契約」と見做す。初期契約から、その初期契約に基づく引継ぎ作業の実行と「契約の達成度合い」とが復帰推移(復帰動作)の品質として、可観測情報に基づき解析される。解析された復帰動作の品質は、その運転者の契約の実行に対する「信用情報」となる。この信用情報は、次回の旅程や先の旅程セグメントで、その契約より高品質の良品が自動運転への切り替え再利用の際の利用可否判定の閾値として利用され、且つ、これら都度の運転者にその対処事象、影響、視覚的感覚としてフィードバックすることで、運転者における直感的感覚として強化学習が進む。
<3-2-2-5. About the "contract" between the system and the driver>
Here, the exchange and confirmation operation of the notification between the first system and the driver, in which the driver receives the information notified by the system and takes responsibility for the receipt, is referred to as the "contract" between the system and the driver. I consider it. From the initial contract, the execution of the takeover work based on the initial contract and the "degree of achievement of the contract" are analyzed based on the observable information as the quality of the return transition (return operation). The quality of the analyzed return motion is the "credit information" for the execution of the driver's contract. This credit information will be used as a threshold for determining the availability of non-defective products with higher quality than the contract when switching to automatic driving and reusing in the next itinerary or the previous itinerary segment, and will be used by the driver each time. Reinforcement learning progresses as an intuitive sensation in the driver by feeding back the coping event, influence, and visual sensation.
 つまり、この一連の「契約」を、システムから運転者に対して一方的に通知された情報の単なる受け身ではなく、当該通知に対して応答することで行う。運転者は、当事者として、通知に対する応答を、その契約に対する自身の手動運転への復帰義務として捉える。運転者は、その復帰義務に沿って対応する一連の繰り返し作業を通して、自動運転システムの利用に自主的参加ができたHCDの制御が可能となる。 In other words, this series of "contracts" is performed by responding to the notification, not just the passive information that the system has unilaterally notified to the driver. As a party, the driver sees the response to the notification as an obligation to return to his manual driving for the contract. The driver will be able to control the HCD that has voluntarily participated in the use of the autonomous driving system through a series of repetitive operations corresponding to the return obligation.
 本開示の実施形態にて記載の個々の情報の提示方法は、このHCDを達成するために用いることができる多様の手段のうちの一部の代表的手段を記載しているにすぎず、これら記載の例に限定されるものではない。とりわけ、運転者が「契約」の契約事項を記憶にどのように納め、その義務を時間的経過に対してどう思い出し高い優先度で必要な時刻に遅れなく履行実行できるかは、人により様々で違いがあり、限定をする必要はない。 The method of presenting the individual information described in the embodiments of the present disclosure merely describes some representative means of the various means that can be used to achieve this HCD. It is not limited to the examples described. In particular, how drivers can remember the terms of a "contract", remember their obligations over time, and fulfill them with high priority and without delay at the required time will vary from person to person. There is a difference and there is no need to limit it.
 HCDとは、単純な特定の情報を運転者提供する単純な制御ではない。HCDは、人の認知判断行動の視点で捉えた、システムのあるべき利用に伴う機能を果たすための配慮を取り入れた、より大局的な視点の設計である。より具体的には、HCDは、望ましい認知行動が発達し育つために必要な仕組みを取り入れたシステムを構築することが必要である。 HCD is not a simple control that provides the driver with simple specific information. HCD is a design from a broader perspective that incorporates consideration for fulfilling the functions associated with the intended use of the system, which is grasped from the perspective of human cognitive judgment behavior. More specifically, HCD needs to build a system that incorporates the mechanisms necessary for the development and development of desirable cognitive behavior.
 人の行動心理は、自発的に無条件で望ましい行動発達が進むのではない。すなわち、人は、家族や地域、社会の一員である個人に求める規範やルールに則って、その中で自分が求める欲求等のメリットと、その社会が規定・規範として構築した刑罰等のデメリットや自身が社会規範等に関わらず直接的に被るリスクとのバランスで、その人固有の行動心理が発達し、物事に対処をするようになる。この視点で、自動運転機能の一つである運転支援の段階がもたらす人間行動の心理への影響は、デメリットあるいはリスクとしては、直接的な運転操舵ミスや疲労等による注意力低下に対するリスク感覚の低減であり、不必要な安心感の向上がある。 Human behavioral psychology does not spontaneously and unconditionally promote desirable behavioral development. In other words, a person has the merits of the desires, etc. that he or she seeks in accordance with the norms and rules that are required of an individual who is a member of a family, community, or society, and the disadvantages of punishment, etc. that the society has established as rules and norms. A person's unique behavioral psychology develops and he / she comes to deal with things in a balance with the risk that he / she directly suffers regardless of social norms. From this point of view, the psychological impact of human behavior brought about by the stage of driving support, which is one of the automatic driving functions, is a demerit or risk of a sense of risk for a decrease in attention due to direct driving steering mistakes or fatigue. It is a reduction, and there is an unnecessary improvement in security.
 しかしながら、そもそもの運転支援システムの利用は、快適性を向上させることや、本来の注意力をもって車両の利用をしている運転者が、万が一にも注意力低下や重要情報の見落としをした場合でも、事故の予防や回避を可能とし、最悪の場合でも事故の重症化のリスクを軽減することを究極の目的としている。 However, the use of the driving support system in the first place improves comfort, and even if the driver who uses the vehicle with his / her original attention should lose his / her attention or overlook important information. The ultimate goal is to enable accident prevention and avoidance, and to reduce the risk of accident aggravation in the worst case.
 そこで、本開示の実施形態では、運転者による運転支援システムへの過剰な依存を避けるために、システムが支援介入する全ての操舵に快適性のみを追求するのではなく、明らかな過剰依存に対し、運転者にとっての不快な制御の導入、支援機能の強制的な停止、といった、自動運転システムによる自己回避処理は実行しても、運転者にとってペナルティとなる代替リクスの付与を行う。これにより、運転者による自動運転システムへの過剰依存が、直接の事故に繋がることは回避できても、完全なリスク回避とはならない仕組みとすることで、運転者の節度ある利用心理の循環を構築している。 Therefore, in the embodiment of the present disclosure, in order to avoid excessive dependence on the driving support system by the driver, not only comfort is pursued for all steering in which the system assists and intervenes, but also for obvious excessive dependence. Even if the self-avoidance process by the automatic driving system is executed, such as the introduction of unpleasant control for the driver and the forced stop of the support function, the alternative risk that is a penalty for the driver is given. As a result, even if it is possible to prevent the driver's excessive dependence on the autonomous driving system from leading to a direct accident, it will not be a complete risk aversion, thereby creating a cycle of modest usage psychology of the driver. I'm building.
 ここで、システムにおいて、運転支援を超えて自動運転の機能が加わると、システムの利用概念が大きく変わることになる。特に、自動運転レベル4の、運転者が走行制御に全く関与を求められない期間が存在することで、運転者に対し、運転操舵が機能的にはリスクが全く伴わない状況が発生してしまう。 Here, if the automatic driving function is added to the system beyond the driving support, the concept of using the system will change drastically. In particular, since there is a period in which the driver is not required to be involved in driving control at all at the automatic driving level 4, a situation occurs in which the driving steering is functionally risk-free for the driver. ..
 MCDの考えでは、自動運転レベル4で走行が可能な条件が全て整うのであればそれでよいのであろうが、既に述べた通り、自動運転がもたらす過剰依存の利用は交通渋滞など様々な負の影響をもたらす可能性があることから、社会の仕組みとしては、自動運転レベル4の無秩序な利用は、望ましい状況ではない。システム利用には節度のある、利用にあたって守らねばならいないルールがあり、その代表的なルールが、条件の整った利用範囲でのみ自動運転を利用することである。 In MCD's view, it would be fine if all the conditions for driving at autonomous driving level 4 are met, but as already mentioned, the use of excessive dependence brought about by autonomous driving has various negative effects such as traffic congestion. As a social mechanism, the chaotic use of autonomous driving level 4 is not a desirable situation. There are modest rules for using the system that must be observed, and a typical rule is to use autonomous driving only within the range of use where conditions are met.
 HCDの考えに基づき、秩序ある社会規範に則った利用とは、自動運転システムが自動運転レベル4での利用を許容した区間に限定して運転者がNDRAに関われる自動運転レベル4の利用をしつつも、その終了が予測された状況や状況変化でその必要性が発生した際に速やかに社会規範が定める行動を運転者が自己学習習得でき、日常における利用でその習慣の強化学習が進む仕組みが備わっている必要がある。 Based on the idea of HCD, the use in accordance with the orderly social norms means the use of the automatic driving level 4 in which the driver is involved in NDRA only in the section where the automatic driving system allows the use in the automatic driving level 4. However, the driver can quickly learn the behavior stipulated by social norms when the necessity arises due to the situation where the end is predicted or the situation change, and the strengthening learning of the habit progresses by daily use. It needs to have a mechanism.
 つまり、運転者の、復帰要請通知後の速やかで好適な復帰行動品質への行動変容が進まないと、「ご褒美(ベネフィット)」としての自動運転レベル4の自動運転を利用するメリットを享受することができない。そして、人の判断思考に必要となる「リスク」の初期情報が、システムから運転者に提示される「契約」に対する運転者の承認により、無意識のうちに記憶に仮に保存される情報である。自動運転レベル4利用の一区間の開始後に起こり得る変化や、再確認のHMIによるシステムと運転者とのインタラクションが、時間経過と共に起こる変化に対す条件見直しの「付帯契約」となる。また、運転者が自動運転レベル4の区間走行を再開する度に、一度終了ポイントの情報に接し、合意の下で、つまり復帰必要性と凡その復帰タイミングや終了要請情報に接して、自動運転レベル4とシステムが設定判断したODD区間内の走行旅程を開始する。 In other words, if the driver's behavior change to a prompt and suitable return behavior quality after the notification of the return request does not proceed, he / she will enjoy the merit of using the automatic driving level 4 automatic driving as a "benefit". I can't. Then, the initial information of the "risk" necessary for human judgment thinking is the information that is unknowingly temporarily stored in the memory by the driver's approval of the "contract" presented to the driver by the system. Changes that may occur after the start of one section of autonomous driving level 4 use and the interaction between the system and the driver by the reconfirmation HMI become an "incidental contract" for reviewing the conditions for changes that occur over time. In addition, every time the driver resumes driving in the section of automatic driving level 4, he / she comes into contact with the information of the end point once, and under the agreement, that is, in contact with the necessity of return and the general return timing and end request information, automatic driving is performed. The driving itinerary within the ODD section determined by the system as level 4 is started.
 本開示でいう「契約」は、概念的には、物理的な書面等を実際に介したやり取りに拘らず、システムと運転者との間で行われるインタラクションであればよい。そのインタラクションを通して、運転者の記憶に対し、復帰の必要性とその影響リスク、違反した場合の結果の重症度が伝わることで、対処の重要度に応じて忘れにくい記憶情報となる。 Conceptually, the "contract" referred to in this disclosure may be an interaction between the system and the driver regardless of the actual exchange via physical documents or the like. Through the interaction, the driver's memory is informed of the necessity of recovery, the risk of its influence, and the severity of the result in case of violation, so that it becomes memory information that is hard to forget according to the importance of coping.
 運転者は、システムが許容した自動運転レベル4の自動運転を無条件に使用できるのではなく、自動運転から手動運転への復帰義務を付帯条件として含めて、当該自動運転を利用可能となる。運転者によるその付帯条件の順守の品質が、その運転者による後々の自動運転の利用の際の与信評価となる。例えば、当該運転者による自動運転の機能利用が許容利用に違反した場合、自動運転の利用メリットであるNDRA等の実行許可メリットが一切得られず、また例えば、重大違反では、罰則や自動運転、さらには車両の利用制限などがデメリットとなることが考えられる。このようなデメリットにより、運転者は、旅程の途中途中でリスク予測の予告情報に対して認知感度が育ち、さらに強化学習が進むと、メリットを失わず最大化に寄与する予告情報に対する感度が増すようになる。 The driver cannot unconditionally use the automatic driving of the automatic driving level 4 permitted by the system, but can use the automatic driving by including the obligation to return from the automatic driving to the manual driving as an incidental condition. The quality of the driver's compliance with the incidental conditions is the credit evaluation when the driver uses the automatic driving later. For example, if the driver's use of the automatic driving function violates the permissible use, the execution permission merit such as NDRA, which is the merit of using the automatic driving, cannot be obtained at all. Furthermore, restrictions on the use of vehicles may be a disadvantage. Due to these disadvantages, the driver becomes more cognitively sensitive to the risk prediction notice information in the middle of the itinerary, and as reinforcement learning progresses, the driver becomes more sensitive to the notice information that contributes to maximization without losing the merit. It will be like.
 すなわち、本開示の実施形態に係るHCDによる自動運転制御は、従来のMCDによる、単純に、引継ぎ地点が差し迫った場合に警報を発し、強制的に運転者の意識を回復させる仕組みをシステムに組み込んだり、そもそも運転者の意識が運転操舵ループから離れないためにシステムが定期的に復帰要請を強制したりする概念とは全く異なる。 That is, the automatic operation control by the HCD according to the embodiment of the present disclosure incorporates into the system a mechanism by the conventional MCD that simply issues an alarm when the transfer point is imminent and forcibly restores the driver's consciousness. However, it is completely different from the concept that the system periodically forces a return request because the driver's consciousness does not leave the driving steering loop in the first place.
 この従来のMCDによる制御概念は、運転者にとって、直感的には煩わしいだけであると考えられる。したがって、一部の運転者は、その煩わしさ解消のためアラームの働きを弱めてしまうこともあり、アラームに対して不感となりアラームを余り気にせずにNDRAに没頭することが習慣となってしまう状況を招く可能性がある。この、システムが発するアラームを運転者が無視する、アラームが例えば単調ブザー音の繰り返しであれば運転者の聴覚フィルタリング効果で重要視さなれなくなってしまう、といった事態にも繋がる。 It is considered that this conventional MCD control concept is only intuitively annoying to the driver. Therefore, some drivers may weaken the function of the alarm in order to eliminate the annoyance, and it becomes a habit to become insensitive to the alarm and immerse themselves in NDRA without worrying too much about the alarm. It can lead to situations. This leads to a situation in which the driver ignores the alarm issued by the system, or if the alarm is, for example, a repeated monotonous buzzer sound, the driver's auditory filtering effect makes it unimportant.
 上述で詳細に説明した、システムは、運転者に対して復帰要請を出すに当たり、運転者の近未来に影響を及ぼすリスク情報を、適宜変化情報として運転者に多元的および可変的に、すなわち一律でない方法で提示し、運転者は、この提示に対して、「付帯条件」の再確認を能動的に行う。これにより、運転者のワーキングメモリには、リスク情報が、聴覚性言語中枢、視覚性言語中枢、視覚野など異なる記憶に分散記憶刺激され、その運転者の復帰に対する記憶刺激が単調ではなくなる。 In issuing a return request to the driver, the system described in detail above uses the risk information that affects the driver's near future as appropriate change information to the driver in a multidimensional and variable manner, that is, uniformly. The driver actively reconfirms the "incidental conditions" in response to this presentation. As a result, the risk information is distributed to different memories such as the auditory language center, the visual language center, and the visual field in the driver's working memory, and the memory stimulus for the driver's return is not monotonous.
 その結果、マインドワンダリングのような、運転操舵タスクから切り離れた思考の遊離があった場合であっても、復帰義務の忘却が抑制されることになる。この自動運転レベル4区間における自動運転を開始する際に、「契約」に付帯する、復帰義務での復帰が必要な要因情報の視覚提示を行う。また、自動運転レベル4区間における自動運転の途中工程でも、運転者の忘れ易さの特性に沿って、更新情報に沿って新たな更新情報提示を行う。運転者は、これらの情報提示によりリスクの再評価が可能となるので、運転者のワーキングメモリの重要記憶の再活性化が可能となる。 As a result, even if there is a release of thought that is separated from the driving steering task, such as mind wandering, forgetting of the obligation to return will be suppressed. At the time of starting the automatic driving in the automatic driving level 4 section, the factor information that is attached to the "contract" and requires the return by the return obligation is visually presented. Further, even in the intermediate process of automatic driving in the automatic driving level 4 section, new updated information is presented according to the updated information according to the characteristics of the driver's ease of forgetting. Since the driver can re-evaluate the risk by presenting this information, it is possible to reactivate the important memory of the driver's working memory.
 なお、もう一つ、HCDに基づく重要な点は、システムから運転者に対する通知や警報による刺激の、運転の行動判断に必要な認知への寄与が、単純にその通知の強度(音の大きさなど)として作用するのではなく、その運転者の個人固有のリスクに繋がる刺激に対する感度の違い応じて作用する点にある。 Another important point based on HCD is that the contribution of the system's notification to the driver and the stimulus by the alarm to the cognition necessary for the judgment of driving behavior is simply the strength of the notification (loudness). It does not act as (etc.), but acts according to the difference in sensitivity to stimuli that lead to the driver's individual risk.
 つまり、HCDにおいては、物理的な刺激の強さが重要なのではなく、脳内において、近未来の判断にとって重要とされる情報ほど優先的に感度を上げて処理し、あまり重要でない情報は後回しにする仕組みが備わっていることを利用する。実施形態では、システムが、その人の個人の特性として備わっている特定情報群に対して育ち備わった情報の提示の仕方を人工知能等で機械学習し、影響度のある情報を用いて早期判断を促すHMIの設計を行う。 In other words, in HCD, the strength of physical stimulus is not important, but in the brain, information that is important for judgment in the near future is processed with higher sensitivity, and less important information is postponed. Take advantage of the fact that there is a mechanism to make it. In the embodiment, the system machine-learns how to present the information that has grown up to the specific information group that is possessed as the individual characteristic of the person by artificial intelligence or the like, and makes an early judgment using the information that has an influence. Design the HMI to encourage.
 例えば、全ての情報を視覚情報に限定して情報の提示の手法を絞り込むのではなく、複数の異なる情報を用いて総合的に刺激を加えることで、運転者に情報の提示を行う。具体的には、運転者に対して聴覚である特定音を聞かせ、その音に続いて視覚的通知を行うことで、運転者に対して刺激を与えることが考えられる。そして、システムは、この刺激に対して運転者の応答が素早く的確に行われた場合には、運転者に優良運転者としての与信加点を与える。さらに、その優良運転者に対する与信加点を、機械的記憶媒体(メモリ、ハードディスクドライブなど)への単純な追加加点保存に留めるのではなく、その場で運転者にHMIを介した直感的な視覚フィードバックを合わせて行う。これにより、運転者の「契約」に基づく予定されたタイミング、状況下で的確な早期復帰を履行する義務が直感的に紐づき、運転者自身による対応の最適化が進む、運転者の心理上の強化学習が起こる。 For example, instead of limiting all information to visual information and narrowing down the method of presenting information, information is presented to the driver by comprehensively stimulating using multiple different information. Specifically, it is conceivable to give a stimulus to the driver by letting the driver hear a specific sound that is auditory and then giving a visual notification following the sound. Then, the system gives the driver credit points as a good driver when the driver's response to this stimulus is quickly and accurately performed. In addition, the credit points added to the good driver are not limited to simple additional points stored in the mechanical storage medium (memory, hard disk drive, etc.), but intuitive visual feedback to the driver on the spot via the HMI. Do it together. As a result, the driver's psychological psychology is that the scheduled timing based on the driver's "contract" and the obligation to perform an accurate early return under the circumstances are intuitively linked, and the driver's own response is optimized. Reinforcement learning occurs.
 判断のトリガを司る視神経であるニューロンでは、ミクロ的に見ればシナプスに多数の要因因子の刺激が加わり、注意が必要な情報を一時的に保持した記憶は、この発火待機の警戒状態に相当する。近い将来のリスクを抱えた関連情報に対しては感度を上げ、判断に必要な情報で、いざ必要な刺激を受けた場合に速やかな行動対処がとれるよう、記憶の重要事項を基準に対処の待機状態にあるのが、所謂行動判断のワーキングメモリに関連情報を取り入れている状況となる。そして、この刺激パスが多く多様であれば、それだけマインドワンダリングなどで思考の浮遊が一時的に起きても、優先度を高く保持するためのアンカー効果となり、同時並列的に提示されるリスク因子の視覚や聴覚情報により必要性が強く保持させることができる。 In neurons, which are the optic nerves that trigger decisions, microscopically, synapses are stimulated by a large number of factors, and the memory that temporarily holds information that requires attention corresponds to this alert state of waiting for firing. .. Increase sensitivity to related information that has risks in the near future, and deal with important matters of memory so that you can take prompt action when you receive the necessary stimulus with the information necessary for judgment. The state of waiting is the situation where related information is incorporated into the so-called action judgment working memory. And if this stimulus path is many and diverse, it will be an anchor effect to keep the priority high even if the floating of thought occurs temporarily due to mind wandering etc., and it will be a risk factor presented in parallel at the same time. The need can be strongly maintained by the visual and auditory information of.
 つまり、システムが運転者に対して提示した「契約」や「付帯契約」を、運転者が確認する行為は、運転者による情報の再確認となる。この情報の再確認の動作は、ミクロ的には、判断の発火に至る手前の状態にシナプスの電位を活性化させておく役割が果たすと見做せる。判断視神経がこの準備スタンバイ状態に置かれるために、自動運転レベル4などODDとして許容された区間終了に近付いた際の些細な情報に対する運転者の知覚感度が上がる。これにより、運転者において、得られる情報が完全でなくとも、必要性意識が高まった状況に置かれるため、記憶が不十分であればリスクの上昇を抑えるために自主的に情報補充を試みるので、結果として初期「契約」に基づいてその「付帯義務」の完了を目指す。運転者が不安を感じた場合、例えば契約に関するステータス画面を目視で再確認する行動に反映される。 In other words, the act of the driver confirming the "contract" or "incidental contract" presented to the driver by the system is a reconfirmation of the information by the driver. Microscopically, the operation of reconfirming this information can be considered to play a role in activating the synaptic potential in the state before the ignition of the judgment. Since the judgment optic nerve is placed in this preparatory standby state, the driver's perceptual sensitivity to trivial information when approaching the end of the section permitted as ODD such as automatic driving level 4 is increased. As a result, even if the information obtained is not perfect, the driver will be placed in a situation where the awareness of necessity has increased, and if the memory is insufficient, the driver will voluntarily try to supplement the information in order to suppress the increase in risk. As a result, we aim to complete the "incidental obligation" based on the initial "contract". When the driver feels uneasy, for example, it is reflected in the action of visually reconfirming the status screen related to the contract.
<3-2-2-6.自動運転レベル4の運用について>
 次に、本開示の実施形態に係る自動運転レベル4の運用の概念について説明する。
<3-2-2-6. About operation of automatic operation level 4 >
Next, the concept of operation of the automatic operation level 4 according to the embodiment of the present disclosure will be described.
 運転者は、車両が自動運転レベル4の利用可能区間の終了地点に接近する中で、何をもって自動運転レベル4の自動運転の継続利用を早期に断念し、速やかで適切な対処(復帰行動)を取るのか、という点が問題となる。運転者が、自動運転レベル4による自動運転を利用する際のメリットと見做せるNDRAを中断して、手動運転への復帰行動に移行するには、判断を司るワーキングメモリに、復帰行動への移行に対する関連情報が記憶されている必要がある。 As the vehicle approaches the end point of the available section of autonomous driving level 4, the driver gives up early on the continuous use of autonomous driving of autonomous driving level 4 and takes prompt and appropriate measures (return action). The question is whether to take it. In order for the driver to interrupt the NDRA, which is considered to be a merit when using the automatic driving by the automatic driving level 4, and shift to the returning action to the manual driving, the working memory that controls the judgment should be used for the returning action. Information related to the migration needs to be remembered.
 ワーキングメモリに当該関連情報が記憶されるきっかけは、自動運転レベル4の利用開始の際にシステムと運転者との間で行う「契約」である。運転者は、その利用開始における「契約」の際に、責任義務を一旦は認識する。しかしながら、実際の利用区間を終えるポイントが時間的に暫く先であると、手動運転への復帰行動を取る限界点に辿り着く前に、復帰義務を履行するために記憶の再鮮明化が必要となり、トリガとなる情報の有無と、リスク重要度とがその成否に大きく影響することになる。 The trigger for storing the related information in the working memory is a "contract" between the system and the driver when the automatic operation level 4 is started to be used. The driver once recognizes the liability obligation at the time of "contract" at the start of use. However, if the point at which the actual use section ends is some time ahead, it will be necessary to re-clear the memory in order to fulfill the return obligation before reaching the limit point for taking the action to return to manual driving. , The presence or absence of trigger information and the degree of risk importance greatly affect the success or failure.
 人間工学的に見れば、それ自身以外の理由が無い単なる復帰行動に比べ、何らかの理由に紐付いた刺激の方が、圧倒的に正確な判断につながっていく。そのため、以下、要因違いで引継ぎ要因を提示することが、復帰成功には有用となる。 From an ergonomic point of view, a stimulus associated with some reason leads to an overwhelmingly accurate judgment, compared to a mere return behavior that has no reason other than itself. Therefore, it is useful to present the succession factors with different factors below for the successful return.
 自動運転レベル4までの自動運転利用を想定し、整備管理された道路延長区間で、運転者が自動運転レベル4の利用を開始した場合、当該道路区間において、直ぐに手動運転への復帰行動は、基本的には求められない。低速自動走行(Low Speed Automated Driving)等の低速自動運転では、自動運転の対処限界を超えた場合に車両の減速や停車などにより対処の時間を確保できる。 Assuming the use of autonomous driving up to autonomous driving level 4, if the driver starts using autonomous driving level 4 in a road extension section that has been maintained and managed, the action to immediately return to manual driving in that road section will be Basically not required. In low-speed automatic driving such as low-speed automatic driving (Low Speed Automated Driving), when the coping limit of automatic driving is exceeded, it is possible to secure time for coping by decelerating or stopping the vehicle.
 一方、一般の乗用車が多く行き交う一般道路では、該当道路区間の流れを乱さず、流れに乗ったまま自動で対処する事が必要となる。このとき、自動対処が困難と予想された段階では、システムは、手動運転への引継ぎを行うか、運転者へのスムースな引継ぎを自動運転で安全とされる巡航速度のまま完了できるようにするか、あるいは、その期待が乏しい場合は、退避選択が残されている間に、路肩やサービスエリア、退避駐車プールスペース、停車や低速走行が可能な一般道への退避走行を取るか、などの選択が必要となる。 On the other hand, on general roads where many general passenger cars come and go, it is necessary to take automatic measures while riding on the flow without disturbing the flow of the relevant road section. At this time, when it is expected that automatic handling will be difficult, the system will either take over to manual driving or allow the smooth handing over to the driver to be completed at the cruising speed that is safe for autonomous driving. Or, if that expectation is low, whether to take an evacuation run to the shoulder, service area, evacuation parking pool space, stop or general road where low-speed driving is possible, etc., while the evacuation option is left. You need to make a choice.
 一般車両が一般道や高速道路、幹線道路等において自動運転レベル4で走行をしている状況で、何をもって自動運転の継続走行の中断を強いられるかは、車両の特性や道路、環境、運転者の対処可能状況など様々である。ここで、自動運転で継続走行が困難となった時点で、システムが100%の確率で手動運転に引き継げるとは限らず、さらに、その場で緊急停車や減速を実行した場合、自車はさほど負の影響は無くとも、後続車への影響、つまり大きな社会的影響が発生する可能性が高いことは、既に述べた通りである。 In a situation where a general vehicle is driving at automatic driving level 4 on general roads, highways, highways, etc., what forces the continuous driving of automatic driving to be interrupted depends on the characteristics of the vehicle, the road, the environment, and driving. There are various situations such as the coping situation of the person. Here, when it becomes difficult to continue driving due to automatic driving, the system does not always have a 100% probability of taking over to manual driving, and if an emergency stop or deceleration is executed on the spot, the vehicle will not be so much. As already mentioned, even if there is no negative impact, there is a high possibility that the impact on the following vehicle, that is, a large social impact, will occur.
 そこで必要となるのが、仮に運転者が手動運転への復帰行動を取ることが困難な場合でも、車両が後続車等への阻害を最少化可能な退避選択が残されている走行残存区間にいる間に、引継ぎ成功の確証をシステムが判定できるような、対処制御の開始である。 Therefore, what is needed is a remaining driving section in which even if it is difficult for the driver to take action to return to manual driving, there is a retreat option that allows the vehicle to minimize the obstruction to the following vehicle, etc. In the meantime, it is the start of coping control so that the system can determine the confirmation of the success of the takeover.
 以下、自動運転レベル4の継続利用が困難となり得る事象例について説明する。 The following is an example of an event in which continuous use of automatic operation level 4 may be difficult.
 個々の車両、個人のリスク対処感覚、能力などにより、自動運転レベル4での走行が、実際に秩序ある社会的インフラである道路利用と両立する必要がある。ここで、秩序ある道路環境に適切な利用の判断そのものを、システムが人の思考能力と同様にして判断することは、現時点では極めて困難である。あるいは、そこまでの機能をシステムに任せることは、人が人である根源にも関わる問題であり、道徳的にみて、究極の自動運転は行われないことも考えられる。これは、すなわち、人が機械に利用される社会の否定でもある。 Depending on individual vehicles, individual risk coping sensations, abilities, etc., driving at autonomous driving level 4 needs to be compatible with road use, which is actually an orderly social infrastructure. Here, it is extremely difficult at present for the system to judge the appropriate use for an orderly road environment in the same way as the human thinking ability. Alternatively, leaving the functions up to that point to the system is also a problem related to the roots of human beings, and from a moral point of view, it is conceivable that the ultimate autonomous driving will not be performed. This is also the denial of a society in which humans are used by machines.
 一例として、狭い通りの譲り合いで初めて通行ができる状況では、一旦自動運転の操舵を人が中断または介入し、優先度を選択して絡み合った状態を解き、通行を行う。その単純な事例として、単車線の幅の細い橋を通過する際、対向車と事前に意思疎通して通過を交互に譲り合うことで、互いに対抗す何方かの車両の進行が完全に妨害されたままになることを防ぎ、それぞれ区間を通過する場合が挙げられる。 As an example, in a situation where it is possible to pass for the first time due to a concession on a narrow street, a person interrupts or intervenes in the steering of automatic driving, selects a priority, breaks the entangled state, and passes. As a simple example, when passing through a narrow bridge with a single lane, by communicating with the oncoming vehicle in advance and alternately giving up the passage, the progress of some vehicles that oppose each other was completely hindered. There are cases where it is prevented from being left behind and each section is passed.
 そこで、実際には、その区間の手前で、社会的な秩序を維持するための制御の仕組みを人為的に取り入れることにすればよい。このとき、例えば幹線道路では、自動運転レベル4で走行をしても、他の車両への影響が及ばないために、どのような状況で予定した旅程走行を断念し、運転者による手動運転への引継ぎ、遠隔運転支援、影響しない事前の退避、等の選択判断処理に進むようにすると好ましい。この場合、その適切な判断が必要になる。 Therefore, in reality, it is advisable to artificially incorporate a control mechanism for maintaining social order just before that section. At this time, for example, on a highway, even if driving at automatic driving level 4, it does not affect other vehicles, so under what circumstances the planned itinerary driving is abandoned and the driver manually drives. It is preferable to proceed to the selection judgment process such as taking over the vehicle, supporting remote driving, and evacuating in advance without affecting the vehicle. In this case, an appropriate judgment is required.
 自動運転レベル4の自動運転の継続利用を断念する要因の例を、次に各項目として示す。これらの項目は、単独または複数項目の組み合わせで、この要因となり得る。 Examples of factors that abandon the continuous use of automatic driving level 4 automatic driving are shown below as each item. These items can be a factor in this, either alone or in combination of multiple items.
 第1の要因は、利用中の該当道路の行き先の事前に得られる道路環境情報の取得可否に起因して、自動運転レベル4の継続走行を断念する要因であって、一例として次の各項が挙げられる。 The first factor is a factor that abandons continuous driving of automatic driving level 4 due to the availability of road environment information obtained in advance of the destination of the relevant road in use, and as an example, the following items. Can be mentioned.
(20-1)定期的に情報収集している区間走行車の故障などによる、LDMからの高鮮度、更新LDMの区情報の欠落
(20-2)高鮮度更新LDMの常時更新を行う通信帯域の一次的混雑で情報の未取得
(20-3)サプスクリプション契約に基づく局所地図情報の契約切れによる利用制限
(20-4)ペアリング先導者の走行補助による先導車あり後方追従走行で、先導車故障等による継続テータの取得不可
(20-5)区間走行車の時間帯による密度的な低下により、一般車からの道路情報のシャドープロービングデータ不足
(20-6)自車の通信機器不具合、インフラ通信不具合
(20-7)通信サイバー攻撃による継続自動運転走行に必要な更新情報の不足や、捏造による変更
(20-1) High freshness from LDM and lack of ward information of updated LDM due to a failure of a vehicle traveling in a section where information is collected regularly (20-2) High freshness update Communication band for constantly updating LDM Information has not been acquired due to primary congestion (20-3) Restrictions on the use of local map information based on the subscription contract due to expiration of the contract (20-4) There is a leading vehicle with the driving assistance of the pairing leader. Unable to acquire continuous data due to failure of the leading vehicle (20-5) Insufficient shadow roving data of road information from general vehicles due to a decrease in density due to the time zone of vehicles traveling in the section (20-6) Malfunction of communication equipment of own vehicle , Infrastructure communication failure (20-7) Communication Insufficient update information required for continuous automatic driving due to cyber attack, or change due to fabrication
 第2の要因として、利用中の該当道路の行き先の、更新事前道路環境情報から通知される情報に応じて自動運転レベル4の継続走行を断念する場合が有り得る。この場合の要因の例としては、次の各項が挙げられる。 As the second factor, there is a possibility that the continuous driving of the automatic driving level 4 may be abandoned according to the information notified from the pre-update road environment information of the destination of the corresponding road in use. Examples of factors in this case include the following items.
(21-1)遠隔運転の支援管制官による対処のキャパシティオーバー
(21-2)遠隔運転支援オペレータの不足
(21-3)車両専用道への人や大型動物の進入、前方走行車両の荷台からの動物が逃げ出し専用道を徘徊している状況、区間先導車両からの緊急落下物の散乱情報の受信
(21-4)地震・崖崩れ、津波等の異常の予測が困難な情報の受信
(21-5)区間先導車両からの自主危険通報で得られた後続車向け注意喚起情報の受信
(21-6)濡れた橋や山間部日陰などの路面の部分的、且つ想定外の凍結
(21-7)想定外の道路工事や事故後処理対応による通行制限
(21-8)人のコミュニケーションを介した交通整理による区間通過(事故対処等の交通整理)
(21-9)自動運転で継続進行した場合に、狭い道路区間、交互通行単一通路橋やトンネルなどで退避可能区間が無くなるために、運転者の状態に応じた通行禁止区間への進入
(21-10)踏切区間の線路横断
(21-1) Overcapacity for coping by remote driving support controllers (21-2) Lack of remote driving support operators (21-3) People and large animals entering vehicle-only roads, loading platform for vehicles traveling ahead Situation where animals from the area are wandering on a dedicated road, reception of information on scattered emergency falling objects from the section leading vehicle (21-4) Reception of information that makes it difficult to predict abnormalities such as earthquakes, cliff collapses, and tsunamis (21-4) 21-5) Receiving warning information for following vehicles obtained from a voluntary danger report from the leading vehicle in the section (21-6) Partial and unexpected freezing of the road surface such as wet bridges and shaded mountains (21-6) -7) Traffic restrictions due to unexpected road construction and post-accident processing (21-8) Passing through sections by traffic control through human communication (traffic control such as accident handling)
(21-9) When the vehicle continues to drive automatically, there will be no evacuable sections due to narrow road sections, alternating single passage bridges, tunnels, etc., so entry into the prohibited sections according to the driver's condition (21-9) 21-10) Crossing the railroad crossing section
 第3の要因として、自車に搭載されるセンシング機器の性能限界や時間経過に伴う性能変動を要因として自動運転レベル4の継続走行を断念する場合が有り得る。この場合の例として、次の各項が挙げられる。この場合、自動運転レベル4による自動運転の出発・開始時点や、走行中の状況変化に応じて、継続走行が断念される。 As a third factor, there is a possibility that continuous driving of automatic driving level 4 may be abandoned due to the performance limit of the sensing device mounted on the own vehicle and the performance fluctuation with the passage of time. Examples of this case include the following items. In this case, the continuous driving is abandoned according to the start / start time of the automatic driving according to the automatic driving level 4 and the change of the situation during the running.
(22-1)走行中の前走車が巻き上げた除雪材や汚れによるミリ波レーダ、LiDAR、カメラ等の検出性能の低下
(22-2)高速走行利用中における昆虫や飛来物等のフロントガラス衝突よるセンシングカメラ性能の一次的低下や制限
(22-3)利用中の温度上昇によるノイズ発生、検出性能の一部低下
(22-4)前走車が巻き上げた小石や、隣接レーン等からの飛来物、などによる局所的な窓の破損
(22-5)夜間走行中の車両におけるヘッドライト等の故障、カメラによる視界検出限界の低下
(22-6)室内空調利用の誤操作等によるフロントガラスの曇り、室内設置センシングカメラの検出性能の一次的低下
(22-7)車両システムによる自己診断結果に基づく原因不明の復帰要請
(22-1) Deterioration of detection performance of millimeter-wave radar, LiDAR, camera, etc. due to snow removal material and dirt rolled up by the traveling vehicle in front (22-2) Windshield of insects and flying objects while using high-speed driving Temporary deterioration and limitation of sensing camera performance due to collision (22-3) Noise generation due to temperature rise during use, partial deterioration of detection performance (22-4) Pebbles rolled up by the windshield, adjacent lanes, etc. Local damage to windows due to flying objects, etc. (22-5) Failure of headlights, etc. in vehicles running at night, reduction of visibility detection limit by camera (22-6) Windshield due to erroneous operation of indoor air conditioning, etc. Cloudy, temporary deterioration of detection performance of indoor-installed sensing camera (22-7) Request for recovery of unknown cause based on self-diagnosis result by vehicle system
 第4の要因として、自動運転継続走行中の自車の走行に影響する積載物の状況変化や、その他の車両ダイナミクスの変化を起因して、自動運転レベル4の継続走行を断念する場合が有り得る。この場合の例として、次の各項が挙げられる。 As a fourth factor, there is a possibility that the continuous driving of the automatic driving level 4 may be abandoned due to the change in the condition of the load affecting the running of the own vehicle during the continuous driving of the automatic driving and the change of other vehicle dynamics. .. Examples of this case include the following items.
(23-1)通常走行中の荷崩れ
(23-2)タイヤの空気抜け、タイヤバースト
(23-3)散乱物への乗り上げ、道路異常による走行性能変動、自車内での異音発生
(23-4)衝突防止のための急な制動に伴う荷崩れ、乗客の車両内での大幅移動と、それによる加重バランス崩れ
(23-5)走行中の車両自己診断でのブレーキ異常検出
(23-6)エンジンオーバーヒート、コントロール機器の不調
(23-1) Load collapse during normal driving (23-2) Tire air bleeding, tire burst (23-3) Riding on scattered objects, driving performance fluctuations due to road abnormalities, abnormal noise in the vehicle (23) -4) Load collapse due to sudden braking to prevent collision, large movement of passengers in the vehicle, and weighted balance loss due to it (23-5) Brake abnormality detection by self-diagnosis of the running vehicle (23-) 6) Engine overheating, malfunction of control equipment
 第5の要因として、運転者の異常に起因して、自動運転レベル4の継続走行を断念する場合が有り得る。この場合の例として、次の各項が挙げられる。 As a fifth factor, there is a possibility that continuous driving of automatic driving level 4 may be abandoned due to an abnormality of the driver. Examples of this case include the following items.
(24-1)運転者の想定外の仮眠、離席、状態検出不可に伴う必要時の復帰予測不可能
(24-2)運転者の突発的な発作(喘息、足等の痙攣や痺れ、花粉等の急な車両内侵入によるアレルギ反応、心臓発作、突発頭痛、脳卒中、脳梗塞、…等)
(24-3)薬物依存による異常行動の検出
(24-4)システムが実施中の運転者の状態モニタリングに対する妨害
(24-5)自動運転の継続利用においてシステムが運転者に求める必要な応答処理に対する運転者による無視または放置
(24-6)運転者の休憩状況、前日からの活動・休憩・因習履歴情報など
(24-1) Unexpected nap of the driver, leaving the seat, unpredictable return when necessary due to undetectable state (24-2) Sudden seizure of the driver (asthma, convulsions or numbness of legs, etc., Allergic reaction due to sudden invasion of pollen etc., heart attack, sudden headache, stroke, cerebral infarction, etc.)
(24-3) Detection of abnormal behavior due to drug dependence (24-4) Interference with driver status monitoring during implementation (24-5) Necessary response processing required by the system for continuous use of autonomous driving Ignored or left unattended by the driver (24-6) Driver's break status, activity / break / custom history information from the previous day, etc.
 上述の第1の要因~第5の要因それぞれの各項目など、幾つかの条件や貢献の組み合わせが起こり得るが、それらの組み合わせで自動運転レベル4の走行を継続した場合に、該当車両の減速や緊急停車、社会交通インフラに対する効率低下または大きな妨害が起こる状況は避けねばならない。 There may be a combination of several conditions and contributions, such as each item of the first factor to the fifth factor described above, but if the vehicle continues to drive at automatic driving level 4 with those combinations, the vehicle will decelerate. Situations where emergency stops, inefficiencies or major disruptions to social transportation infrastructure should be avoided.
 上述のうち、少なくとも第1の要因~第4の要因は、運転者がリスク判断により、それぞれ異なる条件に応じて復帰行動を実行しなかった場合に、運転者は、影響度や違反時の罰則適用などが感覚的な表現、例えば視覚に対する刺激を用いた表現を提示可能なHMIにより、事前にフィードバックを受ける。運転者は、このHMIによる事前フィードバックにより、例えば視覚刺激がワーキングメモリに少なくとも一度は取り込まれるため、視覚感覚刺激として一時的に残る。運転者に対して、この視覚感覚刺激に関連する刺激を与えることで、記憶をリフレッシュし、復帰行動の必要性の記憶を持続させることが可能である。 Of the above, at least the first to fourth factors are the degree of impact and penalties for violations when the driver does not perform the return action according to different conditions according to the risk judgment. Receive feedback in advance by HMI, which can present sensory expressions such as applications, for example, expressions using visual stimuli. The driver temporarily remains as a visual sensory stimulus because, for example, the visual stimulus is taken into the working memory at least once by this pre-feedback by the HMI. By giving the driver a stimulus related to this visual and sensory stimulus, it is possible to refresh the memory and maintain the memory of the need for the return behavior.
 一方、第5の要因の、運転者自身に異常を来した場合は、最早このHCDによる早期の復帰行動を促すことが極めて困難である。しかしながら、この場合であっても、システムは、早期に自動運転を断念するための機能を運転者に提示し、この機能による退避可能地点の情報などを元に、運転者に対する自発的な断念要請や、救出要請を行う利用ができる。この利用は、システムが運転者に対して何の情報提示も行わずに運転者を放置して車両が引継ぎ限界地点まで進み、その地点に到達した後で初めてMRMを発動するより、事前対処の余裕を持った制御が可能となる。 On the other hand, if the driver himself has an abnormality, which is the fifth factor, it is extremely difficult to encourage early recovery behavior by this HCD. However, even in this case, the system presents the driver with a function to abandon the automatic driving at an early stage, and voluntarily requests the driver to give up based on the information of the evacuation possible point by this function. Or you can use it to make a rescue request. This use is a precautionary measure rather than the system leaving the driver unattended without presenting any information to the driver, advancing to the takeover limit point, and activating MRM only after reaching that point. Control with a margin is possible.
 なお、上述の各項目に示した例は、自車両が道路の走行帯の中で停車した場合に問題が生じる可能性がある、社会インフラの重要な幹線道路等で求められる扱いの代表例となる。交通量の極めて少ない道路や、幹線道路ではなくても広い道幅の道路のような、車両がMRMにより急停車や完全停車をしても通行妨害を引き起こす可能性が非常に低い道路であれば、上述の各項目の限りではない。 In addition, the examples shown in each of the above items are typical examples of the treatment required for important highways of social infrastructure, which may cause problems when the own vehicle stops in the driving zone of the road. Become. If the road is very unlikely to cause traffic obstruction even if the vehicle suddenly or completely stops due to MRM, such as a road with extremely low traffic volume or a road with a wide road width even if it is not an arterial road, the above-mentioned It is not limited to each item of.
 つまり、自動運転レベル4で運転者が継続走行をした場合において、その際にMRMで緊急停車や退避が社会的活動の阻害なく実行できる区間であれば、システムは、運転者の復帰に関する対処の可否状態を考慮に入れずに、あるいは、運転者の状態の如何に関わらず、車両に予定通りに計画走行を続けさせることができる。すなわち、この状況下で、システムが自動運転レベル4での対処困難な状況に出くわし、且つ、運転者が適切に復帰できなくとも、車両を任意の場所に緊急停車や退避をしても、社会インフラとしての道路の通行妨害とはならないからである。 In other words, when the driver continues to drive at automatic driving level 4, if the section can be executed by MRM for emergency stop or evacuation without hindering social activities, the system will take measures for the driver's return. It is possible to have the vehicle continue the planned run as scheduled, without taking into account the availability or regardless of the driver's condition. That is, in this situation, even if the system encounters a difficult situation to deal with at the automatic driving level 4 and the driver cannot return properly, even if the vehicle is urgently stopped or evacuated to any place, the society This is because it does not obstruct the passage of roads as an infrastructure.
 このように、自動運転レベル4の自動運転の利用が妥当な状況は、一律に定まらず、固定化された環境でもなく、運転者の復帰要請に対する対処能力や道路状況や利用環境、車両状態など様々要因で能動的に変わる。 In this way, the situation where the use of autonomous driving of automatic driving level 4 is appropriate is not uniformly determined, it is not a fixed environment, and the ability to respond to the driver's return request, road conditions, usage environment, vehicle condition, etc. It changes actively due to various factors.
<3-2-2-7.HCDを採用した場合の効果>
 次に、上述したようにして、HCDを既存のMCDに代えて採用した場合の効果について説明する。
<3-2-2-7. Effect of adopting HCD>
Next, as described above, the effect when HCD is adopted in place of the existing MCD will be described.
 第1に、本開示に係るHCDの制御の本質は、運転者の自動運転の利用可能区間が可変であり、且つ、利用可能区間の決定が、運転者の観測された時点の覚醒状態等の可観測評価値に加えての、その運転者の獲得与信情報にも依存して決まることにある。さらに、本開示に係るHCDでは、利用可能区間の決定における中間過程に、システムが検出した情報やその結果が、少なくとも視覚的な表現を用いて近未来リスク情報として運転者に提示される。 First, the essence of the control of the HCD according to the present disclosure is that the available section of the driver's automatic driving is variable, and the determination of the available section is the awake state at the time when the driver is observed. In addition to the observable evaluation value, it depends on the acquired credit information of the driver. Further, in the HCD according to the present disclosure, the information detected by the system and the result thereof are presented to the driver as near-future risk information using at least a visual representation in the intermediate process in determining the available section.
 システムに一意的に提示される単純な復帰要請通知などと異なり、運転者自身の選択行動のリスクとして情報提示されることで、メリットとデメリットとのバランスを考慮した思考的な選択作業が行われる。これにより、運転者のワーキングメモリにおける重要度に関する情報が取り込まれ、引継ぎの重要性に応じてより鮮度良く保たれる。また、この思考的な選択作業に対する行動評価が将来の利用条件にさらに反映され、且つ、現在の利用許可についても、過去の評価結果に基づき自動運転の利用メリットが得られるかが決まる。そのため、HCDでは、MCDによる機体的指示とは異なる利用責任、メリット享受可否感覚を、運転者が繰り返し利用を通じて獲得できる。 Unlike simple return request notifications that are uniquely presented to the system, information is presented as a risk of the driver's own selection behavior, so that thoughtful selection work that considers the balance between advantages and disadvantages is performed. .. This captures information about the importance of the driver's working memory and keeps it fresher depending on the importance of the takeover. In addition, the behavioral evaluation for this thoughtful selection work is further reflected in the future usage conditions, and it is determined whether the current usage permission can obtain the merit of using the automatic driving based on the past evaluation results. Therefore, in HCD, the driver can acquire a sense of responsibility for use and a sense of whether or not to enjoy the merits, which is different from the aircraft instruction by MCD, through repeated use.
 さらに、繰り返し利用により、運転者は、自分に適した関わり方を身に付け、且つ、その行動が社会活動を阻害するに至る場合はシステムがペナルティを課し利用抑制をすることで、運転者は、阻害要因となる不利益な行動を避けるようになり、社会受容性が乏しい利用形態を抑制することができる。 Furthermore, through repeated use, the driver learns how to engage in a way that suits him / herself, and if the behavior impedes social activities, the system imposes a penalty and suppresses the use of the driver. Can avoid detrimental behaviors that are an obstacle, and can suppress usage patterns with poor social acceptance.
 第2に、自動運転が人の運転操舵作業への介在負荷を大幅に軽減させることができるため、人為的要因で起きている事故が94%程度と言われる今日の社会事情から、人に代わり自動運転モードで車両が走行されることで、社会的な事故の発生が大幅に軽減することが期待される。 Secondly, because autonomous driving can significantly reduce the intervening load on human driving and steering work, in today's social situation where accidents caused by human factors are said to be about 94%, instead of humans. By driving the vehicle in the automatic driving mode, it is expected that the occurrence of social accidents will be greatly reduced.
 但し、今日広く考えられている自動運転の導入では、運転者がシステムの要請に応じて適切に手動運転に復帰し、その運転者が要請に応じて速やかに対処できるという前提で、自動運転の社会的導入を図ろうとしている。しかしながら、自動運転のシステムの性能改善が進むことで、運転者による自動運転システムへの過剰依存を招き兼ねない状況では、この前提が成立しないおそれがある。 However, the introduction of autonomous driving, which is widely considered today, is based on the premise that the driver can appropriately return to manual driving in response to the request of the system and the driver can promptly respond to the request. We are trying to introduce it to society. However, this premise may not hold in a situation where the improvement of the performance of the automatic driving system may lead to the driver's excessive dependence on the automatic driving system.
 本開示では、自動運転の機能の利用可否は、基本的に、運転者の適切な利用適用性が成就するかに応じて提供される。また、その仕組みに、適切な利用を促すHMIを取り入れている。これにより、運転者のシステムへの過剰依存を予防し、運転者が主観的に適正な復帰行動をとるための制御技術を実現する。 In this disclosure, the availability of the automatic driving function is basically provided according to whether the appropriate usage applicability of the driver is achieved. In addition, HMI that promotes appropriate use is incorporated into the mechanism. This prevents the driver from being overly dependent on the system, and realizes a control technology for the driver to subjectively take an appropriate return behavior.
 つまり、本開示は、車両の自動運転に対する利用制御の方法を、従来の装置から一方的に指示を発するMCDから、人間の行動特性に応じた利用制御を行うHCDに変更し、それを実現するHMIを導入した車両制御に関する。特に、運転者がシステムの自動運転機能を利用する際に、システムとの間で「儀式的な」自動運転の完了時に運転者が要請を怠ることなく実行する「確認行為」という「契約を締結」し、その契約の妥当性を、自動運転利用の経過中にも適宜、再確認する。 That is, the present disclosure changes the method of usage control for automatic driving of a vehicle from an MCD that unilaterally issues an instruction from a conventional device to an HCD that performs usage control according to human behavior characteristics, and realizes this. Regarding vehicle control with HMI introduced. In particular, when the driver uses the automatic driving function of the system, he concludes a "contract" with the system called "confirmation act" that the driver executes without neglecting the request when the "ceremonial" automatic driving is completed. Then, the validity of the contract will be reconfirmed as appropriate during the course of the use of autonomous driving.
 このようなHCDによるシステムは、単純に何か一つの機能をシステムに組み込めば実現するものではなく、多様な運転者が利用の習慣を付けるために必要な複合的な利用の繰り返しで強化学習する必要がある。実施形態は、それらの強化学習が進むために運転者に働きかけ、且つ利用感覚として適切な早期復帰を長期的にも維持するHMIである。なお、運転者に対してフィードバックする実行手段の組み合わせは、この明細書に記載の例に限定されるものではない。 Such an HCD system is not realized by simply incorporating one function into the system, but reinforcement learning is carried out by repeating the complex use necessary for various drivers to develop usage habits. There is a need. An embodiment is an HMI that works with the driver to advance their reinforcement learning and maintains an appropriate early return as a sense of use for a long period of time. The combination of execution means for feeding back to the driver is not limited to the examples described in this specification.
 従来の自動運転の許容自動運転レベルは、機器が対応できる道路環境の状況に応じてシステムにより機械的に判定され、運転者が適宜自己判断で利用選択を一意に切替る想定であった。これに対して、本開示では、運転者が繰り返し利用でシステムの要請に応じて遅れなく適切に復帰手順を開始する習慣の発達支援と、その際に必要なHMIを提供する。これにより、自動運転の導入が社会的に広く普及しても、システムは、運転者の復帰作業の遅れ等による緊急のMRM等で道路上での緊急減速や停車、さらには停車すると交通の大幅妨害等に繋がる制御の発生を広く抑制し、社会的活動の阻害を予防できる効果がある。 The allowable automatic driving level of conventional automatic driving was determined mechanically by the system according to the road environment conditions that the equipment can handle, and it was assumed that the driver would uniquely switch the usage selection at his / her own discretion. On the other hand, the present disclosure provides support for the development of a habit in which the driver appropriately starts the return procedure without delay in response to the request of the system by repeated use, and the HMI necessary at that time. As a result, even if the introduction of autonomous driving becomes widespread in society, the system will have an emergency deceleration or stop on the road due to an emergency MRM due to a delay in the driver's return work, etc. It has the effect of widely suppressing the occurrence of controls that lead to obstruction and preventing the obstruction of social activities.
 第3に、手動運転への引継ぎを頻繁に伴う自動運転の利用には、運転作業を安全に継続実施するために、運転者のワーキングメモリの特徴を把握する必要がある。 Thirdly, in order to use automatic driving that frequently takes over to manual driving, it is necessary to understand the characteristics of the driver's working memory in order to continue driving safely.
 必要な対処事象を知覚・認識して一旦ワーキングメモリに情報を取り込んでも、人のその時々の考え事や自律神経のバランスの崩れ等で、他の事象に対してマインドワンダリングという意識の迷走が進むと、重要な事項でもその重要度は記憶から薄れ、対処が遅れてクリティカルな結果を招きかねない。 Even if the necessary coping events are perceived and recognized and information is once taken into the working memory, the consciousness of mind wandering progresses with respect to other events due to the person's thoughts at that time and the imbalance of the autonomic nerves. Even if it is an important matter, its importance diminishes from memory, and the response may be delayed, leading to critical results.
 人の思考に割り当てられる情報量は有限であり、同時に全ての事柄に対して完全な配慮を割り当てることができない。そのため、情報を異なる複数の系統で学習し、異なる系統の情報に視覚的、言語的など異なる手段で情報入力が行われ、それぞれの結果描写が可能になると、マインドワンダリングが起きた中でも、必要な対処事項に思考を引き戻すことがより容易となる。つまり、引継ぎの必要性を、単純なシンボル等のマンネリ化した情報提示ではなく、リスク感覚として具体性に、ある影響の結果予測に結び付く情報提示を行うHMIが、復帰要請の記憶を鮮明化する際に有効となる。 The amount of information assigned to a person's thoughts is finite, and at the same time, complete consideration cannot be assigned to all matters. Therefore, if information is learned by multiple different systems, information is input to the information of different systems by different means such as visual and linguistic, and it becomes possible to describe the results of each, it is necessary even if mind wandering occurs. It will be easier to get your thoughts back to what you are dealing with. In other words, when the HMI, which presents information that leads to the prediction of the outcome of a certain effect, as a sense of risk, rather than presenting information in a rutted manner such as a simple symbol, the need for handing over is clarified. It becomes effective for.
 制御にHCDを採用した場合、このような作業中思考のワーキングメモリに一旦入った情報でも、ふとした際に他の事柄に思考の遷移が起こり、本来重要と思って取得した情報でも時間の推移に伴い、忘れてしまう可能性がある。そのため、その運転者の現状の固有の忘れ度合いに応じて、運転者に対して記憶を蘇らせるフィードバックを行う必要がある。したがって、本開示では、その運転者がそもそもの日常の特性として重要事項の「忘れられやすさ」と、「走行利用時点での運転関連注意事項をどの程度鮮度良く記憶保持できているか」とを評価し、その運転者に合った記憶リフレッシュ情報を提示する。 When HCD is adopted for control, even if the information once stored in the working memory of such thinking during work, a transition of thinking occurs in other things when it happens, and even the information acquired by thinking that it is originally important changes the time. As a result, it may be forgotten. Therefore, it is necessary to give feedback to the driver to revive his / her memory according to the degree of forgetfulness inherent in the driver's current situation. Therefore, in this disclosure, "easiness to be forgotten", which is an important matter as a daily characteristic of the driver, and "how freshly the driver can remember and retain the driving-related precautions at the time of driving use". Evaluate and present memory refresh information suitable for the driver.
 また、本開示の実施形態の一つとして、遠隔支援を利用したケースでは、支援が受けられなくなる地点の事前確認・予測が可能となる。これにより、十分な路肩帯域やSA(Service Area)などの情報を併せてHMIを介して運転者に提供することで、支援が受けられない場合には、他への交通妨害とならない地点での待機選択が容易となり、遠隔支援オペレータの限られた少ない運用人数でも成立する仕組みを実現できるため、実用的で効率的な遠隔支援の提供が可能となる。また、遠隔監視に必要なインフラの効率的運用が可能となる。 In addition, as one of the embodiments of the present disclosure, in the case of using remote support, it is possible to confirm and predict the point where the support cannot be received in advance. By providing sufficient information such as road shoulder bandwidth and SA (Service Area) to the driver via HMI, if support is not received, it will not interfere with traffic to others. Since standby selection becomes easy and a mechanism can be realized that can be established even with a limited number of remote support operators, it is possible to provide practical and efficient remote support. In addition, the infrastructure required for remote monitoring can be operated efficiently.
 第4に、運転者が行う運転以外の2次タスクすなわちNDRAが電子端末の視覚情報を主とする場合について、以下の対策で注意意識改善が可能である。すなわち、モニタ画面を有する端末装置において、本来のNDRAとしての表示画像領域に、自動運転に係る短期間の情報を提示し、引継ぎの必要性に関連した視覚情報の表示を行なってもよい。 Fourth, it is possible to improve attention by the following measures for secondary tasks other than driving performed by the driver, that is, when NDRA mainly uses visual information of an electronic terminal. That is, in a terminal device having a monitor screen, short-term information related to automatic operation may be presented in the display image area as the original NDRA, and visual information related to the necessity of taking over may be displayed.
 例えば、視覚情報の表示を、視認者が意識的には気付かない、所謂サブリミナル効果を狙った極めて短期間の表示で行ってもよい。また、完全な意識外に留まる情報提示とは別に、サブリミナル効果を狙った場合よりは長めの、運転者が明瞭に意識可能な情報提示を行ってもよい。 For example, the visual information may be displayed in an extremely short period of time aiming at the so-called subliminal effect, which the viewer does not consciously notice. Further, apart from the presentation of information that remains completely out of consciousness, it is possible to present information that is clearly conscious by the driver, which is longer than when the subliminal effect is aimed at.
 サブリミナル効果などの、必ずしも言語化した理解を通さない情報の場合、引継ぎ要請を無視した場合のリスクとして、運転者に対して視覚的で直感としてリスク感覚が作用すると、より効果的である。例えば、違反した場合に、罰則規定の文章化した情報よりは、道路脇で白バイに見張られている視覚的描写、交番画像の静的情報よりは違反取り締まりで追尾停車命令を受けている描写、違反の確認を求められる状況描写、そのまま継続してMRMを実行に移せない場合に被るリスク描写、などが例として挙げられる。 In the case of information that does not necessarily pass through verbalized understanding, such as the subliminal effect, it is more effective if the driver has a visual and intuitive sense of risk as a risk when the transfer request is ignored. For example, in the case of a violation, the visual depiction of being watched by a white bye on the side of the road rather than the textual information of the penal provisions, and the depiction of receiving a tracking stop order for violation crackdown rather than the static information of the alternation image, Examples include depictions of situations where confirmation of violations is required, and depictions of risks incurred when MRM cannot be continuously implemented.
 人は、視覚情報を意識で捉え、捉えた視覚情報に対する言語的解釈をすることが通常行われる。他方で、人は、言語的解釈を全く伴わず、さらには意識も残らない形で脳に働きかけることが可能な情報伝達の仕組みが備わっていることが学術的に示唆されている。 A person usually grasps visual information consciously and makes a linguistic interpretation of the captured visual information. On the other hand, it is academically suggested that humans have a mechanism of information transmission that can act on the brain in a way that does not involve any linguistic interpretation and even leaves no consciousness.
 これらの短時間の、例えばサブリミナル効果による刺激は、ワーキングメモリから消えかけた重要情報をリフレッシュして再活性化する効果が期待される。この効果は、疲労や眠気での意識低下を目覚めさせるためにシステムが作用する効果とは異なり、意識における引継ぎ判断に必要なワーキングメモリに対して、記憶情報を復活させる効果がある。 These short-term stimuli, for example, due to the subliminal effect, are expected to have the effect of refreshing and reactivating important information that has disappeared from the working memory. This effect is different from the effect of the system acting to awaken the decrease in consciousness due to fatigue and drowsiness, and has the effect of restoring the stored information for the working memory necessary for the decision to take over in consciousness.
 人は、重要情報を思い出す場合に、対応の必要性をどこかで理解をしつつも、つい忘れてしまい必要なタイミングで思い出せず、後になってから思い出す場合がある。 When a person remembers important information, he / she may understand the necessity of correspondence somewhere, but forget it and cannot remember it at the required timing, and may remember it later.
 これは、対処の必要な重要情報が、ワーキングメモリに重要事項として優先的に記憶されておらず、記憶からの呼び戻しに至らないためである。記憶情報が判断に有効に働くためには、その記憶の刺激量を高める必要がある。サブリミナル効果などは、盲視(Blindsight)と同じように、意識的に視覚情報と捉えなくとも、行動判断に影響を及ぼす。但し、表示をさせないことが主眼ではないため、サブリミナル効果は究極の短時間HMIの例であり、意識に作用するより長い表示を行ってもよいし、更には運転者が表示を取り消す迄表示を継続させることでより強くリスク描写として働きかけてもよい。 This is because important information that needs to be dealt with is not preferentially stored in the working memory as an important matter and does not lead to recall from the memory. In order for the memory information to work effectively for judgment, it is necessary to increase the amount of stimulation of the memory. Similar to blindsight, the subliminal effect affects behavioral judgment even if it is not consciously regarded as visual information. However, since the main purpose is not to display, the subliminal effect is an example of the ultimate short-time HMI, and a longer display that affects consciousness may be performed, and the display may be displayed until the driver cancels the display. By continuing it, you may work more strongly as a risk description.
 つまり、自動運転を利用する際に、システムは、システムと運転者との間で、状況変化で手動運転の引継ぎ要請が発生したらその要請に対応する「契約」が成立している場合に限り、継続的な自動運転の利用を許容する。その「契約」に応じて運転者が自動運転機能を活用し、自動運転中にNDRAのベネフィットを活用している間に、「契約」に付随する「復帰義務履行」を運転者が忘れることなく実行するには、思い出させる何らかの刺激が有効である。電子端末を利用している場合、当該電子端末の利用画面にこの刺激を与える表示を行うことは有効である。この場合、ベネフィットを利用したNDRAに係る画面の閲覧を余り煩わせることなく、運転者に「契約」に付随する「復帰義務履行」を「気付かせる」効果がある。 In other words, when using automatic operation, the system will only have a "contract" between the system and the driver to respond to a request to take over manual operation due to changes in circumstances. Allow the use of continuous automatic operation. The driver does not forget the "return obligation fulfillment" that accompanies the "contract" while the driver utilizes the automatic driving function according to the "contract" and utilizes the benefits of NDRA during automatic driving. Some kind of stimulus that reminds us is effective in doing so. When using an electronic terminal, it is effective to display a display that gives this stimulus on the usage screen of the electronic terminal. In this case, there is an effect of "notifying" the driver of the "return obligation fulfillment" accompanying the "contract" without disturbing the viewing of the screen related to NDRA using the benefits.
<3-2-3.実施形態に係るHCDの具体例>
 次に、実施形態に係るHCDについて、より具体的に説明する。以下では、特に記載の無い限り、自動運転は、SAEに定義される自動運転レベル4による自動運転であるものとする。
<3-2-3. Specific example of HCD according to the embodiment>
Next, the HCD according to the embodiment will be described more specifically. In the following, unless otherwise specified, the automatic operation shall be the automatic operation according to the automatic operation level 4 defined in SAE.
<3-2-3-1.実施形態に係るHCDを適用した自動運転の運用例>
 図7A~図7Cのフローチャートを用いて、実施形態に係るHCDを適用した自動運転の運用例について、より具体的に説明する。なお、図7A~図7Cにおいて、符号「A」~「F」は、図7A~図7C内の別の図のフローチャートの対応する符号に処理が移行することを示している。また、図7A~図7Cのフローチャート中の一般的には「書類」を示すブロックは、運転者に対して視覚的等の刺激により情報提供を行うことを示している。
<3-2-3-1. Operation example of automatic operation to which HCD according to the embodiment is applied>
Using the flowcharts of FIGS. 7A to 7C, an operation example of automatic operation to which the HCD according to the embodiment is applied will be described more specifically. In addition, in FIGS. 7A to 7C, the reference numerals "A" to "F" indicate that the processing shifts to the corresponding reference numerals in the flowchart of another figure in FIGS. 7A to 7C. Further, in the flowcharts of FIGS. 7A to 7C, the block generally showing the "document" indicates that the driver is provided with information by a visual stimulus or the like.
 図7Aは、実施形態に係る、旅程設定から自動運転モードに遷移するまでの流れを示す一例のフローチャートである。なお、ここでいう旅程は、車両の走行計画を示すもので、走行の出発点および目的地を示す情報と、走行ルートを示す情報とを含む。また、旅程を開始する、とは、旅程に従った走行を開始することをいう。 FIG. 7A is an example flowchart showing the flow from the itinerary setting to the transition to the automatic operation mode according to the embodiment. The itinerary referred to here indicates a travel plan of the vehicle, and includes information indicating a starting point and a destination of traveling and information indicating a traveling route. In addition, starting the itinerary means starting the running according to the itinerary.
 ステップS100で、車両の利用者(運転者)により、走行の目的地を含む旅程が設定される。設定された旅程は、自動運転制御部10112(図1参照)に入力される。自動運転制御部10112は、入力された旅程に基づき、LDM等の旅程に従った走行を行うために必要な各種の情報を取得する。例えば、自動運転制御部10112は、ステップS101で、LDM、運転者の手動運転への復帰特性、旅程に含まれる地域の気象、車両に積載される荷物などの情報を取得する。これらのうち、運転者の手動運転への復帰特性は、例えば、当該運転手について、過去において手動運転への復帰動作に対してなされた評価に基づく特性を適用することができる。 In step S100, the itinerary including the destination of travel is set by the user (driver) of the vehicle. The set itinerary is input to the automatic driving control unit 10112 (see FIG. 1). Based on the input itinerary, the automatic driving control unit 10112 acquires various information necessary for traveling according to the itinerary such as LDM. For example, in step S101, the automatic driving control unit 10112 acquires information such as the LDM, the driver's return to manual driving characteristics, the local weather included in the itinerary, and the luggage loaded on the vehicle. Among these, as the characteristic of returning to manual operation of the driver, for example, the characteristic based on the evaluation made for the driver in the past for the operation of returning to manual operation can be applied.
 次のステップS102で、自動運転制御部10112は、旅程全体の俯瞰を運転者に対して提示する。具体的な例は後述するが、自動運転制御部10112は、例えばLDMに基づき旅程の全体の走行ルートを示すマップ情報や、当該走行ルート中の、自動運転レベル4で走行可能な区間を示す情報などを可視化した表示情報を生成する。自動運転制御部10112は、生成した表示情報を、出力制御部10105を介して出力部10106に供給し、例えば出力部10106に接続されるディスプレイ装置に、当該表示情報に従った画像を表示させる。 In the next step S102, the automatic operation control unit 10112 presents a bird's-eye view of the entire itinerary to the driver. Although a specific example will be described later, the automatic operation control unit 10112 may, for example, map information indicating the entire travel route of the itinerary based on LDM, or information indicating a section of the travel route that can be traveled at the automatic operation level 4. Generate display information that visualizes such things. The automatic operation control unit 10112 supplies the generated display information to the output unit 10106 via the output control unit 10105, and causes, for example, a display device connected to the output unit 10106 to display an image according to the display information.
 この表示は、システムすなわち自動運転制御部10112により推奨される旅程の設定を表示する、ナビゲーション表示である。なお、ここでいう俯瞰表示は、物理距離に基づく縮尺を合わせた3次元的な縮尺での俯瞰である必要性はなく、運転者が介在地点を認識できる手段であれば、時間変換した表示であってもよいし、立体視表示でもよいし、さらに他の表示形態であってもよい。 This display is a navigation display that displays the itinerary settings recommended by the system, that is, the automatic operation control unit 10112. The bird's-eye view display here does not need to be a bird's-eye view at a three-dimensional scale that combines the scale based on the physical distance, and if the driver can recognize the intervention point, the time-converted display is used. It may be present, it may be a stereoscopic display, or it may be in another display form.
 次のステップS103で、自動運転制御部10112は、運転者に対して、ステップS102で提示されたナビゲーション表示により推奨される旅程の設定に合意するか否かを問い合わせる。例えば、自動運転制御部10112は、運転手の入力部10101に対する操作に応じて、合意か否かを判定する。これに限らず、自動運転制御部10112は、車内撮像用のカメラなどを用いて運転者の動きを検出し、検出された動きに応じて合意か否かを判定することもできるし、運転者の発声に応じて当該判定を行ってもよい。 In the next step S103, the automatic operation control unit 10112 asks the driver whether or not he / she agrees with the itinerary setting recommended by the navigation display presented in step S102. For example, the automatic driving control unit 10112 determines whether or not there is an agreement according to the operation of the driver on the input unit 10101. Not limited to this, the automatic driving control unit 10112 can detect the movement of the driver by using a camera for capturing the inside of the vehicle and determine whether or not the agreement is reached according to the detected movement. The determination may be made according to the utterance of.
 自動運転制御部10112は、ステップS103で運転者が推奨設定に合意しないと判定した場合(ステップS103、「No」)、処理をステップS104に移行させる。ステップS104で、自動運転制御部10112は、推奨する別の走行ルートを追加し、この別の走行ルートを選択する選択肢を運転手に提示する。そして、自動運転制御部10112は、処理をステップS102に戻し、当該別の走行ルートによる旅程全体の俯瞰を運転手に提示する。 When the automatic operation control unit 10112 determines in step S103 that the driver does not agree with the recommended setting (step S103, "No"), the process shifts to step S104. In step S104, the automatic operation control unit 10112 adds another recommended travel route and presents the driver with an option to select this other travel route. Then, the automatic driving control unit 10112 returns the process to step S102, and presents the driver with a bird's-eye view of the entire itinerary by the other traveling route.
 一方、自動運転制御部10112は、ステップS103で運転者が推奨設定に合意すると判定した場合(ステップS103、「Yes」)、処理をステップS105に移行させる。このとき、運転者がシステムにより提案された旅程を受け入れ合意することで、運転者により旅程全体の概念が把握され、その旨が運転者のワーキングメモリに記憶情報#1として記憶される(WM10)。 On the other hand, when the automatic operation control unit 10112 determines in step S103 that the driver agrees with the recommended setting (step S103, "Yes"), the process shifts to step S105. At this time, when the driver accepts and agrees on the itinerary proposed by the system, the driver grasps the concept of the entire itinerary, and that fact is stored as storage information # 1 in the driver's working memory (WM10). ..
 ステップS105で、運転者による車両の運転が開始され、旅程が開始される。自動運転制御部10112は、旅程の開始による車両の走行に応じて旅程の俯瞰の更新を行い、更新された俯瞰を運転者に提示する(ステップS106)。このとき、自動運転制御部10112は、旅程における各区間別に自動運転を制御し、各区間に対応するODD毎の自動運転モードを時系列で算出する。 In step S105, the driver starts driving the vehicle and the itinerary starts. The automatic driving control unit 10112 updates the bird's-eye view of the itinerary according to the traveling of the vehicle at the start of the itinerary, and presents the updated bird's-eye view to the driver (step S106). At this time, the automatic driving control unit 10112 controls the automatic driving for each section in the itinerary, and calculates the automatic driving mode for each ODD corresponding to each section in chronological order.
 このとき、運転者は、自動運転制御部10112により提示された、更新された俯瞰を確認することで、現在の旅程の状態を把握することができ、直近の選択に対する手動運転への復帰義務を把握することができる。把握された情報は、運転者のワーキングメモリに記憶情報#2として記憶される(WM11)。 At this time, the driver can grasp the current state of the itinerary by confirming the updated bird's-eye view presented by the automatic driving control unit 10112, and is obliged to return to the manual driving for the latest selection. Can be grasped. The grasped information is stored in the driver's working memory as storage information # 2 (WM11).
 次のステップS107で、自動運転制御部10112は、自動運転を許容するODD区間が接近しているか否かを判定する。自動運転制御部10112は、当該区間が接近していないと判定した場合(ステップS107、「No」)、処理をステップS108に移行させ、状況変動の継続的なモニタリングを実施、および、モニタリングの結果に基づく各種リスク情報の更新を行い、処理をステップS106に戻す。 In the next step S107, the automatic operation control unit 10112 determines whether or not the ODD section that allows automatic operation is approaching. When the automatic operation control unit 10112 determines that the section is not approaching (step S107, "No"), the process shifts to step S108, continuous monitoring of the situation change is performed, and the monitoring result. Various risk information is updated based on the above, and the process is returned to step S106.
 一方、自動運転制御部10112は、当該区間が接近していると判定した場合(ステップS107、「Yes」)、処理をステップS109に移行する。ステップS109で、自動運転制御部10112は、ODD区間への対応に関する契約を運転者に提示し、運転者によるこの契約に対する合意が得られたか否かを判定する。この契約は、例えば当該ODD区間での自動運転を許容するための各条件を含む。自動運転制御部10112は、例えば、運転者による、提示した契約に対する合意を示す操作やアクションの有無に基づき、この判定を行う。自動運転制御部10112は、合意が得られていないと判定した場合(ステップS109、「No」)、処理をステップS106に戻す。 On the other hand, when the automatic operation control unit 10112 determines that the section is approaching (step S107, "Yes"), the process shifts to step S109. In step S109, the automatic driving control unit 10112 presents a contract for dealing with the ODD section to the driver, and determines whether or not the driver has agreed to this contract. This contract includes, for example, conditions for allowing automatic operation in the ODD section. The automatic driving control unit 10112 makes this determination based on, for example, the presence or absence of an operation or action indicating an agreement on the presented contract by the driver. If the automatic operation control unit 10112 determines that no agreement has been obtained (step S109, "No"), the process returns to step S106.
 自動運転制御部10112は、ステップS109で契約に対する合意が得られたと判定した場合(ステップS109、「Yes」)、ODD内での自動運転の利用を許可し、処理をステップS110に移行させる。ステップS110で、自動運転制御部10112は、自車が自動運転を許容するODD区間に進入すると、運転モードを手動運転モードから自動運転モードに遷移させる。 When the automatic operation control unit 10112 determines that the agreement for the contract has been obtained in step S109 (step S109, "Yes"), the automatic operation control unit 10112 permits the use of automatic operation in the ODD and shifts the process to step S110. In step S110, when the own vehicle enters the ODD section that allows automatic driving, the automatic driving control unit 10112 shifts the driving mode from the manual driving mode to the automatic driving mode.
 運転者は、ステップS110で運転モードが自動運転モードに移行することで、ステップS109での選択に対する手動運転への復帰義務が発生する。運転者は、システムとの合意内容(契約内容)を把握することで、ODD区間の終了時におけるリスク対処に関してシステムと合意したことを意味する。また、復帰義務の履行違反は、運転者に対するペナルティを伴う。合意された契約に含まれる各条件を示す情報#3-1、#3-2、…は、運転者のワーキングメモリに記憶情報#3として記憶される(WM12)。また、この記憶情報#3は、自動運転の利用時の付随契約として、予定外のインシデントが新たに旅程内で発生した場合の対処に係る情報として記憶される(WM13)。 The driver is obliged to return to the manual operation for the selection in the step S109 by shifting the operation mode to the automatic operation mode in the step S110. By grasping the contents of the agreement (contract contents) with the system, the driver has agreed with the system regarding risk handling at the end of the ODD section. In addition, a breach of fulfillment of the obligation to return is accompanied by a penalty for the driver. Information # 3-1 and # 3-2, ... Showing each condition included in the agreed contract are stored as storage information # 3 in the driver's working memory (WM12). Further, this stored information # 3 is stored as ancillary contract when using automatic driving, and is stored as information related to dealing with a new unplanned incident occurring in the itinerary (WM13).
 ステップS110により運転モードが自動運転モードに選択遷移すると、符号「A」に従い、図7Bに示すフローチャートの処理に移行する。 When the operation mode is selected and transitioned to the automatic operation mode in step S110, the process proceeds to the processing of the flowchart shown in FIG. 7B according to the reference numeral "A".
 図7Bは、実施形態に係る、自動運転モードによる処理の流れを示す一例のフローチャートである。図7AのステップS110から、図7BのステップS120に処理が移行し、ステップS120で、自動運転制御部10112は、状況変動の継続的なモニタリングを実施、および、モニタリングの結果に基づく各種リスク情報の更新を行い、処理をステップS121に移行させる。 FIG. 7B is an example flowchart showing the flow of processing in the automatic operation mode according to the embodiment. The process shifts from step S110 of FIG. 7A to step S120 of FIG. 7B, and in step S120, the automatic operation control unit 10112 carries out continuous monitoring of the situation change, and various risk information based on the monitoring result. The update is performed and the process is shifted to step S121.
 ステップS121で、自動運転制御部10112は、ステップS120での状況モニタリングの結果に基づき、運転者の介在が必要なイベントが発生しているか否かを判定する。自動運転制御部10112は、ステップS121で当該イベントが発生していないと判定した場合(ステップS121、「No」)、処理をステップS122に移行させる。 In step S121, the automatic driving control unit 10112 determines whether or not an event requiring the intervention of the driver has occurred based on the result of the situation monitoring in step S120. When the automatic operation control unit 10112 determines in step S121 that the event has not occurred (step S121, "No"), the process shifts to step S122.
 ステップS122で、自動運転制御部10112は、自動運転を許容するODD区間の終了点が接近しているか否かを判定する。自動運転制御部10112は、当該区間の終了点が接近していないと判定した場合(ステップS122、「No」)、処理をステップS120に戻す。一方、自動運転制御部10112は、当該区間の終了点が接近していると判定した場合(ステップS122、「Yes」)、処理をステップS123に移行させる。 In step S122, the automatic driving control unit 10112 determines whether or not the end point of the ODD section that allows automatic driving is approaching. When the automatic operation control unit 10112 determines that the end points of the section are not approaching (step S122, "No"), the process returns to step S120. On the other hand, when the automatic operation control unit 10112 determines that the end points of the section are approaching (step S122, “Yes”), the process shifts to step S123.
 なお、ステップS120~ステップS122によるループ処理は、自動運転レベル4による自動運転を安定的に利用可能なODD区間内での処理を示している。 Note that the loop processing according to steps S120 to S122 indicates processing within the ODD section in which the automatic operation according to the automatic operation level 4 can be stably used.
 ステップS123で、自動運転制御部10112は、運転を自動運転から手動運転に引継ぐ引継ぎ地点が接近している旨を、運転者に通知する。次のステップS124で、自動運転制御部10112は、自動運転モードから手動運転モードへの遷移に係る運転者の行動、すなわち、自動運転から手動運転への運転者の引き継ぎ動作の品質を監視し、当該品質に応じて、運転者に対する評価点の加点あるいは減点を行う。引き継ぎ動作の品質の監視、および、当該品質に対する評価加減点の算出については、後述する。 In step S123, the automatic operation control unit 10112 notifies the driver that the transfer point for transferring the operation from the automatic operation to the manual operation is approaching. In the next step S124, the automatic driving control unit 10112 monitors the driver's behavior related to the transition from the automatic driving mode to the manual driving mode, that is, the quality of the driver's takeover operation from the automatic driving to the manual driving. Evaluation points are added or deducted to the driver according to the quality. The monitoring of the quality of the takeover operation and the calculation of the evaluation addition / subtraction points for the quality will be described later.
 次のステップS125で、自動運転制御部10112は、図7AのステップS100で設定された全旅程が終了したか否かを判定する。自動運転制御部10112は、終了したと判定した場合(ステップS125、「Yes」)、図7A~図7Cのフローチャートによる一連の処理を終了させる。一方、自動運転制御部10112は、ステップS125で全旅程が終了していないと判定した場合(ステップS125、「No」)、符号「B」に従い、処理を図7AのフローチャートにおけるステップS106に移行させる。 In the next step S125, the automatic driving control unit 10112 determines whether or not the entire itinerary set in step S100 of FIG. 7A has been completed. When the automatic operation control unit 10112 determines that the process has ended (step S125, “Yes”), the automatic operation control unit 10112 ends a series of processes according to the flowcharts of FIGS. 7A to 7C. On the other hand, when the automatic operation control unit 10112 determines in step S125 that the entire itinerary has not been completed (step S125, "No"), the process shifts to step S106 in the flowchart of FIG. 7A according to the reference numeral "B". ..
 自動運転制御部10112は、上述したステップS121で運転者の介在が必要なイベントが発生していると判定した場合(ステップS121、「Yes」)、図中の符号「D」に従い、処理を図7CのフローチャートにおけるステップS130に移行させる。 When the automatic operation control unit 10112 determines that an event requiring the intervention of the driver has occurred in the above-mentioned step S121 (step S121, “Yes”), the processing is performed according to the reference numeral “D” in the figure. The process proceeds to step S130 in the flowchart of 7C.
 図7Cは、実施形態に係る、自動運転レベル4による自動運転中に発生したイベントへの対応を示す一例のフローチャートである。ステップS130で、自動運転制御部10112は、運転者に対して、新規イベントの発生を通知する。次のステップS131で、自動運転制御部10112は、当該新規イベントの緊急性を判定する。自動運転制御部10112は、例えば、自車が走行中の地点と、当該新規イベントが発生した地点との距離に応じて、緊急性を判定する。これは、自車が当該新規イベント発生地点に到達するまでの時間の余裕度に応じて、緊急性を判定することと、略同義である。 FIG. 7C is an example flowchart showing the correspondence to the event generated during the automatic operation by the automatic operation level 4 according to the embodiment. In step S130, the automatic driving control unit 10112 notifies the driver of the occurrence of a new event. In the next step S131, the automatic operation control unit 10112 determines the urgency of the new event. The automatic driving control unit 10112 determines the urgency according to, for example, the distance between the point where the own vehicle is traveling and the point where the new event occurs. This is substantially synonymous with determining the urgency according to the margin of time for the own vehicle to reach the new event occurrence point.
 自動運転制御部10112は、当該新規イベント発生地点までの距離が所定以下であり、時間余裕度が小さい場合、当該新規イベントの緊急性が高いと判定し(ステップS131、「高」)、処理をステップS160に移行させる。ステップS160では、システムによるMRMが開始され、自車の減速、路肩など退避可能な場所への移動などが強制的に実行される。ステップS160でMRMが開始されると、図7A~図7Cのフローチャートによる一連の処理が一旦終了される。 When the distance to the new event occurrence point is less than or equal to the predetermined time and the time margin is small, the automatic driving control unit 10112 determines that the urgency of the new event is high (step S131, “high”), and performs processing. The process proceeds to step S160. In step S160, MRM by the system is started, and deceleration of the own vehicle, movement to a place where the vehicle can be evacuated such as a road shoulder, and the like are forcibly executed. When MRM is started in step S160, a series of processes according to the flowcharts of FIGS. 7A to 7C are temporarily terminated.
 また、ステップS131で緊急性が高いと判定されステップS160に移行する処理は、運転者の評価を軽い減点とする、後述する減点対象(1)とされる。 Further, the process of shifting to step S160, which is determined to be highly urgent in step S131, is subject to the deduction target (1) described later, in which the driver's evaluation is a light deduction.
 自動運転制御部10112は、上述のステップS131で、新規イベント発生地点までの距離が所定範囲内(緊急性が高いと判定される場合より距離が長く、緊急性が低いと判定されるより距離が短い)であり、ある程度の時間的余裕がある場合、緊急性が中位であると判定し(ステップS131、「中」)、処理をステップS132に移行させる。 In step S131 described above, the automatic operation control unit 10112 has a distance to a new event occurrence point within a predetermined range (the distance is longer than when it is determined that the urgency is high, and the distance is longer than when it is determined that the urgency is low. (Short), and if there is some time to spare, it is determined that the urgency is medium (step S131, "medium"), and the process is shifted to step S132.
 ステップS132で、自動運転制御部10112は、事前に減速を行う時間を確保した上で、自車および周辺状況(後続車の有無など)を確認し、自車の走行速度が低下した場合の周囲への影響を予測する。また、自動運転制御部10112は、運転者の状況を確認し、運転者による緊急での手動運転への復帰の可否を観測する。自動運転制御部10112は、この観測結果に基づき、運転者の自動運転から手動運転への復帰行動の遅延を予測する。 In step S132, the automatic driving control unit 10112 confirms the own vehicle and the surrounding conditions (presence or absence of a following vehicle, etc.) after securing time for deceleration in advance, and the surroundings when the traveling speed of the own vehicle decreases. Predict the impact on. In addition, the automatic operation control unit 10112 confirms the situation of the driver and observes whether or not the driver can return to the emergency manual operation. Based on this observation result, the automatic operation control unit 10112 predicts the delay of the return action of the driver from the automatic operation to the manual operation.
 次のステップS133で、自動運転制御部10112は、ステップS132での予測結果に基づき、自動運転から手動運転への復帰行動までの猶予時間の延長が可能か否かを判定する。自動運転制御部10112は、当該猶予時間を延長可能であると判定した場合(ステップS133、「Yes」)、処理をステップS140に移行させる。一方、自動運転制御部10112は、猶予時間の延長が不可であると判定した場合(ステップS133、「No」)、処理をステップS134に移行させる。 In the next step S133, the automatic operation control unit 10112 determines whether or not the grace time from the automatic operation to the return action to the manual operation can be extended based on the prediction result in the step S132. When the automatic operation control unit 10112 determines that the grace time can be extended (step S133, “Yes”), the process shifts to step S140. On the other hand, when the automatic operation control unit 10112 determines that the extension of the grace time is not possible (step S133, "No"), the process shifts to step S134.
 詳細の制御については説明を省略するが、走行途中の状況変化で新規の手動運転が求められる事象イベントが旅程上に新たに発生した場合に、少ない時間的余裕に強制的に対応するために、システムが急減速などにより到達時間を引き延ばすことは、後続車の追突や渋滞の誘発など、2次的に被害を引き起こすリスクが高まり、必ずしも安全ではない。 Detailed control will be omitted, but in order to forcibly respond to a small time margin when a new event occurs on the itinerary that requires new manual operation due to changes in the situation during driving. Prolonging the arrival time due to sudden deceleration of the system increases the risk of secondary damage such as collision of following vehicles and induction of congestion, and is not always safe.
 そのため、対処戦略の判断処理が必要であり、当該道路区間で減速した場合に道路インフラへの影響が無いか、等の走行プランの見直しを行う。この走行プラン見直しの判定処理の有用性について、具体的な例を用いて説明する。 Therefore, it is necessary to judge the coping strategy, and review the driving plan to see if there is any impact on the road infrastructure if the vehicle decelerates in the relevant road section. The usefulness of the determination process for reviewing the driving plan will be described with reference to a specific example.
 一例として、旅程が示す走行ルートを当該道路区間の許容最高速度で走行中に、自動運転システムが対処可能な性能限界内の速度でそのまま継続しての自動運転レベル4の走行が困難であるとシステムが判断した場合について考える。この場合、当該道路区間が、自車の周辺に同等の速度で巡航走行中の車両が密集しておらず閑散とした複線道路で、且つ、直線道路であれば、当該車両を緩やかに減速しても、道路交通に多くな影響を与えずに済むと考えられ、減速が最善の選択判定となり得る。 As an example, while traveling on the travel route indicated by the itinerary at the maximum allowable speed of the road section, it is difficult to continue driving at the automatic driving level 4 at a speed within the performance limit that the automatic driving system can handle. Consider the case where the system decides. In this case, if the road section is a quiet double-line road in which vehicles cruising at the same speed are not crowded around the own vehicle and the road is a straight road, the vehicle is slowly decelerated. However, deceleration can be the best choice decision, as it will not have a significant impact on road traffic.
 別の例として、体調不良等で運転者の手動運転への復帰目処が立たない状態が事前の定期モニタリングで判明し、さらに、走行中の道路区間の交通量が多く、視界の悪いカーブが多く続く道路区間が走行中の道路区間に接近している場合、事前に直線道路区間で減速した方が安全な場合がある。 As another example, it was found by regular monitoring in advance that the driver had no prospect of returning to manual driving due to poor physical condition, etc. Furthermore, there was a lot of traffic on the road section while driving, and there were many curves with poor visibility. If the following road section is close to the running road section, it may be safer to decelerate in advance on the straight road section.
 ステップS134で、自動運転制御部10112は、緊急にMRMの制動を開始する。例えば、自動運転制御部10112は、MRMの開始に当たり、事前に、MRMの開始を自車の周囲に通知する警報通知を発する。また、自動運転制御部10112は、運転者に対して、MRMに対応する姿勢(体勢)を準備するよう指示を出す。自動運転制御部10112は、ステップS134の処理の後、処理をステップS160に移行させ、システムによるMRMを開始させる。 In step S134, the automatic operation control unit 10112 urgently starts braking the MRM. For example, the automatic operation control unit 10112 issues an alarm notification in advance to notify the surroundings of the own vehicle of the start of the MRM before the start of the MRM. Further, the automatic operation control unit 10112 instructs the driver to prepare a posture (position) corresponding to the MRM. After the processing of step S134, the automatic operation control unit 10112 shifts the processing to step S160 and starts MRM by the system.
 また、ステップS134からステップS160に移行する処理は、運転者の評価を減点する、後述する減点対象(2)とされる。 Further, the process of shifting from step S134 to step S160 is subject to deduction target (2), which will be described later, to deduct points from the driver's evaluation.
 自動運転制御部10112は、上述のステップS131で、新規イベント発生地点までの距離が所定以上であり、十分な時間的余裕がある場合、緊急性が低いと判定し(ステップS131、「低」)、処理をステップS140に移行させる。 In step S131 described above, the automatic driving control unit 10112 determines that the urgency is low when the distance to the new event occurrence point is equal to or greater than a predetermined value and there is sufficient time to spare (step S131, “low”). , The process shifts to step S140.
 ステップS140で、自動運転制御部10112は、当該ODD区間の俯瞰に、当該新規イベントを追加し、俯瞰を更新する。次のステップS141で、自動運転制御部10112は、運転者に対して当該新規イベントを通知し、この通知に対する運転者のレスポンスを観測する。 In step S140, the automatic operation control unit 10112 adds the new event to the bird's-eye view of the ODD section and updates the bird's-eye view. In the next step S141, the automatic operation control unit 10112 notifies the driver of the new event, and observes the driver's response to this notification.
 次のステップS142で、自動運転制御部10112は、ステップS141で観測された運転者のレスポンスに基づき、運転者が追加された新規イベントを受け入れるか否か、すなわち、当該ODD区間における契約に対する合意を更新したか否かを判定する。自動運転制御部10112は、運転者が合意を更新したと判定した場合(ステップS142、「Yes」)、処理をステップS143に移行させる。 In the next step S142, the automatic operation control unit 10112 decides whether or not the driver accepts the added new event based on the driver's response observed in step S141, that is, agrees on the contract in the ODD section. Determine if it has been updated. When the driver determines that the agreement has been renewed (step S142, "Yes"), the automatic driving control unit 10112 shifts the process to step S143.
 ステップS143で、自動運転制御部10112は、運転者の優良通知認知に伴い、運転者の評価としてインセンシティブポイントを加算する。そして、自動運転制御部10112は、符号「E」に従い、処理を図7BのフローチャートにおけるステップS122に移行させる。 In step S143, the automatic driving control unit 10112 adds insensitive points as the driver's evaluation in accordance with the recognition of the driver's excellent notification. Then, the automatic operation control unit 10112 shifts the process to step S122 in the flowchart of FIG. 7B according to the reference numeral “E”.
 このステップS143からステップS122への移行は、運転者が自身の意志で通知の認知応答を行った処理のため、運転者においては、引継ぎのイベントの追加として認知される。これは、ワーキングメモリに作用した情報となり、運転者による適切な処理が期待される。これは、後述するステップS149からステップS122に移行した場合についても、同様である。 This transition from step S143 to step S122 is recognized by the driver as the addition of a takeover event because the driver has made a cognitive response to the notification at his / her own will. This becomes information acting on the working memory, and appropriate processing by the driver is expected. This also applies to the case of shifting from step S149 to step S122, which will be described later.
 なお、ステップS142からステップS143への処理の移行は、運転者がシステムから提示された契約に合意し、意識して、自動運転の予定を許容したことを意味する。そのため、この契約に関する情報は、運転者のワーキングメモリに、記憶情報#4として記憶される(WM14)。 Note that the transition of processing from step S142 to step S143 means that the driver has agreed to the contract presented by the system and consciously allowed the schedule of automatic operation. Therefore, the information regarding this contract is stored in the driver's working memory as storage information # 4 (WM14).
 一方、自動運転制御部10112は、ステップS142で運転者が合意を更新しなかったと判定した場合(ステップS142、「No」)、処理をステップS144に移行させる。ステップS144で、自動運転制御部10112は、運転者の状態に基づき、運転者によるシステムからの通知の受付の可否を観測する。次のステップS145で、自動運転制御部10112は、ステップS144の観測結果に基づき、運転者に対して手動運転への強制的な復帰を促す強制復帰通知の妥当性を判定する。また、自動運転制御部10112は、復帰時の影響が最小となる退避地点を算出する。 On the other hand, when the automatic operation control unit 10112 determines in step S142 that the driver has not renewed the agreement (step S142, "No"), the process shifts to step S144. In step S144, the automatic operation control unit 10112 observes whether or not the driver can accept the notification from the system based on the state of the driver. In the next step S145, the automatic operation control unit 10112 determines the validity of the forced return notification for urging the driver to forcibly return to the manual operation based on the observation result of the step S144. Further, the automatic operation control unit 10112 calculates the evacuation point where the influence at the time of return is minimized.
 次のステップS146で、自動運転制御部10112は、現時点から、手動運転に復帰すべきタイミングまで、猶予時間があるか否かを判定する。自動運転制御部10112は、猶予時間があると判定した場合(ステップS146、「Yes」)、処理をステップS144に戻す。例えば、運転者が、仮眠など運転からの離脱が大きいNDRAを実行している場合、表示や警告音のようなソフト通知が運転者に認知されない可能性がある。そのため、自動運転制御部10112は、猶予時間が無くなるまで、ステップS144~ステップS146の処理を繰り返す。 In the next step S146, the automatic operation control unit 10112 determines whether or not there is a grace time from the present time until the timing when the manual operation should be restored. When the automatic operation control unit 10112 determines that there is a grace time (step S146, “Yes”), the process returns to step S144. For example, when the driver is executing NDRA such as a nap, which has a large withdrawal from driving, soft notifications such as a display and a warning sound may not be recognized by the driver. Therefore, the automatic operation control unit 10112 repeats the processes of steps S144 to S146 until the grace time is exhausted.
 自動運転制御部10112は、ステップS146で、現時点から、手動運転に復帰すべきタイミングまでの猶予時間が無いと判定した場合(ステップS146、「No」)、処理をステップS147に移行させる。ステップS147で、自動運転制御部10112は、ステップS145での強制復帰通知に関する妥当性の判定結果に基づき、復帰点発生を追加すると共に、運転者に対して復帰点を段階的に周知させる。例えば、自動運転制御部10112は、予備的な警報や通知を、運転者に対して段階的に発する。 If the automatic operation control unit 10112 determines in step S146 that there is no grace time from the present time until the timing for returning to manual operation (step S146, "No"), the process shifts to step S147. In step S147, the automatic operation control unit 10112 adds a return point generation based on the determination result of validity regarding the forced return notification in step S145, and informs the driver of the return point step by step. For example, the automatic driving control unit 10112 issues preliminary alarms and notifications to the driver in stages.
 予定外の新規イベントを運転者に通知するに当たり、当該新規イベントの発生時に運転者が寝ていたりした場合、運転者は、新たな引継ぎポイントや、引継ぎの必要性、緊急度の前提となる記憶を全く持っていないことになる。そこで、運転者がパニックに陥ることを予防するために、予定内の引継ぎとは異なり、思考や状況把握の猶予を運転者に与えるために、一定の早期通知、警報を行う。 When notifying the driver of an unscheduled new event, if the driver is asleep at the time of the new event, the driver will have a new takeover point, the need for takeover, and a memory that is a prerequisite for urgency. Will not have at all. Therefore, in order to prevent the driver from panicking, a certain early notification and warning are given to give the driver a grace period for thinking and grasping the situation, unlike the scheduled transfer.
 これは、上述の通り、新規イベントで本来より早まった復帰動作は、運転者の復帰必要性記憶に復帰点情報が記憶されておらず、運転者の作業記憶に、手動運転への復帰を促す情報が未だまだ記憶されていないためである。この判断の限界は、MRMが発動された場合に、RRR(Request Recovery Ratio)が高く、幹線道路の運行妨害などを起こさずに運転者が復帰できる余裕時間α以上が確保される地点である。例えば運転者が仮眠していた場合は、仮眠に対して復帰するまでの時間である。ここで、運転者の仮眠からの復帰品質が悪く、RRRが高く、且つ、車両が通行妨害などを発生させるおそれがある区間に差し掛かっている場合は、自動運転制御部10112は、その手前でMRMによる事前対処を行う。 This is because, as described above, the return operation earlier than originally expected in the new event does not store the return point information in the driver's return necessity memory, and prompts the driver's work memory to return to manual operation. This is because the information has not been memorized yet. The limit of this judgment is the point where the RRR (Request Recovery Ratio) is high when MRM is activated, and the margin time α or more that the driver can return without causing the operation obstruction of the main road is secured. For example, when the driver is taking a nap, it is the time until he / she returns to the nap. Here, if the quality of recovery from the driver's nap is poor, the RRR is high, and the vehicle is approaching a section where there is a risk of traffic obstruction, the automatic driving control unit 10112 will move the MRM in front of it. Take proactive measures.
 なお、RRRは、運転者に対する手動運転への復帰の要請が発生する際の、引継ぎ限界点での引継ぎの完了が望まれる希望確率を示す。 Note that RRR indicates the desired probability that the transfer is desired to be completed at the transfer limit point when the driver is requested to return to the manual operation.
 RRRについてより詳細に説明する。理想的には、引継ぎ限界点では[1/1]の運転者が引継ぎを正常に完了させることが望ましい。その成功割合を示す際に、RRRを[1/1]として定義する。 RRR will be explained in more detail. Ideally, it is desirable for the [1/1] driver to successfully complete the takeover at the takeover limit. In indicating the success rate, RRR is defined as [1/1].
 ただし、現実的には、引継ぎが成功しないケースが稀に発生する。例えば、ある道路区間において、10000台の車両のうち5台の車両の運転者が成功しないレベルを許容する場合、当該道路区間に求めるRRRは、[1-0.0005/1]のように表記した割合となる。 However, in reality, there are rare cases where the transfer is not successful. For example, in a certain road section, when the driver of 5 out of 10000 vehicles allows a level where the driver does not succeed, the RRR required for the road section is expressed as [1-0.405 / 1]. It will be the ratio.
 このRRRは、道路には、物理的な情報としてLDMとして定義される諸般の動的情報に、道路区間のレーン毎に、MRMの発動により当該道路区間に車両を停車した場合に、後続車等による自車への追突事故や渋滞の誘発が無く、また、自車を単一車線の道路途中で急停車をさせないで済むように、道路区間毎に定義される引継ぎの成功目標値を表す指標である。RRRは、LDMに付随して、時間的状況変化に応じて動的に変化する判定因子として運用されることが望ましい。 This RRR includes various dynamic information defined as LDM as physical information on the road, and when a vehicle is stopped on the road section by invoking MRM for each lane of the road section, a following vehicle or the like is used. It is an index showing the success target value of takeover defined for each road section so that there is no collision accident with the own vehicle or the induction of congestion and the own vehicle does not have to stop suddenly in the middle of the road with a single lane. be. It is desirable that the RRR is used as a determinant that dynamically changes in response to changes in the temporal situation in association with the LDM.
 具体的な事例としては、国内であれば首都高速道路等の様に路肩などの退避路肩を有しない道路区間や、その中でもさらに、退避所が先着の車両で既に埋まった状況などでは、RRRは、それら区間でRRRを[1]とすることが望ましい。一方、退避所に退避するスペースがある場合や、一般道に退避が可能な高速道路の出口手前等において運転者の復帰が不可避の場合に、後続他車両への影響を最小化しつつもMRMの一環でこれら退避所に操舵退避、一般道へ降りて停車等の選択が可能となることから、復帰要請率を例えば0.95程度にすることが考えられる。また、交通量が極端に少ない道路区間において、当該道路区間中で緊急停車の影響が自車のみに関わる状況であれば、RRRは[0]でもよい。 As a specific example, in Japan, RRR is used in road sections that do not have shoulders such as shoulders, such as the Metropolitan Expressway, and in situations where the slope is already filled with first-come-first-served vehicles. , It is desirable to set RRR to [1] in those sections. On the other hand, when there is a space to evacuate to the evacuation site, or when the driver's return is unavoidable in front of the exit of the expressway where evacuation is possible on a general road, the influence on other following vehicles is minimized, but the MRM Since it is possible to select evacuation by steering to these evacuation centers, getting off to a general road and stopping, etc., it is conceivable to set the return request rate to, for example, about 0.95. Further, in a road section where the traffic volume is extremely light, RRR may be [0] as long as the influence of the emergency stop is related only to the own vehicle in the road section.
 基本的には、RRRは、社会インフラに対するMRMによる交通に対する阻害を抑えるために、LDMの一環として、自動運転を利用する車両に常時更新提供される情報であることが望ましい。 Basically, it is desirable that RRR is information that is constantly updated and provided to vehicles that use autonomous driving as part of LDM in order to suppress the obstruction of traffic by MRM to social infrastructure.
 ステップS147の処理が完了すると、自動運転制御部10112は、処理をステップS148に移行させる。ステップS148で、自動運転制御部10112は、ステップS147による予備的な警報、通知が運転者に認知されたか否かを判定する。 When the process of step S147 is completed, the automatic operation control unit 10112 shifts the process to step S148. In step S148, the automatic driving control unit 10112 determines whether or not the preliminary warning and notification according to step S147 have been recognized by the driver.
 自動運転制御部10112は、ステップS148で、当該警報、通知に対する運転者の所定のレスポンス(入力部10101に対する操作、特定のアクションなど)を検知し、当該警報、通知が運転者に認知されたと判定した場合(ステップS148、「Yes」)、処理をステップS149に移行させる。この場合、運転者が呼び通知に応じて早期に応答したため、通常の引継ぎ処理に移行できる。 In step S148, the automatic operation control unit 10112 detects the driver's predetermined response to the alarm / notification (operation for the input unit 10101, specific action, etc.), and determines that the alarm / notification has been recognized by the driver. If so (step S148, “Yes”), the process is transferred to step S149. In this case, since the driver responded to the call notification at an early stage, it is possible to shift to the normal takeover process.
 ステップS149で、自動運転制御部10112は、運転者の対処の優劣に応じて、運転者の評価としてインセンシティブポイントを加算または減算する。そして、自動運転制御部10112は、符号「E」に従い、処理を図7BのフローチャートにおけるステップS122に移行させる。 In step S149, the automatic operation control unit 10112 adds or subtracts insensitive points as a driver's evaluation according to the superiority or inferiority of the driver's response. Then, the automatic operation control unit 10112 shifts the process to step S122 in the flowchart of FIG. 7B according to the reference numeral “E”.
 なお、ステップS148からステップS149への処理の移行は、運転者が呼び通知に応じて早期に応答したことにより、通常の引継ぎ処理に移行できることを意味する。そのため、この予備的な警報、通知を認知した旨の情報は、運転者のワーキングメモリに、記憶情報#5として記憶される(WM15)。 Note that the shift of the process from step S148 to step S149 means that the driver can shift to the normal takeover process by responding to the call notification at an early stage. Therefore, the information indicating that the preliminary warning and notification have been recognized is stored in the driver's working memory as storage information # 5 (WM15).
 ここで、このWM15によりワーキングメモリに記憶された記憶情報#5と、上述したWM14によりワーキングメモリに記憶された記憶情報#4は、図中に符号「C」で示されるように、図7AのWM13による処理に適用される。 Here, the storage information # 5 stored in the working memory by the WM15 and the storage information # 4 stored in the working memory by the above-mentioned WM14 are shown by the reference numeral “C” in FIG. 7A. It is applied to the processing by WM13.
 自動運転制御部10112は、ステップS148で当該警報、通知が運転者に認知されていないと判定した場合(ステップS148、「No」)、処理をステップS150に移行させる。ステップS150で、自動運転制御部10112は、運転者の復帰に対する認知を待機するための余裕度があるか否かを判定する。自動運転制御部10112は、当該待機に対する余裕度があると判定した場合(ステップS150、「Yes」)、符号「F」に従い、処理を同図のステップS132に戻す。 When the automatic driving control unit 10112 determines in step S148 that the alarm or notification is not recognized by the driver (step S148, "No"), the process shifts to step S150. In step S150, the automatic driving control unit 10112 determines whether or not there is a margin for waiting for recognition of the driver's return. When the automatic operation control unit 10112 determines that there is a margin for the standby (step S150, “Yes”), the automatic operation control unit 10112 returns the process to step S132 in the figure according to the reference numeral “F”.
 一方、自動運転制御部10112は、ステップS150で当該余裕度が無いと判定した場合(ステップS150、「No」)、処理をステップS160に移行させる。このステップS150からステップS160への移行は、運転者の復帰が時間切れとなり、ソフトMRMを実行する処理となる。この場合、運転者の復帰に対する遅延および怠慢に応じて、運転者の評価を減点する、後述する減点対象(3)とされる。 On the other hand, when the automatic operation control unit 10112 determines in step S150 that there is no such margin (step S150, "No"), the process shifts to step S160. The transition from step S150 to step S160 is a process in which the return of the driver is timed out and the soft MRM is executed. In this case, the points will be deducted from the driver's evaluation according to the delay and negligence of the driver's return, which will be described later (3).
 ここで、上述したステップS144~ステップS148の処理の意味について説明する。 Here, the meaning of the processes of steps S144 to S148 described above will be described.
 自動運転レベル4の自動運転の利用が可能となると、そのODD区間に対応した状態の区間では、運転者は、より運転操舵ループから離脱したNDRAに携わることが可能となり、例えば仮眠や荷台への移動を行うことができる。 When the automatic driving of the automatic driving level 4 becomes available, in the section corresponding to the ODD section, the driver can be engaged in the NDRA which is more separated from the driving steering loop, for example, to take a nap or to the loading platform. You can move.
 特に仮眠などのように離脱が大きい場合において、自動運転レベル4となったODD走行区間中に、例えば直線道路と、当該直線道路を十数分後走行した先に複数の連続するカーブとを含む区間の直線区間において、軽微なインシデントが発生した場合について考える。このようなインシデントの例として、昆虫がフロントガラスに当たるインセクトストライクが挙げられる。インセクトストライクに遭遇すると、フロントガラスが汚れ、前方視界の確認などに支障が生じるおそれがある。 In particular, in the case of a large departure such as a nap, the ODD traveling section at the automatic driving level 4 includes, for example, a straight road and a plurality of continuous curves after traveling the straight road for a dozen minutes. Consider the case where a minor incident occurs in a straight section of the section. An example of such an incident is an insect strike where an insect hits the windshield. When an insect strike is encountered, the windshield may become dirty, which may interfere with the confirmation of forward visibility.
 ここで、インセクトストライクによりフロントガラスが汚れた場合であっても、直線道路の区間では、自動運転レベル4の自動運転で走行しても、安全である。しかしながら、直線区間の後の連続カーブ区間では、道路が大きく畝ることになり、フロントガラスが汚れた状態では、自動運転レベル4の自動運転を行うには適さない状態となるおそれがある。そのため、この状況変化に対してODDが見直され、自動運転レベル4の自動運転が困難になることが考えられる。この場合、システムは、安全を考慮して、自動運転から手動運転への引継ぎを、通常の引継ぎタイミングより早いタイミングで、一旦運転者に通知する。そして、システムは、当該通知に対する運転者による確認応答の状況を観測して、次に説明するような対処を講じることが必要となる。 Here, even if the front glass is dirty due to the Insect Strike, it is safe to drive in the automatic driving level 4 on the straight road section. However, in the continuous curve section after the straight section, the road is greatly ridged, and when the front glass is dirty, there is a possibility that the state is not suitable for automatic operation of the automatic operation level 4. Therefore, it is considered that the ODD is reviewed in response to this change in the situation, and the automatic operation of the automatic operation level 4 becomes difficult. In this case, in consideration of safety, the system temporarily notifies the driver of the transfer from the automatic operation to the manual operation at a timing earlier than the normal transfer timing. Then, the system needs to observe the status of the confirmation response by the driver to the notification and take measures as described below.
 すなわち、自動運転レベル3の概念と同様に、自動運転レベル4で通行可能な区間は、自動運転レベル4で走行する機能を設計上で備えた全ての車両が常に自動運転レベル4で走行できるのではなく、条件が揃った場合に自動運転レベル4で走行可能となる区間ともいえる。その条件に応じて運転者が適切に対応できるかは、システムが運転者に対して、時間的な余裕をもって判断に必要な情報を提供し、運転者が主体になって状況に対処する必要がある。 That is, similar to the concept of the automatic driving level 3, all vehicles having a design function of traveling at the automatic driving level 4 can always drive at the automatic driving level 4 in the section that can be passed at the automatic driving level 4. Rather, it can be said that it is a section that can be driven at automatic driving level 4 when the conditions are met. Whether or not the driver can respond appropriately according to the conditions requires the system to provide the driver with the information necessary for making a decision with sufficient time, and the driver to take the initiative in dealing with the situation. be.
 その際に、システムが条件変化で発生した新規の復帰を要する地点への到達までに時間的に十分な余裕がある場合、システムがNDRAの中断を強制して手動運転への復帰を運転者に求めることは、運転者である利用者の視点から見ると、無駄な復帰要請となる。 At that time, if the system has sufficient time to reach the point where a new return is required due to a change in conditions, the system forces the NDRA to be interrupted and prompts the driver to return to manual operation. What is requested is a useless return request from the viewpoint of the user who is the driver.
 実際には、運転者は、荷台に移動状態である、仮眠中であるなどにより、NDRAの中断が煩わしく、且つ、急ぎの復帰に必然性が無いために、システムの早期の条件変化の確認は、運転者にとっては、リスクを伴わない不必要で面倒な作業に過ぎないことになる。そのため、繰り返し行う不必要な要請は、運転者における無駄な感覚を増長するのみとなり、上述した、通知に対するフィルタリング効果が進み、その重要度が次第に軽視されることとなる。 Actually, the driver is in a state of moving to the loading platform, taking a nap, etc., so that the interruption of NDRA is troublesome and there is no necessity for urgent return. For the driver, it is nothing more than a risk-free, unnecessary and tedious task. Therefore, repeated unnecessary requests only increase the useless feeling of the driver, and the above-mentioned filtering effect on the notification is promoted, and its importance is gradually neglected.
 不要な早期確認を予防しつつ、過度なリスクを予防するために、一定の余裕度を見て、通知や警報を出すタイミングを見計らって復帰手順の準備取り掛かる判定がステップS146で行われる。そして、その通知や警報が運転者に認知されたかに応じて、通常の復帰手順と同等の処理を開始するかといった、運転者の対処が遅れた場合の対処の判定が、ステップ148で行われる。 In order to prevent unnecessary early confirmation and prevent excessive risk, a determination is made in step S146 to prepare for the return procedure at a certain margin and at the timing of issuing a notification or an alarm. Then, depending on whether the notification or the alarm is recognized by the driver, the determination of the countermeasure when the driver's response is delayed, such as whether to start the process equivalent to the normal return procedure, is performed in step 148. ..
 上述したステップS144~ステップS148の処理は、このような制御を実現するためのものである。 The processes of steps S144 to S148 described above are for realizing such control.
 なお、ステップS146における猶予時間の基準は、車両の特性に応じた安全性係数、当該道路区間で求められるRRRの目標値など、一般乗用車、重量危険物積載車両、大型相乗り車両などでパラメータ化した基準値として運用してもよい。 The standard of the grace time in step S146 is parameterized for general passenger vehicles, vehicles loaded with heavy hazardous materials, large shared vehicles, etc., such as a safety coefficient according to the characteristics of the vehicle and a target value of RRR obtained in the road section. It may be operated as a reference value.
 システムが情報表示部120等を介して運転者に提示した情報は、運転者にリスク判断の情報として運転者のワーキングメモリに取り込まれ、引継ぎの重要度意識に応じてワーキングメモリから取り出されて運転者の行動判断を促すことになる。 The information presented to the driver by the system via the information display unit 120 or the like is taken into the driver's working memory as risk judgment information by the driver, and is taken out from the working memory according to the awareness of the importance of taking over for operation. It will encourage people to judge their actions.
<3-2-3-2.運転者の復帰行動に対する評価>
 ここで、実施形態に係る、運転者の復帰行動に対する評価について、より具体的に説明する。先ず、上述した、MRMを開始するステップS160に処理が移行した場合に運転者の評価値を減点する、減点対象(1)~(3)について、表2を参照しながら説明する。
<3-2-3-2. Evaluation of driver's return behavior>
Here, the evaluation of the driver's return behavior according to the embodiment will be described more specifically. First, the deduction targets (1) to (3) for deducting the evaluation value of the driver when the process shifts to the step S160 for starting MRM will be described with reference to Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の例では、減点対象(1)では、単体の発生に対しては減点[-1]、同一の旅程内で繰り返し発生した場合は、減点[-2]となっている。減点対象(2)では、単体の発生に対しては減点[-4]、同一の旅程内で繰り返し発生した場合は、減点[-4]となっている。また、減点対象(3)では、単体の発生に対しては減点[-5]、同一の旅程内で繰り返し発生した場合は、減点[-5]となっている。 In the example of Table 2, in the point deduction target (1), points are deducted [-1] for a single occurrence, and points are deducted [-2] for repeated occurrences within the same itinerary. In the point deduction target (2), points are deducted [-4] for a single occurrence, and points are deducted [-4] for repeated occurrences within the same itinerary. Further, in the point deduction target (3), a deduction [-5] is applied to the occurrence of a single unit, and a deduction [-5] is applied to the occurrence of a single item repeatedly within the same itinerary.
 減点対象(1)は、ステップS131からステップS160に移行する場合の減点であって、程度としては、差し迫っている状況での減点である。この場合、自車が走行する道路において、自車の直前で事前の予告なく発生したイベントへの対応であり、運転者の直接的な責任に帰依するものではない。しかしながら、自動運転の利用時の状況判断によりMRMの開始が予見される場合、システムに依存した自動運転の利用を繰り返さないために、減点を適用する(第3の度合いの減点)。また、減点対象(1)では、例えば一時的な条件フラグ付の減点として、一定期間再適用がなければ減点が取り消される仕組みとすることができる。 The point deduction target (1) is the deduction when shifting from step S131 to step S160, and the degree of deduction is the deduction in an imminent situation. In this case, it is a response to an event that occurred immediately before the own vehicle on the road on which the own vehicle travels without prior notice, and does not attribute to the direct responsibility of the driver. However, if the start of MRM is predicted by the situation judgment when using automatic operation, a deduction is applied so that the use of automatic operation depending on the system is not repeated (third degree of deduction). Further, in the point deduction target (1), for example, as a deduction with a temporary conditional flag, the deduction can be canceled if it is not reapplied for a certain period of time.
 減点対象(2)は、ステップS134からステップS160に移行する場合の減点であって、程度としては、時間的に少しの余裕がある状況での減点である。この場合、システムが車両の走行速度の減速などを行い引継ぎが必須となる地点までの到達時間を引き伸ばしても、怠慢など運転者に起因する原因により手動運転への復帰対処が不十分となり、MRMが開始される例となる。この場合、MRM開始の責任が運転者側にあるため、上述した減点対象(1)よりも重い減点を課す(第2の度合いの減点)。 The point deduction target (2) is a deduction when shifting from step S134 to step S160, and as a degree, it is a deduction in a situation where there is a little time to spare. In this case, even if the system slows down the traveling speed of the vehicle and extends the arrival time to the point where it is essential to take over, the recovery to manual operation becomes insufficient due to the driver's cause such as negligence, and MRM. Is an example of starting. In this case, since the responsibility for starting MRM lies with the driver, a heavier deduction than the above-mentioned deduction target (1) is imposed (second degree deduction).
 減点対象(3)は、ステップS150からステップS160に移行する場合の減点であって、程度としては、本来ならば十分な時間的余裕があった状況での減点である。この場合は、本来なら、時間的余裕のある利用であって、早期に復帰をすれば済む引継ぎである。システムとしては、ソフトで周囲に対しもより影響の少ない方法でMRMを実行する。しかしながら、運転者に対して怠慢とした引き継ぎ行動を防止し、速やかな対処を実行するような行動変容を促すために、上述の減点対象(2)よりさらに重い減点を課す(第1の度合いの減点)。 The point deduction target (3) is the deduction when shifting from step S150 to step S160, and as a degree, it is a deduction in a situation where there is originally sufficient time to spare. In this case, it should be used with plenty of time, and it is a transfer that can be completed if it returns early. As a system, MRM is executed by a method that is soft and has less influence on the surroundings. However, in order to prevent the driver from neglecting the takeover behavior and to encourage behavioral changes such as taking prompt action, a heavier deduction than the above-mentioned deduction target (2) is imposed (first degree). Deduction).
 次に、システムから運転者に対する通常の引継ぎ要請時(Request to Intervene、Transition Demandともいう)における、運転者に対する評価の例について、表3を用いて説明する。この表3に例示する評価は、例えば図7BのステップS124において行われるが、これに限らず、他の引継ぎのタイミングや、さらに他のタイミングでこの表3に従った評価を行うこともできる。 Next, an example of evaluation for the driver at the time of a normal transfer request from the system to the driver (also referred to as Request to Intervene or Transition Demand) will be described using Table 3. The evaluation exemplified in this Table 3 is performed, for example, in step S124 of FIG. 7B, but the evaluation is not limited to this, and the evaluation according to this Table 3 can be performed at other timings of takeover or at other timings.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、最初の第1~第4行は、運転者の評価に加点する場合の例、第5行は、運転者の評価に加点および減点を行わない場合の例、第6行以降は、運転者の評価を減点する場合の例である。 In Table 3, the first 1st to 4th rows are examples of adding points to the driver's evaluation, the 5th row is an example of not adding points and deducting points to the driver's evaluation, and the 6th and subsequent rows are , This is an example of deducting points from the driver's evaluation.
 表3によれば、加点を行う場合の例として、運転者が早期に休憩・休息の選択を行った、あるいは、迂回路を選択して引継ぎ点による引継ぎを事前に断念した場合、運転者が早期に先導車や遠隔管制またはリモートオペーレションによる援助を要請した場合、および、復帰予告音または運転者の自主的な状況確認により引継ぎを開始した場合(復帰感覚の自律生成)に、それぞれ単発発生または旅程内での繰り返し発生であるかに関わらず、加点[+0.2]としている。また、復帰要請事前通知の運転者による認知検出ありの場合に、単発発生または旅程内での繰り返し発生であるかに関わらず、加点[+0.1]としている。 According to Table 3, as an example of adding points, if the driver selects a break / rest at an early stage, or if a detour is selected and the transfer at the transfer point is abandoned in advance, the driver When requesting assistance by leading vehicle, remote control or remote operation at an early stage, and when taking over is started by the return warning sound or the driver's voluntary confirmation of the situation (autonomous generation of return feeling), respectively. Points are added [+0.2] regardless of whether it occurs once or repeatedly within the itinerary. In addition, when there is recognition detection by the driver in advance notification of the return request, points are added [+0.1] regardless of whether it occurs once or repeatedly in the itinerary.
 運転者が復帰通知に応じて復帰動作を開始した場合、通常の復帰動作であるとして、加点および減点の何れも行わない。 When the driver starts the return operation in response to the return notification, neither points are added nor points are deducted as it is a normal return operation.
 一方、減点を行う場合の例として、運転者が復帰警報で復帰開始した場合、運転者が状況軽視したとして、単発発生で減点[-0.2]、同一旅程内での繰り返し発生でその2倍の減点としている。この減点は、運転者による状況軽視や、優先度の高い処理を後回しにすることを予防する意味がある。復帰要請事前通知の運転者による認知検出無しの場合(記憶に入らない通知の放置)に、単発発生または旅程内での繰り返し発生であるかに関わらず、悪質対処として加点[-0.5]としている。運転者が復帰強制要請で復帰開始した場合、リスク感覚の不足として、単発発生で減点[-1.0]、同一旅程内での繰り返し発生でその2倍の減点としている。 On the other hand, as an example of deducting points, when the driver starts returning with a return alarm, the driver disregards the situation, deducting points [-0.2] for a single occurrence, and 2 for repeated occurrences within the same itinerary. The points are doubled. This deduction has the meaning of preventing the driver from neglecting the situation and postponing high-priority processing. If there is no recognition detection by the driver in advance notification of the return request (leaving the notification not in memory), points will be added as a malicious measure regardless of whether it occurs once or repeatedly in the itinerary [-0.5] It is supposed to be. When the driver starts returning due to a compulsory return request, the deduction is [-1.0] for a single occurrence and double the deduction for repeated occurrences within the same itinerary as a lack of sense of risk.
 また、幹線道路において、システムが事前減速を行い時間猶予を生成することで引継ぎが辛うじて達成した場合、単発発生で減点[-2.0]、同一旅程内での繰り返し発生でその1.5倍の減点としている。同様に幹線道路において、運転者が引継ぎ対処不可すなわち引継ぎに失敗し、システムがMRMを実行した場合、単発発生で減点[-4.0]、同一旅程内での繰り返し発生でその1.5倍の減点としている。この減点は、運転者による確信違反を抑制する意味がある。 In addition, if the system barely achieves the takeover by decelerating in advance and generating a time grace on the main road, a deduction [-2.0] will be given for a single occurrence, and 1.5 times that for repeated occurrences within the same itinerary. It is a deduction of points. Similarly, on a highway, if the driver cannot handle the takeover, that is, if the takeover fails and the system executes MRM, a deduction [-4.0] will be given for a single occurrence, and 1.5 times that for repeated occurrences within the same itinerary. It is a deduction of points. This deduction has the meaning of suppressing the driver's conviction violation.
 さらに、低速非幹線道路において、システムが事前に減速することで時間猶予を生成して引継ぎを達成した場合、および、低影響道(交通量が極めて少ない道路など)において、運転者が引継ぎ対処不可すなわち引継ぎに失敗し、システムがMRMを実行した場合、それぞれ単発発生または同一旅程内での繰り返し発生であるかに関わらず、減点[-0.5]としている。 In addition, on low-speed non-main roads, the driver cannot take over when the system decelerates in advance to generate a time grace and achieve the takeover, and on low-impact roads (such as roads with extremely low traffic volume). That is, if the takeover fails and the system executes MRM, the points are deducted [-0.5] regardless of whether they occur once or repeatedly within the same itinerary.
 さらにまた、NDRAの利用に関し、運転者がODDの適用状況の確認未実施でNDRAを開始した場合、単発発生で減点[-2.0]、同一旅程内での繰り返し発生でその2倍の減点とし、ODD外でNDRA利用した場合、これは違反であり、単発発生で減点[-3.0]、同一旅程内での繰り返し発生でその2倍の減点としている。 Furthermore, regarding the use of NDRA, if the driver starts NDRA without confirming the application status of ODD, a deduction [-2.0] will be given for a single occurrence, and a double deduction for repeated occurrences within the same itinerary. However, when NDRA is used outside the ODD, this is a violation, and the deduction is [-3.0] for a single occurrence and double the deduction for repeated occurrences within the same itinerary.
 システム(自動運転制御部10112)は、この表3に示した加減点を、同一の運転者について累積し、当該運転者の評価値とする。システムは、当該運転者の加減点の累積を、例えば、当該運転者が当該システムにおいて設定、実施した全ての旅程、あるいは、所定期間内に実施した旅程を対象として累積する。このように、運転者の履歴に応じた従量ペナルティを課すことで、引き継ぎ要請がシステムから出されているにも関わらず対処を怠る、速やかなNDRA中断要請を軽視して、漫然として復帰動作を繰り返す、等の悪質な利用を防止する制御に、この評価結果を反映させる。 The system (automatic driving control unit 10112) accumulates the addition / subtraction points shown in Table 3 for the same driver and uses it as the evaluation value of the driver. The system accumulates the addition and subtraction points of the driver, for example, for all the itineraries set and executed by the driver in the system, or for the itineraries carried out within a predetermined period. In this way, by imposing a pay-as-you-go penalty according to the driver's history, even though the takeover request is issued from the system, it neglects to deal with it. This evaluation result is reflected in the control to prevent malicious use such as repetition.
 システムは、運転者の評価値が低い(例えば評価値がマイナスの値)場合、当該運転者による自動運転の利用に対して、ペナルティを与えることができる。 The system can give a penalty to the driver's use of autonomous driving when the driver's evaluation value is low (for example, the evaluation value is a negative value).
 運転者に対するペナルティの例として、自動運転の利用制限がある。この自動運転の利用制限については、例えば、目的地への到着予定時間の繰り下げ処理、強制的なサービスエリアへの立ち寄り、一定時間の走行ロック、走行の上限速度に対する制約付与、自動運転モードの利用制限(同日、該当週あるいは月)、自動運転モードの利用区間制限、などが考えられる。これらの利用制限は、運転者に対して直感的な損(リスク)感覚を与え、手動運転への早期復帰や、適切な対処を促す効果がある。 As an example of a penalty for drivers, there are restrictions on the use of autonomous driving. Regarding restrictions on the use of this automatic driving, for example, processing to delay the scheduled arrival time to the destination, forced stop-by to the service area, running lock for a certain period of time, restriction on the upper limit speed of running, use of the automatic driving mode Restrictions (same day, applicable week or month), restrictions on the section of automatic operation mode, etc. can be considered. These usage restrictions give the driver an intuitive sense of loss (risk), and have the effect of encouraging early return to manual driving and appropriate measures.
 運転者に対するペナルティの別の例として、運転者が自動運転の利用中に従事する2次タスク(NDRA)の利用制限がある。この利用制限により、運転者に対して直感的な損(リスク)感覚を与え、手動運転への早期復帰や、適切な対処を促す効果を得ることができる。 Another example of a penalty for a driver is the restriction on the use of secondary tasks (NDRA) that the driver engages in while using autonomous driving. This usage restriction gives the driver an intuitive sense of loss (risk), and can obtain the effect of prompting the driver to return to manual operation early and take appropriate measures.
 この2次タスクの利用制限については、例えば、運転者が2次タスクに利用する端末装置に対する利用制限が考えられる。端末装置に対する利用制限としては、当該端末装置に表示される画面の塗り潰し、当該画面に対する任意の画像を用いての侵食が考えられる。これらによれば、例えば、運転者の直感に訴えた段階的な事前予告により、運転者に対してリスクを認識させることができる。また、当該端末装置の利用中の画面と引継ぎ情報ウィンドウとを入れ替える(子画面と親画面との入れ替わり)ことが考えられる。これによれば、例えば、運転者に対して運転の引継ぎに対する注意を促すことができる。 Regarding the usage restriction of this secondary task, for example, the usage restriction of the terminal device used by the driver for the secondary task can be considered. As the usage restriction for the terminal device, it is conceivable to fill the screen displayed on the terminal device and to erode using an arbitrary image for the screen. According to these, for example, the driver can be made aware of the risk by a stepwise advance notice that appeals to the driver's intuition. Further, it is conceivable to replace the screen in use of the terminal device with the takeover information window (replacement of the sub screen and the parent screen). According to this, for example, the driver can be alerted to the takeover of driving.
 さらに、当該端末装置の画面の強制的なフリーズ、当該端末装置を用いて運転者が行った作業を、時間を遡り無効化する、などが考えられる。これらは、操作の強制中断により、無理にNDRAをした場合にそれまでの作業が無駄になる感覚を運転者に付与することができ、運転の引継ぎに対する注意を、より促すことができる。 Furthermore, it is conceivable that the screen of the terminal device is forcibly frozen, and the work performed by the driver using the terminal device is invalidated retroactively. These can give the driver a feeling that the work up to that point is wasted when the NDRA is forcibly performed by the forced interruption of the operation, and can further call attention to the takeover of the operation.
 これらの端末装置に対する制御は、例えば、端末装置に、実施形態に係るシステムを利用(旅程の俯瞰提示、運転者に対するODD区間終了の事前通知、など)するためのアプリケーションソフトウェアをインストールするようにし、当該アプリケーションソフトウェアの機能として実現することが考えられる。 For control of these terminal devices, for example, application software for using the system according to the embodiment (presentation of a bird's-eye view of the itinerary, advance notification of the end of the ODD section to the driver, etc.) is installed in the terminal device. It can be realized as a function of the application software.
 なお、表2および表3を用いて説明した各加点および減点の値は一例であって、上述の例に限定されるものではない。また、加点および減点を行う各例も一例であって、上述の例に限定されるものではない。 Note that the values of points added and deducted described using Tables 2 and 3 are examples, and are not limited to the above examples. Further, each example of adding points and deducting points is also an example, and is not limited to the above-mentioned example.
<3-2-3-3.実施形態に適用可能な旅程の俯瞰表示について>
 次に、実施形態に適用可能な旅程の俯瞰表示について、より具体的に説明する。
<3-2-3-3. About the bird's-eye view display of the itinerary applicable to the embodiment>
Next, the bird's-eye view display of the itinerary applicable to the embodiment will be described more specifically.
 図8は、実施形態に適用可能な旅程の俯瞰表示の例を概略的に示す模式図である。図8において、俯瞰表示50は、近距離表示部51aと、中距離表示部51bと、遠距離表示部51cと、を含む。図8において、下端側から上端側に向けて自車の進行方向を示している。図8では、下端部が自車の現在位置としているが、これはこの例に限定されない。また、自車を示すアイコン52は、旅程をイメージ容易とするためのものであり、表示を省略することができる。 FIG. 8 is a schematic diagram schematically showing an example of a bird's-eye view display of the itinerary applicable to the embodiment. In FIG. 8, the bird's-eye view display 50 includes a short-distance display unit 51a, a medium-distance display unit 51b, and a long-distance display unit 51c. In FIG. 8, the traveling direction of the own vehicle is shown from the lower end side to the upper end side. In FIG. 8, the lower end portion is the current position of the own vehicle, but this is not limited to this example. Further, the icon 52 indicating the own vehicle is for facilitating the image of the itinerary, and the display can be omitted.
 図8において、近距離表示部51aは、自車が現在位置から所定の第1の距離までの区間を表示する。第1の距離は、例えば、自車から走行時間で15分程度の距離である。図8の例では、近距離表示部51aでは、画面上の垂直方向の位置と実際の距離とを線形の関係にすることができる。 In FIG. 8, the short-distance display unit 51a displays a section from the current position of the own vehicle to a predetermined first distance. The first distance is, for example, a distance of about 15 minutes from the own vehicle in terms of traveling time. In the example of FIG. 8, in the short-distance display unit 51a, the vertical position on the screen and the actual distance can be in a linear relationship.
 中距離表示部51bは、近距離表示部51aの幅W1である上端から、無限遠点VPで収束するように、画面上の高さに応じて幅を狭める形状とされている。中距離表示部51bにおいては、画面上の垂直方向の位置と実際の距離とを、非線形の関係とし、例えば画面で上方に向かうに連れ、画面上の位置に対する実際の距離の変化を大きくすることができる。 The medium-distance display unit 51b has a shape in which the width is narrowed according to the height on the screen so as to converge at the point at infinity VP from the upper end having the width W 1 of the short-distance display unit 51a. In the medium-distance display unit 51b, the vertical position on the screen and the actual distance are regarded as a non-linear relationship, and the change in the actual distance with respect to the position on the screen is increased as, for example, upward on the screen. Can be done.
 ここで、図8において縦方向の位置が進行方向の時間に沿った到達時間とした場合、表示の無限遠点VPからの距離hdiffの逆数は、進行時間に比例した表示することができる。このように、中距離表示部51bに遠近感を持たせる表示をすることで、到達時間の表示を、狭い画面に効率的に提示することが可能となる。この俯瞰表示50の表示形態を通して各引継ぎ点等の影響度を的確に表示することで、運転者は、各到達点における時刻を直感的に把握できるようになる。 Here, when the position in the vertical direction is the arrival time along the time in the traveling direction in FIG. 8, the reciprocal of the distance h diff from the point at infinity VP of the display can be displayed in proportion to the traveling time. By displaying the medium-distance display unit 51b with a sense of perspective in this way, it is possible to efficiently present the display of the arrival time on a narrow screen. By accurately displaying the degree of influence of each takeover point or the like through the display form of the bird's-eye view display 50, the driver can intuitively grasp the time at each arrival point.
 一方、遠距離表示部51cは、無限遠点VPの手前の幅W2の位置から、当該幅W2を保って延伸されている。遠距離表示部51cは、上述の近距離表示部51aと同様に、画面上の垂直方向の位置と実際の距離とを線形の関係にすることができる。 On the other hand, the long-distance display unit 51c is extended from the position of the width W 2 in front of the point at infinity VP while maintaining the width W 2 . Similar to the short-distance display unit 51a described above, the long-distance display unit 51c can have a linear relationship between the vertical position on the screen and the actual distance.
 また、図8に示される全区間が自動運転レベル4での自動運転が可能な区間であるものとする。ここで、当該区間内に、道路幅が狭くなる、踏切が存在する、などの理由で運転者が手動運転に復帰した方が好ましい区間が存在するものとする。このような区間では、運転者に対するRRR(復帰要請確率)が高くなると考えられ、運転者が適切に手動運転への復帰をしなかった場合に、後続車への影響など社会的弊害を引き起こすおそれがある。 Further, it is assumed that all the sections shown in FIG. 8 are sections that can be automatically operated at the automatic operation level 4. Here, it is assumed that there is a section in the section in which it is preferable for the driver to return to manual driving due to reasons such as a narrow road width or a railroad crossing. In such a section, it is considered that the RRR (return request probability) for the driver is high, and if the driver does not properly return to manual driving, it may cause social harmful effects such as influence on the following vehicle. There is.
 そこで、俯瞰表示50内に、RRRが高くなる区間を示す情報を表示させる。例えば、このような区間に対し、道路幅を狭くするような注意表示53を表示させる。この注意表示53により、運転者に対する注意喚起を行うことが可能である。また、運転者に対して当該区間の所定距離だけ手前に引継ぎ開始推奨ポイントを設け、引継ぎに推奨される区間56を強調して表示することができる。 Therefore, in the bird's-eye view display 50, information indicating the section where the RRR becomes high is displayed. For example, a caution display 53 that narrows the road width is displayed for such a section. With this caution display 53, it is possible to call attention to the driver. In addition, a transfer start recommended point can be provided to the driver by a predetermined distance in front of the section, and the section 56 recommended for transfer can be highlighted and displayed.
 実施形態では、運転者による自動運転から手動運転への復帰をより容易に実行可能なように、図8に示した俯瞰表示50に対して、各区間に推奨される運転モードを示す区間表示などを追加する。図9A~図9Cを用いて、この区間表示が追加された俯瞰表示50について説明する。 In the embodiment, in order to make it easier for the driver to return from automatic operation to manual operation, a section display indicating a recommended operation mode for each section is performed with respect to the bird's-eye view display 50 shown in FIG. To add. The bird's-eye view display 50 to which this section display is added will be described with reference to FIGS. 9A to 9C.
 図9Aは、実施形態に係る、各区間を色分けした俯瞰表示50aの例を示す模式図である。図9Aにおいて、俯瞰表示50aは、自動運転可能区間53aと、復帰体勢維持区間53bと、運転復帰必須区間53cとを色分けで区別して示している。 FIG. 9A is a schematic diagram showing an example of a bird's-eye view display 50a in which each section is color-coded according to the embodiment. In FIG. 9A, the bird's-eye view display 50a shows the automatic operation possible section 53a, the return posture maintenance section 53b, and the operation return essential section 53c by color coding.
 自動運転可能区間53aは、自動運転レベル4による自動運転が可能な区間を示し、例えば安心、安全をイメージさせる緑色で表示される。復帰体勢維持区間53bは、自動運転から手動運転に復帰する直前の区間であって、運転者が手動運転への復帰の体勢を維持することが望まれる区間を示す。復帰体勢維持区間53bは、例えば運転者に対して注意を喚起させる黄色で表示される。運転復帰必須区間53cは、運転者による手動運転が必須の区間を示し、例えば警戒を示す赤色で表示される。 The section 53a where automatic driving is possible indicates a section where automatic driving is possible according to the automatic driving level 4, and is displayed in green, for example, to give an image of safety and security. The return posture maintenance section 53b is a section immediately before returning from the automatic driving to the manual driving, and indicates a section in which the driver is desired to maintain the posture for returning to the manual driving. The return posture maintenance section 53b is displayed in yellow, for example, to call attention to the driver. The operation return required section 53c indicates a section in which manual driving by the driver is required, and is displayed in red, for example, indicating caution.
 なお、上述の緑色、黄色および赤色の色分けは一例であって、この色の組み合わせに限られるものではない。また、各区間が明確に区別可能であれば、色分けせず単色でも構わない。 The above-mentioned color coding of green, yellow and red is an example, and is not limited to this color combination. Further, as long as each section can be clearly distinguished, a single color may be used without color coding.
 このように、区間と、自車からの距離とに応じて表示方法を変えることで、運転者は、自動運転から手動運転に復帰すべきタイミングを容易に把握することができる。 In this way, by changing the display method according to the section and the distance from the own vehicle, the driver can easily grasp the timing when the automatic driving should be returned to the manual driving.
 図9Bは、実施形態に係る、円環状に構成された俯瞰表示50bの例を示す模式図である。図9Bの例では、円環の表示における頭頂部が自車の位置とされ、そこを起点として、時計回り(右回り)に、自車からの距離が遠くなる表示となっている。また、自車からの距離が遠くなるに連れ、表示の幅を狭めていくことで、距離感を強調している。 FIG. 9B is a schematic diagram showing an example of the bird's-eye view display 50b configured in an annular shape according to the embodiment. In the example of FIG. 9B, the top of the head in the display of the ring is the position of the own vehicle, and the display is such that the distance from the own vehicle increases clockwise (rightward) from that position as the starting point. Also, as the distance from the vehicle increases, the width of the display is narrowed to emphasize the sense of distance.
 このように円環状に構成された俯瞰表示50bは、例えば腕時計型などのウェアラブルデバイスの表示画面といった、狭い領域に表示させる場合に用いて好適である。 The bird's-eye view display 50b configured in an annular shape in this way is suitable for display in a narrow area such as a display screen of a wearable device such as a wristwatch type.
 図9Cは、実施形態に係る、道路情報を含む俯瞰表示50cの例を示す模式図である。図9Cに示す俯瞰表示50cは、図9Aに示した俯瞰表示50aに対して、交通標識に対応するアイコン54aや施設を示すアイコン54bといった道路情報を追加した例である。アイコン54aは、例えば、自動運転の車両において運転者が注意すべき箇所および内容を示すもので、この例では、実際に道路に設置される交通標識を模した表示としている。アイコン54bは、車両の走行の際に必要なる施設を示し、例えばガソリンスタンド、パーキングエリア、サービスエリアなどの地点に対応して表示される。 FIG. 9C is a schematic diagram showing an example of the bird's-eye view display 50c including road information according to the embodiment. The bird's-eye view display 50c shown in FIG. 9C is an example in which road information such as an icon 54a corresponding to a traffic sign and an icon 54b indicating a facility is added to the bird's-eye view display 50a shown in FIG. 9A. The icon 54a indicates, for example, a location and content that the driver should pay attention to in an automatically driven vehicle. In this example, the icon 54a is a display imitating a traffic sign actually installed on the road. The icon 54b indicates a facility required for the vehicle to travel, and is displayed corresponding to a point such as a gas station, a parking area, or a service area.
 また、図9Cにおいて、渋滞区間など、通過するための時間が大きく変動する区間を、区間表示55aおよび55bとして示している。 Further, in FIG. 9C, sections such as a congested section where the time for passing greatly fluctuates are shown as section displays 55a and 55b.
 このように、道路情報を追加した俯瞰表示50cを用いることで、運転者において、上述した意識の記憶に進行に伴い、各接近時刻におけるリスク情報が視覚野に取り込まれ、重要度の高い、すなわちリスクの高い地点では、行動判断する際に運転者の作業記憶に作用する刺激となる。そのため、運転者は、自動運転から手動運転に復帰すべきタイミングを、より早期に予測することが可能となり、単調な進路表示のみを一律に提示する場合に比べ、手動運転への復帰をよりスムースに実行することが可能となる。 In this way, by using the bird's-eye view display 50c with road information added, the risk information at each approach time is taken into the visual field as the driver progresses to the memory of the above-mentioned consciousness, which is of high importance, that is, At high-risk points, it is a stimulus that acts on the driver's work memory when making behavioral decisions. Therefore, the driver can predict the timing to return from the automatic operation to the manual operation earlier, and the return to the manual operation is smoother than the case where only the monotonous course display is uniformly presented. It will be possible to execute.
 なお、この俯瞰表示50cおよび図9Aに示した俯瞰表示50aは、例えば、運転者が実施形態に係る自動運転システムを利用する際に用いる端末装置の画面に表示させることができる。例えば、当該端末装置に搭載される、実施形態に係る情報処理プログラムに関連するアプリケーションプログラムがCPU10010上で動作することで、俯瞰表示50aあるいは俯瞰表示50cの表示が制御される。このとき、俯瞰表示50aあるいは俯瞰表示50cは、例えば、画面の右端または左端に、幅方向を圧縮された状態で表示することが考えられる。これに限らず、俯瞰表示50aあるいは俯瞰表示50cは、当該画面の頂点を共有する2辺にわたって表示させてもよいし、画面の3辺や、画面の周囲にわたって表示させてもよい。 The bird's-eye view display 50c and the bird's-eye view display 50a shown in FIG. 9A can be displayed on the screen of the terminal device used by the driver when using the automatic driving system according to the embodiment, for example. For example, the display of the bird's-eye view display 50a or the bird's-eye view display 50c is controlled by operating the application program related to the information processing program according to the embodiment mounted on the terminal device on the CPU 10010. At this time, it is conceivable that the bird's-eye view display 50a or the bird's-eye view display 50c is displayed, for example, on the right end or the left end of the screen in a state where the width direction is compressed. Not limited to this, the bird's-eye view display 50a or the bird's-eye view display 50c may be displayed over two sides sharing the vertices of the screen, or may be displayed over three sides of the screen or around the screen.
<3-2-4.実施形態に係るHCDの制御構成例>
 次に、実施形態に係るHCDの制御構成例について、より具体的に説明する。図10は、実施形態に係る自動運転制御部10112におけるHCDによる制御の機能を説明するための一例の機能ブロック図である。なお、図10では、自動運転制御部10112の機能のうち、HCDによる制御を実現するための機能に注目して示し、他の機能については適宜、省略している。
<3-2-4. HCD control configuration example according to the embodiment>
Next, an example of the control configuration of the HCD according to the embodiment will be described more specifically. FIG. 10 is a functional block diagram of an example for explaining the function of control by HCD in the automatic operation control unit 10112 according to the embodiment. In FIG. 10, among the functions of the automatic operation control unit 10112, the function for realizing the control by the HCD is focused on, and the other functions are omitted as appropriate.
 図10において、自動運転制御部10112は、HMI100と、運転者復帰遅延評価部101と、走行路事前予測性取得範囲推定部102と、遠隔支援管制・操舵支援対応可否モニタリング部103と、運転者行動変容達成レベル推定部104と、自車走行路実績情報提供部105と、ODD適用推定部106と、自動運転利用許可統合制御部107と、運転者行動品質評価部108と、を含む。これら各部は、CPU10010上で実施形態に係る情報処理プログラムが動作することで、主記憶装置であるRAM10012上に例えばそれぞれモジュールとして構成され、実現される。 In FIG. 10, the automatic driving control unit 10112 includes an HMI 100, a driver return delay evaluation unit 101, a travel path advance predictability acquisition range estimation unit 102, a remote support control / steering support support availability monitoring unit 103, and a driver. It includes a behavior change achievement level estimation unit 104, a vehicle road performance information provision unit 105, an ODD application estimation unit 106, an automatic driving use permission integrated control unit 107, and a driver behavior quality evaluation unit 108. Each of these parts is configured and realized as, for example, a module on the RAM 10012 which is the main storage device by operating the information processing program according to the embodiment on the CPU 10010.
 HMI100は、運転者向けのインタフェースを実現するもので、例えば情報表示部120、端末装置121、車室内設置光源122、音響装置123およびアクチュエータ124が接続される。 The HMI 100 realizes an interface for the driver, and is connected to, for example, an information display unit 120, a terminal device 121, a vehicle interior light source 122, an acoustic device 123, and an actuator 124.
 情報表示部120は、HMI100からの命令に従い所定の表示を行う。端末装置121は、運転者が車内に持ち込んだ端末装置であってもよいし、予め車両に設置された端末装置であってもよい。HMI100は、端末装置121と双方向に通信を行うことができる。端末装置121は、ユーザ操作を受け付けることができ、受け付けたユーザ操作に応じた制御信号をHMI100に供給する。また、端末装置121は、HMI100からの命令に従い、端末装置121が有する表示装置に所定の画面を表示する。車室内設置光源122は、車室内に設置される光源であって、HMI100により、点灯/消灯や光量などを制御される。 The information display unit 120 performs a predetermined display according to a command from the HMI 100. The terminal device 121 may be a terminal device brought into the vehicle by the driver, or may be a terminal device installed in the vehicle in advance. The HMI 100 can communicate bidirectionally with the terminal device 121. The terminal device 121 can accept the user operation, and supplies the control signal corresponding to the accepted user operation to the HMI 100. Further, the terminal device 121 displays a predetermined screen on the display device of the terminal device 121 in accordance with the command from the HMI 100. The vehicle interior installation light source 122 is a light source installed in the vehicle interior, and the lighting / extinguishing and the amount of light are controlled by the HMI 100.
 音響装置123は、スピーカやブザーと、それを駆動する駆動回路とを含む。音響装置123は、HMI100の制御に応じた音を発する。また、音響装置123にマイクロホンを含めることができる。音響装置123は、マイクロホンで収音された音に基づくアナログ方式の音信号をデジタル方式の音信号に変換してHMI100に供給する。 The audio device 123 includes a speaker and a buzzer, and a drive circuit for driving the speaker and buzzer. The sound device 123 emits a sound according to the control of the HMI 100. Further, the microphone can be included in the acoustic device 123. The sound device 123 converts an analog sound signal based on the sound picked up by the microphone into a digital sound signal and supplies it to the HMI 100.
 アクチュエータ124は、HMI100の制御に従い、車内の所定の部位を駆動する。例えば、アクチュエータ124は、ステアリングに対してハプティクス振動などの振動を与える。また、別のアクチュエータ124は、HMI100の命令に従い、運転者が着座するシートのリクライニングを制御することができる。 The actuator 124 drives a predetermined part in the vehicle according to the control of the HMI 100. For example, the actuator 124 applies vibration such as haptic vibration to the steering. Further, another actuator 124 can control the reclining of the seat on which the driver sits according to the command of the HMI 100.
 HMI100は、後述する走行路事前予測性取得範囲推定部102、遠隔支援管制・操舵支援対応可否モニタリング部103およびODD適用推定部106からの情報に基づき、これら情報表示部120、端末装置121、車室内設置光源122、音響装置123およびアクチュエータ124の動作等を制御する。これにより、運転者に対して次のような視覚的、聴覚的な通知を行うことができる。 The HMI 100 is based on information from the travel path advance predictability acquisition range estimation unit 102, the remote support control / steering support support availability monitoring unit 103, and the ODD application estimation unit 106, which will be described later, and these information display units 120, terminal device 121, and vehicle. It controls the operation of the indoor light source 122, the acoustic device 123, the actuator 124, and the like. As a result, the following visual and auditory notifications can be given to the driver.
・誘導音による事前の通知
 このとき、誘導音は、旅客機内における機内チャイム音(例えばシートベルト着用サイン時の「ポーン」という音)のように、人が容易に意識できるが過剰な刺激を与えない音を用いるのが好ましい。この誘導音による通知は、例えば自動運転から手動運転への復帰動作の事前通知に適用できる。例えば、システムが運転者に「契約」への合意を提示する際に、この誘導音による通知を用いることが考えられる。
-Advance notification by guidance sound At this time, the guidance sound gives an excessive stimulus that can be easily recognized by a person, such as an in-flight chime sound (for example, a "pawn" sound when a seatbelt wearing sign). It is preferable to use no sound. The notification by the guidance sound can be applied to, for example, the advance notification of the return operation from the automatic operation to the manual operation. For example, the system may use this guidance sound notification when presenting an agreement to a "contract" to the driver.
・手動運転への復帰を要請するための通知
 HMI100は、当該要請の際に、音響装置123が発する音による聴覚的な通知や、情報表示部120の表示による視覚的な通知を行うことができる。また、HMI100は、当該要請の際に、アクチュエータ124を駆動して、ステアリングに対してハプティックス振動を与えて触覚的に通知を行ってもよい。さらに、HMI100は、運転者に対して、道路前方に対する指差呼称を指示することができる。
-Notification for requesting return to manual operation At the time of the request, the HMI 100 can perform an auditory notification by the sound emitted by the acoustic device 123 and a visual notification by the display of the information display unit 120. .. Further, the HMI 100 may drive the actuator 124 to give a haptic vibration to the steering to give a tactile notification at the time of the request. Further, the HMI 100 can instruct the driver to point and call the front of the road.
・警告および警報
 HMI100は、運転者に対して、聴覚的、視覚的、触覚的に警告あるいは警報を与えることができる。例えば、HMI100は、音響装置123を制御して警告音を発し、聴覚的に警告を与えることができる。この場合、警告音は、上述した誘導音と比較して刺激の大きな音を用いることが考えられる。また、HMI100は、情報表示部120や車室内設置光源122を制御して赤色光点滅、車室内での警告発光などにより、視覚的に警告を与えることができる。さらに、HMI100は、アクチュエータ124を制御して、運転者が着座する座席を強く振動させて、触覚的に警告を与えることができる。
-Warning and Warning The HMI 100 can give a warning or warning to the driver audibly, visually, or tactilely. For example, the HMI 100 can control the acoustic device 123 to emit a warning sound and give an audible warning. In this case, it is conceivable to use a louder stimulating sound as the warning sound as compared with the above-mentioned induction sound. Further, the HMI 100 can control the information display unit 120 and the light source installed in the vehicle interior to give a visual warning by blinking a red light, emitting a warning in the vehicle interior, or the like. Further, the HMI 100 can control the actuator 124 to strongly vibrate the seat in which the driver sits to give a tactile warning.
・ペナルティ
 HMI100は、運転者に対してペナルティとなる動作を実行させる制御を行うことができる。例えば、HMI100は、ビジュアル、操作制限、運転者に対する軽度の痛み、冷風の吹付け、運転者が着座する座席の前倒しなど、運転者に対して不快感を与えると考えられる制御を行うことができる。また、HMI100は、車両の横揺れの発生、不快感を与える加減速を行う、車線の擬似的な逸脱、などの疑似制御を行い、運転者に、早期復帰を促す直接的に、あるいは、その場ではなく後に影響を及ぼすようなペナルティを与えることができる。さらに、HMI100は、罰金情報の提示、罰則としてのサービスエリアなどへの強制的な進入およびその際の拘束時間の提示、自動運転の罰則による利用不可の通知、次回あるいは繰り返しの利用制限に対する警告提示など、運転者の知識情報に応じたペナルティを与えることができる。
-Penalty The HMI 100 can control the driver to perform a penalty operation. For example, the HMI 100 can perform controls that may be offensive to the driver, such as visuals, operational restrictions, mild pain to the driver, blowing cold air, and moving the driver's seat forward. .. Further, the HMI 100 performs pseudo control such as occurrence of rolling of the vehicle, acceleration / deceleration that causes discomfort, pseudo deviation of the lane, etc., and directly or directly urges the driver to return early. You can give a penalty that affects later rather than the field. Furthermore, the HMI100 presents fine information, compulsory entry into service areas as penalties and presentation of restraint time at that time, notification of unavailability due to penalties for autonomous driving, and warning presentation for next or repeated usage restrictions. It is possible to give a penalty according to the driver's knowledge information.
 運転者復帰遅延評価部101は、運転者の自動運転から手動運転への復帰の遅延を評価するもので、例えば生活ログデータ情報サーバ130と、ウェアラブルデバイスログデータ131と、顔・上半身・眼球用カメラ132と、生体情報指標取得部134と、車室内ローカライザ135と、応答評価入力部136と、が接続される。また、運転者復帰遅延評価部101は、リモート遠隔サーバ辞書137から、運転者個人の手動運転への復帰特性を示す情報を取得する。 The driver return delay evaluation unit 101 evaluates the delay of the driver's return from automatic driving to manual driving, for example, a life log data information server 130, a wearable device log data 131, and a face / upper body / eyeball. The camera 132, the biometric information index acquisition unit 134, the vehicle interior localizer 135, and the response evaluation input unit 136 are connected. Further, the driver return delay evaluation unit 101 acquires information indicating the return characteristic of the individual driver to manual operation from the remote remote server dictionary 137.
 ウェアラブルデバイスログデータ131は、運転者がウェアラブルデバイスを装着している場合に、そのウェアラブルデバイスから取得されるログデータである。ウェアラブルデバイスログデータ131は、例えば運転者の行動履歴や、生体情報が含まれる。 The wearable device log data 131 is log data acquired from the wearable device when the driver wears the wearable device. The wearable device log data 131 includes, for example, a driver's behavior history and biometric information.
 顔・上半身・眼球用カメラ132は、車室内に運転者の頭部を含む上半身を撮像するように設けられるカメラである。顔・上半身・眼球用カメラ132は、運転者の表情、眼球の細かな動き、上半身の挙動を撮像可能に、車室内に設けられる。顔・上半身・眼球用カメラ132は、これに限らず、それぞれ顔、眼球および上半身を撮像する複数のカメラを含んでいてもよい。身体姿勢・頭部用カメラ133は、車室内に設けられ、運転者の頭部を含めた身体姿勢を撮像するカメラである。この身体姿勢・頭部用カメラ133による撮像画像を時系列で解析することで、運転者の身体姿勢や頭部の位置および向きを、トラッキングすることができる。 The face / upper body / eyeball camera 132 is a camera provided in the vehicle interior so as to image the upper body including the driver's head. The face / upper body / eyeball camera 132 is provided in the vehicle interior so as to be able to capture the driver's facial expression, fine movement of the eyeball, and the behavior of the upper body. The face / upper body / eyeball camera 132 is not limited to this, and may include a plurality of cameras that image the face, the eyeball, and the upper body, respectively. The body posture / head camera 133 is provided in the vehicle interior and is a camera that captures the body posture including the driver's head. By analyzing the images captured by the body posture / head camera 133 in chronological order, the body posture of the driver and the position and orientation of the head can be tracked.
 なお、実施形態では、カメラを、顔・上半身・眼球用カメラ132と、身体姿勢・頭部用カメラ133とを、設置の自由度から便宜上分けるように説明しているが、これはこの例に限定されず、これらのカメラが統合された機器を用いてもよい。 In the embodiment, the camera is described so that the face / upper body / eyeball camera 132 and the body posture / head camera 133 are separated for convenience from the degree of freedom of installation. A device in which these cameras are integrated may be used without limitation.
 生体情報指標取得部134は、たとえば車内に設けられた各種のセンサの出力に基づき、運転者の生体情報を取得する。取得する生体情報としては、呼吸、脈拍、呼気、体温分布、眼電位、などが考えられる。これに限らず、生体情報指標取得部134は、運転者が装着しているウェアラブルデバイスから、運転者の一部の生体情報を取得することもできる。 The biometric information index acquisition unit 134 acquires the biometric information of the driver based on the outputs of various sensors provided in the vehicle, for example. As the acquired biological information, respiration, pulse, exhalation, body temperature distribution, electrooculogram, and the like can be considered. Not limited to this, the biometric information index acquisition unit 134 can also acquire a part of the biometric information of the driver from the wearable device worn by the driver.
 車室内ローカライザ135は、車室内に設けられたローカライザである。応答評価入力部136は、HMI100により運転者に提示された要請や警告などに対する運転者による応答が入力される。 The vehicle interior localizer 135 is a localizer provided in the vehicle interior. The response evaluation input unit 136 inputs a response by the driver to a request, a warning, or the like presented to the driver by the HMI 100.
 なお、これらウェアラブルデバイスログデータ131、顔・上半身・眼球用カメラ132、生体情報指標取得部134、車室内ローカライザ135および応答評価入力部136により取得された各情報は、運転者の生活ログとして、生活ログデータ情報サーバ130に蓄積される。 The information acquired by the wearable device log data 131, the face / upper body / eyeball camera 132, the biological information index acquisition unit 134, the vehicle interior localizer 135, and the response evaluation input unit 136 can be used as a driver's life log. It is stored in the life log data information server 130.
 図11は、実施形態に係る運転者復帰遅延評価部101の機能を説明するための一例の機能ブロック図である。図11において、運転者復帰遅延評価部101は、運転者行動応答評価部1010と、相関特性学習部1011と、条件別復帰分布個人特性・状況認識低下特性辞書1012と、状況認識低下推移予測部1013と、を含む。 FIG. 11 is a functional block diagram of an example for explaining the function of the driver return delay evaluation unit 101 according to the embodiment. In FIG. 11, the driver return delay evaluation unit 101 includes a driver behavior response evaluation unit 1010, a correlation characteristic learning unit 1011, a condition-based return distribution individual characteristic / situation recognition decrease characteristic dictionary 1012, and a situation recognition decrease transition prediction unit. Includes 1013 and.
 条件別復帰分布個人特性・状況認識低下特性辞書1012は、運転者個人の、観測可能な評価値と、状況認識(Situation Awareness)低下の特性とに関する辞書である。相関特性学習部1011は、リモート遠隔サーバ辞書137から取得した運転者個人の手動運転への復帰特性を示す情報と、条件別復帰分布個人特性・状況認識低下特性辞書1012から取得した評価値および状況認識低下特性とに基づき、運転者個人の観測評価値と、復帰遅延時間分布との相関特性を学習する。 Conditional return distribution individual characteristic / situational awareness deterioration characteristic dictionary 1012 is a dictionary regarding the observable evaluation value of the individual driver and the characteristic of situational awareness deterioration. The correlation characteristic learning unit 1011 includes information indicating the return characteristics of the individual driver to manual operation acquired from the remote remote server dictionary 137, and evaluation values and situations acquired from the condition-specific return distribution individual characteristics / situation recognition deterioration characteristic dictionary 1012. Based on the recognition deterioration characteristic, the correlation characteristic between the observation evaluation value of the individual driver and the return delay time distribution is learned.
 なお、実施形態では、リモート遠隔サーバ辞書137を、車両の外部にあるリモート遠隔サーバに配置しているが、これはこの例に限定されない。すなわち、リモート遠隔サーバ辞書137を外部のサーバに設置するのは、事業者車両やシェアカーの普及で運転者の特性が必ずしも固有車両に紐づかない利用を一つの利用例としているためであり、リモート遠隔サーバ辞書137を、利用する車両に設置してもよい。 In the embodiment, the remote remote server dictionary 137 is arranged in the remote remote server outside the vehicle, but this is not limited to this example. That is, the reason why the remote remote server dictionary 137 is installed on an external server is that the use of the driver's characteristics that are not necessarily tied to the unique vehicle due to the spread of business vehicles and shared cars is one example of use. The remote remote server dictionary 137 may be installed in the vehicle to be used.
 運転者行動応答評価部1010は、HMI100から運転者に関する各情報を取得する。例えば、運転者行動応答評価部1010は、HMI100から、生活ログによる事前予備情報を取得する。また、運転者行動応答評価部1010は、HMI100から、各種センサ(カメラ)により取得された顔、身体の画像に基づき、運転者に関して、例えば次の情報を取得する。
・顔表情および身体の姿勢の認識情報。
・眼に関する情報。この例では、PERCLOS(単位時間あたりの閉眼時間割合)やサッケード(急速性眼球運動)といった、眼の局所挙動に対する評価を取得する。
・姿勢および姿勢の推移。この例では、姿勢および姿勢の推移に基づき、復帰行動の品質の評価を行う。
・車室内における離席位置および姿勢。
・生体情報。
The driver behavior response evaluation unit 1010 acquires each information about the driver from the HMI 100. For example, the driver behavior response evaluation unit 1010 acquires advance preliminary information from the HMI 100 by using a life log. Further, the driver behavior response evaluation unit 1010 acquires, for example, the following information regarding the driver from the HMI 100 based on the images of the face and body acquired by various sensors (cameras).
-Facial expression and body posture recognition information.
・ Information about the eyes. In this example, an evaluation is obtained for the local behavior of the eye such as PERCLOS (percentage of closed eyes per unit time) and saccade (rapid eye movement).
・ Posture and transition of posture. In this example, the quality of the return behavior is evaluated based on the posture and the transition of the posture.
・ Position and posture of leaving the seat in the passenger compartment.
-Biological information.
 運転者行動応答評価部1010は、HMI100から取得した各情報と、相関特性学習部1011から取得した相関特性とに基づき、運転者の行動応答の評価を行う。評価結果は、状況認識低下推移予測部1013に渡される。状況認識低下推移予測部1013は、この評価結果に基づき、運転者による状況認識(Situation Awareness)の低下に関する推移を予測する。 The driver behavior response evaluation unit 1010 evaluates the driver behavior response based on each information acquired from the HMI 100 and the correlation characteristic acquired from the correlation characteristic learning unit 1011. The evaluation result is passed to the situational awareness decline transition prediction unit 1013. Based on this evaluation result, the situational awareness decline transition prediction unit 1013 predicts the transition regarding the decline in situational awareness by the driver.
 なお、生活ログデータ情報サーバ130が利用可能な場合、運転者行動応答評価部1010に、生活ログデータ情報サーバ130から取得した生活ログデータの一部を入力することができる。運転者行動応答評価部1010は、運転者の生活ログデータを利用することで、当該運転者の事前の睡眠時間の不足、過労蓄積、無呼吸症候群、飲酒のアルコール残など、覚醒度等の推定精度を高め、運転者の状況認識(Situation Awareness)能力の判定精度を向上させ、これにより、マイクロスリープなど突発的な眠気の発現などに対するより安全な制御が可能となる。 If the life log data information server 130 is available, a part of the life log data acquired from the life log data information server 130 can be input to the driver behavior response evaluation unit 1010. The driver behavior response evaluation unit 1010 uses the driver's life log data to estimate the driver's arousal level, etc., such as lack of sleep time in advance, overwork accumulation, apnea syndrome, and alcohol residue of drinking. The accuracy is improved, and the judgment accuracy of the driver's situation awareness ability is improved, which enables safer control against sudden occurrence of drowsiness such as microsleep.
 このように、運転者復帰遅延評価部101は、生活ログデータ情報サーバ130と、ウェアラブルデバイスログデータ131と、顔・上半身・眼球用カメラ132と、生体情報指標取得部134と、応答評価入力部136と、リモート遠隔サーバ辞書137と、から取得された情報に基づき運転者の状態を取得する取得部としての機能を有する。 As described above, the driver return delay evaluation unit 101 includes the life log data information server 130, the wearable device log data 131, the face / upper body / eyeball camera 132, the biometric information index acquisition unit 134, and the response evaluation input unit. It has a function as an acquisition unit that acquires the state of the driver based on the information acquired from 136 and the remote remote server dictionary 137.
 説明は図10に戻り、走行路事前予測性取得範囲推定部102は、高鮮度更新LDM140を取得し、取得した高鮮度更新LDM140に基づき、走行路に対する事前予測性の取得範囲について推定する。すなわち、走行路事前予測性取得範囲推定部102は、高鮮度更新LDM140に基づき、走行路における、事象の予測が事前に可能な範囲を取得する。 The explanation returns to FIG. 10, and the travel path pre-predictability acquisition range estimation unit 102 acquires the high freshness update LDM 140, and estimates the acquisition range of the advance predictability for the travel path based on the acquired high freshness update LDM 140. That is, the travel path pre-predictability acquisition range estimation unit 102 acquires a range in which the event can be predicted in advance on the travel path based on the high freshness update LDM 140.
 図12は、実施形態に適用可能な高鮮度更新LDM140について説明するための模式図である。各地域において、地域分散配置LDM1400a、1400b、…、1400nが配置される。これら地域分散配置LDM1400a、1400b、…、1400nは、それぞれ各地域に対応する、設置型センサ1401、専用プローブカー情報1402、一般車ADAS情報1403、気象情報1404および緊急通報情報1405(危険物の落下など)などに基づき、随時更新される。 FIG. 12 is a schematic diagram for explaining the high freshness update LDM140 applicable to the embodiment. In each region, regional distributed arrangements LDM1400a, 1400b, ..., 1400n are arranged. These regional distributed layouts LDM1400a, 1400b, ..., 1400n correspond to each region, such as a stationary sensor 1401, a dedicated probe car information 1402, a general vehicle ADAS information 1403, a weather information 1404, and an emergency notification information 1405 (fall of dangerous goods). Etc.), etc., and will be updated from time to time.
 地域分散配置LDM1400a~1400nは、5G(第5世代通信)、4G(第4世代通信)、あるいは、さらに他の通信方法で送信される。送信された各地域分散配置LDM1400a~1400nは、例えば自動運転制御部10112に受信され、集約されて高鮮度更新LDM140を構成する。また、緊急通報情報1405は、ブロードキャスト1406により配信され、自動運転制御部10112に直接的に、あるいは、上述の5Gや4Gの通信に含められて、自動運転制御部10112に受信される。自動運転制御部10112は、受信した緊急通報情報1405に基づき高鮮度更新LDM140を更新する。 The regional distributed layout LDMs 1400a to 1400n are transmitted by 5G (fifth generation communication), 4G (fourth generation communication), or another communication method. The transmitted regional distributed arrangement LDMs 1400a to 1400n are received, for example, by the automatic operation control unit 10112, and are aggregated to form the high freshness update LDM140. Further, the emergency notification information 1405 is delivered by the broadcast 1406 and is received by the automatic operation control unit 10112 directly to the automatic operation control unit 10112 or included in the above-mentioned 5G or 4G communication. The automatic operation control unit 10112 updates the high freshness update LDM 140 based on the received emergency call information 1405.
 説明は図10に戻り、走行路事前予測性取得範囲推定部102は、次に例示する情報および状況に基づき、走行路における、取得した高鮮度更新LDM140による事象の予測が事前に可能な範囲を推定する。 The explanation returns to FIG. 10, and the travel path pre-predictability acquisition range estimation unit 102 describes the range in which the event can be predicted in advance by the acquired high freshness update LDM 140 on the travel path based on the information and the situation exemplified below. presume.
 ここで、環境インフラや専用プローブカーに対する多額の投資は、都市交通の中心部等では可能である。一方で、投資効果が小さい地域や利用時間帯では、主に一般車のADAS情報1403からシャドーモードで収集される散発データに依存する状況もあり、高鮮度更新LDM140が提供可能な走行路に対する事前予測性は、後述する地域分散配置LDMの配備や、通信網の許容通信帯域などに応じて時間と共に能動的に変化する生きた情報である。 Here, a large amount of investment in environmental infrastructure and dedicated probe cars is possible in the center of urban transportation. On the other hand, in areas where the investment effect is small and in the usage time zone, there are situations where it depends mainly on sporadic data collected in shadow mode from ADAS information 1403 of general vehicles, and advance for the route where the high freshness update LDM140 can be provided. Predictability is live information that actively changes with time according to the deployment of regional distributed LDMs, which will be described later, and the allowable communication band of the communication network.
・高鮮度更新LDM140の提供区間に対し、旅程前における事前情報。
・高鮮度更新LDM140の更新頻度が低下するリスク情報。高鮮度更新LDM140の更新頻度は、例えばプロービング車両(例えば専用プローブカー)の通過存在密度に起因し、時間経過に伴い変動する。
・地域無線通信帯域の不足などによる情報抜け。
・天候不良による予測性の低下に対して、情報を補うプロービング車両の通過不足。
・更新されたLDMがインフラ整備などにより提供されない情報不足の旅程区間を代替え補完する先導車両・車両群からの取得情報において起こる一時的な情報不足による予測性低下。
-Preliminary information before the itinerary for the section provided by the high freshness update LDM140.
-High freshness update Risk information that the update frequency of LDM140 decreases. The update frequency of the high freshness update LDM140 varies with the passage of time, for example, due to the passing presence density of a probing vehicle (for example, a dedicated probe car).
・ Information omission due to lack of regional wireless communication band.
・ Insufficient passage of probing vehicles to supplement information against deterioration of predictability due to bad weather.
・ Reduced predictability due to temporary lack of information that occurs in information acquired from leading vehicles / vehicle groups that replaces and complements itinerary sections that lack information that are not provided by updated LDM due to infrastructure development.
 遠隔支援管制・操舵支援対応可否モニタリング部103は、遠隔支援制御I/F150から取得される情報に基づき、遠隔支援管制の可否、操舵支援に対する対応の可否をモニタリングする。この遠隔支援管制・操舵支援対応可否モニタリング部103によるモニタリングは、地域交通、隊列走行支援、限定的な繋ぎ支援などのオプションでの利用が想定される。 The remote support control / steering support availability monitoring unit 103 monitors the availability of remote support control and the availability of steering support based on the information acquired from the remote support control I / F 150. The monitoring by the remote support control / steering support availability monitoring unit 103 is expected to be used as an option such as regional traffic, platooning support, and limited connection support.
 図13は、実施形態に適用可能な、遠隔支援制御I/F150による情報の取得について説明するための模式図である。遠隔操作司令官1500a、…、1500n-1は、それぞれ、待機操舵オペレータ1501および待機操舵オペレータ1501n+1や、専用先導誘導契約車両1502から情報を収集する。また、この例では、遠隔操作司令官1500aは、誘導先頭車1503mおよび1503m+1からも、情報を収集している。遠隔操作司令官1500a、…、1500n-1は、それぞれ、収集した情報を、例えば5Gによる通信を用いて遠隔支援制御I/F150に送信する。ここでの通信方式は、5Gに限らず4Gであってもよい。また、図の例では、誘導先頭車1503mおよび1503m+1は、収集した情報を、遠隔支援制御I/F150に対して直接的に送信している。 FIG. 13 is a schematic diagram for explaining the acquisition of information by the remote support control I / F 150, which is applicable to the embodiment. The remote control commanders 1500a, ..., 1500n-1 collect information from the standby steering operator 1501 and the standby steering operator 1501n + 1, respectively, and the dedicated lead guidance contract vehicle 1502. Further, in this example, the remote control commander 1500a also collects information from the leading guidance vehicles 1503 m and 1503 m + 1. The remote control commanders 1500a, ..., 1500n-1, respectively, transmit the collected information to the remote support control I / F 150 using communication by, for example, 5G. The communication method here is not limited to 5G and may be 4G. Further, in the example of the figure, the guided leading vehicles 1503m and 1503m + 1 directly transmit the collected information to the remote support control I / F 150.
 説明は図10に戻り、遠隔支援管制・操舵支援対応可否モニタリング部103は、遠隔支援制御I/F150から取得した情報に基づき、次に示す処理を行う。
・運転者が自動運転から手動運転への復帰が困難な場合などの、遠隔管制支援サービスを利用した制御支援。これは、早期の退避行動や、オペレータ割当制御など、システムによる運転者に代わる制御を含む。
・車両操舵制御の遠隔オペレータによる操縦制御。これは、外部リモート制御契約が結ばれ、オペレータ割り当てが可能な場合の制御命令である。
・遠隔支援の実行監視、不具合発生時のフォールバック(縮退走行)の監視。
The explanation returns to FIG. 10, and the remote support control / steering support support availability monitoring unit 103 performs the following processing based on the information acquired from the remote support control I / F 150.
-Control support using remote control support services when it is difficult for the driver to return from automatic driving to manual driving. This includes control on behalf of the driver by the system, such as early evacuation behavior and operator assignment control.
-Maneuvering control by a remote operator for vehicle steering control. This is a control command when an external remote control contract is concluded and operator assignment is possible.
-Monitoring the execution of remote support and monitoring of fallback (degenerate running) when a problem occurs.
 運転者行動変容達成レベル推定部104は、システム限界に対する運転者の行動変容について、変容の達成レベルを推定する。図14は、実施形態に係る運転者行動変容達成レベル推定部104の機能を説明するための一例の機能ブロック図である。運転者行動変容達成レベル推定部104は、優良復帰操舵行動評価ポイント加算部1040と、ペナルティ行動累計加算記録部1041と、を含む。 The driver behavior change achievement level estimation unit 104 estimates the achievement level of the change in the driver's behavior change with respect to the system limit. FIG. 14 is a functional block diagram of an example for explaining the function of the driver behavior change achievement level estimation unit 104 according to the embodiment. The driver behavior change achievement level estimation unit 104 includes an excellent return steering behavior evaluation point addition unit 1040 and a penalty behavior cumulative addition recording unit 1041.
 優良復帰操舵行動評価ポイント加算部1040は、手動運転に復帰する際の優良な運転動作に対する評価値の加算を行う。ペナルティ行動累計加算記録部1041は、システムからの手動運転への復帰要請に対する違反行為や、復帰要請に対する対処の怠慢に応じて、評価値の減点を行う。さらにペナルティ行動累計加算記録部1041は、ペナルティが発生する行動に対して、評価値を累計加算する。運転者行動変容達成レベル推定部104は、評価値を、例えば運転者復帰遅延評価部101から取得できる。 The excellent return steering behavior evaluation point addition unit 1040 adds the evaluation value for the excellent driving operation when returning to the manual operation. The penalty action cumulative addition recording unit 1041 deducts the evaluation value according to the violation of the return request to the manual operation from the system and the negligence of dealing with the return request. Further, the penalty action cumulative addition recording unit 1041 cumulatively adds the evaluation value to the action in which the penalty occurs. The driver behavior change achievement level estimation unit 104 can acquire the evaluation value from, for example, the driver return delay evaluation unit 101.
 説明は図10に戻り、自車走行路実績情報提供部105は、LDM地域クラウド(例えば地域分散配置LDM1400a~1400n)に対して、自車走行(通過)路に関する実績情報を提供する。具体的には、自車走行路実績情報提供部105は、次に示す情報の提供などを行う。 The explanation returns to FIG. 10, and the own vehicle travel road performance information providing unit 105 provides the own vehicle travel (passing) road performance information to the LDM regional cloud (for example, the regional distributed arrangement LDM1400a to 1400n). Specifically, the own vehicle travel road performance information providing unit 105 provides the following information and the like.
・事前に取得した地図情報に対する変動・差異、異常情報の通報、区間に侵入後も後続車へのリスク情報。
・走行中の異常・危険リスク(落下物、事故、災害など)が検出された場合、検出情報を、自車から自動または手動通知で緊急情報発信。
・特徴イベントの通知(運転者・車両利用者による事象通知)、疑わしきリスク情報。
・自動通報ではなく、ドライバによるマニュアル通報による情報の提供。この場合、通報から数分遡った時点からの、一時的に記録された道路環境情報を通知する。
・サーバからのプロービング要請のアップロード。例えば、前走車からの詳細不明の落下物リスク緊急通報を受けて、その詳細確認を行う。そのため、区間管理するLDMクラウドサーバに対して詳細スキャンニングリクエストを出し、通常走行時の環境スキャンと同等、または、リフレッシュレートを高速化した環境把握強化スキャンによる詳細スキャンにより得られた情報をアップロードする。
・ Changes / differences to the map information acquired in advance, notification of abnormal information, and risk information to the following vehicle even after entering the section.
・ When an abnormality / danger risk (falling object, accident, disaster, etc.) is detected while driving, the detected information is automatically or manually transmitted from the own vehicle as emergency information.
-Characteristic event notification (event notification by driver / vehicle user), suspicious risk information.
-Providing information by manual notification by the driver instead of automatic notification. In this case, the temporarily recorded road environment information from the time several minutes before the report is notified.
-Uploading a probing request from the server. For example, we receive an emergency call for the risk of falling objects of unknown details from the vehicle in front and confirm the details. Therefore, a detailed scanning request is issued to the LDM cloud server that manages the section, and the information obtained by the detailed scan by the environmental grasp enhancement scan, which is equivalent to the environmental scan during normal driving or has a faster refresh rate, is uploaded. ..
 自車走行路実績情報提供部105は、オプションとして、さらに、LDMの提供が困難な場合に、自車が有する情報に基づき、後続車や待機車などに情報を提供することができる。 The own vehicle travel path performance information providing unit 105 can optionally provide information to the following vehicle, the waiting vehicle, etc. based on the information possessed by the own vehicle when it is difficult to provide the LDM.
 例えば、区間通過の交通量が少なく、取得されるアップロード情報では常時更新LDMの提供が困難な場合や、インフラのLDM完備クラウドの整備が不十分な場合は、インフラによる高鮮度更新LDM140に基づく自動運転レベル4による自動走行が望めない。 For example, if the traffic volume passing through a section is light and it is difficult to provide a constantly updated LDM with the acquired upload information, or if the infrastructure is insufficiently equipped with an LDM-equipped cloud, the infrastructure will automatically update the freshness based on the LDM 140. Automatic driving by driving level 4 cannot be expected.
 このような場合に、運転を自動運転から手動運転に切り替えると共に、支援を必要とする被支援車(例えば後続車や待機車)に対してペアリングを行う。そして、自車が自動運転レベル2以下の自動運転レベルで走行している際の環境取得データを、自動運転レベル4での走行に必要なデータとして被支援車両に提供し、さらに被支援車特定車両とのペアリングによりLDMを提供し、後方の車両が自動運転レベル4の状態で追従走行する際の情報提供を行う。 In such a case, the driving is switched from automatic driving to manual driving, and pairing is performed for the supported vehicle (for example, the following vehicle or the standby vehicle) that requires assistance. Then, the environment acquisition data when the own vehicle is driving at the automatic driving level 2 or lower is provided to the supported vehicle as data necessary for driving at the automatic driving level 4, and further, the supported vehicle is specified. LDM is provided by pairing with the vehicle, and information is provided when the vehicle behind is following and traveling in the state of automatic driving level 4.
 例えば、自車走行路実績情報提供部105は、上述した遠隔支援管制・操舵支援対応可否モニタリング部103と提携して、この情報提供を行うことができる。例えば、ペアリングした相手が先導支援サポート車の場合、当該相手の後続、追従車両に対して道先案内情報として、情報提供を行うことができる。高鮮度更新LDM140と併せ、これら先導車や遠隔支援などを組み合わせた運用は、特に無人の走行車両を含む隊列輸送の利用時においてさらにその有用性が見出されることとなり、運用を、運転者が実車搭乗しない利用に適用してもよい。 For example, the own vehicle track record information providing unit 105 can provide this information in cooperation with the above-mentioned remote support control / steering support support availability monitoring unit 103. For example, when the paired partner is a leading support support vehicle, information can be provided as road guide information to the following and following vehicles of the partner. The operation that combines these leading vehicles and remote support together with the high freshness update LDM140 will be further found to be useful especially when using platoon transportation including unmanned traveling vehicles, and the driver will operate the actual vehicle. It may be applied to use without boarding.
 ODD適用推定部106は、車両が各自動運転レベルで走行が可能な区間(ODD区間)か否かの判定を行う。ODD適用推定部106は、次の情報に基づき、この判定を行う。 The ODD application estimation unit 106 determines whether or not the vehicle can travel at each automatic driving level (ODD section). The ODD application estimation unit 106 makes this determination based on the following information.
・運転者の優良信用評価、復帰違反、減点、罰則などの履歴の評価情報。
・HCDに基づく運転者の復帰必要性に対する理解熟達度の評価情報。
・高鮮度更新LDM140の入手状態を示す情報。
・高鮮度更新LDM140などLDMに基づく復帰要請確率(RRR)の情報と、退避選択肢により選択可能な地点を示す情報。
・車両積載機器の診断結果に基づく自動運転適用の限界を示す情報。
・車両ダイナミクス(積載乗客・荷物・荷崩れリスク特性)を示す情報。
-History evaluation information such as driver's excellent credit evaluation, return violation, deductions, penalties, etc.
-Evaluation information on the degree of understanding and proficiency of the driver's need to return based on HCD.
-Information indicating the acquisition status of the high freshness update LDM140.
-Information on the return request probability (RRR) based on LDM such as the high freshness update LDM140, and information indicating the points that can be selected by the evacuation options.
-Information indicating the limits of the application of autonomous driving based on the diagnosis results of vehicle-loaded equipment.
-Information showing vehicle dynamics (loading passengers, luggage, and risk of collapse).
 また、ODD適用推定部106は、高鮮度更新LDM140などLDMやの他更新ステータスに応じて、自動運転レベル4での非監視自動運転を適用可能なODD区間や、自動運転レベル3相当の自動運転を利用可能なODD区間を推定する。また、ODD適用推定部106は、走行旅程中に新規に取得されたリスク情報、機器汚れ付着、運転者の状態変化などに応じて、適用可能なODD区間の見直しおよび更新を行う。このとき、ODD適用推定部106は、HMI100を通じて、運転者に対して情報更新を通知すると共に、当該通知に対する運転者による応答に基づき、状況変化に対する理解度を評価する。 Further, the ODD application estimation unit 106 has an ODD section to which non-monitoring automatic operation at automatic operation level 4 can be applied according to LDM such as high freshness update LDM140 and other update status, and automatic operation equivalent to automatic operation level 3. Estimate the available ODD intervals. In addition, the ODD application estimation unit 106 reviews and updates the applicable ODD section according to the risk information newly acquired during the travel itinerary, the adhesion of dirt on the equipment, the change in the state of the driver, and the like. At this time, the ODD application estimation unit 106 notifies the driver of the information update through the HMI 100, and evaluates the degree of understanding of the situation change based on the driver's response to the notification.
 自動運転利用許可統合制御部107は、自動運転の利用許可について、統合的に制御する。例えば、自動運転利用許可統合制御部107は、各走行区間毎の自動運転許容ステータスを統合的に制御する。また、自動運転利用許可統合制御部107は、MRMの実行を制御する。さらに、自動運転利用許可統合制御部107は、は、自動運転を利用中の違反行為に対して、利用の強制的な中断など、運転者に対して罰則やペナルティを与えるための制御を行う。違反行為の例としては、システムからの手動運転への復帰要請に対する運転者の対応の遅延や、自動運転レベル3による自動運転を繰り返し連続した利用などが挙げられる。 The automatic driving use permission integrated control unit 107 controls the automatic driving use permission in an integrated manner. For example, the automatic driving use permission integrated control unit 107 controls the automatic driving permission status for each traveling section in an integrated manner. Further, the automatic driving use permission integrated control unit 107 controls the execution of the MRM. Further, the autonomous driving use permission integrated control unit 107 controls to give penalties and penalties to the driver, such as forcibly suspending the use of the violation act while using the automatic driving. Examples of violations include delays in the driver's response to requests from the system to return to manual driving, and repeated and continuous use of automatic driving according to automatic driving level 3.
 運転者行動品質評価部108は、運転者の自動運転中などの行動の質(行動品質)を評価する。 The driver behavior quality evaluation unit 108 evaluates the quality of behavior (behavior quality) of the driver during automatic driving.
 運転者行動品質評価部108は、例えば、運転者の操舵の安定性などに基づき、運転者による行動の品質を評価する。運転者行動品質評価部108は、例えば、運転者によるステアリング操作、アクセルおよびブレーキ操作、ウィンカ操作などの運転に関する各項目について、評価を行う。また、運転者行動品質評価部108は、システムからの手動運転への引き継ぎ要請に対する、運転者による指差呼称などの指定操作、行動に対する評価を行う。また、姿勢を崩したNDRAタスクから運転操舵姿勢に戻る際に姿勢復帰評価を行ってもよい。 The driver behavior quality evaluation unit 108 evaluates the quality of the driver's behavior based on, for example, the stability of the driver's steering. The driver behavior quality evaluation unit 108 evaluates each item related to driving such as steering operation, accelerator and brake operation, and winker operation by the driver, for example. In addition, the driver behavior quality evaluation unit 108 evaluates the designated operation such as pointing and calling by the driver and the behavior in response to the transfer request from the system to the manual driving. Further, the posture return evaluation may be performed when returning to the driving steering posture from the NDRA task in which the posture is broken.
 HCDの制御を実現する際に、システムによる直接的な観測が難しい情報の一つが、運転者の脳内情報となる状況認識(Situation Awareness)の把握である。そこで、実施形態に係るHCDでは、状況認識が低下した状態での操舵行動に注目する。例えば、状況把握が不十分な状態、すなわち状況認識が低下した状態での操舵行動では、知能的なフィードバックが不十分となり、過剰反射による操舵が増加する。すなわち、状況認識が低下した状態では、本来であれば滑らかに行われる操舵が、フィードバックが正しく行われない過剰操舵になることが多い点に着目し、自動運転時の操舵を、平時の手動運転による操舵と比較して、運転者の状況認識に対する評価指標とする。 One of the information that is difficult to directly observe by the system when realizing HCD control is grasping the situation awareness (Situation Awareness), which is the information in the driver's brain. Therefore, in the HCD according to the embodiment, attention is paid to the steering behavior in a state where the situational awareness is lowered. For example, in a state where situational awareness is insufficient, that is, steering behavior in a state where situational awareness is deteriorated, intelligent feedback becomes insufficient and steering due to excessive reflection increases. In other words, paying attention to the fact that steering that would normally be performed smoothly becomes excessive steering in which feedback is not performed correctly when situational awareness is reduced, steering during automatic driving is replaced with manual driving during normal times. It is used as an evaluation index for the driver's situational awareness as compared with steering by.
<3-3.実施形態に適用可能な自動運転レベル4について>
 ここで、実施形態に適用可能な自動運転レベル4について説明する。
<3-3. About automatic operation level 4 applicable to the embodiment>
Here, the automatic operation level 4 applicable to the embodiment will be described.
<3-3-1.基本構造>
 先ず、自動運転レベル4の基本的な構造について説明する。図15は、実施形態に適用可能な自動運転レベル4の基本的な構造について説明するための模式図である。
<3-3-1. Basic structure>
First, the basic structure of the automatic operation level 4 will be described. FIG. 15 is a schematic diagram for explaining the basic structure of the automatic operation level 4 applicable to the embodiment.
 図15において、チャート(a)~(g)は、それぞれ横軸が位置となっている。チャート(a)は、復帰時間ΔTdrdと位置(または車速から算出した到達経過時間)との関係の例、チャート(b)は、猶予時間ΔT2limと位置との関係の例をそれぞれ示している。これら復帰時間ΔTdrdおよび猶予時間ΔT2limについては、後述する。 In FIG. 15, each of the charts (a) to (g) has a horizontal axis as a position. The chart (a) shows an example of the relationship between the return time ΔT drd and the position (or the arrival elapsed time calculated from the vehicle speed), and the chart (b) shows an example of the relationship between the grace time ΔT 2 lim and the position. .. The return time ΔT drd and the grace time ΔT 2 lim will be described later.
 チャート(c)は、常時更新(高鮮度更新)LDMデータ区間の例を示す。この例では、自動運転レベル4(図ではLevel4と記述)の自動運転での走行可能区間において、例えば更新が行われず鮮度が低下したLDMデータ区間が含まれている。この鮮度低下LDMデータ区間は、チャート(b)に区間64として示されるように、事前予告されたLDM整備不足の区間とされ、一時的に手動運転が必須の区間とされている。なお、チャート(b)における区間63は、通過車両の減少や周囲の公共通信の利用過多での通信帯域不足などにより、高鮮度更新LDM140の提供が維持できない区間である。この区間においても、手動運転が必須とされる。 Chart (c) shows an example of a constantly updated (high freshness update) LDM data section. In this example, in the runnable section in the automatic operation of the automatic operation level 4 (described as Level 4 in the figure), for example, an LDM data section in which the freshness is deteriorated without being updated is included. As shown in the chart (b) as section 64, this freshness-reduced LDM data section is a section in which LDM maintenance is insufficiently announced in advance, and a section in which manual operation is temporarily indispensable. The section 63 in the chart (b) is a section in which the provision of the high freshness update LDM140 cannot be maintained due to a decrease in passing vehicles and a shortage of communication bands due to excessive use of surrounding public communications. Manual operation is also essential in this section.
 チャート(d)は、RRRおよび復帰成功率の例を示している。チャート(e)、(f)および(g)は、それぞれ先導車の有無、待機所の空き状態および管制オペレータの空き状態の例を示している。 Chart (d) shows an example of RRR and return success rate. The charts (e), (f), and (g) show examples of the presence / absence of a leading vehicle, the availability of a waiting area, and the availability of a control operator, respectively.
 図示は省略するが、例えば区間65bでチャート(e)、(f)および(g)が示す情報から何も支援が無く、区間65bへの進入に際し、運転者が対処できない引継ぎ事象が発生する場合が起こり得る。この場合、MRM機能により区間65bで車両が停車すると、当該区間65bを含む道路の封鎖や、視界の悪いトンネル出口等では、自車が急停車して後続車に対する追突リスクが発生するなど、重大な違反状況を招くおそれが大きい(詳細は後述する)。 Although not shown, for example, when there is no support from the information shown in the charts (e), (f) and (g) in the section 65b, and a takeover event that the driver cannot deal with occurs when entering the section 65b. Can occur. In this case, if the vehicle stops in the section 65b due to the MRM function, the road including the section 65b is blocked, or at the tunnel exit with poor visibility, the own vehicle suddenly stops and there is a risk of a rear-end collision with the following vehicle. There is a high risk of causing a violation situation (details will be described later).
 システムが地域のインフラ通信網を介してクラウドネットワーク上のLDMと通信して新たな情報をリクエストし、そのクラウドネットワークから、予定走行区間の常時更新されたLDMの高精度の状況が提供される。あるいは、先導車両から、V2V(Vehicle to Vehicle)などその時々の状況で取得された高鮮度な個別LDM情報が提供される。 The system communicates with the LDM on the cloud network via the regional infrastructure communication network to request new information, and the cloud network provides the constantly updated high-precision status of the LDM for the planned travel section. Alternatively, the leading vehicle provides highly fresh individual LDM information acquired in each situation such as V2V (Vehicle to Vehicle).
 システムは、これらの提供された情報に基づき、自車の最新の自己診断の状況で利用が確認された装備状況に応じて、自車の安全な走行が可能と推測される猶予を示す猶予時間ΔT2lim(Time to reach limit of MRM=直前遠方予測性範囲)と、システムがパッシブまたはアクティブに検出している、運転者が手動運転の復帰までに要する復帰時間ΔTdrd(Time delay to resume driving=Notification to driving)とを求める。 Based on this information provided, the system has a grace period that indicates the grace period during which it is presumed that the vehicle can drive safely, depending on the equipment status confirmed to be used in the latest self-diagnosis status of the vehicle. ΔT 2lim (Time to reach limit of MRM) and the return time required for the driver to return to manual driving, which is passively or actively detected by the system ΔT drd (Time delay to resume driving =) Notification to driving) and ask.
 図15のチャート(a)に示されるように、復帰時間ΔTdrdは、例えば現在の自車の位置が位置P61であるとすると、位置P61から、位置P61における復帰時間ΔTdrdに対応する距離だけ進んだ位置で、手動運転に復帰することを示している。一方、チャート(b)に示されるように、猶予時間ΔT2limは、位置P62aが手動運転への復帰が必須の地点である場合、この位置P62aから、位置P62aでの猶予時間ΔT2limに対応する距離だけ位置P62aから遡った位置における、手動運転への復帰の猶予を示している。 As shown in the chart (a) of FIG. 15, the return time ΔT drd is only the distance corresponding to the return time ΔT drd at the position P61 from the position P61, for example, assuming that the current position of the own vehicle is the position P61. It indicates that it will return to manual operation at the advanced position. On the other hand, as shown in the chart (b), the grace time ΔT 2lim corresponds to the grace time ΔT 2lim from this position P62a to the position P62a when the position P62a is a point where the return to the manual operation is indispensable. It shows the grace period for returning to manual operation at the position traced back from the position P62a by the distance.
 これら復帰時間ΔTdrdおよび猶予時間ΔT2limは、例えばチャート(b)の位置P62aおよび位置P62bにそれぞれ示されるように、走行中の道路環境や運転手の状態に応じて変化する。 The return time ΔT drd and the grace time ΔT 2 lim change according to the road environment during traveling and the state of the driver, as shown in the positions P62a and P62b of the chart (b), respectively.
 システムは、これら猶予時間ΔT2limと、復帰時間ΔTdrdとを比較し、猶予時間ΔT2limと、復帰時間ΔTdrdとが次式(1)の関係を満たしているか否かを判定する。
ΔT2lim>>ΔTdrd  …(1)
The system compares these grace time ΔT 2 lim with the return time ΔT drd , and determines whether or not the grace time ΔT 2 lim and the return time ΔT drd satisfy the relationship of the following equation (1).
ΔT 2lim >> ΔT drd … (1)
 猶予時間ΔT2limと、復帰時間ΔTdrdとが式(1)の関係を満たしている場合、車両が走行している間は、運転者は自動運転レベル4の自動運転で車両を利用しても、直前の対処が必要な事態に遭遇する確率が低いことになる。したがって、リスクが限定的になり、仮に運転者が手動運転への復帰に間に合わない場合であっても、MRMが他の交通リスクを急激に増加させることにならない限り、フォールバックとなる。 If the grace time ΔT 2 lim and the return time ΔT drd satisfy the relationship of equation (1), the driver can use the vehicle for automatic driving at automatic driving level 4 while the vehicle is running. , The chances of encountering a situation that requires immediate action are low. Therefore, the risk is limited, and even if the driver is not in time to return to manual driving, it will fall back unless the MRM sharply increases other traffic risks.
 ここで、システムは、走行区間において自車がMRMで緊急停車などを実行した場合に、該当道路の通行妨害を引き起こすリスクをLDMなどから得た情報により判定する。システムは、この判定結果に応じて、その可能性がある場合には、その区間への侵入前に、退避可能な迂回路の検索、先導誘導車とのペアリング可否判定、遠隔運転支援管制官・実行オペレータ・必要通信回線の余裕度の判定などを行う。システムは、この判定の結果に応じた、MRM実行に伴う回避策の提供の有無に従い、自動運転の提供可能限界点までに、迂回や回避選択の利用者にリスク選択情報として提供し、利用者に判断を促す運用とするか、システムが事前に退避選択を優先するか、は設定可能な選択切替可能事項にし、判断に応じた処理を行い完了する。 Here, the system determines the risk of causing traffic obstruction on the relevant road based on the information obtained from LDM or the like when the own vehicle makes an emergency stop or the like on the MRM in the traveling section. According to this judgment result, if there is a possibility, the system searches for a detour that can be evacuated, determines whether pairing with a leading guide vehicle, and a remote driving support controller before entering the section. -Execution operator-Determine the margin of required communication lines. The system provides risk selection information to users of detour or avoidance selection up to the limit of provision of automatic driving according to the presence or absence of provision of workarounds associated with MRM execution according to the result of this determination. Whether the operation is to prompt the decision or whether the system gives priority to the save selection in advance is a settable selection switchable item, and the process is completed according to the decision.
 つまり、区間走行する車両にとっての自動運転レベル4による自動運転の利用可否は、迂回路選択までであるか、ペアリングされた先導誘導車や遠隔リモートオペレータに遠隔操舵してくれるその継続限界地点か、システムが後続車への影響、すなわち大きな社会的影響を発生させずに走行できる制御の限界点、の何れかになる。これらを、運転者にリスク対処の行動判断を促す情報として情報表示部120により提示することで、運転者のワーキングメモリに取り込まれる情報となるので、運転者は、対処が必要な地点への接近時に、早期に状況認識(Situation Awareness)を行うことができる。 In other words, whether or not the vehicle traveling in the section can use the automatic driving by the automatic driving level 4 is up to the detour selection, or the continuation limit point where the paired leading guide vehicle or the remote remote operator can remotely steer. , The system becomes one of the influences on the following vehicle, that is, the limit point of control that can be driven without causing a great social influence. By presenting these as information prompting the driver to make a risk coping action decision by the information display unit 120, the information is taken into the driver's working memory, so that the driver approaches a point requiring coping. Sometimes, situational awareness can be performed at an early stage.
 運転者は、これらの限界地点においてシステムにより要請された復帰動作を行わず、契約に違反した場合には、違反に応じて、二次誘発事故に代わるより身近な直感的ペナルティを運転者に階層的に課す。すなわち、運転者の自覚に無い確率的な可能性ではなく、直接的にデメリットとして作用する、継続走行時の速度制限、パーキングへの強制ピットイン停車、悪臭、などのペナルティを運転者に課す。これにより、システムは、自動運転の違反利用を抑制する、あるいは、自動運転の利用時に違反を積極的に行わない行動変容を、運転者に対して促すことができる。 The driver does not perform the return action requested by the system at these marginal points, and if the contract is violated, the driver is given a more familiar intuitive penalty to replace the secondary trigger accident in response to the violation. Imposing on the target. In other words, it imposes penalties such as speed limit during continuous driving, forced pit stop at parking, stink, etc., which act directly as a demerit, not a stochastic possibility that the driver is not aware of. As a result, the system can suppress the violation use of the automatic driving, or encourage the driver to change the behavior in which the violation is not positively performed when the automatic driving is used.
 ここで、チャート(b)を用いて説明したように、猶予時間ΔT2limは、自車の走行に伴い変化する情報であり、当初の予定通り、十分に長時間の予測が得られない場合も起こり得る。インフラから提供される高鮮度更新LDM140のデータは、旅程区間全てのデータを旅程開始時に受け取っても、時間と共に変化する可能性があり、その都度高鮮度更新LDM140を取得することは、通信帯域の圧迫などを生じさせるおそれが大きい。 Here, as explained using the chart (b), the grace time ΔT 2lim is information that changes with the running of the own vehicle, and it may not be possible to obtain a sufficiently long prediction as originally planned. It can happen. The data of the high freshness update LDM140 provided from the infrastructure may change over time even if the data of the entire itinerary section is received at the start of the itinerary, and acquiring the high freshness update LDM140 each time is the communication band. There is a great risk of causing pressure.
 そこで、自車のシステムが事前に取得する情報は、自動運転レベル4による自動運転が利用できない区間の確定情報と、サービスとして予定される各区間での猶予時間ΔT2limの予測情報とする。ここで、猶予時間ΔT2limは、実際に各区間への接近手前で、より精度の高い、直前で更新された情報として取得される。このような情報の入手は、地域管理サーバに対して直接的にリクエストして取得してもよいし、先導誘導車からV2Vにより取得したり、ブロードキャストされる情報より取得したりしてもよい。 Therefore, the information acquired in advance by the system of the own vehicle is the confirmation information of the section where the automatic driving by the automatic driving level 4 cannot be used, and the prediction information of the grace time ΔT 2 lim in each section scheduled as a service. Here, the grace time ΔT 2lim is acquired as more accurate and immediately updated information before actually approaching each section. The acquisition of such information may be acquired by directly requesting it from the regional management server, acquired by V2V from the leading guide vehicle, or acquired from the broadcasted information.
 チャート(d)のRRRおよび復帰成功率について説明する。RRR(Request Recovery Ratio)の数値が100%の区間は、仮にその区間で車両の停車や急速な大幅減速を行うと、後続車において急激な減速を要する可能性が極めて高くなる区間である。この区間では、安全を確保するために、事前の引継ぎ完了を要請する。 The RRR and return success rate of the chart (d) will be explained. The section where the value of RRR (Request Recovery Ratio) is 100% is a section where there is an extremely high possibility that a sudden deceleration will be required for the following vehicle if the vehicle is stopped or a rapid deceleration is performed in that section. In this section, in order to ensure safety, we request the completion of the transfer in advance.
 RRRを高く設定する区間の例として、片道橋など、通行量が少なくとも途中で停車または双方向の通行を完全にできなくなる可能性がある一部の特殊限定区間、車両の待避所を有しない首都高速道路などの特殊道路、トンネルの出口など一般車が状況把握に時間を要する区間、ラウンドアバウトや交差点内などを挙げることができる。一方、通行量が極めて少なく、仮に道路で停車しても、後続車の視界妨害や走行妨害が発生する可能性が極めて小さい区間では、RRRを0%とすることができる。 Examples of sections with high RRR are some special limited sections, such as one-way bridges, where traffic may stop at least halfway or completely prevent two-way traffic, and capitals without vehicle shelters. Examples include special roads such as expressways, sections where general vehicles take time to grasp the situation, such as tunnel exits, roundabouts, and intersections. On the other hand, the RRR can be set to 0% in a section where the traffic volume is extremely small and even if the vehicle is stopped on the road, the possibility of obstructing the view or traveling of the following vehicle is extremely small.
 図の例では、区間65aでは、RRRが100%より低い値に設定されているのに対し、区間65bでは、RRRが100%に設定されている。これは、区間65bは、車両の停車や急減速が後続車の走行に大きな影響を与える可能性が極めて高い区間であることを示している。一方、RRRが100%より低い値に設定される区間65aは、車両の停車や急停車の後続車への影響が区間65bと比べて小さいことを示している。 In the example of the figure, in the section 65a, the RRR is set to a value lower than 100%, whereas in the section 65b, the RRR is set to 100%. This indicates that the section 65b is a section in which the stopping or sudden deceleration of the vehicle is extremely likely to have a great influence on the running of the following vehicle. On the other hand, the section 65a in which the RRR is set to a value lower than 100% indicates that the influence of the vehicle stop or the sudden stop on the following vehicle is smaller than that in the section 65b.
 チャート(e)の先導車の有無は、自車装備およびLDMでは通過が困難な区間での自動運転走行を誘導・先導サポートする専用待機車両または一般車の相互援助的なボランティア支援の有無を示している。チャート(f)の待機所の空き状態は、例えばチャート(e)で先導車が有りとされた場合に、通過困難区間を手助けしてもらう際の、先導車や自車が先導車が到着するまで待機する待機場所の有無を示す。チャート(g)の管制オペレータの空き状態は、管制官の空き(対応可否)、実質操縦オペレータの供給可否を示すもので、遠隔支援を受ける仕組みで旅程を組んでいる場合、予定区間における運転者への復帰要請率に影響を与える。 The presence or absence of a leading vehicle in the chart (e) indicates the presence or absence of mutual assistance volunteer support for a dedicated standby vehicle or a general vehicle that guides and supports autonomous driving in sections where it is difficult to pass by own vehicle equipment and LDM. ing. When the waiting area on the chart (f) is vacant, for example, when the chart (e) indicates that there is a leading vehicle, the leading vehicle or the own vehicle arrives when the vehicle is assisted in a difficult-to-pass section. Indicates whether there is a waiting place to wait until. The vacancy status of the controller in the chart (g) indicates the vacancy of the controller (whether or not it can be handled) and whether or not the actual pilot operator can be supplied. Affects the return request rate to.
 これらの複合的な制御は、一般の健常者による利用では必ずしもメリットが見出だせない可能性がある。一方で、自動運転の利点である、手動運転能力が限定されるグループ(高齢者、児童など)への利用など公共サービスとして利用する際に、人手不足により移動体に必要な運転者確保が困難な中で、サービス網を社会の広域に提供をするために有用である。 These complex controls may not always have merit when used by general healthy people. On the other hand, when using it as a public service such as for groups with limited manual driving ability (elderly people, children, etc.), which is an advantage of automatic driving, it is difficult to secure the driver required for mobiles due to labor shortage. Above all, it is useful for providing a service network over a wide area of society.
 先導車に追従走行ができるペアリングや、巡航速度での遠隔運転支援操舵のペアリングが担保できれば、自動運転レベル4のまま走行が可能となる。一方で、運転者が単独で対処する場合は、次のRRRが100%となる区間への接近前(図中に区間66として示す)に、手動運転への引継ぎを完了するか、MRMで事前停車を行うか、が求められる。 If pairing that can follow the leading vehicle and pairing of remote driving support steering at cruising speed can be guaranteed, it will be possible to drive with automatic driving level 4. On the other hand, when the driver deals alone, the transfer to manual operation is completed or MRM is performed in advance before approaching the next section where RRR is 100% (indicated as section 66 in the figure). You will be asked if you want to stop.
<3-3-2.自動運転レベル4におけるODDについて>
 次に、実施形態に係る自動運転レベル4におけるODDについて説明する。図16は、実施形態に係る自動運転レベル4におけるODDについて説明するための模式図である。
<3-3-2. About ODD at automatic operation level 4>
Next, the ODD at the automatic operation level 4 according to the embodiment will be described. FIG. 16 is a schematic diagram for explaining ODD at the automatic operation level 4 according to the embodiment.
 図16において、図の左から右に向かって自車が走行する方向を示している。上段の図は、道路70における、自動運転レベル4(Level4)の自動運転で走行可能な、静的な情報として提供された区間の例を示している。図16の下段の図は、当該走行可能な区間において、例えば道路工事などにより車線幅が制限され、自動運転レベル4の自動運転が困難で、且つ車線幅が限られた区間71が発生した場合の例を、模式的に示している。図16において、区間71は、地点Rから地点Sの間であり、この区間71では、運転者が手動運転により運転を行う必要がある。区間71の終端の地点Sから所定の長さの区間72で、手動運転から自動運転に移行することができる。 In FIG. 16, the direction in which the own vehicle travels is shown from the left to the right in the figure. The upper figure shows an example of a section provided as static information on the road 70, which can be driven by automatic driving at automatic driving level 4 (Level 4). The lower part of FIG. 16 shows a case where the lane width is limited due to, for example, road construction, the automatic driving of the automatic driving level 4 is difficult, and the section 71 having a limited lane width occurs in the travelable section. An example of is shown schematically. In FIG. 16, the section 71 is between the point R and the point S, and in this section 71, the driver needs to drive by manual operation. From the point S at the end of the section 71 to the section 72 having a predetermined length, the manual operation can be shifted to the automatic operation.
 ここで、自動運転レベル4の理想的な利用について説明する。車両の装備が一定以上の性能を備えていれば、旅程開始前に確認された条件から物理的な道路区間で、常に自動運転レベル4の自動運転が利用可能である。一方、旅程を決めて走行を開始、または開始後で走行中に自動運転レベル4の自動運転が許容されない事態が発生する可能性があるために、異常事態に備え状態監視を持続的に行うことは、利用者視点では、自動運転の存在および利用意義が薄れることになる。 Here, the ideal use of automatic driving level 4 will be explained. If the equipment of the vehicle has a certain level of performance or higher, automatic driving of automatic driving level 4 can always be used in the physical road section from the conditions confirmed before the start of the itinerary. On the other hand, since there is a possibility that the automatic driving of automatic driving level 4 may not be allowed while driving after deciding the itinerary and starting driving, continuous status monitoring should be performed in case of an abnormal situation. From the user's point of view, the existence and significance of autonomous driving will diminish.
 そこで、MRMと呼ばれる緊急対処を許容しつつも、社会的な負の影響が一定以下となる条件に利用を留め、MRMの利用を最小化する制御を導入することが考えられる。 Therefore, it is conceivable to introduce a control that minimizes the use of MRM by limiting the use to conditions where the negative social impact is below a certain level while allowing emergency measures called MRM.
 また、MRM発動を回避することも考えられる。この場合、MRMに至る前に運転者による自主的な事前対処や必要な情報把握を行えるための情報提供を、的確、且つ、直感的に、すなわちワーキングメモリに対して適切な優先度で作用するように行う。ここで、運転者に提供される情報は、例えば、車両ダイナミクス特性変位、車両搭載機器の自己診断および状況提示、先行道路の予測性に関する情報提示(センシング性能の一時的低下などを含む)、退避・避難の可否に関する情報(収容変動による一時的な受け入れ可能量)の事前提供、などが考えられる。 It is also conceivable to avoid activating MRM. In this case, it acts accurately and intuitively, that is, with an appropriate priority for the working memory, to provide information for the driver to take voluntary precautions and grasp necessary information before reaching the MRM. Do so. Here, the information provided to the driver is, for example, vehicle dynamics characteristic displacement, self-diagnosis and status presentation of vehicle-mounted equipment, information presentation regarding predictability of the preceding road (including temporary deterioration of sensing performance, etc.), evacuation.・ It is conceivable to provide information on the availability of evacuation (temporary acceptable amount due to accommodation fluctuations) in advance.
 さらに、運転者がNDRAに携わっても、予測可能な優先的対処とその利用形態が自主的な対処行動対応ができる、利用優先度に関する感覚を育成する仕組みが必要である。 Furthermore, even if the driver is involved in NDRA, there is a need for a mechanism to foster a sense of usage priority so that predictable priority coping and its usage pattern can respond to voluntary coping behavior.
 次に、自動運転レベル4のより現実的な利用について説明する。車両が自動運転レベル4で走行可能な区間で、自車がその自動運転レベル4としてODDを自律的にその場で定め、運転者を介在させなくとも自動走行をするには、次に示す条件を満たしている必要がある。 Next, a more realistic use of autonomous driving level 4 will be explained. The following conditions are required for the vehicle to autonomously set the ODD as the automatic driving level 4 on the spot in the section where the vehicle can run at the automatic driving level 4 and to drive automatically without the intervention of the driver. Must be met.
 先ず、システムは、想定する旅程の進行進路先の高鮮度更新LDM140の事前取得が可能であることが必要である。そして、その取得した高鮮度更新LDM140に、進行進路先の道路区間毎の復帰成功率(RRR)を示す情報が含まれており、システムは、運転者が想定する引継ぎ限界地点までに手動運転に復帰できる推定遅延時間を、このRRRを達成する通知から復帰までの遅延時間として算出する。 First of all, it is necessary for the system to be able to obtain in advance the high freshness update LDM140 of the destination of the assumed itinerary. Then, the acquired high freshness update LDM140 contains information indicating the return success rate (RRR) for each road section of the traveling course, and the system is manually operated by the transfer limit point assumed by the driver. The estimated delay time that can be restored is calculated as the delay time from the notification that achieves this RRR to the restoration.
 さらに、この遅延時間を考慮した時刻前に運転者が復帰をしなかった場合の回避選択肢を提示する。そして、実際の走行において、進行進路先からの何かしらの更新情報により、運転者の手動運転への復帰が想定される情報が取り込まれたとき、運転者には、当該情報に従って怠慢無く実際に復帰行動を起こして貰う必要がある。 Furthermore, we will present an avoidance option when the driver does not return before the time considering this delay time. Then, in actual driving, when information that is expected to return to the manual driving of the driver is taken in by some update information from the traveling course destination, the driver actually returns without negligence according to the information. You need to take action.
 ここで、運転者がシステムからの通知に応じて、期待通りの復帰行動を起こすかどうかは、システムが直接的には感知できない人の行動心理で決まる領域となる。 Here, whether or not the driver takes the expected return behavior in response to the notification from the system is an area determined by the behavioral psychology of the person that the system cannot directly detect.
 しかしながら、人は、全方面的に同時に自主的な対処行動を起こすとは限らない。すなわち、人は、社会行動的な行動規範に基づき成就した倫理が育たない限り、この自主的な対処を期待することは難しい。 However, people do not always take voluntary coping actions in all directions at the same time. In other words, it is difficult for a person to expect this voluntary coping unless the ethics achieved based on the social behavior code of conduct are fostered.
 ここでは、先ずは、人は、この自主的対処が発達した前提で、通知からの行動対処を行うと見做し、人の2次タスクを行うベネフィット、主目的である移動に対するベネフィット、運転復帰要請を受けた際に復帰をしなかった場合のデメリット、復帰に必要な事前情報取得を怠ることのデメリットなどを、選択行動の結果として未来投影して、結果が直感的に描写できる範囲での対処行動の選択判断を行う。 Here, first of all, on the premise that this voluntary coping has been developed, it is considered that the person takes action coping from the notification, and the benefit of performing the person's secondary task, the benefit of the main purpose of movement, and the return to driving The disadvantages of not returning when the request is received, the disadvantages of neglecting to acquire the prior information necessary for returning, etc. are projected in the future as a result of the selection action, and the result can be intuitively described. Make a selection decision on coping behavior.
 さらに、その結果、実際に対処を行う際には、その事前選択された対処行動の判断に際して重要な情報を優先的に、作業記憶、つまり時間的に衰退するワーキングメモリに一時的に記憶される。 Further, as a result, when actually coping, information important for determining the preselected coping behavior is preferentially stored in the working memory, that is, the working memory that declines in time. ..
 そして、人の行動心理として、手動運転への復帰の必要性の通知から実際の復帰が完了できるまでの遅延時間は、これら事前の情報の提供の仕方、通知した内容の重要性の、運転者による正確な認知の状況、新たな引継ぎの必要性の通知から実施の通知までの記憶における重要性が衰退する経過時間、運転者が運転外の集中事項の発生状況の有無や、その運転者の重要事項のワーキングメモリへの記憶保持の個人能力差などに大きく依存して決まる。 And, as a person's behavioral psychology, the delay time from the notification of the necessity of returning to manual driving to the completion of the actual return is the driver's method of providing these advance information and the importance of the notified content. Accurate cognitive status by, elapsed time when the importance in memory from notification of the need for new takeover to notification of implementation declines, presence or absence of concentration matters outside the driver, and the driver's It is determined largely depending on the individual ability difference of memory retention in the working memory of important matters.
 ここで、図16の下段の図について説明する。例えば、高鮮度更新LDM140により新規の引継ぎ情報が発生した場合(ステップS70)、その引継ぎ情報は、ステップS71に示すように、地域LDMクラウドネットワークを介してシステムに取得される。また、システムは、先導車などから異常通知信号を受信する場合もある(ステップS72)。システムは、取得した引継ぎ情報あるいは異常通知信号に基づき、ステップS73で、運転者に対して、引継ぎに関与する関与ポイント(地点)の情報と、引継ぎへの対処の重要度を通知する(仮契約の提示)。 Here, the lower figure of FIG. 16 will be described. For example, when new takeover information is generated by the high freshness update LDM140 (step S70), the takeover information is acquired by the system via the regional LDM cloud network as shown in step S71. In addition, the system may receive an abnormality notification signal from a leading vehicle or the like (step S72). Based on the acquired takeover information or abnormality notification signal, the system notifies the driver of the information on the points (points) involved in the takeover and the importance of dealing with the takeover in step S73 (provisional contract). Presentation).
 運転者は、この通知に応じて重要度を決定し(ステップS74)、仮契約に対して合意、応答する。システムは、運転者の応答を検出する(ステップS75)。これにより、仮契約が締結される。また、運転者においては、この仮契約に対する合意応答により、引継ぎに関する情報をワーキングメモリに格納する(ステップS76)。 The driver decides the importance according to this notification (step S74), and agrees and responds to the provisional contract. The system detects the driver's response (step S75). As a result, a provisional contract is concluded. Further, in the driver, the information regarding the takeover is stored in the working memory by the agreement response to this provisional contract (step S76).
 システムは、例えば、最初の通知から所定の時間が経過しても運転者が引き継ぎ動作を実行しない場合、運転者に対して再確認の通知を行い、当該通知に対する運転者の認知の有無を判定する(ステップS77)。当該認知の有無に応じて、例えば点Pに示すように対応が分岐する。 For example, if the driver does not perform the takeover operation within a predetermined time from the first notification, the system notifies the driver of reconfirmation and determines whether or not the driver is aware of the notification. (Step S77). Depending on the presence or absence of the recognition, the correspondence branches, for example, as shown at point P.
 ここで、運転者による手動運転への復帰のタイミングは、運転者の引継ぎに対する重要度の認識などに応じて異なる。例えば、運転者がステップS75で仮契約に対する運転者の応答が検知されなかった場合、地点(位置)Q1で運転者に対して手動運転への復帰要請を出す。 Here, the timing of the driver's return to manual operation differs depending on the driver's recognition of the importance of taking over. For example, if the driver does not detect the driver's response to the provisional contract in step S75, the driver is requested to return to manual driving at the point (position) Q1 .
 システムは、再確認の通知を行い(ステップS77)、この通知への運転者による認知の有無に応じて、地点Q1より先の、区間71により近い地点Q2、あるいは、さらに先の、区間71に近接する地点Q3において復帰要請を出す。 The system gives a reconfirmation notice (step S77), and depending on whether or not the driver recognizes this notice, the point Q 2 ahead of the point Q 1 and closer to the section 71, or a section further ahead. Issue a return request at point Q3 near 71.
 人が意識ある判断を要する思考活動(脳活動)を起こすときに、考えの元となる知識情報がワーキングメモリに、脳が無意識のうちに重要順に一時的に取り込んでいく。このワーキングメモリに取り込まれた情報は、重要性が薄れるに従いワーキングメモリから次第に薄れていく。 When a person causes a thinking activity (brain activity) that requires conscious judgment, the knowledge information that is the basis of the thought is temporarily taken into the working memory by the brain unconsciously in order of importance. The information captured in this working memory gradually diminishes from the working memory as its importance diminishes.
 その間、例えば運転者がNDRAに意識を没頭している場合に、自動運転から手動運転への引継ぎ要請がシステムから発せられたとする。運転者は、その対処が緊急性を要しなかったり、通知を見落として引継ぎを実行しなかったとしてデメリットを受ける直感に作用する近未来のリスク感覚を伴わない場合、その対処の必要性に係る感覚、つまりワーキングメモリの保存内容は薄れていく。また、その引継ぎの際に必要となる、周辺監視情報や車両が走行中の前提条件(車両のダイナミクス特性)などがこのワーキングメモリから薄れてしまう。例えば周辺監視情報は、重要と判断されることで、判断に必要な取得情報がワーキングメモリに保持される。 During that time, for example, when the driver is absorbed in NDRA, a request to take over from automatic driving to manual driving is issued from the system. The driver is concerned about the need for action if the action is not urgent or does not involve a sense of risk in the near future that acts on the intuition that is detrimental to not performing the takeover overlooking the notification. The feeling, that is, the stored contents of the working memory, fades. In addition, peripheral monitoring information and preconditions (vehicle dynamics characteristics) that the vehicle is running, which are necessary for the transfer, are diminished from this working memory. For example, when the peripheral monitoring information is judged to be important, the acquired information necessary for the judgment is held in the working memory.
 例えば、自車が自動運転レベル4の自動運転で走行が許容されたルートに沿って走行中に、高鮮度更新LDM140などや、先導車からのV2V通信で得たルート先の先行情報から、道路区間の先に手動運転が必須となる区間に接近している事象変動が時間に伴い発生したとする。さらに、その手前に退避が困難な例えば狭い道路区間があると、社会的な秩序の維持を考慮すると、そのさらに手前で引継ぎが成功することが求められる。そして、通知から引継ぎが成功するまでの遅延の如何は、その各々の運転者がどれだけ覚醒し、判断に必要な事前情報を記憶に留めていたかに大きく依存する。 For example, while the vehicle is traveling along a route that is allowed to be driven by automatic driving of automatic driving level 4, the road is based on the high freshness update LDM140 and the preceding information of the route destination obtained by V2V communication from the leading vehicle. It is assumed that an event fluctuation that approaches a section where manual operation is essential occurs at the end of the section over time. Furthermore, if there is a narrow road section in front of it that is difficult to evacuate, for example, considering the maintenance of social order, it is required that the transfer be successful even before that. And the delay from notification to successful takeover largely depends on how awake each driver is and remembers the prior information needed to make a decision.
 運転者が必要性を自覚し、緊張度をもって事前情報を捉え、初期通知で情報を認知して応答をし(つまり、システムが認知を応答という形で検出し)、その重要性が運転者の記憶に重要としてワーキングメモリに残れば、通知から復帰までの時間が短くでき、限界点の少し手前の通知で済む。 The driver is aware of the need, captures advance information with a degree of tension, recognizes the information in the initial notification and responds (that is, the system detects cognition in the form of response), and its importance is the driver's. If it remains in the working memory as important for memory, the time from notification to recovery can be shortened, and notification just before the limit point is sufficient.
 他方で、運転者が通知を正しく認知せず、システムが運転者の通知に対する認知の検出をできないと、運転者が引継ぎの必要性を十分にワーキングメモリに留めていないと見做し、より早いタイミング(図16下段の地点Q1)で復帰要請を出す。 On the other hand, if the driver does not recognize the notification correctly and the system cannot detect the recognition of the driver's notification, the driver considers the need for takeover not sufficiently in the working memory and is faster. A return request is issued at the timing (point Q1 at the bottom of Fig. 16).
 ただし、システムの機械的な仕組みと異なり、ワーキングメモリは、人の思考判断を司る脳の働きを概念的に捉えたものであり、個々の人でその記憶できる上限も異なれば、健康状態や年齢などで、重要な情報であっても直ぐに優先順位を忘れてしまう人もいる。 However, unlike the mechanical mechanism of the system, working memory conceptually captures the function of the brain that controls human thinking and judgment, and if the upper limit that can be memorized by each person is different, the health condition and age. For example, some people immediately forget their priorities even if they are important information.
 このような、変化に伴う情報を、運転者が該当地点Rの十分手前(例えば地点Q1)で受け、この通知を受けて該当地点Rに到達するまでの時間が数十分などの十分に長い時間を想定する。この状況を人間工学的に見た場合、HCDにより制御すると、人は、基本的に、情報の重要性に基づいて情報をワーキングメモリに格納する。このとき、人は、その情報が直接的な近未来の重要性を示す感覚として得られないと、その時点の重要度の高いNDRAなどの情報に対して優先度が下がってしまうことになる。 The driver receives such information due to the change sufficiently before the relevant point R (for example, at the corresponding point Q1 ), and it takes several tens of minutes to reach the corresponding point R after receiving this notification. Imagine a long time. From an ergonomic point of view, when controlled by HCD, one basically stores information in working memory based on the importance of the information. At this time, if the information is not obtained as a direct sense of the importance of the near future, the priority of the information such as NDRA, which is highly important at that time, will be lowered.
 その場合、システムは、その引継ぎ要請の緊急度と、引継ぎ要請を履行しなかった場合のペナルティとを運転者に示し、運転者による応答を検出する。運転者は、反射的応答ではない理解の上での応答を行うことで、運転者のワーキングメモリにより確かな形での情報注入が可能となる。理解をした上での応答を見る手段としては、特開2019-021229号公報、国際公開第19/017215号に示す指差呼称による運転者の覚醒認知状態の意志あるジェスチャの観測状態評価を適用可能である。指差呼称は、その仕草に認知フィードバックがあるので、確認認知の役割を極めて多く受け持つことが可能である。これに限らず、運転者がシステムから提示された質問内容に答えるなど、より簡素な認知応答手段でもよい。 In that case, the system shows the driver the urgency of the takeover request and the penalty for failing to fulfill the takeover request, and detects the response by the driver. By responding with an understanding that is not a reflexive response, the driver's working memory enables information injection in a reliable form. As a means to see the response after understanding, the observation state evaluation of the intentional gesture of the driver's awakening cognitive state by pointing and calling shown in Japanese Patent Application Laid-Open No. 2019-021229 and International Publication No. 19/017215 is applied. It is possible. Since pointing and calling has cognitive feedback in its gestures, it can play an extremely large number of roles of confirmatory cognition. Not limited to this, a simpler cognitive response means such as the driver answering a question presented by the system may be used.
 ここで、復帰通知を早期に受けた運転者は、事前通知に対応する応答が不十分で復帰必要性に対する重要視低下が予想される。運転者による過去の通知から復帰までの遅延履歴学習から、必要な引継ぎ完了限界点で、一定の手動運転への復帰成功率に基づいて、必要な時間が算出される。そして、復帰要請通知から復帰完了するまでの時間は、この場合は長く取れる一方で、通知から素早く復帰した復帰行動の品質は管理され、指標化される。そのため、低品質の復帰行動では減点処理されペナルティを被ることになることから、運転者の心理として、概ね早期の復帰行動が期待される。 Here, the driver who received the return notification at an early stage is expected to lose the importance of the necessity of return due to insufficient response to the advance notification. From the delay history learning from the past notification to the return by the driver, the required time is calculated based on the return success rate to a certain manual operation at the required transfer completion limit point. Then, while the time from the notification of the return request to the completion of the return can be long in this case, the quality of the return action that quickly returns from the notification is managed and indexed. Therefore, in the case of low-quality return behavior, points are deducted and a penalty is incurred. Therefore, the driver's psychology is expected to be an early return behavior.
 この、運転者による事前通知や通知に対する的確な行動判断は、情報表示部120等より提示する、判断に繋がる事前の情報が正しく且つリスクに応じて適度に行われ、判断記憶に取り込まれるかで初めて可能となる。 The driver's advance notice and accurate action judgment for the notification are determined by whether the prior information presented by the information display unit 120 or the like is correctly and appropriately performed according to the risk and is incorporated into the judgment memory. It will be possible for the first time.
 ここで、図16下段の利用ケース#1~#5について説明する。 Here, use cases # 1 to # 5 in the lower part of FIG. 16 will be described.
・利用ケース#1
 利用ケース#1は、高鮮度更新LDM140などの最新データの常時受信による能動的監視制御はせずに、準静的LDMにより更新された自動運転レベル4の許可ルートを、自動運転レベル4による自動運転の実行可能ルートとして仮定して走行プランを立てた場合の例である。この場合、運転者の状態次第では、準静的LDMから取得しておらず、且つ、更新情報が得られなかった、運転者の介在が必要な新規の状況に対しては、運転者の引継ぎ許容限界期間に手動運転への復帰を完了できていない。これは、MRMによる緊急対処となり、場合によっては、後続車への通行阻害や、追突事故リスクの誘発を招くケースとなる。
Use case # 1
In use case # 1, the permitted route of the automatic operation level 4 updated by the quasi-static LDM is automatically controlled by the automatic operation level 4 without active monitoring control by constantly receiving the latest data such as the high freshness update LDM140. This is an example when a driving plan is made assuming that the route is a viable route for driving. In this case, depending on the state of the driver, the driver will be taken over for a new situation that requires the intervention of the driver, which has not been acquired from the quasi-static LDM and the update information has not been obtained. The return to manual operation has not been completed within the permissible limit period. This is an emergency response by MRM, and in some cases, it may obstruct the passage of the following vehicle or induce a rear-end collision risk.
 この利用ケース#1は、例えば情報更新をサブスクリプションのような契約ベースでの受信権利により行っている場合の契約切れ、重要性課金における利用条件制限での受信不備、遠隔支援コンシェルジェサービスの解約有無、など様々な状況で発生する可能性がある。 In this use case # 1, for example, when the information is updated by the contract-based reception right such as subscription, the contract expires, the reception is inadequate due to the usage condition limitation in the importance charge, and the remote support concierge service is canceled. , Etc. may occur in various situations.
・利用ケース#2
 利用ケース#2は、高鮮度更新LDM140などから、進路先の道路の走行環境情報を事前に適宜受信して運転者に対して通知を行い、情報が運転者に正確に認知されその応答が検出されていない場合の例となる。この場合、必要な介入の重要性や発生タイミングが運転者のワーキングメモリに記憶されているか否かが定かでなく、引継ぎが時間内の安全に完了しないリスクがあるため、運転者に対して早期に通知を行うことになる(図16の地点Q1)。そのため、運転者は、運転以外の作業(NDRAなど)に関わることができる時間が圧迫される。その中でも、復帰通知から引継ぎの作業を素早く行わず、復帰品質が低い場合、ペナルティ評価が減点となり、将来の利用のデメリットとなる。
・ Use case # 2
In use case # 2, the driving environment information of the road ahead is appropriately received in advance from the high freshness update LDM140 or the like and notified to the driver, and the information is accurately recognized by the driver and the response is detected. This is an example when it is not done. In this case, it is uncertain whether the importance of the necessary intervention and the timing of occurrence are stored in the driver's working memory, and there is a risk that the transfer will not be completed safely in time, so it is early for the driver. Will be notified to (Point Q1 in Fig. 16). Therefore, the time that the driver can be involved in work other than driving (NDRA, etc.) is squeezed. Among them, if the work of taking over from the return notification is not performed quickly and the return quality is low, the penalty evaluation will be deducted, which is a disadvantage of future use.
・利用ケース#3
 利用ケース#3は、上述の利用ケース#2と異なり、通知の段階で運転者がその認知を正しく行った場合の例である。ここで、利用ケース#3では、これら新規事象の通知を早期に受けて実際の該当地点に到達するまで、長い時間、自動運転レベル4による自動運転を継続している(地点Q2)。この場合には、通知を受けた時点で、引き継ぎ重要性とその発生タイミングが運転者のワーキングメモリに記憶されているか否かが定かではない状態である。ステップS73による最初の通知からある程度の時間が経過しているような状況では、記憶が薄れている可能性がある。この場合、システムは、運転者に対して再確認の通知(ステップS77)を出して運転者の応答を見ることで、運転者の記憶の残存状況が、後述する利用ケース#4より薄れてしまっていることが分かり、早期の通知を行う。
Use case # 3
Unlike the above-mentioned usage case # 2, the usage case # 3 is an example in which the driver correctly recognizes the recognition at the notification stage. Here, in the use case # 3, the automatic operation by the automatic operation level 4 is continued for a long time until the notification of these new events is received at an early stage and the actual corresponding point is reached (point Q 2 ). In this case, it is uncertain whether or not the importance of taking over and the timing of its occurrence are stored in the driver's working memory at the time of receiving the notification. In a situation where a certain amount of time has passed since the first notification by step S73, the memory may be fading. In this case, the system issues a reconfirmation notice (step S77) to the driver and sees the driver's response, so that the remaining state of the driver's memory is less than that of use case # 4, which will be described later. It turns out that it is, and an early notification is given.
 このとき、運転者は、ステップS74で一旦状況変化の認知応答をしているため、残存記憶が皆無ではなく、状況認識(Situation Awareness)に至る時間は、上述した利用ケース#2に比べ短くて済むので、上述の利用ケース#2と、後述する利用ケース43との中間的な時刻での通知となる。 At this time, since the driver has once made a cognitive response to the situation change in step S74, there is no residual memory, and the time to reach the situation awareness (Situation Awareness) is shorter than that of the above-mentioned use case # 2. Therefore, the notification is made at an intermediate time between the above-mentioned use case # 2 and the later-described use case 43.
・利用ケース#4
 利用ケース#4は、運転者が通知を受けて重要性を理解し、運転者に対する再確認の通知(ステップS77)で応答が有り、その記憶がワーキングメモリに保持されている場合の例である。この場合、該当地点に到達するまでに時間が開いていても、該当地点に到達するまでの間に、適宜、運転者が該当地点への接近に伴う状況のチェック(例えば、前方や通知画面に対する指差呼称)を行うことで、運転者のワーキングメモリの記憶がリフレッシュされ、リスク意識が接近と共に高まる。これにより、システムは、この運転者の状態や再確認に対する挙動検出を通して、通知した引継ぎ地点のすぐ手前(地点Q3)でも、運転者は、ワーキングメモリにおける未衰退の残存情報に基づき、正確で的確な引継ぎ復帰が可能となり、結果として品質の良い復帰行動が実現でき、評価が優良加点となる。
Use case # 4
Use case # 4 is an example in which the driver receives a notification, understands the importance, receives a response in the reconfirmation notification (step S77) to the driver, and the memory is held in the working memory. .. In this case, even if there is time to reach the relevant point, the driver can check the situation due to the approach to the relevant point (for example, for the front or the notification screen) as appropriate before reaching the relevant point. By performing pointing and calling), the driver's working memory memory is refreshed, and risk awareness increases as the driver approaches. As a result, the system can accurately detect the driver's condition and behavior for reconfirmation, even immediately before the notified transfer point (point Q3 ), based on the undeclined residual information in the working memory. Accurate takeover return is possible, and as a result, high-quality return action can be realized, and the evaluation is an excellent point.
・利用ケース#5
 利用ケース#5は、ワーキングメモリに対する自動運転利用中のその次の引継ぎ必要情報を受ける際の認知までは、上述した利用ケース#4と同様である。一方、利用ケース#5では、所謂マインドワンダリングにより、ワーキングメモリへの新たな情報の保持と、時間の推移とにより、運転者の意識の他の思考への離脱が進み、運転操縦のループから離れている。この場合、必要なタイミングで復帰するための再確認のタイミングは、人それぞれでその時々の状態で大きく異なる。
Use case # 5
The use case # 5 is the same as the above-mentioned use case # 4 until the recognition when receiving the next transfer necessary information during the automatic operation use for the working memory. On the other hand, in use case # 5, so-called mind wandering causes the driver's consciousness to move away from other thoughts due to the retention of new information in the working memory and the transition of time, and the driver's consciousness breaks out of the loop. is seperated. In this case, the timing of reconfirmation for returning at the required timing differs greatly from person to person.
 利用ケース#5では、システムが、自律神経失調症などを含め個々の運転者の覚醒状態から健康状態など可観測評価指標を活用し、運転者に対するフィードバックを、メリットとペナルティとを継続的に且つ直感的に作用する形態で実施する。システムは、運転者に対して適切な先行リスク、リスクを回避するための選択肢の情報、リスクを回避しなかった場合のリスク影響度の近未来描画可能情報などを繰り返し提示する。これにより、早期の手動運転への復帰と、その復帰に必要な経過観測を行う習慣とが運転者において心理的に強化学習され、引継ぎ地点到達前に状況把握を行う心理を、より確実にワーキングメモリに形成できる。 In use case # 5, the system utilizes observable evaluation indicators such as the awake state and health status of individual drivers, including autonomic imbalance, and provides feedback to the driver continuously with merits and penalties. It is carried out in a form that works intuitively. The system repeatedly presents to the driver appropriate leading risks, information on options for avoiding the risks, and near-future drawable information on the degree of risk impact if the risks are not avoided. As a result, the driver is psychologically strengthened and learned about the early return to manual driving and the habit of performing follow-up observation necessary for the return, and the psychology of grasping the situation before reaching the transfer point is more reliably worked. Can be formed in memory.
 なお、利用ケース#5は、運転者に対する情報の提示と、運転者個人の時々の健康状態と、さらには、システムの繰り返しの利用行動とから、運転者が無意識に自己学習で身に着けた行動特性の評価に基づき、システムがODDとしてNDRAへの関与を許容する範囲を、運転者の優劣に応じて可変通知する例を概念的示したものであり、運転者の行動変容次第で大きく変わり得ることを模式的に示すものである。 In case # 5, the driver unconsciously wears it by self-learning from the presentation of information to the driver, the occasional health condition of the individual driver, and the repeated use behavior of the system. Based on the evaluation of behavioral characteristics, this is a conceptual example of variable notification of the range in which the system allows participation in NDRA as ODD according to the superiority or inferiority of the driver, and it changes greatly depending on the behavioral change of the driver. It is a schematic representation of what is to be obtained.
 以上のように、同じ物理環境としての自動運転レベル4での走行可能区間を元に、情報のアクセシビリティ、その情報の中に包含したリスク情報、さらには、重要度に対する重み付けや回避選択、タイミング情報と、且つ、それら情報に対する対応(応答)状況次第で異なる利用ケースとなる。 As described above, based on the travelable section at automatic driving level 4 as the same physical environment, accessibility of information, risk information included in the information, weighting and avoidance selection for importance, timing information In addition, the usage case will differ depending on the response (response) status to the information.
 HCDに基づく自動運転において、システムが提供するタイムリーな更新情報に人の行動判断の基準となるリスク情報が付加され、利用時の対応次第でペナルティを課され、または優良な対応でメリットを得ること、を運転者は、長期的に繰り返し経験することになる。運転者が自動運転のメリットを享受しながら、過剰依存をすると、その状態利用に対する直感的に描写可能なリスクを、本開示の実施形態に係るHCDを導入することで、実現できる。これにより、運転者は、適切な心地よいNDRAの利点を活用するために、積極的な自動運転から手動運転への復帰に関与し、システムよりリスク情報が恒常的に提供されることで、安心して自動運転途中での情報確認を行いつつ、自動運転の利用のメリットを活用するようなる。このような、運転者への強制的な確認要請ではなく、運転者のNDRAの利用メリットと罰則とのバランスが生み出す、運転者の主体的行動を促すHMIこそがHCDによる制御となる。 In autonomous driving based on HCD, risk information that serves as a standard for human behavior judgment is added to the timely update information provided by the system, and a penalty is imposed depending on the response at the time of use, or a merit is obtained by a good response. That, the driver will experience it repeatedly over the long term. If the driver enjoys the merits of autonomous driving and becomes over-dependent, the risk that can be intuitively described for the use of the state can be realized by introducing the HCD according to the embodiment of the present disclosure. This allows drivers to rest assured that they will be involved in the return from aggressive autonomous driving to manual driving in order to take advantage of the appropriate and comfortable NDRA, and the system will constantly provide risk information. While confirming information during automatic driving, the benefits of using automatic driving will be utilized. The HMI that promotes the driver's independent action, which is created by the balance between the driver's merits of using NDRA and the penalties, is the control by the HCD, instead of such a compulsory confirmation request to the driver.
<3-3-3.実施形態に係る自動運転レベル4の運用例>
 次に、実施形態に係る自動運転レベル4の運用例について説明する。図17Aおよび図17Bは、実施形態に係る自動運転レベル4の運用例を説明するための一例のフローチャートである。なお、図17Aおよび図17Bにおいて、符号「G」は、図17Aおよび図17B内の対応する符号に処理が移行することを示している。
<3-3-3. Operation example of automatic operation level 4 according to the embodiment>
Next, an operation example of the automatic operation level 4 according to the embodiment will be described. 17A and 17B are flowcharts for explaining an operation example of the automatic operation level 4 according to the embodiment. Note that in FIGS. 17A and 17B, the reference numeral "G" indicates that the process shifts to the corresponding reference numerals in FIGS. 17A and 17B.
 図17Aにおいて、ステップS200で、自動運転制御部10112は、LDM初期データ80、運転者個人復帰特性辞書81、RRR82および車両ダイナミクス特性83などの各種情報を取得し、保持する。また、自動運転制御部10112は、更新LDM情報の取得(#1、#2、…)、更新診断情報の取得、更新された他の情報の取得(N)なども行う。 In FIG. 17A, in step S200, the automatic driving control unit 10112 acquires and holds various information such as the LDM initial data 80, the driver personal return characteristic dictionary 81, the RRR 82, and the vehicle dynamics characteristic 83. Further, the automatic operation control unit 10112 also acquires updated LDM information (# 1, # 2, ...), Acquires updated diagnostic information, and acquires other updated information (N).
 次のステップS201で、自動運転制御部10112は、ステップS200で取得された情報に基づき、初期ODDの識別と、自動運転に対する設定の認可を行う。次のステップS202で、自動運転制御部10112は、運転者に対して旅程の提示を行い、運転者にルート等の選択を要求する。また、自動運転制御部10112は、運転者に対して、NDRA可否のルートの選定を要求する。次のステップS203で、運転者により自車の運転が開始される。 In the next step S201, the automatic operation control unit 10112 identifies the initial ODD and approves the setting for the automatic operation based on the information acquired in the step S200. In the next step S202, the automatic driving control unit 10112 presents the itinerary to the driver and requests the driver to select a route or the like. In addition, the automatic driving control unit 10112 requests the driver to select a route for whether or not NDRA is possible. In the next step S203, the driver starts driving the own vehicle.
 次のステップS204で、自動運転制御部10112は、ステップS200で説明した各情報の取得を実施し、旅程開始後の走行に伴う常時情報の更新を行う。また、自動運転制御部10112は、各自動運転レベルでの走行阻害情報などの、到達時間を含めた視覚的表示を行う(図8、図9A~図9C参照)。 In the next step S204, the automatic driving control unit 10112 acquires each information described in step S200, and constantly updates the information accompanying the running after the start of the itinerary. Further, the automatic driving control unit 10112 visually displays the driving inhibition information at each automatic driving level including the arrival time (see FIGS. 8, 9A to 9C).
 次のステップS205で、自動運転制御部10112は、自動運転レベル4による自動運転が認可されたODD区間への進入の有無を判定する。自動運転制御部10112は、自車が当該ODD区間に進入していないと判定した場合(ステップS205、「No」)、処理をステップS204に戻す。一方、自動運転制御部10112は、ステップS205で、自車が当該ODD区間に進入したと判定した場合(ステップS205、「Yes」)、処理をステップS206に移行させる。 In the next step S205, the automatic driving control unit 10112 determines whether or not the vehicle has entered the ODD section where the automatic driving by the automatic driving level 4 is approved. When the automatic driving control unit 10112 determines that the own vehicle has not entered the ODD section (step S205, "No"), the process returns to step S204. On the other hand, when the automatic driving control unit 10112 determines in step S205 that the own vehicle has entered the ODD section (step S205, "Yes"), the process shifts to step S206.
 なお、図17Aおよび図17Bに示すフローチャートでは、一度自動運転走行が可能区間を抜け出て新たなODD利用可能を判断する区間に進入する際に、ステップS204から同じ処理を繰り返す(図示しない)。 In the flowcharts shown in FIGS. 17A and 17B, the same process is repeated from step S204 (not shown) when once exiting the section where automatic driving is possible and entering the section where it is determined that a new ODD is available.
 ステップS206で、自動運転制御部10112は、運転者による自動運転モードの切替え要請の有無を判定する。自動運転制御部10112は、当該切り替え要請が無いと判定した場合(ステップS206、「No」)、処理をステップS204に戻す。一方、自動運転制御部10112は、当該切り替え要請が合ったと判定した場合(ステップS206、「Yes」)、処理をステップS207に移行させる。 In step S206, the automatic driving control unit 10112 determines whether or not the driver has requested to switch the automatic driving mode. When the automatic operation control unit 10112 determines that there is no such switching request (step S206, "No"), the process returns to step S204. On the other hand, when the automatic operation control unit 10112 determines that the switching request is met (step S206, "Yes"), the automatic operation control unit 10112 shifts the process to step S207.
 ステップS207で、自動運転制御部10112は、運転者の手動運転への復帰能力の見込みを判定する。ここで、自動運転制御部10112は、例えば運転者個人復帰特性辞書81に基づき、当該運転者が、積極的に復帰動作を行う優良自動運転利用運転者である場合、自動運転による利点(NDRAなど)の利用を許容する。一方、自動運転制御部10112は、当該運転者が、減点やペナルティが少なくても、薬物依存や睡眠障害の傾向がある場合、自動運転の機能の利用を禁止または制限する。このステップS207の判定処理があることで、多くの運転者は、自動運転中のNDRAのベネフィットを獲得するために、違反利用を避ける自己学習がなされる。 In step S207, the automatic driving control unit 10112 determines the probability of the driver's ability to return to manual driving. Here, the automatic driving control unit 10112 has an advantage due to automatic driving (NDRA, etc.) when the driver is a good automatic driving user driver who positively performs a returning operation based on, for example, the driver's individual return characteristic dictionary 81. ) Is allowed to be used. On the other hand, the automatic driving control unit 10112 prohibits or limits the use of the automatic driving function when the driver is prone to drug dependence or sleep disorder even if the deduction or penalty is small. With the determination process in step S207, many drivers are self-learning to avoid violations in order to obtain the benefits of NDRA during autonomous driving.
 走行ルートに許容される利用は、自動運転の利用を許容する場合であっても常に自動運転レベル4による自動運転の利用を提供できる環境とは限らない。上述したように、運転者に復帰能力が備わった条件が担保された条件でなら、自動運転レベル3までは自動運転や高度な支援が利用が許可される条件もある。その場合は、このステップS207の判定処理は、運転者の自動運転レベル3(Level3)での自動運転の利用判定であるといえる。実施形態に係る自動運転レベル3の運用等については、後述する。 The usage permitted for the driving route is not always the environment in which the use of automatic driving according to the automatic driving level 4 can be provided even if the use of automatic driving is permitted. As described above, if the condition that the driver has the ability to return is guaranteed, there is also a condition that the use of automatic driving and advanced support is permitted up to the automatic driving level 3. In that case, it can be said that the determination process in step S207 is the determination of the use of automatic driving at the driver's automatic driving level 3 (Level 3). The operation and the like of the automatic operation level 3 according to the embodiment will be described later.
 自動運転制御部10112は、運転者の手動運転への復帰能力に見込みがあると判定した場合(ステップS207、「OK」)、図中の符号「G」に従い、処理を図17Bのフローチャートに移行させる。一方、自動運転制御部10112は、当該復帰能力に見込みが無いと判定した場合(ステップS207、「NG」)、処理をステップS208に移行させる。 When the automatic driving control unit 10112 determines that the driver's ability to return to manual driving is promising (step S207, "OK"), the process shifts to the flowchart of FIG. 17B according to the reference numeral "G" in the figure. Let me. On the other hand, when the automatic operation control unit 10112 determines that the return capability is unlikely (step S207, "NG"), the automatic operation control unit 10112 shifts the process to step S208.
 なお、自動運転の利用形態において、遠隔運転支援や先導誘導車両支援等と組み合わせて利用する場合については、運転者の手動運転への復帰能力を確認する判定は必須ではなく別の判定処理が行われることになり、本実施形態の例で示す処理には含まれていない。 In addition, in the usage form of automatic driving, when using in combination with remote driving support, leading guidance vehicle support, etc., the judgment to confirm the driver's ability to return to manual driving is not essential, and another judgment processing is performed. Therefore, it is not included in the process shown in the example of the present embodiment.
 ステップS208で、自動運転制御部10112は、運転者に対して、理由付きで、自動運転の利用の不許可通知を提示する。この場合の運転者に提示される理由としては、例えば、運転者の疲労、眠気、過去履歴に過剰依存違反の累計加算値が所定以上である、運転者の罰則履歴などが考えられる。自動運転のベネフィットを得たい運転者は、不許可通知を理由付きでシステムから提示されることで、改善学習や限定回数の優良ブースト許可要求(後述する)などで、行動改善学習がなされることが期待される。 In step S208, the automatic driving control unit 10112 presents the driver with a notice of disapproval of the use of automatic driving with a reason. Reasons presented to the driver in this case may be, for example, driver fatigue, drowsiness, a driver's penalty history in which the cumulative addition value of overdependence violations in the past history is equal to or higher than a predetermined value. Drivers who want to get the benefits of autonomous driving can learn to improve their behavior by presenting a disapproval notice from the system with a reason, such as improvement learning and a limited number of excellent boost permission requests (described later). There is expected.
 ステップS208での処理の後、処理がステップS204に戻される。ここで、走行を続ける中で、自動運転機能の利用に対する条件に適した道路区間を走行する場合や、当初の条件が運転者の対処意識の改善で利用が許可される条件に代わることもある。そのため、システムは、ステップS204~ステップS208の処理をループして、継続的に運転者などの状態をモニタリングする。 After the processing in step S208, the processing is returned to step S204. Here, while driving, there are cases where the vehicle is driven on a road section suitable for the conditions for using the automatic driving function, or the initial conditions are replaced with the conditions where the use is permitted by improving the driver's awareness of coping. .. Therefore, the system loops the processes of steps S204 to S208 and continuously monitors the state of the driver and the like.
 説明は図17Bのフローチャートに移り、符号「G」に従い、すなわち、運転者が自動運転レベル4の自動運転での走行を選択すると、ステップS220で、自動運転制御部10112は、旅程開始後の最新情報の更新を行う。自動運転レベル4の自動運転が許容されるODD区間に進入した後は、その条件が変わらない限りにおいては、そのまま継続して自動運転レベル4の自動運転を利用して走行できる。図17Bのフローチャートにおいて、ステップS220は、その定常状態においてモニタリングをした状態、つまり走行に伴う最新の情報更新を行うループ処理を示している。 The explanation moves to the flowchart of FIG. 17B, and according to the reference numeral "G", that is, when the driver selects to drive in the automatic driving of the automatic driving level 4, in step S220, the automatic driving control unit 10112 is the latest after the start of the itinerary. Update the information. After entering the ODD section where the automatic driving of the automatic driving level 4 is permitted, as long as the conditions do not change, the driving can be continued as it is by using the automatic driving of the automatic driving level 4. In the flowchart of FIG. 17B, step S220 shows a state in which monitoring is performed in the steady state, that is, a loop process for updating the latest information accompanying traveling.
 ステップS220においてルートに沿った何かしらの状況変化を検出するか、ODDの終了地点に接近すると、自動運転制御部10112は、処理をステップS221に移行させる。 When some change in the situation along the route is detected in step S220 or the end point of the ODD is approached, the automatic operation control unit 10112 shifts the process to step S221.
 ステップS221で、自動運転制御部10112は、継続的な自動運転走行に不可欠な最新ルートに関連する情報の更新の有無を判定する。自動運転制御部10112は、当該情報の更新が無いと判定した場合(ステップS221、「No」)、処理をステップS226に移行させる。 In step S221, the automatic driving control unit 10112 determines whether or not information related to the latest route, which is indispensable for continuous automatic driving driving, is updated. When the automatic operation control unit 10112 determines that the information has not been updated (step S221, “No”), the automatic operation control unit 10112 shifts the process to step S226.
 ステップS226で、自動運転制御部10112は、自動運転区間(NDRA利用区間)の終了の接近に伴う予定通りの安全な引継ぎシーケンスの実行を開始する。そして、引継ぎシーケンスが実行される。 In step S226, the automatic operation control unit 10112 starts executing a safe takeover sequence as scheduled due to the approaching end of the automatic operation section (NDRA use section). Then, the takeover sequence is executed.
 ここで、自動運転制御部10112は、優良運転者、例えばシステムによる復帰要請に忠実であり、恒常的に復帰要請を軽視せず、旅程途中のステータス変更の確認を行う運転者に対して、評価値を加点する。また、自動運転制御部10112は、優良運転者に対して、次回の自動運転モードへの切り替え選択を、多重認証など複雑な確認承認手続きを経ずに許可する。優良運転者は、また、優先的に自動運転レベル4の自動運転の利用案内を受けることできる。このように、優良運転者は、様々なメリットを受けることができる。 Here, the automatic driving control unit 10112 evaluates a good driver, for example, a driver who is faithful to the return request by the system, does not constantly neglect the return request, and confirms the status change during the itinerary. Add points to the value. Further, the automatic driving control unit 10112 permits the excellent driver to select the next automatic driving mode without going through complicated confirmation approval procedures such as multiple authentication. The excellent driver can also preferentially receive the usage guidance of the automatic driving of the automatic driving level 4. In this way, a good driver can receive various merits.
 このような、運転者が最良の確認行動をとるためのHCDを実現する際に不可欠なことが、これらの確認判断や的確な行動を引き起こす判断に必要な「記憶」を、運転者がシステムより取り込む過程であり、システムがHMIに提供する情報の「質」である。例えば、図9Cに例示した、いつ、何が、その対策として何をすればどのような影響を引き起こすか等の情報、つまりワーキングメモリに働きかけることになる。 In order to realize HCD for the driver to take the best confirmation action, the driver has the "memory" necessary for making these confirmation judgments and judgments that cause accurate behaviors from the system. It is the process of capturing and is the "quality" of the information that the system provides to the HMI. For example, it works on the information such as when, what, what should be done and what kind of effect is caused, that is, the working memory, which is exemplified in FIG. 9C.
 なお、ステップS226での安全な引継ぎシーケンスにおける運転者の復帰行動は、その品質を評価して復帰行動データとして取得され、保存される。この復帰行動データは、運転者に対しての評価点に影響する。 The driver's return behavior in the safe takeover sequence in step S226 is evaluated for its quality, acquired as return behavior data, and stored. This return behavior data affects the evaluation points for the driver.
 一方、自動運転制御部10112は、ステップS221で当該情報の更新があると判定した場合(ステップS221、「Yes」)、処理をステップS222a、ステップS222bおよびステップS223に移行させる。 On the other hand, when the automatic operation control unit 10112 determines in step S221 that the information is updated (step S221, "Yes"), the process shifts to step S222a, step S222b, and step S223.
 ステップS221における、当該情報の更新があると判定した場合(ステップS221、「Yes」)の分岐は、ODDの区間進入時における許容ODD条件が、走行途中の急な天候悪化や、車両の不具合や、荷崩れなど予測想定外に事象が発生した際の対処を想定している。このような想定外の事象の発生が判明した場合、当該事象に対処が求められる猶予時間に応じた対策が必要となる。図17Bのフローチャートは、実施形態に適用可能な、この対策に係る一連の処理の例を示している。異常時の運転者の事象対処行動の品質も、運転者の適切なリスク判断行動により運転者が習得するものであり、運転者に適切な行動変容を生む重要な要素となる。 In step S221, when it is determined that the information is updated (step S221, "Yes"), the allowable ODD condition at the time of entering the section of ODD is a sudden deterioration of the weather during traveling, a malfunction of the vehicle, or the like. , It is assumed that measures will be taken when an unexpected event such as a load collapse occurs. When the occurrence of such an unexpected event is found, it is necessary to take measures according to the grace period required to deal with the event. The flowchart of FIG. 17B shows an example of a series of processes related to this measure applicable to the embodiment. The quality of the driver's event coping behavior at the time of an abnormality is also learned by the driver through the driver's appropriate risk judgment behavior, and is an important factor for producing an appropriate behavior change for the driver.
 ステップS222aで、自動運転制御部10112は、通知認知に対する応答判断を含む運転者の状態をモニタリングし、モニタリング結果に基づき、手動運転への復帰に要する遅延時間の推定値を求め、既存の推定値を更新する。また、ステップS222bで、自動運転制御部10112は、道路に対するRRR情報の更新を行い、この更新から、MRMの利用許容限界の見直しの演算を行う。 In step S222a, the automatic driving control unit 10112 monitors the driver's condition including the response judgment to the notification recognition, obtains an estimated value of the delay time required for returning to the manual driving based on the monitoring result, and obtains an estimated value of the existing estimated value. To update. Further, in step S222b, the automatic driving control unit 10112 updates the RRR information for the road, and from this update, calculates the review of the usage allowance limit of the MRM.
 ステップS223で、自動運転制御部10112は、ステップS221で更新ありと判定された情報、ステップS222aおよびS222bで更新、取得した各情報、自己診断情報などに基づき、見直しODD算出の表示を行う。また、自動運転制御部10112は、この表示に対する運転者の応答を確認する。 In step S223, the automatic operation control unit 10112 displays the review ODD calculation based on the information determined to be updated in step S221, the updated and acquired information in steps S222a and S222b, the self-diagnosis information, and the like. Further, the automatic driving control unit 10112 confirms the driver's response to this display.
 次のステップS224で、自動運転制御部10112は、自動運転レベル4に係るODD区間終了までの予測到達時間TL4ODDENDと、手動運転への復帰遅延の予測時間TMDRを算出する。そして、次のステップS225で、自動運転制御部10112は、算出した予測到達時間TL4ODDENDと予測時間TMDRとが、[TL4ODDEND>TMDR+α]の関係を満たすか否かを判定する。なお、値αは、引継ぎ開始必要ポイントまでのマージン時間である。 In the next step S224, the automatic driving control unit 10112 calculates the predicted arrival time T L4ODDEND until the end of the ODD section related to the automatic driving level 4 and the predicted time T MDR of the return delay to the manual driving. Then, in the next step S225, the automatic operation control unit 10112 determines whether or not the calculated predicted arrival time T L4ODDEND and the predicted time T MDR satisfy the relationship of [ TL4ODDEND > T MDR + α]. The value α is the margin time to the point required to start taking over.
 自動運転制御部10112は、ステップS225で、[TL4ODDEND>TMDR+α]の関係を満たさないと判定した場合(ステップS225、「No」)、処理をステップS226に移行させる。 When the automatic operation control unit 10112 determines in step S225 that the relationship of [ TL4ODDEND > TMDR + α] is not satisfied (step S225, “No”), the process shifts to step S226.
 一方、自動運転制御部10112は、ステップS225で、[TL4ODDEND>TMDR+α]の関係を満たすと判定した場合(ステップS225、「Yes」)、処理を次のステップS227に移行させる。 On the other hand, when the automatic operation control unit 10112 determines in step S225 that the relationship of [ TL4ODDEND > TMDR + α] is satisfied (step S225, “Yes”), the process shifts to the next step S227.
 ステップS227で、自動運転制御部10112は、運転手の状態のモニタリング結果に基づき、運転者が運転から大きく離脱しているか否かを判定する。自動運転制御部10112は、運転者が運転から大きく離脱していないと判定した場合(ステップS227、「No」)、処理をステップS220に戻す。この場合は、運転者が運転から大きく外れてはおらず、システムからの通知に対して応答が期待できる状態にある。 In step S227, the automatic driving control unit 10112 determines whether or not the driver has largely left the driving based on the monitoring result of the driver's condition. When the automatic operation control unit 10112 determines that the driver has not largely departed from the operation (step S227, “No”), the process returns to step S220. In this case, the driver has not deviated significantly from the driving and can expect a response to the notification from the system.
 一方、自動運転制御部10112は、ステップS227で運転者が運転から大きく離脱していると判定した場合(ステップS227、「Yes」)、処理をステップS228に移行させる。 On the other hand, when the automatic operation control unit 10112 determines in step S227 that the driver has largely left the operation (step S227, "Yes"), the process shifts to step S228.
 ステップS228で、自動運転制御部10112は、高い復帰成功率が求められる区間がその先にあるか否かを判定する。自動運転制御部10112は、当該区間が無いと判定した場合(ステップS228、「No」)、処理をステップS220に戻す。この場合、例えばMRMなどにより自車を急停車させた場合であっても周辺車両などへの影響が極めて少ない状況が、この先マージンαの期間、続くことを意味する。 In step S228, the automatic operation control unit 10112 determines whether or not there is a section beyond which a high return success rate is required. When the automatic operation control unit 10112 determines that the section does not exist (step S228, “No”), the process returns to step S220. In this case, it means that even if the own vehicle is suddenly stopped by, for example, MRM, the situation in which the influence on the surrounding vehicles and the like is extremely small continues for the period of the margin α in the future.
 一方、自動運転制御部10112は、当該区間が有ると判定した場合(ステップS228、「Yes」)、処理をステップS229に移行させる。 On the other hand, when the automatic operation control unit 10112 determines that the section exists (step S228, "Yes"), the automatic operation control unit 10112 shifts the process to step S229.
 ステップS229で、自動運転制御部10112は、途中待避所や待機プールエリアなど、未だ回避策が引継ぎ開始ポイントまでの途中に有るか否かを判定する。自動運転制御部10112は、回避策が有ると判定した場合(ステップS229、「Yes」)、処理をステップS220に戻す。 In step S229, the automatic operation control unit 10112 determines whether or not there is still a workaround such as a runaway slope or a waiting pool area on the way to the takeover start point. When the automatic operation control unit 10112 determines that there is a workaround (step S229, “Yes”), the process returns to step S220.
 一方、自動運転制御部10112は、回避策が無いと判定した場合(ステップS229、「No」)、処理をステップS230に移行させる。この場合、自車がそのまま走行すると、退避手段が絶たれ、MRMが発動される可能性が高く、後続車への通行妨害や追突事故を誘発するリスクがある。 On the other hand, when the automatic operation control unit 10112 determines that there is no workaround (step S229, "No"), the process shifts to step S230. In this case, if the own vehicle travels as it is, there is a high possibility that the evacuation means will be cut off and the MRM will be activated, and there is a risk of inducing traffic obstruction to the following vehicle or a rear-end collision.
 ステップS230で、自動運転制御部10112は、自動運転から手動運転への復帰引継ぎ必須地点の接近を運転者に通知し、運転者による、この通知を認可する応答の検出を行う。次のステップS231で、自動運転制御部10112は、引継ぎまで残存時間があるか否かを判定する。自動運転制御部10112は、当該残存時間が無いと判定した場合(ステップS231、「No」)、処理をMRM実行のシーケンスに移行させる。 In step S230, the automatic driving control unit 10112 notifies the driver of the approach of the essential point for returning from the automatic driving to the manual driving, and detects the response by the driver to approve this notification. In the next step S231, the automatic operation control unit 10112 determines whether or not there is a remaining time until the takeover. When the automatic operation control unit 10112 determines that there is no remaining time (step S231, “No”), the automatic operation control unit 10112 shifts the processing to the sequence of MRM execution.
 一方、自動運転制御部10112は、当該残存時間が有ると判定した場合(ステップS231、「Yes」)、処理をステップS232に移行させ、運転者による許容時間内での手動運転への復帰を試行する。なお、この場合、RRR以上の成功率は期待できない。次のステップS233で、自動運転制御部10112は、ステップS232で試行された引継ぎが限界前に成功したか否かを判定する。自動運転制御部10112は、当該引継ぎが成功したと判定した場合(ステップS233、「Yes」)、進入した自動運転利用の1区間の利用が完了したとする。一方、自動運転制御部10112は、当該引継ぎが失敗したと判定した場合(ステップS233、「No」)、処理をMRM実行のシーケンスに移行させる。 On the other hand, when the automatic operation control unit 10112 determines that the remaining time is present (step S231, "Yes"), the process shifts to step S232 and attempts to return to manual operation within the allowable time by the driver. do. In this case, a success rate higher than RRR cannot be expected. In the next step S233, the automatic operation control unit 10112 determines whether or not the takeover attempted in step S232 succeeded before the limit. When the automatic driving control unit 10112 determines that the transfer is successful (step S233, "Yes"), it is assumed that the use of one section of the entered automatic driving use is completed. On the other hand, when the automatic operation control unit 10112 determines that the takeover has failed (step S233, "No"), the automatic operation control unit 10112 shifts the processing to the MRM execution sequence.
 なお、ステップS231またはステップS233からのMRM実行のシーケンスの移行、および、ステップS233からの1区間の利用終了への移行の際の運転者の復帰行動は、復帰行動データとして取得され、保存される。この復帰行動データは、運転者に対しての評価点に影響する。 The driver's return behavior at the time of the transition of the MRM execution sequence from step S231 or step S233 and the transition from step S233 to the end of use of one section is acquired and saved as return behavior data. .. This return behavior data affects the evaluation points for the driver.
 なお、上述では、図17Bにおける各判定処理、例えばステップS225~ステップS229の判定処理を、時系列的に順次処理として行うようにとして示しているが、これはこの例に限定されない。例えば、ステップS225~ステップS229の各処理を時系列的に並行して実行してそれぞれ運転者の復帰可否判定を行い、ステップS225~ステップS229の各判断のうち少なくとも1つが復帰を望めない旨の判定結果の場合に、直接的にMRM実行シーケンスに処理を移行させてもよい。飛んでもよい。 In the above description, each determination process in FIG. 17B, for example, the determination process of steps S225 to S229 is shown to be performed as a sequential process in chronological order, but this is not limited to this example. For example, the processes of steps S225 to S229 are executed in parallel in chronological order to determine whether or not the driver can return, and at least one of the determinations of steps S225 to S229 cannot be expected to return. In the case of the determination result, the process may be directly transferred to the MRM execution sequence. You may fly.
<3-4.自動運転レベル3に対するHCDの適用例>
 次に、実施形態に係る、自動運転レベル3に対するHCDの適用例について説明する。
<3-4. Application example of HCD for automatic operation level 3>
Next, an example of applying the HCD to the automatic operation level 3 according to the embodiment will be described.
 自動運転レベル3は、運転者が常に異常時の対応ができるモードと定められている。そのため、自動運転レベル3で車両が社会秩序を乱さずに安全に走行をこなすためには、運転者は、自動運転レベル3で車両を利用する間に、常に素早く手動運転に復帰できるように、走行道路環境の状況の事前の注意と、手動運転に復帰できる自身の姿勢、体勢を整えておく必要がある。換言すると、運転者にこれらの状況を期待できない状態では、最早、自動運転レベル3で車両を利用することが妥当とはいえなくなる。すなわち、この場合、運転者の状態を考慮すると、自動運転レベル3で走行が可能と言い難い。 Automatic driving level 3 is defined as a mode in which the driver can always respond to abnormal situations. Therefore, in order for the vehicle to drive safely without disturbing the social order at the automatic driving level 3, the driver can always quickly return to the manual driving while using the vehicle at the automatic driving level 3. It is necessary to pay attention to the condition of the driving road environment in advance and to prepare the posture and posture to return to manual driving. In other words, if the driver cannot expect these situations, it is no longer appropriate to use the vehicle at autonomous driving level 3. That is, in this case, considering the state of the driver, it is hard to say that the vehicle can be driven at the automatic driving level 3.
 つまり、少なくとも実施形態に係る自動運転レベル3の定義で扱う自動運転レベル3のODDとは、これらの条件が整った上で利用が可能な運行設計領域となる。この場合の自動運転レベル3のODDは、運転者の現状の状態の下で走行を続けたその先の状況でも運転者が対処が可能と見込める範囲までが、自動運転レベル3に該当する運行設計領域の限界となる。 That is, at least the ODD of the automatic operation level 3 handled in the definition of the automatic operation level 3 according to the embodiment is an operation design area that can be used after these conditions are satisfied. In this case, the ODD of automatic driving level 3 corresponds to the automatic driving level 3 up to the range where the driver can be expected to deal with the situation after continuing to drive under the current state of the driver. It becomes the limit of the area.
 換言すると、自動運転レベル3の利用可能なODDは、運転者の運転に介在しない長期の運転操舵作業からの離脱が行われると、運転者の注意離脱や運転に必要な継続的な周辺環境の情報を収集する情報収集能力低下に繋がり、自動運転から手動運転への緊急の引継ぎに対する対処行動が困難になる。 In other words, the available ODDs of autonomous driving level 3 will leave the driver's attention and the continuous surrounding environment necessary for driving when the driver is withdrawn from long-term driving steering work that does not intervene in the driving. This will lead to a decline in the ability to collect information, and it will be difficult to take action to deal with an urgent transfer from automatic driving to manual driving.
 運転者は、自身に運転責任があると、状況を知覚、認知および判断するために必要な情報を、継続的に収集し続ける。その理由は、行動判断にはその選択行動動作に伴う近未来の予測性が求められるためであり、その予測性をより確かな状態に確保するために、運転者は、継続的な手動運転では多くの情報を収集し続ける。ここで収集される情報としては、例えば、前走車両の振る舞いのみならず、自車の積載貨物、前走車のさらに先の道路状況、渋滞の有無、道路標識による区間注意喚起などの、手動運転への復帰要請の通知後の、瞬間的には得られない多くの情報を含む。 The driver continuously collects the information necessary to perceive, recognize and judge the situation when he / she is responsible for driving. The reason is that action judgment requires predictability in the near future associated with the selected action action, and in order to ensure the predictability in a more reliable state, the driver should use continuous manual driving. Continue to collect a lot of information. The information collected here includes not only the behavior of the vehicle in front, but also the cargo loaded by the vehicle, the road conditions further ahead of the vehicle in front, the presence or absence of traffic congestion, and the manual warning of the section by road signs. It contains a lot of information that cannot be obtained instantaneously after notification of a request to return to driving.
 これら判断に本来必要で手動運転なら無意識に取得している情報が、自動運転レベル3の自動運転機能を利用して周囲監視注意を中断した段階から、ワーキングメモリにおいて次第に薄らぎ、または更新されなくなる。 The information that is originally necessary for these judgments and is unknowingly acquired in the case of manual driving is gradually diminished or not updated in the working memory from the stage when the surrounding monitoring attention is interrupted by using the automatic driving function of automatic driving level 3.
 そこで、実施形態では、運転者固有の思考特性や状態がどの程度の期間、持続的に手動運転の注意状態に近い周辺環境把握や自車両ステータスを把握しているかに応じて、自動運転レベル3での走行を制限してODDを定める。車両のODD設計は、車両の環境認識性能、走行ルートの事前情報取得、自車の自己診断結果に加えて、運転者の現状の状態や将来の予測推定も考慮に入れた上で決定する。 Therefore, in the embodiment, the automatic driving level 3 is determined according to how long the driver's unique thinking characteristics and states are continuously grasping the surrounding environment and the own vehicle status close to the caution state of manual driving. The ODD is set by limiting the driving in. The ODD design of the vehicle is determined by taking into consideration the driver's current state and future prediction estimation in addition to the vehicle's environmental recognition performance, acquisition of prior information on the driving route, and the self-diagnosis result of the own vehicle.
 HCDの視点で見ると、運転者が、実際の運転操舵(手動運転)に介在しないまま直ぐに運転操舵を引き継げるための、継続的な周辺情報の把握を行うことは困難である。自動運転では、走行中の多くの時間で運転以外に思考が割り当てられることになると考えられ、ワーキングメモリからは、短期の手動運転への引継ぎに必要となる、安全操舵に必須となる周辺環境想定情報や自車の特性(変化等)情報、さらには自身の運転操舵中である自覚すらも記憶が薄れ遠のいてしまうリスクが高まる。 From the viewpoint of HCD, it is difficult for the driver to continuously grasp the peripheral information so that the driver can immediately take over the driving steering without intervening in the actual driving steering (manual driving). In autonomous driving, it is thought that thinking will be assigned to other than driving during many hours of driving, and from the working memory, the surrounding environment assumption that is essential for safe steering, which is necessary for handing over to short-term manual driving, is assumed. There is an increased risk that the memory of the information, the characteristics (changes, etc.) of the own vehicle, and even the awareness that the driver is driving and steering will fade away.
 そこで、実施形態に係る、HCDに基づくこの自動運転レベル3を定めるODDとは、システムの性能限界や道路の整備状況、道路の事前情報などから設計として定められた既存のODDとは異なるものとなる。すなわち、運転者の覚醒状態、継続的な周辺状況把握の履歴などから、運転者が自動運転から手動運転に引継ぎ要請を受けても対処が見込める区間が定められる。この区間内で、さらにシステムの性能限界や道路の整備状況、道路の事前情報などから設計として定められた範囲を、その運転者の今の状況把握・対処能力で許容される自動運転レベル3の走行可能領域とする。 Therefore, the ODD that defines this automatic driving level 3 based on the HCD according to the embodiment is different from the existing ODD defined as a design based on the performance limit of the system, the maintenance status of the road, the prior information of the road, and the like. Become. That is, a section that can be expected to be dealt with even if the driver receives a request to take over from automatic driving to manual driving is determined from the driver's awakening state and the history of continuous grasp of the surrounding situation. Within this section, the range defined as a design from the system performance limit, road maintenance status, road advance information, etc., is the automatic driving level 3 that is allowed by the driver's current situation grasping and coping ability. It is a travelable area.
 ここで、自動運転レベル3の区間の延長について説明する。運転者が自身の状態に応じて、その状態で復帰が期待できる短期間の自動運転レベル3利用を許可し、状況把握をした上でシステムに対して延長申請を行い、自動運転レベル3を断続的に利用する形態が想定される。 Here, the extension of the section of automatic driving level 3 will be explained. Depending on the driver's own condition, the driver is allowed to use the automatic driving level 3 for a short period of time, which can be expected to return in that state, and after grasping the situation, an extension application is made to the system, and the automatic driving level 3 is interrupted. It is assumed that it will be used in a similar manner.
 図18Aは、自車にて道路70を走行中の運転者が、自動運転レベル3の区間を延長する様子を模式的に示す図である。この例では、運転者は、条件付きで自動運転レベル3(Level3)の自動運転の利用が可能な区間において、短期間の自動運転レベル3による自動運転を、延長申請により繰り返し実行している様子が示されている。すなわち、運転者は、短期間の自動運転レベル3による自動運転を行い、期間が終了する時点で延長を申請し、さらに短期間の自動運転レベル3による自動運転を行う。図の例では、運転者がこの行為を繰り返している。 FIG. 18A is a diagram schematically showing how a driver traveling on a road 70 with his / her own vehicle extends a section of automatic driving level 3. In this example, the driver repeatedly executes short-term automatic driving by automatic driving level 3 by an extension application in a section where automatic driving of automatic driving level 3 (Level 3) can be used conditionally. It is shown. That is, the driver performs automatic driving according to the short-term automatic driving level 3, applies for an extension at the end of the period, and further performs automatic driving according to the short-term automatic driving level 3. In the example in the figure, the driver repeats this action.
 ここで、システムは、運転者による単純な延長リクエストの例えばボタン操作だけで延長を許可しているため、運転者においては、実際の継続的な安全性の確認に必要な注意や、引継ぎに必要な前方の状況把握に必要な前提情報がワーキングメモリに取り込まれない。そのため、運転者のワーキングメモリにおいて予測情報が薄れてしまうまま、システムが延長を許可するおそれが積み重なる。 Here, since the system allows the extension by a simple extension request by the driver, for example, by operating a button, the driver needs to be careful about the actual continuous safety confirmation and take over. Prerequisite information necessary for grasping the situation ahead is not taken into the working memory. Therefore, there is a possibility that the system may allow the extension while the prediction information is faded in the driver's working memory.
 例えば、システムは、ボタン操作などによる延長リクエストと併せて、運転者による道路前方に対する指差呼称などの確認の挙動を検出する。これにより、状況把握とその結果責任について、システムと運転者との間で「再契約」の合意がなされ、運転者に対し、責任意識すなわち復帰の必要性の記憶を、再度、ワーキングメモリに取り込ませることが可能となる。 For example, the system detects the behavior of confirmation such as pointing and calling by the driver to the front of the road together with the extension request by button operation or the like. As a result, a "re-contract" agreement is reached between the system and the driver regarding the situation grasp and the responsibility as a result, and the driver is re-incorporated into the working memory with a sense of responsibility, that is, a memory of the need for return. It will be possible to make it.
 自動運転レベル3の自動運転の利用を許可した場合に課題となるのが、運転者がその利用の間に適切な復帰体制や姿勢、覚醒状態にあるか否か、さらには運転者が継続的な前方注意義務を履行していたか否かにある。ここで、人間工学的な側面で見ると、それら本来の義務を怠っても罰則等が無く、リスクを受ける可能性があるだけでは、慎重ではない運転者の場合、これら義務等が必ずしも守られない。 When permitting the use of autonomous driving at level 3 of autonomous driving, the issues are whether or not the driver is in an appropriate return system, posture, and awake state during the use, and the driver is continuously. It depends on whether or not he has fulfilled his duty of due care. From an ergonomic point of view, there are no penalties for neglecting those original obligations, and if the driver is not careful just because he / she may be at risk, these obligations are not necessarily obeyed. do not have.
 既に、これらの違反を伴う自動運転の利用が発生することが社会的に知られており、これを放置することが看過されてはならない。つまり、これらの状態推移が記録され、法的罰則として見逃されない事項としてのフィードバックループが形成されると、運転者は、事故そのもののリスクを避けるための注意義務を履行する間隔とは別に、より直感的に被る罰則の対象とされる違反状態として運転者の意識に記録保存される「仮想の痛み」を、感覚的に受けることになる。 It is already socially known that the use of autonomous driving with these violations will occur, and it should not be overlooked if this is left unattended. In other words, when these state transitions are recorded and a feedback loop is formed as a matter not to be overlooked as a legal penalty, the driver is separated from the interval of fulfilling the duty of care to avoid the risk of the accident itself. You will be sensuously affected by the "virtual pain" that is recorded and saved in the driver's consciousness as a violation state that is subject to more intuitive penalties.
 速度違反の監視や取り締まりが行われる道路で速度違反が少ないのは、運転者が取り締まりに遭うことを、直近リスクとして近未来投影した行動判断の心理が働くためであり、同じ罰則が導入されても、違反は、取り締まりという「より身近で現実味のある」監視等があるため予防心理が増し、行動心理的には同じ効果を与えることができる。 The reason why there are few speed violations on roads where speed violations are monitored and cracked down is that the psychology of behavioral judgment that projects the driver's crackdown as a recent risk works, and the same penalties have been introduced. However, violations have the same effect in terms of behavioral psychology as they increase preventive psychology because there is "more familiar and realistic" monitoring such as crackdown.
 この運転者の行動における違反状態の記録は、サイレント記録にすること、つまり運転者に意識をさせずにシャドーモードで記録をすることも可能である。しかしながら、この場合においても、人間工学な視点で、敢えて視覚的、聴覚的、触覚的、嗅覚的といった体感型の記録が行われることが望ましい。つまり、運転者は、体感型な違反状態を繰り返し受けることで、運転者のワーキングメモリにおける、違反状態に接近する際の情報が、よりリスクを避けるための行動判断の優先度の高い状態になるように、脳の状況把握が発達するからである。このリスクが運転者に感覚として可視化されるか、可視化されない状態であるかによって、運転者の行動心理に対して異なる作用を及ぼす。 It is also possible to record the violation state in the driver's behavior as a silent record, that is, to record in the shadow mode without making the driver aware. However, even in this case as well, it is desirable to intentionally perform sensational recording such as visual, auditory, tactile, and olfactory from an ergonomic point of view. In other words, by repeatedly receiving the perceived violation state, the information in the driver's working memory when approaching the violation state becomes a state in which the priority of the action judgment for avoiding the risk is higher. This is because the understanding of the state of the brain develops. Depending on whether this risk is visible to the driver as a sensation or not, it has a different effect on the driver's behavioral psychology.
 これら判断に影響を及ぼす知覚フィードバックが、HCDに基づく直近未来のリスクを示すHMIとして働き、その心理的効果は、法整備などによる罰則強化の導入のみでは得られない、運転者の直感的未来に対する動作行動に影響として反映される。HMIのフィードバックの手段が複数手段あると、例えば言葉による情報の伝達が困難な場合であっても、リスク情報が視覚野に直接的に作用するなど、脳でのリスクに対する情報が、多様な刺激を通してより危険の見落とし確率を下げて危険を避ける仕組みに進化させることができる。近未来のリスクに対して、そのリスクを見落とさずに回避する脳や身体の仕組みは、個人差こそあれ、全ての運転者が有するものである。 The perceptual feedback that influences these judgments acts as an HMI that indicates the risks of the near future based on HCD, and its psychological effect is on the driver's intuitive future, which cannot be obtained only by introducing stricter penalties such as legislation. It is reflected as an influence on the movement behavior. When there are multiple means of HMI feedback, information on risks in the brain is a variety of stimuli, such as risk information acting directly on the visual cortex, even when it is difficult to convey information in words. Through this, it is possible to evolve into a mechanism that avoids danger by lowering the probability of overlooking danger. All drivers have the mechanism of the brain and body to avoid risks in the near future without overlooking them, although there are individual differences.
 図18Bは、実施形態に係る、図18Aに示した条件付き自動運転レベル3利用可能区間における処理を示す一例のフローチャートである。ステップS300で自車が自動運転レベル3(Level3)による自動運転の利用区間に進入すると、自動運転制御部10112は、自車の運転者の復帰特性を過去の情報に基づき学習した運転者個人復帰特性辞書81を参照し、ステップS301で、運転者の常時監視を開始し、運転者の覚醒度、注意度を指標化する。 FIG. 18B is an example flowchart showing the processing in the conditional automatic operation level 3 available section shown in FIG. 18A according to the embodiment. When the own vehicle enters the section where the automatic driving is used according to the automatic driving level 3 (Level 3) in step S300, the automatic driving control unit 10112 learns the return characteristics of the driver of the own vehicle based on the past information. With reference to the characteristic dictionary 81, in step S301, the driver is constantly monitored, and the driver's arousal level and attention level are indexed.
 なお、運転者個人復帰特性辞書81は、例えば、後述する運転者の身体モデルおよび頭部モデルを含むことができ、運転者が自動運転から手動運転に復帰する際の身体の各部、頭部、眼、などの所要時間を含む動作を示す情報を含むことができる。 The driver's individual return characteristic dictionary 81 can include, for example, a driver's body model and a head model described later, and each part of the body, the head, when the driver returns from automatic driving to manual driving. It can contain information indicating an action including the time required for the eyes, etc.
 ステップS301での指標化は、例えば、運転者の過去の復帰可能な注意の持続時間に基づき検出された、運転者の覚醒状態、疲労蓄積状態、心理的負担度合いから許容される、自動運転レベル3による自動運転の利用の最大時間を予測し、この最大時間を、運転者の覚醒度、注意度の指標とする。 The indexing in step S301 is, for example, an automatic driving level that is permissible from the driver's arousal state, fatigue accumulation state, and psychological burden level detected based on the driver's past recoverable attention duration. The maximum time for using the automatic driving according to 3 is predicted, and this maximum time is used as an index of the driver's arousal level and attention level.
 次のステップS302で、自動運転制御部10112は、運転者より自動運転レベル3による自動運転の利用開始が申請されたか否かを判定する。自動運転制御部10112は、申請されていないと判定した場合(ステップS302、「No」)、処理をステップS301に戻す。一方、自動運転制御部10112は、当該利用開始が運転者により申請されたと判定した場合(ステップS302、「Yes」)、処理をステップS303に移行させる。 In the next step S302, the automatic driving control unit 10112 determines whether or not the driver has applied for the start of automatic driving according to the automatic driving level 3. When the automatic operation control unit 10112 determines that the application has not been made (step S302, "No"), the process returns to step S301. On the other hand, when the automatic operation control unit 10112 determines that the start of use has been applied for by the driver (step S302, "Yes"), the automatic operation control unit 10112 shifts the process to step S303.
 ステップS303で、自動運転制御部10112は、タイマをONし、時間の計測を開始する。次のステップS304で、自動運転制御部10112は、運転者のモニタリングを行い、運転者の自動運転レベル3による自動運転の継続使用に伴う覚醒状態や注意低下の状態を検知すると共に、運転者の手動運転への復帰の待機状態を監視する。 In step S303, the automatic operation control unit 10112 turns on the timer and starts measuring the time. In the next step S304, the automatic driving control unit 10112 monitors the driver, detects the wakefulness state and the state of reduced attention due to the continuous use of the automatic driving by the driver's automatic driving level 3, and also detects the driver's state. Monitor the standby status for returning to manual operation.
 次のステップS305で、自動運転制御部10112は、ステップS303で計測開始された時間が所定時間を超え、自動運転レベル3の利用がタイムアウトしたか、あるいは、運転者の覚醒状態が低下したか、を判定する。自動運転制御部10112は、自動運転レベル3の利用がタイムアウトしておらず、且つ、運転者の覚醒状態が低下していないと判定した場合(ステップS305、「No」)、処理をステップS304に戻す。 In the next step S305, the automatic driving control unit 10112 determines whether the measurement start time in step S303 exceeds a predetermined time and the use of the automatic driving level 3 has timed out, or the driver's wakefulness has decreased. To judge. When the automatic driving control unit 10112 determines that the use of the automatic driving level 3 has not timed out and the driver's wakefulness has not deteriorated (step S305, "No"), the process is set to step S304. return.
 一方、自動運転制御部10112は、自動運転レベル3の利用がタイムアウトしたか、あるいは、運転者の覚醒状態が低下したと判定した場合(ステップS305、「Yes」)、処理をステップS306に移行させる。 On the other hand, when the automatic driving control unit 10112 determines that the use of the automatic driving level 3 has timed out or the driver's wakefulness has deteriorated (step S305, "Yes"), the process shifts to step S306. ..
 ステップS306から、後述するステップS310までの処理が、図18Aに示す条件付き自動運転レベル3利用可能区間における処理となる。 The processing from step S306 to step S310, which will be described later, is the processing in the conditional automatic operation level 3 available section shown in FIG. 18A.
 ステップS306で、自動運転制御部10112は、運転者のモニタリングを行い、運転者による手動運転への復帰要請の通知と、運転者の挙動とを検出する。ここで、自動運転制御部10112は、運転者が覚醒維持可能と推定される期間内であっても、覚醒低下が検出された場合、運転者に対して警告表示や、手動運転への自主早期復帰を促す表示を提示する。 In step S306, the automatic driving control unit 10112 monitors the driver and detects the notification of the driver's request to return to manual driving and the behavior of the driver. Here, the automatic driving control unit 10112 displays a warning to the driver and voluntarily early to manual driving when a decrease in arousal is detected even within the period in which the driver is presumed to be able to maintain awakening. Present a display prompting you to return.
 次のステップS307で、自動運転制御部10112は、運転者による手動運転への正常な復帰が検出されたか否かを判定する。 In the next step S307, the automatic driving control unit 10112 determines whether or not a normal return to manual driving by the driver has been detected.
 自動運転制御部10112は、正常な復帰が検出されたと判定した場合(ステップS307、「Yes」)、処理をステップS308に移行させる。ステップS308で、自動運転制御部10112は、運転者が自動運転レベル3の機能を優良に利用したとして、運転者に対して機能優良利用ポイントを付与する。また、自動運転制御部10112は、事前検出評価指標の特性学習辞書(例えば運転者個人復帰特性辞書81)を更新する。 When the automatic operation control unit 10112 determines that a normal return is detected (step S307, "Yes"), the process shifts to step S308. In step S308, the automatic driving control unit 10112 gives the driver excellent function utilization points, assuming that the driver has used the function of the automatic driving level 3 excellently. Further, the automatic driving control unit 10112 updates the characteristic learning dictionary (for example, the driver individual return characteristic dictionary 81) of the pre-detection evaluation index.
 自動運転制御部10112は、ステップS307で正常な復帰が検出されなかったと判定した場合(ステップS307、「No」)、処理をステップS309に移行させる。ステップS309で、自動運転制御部10112は、運転者が自動運転レベル3の機能に対して違反したとして、運転者に対する罰則を記録する。また、自動運転制御部10112は、事前検出評価指標の特性学習辞書(例えば運転者個人復帰特性辞書81)を更新する。 When the automatic operation control unit 10112 determines that a normal return is not detected in step S307 (step S307, "No"), the process shifts to step S309. In step S309, the automatic driving control unit 10112 records a penalty for the driver for violating the function of the automatic driving level 3. Further, the automatic driving control unit 10112 updates the characteristic learning dictionary (for example, the driver individual return characteristic dictionary 81) of the pre-detection evaluation index.
 また、ステップS307からステップS309の処理の移行に際し、自動運転制御部10112は、運転者の過去の復帰可能注意持続時間から予測される、運転者の覚醒状態、疲労蓄積状態、心理的負担度合い等に基づき許容される、自動運転レベル3の自動運転の利用を許可する最大時間を表示し、運転者に提示する。 Further, in the transition from the process of step S307 to the process of step S309, the automatic driving control unit 10112 causes the driver's awakening state, fatigue accumulation state, psychological burden degree, etc. predicted from the driver's past recoverable attention duration. The maximum time allowed based on the automatic driving level 3 automatic driving is displayed and presented to the driver.
 ステップS308またはステップS309の処理の終了後、個別回における自動運転レベル3(Level3)による自動運転の利用が終了される(ステップS310)。 After the processing of step S308 or step S309 is completed, the use of automatic operation by the automatic operation level 3 (Level 3) in the individual times is terminated (step S310).
 一方、自動運転制御部10112は、ステップS307で運転者からの、自動運転レベル3の自動運転の利用時間を延長する延長申請が検出された場合(ステップS307、「延長申請」)、当該利用時間を所定時間だけ延長し、処理をステップS306に戻す。当該延長申請は、例えば入力部10101に設けられた所定の操作子を運転者が操作することで行われる。このとき、自動運転制御部10112は、当該操作に対し、指差呼称など、運転者による前方確認が行われたことを検出した上で、利用区間の延長申請に対する個別回での承認を行う。 On the other hand, when the automatic driving control unit 10112 detects an extension application from the driver in step S307 to extend the usage time of the automatic driving of the automatic driving level 3 (step S307, "extension application"), the usage time. Is extended by a predetermined time, and the process is returned to step S306. The extension application is made, for example, by the driver operating a predetermined operator provided in the input unit 10101. At this time, the automatic driving control unit 10112 detects that the driver has made a forward confirmation such as pointing and calling for the operation, and then approves the application for extension of the section to be used individually.
<3-5.ODDの決定要素について>
 次に、実施形態に適用可能なODDの決定要素について、図19Aおよび図19Bのフローチャートを用いて説明する。ここでは、一例として、環境インフラとして自動運転レベル3による自動運転の利用が想定される特定の道路などで、実際に自動運転レベル3を利用する際に、利用条件を元に、利用許可のODDの利用判定と、制御の決定要素について説明する。図19Aは、実施形態に適用可能な自動運転の処理の流れを、ODDに注目して示した一例のフローチャートである。
<3-5. About the determinants of ODD>
Next, the determinants of ODD applicable to the embodiment will be described with reference to the flowcharts of FIGS. 19A and 19B. Here, as an example, when actually using the automatic driving level 3 on a specific road where the automatic driving by the automatic driving level 3 is expected to be used as the environmental infrastructure, the ODD of the usage permission is based on the usage conditions. The usage determination of the above and the determinants of the control will be described. FIG. 19A is an example flowchart showing the flow of automatic operation processing applicable to the embodiment, paying attention to ODD.
 自動運転制御部10112は、運転者により、走行の目的地を含む旅程が設定され、車両の走行が開始されると、ステップS400で、対象となる道路での自動運転レベル3による自動運転の利用可能条件を、後述する判定処理により判定し、自動運転レベル3による自動運転の利用可否区間(ODD)の設定を行う。すなわち、自動運転制御部10112は、車両の走行に伴い、LDMなど旅程に含まれる道路の環境を示す道路環境データ85と、運転者が運転する車両に関する自車両情報86と、さらには、運転者の復帰可否のステータスを取得する。これらのうち、少なくとも運転者の復帰可否のステータスは、その運転者が自動運転レベル3による自動運転を利用中において常時、取得する。ステップS400では、車両の搭載機器の性能での知覚および認識、判断、制御に対する自己診断結果に基づく現在の状態から、ODDの設定を行う。 When the driver sets the itinerary including the destination of the driving and the vehicle starts driving, the automatic driving control unit 10112 uses the automatic driving according to the automatic driving level 3 on the target road in step S400. The possible condition is determined by the determination process described later, and the availability section (ODD) of the automatic operation according to the automatic operation level 3 is set. That is, the automatic driving control unit 10112 includes road environment data 85 indicating the road environment included in the itinerary such as LDM as the vehicle travels, own vehicle information 86 regarding the vehicle driven by the driver, and further, the driver. Get the status of whether or not to return. Of these, at least the status of whether or not the driver can return is always acquired while the driver is using the automatic driving according to the automatic driving level 3. In step S400, the ODD is set from the current state based on the self-diagnosis result for perception, recognition, judgment, and control of the performance of the on-board equipment of the vehicle.
 次のステップS401で、自動運転制御部10112は、車両の最新の自己診断結果に基づき、車両がそのまま進路を進んだ場合であっても、ODD区間内を走行維持できるか否か、すなわち、ODDとして自動運転レベル3の自動運転の継続利用が認められる条件が継続的に維持されるか、を判定する。自動運転制御部10112は、ODD区間内を走行維持できると判定した場合(ステップS401、「Yes」)、処理をステップS400に戻す。 In the next step S401, based on the latest self-diagnosis result of the vehicle, whether or not the automatic driving control unit 10112 can maintain the driving within the ODD section even if the vehicle continues on the course, that is, ODD. As a result, it is determined whether or not the conditions under which the continuous use of the automatic operation of the automatic operation level 3 is permitted are continuously maintained. When the automatic operation control unit 10112 determines that the traveling can be maintained within the ODD section (step S401, "Yes"), the process returns to step S400.
 ここで、自動運転レベル3の自動運転の継続利用か可能な条件が整っている間は、その状態が続く限り、自動運転レベル3が許容する自動運転を引き続き利用できる。一方、実際に自動運転レベル3に許容される利用は、特定の時間範囲内に限定され、ステップS401の判定で運転者の意識低下等が観測されると、システムは、当該運転者に対する自動運転レベル3の自動運転の利用許可判定を取り消すこととなる。 Here, as long as the conditions for continuous use of automatic operation of automatic operation level 3 or possible conditions are met, the automatic operation permitted by automatic operation level 3 can be continued to be used as long as the state continues. On the other hand, the usage actually permitted to the automatic driving level 3 is limited to a specific time range, and when a driver's consciousness decline or the like is observed in the determination of step S401, the system automatically drives the driver. The use permission judgment for level 3 automatic driving will be cancelled.
 一方、自動運転制御部10112は、ステップS401で、車両がそのまま進路を進んだ場合に、ODD区間内を走行維持できなくなると判定した場合(ステップS401、「No」)、処理をステップS402に移行させる。 On the other hand, if the automatic driving control unit 10112 determines in step S401 that the vehicle cannot maintain running in the ODD section when the vehicle continues on the course (step S401, "No"), the process shifts to step S402. Let me.
 より具体的な例として、自動運転制御部10112は、そのまま進路を進んだ場合に自動運転に対応可能なODD区間外に進むことになるか、あるいは、天候変化や運転者の覚醒状態の低下で自動運転レベル3の自動運転の利用が許容されない、すなわち自動運転レベル3の自動運転が利用可能と定義されるODDから外れる状況変化がある、場合に、車両がそのまま進路を進んだ場合に、ODD区間内を走行維持できなくなると判定し(ステップS401、「No」)、処理をステップS402に移行させる。 As a more specific example, the automatic driving control unit 10112 will proceed outside the ODD section that can handle automatic driving if it continues on the course, or due to changes in the weather or a decrease in the driver's awakening state. When the use of autonomous driving of automatic driving level 3 is not allowed, that is, there is a situation change that deviates from the ODD defined as the automatic driving of automatic driving level 3 is available, and the vehicle continues on the course, the ODD It is determined that the traveling cannot be maintained in the section (step S401, "No"), and the process is shifted to step S402.
 ステップS402で、自動運転制御部10112は、最新に取得されたLDMなどの更新情報に基づき、ODD終了地点に車両が到達するまでの残存時間を予測する。自動運転制御部10112は、予測した引継ぎ完了地点への到着する到着時刻までの残存時間を運転者に通知することができる。 In step S402, the automatic driving control unit 10112 predicts the remaining time until the vehicle reaches the ODD end point based on the latest updated information such as LDM. The automatic operation control unit 10112 can notify the driver of the remaining time until the arrival time at the predicted transfer completion point.
 次のステップS403で、自動運転制御部10112は、該当車両がODDの外に、つまり自動運転状態から手動運転状態に復帰が要請されていることを、運転者に対して明示的に提示する。それと共に、自動運転制御部10112は、手動運転への引継ぎが正常にスムースに行われない場合に、車両外に向けて、周囲の走行車両において急減速や運転者の突然の過剰な操舵などを行うリスク要因が発生する可能性を通知する情報発信を行う。 In the next step S403, the automatic driving control unit 10112 explicitly indicates to the driver that the vehicle concerned is requested to return to the outside of the ODD, that is, from the automatic driving state to the manual driving state. At the same time, the automatic driving control unit 10112 causes sudden deceleration or sudden excessive steering of the driver in the surrounding vehicles toward the outside of the vehicle when the transfer to manual driving is not performed normally and smoothly. Disseminate information to notify the possibility of risk factors.
 さらに、自動運転制御部10112は、当該状態を記録する。この記録は、運転者の自動運転システムへの過剰依存利用の防止を促す役割を果たす。運転者による自動運転に対する繰り返し違反やODDを逸脱した不適切な利用が、地域の認可制度次第では取締等される。自動運転の利用者(運転者)は、自動運転に対する過剰依存により直接的な事故には遭わなくとも、記録情報に基づき遡った罰則が心理的なリスクとして運転者に対して直接的に作用し、運転者における、改善への直接的な行動変容の要因となる。 Further, the automatic operation control unit 10112 records the state. This record serves to help prevent over-reliance on the driver's autonomous driving system. Repeated violations of autonomous driving by drivers and inappropriate use that deviates from ODD will be regulated depending on the local approval system. Even if the user (driver) of autonomous driving does not have a direct accident due to excessive dependence on autonomous driving, the penalties retroactively based on the recorded information act directly on the driver as a psychological risk. , It becomes a factor of direct behavior change for improvement in the driver.
 運転者が実際に手動運転への復帰行動を行うか否かは、システム自体が担うシーケンスではないために、図19Aのフローチャートには含めていない。違反状態に陥るのを嫌い、罰金等を課されるのを避けたい運転者であれば、当該フローチャートによる処理の途中で自動運転の利用を自主的に完了することになると考えられる。そのため、後述するステップS405で実際に引継ぎ要請通知が運転者に対してなされると、運転者により自動運転の利用を終了する処理がなされ、図19Aのフローチャートの一連の処理が終了される(図示しない)。 Whether or not the driver actually performs the action of returning to manual driving is not included in the flowchart of FIG. 19A because it is not the sequence that the system itself bears. If the driver dislikes falling into a violation state and wants to avoid being fined, it is considered that he / she will voluntarily complete the use of autonomous driving in the middle of the process according to the flowchart. Therefore, when the takeover request notification is actually given to the driver in step S405 described later, the driver performs a process of terminating the use of the automatic driving, and a series of processes of the flowchart of FIG. 19A is completed (illustrated). do not do).
 処理はステップS404に移行される。ステップS404で、自動運転制御部10112は、ODD区間の終了までに、手動運転の引継ぎに必要な余裕度(例えば時間)が限界以下であるか否かを判定する。自動運転制御部10112は、引継ぎまで余裕があり現時点での引継ぎへの対処が不要であると判定し場合(ステップS404、「No」)、処理をステップS400に戻す。 The process is transferred to step S404. In step S404, the automatic operation control unit 10112 determines whether or not the margin (for example, time) required for taking over the manual operation is equal to or less than the limit by the end of the ODD section. When the automatic operation control unit 10112 determines that there is a margin until the takeover and it is not necessary to deal with the takeover at the present time (step S404, "No"), the process returns to step S400.
 一方、自動運転制御部10112は、当該余裕度が限界以下であると判定した場合(ステップS404、「Yes」)、処理をステップS405に移行させる。この場合、車両は、手動運転への引き継ぎの対処を開始すべき区間に進入済みとなっている。 On the other hand, when the automatic operation control unit 10112 determines that the margin is equal to or less than the limit (step S404, "Yes"), the automatic operation control unit 10112 shifts the process to step S405. In this case, the vehicle has already entered the section where the handling of the transfer to manual driving should be started.
 ステップS405で、自動運転制御部10112は、運転者に対して、手動運転への引継ぎを要請する通知を提示し、当該通知に対する運転者の応答反応を確認する。また、自動運転制御部10112は、自動運転が許容されるODD外での利用に関する警告を車両内および車両外に提示すると共に、経過状態を記録する。 In step S405, the automatic driving control unit 10112 presents a notification requesting the driver to take over to manual driving, and confirms the driver's response response to the notification. In addition, the automatic driving control unit 10112 presents a warning regarding use outside the ODD where automatic driving is permitted inside and outside the vehicle, and records the progress state.
 次のステップS406で、自動運転制御部10112は、運転者による手動運転への適切な復帰行動の完了が確認されたか否かを判定する。自動運転制御部10112は、当該復帰行動の完了が確認されたと判定した場合(ステップS406、「Yes」)、処理がステップS400に戻される。 In the next step S406, the automatic driving control unit 10112 determines whether or not the completion of the appropriate return action to the manual driving by the driver has been confirmed. When the automatic operation control unit 10112 determines that the completion of the return action is confirmed (step S406, “Yes”), the process is returned to step S400.
 一方、自動運転制御部10112は、当該復帰行動の完了が確認されないと判定した場合(ステップS406、「No」)、処理をステップS407に移行させる。この場合、運転者の復帰行動が許容ODDに対して違反していることになる。ステップS407で、自動運転制御部10112は、MRMを実行すると共に、MRMの実行に至る経過および結果を記録する。そして、ステップS408で、緊急対処として、車両の制御がMRMに移行される。 On the other hand, when the automatic operation control unit 10112 determines that the completion of the return action is not confirmed (step S406, "No"), the process shifts to step S407. In this case, the driver's return behavior violates the allowable ODD. In step S407, the automatic operation control unit 10112 executes the MRM and records the progress and the result of the execution of the MRM. Then, in step S408, the control of the vehicle is transferred to the MRM as an emergency response.
 自動運転レベル3で正常に自動運転を利用している運転者であれば、通常は、システムの復帰要請に対し速やかな復帰を行える前方注意を継続的に行い速やかな復帰に必要な状況認識(Situation Awareness)を維持しているため、違反、罰則等を受けないための速やかな手動運転への復帰が、人の行動として期待される。 If you are a driver who is normally using automatic driving at automatic driving level 3, you will usually be able to continuously pay attention to the front so that you can quickly return to the system in response to a request to return the system, and you will be aware of the situation necessary for prompt recovery ( Since Situation Awareness) is maintained, it is expected that human behavior will promptly return to manual driving so as not to receive violations or penalties.
 ここで、自動運転の支援システムが高度化すると、直接的な罰則以外の行動心理のリスク感覚に作用する要素が薄れ、当該リスク感覚を感じられなくなる。その結果、自動運転レベル3の自動運転に限らず、一部の油断をした運転者などにおいては、違反状態にも関わらず手動運転への復帰を怠り、自動運転機能で対処が保証されない状態に進んでしまう利用ケースが発生してしまうおそれがある。このような利用ケースであっても、突然のMRMによる急制動を行うのではなく、段階的なMRMの実行が、安全性が担保可能な期間で行われることが望ましい。上述のステップS404~ステップ408のMRMに至る流れは、この、運転者の手動運転への復帰がシステムより確認できなかった際のフォールバック処理に該当する。 Here, if the support system for autonomous driving becomes more sophisticated, the factors that affect the sense of risk in behavioral psychology other than direct penalties will diminish, and the sense of risk will no longer be felt. As a result, not only the automatic driving of automatic driving level 3 but also some drivers who are alert, neglect to return to manual driving despite the violation state, and the automatic driving function does not guarantee the handling. There is a risk that usage cases will progress. Even in such a use case, it is desirable that the stepwise MRM execution is performed during a period in which safety can be guaranteed, instead of sudden braking by the MRM. The flow from step S404 to MRM in step 408 described above corresponds to this fallback process when the return of the driver to manual operation cannot be confirmed by the system.
 図19Bは、上述した図19AのフローチャートにおけるステップS400による、実施形態に適用可能なODD設定処理の例をより詳細に示す一例のフローチャートである。 FIG. 19B is an example flowchart showing in more detail an example of the ODD setting process applicable to the embodiment according to step S400 in the flowchart of FIG. 19A described above.
 自動運転制御部10112は、LDM等の道路環境静的データ90、可能であれば、高鮮度更新LDM140を取得し、ステップS420で、例えば道路環境静的データ90に含まれる各区間について、条件が整えば自動運転の利用可能な区間となるか否かを判定する。自動運転制御部10112は、当該各区間に、条件が整っても自動運転を利用可能になる区間が含まれないと判定した場合(ステップS420、「No」)、処理をステップS429に移行させる。 The automatic driving control unit 10112 acquires the road environment static data 90 such as LDM, and if possible, the high freshness update LDM 140, and in step S420, for example, the conditions are set for each section included in the road environment static data 90. If it is arranged, it is determined whether or not the section can be used for automatic driving. When the automatic operation control unit 10112 determines that each section does not include a section in which automatic operation can be used even if the conditions are met (step S420, "No"), the process shifts to step S429.
 ステップS429で、自動運転制御部10112は、自動運転が利用可能になる区間が無いとして、次のステップS430で、運転者に対して、自動運転の利用が不可である等の表示を行う。これに限らず、自動運転制御部10112は、限定支援機能のシンボル表示、自動運転の利用が可能な区間までの所要予測時間などの表示を行ってもよい。 In step S429, the automatic driving control unit 10112 indicates to the driver in the next step S430 that the automatic driving cannot be used, assuming that there is no section in which the automatic driving can be used. Not limited to this, the automatic driving control unit 10112 may display a symbol of the limited support function, a required predicted time until a section where automatic driving can be used, and the like.
 ステップS430の処理の後、この図19Bのフローチャートによる一連の処理が終了し、処理が図19AのステップS401に移行される。 After the process of step S430, a series of processes according to the flowchart of FIG. 19B is completed, and the process is transferred to step S401 of FIG. 19A.
 自動運転制御部10112は、ステップS420で、自動運転が利用可能になる区間があると判定した場合(ステップS420、「Yes」)、処理をステップS421に移行させる。ステップS421で、例えば道路環境静的データ90に含まれる各区間から、条件が整うことで自動運転が利用可能になる区間をODDとして抽出する。 When the automatic operation control unit 10112 determines in step S420 that there is a section in which automatic operation becomes available (step S420, "Yes"), the process shifts to step S421. In step S421, for example, from each section included in the road environment static data 90, a section in which automatic driving becomes available when the conditions are met is extracted as an ODD.
 処理はステップS422に移行し、その際に、自動運転制御部10112は、車両に搭載される機器の情報である搭載機器情報91を取得する。この搭載機器情報91は、車両の搭載機器が検出可能な自己診断による対応限界を示す情報が含まれる。 The process proceeds to step S422, and at that time, the automatic driving control unit 10112 acquires the mounted device information 91, which is the information of the device mounted on the vehicle. The mounted device information 91 includes information indicating a response limit by self-diagnosis that can be detected by the mounted device of the vehicle.
 ステップS422で、自動運転制御部10112は、搭載機器情報91に基づき、ステップS421で抽出された区間に、車両の搭載機器が対処不可な区間が存在するか否かを判定する。自動運転制御部10112は、ステップS421で抽出された全区間が車両の搭載機器が対処不可な区間であると判定した場合(ステップS422、「全区間」)、処理をステップS429に移行させる。 In step S422, the automatic driving control unit 10112 determines, based on the mounted device information 91, whether or not there is a section in the section extracted in step S421 that the mounted device of the vehicle cannot handle. When the automatic driving control unit 10112 determines that all the sections extracted in step S421 are sections that cannot be dealt with by the on-board equipment of the vehicle (step S422, "all sections"), the process shifts to step S429.
 自動運転制御部10112は、ステップS422で、ステップS421で抽出された区間に車両の搭載機器が対処可能な区間が無いか、一部区間に存在すると判定した場合(ステップS422、「無しor一部区間」)、処理をステップS423に移行させる。ステップS423で、自動運転制御部10112は、ステップS421で抽出された区間に対し、ODDを、搭載機器が対応可能な区間に制限する。 When the automatic driving control unit 10112 determines in step S422 that there is no section that can be dealt with by the on-board equipment of the vehicle in the section extracted in step S421 or that it exists in a part of the section (step S422, "none or part". Section "), the process is shifted to step S423. In step S423, the automatic operation control unit 10112 limits the ODD to the section that the on-board device can handle with respect to the section extracted in step S421.
 処理はステップS424に移行し、その際に、自動運転制御部10112は、天候情報などに基づく、該当道路の自動運転への対応の可否を示す道路対応可否情報92を取得する。 The process proceeds to step S424, and at that time, the automatic driving control unit 10112 acquires the road correspondence availability information 92 indicating whether or not the corresponding road can be supported for automatic driving based on the weather information and the like.
 ステップS424で、自動運転制御部10112は、道路対応可否情報92に基づき、ステップS423で制限された区間に、天候などにより搭載機器の対処が制限される区間が存在するか否かを判定する。自動運転制御部10112は、ステップS423で制限された区間の全区間が天候などにより搭載機器の対処が制限される区間であると判定した場合(ステップS424、「全区間」)、処理をステップS429に移行させる。 In step S424, the automatic driving control unit 10112 determines, based on the road compatibility information 92, whether or not there is a section in the section restricted in step S423 where the handling of the on-board equipment is restricted due to weather or the like. When the automatic operation control unit 10112 determines that the entire section of the section restricted in step S423 is a section in which the handling of the on-board equipment is restricted due to the weather or the like (step S424, "all sections"), the processing is performed in step S429. To migrate to.
 自動運転制御部10112は、ステップS424で、ステップS423で制限された区間に天候などにより搭載機器の対処が制限される区間が無いか、一部区間に存在すると判定した場合(ステップS424、「無しor一部区間」)、処理をステップS425に移行させる。ステップS425で、自動運転制御部10112は、ODDに、天候により搭載機器の対処が制限される事象、例えば視界低下、路面凍結、逆光に対する利用の制限を加える。 When the automatic operation control unit 10112 determines in step S424 that there is no section in the section restricted in step S423 for which the handling of the on-board equipment is restricted due to weather or the like, or that it exists in a part of the section (step S424, "None". or a part of the section "), the process is shifted to step S425. In step S425, the automatic driving control unit 10112 imposes on the ODD the use of the ODD for events in which the handling of the on-board equipment is restricted due to the weather, such as reduced visibility, road surface freezing, and backlight.
 処理はステップS426に移行し、その際に、自動運転制御部10112は、運転者の自動運転から手動運転への復帰対応の可否を示す運転者対応可否情報93を取得する。この運転者対応可否情報93は、例えば、疲労度など運転者の状態に基づく情報である。 The process proceeds to step S426, and at that time, the automatic driving control unit 10112 acquires the driver response availability information 93 indicating whether or not the driver can return from the automatic operation to the manual operation. The driver response availability information 93 is information based on the driver's condition such as the degree of fatigue.
 自動運転制御部10112は、ステップS426で、運転者対応可否情報93に基づき、運転者が必要に応じて手動運転への復帰に対処可能か否かを判定する。自動運転制御部10112は、対処不可であると判定した場合(ステップS426、「No」)、処理をステップS429に移行させる。 In step S426, the automatic driving control unit 10112 determines whether or not the driver can deal with the return to manual driving as necessary, based on the driver support availability information 93. When the automatic operation control unit 10112 determines that the countermeasure cannot be taken (step S426, “No”), the process shifts to step S429.
 自動運転制御部10112は、ステップS426で、手動運転への復帰に対処可能であると判定した場合(ステップS426、「Yes」)、処理をステップS427に移行させる。ステップS427で、自動運転制御部10112は、運転者の状態により自動運転の利用が禁止とされている場合、自動運転の利用許可ODDから除外する。自動運転の利用が禁止される運転者の状態の例として、覚醒状態や健康状態の低下、さらには飲酒などが挙げられる。 When the automatic operation control unit 10112 determines in step S426 that the return to manual operation can be dealt with (step S426, "Yes"), the process shifts to step S427. In step S427, when the use of automatic driving is prohibited due to the state of the driver, the automatic driving control unit 10112 excludes it from the usage permission ODD of automatic driving. Examples of driver states where the use of autonomous driving is prohibited include wakefulness, poor health, and drinking alcohol.
 このとき、覚醒状態が低下した場合であるからこそ、運転者において、自動運転の支援を受けて走行を継続させたい心理が働く。この場合、特に飲酒や薬物利用で覚醒低下した運転者がシステムの一定の自動運転を担保すると、運転者においてその支援機能に甘んじた利用が繰り返され、結果的にリスク心理の低下を招く。 At this time, the psychology of the driver who wants to continue driving with the support of automatic driving works because the wakefulness is lowered. In this case, if a driver whose arousal is lowered due to drinking or drug use guarantees a certain level of automatic driving of the system, the driver will be repeatedly used for the support function, and as a result, the risk psychology will be lowered.
 このリスク心理の低下は、自動運転機能が万能ではないにも関わらず自動運転機能に過度な依存を誘引し、不測の事態の発生に対し、運転者は、手動運転に復帰できないことになる。そのため、結局は前述のMRMに自動で移行し、社会的な交通網へ悪影響を与えかねず、望ましくない。つまり、人間工学的に見て社会秩序を乱しかねない利用が進むことから、その予防策としてこのような運用が必要となる。 This decline in risk psychology induces excessive dependence on the automatic driving function even though the automatic driving function is not universal, and the driver cannot return to manual driving in the event of an unforeseen situation. Therefore, in the end, it automatically shifts to the above-mentioned MRM, which may adversely affect the social transportation network, which is not desirable. In other words, since the use of ergonomics that may disturb the social order is progressing, such an operation is necessary as a preventive measure.
 さらに、ステップS426の判定でステップS429に移行を強制した処理は(ステップS426、「No」)、運転者において、対応の如何で自動運転機能が使えなくなる心理が育つ必要があることから、運転者に対して、さらに判定通知を明示的に提示してもよい。 Further, the process of forcing the transition to step S429 by the determination of step S426 (step S426, "No") requires the driver to develop a psychology that the automatic driving function cannot be used depending on the response. Further, the determination notification may be explicitly presented.
 一方、身体の不自由な運転者による自身の移動の補助としての自動運転車両の利用であったり、遠隔支援との組み合わせで自動運転車両を用いている状況などで、安易にMRMを発動するのではなく、先行誘導車による追従走行支援や、遠隔監視による操舵支援など、運転者の手動復帰を最優先事項としない運用形態もあるため、図19Aおよび図19Bに示す以外の制御を導入してもよい。 On the other hand, it is easy to activate MRM when a driver with a physical disability uses an autonomous driving vehicle to assist his / her movement, or when he / she is using an autonomous driving vehicle in combination with remote assistance. Instead, there are some operational modes such as follow-up driving support by the preceding guided vehicle and steering support by remote monitoring, in which the driver's manual return is not the highest priority, so controls other than those shown in FIGS. 19A and 19B have been introduced. May be good.
 次のステップS428で、自動運転制御部10112は、上述した各判定結果に基づき総合判定された、自動運転の利用を許可するODDのマップを表示する。 In the next step S428, the automatic driving control unit 10112 displays a map of the ODD that permits the use of automatic driving, which is comprehensively judged based on each of the above-mentioned judgment results.
 ステップS428の処理の後、この図19Bのフローチャートによる一連の処理が終了し、処理が図19AのステップS401に移行される。 After the process of step S428, a series of processes according to the flowchart of FIG. 19B is completed, and the process is transferred to step S401 of FIG. 19A.
 図20は、実施形態に適用可能なODD区間の設定例をより具体的に説明するための模式図である。 FIG. 20 is a schematic diagram for more specifically explaining an example of setting an ODD section applicable to the embodiment.
 図20において、チャート(a)は、インフラにおける自動運転の許容区間の例を示すもので、一例として、特定の高速道路の所定区間を想定する。チャート(b)は、チャート(a)に示す区間における車両群の交通流れなどによる平均車速の例を示している。この例では、地点U0から地点U1までの区間の平均車速が90[km/h]となっており、例えば渋滞などの影響で、地点U1からは平均車速が60[km/h]に減速され、渋滞の解消により地点U2で平均車速が60[km/h]以上になっている。 In FIG. 20, the chart (a) shows an example of an allowable section for automatic driving in an infrastructure, and assumes a predetermined section of a specific highway as an example. The chart (b) shows an example of the average vehicle speed due to the traffic flow of the vehicle group in the section shown in the chart (a). In this example, the average vehicle speed in the section from point U 0 to point U 1 is 90 [km / h]. For example, due to the influence of traffic congestion, the average vehicle speed from point U 1 is 60 [km / h]. The average vehicle speed is 60 [km / h] or more at point U 2 due to the elimination of traffic congestion.
 また、チャート(c)は、対象車両に搭載される搭載機器の、事前に取得した情報に基づく判断により日中の定常状態での対処が可能な性能限界内の区間の例を示している。さらに、チャート(d)は、ODDの適用区間から外れる場合の例を、示している。 In addition, chart (c) shows an example of a section within the performance limit of the equipment mounted on the target vehicle, which can be dealt with in a steady state during the daytime by judgment based on information acquired in advance. Further, the chart (d) shows an example of a case where the ODD is out of the applicable section.
 一例として、自動運転機能の利用条件が、法律などで定められている60[km/h]以下の渋滞時にのみ許容した場合について考える。この場合、自動運転機能の利用が許容される地図上の区間が、例えばチャート(a)に示されるように高速道路の一定区間であったとしても、実際に自動運転の利用が許容される区間は、その一定区間内で例えば渋滞の発生などにより車両群の平均車速が60[km/h]以下に落ちている区間(図20の例では地点U1~U2)とタイミングに限定される。 As an example, consider a case where the conditions for using the automatic driving function are allowed only when there is a traffic jam of 60 [km / h] or less as stipulated by law. In this case, even if the section on the map where the use of the automatic driving function is permitted is a certain section of the expressway as shown in the chart (a), for example, the section where the use of the automatic driving is actually permitted. Is limited to the section (points U 1 to U 2 in the example of FIG. 20) and the timing in which the average vehicle speed of the vehicle group drops to 60 [km / h] or less due to, for example, the occurrence of traffic congestion within the fixed section. ..
 さらに、車両の搭載機器や車載重量などの条件で、自動運転に際して安全な走行が望めない区間が存在する可能性がある。例として、カーブが急な区間で重量積差物の搭載により自動運転の利用に制限を掛ける区間や、通常の天候であればシステムが対処可能な自動運転機能であるが、天候が荒れることによる視界の低下や道路の冠水などにより、道路境界の検出誤認を発生し得る区間などが挙げられる。 Furthermore, there may be sections where safe driving cannot be expected during automatic driving due to conditions such as the equipment mounted on the vehicle and the weight of the vehicle. For example, there are sections where the use of automatic driving is restricted by loading heavy load differences in sections with steep curves, and automatic driving functions that the system can handle in normal weather, but due to rough weather. There are sections where misidentification of road boundaries may occur due to poor visibility or flooding of roads.
 図20の例では、チャート(d)に示すように、地点U0~U1の区間は、交通流れによる平均車速が90[km/h]であるため、ODDの適用外とされる(ODD外)。地点U1~U2の区間は、平均車速が60[km/h]とされているので、ODDが適用される(ODD内)。ここで、地点U11では、局所豪雨や積雪といった天候などの理由で視界不良となっており、搭載機器の対処限界内の区間であるにも関わらず、ODDが適用されないODD外の区間となるため、運転者は、地点U11から斜線で示す期間において自動運転から手動運転に復帰する必要がある。例えば地点U12で地点U11から開始された視界不良が解消されると、ODDが適用され、手動運転から自動運転に移行することができる。 In the example of FIG. 20, as shown in the chart (d), the section from the points U 0 to U 1 is not applicable to the ODD because the average vehicle speed due to the traffic flow is 90 [km / h] (ODD). Outside). Since the average vehicle speed is 60 [km / h] in the section between points U 1 and U 2 , ODD is applied (within ODD). Here, at point U11 , visibility is poor due to weather such as local heavy rain and snowfall, and even though the section is within the handling limit of the onboard equipment, it is a section outside the ODD to which the ODD is not applied. Therefore, the driver needs to return from the automatic operation to the manual operation during the period indicated by the diagonal line from the point U 11 . For example, when the poor visibility started from the point U 11 at the point U 12 is resolved, the ODD is applied and the manual operation can be shifted to the automatic operation.
 次にODDが適用される区間は、地点U1~U2内の区間であって、搭載機器の対処限界の開始点であるU12から開始されため、運転者は、地点U13から斜線で示す期間において自動運転から手動運転に復帰する必要がある。図20の例では、地点U12から所定時間を走行した地点U13において、運転者の疲労などにより運転が不可と判断され、それ以降の区間では、搭載機器の対処限界内であるにも関わらず、ODDが適用されない。この地点U13以降では、MRMの発動も考えられる。 Next, the section to which the ODD is applied is the section within points U 1 to U 2 , and starts from U 12 which is the starting point of the handling limit of the onboard equipment. It is necessary to return from automatic operation to manual operation during the indicated period. In the example of FIG. 20, at the point U 13 that has traveled for a predetermined time from the point U 12 , it is determined that the driver cannot drive due to fatigue of the driver, etc., and in the subsequent sections, the on-board equipment is within the handling limit. No, ODD is not applied. After this point U13 , MRM may be activated.
 このように、インフラにより自動運転の利用が許容される区間であっても、車両群の走行、天候、運転者の状態など様々な原因で、ODDの条件が変化し、それに伴いODD適用範囲が変化することが起こり得る。そこで、図19Aおよび図19Bのフローチャートを用いて説明したように、車両の走行に伴い、逐次、条件を設定することで、実際のODDが定まる。 In this way, even in sections where the use of autonomous driving is permitted by the infrastructure, the ODD conditions change due to various causes such as the driving of the vehicle group, the weather, and the driver's condition, and the ODD application range changes accordingly. Changes can occur. Therefore, as described with reference to the flowcharts of FIGS. 19A and 19B, the actual ODD is determined by sequentially setting the conditions as the vehicle travels.
 なお、本明細書にて記載の「ODD」という用語は、必ずしも現時点における業界で設計として定まる区間としては用いていない。すなわち、本明細書における「ODD」は、「多様な条件に応じて各自動運転レベルの自動運転を、それぞれの社会事情で制度として許容する利用可能区間」という考え方に基づき用いている。社会の安全で快適な利用を目指す上で実施される車両の自動運転の適用に応じて、本定義を拡張利用して適用しても同様の効果を得ることが可能である。 Note that the term "ODD" described in this specification is not necessarily used as a section defined as a design in the industry at the present time. That is, "ODD" in the present specification is used based on the idea of "a usable section in which automatic driving at each automatic driving level is allowed as a system in each social situation according to various conditions". It is possible to obtain the same effect even if this definition is extended and applied according to the application of automatic driving of vehicles implemented in order to aim for safe and comfortable use of society.
 上述の図19A、図19Bおよび図20では、ODDの自動運転レベル3におおける運用に限定して説明したが、ODDの適用は、この自動運転レベル3、さらには自動運転レベル4に限られない。例えば、自動運転レベル2においても、支援レベルが高度化すれば、上述の自動運転レベル3で述べたものと同等の課題が生じると考えられる。また、同一車両であっても、社会のインフラ整備の状況次第では、異なる自動運転モードを行き来することになることが考えられる。 In FIGS. 19A, 19B and 20 described above, the description is limited to the operation of the ODD at the automatic operation level 3, but the application of the ODD is limited to the automatic operation level 3 and further to the automatic operation level 4. do not have. For example, even in the automatic driving level 2, if the support level becomes more sophisticated, it is considered that the same problems as those described in the above-mentioned automatic driving level 3 will occur. Moreover, even if the vehicle is the same, it is conceivable that different automatic driving modes will be switched depending on the situation of social infrastructure development.
 そのため、重要となるのは、車両の運転モードがどの自動運転レベルの運転モードに遷移をしていた場合であっても、システム制御において、運転者がシステムの要請に対して一定の関与を保つ行動判断心理を備えて自動運転を利用することである。したがって、本実施形態で説明した自動運転モード別の制御シーケンスは利用事例であり、これらに限定されるものではない。 Therefore, it is important for the driver to maintain a certain degree of involvement in the system control in system control, regardless of which automatic driving level the driving mode of the vehicle has transitioned to. It is to use automatic driving with behavioral judgment psychology. Therefore, the control sequence for each automatic operation mode described in the present embodiment is a use case, and is not limited to these.
<3-6.実施形態に係るDMSについて>
 次に、実施形態に係るDMS(Driver Monitoring System)について説明する。
<3-6. About DMS according to the embodiment>
Next, the DMS (Driver Monitoring System) according to the embodiment will be described.
<3-6-1.実施形態に係るDMSの概要>
 車両の自動化モードが自動運転レベル3あるいは自動運転レベル4の場合、システムは、恒常的に運転者の能力を監視する必要がある。
<3-6-1. Outline of DMS according to the embodiment>
When the vehicle's automation mode is autonomous driving level 3 or autonomous driving level 4, the system needs to constantly monitor the driver's abilities.
 走行経路を進むこと、または、計画した旅程を走り続けることなど、予定していたタスクをシステムが続行不可になり運転を自動運転から手動運転に突然切り替えた場合、運転者は、手動運転に引継ぐ準備ができずにパニックになって状況認識が困難になり、システムが安全のためにMRMを実行する場合がある。MRMは、移行が失敗した際のフォールバック機能として役立つ。しかしながら、社会環境においてMRMを不適切に使用した多くの場合、不必要な後部衝突、交通渋滞、その他の望ましくない予想外の影響をもたらす可能性がある。このため、上述したような運転者の恒常的な監視が必要となる。 If the system is unable to continue a planned task, such as following a route or continuing on a planned itinerary, and suddenly switches driving from autonomous driving to manual driving, the driver will take over to manual driving. Unprepared and panicked, situational awareness may be difficult and the system may run MRM for safety. MRM serves as a fallback function in the event of a failed migration. However, improper use of MRM in the social environment can often result in unnecessary rear collisions, traffic jams and other unwanted and unexpected consequences. Therefore, constant monitoring of the driver as described above is required.
 システムが運転者に手動運転への復帰を要請した際、復帰が支障なく行われる確率を最大限に高め、運転者が手動運転に復帰できない確率を最小限に抑えるため、システムは、運転者特有の能力に対して適切な判断ができなければならない。 The system is driver-specific in order to maximize the probability that the return will be successful and to minimize the probability that the driver will not be able to return to manual operation when the system requests the driver to return to manual operation. You must be able to make appropriate judgments about your ability.
 一方、システムが、運転者に対して適切なタイミングでの適切な通知や警告や、手動運転への復帰が支障なく行われるよう支援することが困難な場合、システムに従う運転者の義務感が低下する可能性がある。 On the other hand, if it is difficult for the system to assist the driver in giving the right notifications and warnings at the right time and returning to manual driving without hindrance, the driver's sense of duty to follow the system is reduced. there's a possibility that.
 手動運転への復帰の要請を運転者に早めに通知するということは、復帰すべきタイミングまで時間的余裕があり、直ちに復帰手順に取り掛かる必要が無いことを意味する。また、運転者に対する通知が遅いということは、リスクを増やして復帰に失敗するおそれがあり、さらに、移行が失敗した原因がシステムによる通知が遅れたためであるとして。システムに責任を追及する機会を運転者に与えることになる。 Notifying the driver of the request for return to manual operation early means that there is time to return to the timing and it is not necessary to immediately start the return procedure. Also, the slow notification to the driver may increase the risk and fail to recover, and the cause of the migration failure is the delay in notification by the system. It will give the driver the opportunity to take responsibility for the system.
 人の行動心理は、身勝手、我儘なものである。そのため、システムが適切なタイミングで通知や警報を出せないと、運転者は、自動運転の利用に際してシステムからの通知に対してそれほどリスク感覚を持たない。したがって、実際の手動運転の引継ぎに際して、運転者に引継ぎ限界になるまで引継ぎ開始重要度が認知されず、手動運転の開始までに求められる周囲の状況確認などを含む状況認識(Situation Awareness)が低下したまま、引継ぎの限界点を迎えてしまうリスクを生む。 A person's behavioral psychology is selfish and selfish. Therefore, if the system cannot issue notifications and warnings at appropriate times, the driver does not have much sense of risk for notifications from the system when using autonomous driving. Therefore, when taking over the actual manual operation, the driver does not recognize the importance of starting the takeover until the takeover limit is reached, and the situation awareness (Situation Awareness) including the confirmation of the surrounding situation required before the start of the manual operation is lowered. It creates the risk of reaching the limit of handing over.
 すなわち、運転者が、要請された手動運転への復帰を行うことを優先し、システムがMRMを開始する前に運転者が時間内に手動運転への復帰を完了することができない頻度が高い場合にシステムがMRMを実行する可能性がある、ということを運転者が容認するか否かは、運転者の選択および意向に任される。 That is, if the driver prioritizes the return to the requested manual operation and the driver is often unable to complete the return to the manual operation in time before the system initiates the MRM. It is up to the driver's choice and intention to accept that the system may perform MRM.
 しかしながら、こうしたフォールバック処理は、社会的活動に新たな問題を誘発する可能性が高いため、社会的活動の観点からは、問題の解決にならない。例えば工事中の道路において、車両が事故回復中の路上ポイントなどの一車線にいる場合、MRMによる車両制御を行うと、交通を完全に遮断してしまうおそれがある。社会的活動を妨害したり、他者を危機的状況に追い込んだりする権利は誰にも無いため、個人の嗜好および/または満足感よりも、社会的なベネフィットが優先される。 However, since such fallback processing is likely to induce new problems in social activities, it does not solve the problems from the viewpoint of social activities. For example, on a road under construction, if the vehicle is in one lane such as a road point during accident recovery, if the vehicle is controlled by MRM, the traffic may be completely blocked. Social benefits are prioritized over individual tastes and / or satisfaction, as no one has the right to interfere with social activity or put others into crisis.
 自動運転システムのこうした自動化のマイナス面を回避するための解決法として、状況に応じて運転者の関与度を高める行動心理を促す方法がある。 As a solution to avoid such a negative side of automation of the automatic driving system, there is a method of promoting behavioral psychology to increase the degree of involvement of the driver depending on the situation.
 しかしながら、どのようにして運転者の関与度を高め、システムが手動運転への引継ぎの開始に必要な状態遷移を正しく認識するかが、課題として存在する。システムが運転者に対して手動運転への復帰要請を行った場合に、運転者が遅延すること無く適切且つ自発的に手動運転に復帰する必要がある。これには、システムにより、運転者による適切な復帰行動に対し、ベネフィットに相当する制御を運転者に提供し、運転者が復帰開始に遅れたり速やかに復帰行動を取らなかった場合や、違反を行った場合に、運転者にペナルティを課し、運転者の行動変容を促すことが有効となる。 However, the challenge is how to increase the driver's involvement and correctly recognize the state transitions required for the system to start taking over to manual operation. When the system requests the driver to return to manual operation, it is necessary for the driver to appropriately and voluntarily return to manual operation without delay. To do this, the system provides the driver with control equivalent to the benefits of proper return behavior by the driver, and if the driver is late in the start of the return or does not take the return action promptly, or if there is a violation. If this is the case, it is effective to impose a penalty on the driver and encourage the driver to change his / her behavior.
 しかしながら、車両を運転中の運転者の脳内の心理状態を、実用的な装置で観測することは、困難である。例えば、脳血流を観測するヘッドギア等の頭部装着型光トポグラフィー観測装置や、fNIR(functional Near-Infrared Spectroscopy)といった脳血流表装置、fMRI(functional Magnetic Resonance Imaging)のような大規模な医療機器の使用は、実験室等で運転者の直接の局所的な脳内の思考活動を可視化することは可能である。しかしながら、運転者が車両内で拘束されること無く脳内の状態を観測できる先行技術は、見当たらない。そのため、運転者の思考活動の直接的な測定は、現実的ではない。 However, it is difficult to observe the psychological state of the driver in the brain while driving the vehicle with a practical device. For example, a head-mounted optical topography observation device such as a head gear for observing cerebral blood flow, a cerebral blood flow table device such as fNIR (functional Near-Infrared Spectroscopy), and a large-scale such as fMRI (functional Magnetic Resonance Imaging). The use of medical equipment makes it possible to visualize the driver's direct local thinking activity in the brain in a laboratory or the like. However, there is no prior art that allows the driver to observe the state in the brain without being restrained in the vehicle. Therefore, a direct measurement of the driver's thinking activity is not realistic.
 一方で、思考活動に反応する動作を観測し、その挙動を解析し評価することで、観測された運転者の身体的挙動から、ある程度の脳内の活動状況の推定が可能となる。そして、測定結果に対する分析を適切に行うことで、思考活動の反応と見做すことが可能な多くのヒントが得られ、所定の時間枠内で運転者が適切に指示に従っている確率を得ることができる。このような、運転者の活動を定量化することにより、運転者のシステムからの各種の事前通知、復帰要請、警報、確認要請などの指示に対応する際の応答の推定が可能となり、運転者に適切な報酬やペナルティを与える方式が実現でき、運転者の自発的関与を促すことができる。 On the other hand, by observing the behavior that reacts to the thinking activity and analyzing and evaluating the behavior, it is possible to estimate the activity status in the brain to some extent from the observed physical behavior of the driver. Then, by properly analyzing the measurement results, many hints that can be regarded as the reaction of thinking activity can be obtained, and the probability that the driver is appropriately following the instructions within a predetermined time frame can be obtained. Can be done. By quantifying the driver's activity in this way, it is possible to estimate the response when responding to various advance notifications, return requests, warnings, confirmation requests, and other instructions from the driver's system. It is possible to realize a method of giving appropriate rewards and penalties to the driver, and to encourage the driver's voluntary involvement.
 すなわち、運転者は、システムからの要請に応じた適切な復帰対処の実行に対してメリットが得られることで、自動運転の快適さを享受しつつ、自動運転への過剰利用に甘んじることも無くなることが期待され、それにより、自動運転機能を社会で広く導入した場合に懸念される弊害を生まなくて済むようにできる。 In other words, the driver can enjoy the comfort of autonomous driving and not be content with overuse for autonomous driving by gaining the merit of executing appropriate recovery measures in response to the request from the system. It is expected that this will eliminate the harmful effects of the widespread introduction of autonomous driving functions in society.
 本開示の実施形態では、運転者に関与するパラメータ群である運転者関与パラメータ群が得られる複数の想定される例と共に、「行動の質(Quality of Action)」を定量化する技術としてのDMS(Driver Monitoring System)を提案する。なお、以下では、「行動の質」を、「QoA」と呼ぶことがある。 In the embodiment of the present disclosure, DMS as a technique for quantifying the "Quality of Action" together with a plurality of assumed examples in which a driver-involved parameter group, which is a parameter group involved in the driver, can be obtained. We propose (Driver Monitoring System). In the following, "quality of action" may be referred to as "QoA".
<3-6-2.実施形態に係るDMSのより具体的な説明>
 次に、実施形態に係るDMSについて、より具体的に説明する。
<3-6-2. More specific description of DMS according to the embodiment>
Next, the DMS according to the embodiment will be described more specifically.
 実施形態に係るDMSが算出および監視する対象は、以下の2つである。 The following two targets are calculated and monitored by the DMS according to the embodiment.
(1)運転者が適切な運転姿勢に戻るために要する推定時間
 実施形態に係るDMSは、運転者が現在の体勢から適切かつ安全な運転姿勢に戻るために要する推定必要時間配分を算出する。そのための監視対象は、運転者の意識的または無意識的な非運転動作での頭部、手、眼、姿勢の動きに由来する逸脱を含むが、これに限定されない。また、実施形態に係るDMSは、運転者が妥当と判断した運転姿勢からの、運転者によるリアルタイムな逸脱を推定する。
(1) Estimated time required for the driver to return to an appropriate driving posture The DMS according to the embodiment calculates the estimated required time allocation required for the driver to return to an appropriate and safe driving posture from the current posture. Monitoring targets for this include, but are not limited to, deviations resulting from head, hand, eye, and postural movements in the driver's conscious or unconscious non-driving movements. Further, the DMS according to the embodiment estimates a real-time deviation by the driver from the driving posture that the driver deems appropriate.
(2)運転者が運転タスクを自動運転から手動運転に完全に引き継げる準備レベル
 実施形態に係るDMSは、自動運転レベル3の道路区分の境界であるか、自動運転レベル4による自動運転が可能な道路区分の境界であるか(動的に適用可能な何れか)に関わらず、許可されているODDの境界に車両が到達する前に、手動運転に復帰するために必要な、一定レベルの意識的思考状態および身体的状態の監視を行う。
(2) Preparation level at which the driver can completely take over the driving task from automatic driving to manual driving The DMS according to the embodiment is the boundary of the road division of automatic driving level 3 or can be automatically driven by automatic driving level 4. A certain level of awareness required to return to manual driving before the vehicle reaches the permitted ODD boundaries, whether at the boundaries of the road division (either dynamically applicable). Monitor your mental and physical condition.
 システムが運転者の介入無しに自動運転を継続可能である場合、運転者は、特定の道路区間において、自動運転による恩恵を多大に享受することができる。一方、このような道路区間は、交通情報が動的に監視され、その道路区間に接近している車両に対して事前に更新情報を提供可能な道路の一定区間に限られる。こうした区間では、フォールバックとして手動運転に復帰するよう運転者に要請する即時の介入要求があった場合において、運転者が完全に対応できることは要求されない。こうした特別な状況における道路区間では、能力を備えた特定の車両の運転者は、自動運転レベル4の自動運転を享受できる。 If the system is capable of continuing autonomous driving without driver intervention, the driver can greatly enjoy the benefits of autonomous driving on certain road sections. On the other hand, such a road section is limited to a certain section of the road where traffic information is dynamically monitored and updated information can be provided in advance to vehicles approaching the road section. In these sections, the driver is not required to be fully responsive to immediate intervention requests requesting the driver to return to manual operation as a fallback. In the road section in these special situations, the driver of a particular vehicle with the ability can enjoy autonomous driving at autonomous driving level 4.
 しかしながら、ODDによって自動運転レベル毎に定められた上述のような道路区間は、固定的ではなく、時間に伴い変化し続ける。車両の自動運転レベル3による自動運転のためのODD、および、自動運転レベル4による自動運転のためのODDを決定する条件が変わり得る要因は、極めて多数、存在する。 However, the road sections as described above, which are determined by ODD for each autonomous driving level, are not fixed and continue to change over time. There are an extremely large number of factors that can change the conditions for determining the ODD for automatic driving according to the automatic driving level 3 of the vehicle and the ODD for automatic driving according to the automatic driving level 4.
 例えば、運転者が出発点から出発した時点では、特定の道路区間が自動運転レベル4の自動運転が可能なODDであったが、時間の経過に伴い当該道路区間における大量の積雪などの事態が発生し、車両システムがそうした状況に対応しきれなくなることが起こり得る。このような場合、システムは、当該道路区間に許容される自動運転レベルを、自動運転レベル4から、自動運転レベル3あるいはさらに低い自動運転レベルに変更することがある。 For example, when the driver departed from the starting point, a specific road section was an ODD capable of automatic driving at automatic driving level 4, but with the passage of time, a large amount of snow accumulated on the road section. It can occur and the vehicle system may not be able to handle such situations. In such a case, the system may change the automatic driving level allowed for the road section from the automatic driving level 4 to the automatic driving level 3 or a lower automatic driving level.
 このような場合、システムは、変更された更新済みの自動運転レベル4の自動運転を許容する道路区間の境界に車両が到達する前に、自動運転から手動制御に復帰する復帰要請に対する運転者の応答が間に合うよう、運転者の準備状態を予測し、運転者が運転体勢に戻るために要する時間を予測可能である必要がある。 In such cases, the system will respond to the driver's request to return from autonomous driving to manual control before the vehicle reaches the boundary of the road section that allows the modified and updated autonomous driving level 4 autonomous driving. It is necessary to be able to predict the driver's readiness and the time it will take for the driver to return to the driving position so that the response is in time.
 運転者に警告するために必要な運転者注意指標の感度または閾値も、環境条件(リスク要因またはパーソナライズ化した制御も含む)に応じて調整する必要があることも予想される。 It is also expected that the sensitivity or threshold of the driver attention index required to warn the driver will also need to be adjusted according to environmental conditions (including risk factors or personalized controls).
 ところで、道路の一部の区間は、運転者が手動運転に復帰可能であれば、自動運転レベル3の自動運転を利用することができ、自動運転レベル3の自動運転を適用可能な特定のODD区間として定めることができる。さらに、運転者の介在無しで予定の走行を続行する予定道程運転操作タスクをシステムが予測可能なその他の道路の一部の区間では、自動運転レベル4の自動運転が可能である。システムは、この区間を、予測可能な範囲まで拡張することができ、自動運転レベル4の自動運転を適用可能な特定のODDが新たに設定される。 By the way, in some sections of the road, if the driver can return to manual driving, automatic driving of automatic driving level 3 can be used, and a specific ODD to which automatic driving of automatic driving level 3 can be applied. It can be defined as a section. Further, in some sections of the road where the system can predict the scheduled driving operation task to continue the scheduled driving without the intervention of the driver, the automatic driving of the automatic driving level 4 is possible. The system can extend this section to a predictable range, and a specific ODD to which automatic driving of automatic driving level 4 can be applied is newly set.
 何れの自動運転レベルの自動運転を使用した場合も、ODDを特定する道路区間は、動的に特定される。当該道路区間は、車外環境や車両システム自体のシステム機能の全性能を制御することは極めて困難であるため、常に経時的に変化し続ける。 The road section that specifies the ODD is dynamically specified regardless of which level of automatic driving is used. Since it is extremely difficult to control the external environment of the vehicle and the entire performance of the system functions of the vehicle system itself, the road section is constantly changing over time.
 MRMは、現行の自動運転システムにおける安全なフォールバックであると考えられているが、特定の状況(例えば建設工事、特定の気象状況、近くの車両の予想外の突発的な挙動など)で使用されるときは、フォールバックとして適切ではなく、実際に実利的ではない。大規模なMRMの使用を最小限に抑えることができないと、交通渋滞、後部衝突、車両の道路上の障害物化といった、社会活動を大幅に低下させる様々な事象が発生し、交通状況に応じて社会的影響が大きくなる。こうした社会的観点から、運転者ができるだけ、少なくとも過度にMRMを使用しない対策を見出すことが、自動運転において強く求められる。 MRM is considered a safe fallback in current autonomous driving systems, but is used in certain situations (eg construction work, certain weather conditions, unexpected sudden behavior of nearby vehicles, etc.) When it is done, it is not suitable as a fallback and is not really practical. If the use of large-scale MRM cannot be minimized, various events that significantly reduce social activities such as traffic congestion, rear collisions, and obstacles on the road of vehicles will occur, depending on traffic conditions. The social impact will increase. From such a social point of view, it is strongly required in autonomous driving to find measures for drivers to at least not use MRM excessively as much as possible.
 したがって、恒常的に運転者を監視することが極めて重要となる。つまり、運転者は、MRMの使用のきっかけとなる極限時点から推定および決定され得る適切な時間に対して事前に手動運転に復帰できる状態になる必要がある。 Therefore, it is extremely important to constantly monitor the driver. That is, the driver needs to be able to return to manual operation in advance for an appropriate time that can be estimated and determined from the extreme point in time that triggers the use of the MRM.
 手動運転への復帰に要する時間は、システムによる復帰要請の通知時点での運転者の初期状態によって異なる。あるいは、システムは、運転者に求める注意のレベルが十分ではないことを感知した場合、自動運転レベルに関わらず、すぐに停車する決定をしなければならない。 The time required to return to manual operation differs depending on the initial state of the driver at the time of notification of the return request by the system. Alternatively, if the system senses that the level of attention required of the driver is not sufficient, it must make a decision to stop immediately, regardless of the level of autonomous driving.
 この観点から、自動運転を制御するシステムは、手動運転の復帰要請に応じて運転者が手動運転に復帰できるよう、運転者の行動を収集して行動を学習した運転者特有の挙動特性を用いて、運転者の手動運転に復帰する能力の低下を示す兆候を推定し、手動運転復帰に要する時間を検知された状況に基づき推定する。この推定時間とMRMを起動するまでの時間とのバジェットバランスをとる際、システムは、どのような状況になりつつあるのかに応じて、通知するのか、介入要求をするのか、警告するのか、を決定することができる。 From this point of view, the system that controls automatic driving uses the behavior characteristics peculiar to the driver who learned the behavior by collecting the behavior of the driver so that the driver can return to the manual driving in response to the request for returning to the manual driving. Then, a sign indicating a decrease in the driver's ability to return to manual driving is estimated, and the time required for returning to manual driving is estimated based on the detected situation. When balancing this estimated time with the time it takes to launch the MRM, the system decides whether to notify, request intervention, or warn, depending on the situation. Can be decided.
 自動運転レベル3および自動運転レベル4において安全レベルを最大限に上げるため、システムは、運転者がMRMに依存することなく、安全運転の必要な場合に適宜安全で落ち着いた運転タスクを続けることができるよう、運転者が一定の準備/注意力レベルを維持していることを確認する必要がある。 また、運転者に対して手動運転への復帰要請を通知した際の、運転者が当該復帰要請対して慌てずに、近未来予測に必要な行動判断のための状況認識(Situation Awareness)を引継ぎ開始までに確保する行動の解析も、システムが復帰要請を通知する上での判定因子となる。 In order to maximize the safety level at autonomous driving level 3 and autonomous driving level 4, the system can continue the safe and calm driving task as appropriate when safe driving is required, without the driver relying on MRM. To be able to do so, you need to make sure that the driver maintains a certain level of readiness / attention. In addition, when the driver is notified of the request to return to manual driving, the driver does not panic in response to the request to return, and takes over the situation awareness (Situation Awareness) for action judgment necessary for near future prediction. The analysis of the behavior secured by the start is also a judgment factor for the system to notify the return request.
 この仮説の背景にある意図は、運転者を常にフォールバックとすることができるということであり、それができないとしても、運転者がODDの境界に到達する前に手動運転を適時に再開することが困難な緊急時には、MRM機能によって車両を完全に停止させることができるということである。したがって、システムは、運転者に対する介入要求の際、運転者の注意力レベルおよび準備レベルを正確に検知できなければならない。 The intent behind this hypothesis is that the driver can always fall back, and even if that is not possible, the driver should resume manual driving in a timely manner before reaching the boundaries of the ODD. In an emergency where it is difficult, the MRM function can completely stop the vehicle. Therefore, the system must be able to accurately detect the driver's attention level and readiness level when requesting intervention from the driver.
 このように、特定の自動運転レベルの自動運転を規定するODDは、介入要求に対応できる運転者の推定能力、および、運転者の過去の自動運転の使用をもとに収集された復帰の信用度スコア履歴を考慮する必要がある。 Thus, the ODD, which regulates autonomous driving at a particular level of autonomous driving, is the driver's estimated ability to respond to intervention requests and the creditworthiness of the return collected based on the driver's past use of autonomous driving. Score history needs to be considered.
 目的地までの道路状況、車両の性能、負荷動特性等の既存のODD要因に加え、システムは、当分の間運転者が介入することなく走行を継続するための十分な必要最低限の情報がある道路区間を車両が現在走行中であることを予測することができると、運転者にシステムの自動運転レベル4による自動運転を利用させることができる。あるいは、フロントビューカメラに対するインセクトストライクにより自動運転レベルの性能が低下し、自動洗浄が完全に終了するまで自動運転レベル3の自動運転へ移行する必要がある場合、または、自動洗浄に長時間を要するような場合、運転者が注意を維持しつつ待機することが困難となるおそれがあり、手動運転に完全に戻るよう再度設定する必要がある。 In addition to existing ODD factors such as road conditions to the destination, vehicle performance, load dynamics, etc., the system has sufficient minimum information to continue driving without driver intervention for the time being. If it can be predicted that the vehicle is currently traveling on a certain road section, the driver can be made to use the automatic driving by the automatic driving level 4 of the system. Alternatively, if the performance of the automatic operation level deteriorates due to an insect strike on the front view camera, and it is necessary to shift to the automatic operation of the automatic operation level 3 until the automatic cleaning is completely completed, or the automatic cleaning takes a long time. In such a case, it may be difficult for the driver to keep his / her attention and wait, and it is necessary to set again to completely return to the manual operation.
 変化し続けるODDに応じて運転者がどのように自動運転システムとインタラクションすればいいのかという問題において、自動運転システムが多様な観点から運転者のパフォーマンスを適切に追跡し続けることが重要である。これは、運転者が手動運転を再開することが依然として可能であることを確認するためである。また、システムは、運転者に対する自動運転から手動運転への復帰要請の通知時点から、MRMモードに切り替えることなく目標値以上の成功率で運転者が支障なく移行を完了するまでに発生し得る遅延を予測することができる。 In the question of how the driver should interact with the autonomous driving system in response to the ever-changing ODD, it is important that the autonomous driving system keeps track of the driver's performance appropriately from various perspectives. This is to ensure that the driver is still able to resume manual operation. In addition, the system may cause a delay from the time when the driver is notified of the request for return from automatic driving to manual driving until the driver completes the transition without any trouble with a success rate exceeding the target value without switching to MRM mode. Can be predicted.
 この方法を可能にするためには、システムは、(a)運転者が精神的に準備状態にあること、および、(b)運転者が運転位置に戻るために要する推定時間、を常に監視する必要がある。 To enable this method, the system constantly monitors (a) the driver's mental readiness and (b) the estimated time it takes for the driver to return to the driving position. There is a need.
 これらは、何れも運転者特有のものである。自動運転を初めて利用する運転者の場合、システムは、一律に、例えば統計的に評価した新規利用運転者の行動評価から得られる時間分から時間を長く要する運転者の一定時間にわたる挙動に合わせて、当該運転者に対して利用許可を与える。つまり、システムは、最初に、運転者に関する復帰観測評価データに基づきオフライン方式で特定の運転者の挙動特性の学習を行う。システムは、その繰り返しから生成された辞書を活用し、認識した運転者の復帰特性を、運転者の挙動観測に対するリアルタイム解析により求め、その都度、運転者の覚醒状態の推定を行う。 All of these are unique to the driver. For drivers who are new to autonomous driving, the system will uniformly adapt to the behavior of the driver over a period of time, for example, from the time obtained from the statistically evaluated behavioral evaluation of the new driver to the time-consuming behavior of the driver. Give the driver permission to use. That is, the system first learns the behavior characteristics of a specific driver in an offline manner based on the return observation evaluation data regarding the driver. The system utilizes the dictionary generated from the repetition to obtain the recognized driver's return characteristics by real-time analysis for the driver's behavior observation, and estimates the driver's awakening state each time.
 運転者が注意力を維持した準備状態である必要性の有無は、インフラストラクチャから予測情報が入手できるか、埋め込みシステムが自動ナビゲーション可能で道路の安全性予測をできるか、によって決まる。上述した、復帰に要する時間が復帰通知のためにシステムによって使用されることにより、警告処理やフォールバック処理が適時決定され、システムがMRMを起動するまでに必要な幾分かの時間的余裕が常に確保される。 Whether or not the driver needs to be prepared to maintain his or her attention depends on whether forecast information can be obtained from the infrastructure or whether the embedded system can automatically navigate and predict road safety. As mentioned above, the time required for recovery is used by the system for recovery notification, so that warning processing and fallback processing are determined in a timely manner, and some time is required for the system to start MRM. Always secured.
 さらに重要な点は、定常的に運転者の挙動を監視して、データをパラメータ化して格納することによって、システムをオンライン方式にも適応させることである。運転者に対する事前の通知に応じた運転者の動作を監視する事前通知動作監視により、手動運転への復帰処理に必要とされる行動の質(QoA)の異なるレベルに相関する傾向および特性が捕捉できる。 More importantly, the system can be adapted to the online system by constantly monitoring the driver's behavior and parameterizing and storing the data. Pre-notification behavior monitoring, which monitors driver behavior in response to prior notification to the driver, captures trends and characteristics that correlate with different levels of behavioral quality (QoA) required for the process of returning to manual driving. can.
 なお、運転者の個人特有の行動特性に関する運用を、車両外でのオフラインに頼らず、最新の学習辞書を利用してオンライン方式で行うのは、人の行動特性がその時々の疲労や体調で変動する要素があり、一律にオフラインで学習生成された辞書に依存して行動解析をすると、体調変動等のオフセットが補正できないためである。 It should be noted that the operation related to the driver's individual behavioral characteristics is performed online using the latest learning dictionary without relying on the offline outside the vehicle, because the behavioral characteristics of the person are fatigue and physical condition at that time. This is because there are fluctuating factors, and if behavior analysis is performed uniformly depending on the dictionary generated by learning offline, offsets such as physical condition fluctuations cannot be corrected.
 運転および手動制御を引継ぎ可能な運転者の能力を正確にモデル化して推定するために利用可能な方法および技術は、現時点では確認されていない。しかしながら、運転者の復帰プロセスおよび実現可能な復帰レベルをモデル化して予測することにより、運転者が自動運転から手動運転に支障なく移行するために不可欠な運転者の準備状態、認識状態、および対応可能性を高い信頼度で提供するために複数の異なる手法を使用することができる。 No methods or techniques available to accurately model and estimate the driver's ability to take over driving and manual control have been identified at this time. However, by modeling and predicting the driver's return process and feasible return levels, the driver's readiness, awareness, and response are essential for the driver to transition from autonomous driving to manual driving without hindrance. Several different techniques can be used to provide the potential with high reliability.
 自動運転の繰り返し利用を継続すると、運転者の行動如何に応じた行動品質に対する評価値を取得でき、その結果として以降に起こる引継ぎ要請通知と、それに対する運転者による実行が判明し、その行動の良否がセットで得られるため、学習器において速やか自己学習が繰り返される。 By continuing to use autonomous driving repeatedly, it is possible to obtain an evaluation value for the behavior quality according to the driver's behavior, and as a result, the subsequent hand-over request notification and the execution by the driver for it are found, and the behavior is Since the quality is obtained as a set, self-learning is repeated quickly in the learner.
 運転者の準備状態を予測できれば、異なる自動運転レベル間で高いレベルの移行を実現する上で役立つ。これにより、運転者が運転タスクから長時間離れることが可能となり、運転者が運転位置からさらに距離を置くことも可能となって、覚醒度や疲労度を検知する際の既存の方法である、単なる運転者の顔の特徴や目の状態の監視は必要とされない。姿勢追跡によって運転者の動作を監視することにより、運転者が手動運転を再開できるか否かシステムが決定し、安全運転に適した運転位置および姿勢に戻るのに要する時間を正確に推定するためのパラメータを多く蓄積することができる。 Predicting the driver's readiness will help achieve a high level of transition between different autonomous driving levels. This allows the driver to stay away from the driving task for extended periods of time, allowing the driver to be further away from the driving position, an existing method for detecting arousal and fatigue. No mere monitoring of the driver's facial features or eye condition is required. By monitoring the driver's movements with posture tracking, the system determines whether the driver can resume manual driving and accurately estimates the driving position and time required to return to a suitable driving position and posture for safe driving. Many parameters can be accumulated.
<3-6-3.実施形態に係る行動の質(QoA)の定量化について>
 本開示では、「行動の質(Quality of Activity)」を指標として定量化するため以下を提案する。
<3-6-3. Quantification of behavioral quality (QoA) according to the embodiment>
In this disclosure, we propose the following to quantify the "Quality of Activity" as an index.
(項目#1)
 実施形態に係るDMSにより以下を直接感知することで、定常的に運転者の準備状態を監視する。
(Item # 1)
By directly sensing the following by the DMS according to the embodiment, the ready state of the driver is constantly monitored.
 運転者の身体的特徴について、下記を監視する。
(1)3D(three-dimensional)人体(関節位置および姿勢)ならびに頭部姿勢(位置および向き)
(2)時間周期T内の3D人体および頭部の動き
(3)眼の状態および顔面ジェスチャの監視
(4)運転タスクに対する視線方向
Monitor the following for the physical characteristics of the driver:
(1) 3D (three-dimensional) human body (joint position and posture) and head posture (position and orientation)
(2) 3D human body and head movements within the time cycle T (3) Eye condition and facial gesture monitoring (4) Gaze direction for driving task
 運転者の挙動について、下記を監視する。
(1)システムによる警告および介入に対する反応
(2)運転タスク(手動運転モード)および非運転タスク(自動運転モード)における運転者の挙動
Monitor the following regarding the behavior of the driver.
(1) Response to warnings and interventions by the system (2) Driver behavior in driving tasks (manual driving mode) and non-driving tasks (automatic driving mode)
 抽出された運転者の特徴および運転者の挙動に基づき、運転者の覚醒レベルおよび注意力、ならびに、病変を監視する。 Monitor the driver's alertness level and attention, as well as lesions, based on the extracted driver characteristics and driver behavior.
(項目#2)
 実施形態に係るDMSにより、運転者の現在の体位、運転者の動作(動き)、および、車外の状況(ODDおよび天気状況)に関する入力情報を考慮し、運転者を監視して運転者が運転位置に戻るのに必要な時間を推定する。
(Item # 2)
The DMS according to the embodiment monitors the driver and drives the driver by considering the input information regarding the driver's current position, the driver's movement (movement), and the conditions outside the vehicle (ODD and weather conditions). Estimate the time required to return to position.
 運転者の観点から、手動運転の再開を高精度でスムース且つ速やかに行うよう要求する通知に従うことに対し、運転者に何らかの利点が必要である。日常活動の多くの動作と同様に、復帰処理について妥当性を視覚化することは、非常に重要である。したがって、運転者に対する視覚的および聴覚的なフィードバック、および/または、触覚情報によるフィードバックは、学習効果があり、運転者の復帰パフォーマンスを高める動機付けとなる。 From the driver's point of view, the driver needs some advantage in following the notification requesting that the manual operation be restarted with high accuracy, smoothly and promptly. As with many activities of daily living, it is very important to visualize the relevance of the return process. Therefore, visual and auditory feedback to the driver and / or feedback by tactile information has a learning effect and motivates the driver to improve his / her return performance.
 このフィードバックループは、自動運転機能を使用する際の人の自然動作の発達に大きく関与している。メッセージフィードバックの遅延により課される複数レベルのペナルティや、逆に高精度な運転移行への対応に対する高パフォーマンス良好運転者といった評価は、運転者が、復帰パフォーマンスが低いために罰せられたり自動運転の使用機会が奪われたりするという理由からではなく、事前通知や通知を速やかに要求する利点について意識を高めるよう、運転者を少しずつ学習させる。 This feedback loop is greatly involved in the development of human natural movements when using the automatic driving function. Ratings such as multiple levels of penalties imposed by delayed message feedback and, conversely, high performance good drivers for responding to highly accurate driving transitions, are punished by drivers for poor return performance or autonomous driving. Educate drivers little by little to raise awareness of the benefits of promptly requesting advance notice or notification, not because they are deprived of usage opportunities.
(項目#3)
 実施形態に係るDMSの感知システムにより収集されたデータを、QoA指標(復帰の質パフォーマンスの定量化)として、車両内での異なるタイプの動作/動きに相当する動作値にパラメータ化および変換する。
(Item # 3)
The data collected by the DMS sensing system according to the embodiment is parameterized and converted into motion values corresponding to different types of motion / motion in the vehicle as a QoA index (quantification of return quality performance).
 運転位置に復帰する身体動作の是正に対応する動きの中間分析は、初期状態の評価に加え、是正する際の速さも考慮して高いスコアが与えられる。 The intermediate analysis of the movement corresponding to the correction of the body movement to return to the driving position is given a high score in consideration of the speed of correction in addition to the evaluation of the initial state.
 上述のQoA指標として、以下のような例が考えられる。 The following examples can be considered as the above-mentioned QoA index.
(1)足の動きの配向ベクトルによって評価され得る、足復帰指標。
 例えば、自動運転レベル4の運転に従事している間の運転者の足の初期位置がペダルから離れている場合、運転者が通常運転する自然な位置に足を戻すまでに要する時間を推定する必要がある。速さを評価する際、物理的速度だけではなく、運転者がどれだけ素早く且つ正確に足を適切な位置に戻すことができるかということも評価する。このとき、行動習性は運転者によって異なるため、検知された復帰手順フローは学習機能に提供され、引継ぎが成功した場合の遅延時間と組み合わせられる。
(2)背もたれの非運転位置から戻る身体を評価する、姿勢復帰指標。
(3)ステアリングに対する3次元での手の位置を追跡し、手がステアリングからどの程度離れているか推定する。このとき、両手もしくは片手が空いているか、塞がっているかを推定することができる。
(1) A foot return index that can be evaluated by the orientation vector of the foot movement.
For example, if the initial position of the driver's foot is off the pedal while engaged in autonomous driving level 4, the time it takes for the driver to return to the natural position of normal driving is estimated. There is a need. When assessing speed, not only the physical speed, but also how quickly and accurately the driver can return the foot to the proper position. At this time, since the behavioral habit differs depending on the driver, the detected return procedure flow is provided to the learning function and combined with the delay time when the transfer is successful.
(2) Posture return index that evaluates the body returning from the non-driving position of the backrest.
(3) The position of the hand in three dimensions with respect to the steering is tracked, and how far the hand is from the steering is estimated. At this time, it can be estimated whether both hands or one hand is free or closed.
 上述のように取得した未加工データを、手動運転の復帰段階に応じて、復帰パフォーマンスを特徴付ける指標に変換する利点は、システムが復帰パフォーマンスを正確に追跡していて、運転者の動作が実際のパフォーマンスに応じて分類されているということを、運転者に対して視覚的に即座にフィードバックできるということである。なお、この実際のパフォーマンスは、システムが以後、自動運転レベルに再度切り替える許可レベルに直接影響するものである。 The advantage of converting the raw data acquired as described above into indicators that characterize the return performance according to the return stage of manual operation is that the system accurately tracks the return performance and the driver's behavior is actual. The fact that they are categorized according to performance means that they can give immediate visual feedback to the driver. Note that this actual performance directly affects the permission level at which the system subsequently switches back to the automated driving level.
 運転従事挙動において、自動運転の過剰依存や復帰の質が低いことは、禁じられるか抑制される。こうした「視覚のフィードバック」は、人間の脳の記憶に直接的に働きかけ、不適切な復帰動作または適時の良好な復帰動作の指標によって決まる臨界レベルの違いに応じて、運転者のワーキングメモリにおいて優先順位が付与される。 In the driving engagement behavior, excessive dependence of automatic driving and low quality of return are prohibited or suppressed. Such "visual feedback" works directly on the memory of the human brain and is prioritized in the driver's working memory depending on the difference in critical level determined by the indicators of improper return movement or timely good return movement. Ranking is given.
 本開示の実施形態に係る新規な特徴は、以下の通りである。 The novel features of the embodiments of the present disclosure are as follows.
(1)復帰手順における運転者の動的アクションを定量化方法およびパラメータ化方法によって定量化し、RTI(運転交代要請)イベントが起こるたびに復帰イベントの結果を用いて運転者復帰パフォーマンスに直接相関させる。 (1) The driver's dynamic action in the return procedure is quantified by a quantification method and a parameterization method, and each time an RTI (operation change request) event occurs, the result of the return event is used to directly correlate with the driver return performance. ..
(2)また、検知して定量化された行動の質の追加の適時なフィードバックは、脳の視覚野に直接影響を与える視覚的方法によって運転者に提供され、これにより、復帰処理が不適切であるとシステムが検知した場合は、常に復帰タスクを最優先するよう運転者を促す。これは、適時に遅延が取り戻せなかった場合はペナルティが課されるという視覚表示であるためである。 (2) Also, additional timely feedback on the detected and quantified quality of behavior is provided to the driver by visual methods that directly affect the visual cortex of the brain, thereby improper return processing. If the system detects that, the driver is always urged to give top priority to the return task. This is because it is a visual indication that a penalty will be imposed if the delay cannot be recovered in a timely manner.
(3)各イベントに対して繰り返しフィードバックすることによる副次的な効果のプラス面は、この手順により自学習した運転者が、直観的に積極的な復帰動作を取るということである。このとき、フィードバックが誤った情報を提供する傾向がある場合、自学習が正常に行われないため、各自のパフォーマンスに応じて正確かつ適切にフィードバックを提供する必要がある。この適合処理は、以下のパーソナライゼーション処理およびシステムに埋め込まれる学習機能によって実現される。 (3) The positive side of the secondary effect of repeatedly giving feedback to each event is that the driver who has learned by himself / herself by this procedure intuitively and positively returns. At this time, if the feedback tends to provide incorrect information, self-learning is not performed normally, and it is necessary to provide accurate and appropriate feedback according to each person's performance. This adaptation process is realized by the following personalization process and learning function embedded in the system.
(4)自学習の方法とは、必要とされる動作を強制することによって学習する方法ではなく、ここで実施例として挙げた分析タイプを用いて、運転者が素早く良好に復帰処理を試みたことに対する報酬、および、運転者の復帰処理が不適切であることに対して課される不利益やペナルティなどにより、使用を繰り返すことによって無意識に学習する方法である。 (4) The self-learning method is not a method of learning by forcing the required movement, but the driver attempts a quick and good recovery process using the analysis type given as an example here. It is a method of learning unconsciously by repeating use due to rewards for things and disadvantages and penalties imposed for improper return processing of the driver.
(項目#4)
 運転者の識別およびパーソナライゼーション-運転者監視システムを特定の人(特定の運転者)に適合させる。これは、監視された特徴およびパラメータは、人により大きなばらつきがあるため、必要な処理である。
(Item # 4)
Driver identification and personalization-Adapt the driver monitoring system to a specific person (specific driver). This is a necessary process as the monitored features and parameters vary widely from person to person.
 運転者の状態は、運転者の民族性、年齢、個人的習慣、体格、性別などによって大きく変わる。このため、例えば、眼の状態監視は、人に応じて変える必要がある。同様に、体格およびカメラの位置に応じ、監視システムは、運転者の特徴に合わせてカスタマイズ可能でなければならない。 The driver's condition varies greatly depending on the driver's ethnicity, age, personal habits, physique, gender, etc. Therefore, for example, eye condition monitoring needs to be changed according to the person. Similarly, depending on the physique and camera position, the surveillance system should be customizable to the characteristics of the driver.
 カスタマイズ処理では、運転席の位置の高さやの設定、後写鏡の向きの調整など、パーソナライゼーションには運転者が快適と感じた通りに、運転者が調整をして設定をすればよい場合がある。一方、実施形態に係るカスタマイズ処理は、システムが繰り返し利用を通して運転者の行動を観測し、その観測結果のデータに基づき学習により復帰時間分布を算出し、目標とするRRR達成に必要な事前通知や通知タイミングを決める処理となる。すなわち、実施形態に係るカスタマイズ処理は、システムが運転者に対する利用観測を経て行う処理となり、運転者の好みで設定するものではない。 In the customization process, the driver should make adjustments and settings as the driver feels comfortable with personalization, such as setting the height and setting of the driver's seat position and adjusting the orientation of the rearview mirror. There is. On the other hand, in the customization process according to the embodiment, the system observes the driver's behavior through repeated use, calculates the return time distribution by learning based on the data of the observation result, and gives advance notice necessary for achieving the target RRR. It is a process to decide the notification timing. That is, the customization process according to the embodiment is a process performed by the system after observing the usage of the driver, and is not set according to the driver's preference.
 このとき、一部の設定値は、例えば大型の相乗り車両などの商用車両で、安全性を担保するためにオフセットを付加する調整を行い、システム予定通知より早めに引継ぎ要請通知を出すことなどは有用である。さらには、記憶能力に障害のある運転者等に対しては、復帰要請などの通知に関し、事前通知、再通知など補助通知機能などをさらに付加してもよい。 At this time, some of the set values may be adjusted to add an offset to ensure safety in commercial vehicles such as large carpool vehicles, and a takeover request notification may be issued earlier than the system schedule notification. It is useful. Furthermore, for drivers and the like with impaired memory ability, auxiliary notification functions such as advance notification and re-notification may be further added to notifications such as a return request.
 システムは、新規の運転者を学習して調整(適合)可能でなければならない。
(1)パイプラインの一部を学習する処理は、運転者の情報が初めてシステムに取り込まれたときに参照データを取得する処理を含む。
(2)一般的な(平均的な)モデルは、複数の運転者とその挙動に基づいて決定される。このとき、当該モデルが複数のベースモデルを含んでもよい。
(3)各センサによる感知データおよび運転者の状況を基に、運転者のデータベースを構築し、変形させ、新規の運転者用に調整する。
(4)適合および調整をリアルタイムで行うことにより、新規事例シナリオおよび運転者の変更にシステムを適合させる。例えば、感知システムの調整、新規事例シナリオへの調整などを行う。
The system must be able to learn and adjust (fit) new drivers.
(1) The process of learning a part of the pipeline includes the process of acquiring reference data when the driver's information is first fetched into the system.
(2) A general (average) model is determined based on a plurality of drivers and their behavior. At this time, the model may include a plurality of base models.
(3) Based on the detection data from each sensor and the driver's situation, the driver's database is constructed, transformed, and adjusted for a new driver.
(4) Adapt the system to new case scenarios and driver changes by performing adaptations and adjustments in real time. For example, adjust the sensing system, adjust to a new case scenario, and so on.
(項目#5)
 事例シナリオおよび特定のODDに相関するn次元データ群から成る、規定された運転者モデルを導入する。運転者モデルは、頭および顔の特徴をより正確に抽出するために適合させた3Dデータによる頭および顔のモデルを含む。また、高レベルの運転者モデル定義は、体形、体格、挙動などについての運転者の記述子群にパラメータ化される。
(Item # 5)
Introduce a defined driver model consisting of case scenarios and n-dimensional data sets that correlate with a particular ODD. Driver models include head and face models with 3D data adapted to extract head and face features more accurately. In addition, high-level driver model definitions are parameterized to a group of driver descriptors for body shape, physique, behavior, and the like.
・3D感知技術の深度情報および輝度情報を用いた顔認証方法による運転者の識別を行う。深度情報および輝度情報により、運転者の頭および顔の3Dモデルが生成され、深度情報および輝度情報の入力に合わせて、運転者にモデルを適合させることができる。その結果、限られた制御ポイントの数で、運転者の3Dメッシュモデルを得ることができる。これにより、剛体変換(頭部位置)、ならびに、非剛体変形による顔面ジェスチャおよび目の状態を高精度に検知することができる。 -Identify the driver by a face recognition method using depth information and brightness information of 3D sensing technology. The depth and luminance information generate a 3D model of the driver's head and face, which can be adapted to the driver as the depth and luminance information is input. As a result, a driver's 3D mesh model can be obtained with a limited number of control points. This makes it possible to detect rigid transformation (head position) and facial gestures and eye conditions due to non-rigid deformation with high accuracy.
・全身骨格追跡のための頭部の位置および配向の位置合わせは、既知のODDでの予想される挙動に対する運転者の挙動を評価するために使用される運転者動作監視において重要な支援的役割を果たす。 Head position and orientation alignment for whole body skeletal tracking plays an important supportive role in driver motion monitoring used to assess driver behavior with respect to expected behavior in known ODDs. Fulfill.
・天候、車載装置の状態不具合、その他運転者に通知される状況、および、通知に対する運転者の反応に応じて、予想されるODDを動的に変更することが必要となる状況は、運転者の「状況認識」レベルを推定するシステムの推定処理を改良する上で役立つ。ここで、運転者の「状況認識」とは、例えば運転者が自動運転モードを開始する前に合意して承認した状態とは異なる状態で手動運転を再開しなければならない、という、動的に変更された新たな状態に車両があるという認識を含む。また、例えば情報パネル上の通知メニューや行先を運転者が指さすことによって、システムは運転者が通知を受領したことを検知し得る。 -The driver is in a situation where it is necessary to dynamically change the expected ODD according to the weather, the condition of the in-vehicle device, other situations notified to the driver, and the driver's reaction to the notification. Helps improve the estimation process of the system for estimating the "situational awareness" level of. Here, the driver's "situational awareness" is dynamically that, for example, the manual driving must be restarted in a state different from the state agreed and approved by the driver before starting the automatic driving mode. Includes recognition that the vehicle is in a changed new state. The system may also detect that the driver has received the notification, for example by pointing to the notification menu or destination on the information panel.
<3-6-4.実施形態に係るDMSに適用可能な構成>
 次に、実施形態に係るDMSに適用可能な構成について説明する。図21は、実施形態に係るDMSに適用可能な運転者行動評価部200の機能を説明するための一例の機能ブロック図である。図21に示す運転者行動評価部200は、自動運転制御部10112など車両の自動運転システムに含まれて構成される。
<3-6-4. Configuration applicable to DMS according to the embodiment>
Next, a configuration applicable to the DMS according to the embodiment will be described. FIG. 21 is a functional block diagram of an example for explaining the function of the driver behavior evaluation unit 200 applicable to the DMS according to the embodiment. The driver behavior evaluation unit 200 shown in FIG. 21 is included in an automatic driving system of a vehicle such as an automatic driving control unit 10112.
 図21において、運転者行動評価部200は、学習部201aと、評価部202と、を含む。学習部201aは、例えば特定の運転者の特徴や動作を学習してパラメータ化し、パラメータ化された運転者の情報をデータベース化して記憶する。評価部202は、車両内の運転者を各種センサにより監視して得た情報に基づきデータベースを参照して対応するパラメータを取得し、取得したパラメータに基づき運転者の行動の質を求める。 In FIG. 21, the driver behavior evaluation unit 200 includes a learning unit 201a and an evaluation unit 202. For example, the learning unit 201a learns and parameterizes the characteristics and actions of a specific driver, and stores the parameterized driver information in a database. The evaluation unit 202 refers to the database based on the information obtained by monitoring the driver in the vehicle with various sensors, acquires the corresponding parameters, and obtains the quality of the driver's behavior based on the acquired parameters.
 先ず、学習部201aについて説明する。図21において、学習部201aは、運転者情報生成部2000と、パラメータ生成部2001と、運転者データベース(DB)2002と、を含む。 First, the learning unit 201a will be described. In FIG. 21, the learning unit 201a includes a driver information generation unit 2000, a parameter generation unit 2001, and a driver database (DB) 2002.
 運転者情報生成部2000は、運転者に関して静的な情報と、動的な情報とが入力される。運転者情報生成部2000に入力される静的な情報は、例えば車両内カメラの方向を向いた、基準となる固定的な位置の運転者の頭部、顔、身体を当該車両内カメラで撮像して取得した撮像画像(基準画像と呼ぶ)である。一方、運転者情報生成部2000に入力される動的な情報は、規定された一連の動作を行う運転者を当該車両内カメラで撮像して取得した撮像画像(動作画像と呼ぶ)である。 The driver information generation unit 2000 inputs static information and dynamic information about the driver. The static information input to the driver information generation unit 2000 is, for example, an image of the driver's head, face, and body at a fixed reference position facing the direction of the in-vehicle camera with the in-vehicle camera. It is a captured image (called a reference image) obtained by the above. On the other hand, the dynamic information input to the driver information generation unit 2000 is an captured image (referred to as an operation image) obtained by capturing an image of a driver performing a defined series of operations with the in-vehicle camera.
 なお、実施形態では、車両内カメラとして、ToFカメラやステレオカメラが備えられているため、これら基準画像および動作画像は、奥行情報を持った情報として取得することができる。 In the embodiment, since the ToF camera and the stereo camera are provided as the in-vehicle camera, these reference images and motion images can be acquired as information having depth information.
 運転者情報生成部2000は、入力された基準画像および動作画像のそれぞれから頭部または顔の特徴量を抽出し、抽出した特徴量に基づき運転者の個別化を行い、個別化された運転者情報を生成する。また、運転者情報生成部2000は、これら基準画像および動作画像に基づき、運転者のN次元モデルを生成する。運転者情報生成部2000は、さらに、生成した各情報の調整を行い、情報の次元を削減する。 The driver information generation unit 2000 extracts the feature amount of the head or face from each of the input reference image and the motion image, and personalizes the driver based on the extracted feature amount, and the individualized driver. Generate information. Further, the driver information generation unit 2000 generates an N-dimensional model of the driver based on these reference images and motion images. The driver information generation unit 2000 further adjusts each generated information to reduce the dimension of the information.
 パラメータ生成部2001は、運転者情報生成部2000により生成された各情報に基づきパラメータを生成し、運転者をパラメータ化する。パラメータ生成部生成された運転者のパラメータは、運転者DB2002に格納される。 The parameter generation unit 2001 generates parameters based on each information generated by the driver information generation unit 2000, and parameterizes the driver. Parameter generation unit The generated driver parameters are stored in the driver DB 2002.
 次に、評価部202について説明する。図21において、評価部202は、適合部2003と、監視・抽出・変換部2004と、準備状態評価部2005と、バッファメモリ2006と、を含む。 Next, the evaluation unit 202 will be described. In FIG. 21, the evaluation unit 202 includes a conforming unit 2003, a monitoring / extraction / conversion unit 2004, a preparation state evaluation unit 2005, and a buffer memory 2006.
 適合部2003は、一連のランダムな動作を行う運転者を車両内カメラで撮像した撮像画像が入力される。この一連のランダムな動作を行う運転者は、例えば当該車両を運転中の運転者である。この撮像画像は、運転者情報生成部2000にも渡される。運転者情報生成部2000は、この撮像画像を用いて、さらに運転者個別化およびN次元モデル生成を行う。パラメータ生成部2001は、この撮像画像を用いて生成されたN次元モデルのパラメータ化を行い、生成したパラメータを運転者DB2002に追加する。 The matching unit 2003 is input with an image captured by a camera in the vehicle of a driver who performs a series of random movements. The driver who performs this series of random movements is, for example, a driver who is driving the vehicle. This captured image is also passed to the driver information generation unit 2000. The driver information generation unit 2000 further performs driver individualization and N-dimensional model generation using this captured image. The parameter generation unit 2001 parameterizes the N-dimensional model generated using this captured image, and adds the generated parameters to the driver DB 2002.
 適合部2003は、入力された撮像画像から生成される3D情報に基づき運転者DB2002を参照して顔認証を行い、運転者を識別する。また、適合部2003は、当該3D情報に基づき適合部2003は、フィッティングされた3Dモデルを監視・抽出・変換部2004に渡す。 The matching unit 2003 identifies the driver by performing face recognition with reference to the driver DB 2002 based on the 3D information generated from the input captured image. Further, the matching unit 2003 passes the fitted 3D model to the monitoring / extraction / conversion unit 2004 based on the 3D information.
 監視・抽出・変換部2004は、適合部2003から渡された3Dモデルに基づき運転者DB2002を参照し、当該3Dデータからパラメータを抽出する。監視・抽出・変換部2004は、抽出したパラメータを準備状態評価部2005が用いる形式に変換して、バッファメモリ2006に格納する。 The monitoring / extraction / conversion unit 2004 refers to the driver DB 2002 based on the 3D model passed from the conforming unit 2003, and extracts parameters from the 3D data. The monitoring / extraction / conversion unit 2004 converts the extracted parameters into the format used by the preparation state evaluation unit 2005 and stores them in the buffer memory 2006.
 図21において、バッファメモリ2006の右側の矢印は、バッファメモリ2006の内部での時間の推移を示し、図における下端側がより新しい(最も遅くに格納された)パラメータであることを示している。評価部202内の処理は、例えば所定の時間周期T毎に更新され、バッファメモリ2006に格納されたパラメータは、当該時間周期T毎により早い時間の領域(図における上側)に順次に移動される。バッファメモリ2006は、この例では時間周期Tの4周期分の容量を有し、新たにパラメータが入力されることで容量が埋まると、例えば最も先に格納されたパラメータを捨てる。 In FIG. 21, the arrow on the right side of the buffer memory 2006 shows the transition of time inside the buffer memory 2006, and the lower end side in the figure shows the newer (latest stored) parameter. The processing in the evaluation unit 202 is updated, for example, every predetermined time cycle T, and the parameters stored in the buffer memory 2006 are sequentially moved to an earlier time domain (upper side in the figure) for each time cycle T. .. In this example, the buffer memory 2006 has a capacity for four cycles of the time cycle T, and when the capacity is filled by a new parameter input, for example, the first stored parameter is discarded.
 領域2006aは、最後すなわち最も遅く格納された時間周期Tのパラメータを模式的に示している。準備状態評価部2005は、この領域2006aに格納されるパラメータに基づき、運転者の準備状態に対する評価を行う。この準備状態は、例えば車両の運転モードが自動運転モードから手動運転モードに切り替わる際の、運転者による自動運転から手動運転への復帰動作に対する準備状態である。上述したように、この評価を示す評価値は、運転者毎に加減点され、運転者に対する報奨あるいはペナルティの指標となる。 Region 2006a schematically shows the parameters of the last, that is, the latest stored time period T. The preparation state evaluation unit 2005 evaluates the preparation state of the driver based on the parameters stored in this area 2006a. This preparatory state is, for example, a preparatory state for the driver's return operation from automatic driving to manual driving when the driving mode of the vehicle is switched from the automatic driving mode to the manual driving mode. As described above, the evaluation value indicating this evaluation is added or subtracted for each driver and serves as an index of reward or penalty for the driver.
 図21に示した学習部201aは、システム内すなわち自動運転制御部10112内に構成されているが、これはこの例に限定されない。すなわち、学習部201aの機能は、システム外すなわちオフラインで実現されてもよい。 The learning unit 201a shown in FIG. 21 is configured in the system, that is, in the automatic operation control unit 10112, but this is not limited to this example. That is, the function of the learning unit 201a may be realized outside the system, that is, offline.
 図22は、実施形態に適用可能な、オフラインで構成される学習部の機能を説明するための一例の機能ブロック図である。図22において、学習部201bは、3D頭部モデル生成部2100と、顔識別情報抽出部2101と、身体モデル生成部2102と、モデル拡張部2103と、パラメータ生成部2104と、記憶部2105と、を含む。 FIG. 22 is an example functional block diagram for explaining the function of the learning unit configured offline, which is applicable to the embodiment. In FIG. 22, the learning unit 201b includes a 3D head model generation unit 2100, a face identification information extraction unit 2101, a body model generation unit 2102, a model expansion unit 2103, a parameter generation unit 2104, and a storage unit 2105. including.
 3D頭部モデル生成部2100および顔識別情報抽出部2101に対して、それぞれ、車両内カメラの方向を見る運転者を当該車両内カメラで撮像した撮像画像が入力される。3D頭部モデル生成部210は、入力された撮像画像に基づき、当該運転者の頭部の3Dモデルを生成する。生成された3Dモデルは、モデル拡張部2103に渡される。また、顔識別情報抽出部2101は、入力された撮像画像から当該運転者の顔を識別するための顔識別情報を抽出する。例えば、顔識別情報抽出部2101は、入力された撮像画像から特徴量を抽出して顔を特定し、特定された顔に係る特徴量に基づき顔識別情報を取得する。取得された顔識別情報は、モデル拡張部2103に渡される。 The captured images captured by the in-vehicle camera of the driver looking at the direction of the in-vehicle camera are input to the 3D head model generation unit 2100 and the face identification information extraction unit 2101, respectively. The 3D head model generation unit 210 generates a 3D model of the driver's head based on the input captured image. The generated 3D model is passed to the model extension unit 2103. In addition, the face recognition information extraction unit 2101 extracts face identification information for identifying the driver's face from the input captured image. For example, the face recognition information extraction unit 2101 extracts a feature amount from the input captured image to specify a face, and acquires face identification information based on the feature amount related to the specified face. The acquired face recognition information is passed to the model extension unit 2103.
 身体モデル生成部2102に対して、固定的な運転者の身体感知情報が入力される。ここで、当該身体感知情報は、例えば、姿勢を固定的とした運転者を、一定の方向からカメラで撮像した撮像画像を適用できる。身体モデル生成部2102は、入力された身体感知情報に基づき、運転者の身体モデル(例えば3D情報による身体モデル)を生成する。生成された身体モデルは、モデル拡張部2103に渡される。 Fixed driver's body sensing information is input to the body model generation unit 2102. Here, for the body sensing information, for example, an image captured by a camera of a driver having a fixed posture can be applied from a certain direction. The body model generation unit 2102 generates a driver's body model (for example, a body model based on 3D information) based on the input body sensing information. The generated body model is passed to the model extension 2103.
 モデル拡張部2103は、さらに、規定された一連の動作を行う運転者を当該車両内カメラで撮像して取得した撮像画像と、異なる環境条件を示す情報とが入力される。モデル拡張部2103は、入力された各情報に基づき、運転者の頭部および身体モデルを、N次元モデルに拡張する。さらに、モデル拡張部2103は、拡張されたN次元モデルに対して個別化およびカスタマイズを行い、パラメータ生成部2104に渡す。 Further, the model expansion unit 2103 is input with an captured image acquired by capturing an image of a driver performing a specified series of operations with the in-vehicle camera and information indicating different environmental conditions. The model expansion unit 2103 expands the driver's head and body model to an N-dimensional model based on each input information. Further, the model expansion unit 2103 personalizes and customizes the expanded N-dimensional model and passes it to the parameter generation unit 2104.
 パラメータ生成部2104は、モデル拡張部2103から渡されたN次元モデルのパラメータ化を行い、生成したパラメータを記憶部2105に記憶する。この記憶部2105に記憶されたパラメータは、例えば図21に示した運転者DB2002の初期データとして用いることができる。 The parameter generation unit 2104 performs parameterization of the N-dimensional model passed from the model expansion unit 2103, and stores the generated parameters in the storage unit 2105. The parameters stored in the storage unit 2105 can be used, for example, as the initial data of the driver DB 2002 shown in FIG.
 上述した学習部201aおよび201bに適用可能な3D頭部モデルの生成について、概略的に説明する。図23Aは、実施形態に適用可能な3D頭部モデルの生成について概略的に説明するための模式図である。 The generation of the 3D head model applicable to the learning units 201a and 201b described above will be schematically described. FIG. 23A is a schematic diagram for schematically explaining the generation of the 3D head model applicable to the embodiment.
 図23Aのチャート(a)に示すように、3D頭部モデル生成処理220では、複数の異なるタイプの運転者の情報を用い、特定の運転者の頭部モデルのデータベースである運転者頭部モデルDB2200と、一般的頭部モデル2201とを参照して、当該運転手のメッシュ化頭部モデル2202を生成する。3D頭部モデル生成処理220で生成されるメッシュ化頭部モデル2202は、3D+1Dの情報を持つ。3D情報は、3次元空間における3次元情報であり、1D情報は、時間次元の情報である。すなわち、メッシュ化頭部モデル2202は、3D情報による頭部モデルに、時間情報が加わったものである。 As shown in the chart (a) of FIG. 23A, the 3D head model generation process 220 uses the information of a plurality of different types of drivers, and is a database of the head models of a specific driver. With reference to the DB 2200 and the general head model 2201, a meshed head model 2202 for the driver is generated. The meshed head model 2202 generated by the 3D head model generation process 220 has 3D + 1D information. The 3D information is three-dimensional information in a three-dimensional space, and the 1D information is time-dimensional information. That is, the meshed head model 2202 is a head model based on 3D information with time information added.
 図23Aのチャート(b)は、メッシュ化頭部モデル2202をより具体的に示す模式図である。モデル2210は、顔画像に対して3Dメッシュを適用させた例、モデル2211は、モデル2210から顔画像を取り除いて、3Dメッシュのみとした例を示している。3D頭部モデル生成処理220では、モデル2211に示すような、図中に「★(星印)」で模式的に示す3D制御ポイント2212a、2212b、2212c、…を決定し、異なる人やその顔表情および特徴に適合可能な3D変形可能頭部モデルを生成する。 The chart (b) of FIG. 23A is a schematic diagram showing the meshed head model 2202 more specifically. Model 2210 shows an example in which a 3D mesh is applied to a face image, and model 2211 shows an example in which a face image is removed from the model 2210 to make only a 3D mesh. In the 3D head model generation process 220, 3D control points 2212a, 2212b, 2212c, ... Generate a 3D deformable head model that can be adapted to facial expressions and features.
 上述した学習部201aおよび201bに適用可能な身体モデルの生成について、概略的に説明する。図23Bは、実施形態に適用可能な身体モデルの生成について概略的に説明するための模式図である。 The generation of the body model applicable to the learning units 201a and 201b described above will be schematically described. FIG. 23B is a schematic diagram for schematically explaining the generation of a body model applicable to the embodiment.
 図23Bのチャート(a)に示すように、3D身体モデル生成処理230では、複数の異なるタイプの運転者の情報を用い、特定の運転者の身体モデルのデータベースである運転者身体モデルDB2300と、一般的身体モデル2301とを参照して、当該運転手の身体モデル2302を生成する。3D身体モデル生成処理230で生成される身体モデル2302は、上述のメッシュ化頭部モデル2202と同様に、3D+1Dの情報を持つ。すなわち、身体モデル2302は、身体モデルに、時間情報が加わったものである。 As shown in the chart (a) of FIG. 23B, in the 3D body model generation process 230, the driver body model DB 2300, which is a database of a specific driver's body model, and the driver body model DB 2300, which is a database of a specific driver's body model, are used by using information of a plurality of different types of drivers. The driver's body model 2302 is generated with reference to the general body model 2301. The body model 2302 generated by the 3D body model generation process 230 has 3D + 1D information like the meshed head model 2202 described above. That is, the body model 2302 is a body model with time information added.
 図23Bのチャート(b)は、身体モデルをより具体的に示す模式図である。モデル2310は、骨格モデル(スケルトン)を用いて、身体の主要な関節、身体の重要な位置(頭部、胸部中央、腰部)に3D制御ポイント2311a、2311b、2311c、…を決定した例を示している。この3D制御ポイント2311a、2311b、2311c、…により、異なる人やその身体ジェスチャおよび特徴に適合可能な3D変形可能頭部モデルを生成する。 The chart (b) in FIG. 23B is a schematic diagram showing the body model more concretely. Model 2310 shows an example in which a skeletal model (skeleton) is used to determine 3D control points 2311a, 2311b, 2311c, ... ing. The 3D control points 2311a, 2311b, 2311c, ... Generate a 3D deformable head model that can be adapted to different people and their body gestures and characteristics.
 図23Bのチャート(b)のモデル2320は、運転者が車両の運転席に着座した状態を模式的に示している。この場合、例えば、ステアリング2321とモデル2320との位置関係などに基づき、腰位置2312を中心とした上半身の角度を見ることで、運転者が手動運転への復帰可能な状態にあるかどうかを判定できる。図23Bの例では、当該角度が角度αでは運転席がリクライニング(非運転位置)状態とされ、即座の復帰は難しいと判定できる。一方、当該角度が角度βの場合には、運転席のリクライニング状態が解除されて運転位置とされ、即座の復帰に対応可能であると判定できる。なお、この判定方法は説明のための一例であって、これに限定されるものではない。 The model 2320 in the chart (b) of FIG. 23B schematically shows a state in which the driver is seated in the driver's seat of the vehicle. In this case, for example, based on the positional relationship between the steering 2321 and the model 2320, it is determined whether or not the driver is in a state where he / she can return to manual driving by looking at the angle of the upper body centered on the waist position 2312. can. In the example of FIG. 23B, when the angle is α, the driver's seat is in the reclining (non-driving position) state, and it can be determined that immediate return is difficult. On the other hand, when the angle is the angle β, the reclining state of the driver's seat is released and the driver's seat is set to the driving position, and it can be determined that immediate return is possible. It should be noted that this determination method is an example for explanation and is not limited thereto.
 次に、運転者の覚醒状態を判定する方法の例について説明する。図24は、実施形態に適用可能な、運転者の覚醒状態を判定する方法を説明するための模式図である。先ず、車両内カメラで撮像された撮像画像260から運転者の顔261を抽出し、抽出した顔261からさらに右眼262Rおよび左眼262Lを抽出する。また、撮像画像260は、運転者調整処理251により、所定に調整される。 Next, an example of a method for determining the driver's awakening state will be described. FIG. 24 is a schematic diagram for explaining a method for determining a driver's wakefulness, which is applicable to the embodiment. First, the driver's face 261 is extracted from the captured image 260 captured by the in-vehicle camera, and the right eye 262R and the left eye 262L are further extracted from the extracted face 261. Further, the captured image 260 is predeterminedly adjusted by the driver adjustment process 251.
 顔261から抽出された右眼262Rおよび左眼262Lに対して、ユーザ不可知分類処理250により、特徴抽出処理2500により特徴量が抽出され、眼の状態分類処理2501により眼の状態が分類される。特徴抽出処理2500としては、HoG(Histograms of Oriented Gradients)と主成分分析との組み合わせ、EAR(Eyes Aspect Ratio)の検出、角膜反射点の測定、など様々な方法を適用可能である。また、眼の状態分類処理2501も同様に、SVM(Support Vector Machine)、K-Means法、ニューラルネットワークを用いた分類など、様々な分類手法を適用できる。 For the right eye 262R and the left eye 262L extracted from the face 261, the feature amount is extracted by the feature extraction process 2500 by the user agnostic classification process 250, and the eye condition is classified by the eye condition classification process 2501. .. As the feature extraction process 2500, various methods such as combination of HoG (Histograms of Oriented Gradients) and principal component analysis, detection of EAR (Eyes Aspect Ratio), measurement of corneal reflex point, and the like can be applied. Similarly, various classification methods such as SVM (Support Vector Machine), K-means method, and classification using a neural network can be applied to the eye condition classification process 2501.
 融合および覚醒度推定処理252により、特徴抽出処理2500により抽出された特徴量、眼の状態分類処理2501により分類された眼の状態、および、運転者調整処理251により調整された撮像画像に加え、身体モニタリング2520により取得された身体情報、および、頭部モニタリング2521により取得された頭部情報、を融合し、運転者の覚醒度を推定する。 In addition to the feature quantities extracted by the feature extraction process 2500 by the fusion and arousal estimation process 252, the eye states classified by the eye condition classification process 2501, and the captured image adjusted by the driver adjustment process 251. The arousal degree of the driver is estimated by fusing the physical information acquired by the physical monitoring 2520 and the head information acquired by the head monitoring 2521.
<3-6-5.実施形態に係る行動の質の評価の具体例>
 次に、実施形態に係る行動の質の評価について、具体的な例を用いて説明する。
<3-6-5. Specific example of evaluation of quality of behavior according to embodiment>
Next, the evaluation of the quality of behavior according to the embodiment will be described using a specific example.
 図25は、実施形態に係る行動の質の評価を行う処理を示す一例のフローチャートである。自動運転制御部10112は、運転者が運転席に着座すると、ステップS500で、当該運転者の個人認証を行う。個人認証は、例えば、車両内カメラで撮像した運転者の顔画像に基づき行うことができる。これに限らず、手指などから取得できる生体情報に基づき行ってもよい。 FIG. 25 is an example flowchart showing a process for evaluating the quality of behavior according to an embodiment. When the driver sits in the driver's seat, the automatic driving control unit 10112 performs personal authentication of the driver in step S500. Personal authentication can be performed, for example, based on the driver's face image captured by the in-vehicle camera. Not limited to this, it may be performed based on biometric information that can be obtained from fingers or the like.
 次のステップS501で、自動運転制御部10112は、例えば記憶部10111に予め記憶される人体の頭部および身体(姿勢)に関する統計標準モデル95を取得し、取得した統計標準モデル95を、運転者の頭部と姿勢の標準モデルとして適用する。 In the next step S501, the automatic driving control unit 10112 acquires, for example, a statistical standard model 95 regarding the head and body (posture) of the human body stored in advance in the storage unit 10111, and the acquired statistical standard model 95 is used by the driver. Applies as a standard model of head and posture.
 次のステップS502で、自動運転制御部10112は、スケルトンを用いて、運転者の頭部の状態と身体の関節位置を推定する。次のステップS503で、自動運転制御部10112は、スケルトンを用いて、運転者の下半身の位置状態を推定する。次のステップS504で、自動運転制御部10112は、車両内カメラで運転者の顔を撮像した撮像画像を用いて、顔表情による運転者の状態推定を行う。より具体的には、自動運転制御部10112は、運転者の顔表情に基づき固視、疲労、感情等の推定を行う。 In the next step S502, the automatic driving control unit 10112 estimates the state of the driver's head and the joint position of the body using the skeleton. In the next step S503, the automatic driving control unit 10112 uses the skeleton to estimate the position state of the lower body of the driver. In the next step S504, the automatic driving control unit 10112 estimates the driver's state by facial expressions using the captured image obtained by capturing the driver's face with the in-vehicle camera. More specifically, the automatic driving control unit 10112 estimates fixation, fatigue, emotions, etc. based on the facial expression of the driver.
 次に、自動運転制御部10112は、当該運転者の自己覚醒・復帰行動学習データ96と、運転者の通常運転姿勢データ97とを取得し、ステップS505で、運転者の活動状態のモニタリングを開始する。自動運転制御部10112は、このモニタリングにより、運転者の例えばNDRAなどの活動状態をモニタリングするなお、運転者の自己覚醒・復帰行動学習データ96および運転者の通常運転姿勢データ97は、例えば運転者個人復帰特性辞書81から取得することができる。 Next, the automatic driving control unit 10112 acquires the driver's self-awakening / return behavior learning data 96 and the driver's normal driving posture data 97, and starts monitoring the driver's activity state in step S505. do. The automatic driving control unit 10112 monitors the activity state of the driver such as NDRA by this monitoring. The driver's self-awakening / return behavior learning data 96 and the driver's normal driving posture data 97 are, for example, the driver. It can be obtained from the personal return characteristic dictionary 81.
 なお、上述のステップS500~ステップS504の処理は、自己覚醒・復帰行動学習データ96を持たない運転者の場合の処理となる。自己覚醒・復帰行動学習データ96を既に持っている運転者の場合、統計標準モデル95の代わりに、運転者個人復帰特性辞書81に含まれる身体モデル等の情報を用いることができる。 The above-mentioned processes of steps S500 to S504 are the processes for the driver who does not have the self-awakening / return behavior learning data 96. In the case of a driver who already has the self-awakening / return behavior learning data 96, information such as a body model included in the driver's individual return characteristic dictionary 81 can be used instead of the statistical standard model 95.
 次のステップS506で、自動運転制御部10112は、運転者に対して自動運転から手動運転への復帰を通知する復帰通知タイミングを算出する。自動運転制御部10112は、復帰通知タイミングを、例えばLDMや、ステップS505で開始した運転者の活動状態モニタリングで取得された情報などに基づき算出することができる。そして、自動運転制御部10112は、算出されたタイミングに応じて、運転者に対する復帰要請など各種の通知を行う。この通知は、例えば図17Bのフローチャートの処理においてなされ、特に、ステップS230においてなされる。 In the next step S506, the automatic operation control unit 10112 calculates the return notification timing for notifying the driver of the return from the automatic operation to the manual operation. The automatic driving control unit 10112 can calculate the return notification timing based on, for example, LDM, information acquired in the driver's activity state monitoring started in step S505, and the like. Then, the automatic driving control unit 10112 gives various notifications such as a return request to the driver according to the calculated timing. This notification is made, for example, in the processing of the flowchart of FIG. 17B, and in particular in step S230.
 次のステップS507で、自動運転制御部10112は、各評価項目に対して重み付けを行う。すなわち、自動運転制御部10112は、ステップS506でなされた各種通知に対する運転者の対応に基づき、運転者のNDRAなどの活動状態に応じた、重点評価項目に関するモニタリング結果との関連性に基づき、当該重点評価項目に対して重み付けを行う。 In the next step S507, the automatic operation control unit 10112 weights each evaluation item. That is, the automatic driving control unit 10112 is based on the driver's response to various notifications made in step S506, and based on the relationship with the monitoring result regarding the priority evaluation item according to the activity state of the driver such as NDRA. Weight the priority evaluation items.
 ステップS508aおよびS508bの組、ステップS509aおよびS509bの組、…、ステップS513aおよびS513bの組は、それぞれ、評価項目への重み付けの具体的な例を示している。これらのうち、ステップS508aおよびS508bの組が最も重要度が高く、図において右方向に向かうほど、重要度が低くなり、ステップS513aおよびS513bの組が、最も重要度が低い。 The set of steps S508a and S508b, the set of steps S509a and S509b, ..., The set of steps S513a and S513b show specific examples of weighting to the evaluation items, respectively. Of these, the set of steps S508a and S508b has the highest importance, and the more to the right in the figure, the lower the importance, and the set of steps S513a and S513b has the lowest importance.
 自動運転制御部10112は、ステップS508aで、運転者の車両内での位置をトラッキングする。例えば、ステップS508aでは、運転者が運転席から離席して移動した位置をトラッキングする。自動運転制御部10112は、ステップS508bで、ステップS508aで取得されたトラッキング結果と、運転者におけるトラッキングに対する期待値とを比較し、期待値で正規化した評価値を求める。 The automatic driving control unit 10112 tracks the position of the driver in the vehicle in step S508a. For example, in step S508a, the position where the driver leaves the driver's seat and moves is tracked. In step S508b, the automatic driving control unit 10112 compares the tracking result acquired in step S508a with the expected value for tracking by the driver, and obtains an evaluation value normalized by the expected value.
 例えば、期待値は、運転者が完全な状態にある場合のパラメータ値を適用できる。すなわち、期待値は、対象の項目における運転者の固有特性である。モニタリングで取得された運転者のパラメータ値と期待値とを比較することで、運転者の固有特性で正規化した評価値を得ることができる。 For example, the expected value can be the parameter value when the driver is in perfect condition. That is, the expected value is the unique characteristic of the driver in the target item. By comparing the driver's parameter value acquired by monitoring with the expected value, it is possible to obtain an evaluation value normalized by the driver's unique characteristics.
 自動運転制御部10112は、ステップS509aで、運転者の足の動きを評価する。これにより、例えば、運転者によるアクセルペダル、ブレーキペダルの操作状態などを知ることができる。自動運転制御部10112は、ステップS509bで、ステップS509aで求めた評価値と、運転者における足の動きに対する期待値とを比較し、運転者の固有特性としての期待値で正規化した評価値を求める。 The automatic driving control unit 10112 evaluates the movement of the driver's foot in step S509a. This makes it possible to know, for example, the operating state of the accelerator pedal and the brake pedal by the driver. In step S509b, the automatic driving control unit 10112 compares the evaluation value obtained in step S509a with the expected value for the movement of the foot in the driver, and normalizes the evaluation value with the expected value as the driver's unique characteristic. Ask.
 自動運転制御部10112は、ステップS510aで、運転者の身体モデルに基づき運転者の姿勢、体勢を評価する。これにより、例えば、運転者が運転席をリクライニング状態にしているか否か、運転者がステアリングに向き合っているか否か、などを知ることができる。自動運転制御部10112は、ステップS510bで、ステップS510aで求めた評価値と、運転者における姿勢、体勢に対する運転者の固有特性としての期待値とを比較し、期待値で正規化した評価値を求める。 The automatic driving control unit 10112 evaluates the posture and posture of the driver based on the body model of the driver in step S510a. This makes it possible to know, for example, whether or not the driver is in the reclining state of the driver's seat, and whether or not the driver is facing the steering. In step S510b, the automatic driving control unit 10112 compares the evaluation value obtained in step S510a with the expected value as the driver's unique characteristics with respect to the posture and posture of the driver, and determines the evaluation value normalized by the expected value. Ask.
 さらに、自動運転制御部10112は、ステップS510aで、運転者の身体モデルのうち、特に腕および手指に基づき、ステップS506でなされた復帰要請など各種の通知に対する運転者による応答動作(「了解した]を意味する手指の動作など)を評価する。自動運転制御部10112は、ステップS510bで、ステップS510aで求めた評価値と、運転者における腕、手指に対する運転者の固有特性としての期待値とを比較し、期待値で正規化した評価値を求める。 Further, in step S5102, the automatic driving control unit 10112 responds to various notifications such as a return request made in step S506 based on the driver's body model, especially the arms and fingers (“OK”]. The automatic driving control unit 10112 evaluates the evaluation value obtained in step S510a in step S510b and the expected value as the driver's unique characteristics for the arm and finger in the driver. Compare and find the evaluation value normalized by the expected value.
 自動運転制御部10112は、ステップS511aで、運転者の顔表情モデルに基づき運転者の表情を評価する。顔表情モデルとしては、運転者の頭部モデルを適用できる。これにより、例えば、運転者のそのときの感情(平常、眠気、苛ついている、怒っている、など)を推定できる。自動運転制御部10112は、ステップS510bで、ステップS510aで求めた評価値と、運転者における顔表情に対する運転者の固有特性としての期待値とを比較し、期待値で正規化した評価値を求める。 The automatic driving control unit 10112 evaluates the driver's facial expression based on the driver's facial expression model in step S511a. As the facial expression model, the driver's head model can be applied. This makes it possible to estimate, for example, the driver's current emotions (normal, drowsy, irritated, angry, etc.). In step S510b, the automatic driving control unit 10112 compares the evaluation value obtained in step S510a with the expected value as the driver's unique characteristic for the facial expression of the driver, and obtains the evaluation value normalized by the expected value. ..
 自動運転制御部10112は、ステップS512aで、運転者の眼球の挙動の詳細を評価する。例えば、自動運転制御部10112は、図24を用いて説明したように、運転者の顔261から抽出した右眼262Rおよび左眼262Lについて、眼の状態分類処理2501を行い、PERCLOSやサッケードといった眼球の挙動を取得できる。これにより、例えば、運転者が走行方向前方に集中しているか、マインドワンダリング状態にあるか、などを推定することができる。自動運転制御部10112は、ステップS512bで、ステップS512aで求めた評価値と、運転者における眼球挙動に対する運転者の固有特性としての期待値とを比較し、期待値で正規化した評価値を求める。 The automatic driving control unit 10112 evaluates the details of the behavior of the driver's eyeball in step S512a. For example, as described with reference to FIG. 24, the automatic driving control unit 10112 performs eye condition classification processing 2501 on the right eye 262R and the left eye 262L extracted from the driver's face 261 and performs eyeballs such as PERCLOS and saccade. Behavior can be obtained. This makes it possible to estimate, for example, whether the driver is concentrated in the front of the driving direction or is in a mind wandering state. In step S512b, the automatic driving control unit 10112 compares the evaluation value obtained in step S512a with the expected value as the driver's unique characteristic for the eyeball behavior of the driver, and obtains the evaluation value normalized by the expected value. ..
 自動運転制御部10112は、ステップS513aで、その他の項目について評価する。自動運転制御部10112は、ステップS513bで、ステップS513aで求めた評価値と、当該その他の項目に対する期待値とを比較し、期待値で正規化した評価値を求める。 The automatic operation control unit 10112 evaluates other items in step S513a. In step S513b, the automatic operation control unit 10112 compares the evaluation value obtained in step S513a with the expected value for the other items, and obtains an evaluation value normalized by the expected value.
 自動運転制御部10112は、ステップS508aおよびS508bの組~ステップS513aおよび513bの組それぞれの処理の後、ステップS514で、ステップS506で行った運転者への通知を警報に切り替える必要が有るか否かを判定する。すなわち、ステップS508aおよびS508bの組~ステップS513aおよび513bの組それぞれで求められた正規化された評価値に基づき、運転者の復帰動作の品質が、動作の遅延などにより低下しているとされた場合、通知から警報へのエスカレーションを行う。 Whether or not the automatic operation control unit 10112 needs to switch the notification to the driver performed in step S506 to an alarm in step S514 after processing each of the set of steps S508a and S508b to the set of steps S513a and 513b. To judge. That is, based on the normalized evaluation values obtained in each of the set of steps S508a and S508b to the set of steps S513a and 513b, it is said that the quality of the return operation of the driver is deteriorated due to the delay of the operation or the like. If so, escalate from notification to alert.
 自動運転制御部10112は、ステップS514で切り替えが必要と判定した場合(ステップS514、「Yes」)、処理をステップS516に移行させる。自動運転制御部10112は、ステップS516で、運転者に対して手動運転への復帰を催促する警報を発する。また、自動運転制御部10112は、運転者の評価値を減点し、運転者に対してペナルティを適用する。自動運転制御部10112は、状況によっては、MRMを開始することもできる。 When the automatic operation control unit 10112 determines in step S514 that switching is necessary (step S514, "Yes"), the process shifts to step S516. In step S516, the automatic driving control unit 10112 issues an alarm urging the driver to return to manual driving. Further, the automatic driving control unit 10112 deducts the evaluation value of the driver and applies a penalty to the driver. The automatic operation control unit 10112 may also start MRM depending on the situation.
 自動運転制御部10112は、ステップS516の処理の後、処理をステップS506に戻す。 The automatic operation control unit 10112 returns the process to step S506 after the process of step S516.
 一方、自動運転制御部10112は、ステップS514で切り替えが不要と判定した場合(ステップS514、「No」)、処理をステップS515に移行させる。ステップS515で、自動運転制御部10112は、ステップS508aおよびS508bの組~ステップS513aおよび513bの組それぞれにおける正規化された評価値に基づき、手動運転への復帰可否に関する総合評価を行う。 On the other hand, when the automatic operation control unit 10112 determines in step S514 that switching is unnecessary (step S514, "No"), the process shifts to step S515. In step S515, the automatic operation control unit 10112 performs a comprehensive evaluation regarding whether or not to return to manual operation based on the normalized evaluation values in each of the set of steps S508a and S508b to the set of steps S513a and 513b.
 自動運転制御部10112は、次式(2)に従い、総合評価値tnを算出する。なお、式(2)において、「Ev」は、運転者の固有特性としての期待値で正規化した評価項目毎の評価値を示す。また、「W」は、各評価項目に対する重みを示す。式(2)に示すように、評価項目毎の評価値に、評価項目に対応する重み付けを行い、それぞれ重み付けされた評価値を全ての評価項目で合算して、総合評価値tnを算出する。
tn=Σ(Ev×W)  …(2)
The automatic operation control unit 10112 calculates the comprehensive evaluation value nt according to the following equation (2). In addition, in the formula (2), "Ev" indicates the evaluation value for each evaluation item normalized by the expected value as the driver's unique characteristic. Further, "W" indicates a weight for each evaluation item. As shown in the formula (2), the evaluation values for each evaluation item are weighted corresponding to the evaluation items, and the weighted evaluation values are added up for all the evaluation items to calculate the total evaluation value nt.
tun = Σ (Ev × W)… (2)
 ここで、上述のステップS508aおよびS508bの組~ステップS513aおよび513bの組により算出された評価値に基づく総合評価について、具体的な例を用いて説明する。なお、ここでは、正規化された評価値をパーセンテージ%により表している。すなわち、重み付けの対象の評価値をX、パーセンテージでの重みをW(%)とすると、重み付けられた評価値X’は、次式(3)により算出される。
X’=X×(W/100)  …(3)
Here, a comprehensive evaluation based on the evaluation values calculated by the set of steps S508a and S508b to the set of steps S513a and 513b described above will be described with reference to specific examples. Here, the normalized evaluation value is represented by a percentage%. That is, assuming that the evaluation value to be weighted is X and the weight as a percentage is W (%), the weighted evaluation value X'is calculated by the following equation (3).
X'= X × (W / 100)… (3)
 ステップS508aの位置トラッキングにおいて、運転者が運転席を離席し、荷台に移動しての作業、仮眠スペースへの移動、離席してのテレワークなどが検出された場合、評価値が例えば100%の重点評価対象とされる。 In the position tracking of step S508a, when the driver leaves the driver's seat and moves to the loading platform, moves to the nap space, teleworks away from the seat, etc. are detected, the evaluation value is, for example, 100%. It is subject to priority evaluation.
 ステップS508aの位置トラッキングでは離席が検出されていないが、運転者が運転席に着座しつつ、運転席の方向を回転させての利用など、運転に対して不適切な姿勢の2次タスクの実行が検出される場合が有り得る。この場合、ステップS509aによる足の動きの評価に注目し、運転者の足がアクセルペダル、ブレーキペダルなどペダルを踏めるような復帰行動の評価に重点をおき、例えば80%の重み付けを行う。さらに、身体モデルの下半身に基づく復帰行動に対して例えば20%の重み付けをして評価を行う。 Although the position tracking in step S508a does not detect leaving the seat, a secondary task with an inappropriate posture for driving, such as the driver sitting in the driver's seat and rotating the direction of the driver's seat, is used. Execution may be detected. In this case, paying attention to the evaluation of the foot movement in step S509a, emphasis is placed on the evaluation of the return behavior such that the driver's foot can step on the pedal such as the accelerator pedal and the brake pedal, and weighting of, for example, 80% is performed. Further, the return behavior based on the lower body of the body model is evaluated by weighting, for example, 20%.
 ここで、ペダルから足を離し、運転席を回転させ足を組んでいた運転者が運転姿勢に戻る場合、足組みを解き、足を順次横移動しつつ、併せて下半身姿勢で運転席の座面修正を行う必要がある。その評価で、足の骨格モデルに落とし込んだ観測情報から復帰移動速度を算出し、運転者に通常期待される姿勢、体勢の移動に対して時間を要したり、期待される移動が行われない場合も起こり得る。 Here, when the driver who has taken his foot off the pedal and rotated the driver's seat and crossed his legs returns to the driver's posture, he disengages his legs, moves his legs sideways, and sits in the driver's seat in the lower body posture. It is necessary to correct the surface. In that evaluation, the return movement speed is calculated from the observation information dropped into the foot skeleton model, and it takes time for the posture and posture movement normally expected of the driver, or the expected movement is not performed. It can happen.
 このような場合、行動の推移特徴には個人差があるため、絶対観測値を元に繰り返し利用を通し生成した学習辞書を参照して、当該運転者の正常に成功した復帰行動における評価値で正規化した評価値を利用する。 In such a case, since there are individual differences in the behavioral transition characteristics, the evaluation value in the driver's normally successful return behavior is used by referring to the learning dictionary generated through repeated use based on the absolute observation value. Use the normalized evaluation value.
 また、離席していた運転者が復帰要請を受けて正常な着座姿勢になった場合であっても、覚醒状態が十分に復帰できていない可能性もある。そこで、運転者に対する復帰通知から、ステップS508aおよびS508bや、ステップS509aおよびS509bによる評価に重みをおき、運転者の復帰行動を観測する。そして、着座後の、運転者への運転操舵の移譲を実施する直前では、ステップS508aおよびS508bに対する重みを0%とし、代わりにステップS511aおよびS511bによる評価と、ステップS512aおよびS512bによる評価との合算に対して重みを100%とする。このようにして、各評価値に対して重み付けし、総合評価値tnを求める。 In addition, even if the driver who was away from the seat receives a request to return and is in a normal sitting posture, it is possible that the wakefulness has not been fully restored. Therefore, from the return notification to the driver, the evaluation by steps S508a and S508b and steps S509a and S509b is weighted, and the return behavior of the driver is observed. Immediately before the transfer of driving steering to the driver after sitting, the weight for steps S508a and S508b is set to 0%, and instead, the evaluation by steps S511a and S511b and the evaluation by steps S512a and S512b are added up. The weight is 100%. In this way, each evaluation value is weighted and the total evaluation value nt is obtained.
 説明は図25に戻り、次のステップS517で、自動運転制御部10112は、運転者による手動運転への復帰手順が完了したか否かを判定する。自動運転制御部10112は、完了していないと判定した場合(ステップS517、「No」)、処理をステップS506に戻す。この場合、運転者による復帰手順が順当に進み、遅延が無い場合、このステップS506~ステップS517によるループ処理が進むに連れ、モニタリングの重点ポイントが図の左から右に向けて、すなわちステップS508aおよびS508bの組から一つずつ右の処理に遷移し、重点ポイントが順次変更される。 The explanation returns to FIG. 25, and in the next step S517, the automatic operation control unit 10112 determines whether or not the procedure for returning to the manual operation by the driver has been completed. When the automatic operation control unit 10112 determines that the process has not been completed (step S517, “No”), the process returns to step S506. In this case, if the return procedure by the driver proceeds smoothly and there is no delay, as the loop processing according to this step S506 to S517 progresses, the priority point of monitoring shifts from the left to the right in the figure, that is, step S508a and The process shifts to the right one by one from the set of S508b, and the priority points are sequentially changed.
 一方、自動運転制御部10112は、ステップS517で復帰手順が完了したと判定した場合(ステップS517、「Yes」)、処理をステップS518に移行させる。ステップS518で、自動運転制御部10112は、ステップS515で算出された総合評価値tnに基づき、運転者に対する報奨、罰則などの加減点を算出する。 On the other hand, when the automatic operation control unit 10112 determines that the return procedure is completed in step S517 (step S517, "Yes"), the process shifts to step S518. In step S518, the automatic driving control unit 10112 calculates addition / subtraction points such as rewards and penalties for the driver based on the comprehensive evaluation value nt calculated in step S515.
(重み付けの具体的な例)
 次に、上述した図25のフローチャートにおけるステップS508aおよびS508bの組~ステップS513a~S513bの組における重み付けについて、表4~表6を用いてより具体的に説明する。表4は、運転者固有の頭部モデルに基づくQoA評価の例を示す。なお、表4~表6において、「判定係数/関連性係数」は、その項目における評価値に対する「重み」であって、その項目のQoAに対する関連性を示す係数であると共に、その項目のQoAの判定に用いる判定係数でもある。
(Specific example of weighting)
Next, the weighting in the set of steps S508a and S508b to the set of steps S513a to S513b in the flowchart of FIG. 25 described above will be described more specifically with reference to Tables 4 to 6. Table 4 shows an example of QoA evaluation based on a driver-specific head model. In Tables 4 to 6, the "coefficient of determination / relevance coefficient" is a "weight" for the evaluation value of the item, and is a coefficient indicating the relevance of the item to QoA, as well as the QoA of the item. It is also the coefficient of determination used for the judgment of.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 頭部モデルに関し、抽出される変数が認証、および、分類解析への標準モデルの適用を示す場合、目的とされる獲得情報は個人認証であり、抽出される特徴量および情報は、個人認証情報と、眼、鼻、口などの顔の特徴情報である。重みは、10%とされている。 For the head model, if the extracted variables indicate authentication and the application of the standard model to classification analysis, the target acquisition information is personal authentication and the extracted features and information are personal authentication information. And, it is the feature information of the face such as eyes, nose, and mouth. The weight is set to 10%.
 同様に、頭部モデルに関し、抽出される変数が頭の位置、向き、視線方角である場合、目的とされる獲得情報は、運転者による注意義務履行、確認実施割合判定、前方不注意要因、脇見、前方確認視差呼称の動作確認、システム通知指示への確認動作の評価確認、などとなる。抽出される特徴量および情報は、例えば、運転者の注意方角解析、前方注視、道路標識確認、脇見、サイドミラー視線移動、持ち込み端末使用、端末閲覧、ナビ画面操作、などとなる。重みは、25%とされている。 Similarly, for the head model, if the variables extracted are the head position, orientation, and parallax direction, the desired acquisition information is the driver's duty of care fulfillment, confirmation implementation rate determination, forward carelessness factor, Inattentiveness, forward confirmation, operation confirmation of parallax designation, evaluation confirmation of confirmation operation to system notification instruction, etc. The extracted feature amounts and information are, for example, driver's attention direction analysis, forward gaze, road sign confirmation, inattentiveness, side mirror line-of-sight movement, use of brought-in terminal, terminal browsing, navigation screen operation, and the like. The weight is 25%.
 さらに、頭部モデルに関し、抽出される変数が顔の表情のポリゴンモデルである場合、目的とされる獲得情報は、感情評価となる。感情評価の例としては、攻撃的運転心理、落ち着いた運転心理、持ち込み端末機器によるNDRAへの没頭度合い評価(スポーツ観戦、映画鑑賞、ゲームなど)、などとなる。 Furthermore, regarding the head model, if the extracted variable is a polygon model of facial expressions, the target acquired information is emotional evaluation. Examples of emotional evaluation include aggressive driving psychology, calm driving psychology, and evaluation of the degree of immersion in NDRA by bringing in terminal devices (watching sports, watching movies, games, etc.).
 視線によるNDRA時のコンテンツ画像への視線の振り向け状態から、どの程度の注意力がその閲覧内容に向けられているかを推測することが可能である。さらに、表情や身体のジェスチャから、感情の移入状況の推定が可能となり、感情移入が大きいほど運転者のワーキングメモリはその閲覧コンテンツに関する情報に占有され、手動運転へ復帰する際に必要となる状況認識(Situation Awareness)の低下を招くリスクがまる。そのため、この表情に対する評価は、運転者が自動運転から手動運転に正常に復帰する際の判断指標の大きな手掛かりの一つとなり、重要である。 It is possible to infer how much attention is directed to the browsing content from the state of directing the line of sight to the content image at the time of NDRA by the line of sight. Furthermore, it is possible to estimate the emotional transfer status from facial expressions and physical gestures, and the larger the emotional transfer, the more the driver's working memory is occupied by the information related to the browsed content, which is necessary when returning to manual driving. There is a risk of lowering awareness (Situation Awareness). Therefore, the evaluation of this facial expression is important because it is one of the great clues as a judgment index when the driver returns to normal from automatic driving to manual driving.
 また、視線移動と連動した評価により、NDRA中の前方確認、通知確認の有無を評価することで、運転操舵に対する注意離脱状況の評価(自動運転レベル3利用中では、未確認状態が数分継続した場合に注意義務違反など)、さらには、眠気・疲労表情、などとなる。 In addition, by evaluating the presence or absence of forward confirmation and notification confirmation during NDRA by evaluation linked with the movement of the line of sight, evaluation of the duty of care withdrawal status for driving steering (while using automatic driving level 3, the unconfirmed state continued for several minutes. In some cases, it is a violation of the duty of care, etc.), and in addition, it causes drowsiness and tiredness.
 抽出される特徴量および情報は、眼の状態およびそれ以外の顔パーツの状態である。眼の状態としては、抽出される特徴量および情報は、眼が開いている、通常より瞼が下がっている状態、開眼速度低下(眠気指標)、瞬き、PERCLOS、眼の動きによる疲労、眠気推定、などとなる。眼以外の顔パーツの状態としては、抽出される特徴量および情報は、欠伸、その他表情解析による疲労推定、感情推定、発作等の病気推定(口の開いた状況、苦しい表情など)、冷静・沈着心理、攻撃的運転心理、寝起きで状況を未把握の状態、などとなる。 The extracted features and information are the condition of the eyes and the condition of other facial parts. As for the condition of the eyes, the extracted features and information are the condition where the eyes are open, the eyelids are lower than usual, the eye opening speed is slowed down (sleepiness index), blinking, PERCLOS, fatigue due to eye movement, and sleepiness estimation. , And so on. As for the state of facial parts other than the eyes, the extracted feature quantities and information include deficiency, fatigue estimation by facial expression analysis, emotion estimation, disease estimation such as seizures (open mouth situation, painful facial expression, etc.), calmness and calmness. Deposition psychology, aggressive driving psychology, a state where the situation is not grasped due to waking up, etc.
 抽出される特徴量および情報が眼の状態およびそれ以外の顔パーツの状態の何れであっても、重みは、25%とされている。 The weight is 25% regardless of whether the extracted feature amount and information are in the state of the eyes or the state of other facial parts.
 表5は、運転者の身体モデルに基づくQoA評価の例を示す。 Table 5 shows an example of QoA evaluation based on the driver's body model.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 身体モデルに関し、抽出される変数が、運転者の運転席における上半身の姿勢評価(上半身の指、手、腕、足等を含む骨格モデルの座標)である場合、目的とされる獲得情報は、運転操舵・注意義務違反に結び付く行動評価の指標化、飲食、読書、運転時許容外行為(ナビ操作、メール、タバコ・財布・カメラを探す、など)、手の塞がり度合い、などとなる。抽出される特徴量および情報は、ステアリングに手を掛けているか否か、話しながらの飲食、喫煙、探し物、携帯端末の操作、…などとなる。重みは、15%とされている。 Regarding the body model, if the extracted variable is the posture evaluation of the upper body in the driver's seat (the coordinates of the skeletal model including the fingers, hands, arms, feet, etc. of the upper body), the target acquisition information is Indexing of behavioral evaluations that lead to violations of driving steering and duty of care, eating and drinking, reading, unacceptable behavior during driving (navigation operation, mail, searching for cigarettes, wallets, cameras, etc.), degree of hand blockage, etc. The extracted features and information include whether or not the steering is touched, eating and drinking while talking, smoking, what to look for, operation of the mobile terminal, and so on. The weight is said to be 15%.
 同様に、身体モデルに関し、時間軸に沿った推移解析をさらに行うことで、行動のNDRA没入度評価が変数として抽出され、また、道路前方確認等の指差呼称などの確認動作評価も変数として抽出される。 Similarly, for the body model, by further analyzing the transition along the time axis, the NDRA immersiveness evaluation of the behavior is extracted as a variable, and the confirmation motion evaluation such as pointing and calling such as road front confirmation is also used as a variable. Be extracted.
 目的とされる獲得情報は、定常時の行動、復帰要請後の復帰推移行動評価、通知後の通知内容確認動作、などとなる。復帰推移行動評価は、復帰通知後に運転者が怠慢なく速やかな運転席への復帰、運転姿勢の復帰を行ったかを、手足の動き解析から評価する行動品質評価を含む。 The target acquisition information is normal behavior, return transition behavior evaluation after return request, notification content confirmation operation after notification, and so on. The return transition behavior evaluation includes a behavior quality evaluation that evaluates whether the driver has swiftly returned to the driver's seat and returned to the driving posture after the return notification from the movement analysis of the limbs.
 勿論、復帰要請通知は、必要以上に早く出すことの弊害から、必要な時間になって出す設計がなされ、運転者にこれから通知がなされる事前通知音から復帰準備として運転者の行動評価を取り入れてもよい。特に、一旦長時間のNDRAに関わると、復帰要請を受けた直後には、道路前方の状況は、旅程の進行に伴い景色や周辺車両の状況、さらには天候までもが変わっている可能性がある。通知音での実際の復帰通知に先立ち、運転者が前方に視線を向けて道路状況の確認をしたり、更新表示情報を確認することで、段階的に状況認識(Situation Awareness)に必要な情報を取り込み始めることも有効な早期復帰手順であり、それらに対する評価を報酬対象に拡張利用をしてもよい。 Of course, the return request notification is designed to be issued at the required time due to the harmful effect of issuing it earlier than necessary, and the driver's behavior evaluation is incorporated as a return preparation from the advance notification sound that will be notified to the driver from now on. You may. In particular, once involved in NDRA for a long time, the situation in front of the road may change as the itinerary progresses, such as the scenery, the situation of surrounding vehicles, and even the weather immediately after receiving the return request. be. Information necessary for situation awareness in stages by the driver looking forward to check the road condition and checking the updated display information prior to the actual return notification with the notification sound. It is also an effective early recovery procedure to start taking in, and the evaluation for them may be extended and used as a reward target.
 目的とされる獲得情報として、さらに、学習により定常安定復帰を基準にした遅延や素早い復帰品質評価も含まれる。なお、早い動作であっても、それが慌てた動作であるか否かを判別して、慌てた動作であると判別された場合、低質復帰行動に分類される。すなわち、復帰開始が遅れ、慌てて挽回しようとした場合、安全性が損なわれるリスクが高まるので、このような慌てた復帰の回避を目的とする。 The target acquisition information also includes delays based on steady-state stable return and quick return quality evaluation by learning. Even if it is a fast movement, it is determined whether or not it is a hasty movement, and if it is determined to be a hasty movement, it is classified as a low quality return behavior. That is, if the start of the return is delayed and an attempt is made to recover in a hurry, the risk of impairing safety increases, so the purpose is to avoid such a rushed return.
 抽出される特徴量および情報は、運転操舵姿勢(運転操舵の可否)、運転姿勢外なら復帰遅延予測などとなる。重みは、20%とされている。 The extracted features and information are the driving steering posture (whether driving steering is possible or not), and if it is outside the driving posture, the return delay prediction, etc. The weight is set to 20%.
 表6は、運転者の足の動き評価に基づくQoA評価の例と、眼球挙動の詳細評価に基づくQoA評価の例とを示す。 Table 6 shows an example of QoA evaluation based on the driver's foot movement evaluation and an example of QoA evaluation based on the detailed evaluation of eyeball behavior.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 運転者の足の動きに関し、抽出される変数が足の骨格モデルに基づく動きの評価であり、目的とされる獲得情報は、直ちにブレーキペダルやアクセルペダルの操作が可能な状態か否か、可能でない場合の復帰に要する時間の予測、となる。復帰に要する時間は、学習により初期状態から要する遅延時間を推定する。抽出される特徴量および情報は、運転操舵行動から離れ、足を組む、運転席を回転させる、などの運転姿勢の復帰に時間を要する姿勢変更の発生、などとなる。重みは、15%とされている。 Regarding the movement of the driver's foot, the extracted variable is the evaluation of the movement based on the skeleton model of the foot, and the target acquired information is whether or not the brake pedal and accelerator pedal can be operated immediately. If not, the time required for recovery is predicted. As for the time required for recovery, the delay time required from the initial state is estimated by learning. The extracted feature amount and information are the occurrence of a posture change that takes time to return to the driving posture, such as moving away from the driving steering behavior, crossing the legs, rotating the driver's seat, and the like. The weight is said to be 15%.
 運転者の眼球挙動に関し、抽出される変数がサッケードやマイクロサッケード、固視の発現評価とされる。これらは、眼球挙動の座標、極座標に対する評価に基づき抽出される。目的とされる獲得情報は、視覚情報による探索が可能な覚醒度であるか否か、気配り度が高いか否か、などとなる。抽出される特徴量および情報は、視覚情報探索の有無、視覚情報記憶の参照の有無、通知情報確認の有無、などとなる。重みは、情報確認探索の挙動の発現の有無による覚醒度の指標となり、眼球挙動を未検出で0%、直線での継続的確認で80%、課題対応による高頻度確認で100%とされる。 Regarding the driver's eye behavior, the extracted variables are the expression evaluation of saccade, microsaccade, and fixation. These are extracted based on the evaluation of the coordinates of the eyeball behavior and the polar coordinates. The target acquired information is whether or not the degree of arousal can be searched by visual information, whether or not the degree of attentiveness is high, and the like. The extracted feature amount and information include the presence / absence of visual information search, the presence / absence of reference to visual information storage, the presence / absence of notification information confirmation, and the like. The weight is an index of the degree of arousal depending on the presence or absence of the behavior of the information confirmation search, and is 0% for undetected eyeball behavior, 80% for continuous linear confirmation, and 100% for high-frequency confirmation by task response. ..
 また、運転者の眼球運動に関し、抽出される変数および目的とされる獲得情報が上述と同様であっても、抽出される特徴量および情報が上述と異なり、通知情報の内容に対する視覚情報探索、例えば通知内容のメッセージ確認の眼球挙動、固視近傍に対してのマクロサッカード挙動の発現評価などである場合、重みも、上述と異なるものとなる。この場合、重みは、引継ぎ地点変更通知や更新通知に対して未反応で0%、通知後に速やかな通知内容、要因の視覚確認がなされた場合には、100%、とされる。 Further, regarding the driver's eye movement, even if the extracted variables and the target acquired information are the same as described above, the extracted feature amount and information are different from the above, and the visual information search for the content of the notification information is performed. For example, in the case of eyeball behavior of message confirmation of notification content, expression evaluation of macrosaccade behavior in the vicinity of fixation, etc., the weights are also different from the above. In this case, the weight is 0% without response to the transfer point change notification or update notification, and 100% when the notification content is promptly notified after the notification and the cause is visually confirmed.
(3-6-6.実施形態に係るDMSまとめ)
 運転者の状態そのものを評価する技術は、既知である。一方、運転者が実際に復帰する準備ができているかどうかをシステムが決定することや、システムが出したRTI(運転交代要請)指示に運転者が従う意欲があるか否かに応じて後で報酬決定するための動作パフォーマンスを評価することを困難にする「復帰動作の質」の定量化については、知られていない。RTI指示の重大度に応じた報酬フィードバック方式が無いと、運転者に対し、重大な状況を優先する責任を持たせることが困難である。
(3-6-6. DMS summary according to the embodiment)
Techniques for assessing the driver's condition itself are known. On the other hand, later depending on whether the system decides whether the driver is actually ready to return and whether the driver is willing to follow the RTI (Driving Change Request) instructions issued by the system. Nothing is known about the quantification of "quality of return motion" that makes it difficult to assess motion performance for reward determination. Without a reward feedback method according to the severity of the RTI instructions, it is difficult to hold the driver responsible for prioritizing critical situations.
 この場合、運転者のワーキングメモリは、復帰が強く求められる状況でも注意力を高めようとすることができない単調な注意力レベルに留まり、交通量の多い道路でMRMを実行することになり、後部衝突のリスクや特定の道路上で交通渋滞を引き起こすリスクが高くなる。 In this case, the driver's working memory remains at a monotonous level of attention that cannot attempt to increase attention even in situations where recovery is strongly required, resulting in MRM execution on busy roads and rear. There is an increased risk of collisions and traffic congestion on certain roads.
 そのため、実施形態に係るDMS(Driver Monitoring System)では、上述もしたように、次に記す方法を用いて、運転者の監視を行う。 Therefore, in the DMS (Driver Monitoring System) according to the embodiment, as described above, the driver is monitored by using the method described below.
(1)運転者を直接的に監視する直接感知技術を用いて、運転タスクに対する運転者の準備状態を監視する。
(2)自動運転モードの非運転タスクから運転タスク(手動運転)に戻るのに要する時間および運転者位置の適切性の観点から、運転者の対応を推定および監視する。
(3)運転者の非運転動作を監視することによって、運転者の注意力散漫に関する指標を推定する。
(4)運転者が妥当と判断した運転位置に基づいて運転者の対応および準備状態を監視する、運転者にパーソナライズ化した監視を行う。
(5)運転者の各部の位置および挙動に関連した運転者の特徴をパラメータ化し、経時的な統計分析のために記録する。これは、時間内でのシステムの適合、および、運転者挙動の参照に使用できる。
(6)検知された運転者の準備状態および対応を、自動運転レベル3および4での警告および介入に対する対応が最も優れている最適運転者システムを設計するために使用する。
(7)運転者の頭部あるいは顔、上半身、脚、腕、手の3Dモデルを取得し、特定の人および運転者の状態(例えば感情、疲労、病気、注意力散漫などの状態)に適合させる。
(8)運転者の挙動を高精度に推定するため、運転者の身体骨格全体の動きを追跡する。
(9)特定の状況(ODDおよび環境条件など)における共通の運転者挙動、パーソナライズした一般的挙動、および、近い過去の一連の動作に基づき、現在および近い将来における運転者の姿勢および挙動を推定する。
(10)検知して分析された復帰に係る行動の質についての運転者へのフィードバックを行うHMIを構築する。
(11)少なくとも視覚情報によって構成され、音響または触覚によるHMIをさらに含む、フィードバックHMIを構築する。
(12)検知から数秒または最大10秒以上遅れることなくタイムリーである、第1のレベルのフィードバック情報を提供する。
(13)視覚的なフィードバックによって運転者の過去の復帰の質の信用度と共に運転者に提示される、行動の質(QoA)の指標化を行う。
(14)データ改竄を回避するために、所定の方法で検索可能な不揮発性データストレージにデータを記録および保存して、データの解析を行う。
(1) Directly monitor the driver The driver's readiness for the driving task is monitored using the direct sensing technology.
(2) Estimate and monitor the driver's response from the viewpoint of the time required to return from the non-driving task in the automatic driving mode to the driving task (manual driving) and the appropriateness of the driver's position.
(3) By monitoring the driver's non-driving behavior, an index regarding the driver's distraction is estimated.
(4) Personalized monitoring of the driver is performed by monitoring the driver's response and preparation status based on the driving position that the driver deems appropriate.
(5) Parameterize the driver's characteristics related to the position and behavior of each part of the driver and record them for statistical analysis over time. It can be used to adapt the system in time and to refer to driver behavior.
(6) The detected driver readiness and response are used to design the optimal driver system with the best response to warnings and interventions at automated driving levels 3 and 4.
(7) Obtain a 3D model of the driver's head or face, upper body, legs, arms, and hands, and adapt it to the conditions of a specific person and driver (for example, emotions, fatigue, illness, distraction, etc.). Let me.
(8) In order to estimate the driver's behavior with high accuracy, the movement of the entire body skeleton of the driver is tracked.
(9) Estimate driver attitudes and behaviors now and in the near future based on common driver behaviors, personalized general behaviors, and a series of behaviors in the near past in specific situations (such as ODD and environmental conditions). do.
(10) Build an HMI that gives feedback to the driver about the quality of the behavior related to the return that was detected and analyzed.
(11) Construct a feedback HMI that is composed of at least visual information and further includes an acoustic or tactile HMI.
(12) Provide first level feedback information that is timely without delay of several seconds or up to 10 seconds or more from detection.
(13) The quality of behavior (QoA), which is presented to the driver along with the credibility of the quality of the driver's past return by visual feedback, is indexed.
(14) In order to avoid data falsification, data is recorded and stored in a non-volatile data storage that can be searched by a predetermined method, and the data is analyzed.
 これらの各項を実現するための技術として、輝度(またはRGB)情報および深度情報を取得するための3D情報取得技術が必要となる。このような3D情報取得技術を実現するための一例として、D-ToF(Direct-Time of Flight)カメラを適用できる。3D情報取得および処理は、特定の運転者の状態(例えば覚醒状態、注意力散漫状態、病変など)を高精度に識別および認識し、運転者の姿勢、身体および身体部位を動的に特徴付けることを可能にする。 As a technique for realizing each of these items, a 3D information acquisition technique for acquiring luminance (or RGB) information and depth information is required. As an example for realizing such a 3D information acquisition technology, a D-ToF (Direct-Time of Flight) camera can be applied. 3D information acquisition and processing accurately identifies and recognizes a particular driver's condition (eg, wakefulness, distraction, lesions, etc.) and dynamically characterizes the driver's posture, body and body parts. Enables.
 さらに、深度情報および輝度情報により、運転者の3D頭部/顔モデルを生成し、深度情報や輝度情報の入力に合わせて運転者を3Dモデルに適合させることが可能である。 Furthermore, it is possible to generate a 3D head / face model of the driver from the depth information and the brightness information, and adapt the driver to the 3D model according to the input of the depth information and the brightness information.
 その結果、限られた制御ポイントで運転者の3Dメッシュモデルが得られる。これにより、剛体変換(頭部位置)、および、非剛体変形による顔面ジェスチャおよび目の状態監視を高精度に実行可能となる。 As a result, a 3D mesh model of the driver can be obtained with a limited number of control points. This makes it possible to perform rigid transformation (head position) and face gesture and eye condition monitoring by non-rigid deformation with high accuracy.
 運転者のパーソナルシステムのカスタマイズに加え、運転者の身体部位の3D位置も取得する必要がある。これは、主に身体骨格と、頭部の位置および向きとを含む。すなわち、頭部の位置と向きは、眼の状態の監視に必要な顔面特徴および顔面ジェスチャを効率的に抽出する上で、重要な役割を果たす。一方、身体骨格の追跡は、運転者の手の状況と姿勢の監視、および既知のODDで想定される挙動に対する運転者の挙動を評価するために使用される動作監視において、重要な役割を果たす。 In addition to customizing the driver's personal system, it is also necessary to acquire the 3D position of the driver's body part. This mainly includes the skeleton of the body and the position and orientation of the head. That is, the position and orientation of the head play an important role in efficiently extracting facial features and facial gestures necessary for monitoring the condition of the eyes. Body skeleton tracking, on the other hand, plays an important role in monitoring the condition and posture of the driver's hands and in motion monitoring used to assess the driver's behavior with respect to the behavior expected in known ODDs. ..
 さらに、腕、脚および手は、3D情報取得技術を用いて、3Dドメインにおいて高精度に位置合わせすることができる。これにより、将来的な運転者の挙動をより高精度で予測可能となるだけでなく、運転者挙動に関連した身体姿勢および動作の取得を大幅に簡易化することができる。 Furthermore, the arms, legs and hands can be aligned with high accuracy in the 3D domain using 3D information acquisition technology. This not only makes it possible to predict future driver behavior with higher accuracy, but also makes it possible to greatly simplify the acquisition of body postures and movements related to driver behavior.
 上述した、運転者毎にカスタマイズ可能なDMSは、3D感知技術の輝度情報および深度情報から抽出される特徴について、運転者毎に学習させる必要がある。運転者に学習させる内容の例としては、次の各項が考えられる。 The above-mentioned DMS that can be customized for each driver needs to be learned for each driver about the features extracted from the luminance information and depth information of the 3D sensing technology. The following items can be considered as examples of the contents to be learned by the driver.
・通常の運転者位置に着座し、フロントガラスの方向を向くこと。
・通常の運転者位置に着座し、カメラの方向を向くこと。
・変動的な車外および車内の状況に応じた規定に従って運転すること。
・具体的に定められたHMIインタラクションで挙動を監視すること。
・ Sit in the normal driver's position and face the windshield.
・ Sit in the normal driver's position and face the camera.
・ Drive in accordance with the rules according to the variable outside and inside conditions.
-Monitoring behavior with specifically defined HMI interactions.
 また、効率的なシステムであれば、車両内に設置するセンサの数は最小限でよい。したがって、カメラ位置と、十分に広い視野のカメラ技術は、運転者監視システムを設計する上で非常に重要である。 Also, if it is an efficient system, the number of sensors installed in the vehicle can be minimized. Therefore, camera position and camera technology with a sufficiently wide field of view are very important in designing a driver surveillance system.
 カメラの位置は、運転者の身体の全体を撮像可能な位置であることが望ましい。また、被写体である運転者の身体に関し、カメラをオクルージョンが最小になるように配置すると、より好ましい。カメラの視野は、身体の異なる部位および周囲(例えば、同乗者)を同時に監視可能にする広さを有していると、好ましい。 It is desirable that the position of the camera is a position where the entire body of the driver can be imaged. Further, it is more preferable to arrange the camera so that the occlusion is minimized with respect to the body of the driver who is the subject. The field of view of the camera is preferably wide enough to simultaneously monitor different parts of the body and its surroundings (eg, passengers).
 さらに、正確な3Dモデルの位置合わせに必要な3D情報と、2D画像あるいはテクスチャコンテンツとを同時に取得可能な監視カメラ技術を適用できると好ましい。すなわち、運転者の挙動を高精度に検知するためには、運転者の全ての身体部位を確実に監視するために重要な3D情報と、顔面の特徴を抽出する上で重要な2D画像やテクスチャコンテンツとを取得できる必要がある。 Furthermore, it is preferable to be able to apply surveillance camera technology that can simultaneously acquire 3D information necessary for accurate 3D model positioning and 2D images or texture contents. That is, in order to detect the driver's behavior with high accuracy, 3D information that is important for reliably monitoring all body parts of the driver, and 2D images and textures that are important for extracting facial features. You need to be able to get the content.
 さらにまた、ノイズ変数への適合性が高いと、運転者の挙動の高精度な検知が容易となり、好ましい。例えば、多重露光方法と組み合わせて、変動する照明条件に対するロバスト性を向上させることが考えられる。また、上述した、カメラをオクルージョンが最小になるように配置することも、ノイズ変数への適合性の点で効果的である。さらに、異なるタイプの運転者(年齢、民族性など)および運転者の挙動を学習することも、効果的である。 Furthermore, it is preferable that the compatibility with noise variables is high because it is easy to detect the behavior of the driver with high accuracy. For example, it is conceivable to improve the robustness against fluctuating lighting conditions in combination with the multiple exposure method. It is also effective to arrange the camera so that the occlusion is minimized as described above in terms of compatibility with noise variables. In addition, learning different types of drivers (age, ethnicity, etc.) and their behavior is also effective.
 本開示の実施形態に係るDMSでは、運転者が自動運転から手動運転に復帰する際の復帰行動の「行動の質」を数値化することにより、自動運転レベル3および自動運転レベル4での自動運転において、自動運転の後に手動運転を再開するようシステムが運転者に要求する際に、システムは、運転者の行動を評価・予測することができる。 In the DMS according to the embodiment of the present disclosure, by quantifying the "quality of action" of the return action when the driver returns from the automatic driving to the manual driving, the automatic driving level 3 and the automatic driving level 4 are automatically performed. In driving, the system can evaluate and predict the driver's behavior when the system requires the driver to resume manual driving after automatic driving.
 実施形態に係るDMSでは、この一連の評価処理から得られた結果により、システムは、運転者の動作に対する、パーソナライズ化した報酬およびペナルティの評価値を適宜、決定することが可能となる。これにより、実施形態に係るDMSを適用することで、運転者は、システムからの強制ではなく、NDRAを続けることを中断または中止して、システムからの介入要求に従って早期に手動運転に復帰するよう、運転者の意識の中での動作の優先順位付けに直接的に影響を与えることが可能となる。 In the DMS according to the embodiment, the system can appropriately determine the evaluation value of the personalized reward and penalty for the driver's movement based on the result obtained from this series of evaluation processes. Thereby, by applying the DMS according to the embodiment, the driver is not forced by the system, but suspends or discontinues the continuation of the NDRA, and returns to the manual operation at an early stage according to the intervention request from the system. , It is possible to directly influence the prioritization of actions in the driver's consciousness.
 なお、本明細書では、自動運転の利用用途を、主として自動運転レベル3や自動運転レベル4と呼ばれている用途に焦点をおいて事例を説明している。一方、一般の車両は、特定の自動運転レベルに特化して利用することは想定されず、機能的に、より運転者の介在を要しない、より高度な自動運転が可能な条件として、自動運転のレベル3であったり、自動運手のレベル4であったりするに過ぎない。 In this specification, examples are described focusing on the applications of automatic driving, which are mainly called automatic driving level 3 and automatic driving level 4. On the other hand, general vehicles are not expected to be used specifically for a specific level of autonomous driving, and functionally, autonomous driving is a condition that enables more advanced autonomous driving without the intervention of the driver. It is only level 3 of the automatic driver or level 4 of the automatic driver.
 そのため、運転者が実際に当該性能の車両を利用する際には、環境やその他条件次第で、運転支援に限定される想定の自動運転レベル1や自動運転レベル2の自動運転を利用するなど、あらゆる組み合わせ利用があり得る。これら利用区分は、車両やシステムの設計視点、利用制度の議論の過程で用いられてきた定義用語に過ぎず、運転者の利用視点では、その間の利用境界は、明示的なものとして今後も定義通りに利用が限定されるとは限らない。 Therefore, when the driver actually uses the vehicle with the performance, depending on the environment and other conditions, the assumed automatic driving level 1 or automatic driving level 2 limited to driving support may be used. Any combination can be used. These usage categories are merely definition terms that have been used in the process of discussing vehicle and system design perspectives and usage systems, and from the driver's usage perspective, the usage boundaries between them will continue to be defined as explicit. Usage is not always limited to the street.
 さらに、制度として自動運転レベル2であっても、より高度な運転支援が提供されると、運転者は、自動運転レベル2の「特定条件下での自動運転機能」である自動運転支援として提供されるODD状態であっても、安定した道路走行区間でリスクが極めて小さい状態が続けば、自動運転レベル3の「条件付き自動運転」の利用感覚は、このより高度な自動運転レベル2の利用感覚と差異が少ない上、自動運転レベル2の利用時に起こる注意低下等に起因する予防安全のために、運転者の覚醒状態低下の監視も求められる。 Furthermore, even if the system is automatic driving level 2, if more advanced driving support is provided, the driver will provide it as automatic driving support, which is the "automatic driving function under specific conditions" of automatic driving level 2. Even in the ODD state, if the risk remains extremely small in a stable road driving section, the feeling of using "conditional automatic driving" of automatic driving level 3 will be the use of this more advanced automatic driving level 2. In addition to having little difference from the sensation, it is also required to monitor the decrease in the alert state of the driver for preventive safety caused by the decrease in attention that occurs when using the automatic driving level 2.
 そのため、本実施形態での例示以外にも、自動運転レベル0~自動運転レベル2に至る利用時の運転者監視で、本実施形態において説明した機能を拡張利用可能であることは自明であり、敢えて自動運転レベル3以下の自動運転機能を実施例として分けて記載はしていない。すなわち、実施形態の適用範囲は、SAEの自動運転のレベルの定義通りに記載した区分に限定されるものではない。 Therefore, in addition to the examples in the present embodiment, it is obvious that the functions described in the present embodiment can be extended and used in the driver monitoring at the time of use from the automatic driving level 0 to the automatic driving level 2. The automatic driving function of automatic driving level 3 or lower is not described separately as an example. That is, the scope of application of the embodiment is not limited to the categories described according to the definition of the level of automatic operation of SAE.
<補足>
 上述した実施形態は、人、つまり運転者が自動運転や高度運転支援機能を用いる際に、これら機能を導入することで起こり得る心理的な安心感が引き起こす行動判断心理の変化として、自動運転機能に対する過剰依存により、既存の手動運転時に求められていた安全な操舵行動判断の為に割り当てていた注意が低下する対策を提供する。
<Supplement>
In the above-described embodiment, when a person, that is, a driver uses an automatic driving or an advanced driving support function, the automatic driving function is a change in behavioral judgment psychology caused by a psychological sense of security that can occur by introducing these functions. It provides measures to reduce the attention assigned for safe steering behavior judgment required during existing manual driving due to excessive dependence on.
 その対策手段として、運転者の車両利用の際の運転者に対する行動観測からその行動評価手法を提供し、指標化された数値を用いて、運転者の行動の良し悪しを運転者に直接または間接的に、走行中条件が許容する条件に応じてシステムから運転者にフィードバックする。より具体的には、運転者の自身の行動の影響として、行動結果に対してどのような反映がなされるか、視覚的、聴覚的、触覚的、臭覚的、いずれかの一つ以上の形で運転者に対してフィードバックされる。このフィードバックにより、運転者自身の行動の影響が直接的または間接的報酬やペナルティとして、物理的、心理的、制度的に与えられる手段を通して運転者に与えられることで、運転者の行動心理が、繰り返し利用を通して、上述した自動運転システムへの過剰依存を予防、または依存を低減する行動変容を促す技術に関する。 As a countermeasure, we provide a behavior evaluation method from the behavior observation of the driver when the driver uses the vehicle, and use the indexed numerical value to directly or indirectly tell the driver whether the driver's behavior is good or bad. Therefore, the system feeds back to the driver according to the conditions allowed by the driving conditions. More specifically, the influence of the driver's own behavior, how it is reflected on the behavioral result, one or more of visual, auditory, tactile, and odor. It is fed back to the driver. This feedback gives the driver the influence of his or her own behavior as a direct or indirect reward or penalty through physical, psychological and institutional means, thereby giving the driver a behavioral psychology. The present invention relates to a technique for promoting behavior change to prevent or reduce dependence on the above-mentioned automatic driving system through repeated use.
 運転者が自動運転利用を通してシステムが提供する自動運転機能に過剰依存してシステムにより自動運転機能の提供可能な限界領域を超えて運転者の手動運転対処が望めない場合が起こり得る。本開示は、このような場合であっても、システムにより、社会活動の要となり得る道路環境の必要性に応じて、リスクの最小化処理としての例えばMRMによる車両の道路区間での緊急停車を予防し、且つそのための、運転者における、手動運転への復帰要請に応じて適切に早期復帰行動を取るための行動心理を成就させるために、行動心理が正しく作用して重要度に応じた階層的リスク判断が可能な情報提示を、状況変化、つまりは時間経過に伴い直感的な時間接近感覚を伴う形で提供が可能な技術に関する。 The driver may be overly dependent on the automatic driving function provided by the system through the use of automatic driving, and may not be able to expect the driver's manual driving response beyond the limit range that the system can provide the automatic driving function. In the present disclosure, even in such a case, the system provides an emergency stop of the vehicle in the road section of the vehicle, for example, by MRM as a risk minimization process according to the necessity of the road environment which may be the key to social activities. In order to prevent and to achieve the behavioral psychology for the driver to take appropriate early return behavior in response to the request for return to manual driving, the behavioral psychology works correctly and the hierarchy according to the importance. It relates to a technology that can provide information presentation that enables objective risk judgment with a change in circumstances, that is, an intuitive sense of approaching time with the passage of time.
 さらに、本開示に係るシステムが提供する、的確なリスク判断が可能な情報提示に沿った運転者の対応の優劣、つまりは、求められる手動運転復帰の際の行動品質評価により、速やかで的確な復帰行動が運転者の得ることができる報奨、ベネフィット、デメリットとして行動学習される。本開示に係る自動運転システムは、人間工学的に見ても、社会が求める自動運転機能の利点を引き出しつつ、人の行動心理に沿った制御方法を提供する、次に示す一連の技術により構成される。 Furthermore, the superiority or inferiority of the driver's response in line with the information presentation that enables accurate risk judgment provided by the system related to this disclosure, that is, the required behavioral quality evaluation at the time of returning to manual driving, promptly and accurately The return behavior is learned as a reward, benefit, and disadvantage that the driver can obtain. The automatic driving system according to the present disclosure is composed of the following series of technologies that provide a control method in line with human behavioral psychology while drawing out the advantages of the automatic driving function required by society from an ergonomic point of view. Will be done.
・運転者の行動品質評価技術
・運転者の行動評価結果の指標化技術
・運転者へ提供するリスク判断とその経過推移を予測するHMI
・運転者への階層的なリスク別情報提供による非単調リスク情報を時系列的に提供するHMI
・運転者に対する、行動判断時での将来リスクの可視化(加減点表示を将来罰則、制限のフィードバック表示)を行うHMIによるワーキングメモリへの記憶投影
・運転者に対するODD等の自動運転を利用する利用許容条件の直感的、且つ時系列的な提供
・ Driver's behavior quality evaluation technology ・ Driver's behavior evaluation result indexing technology ・ HMI that predicts risk judgment and its progress to be provided to the driver
・ HMI that provides non-monotonic risk information in chronological order by providing hierarchical risk-specific information to drivers
・ Visualization of future risks at the time of action judgment for the driver (future penalties for addition / subtraction display, feedback display of restrictions) Memory projection to working memory by HMI ・ Use of automatic driving such as ODD for the driver Intuitive and timely provision of tolerances
 本開示に係る自動運転システムは、これら各技術等を通し、運転者に対して時系列的なリスク変動、リスク重要度、HMIを通してそれらの選択肢提示を行うことで、自動運転の利用時の感覚的リスクバランスとの上で、メリット最大化の運転者の行動変容、自己学習を可能とする機能を提供する。 The autonomous driving system according to the present disclosure provides the driver with time-series risk fluctuations, risk importance, and options through HMI through these technologies, etc., so that the driver feels when using autonomous driving. It provides a function that enables the driver's behavior change and self-learning to maximize the merit on the risk balance.
 そして、運転者の自然な利用感覚において本開示に係る技術を利用することで、自動運転の利用時に運転者自身が取る行動が及ぼす影響を近未来描写して可視化される。その結果、本開示に係る自動運転システムは、直接的に感じられない、自動運転利用時のMRMへの過剰依存が引き起こすおそれのある渋滞やその結果として追突事故など、社会的に負となる影響を、適切なHMIにより運転者に対して投影することができる。これにより、本開示に係る自動運転システムは、人間の行動心理を取り入れた、社会的活動を阻害させない目的での利用に好適な制御を提供することが可能であり、本実施形態の記載から当業者には明らかな他の効果や実施方法を奏し得る。 Then, by using the technology related to this disclosure in the driver's natural sense of use, the influence of the actions taken by the driver himself when using automatic driving can be visualized in the near future. As a result, the autonomous driving system according to the present disclosure has negative social impacts such as traffic congestion that cannot be directly felt and may be caused by excessive dependence on MRM when using autonomous driving, and as a result, a rear-end collision. Can be projected onto the driver with the appropriate HMI. Thereby, the automatic driving system according to the present disclosure can provide a control suitable for use for the purpose of incorporating human behavioral psychology and not hindering social activities. Other effects and methods of implementation that are obvious to those skilled in the art can be achieved.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成も取ることができる。
(1)
 車両の運転者の状態を取得する取得部と、
 前記車両を自律走行させる自動運転を制御する自動運転制御部と、
を備え、
 前記自動運転制御部は、
 前記取得部に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
情報処理装置。
(2)
 前記自動運転制御部は、
 前記車両の前記自動運転中の状況に応じて前記車両を退避走行させる制御を行い、前記退避走行させる前に前記自動運転から前記手動運転に復帰させるために、前記運転者監視を行う、
前記(1)に記載の情報処理装置。
(3)
 前記取得部は、
 前記運転者の骨格情報と顔の情報とを取得し、
 前記自動運転制御部は、
 前記運転者の骨格情報と顔の情報とに基づき前記運転者監視を行う、
前記(1)または(2)に記載の情報処理装置。
(4)
 前記自動運転制御部は、
 前記取得部により取得された前記骨格情報と前記顔の情報とをパラメータ化し、前記パラメータ化により生成されたパラメータに基づき、前記復帰品質の前記数値化を行う、
前記(3)に記載の情報処理装置。
(5)
 前記自動運転制御部は、
 前記骨格情報に基づき前記運転者の前記車両内での位置を追跡し、追跡された前記位置に基づき前記復帰品質を求める、
前記(3)または(4)に記載の情報処理装置。
(6)
 前記自動運転制御部は、
 前記骨格情報に基づき前記運転者の足の動きを検出し、検出された前記足の動きに基づき前記復帰品質を求める、
前記(3)乃至(5)の何れかに記載の情報処理装置。
(7)
 前記自動運転制御部は、
 前記骨格情報および前記顔の情報に基づき前記運転者の頭部の位置および向きを検出し、検出された前記頭部の位置および向きに基づき前記復帰品質を求める、
前記(3)乃至(6)の何れかに記載の情報処理装置。
(8)
 前記自動運転制御部は、
 前記顔の情報に基づき前記運転者の眼球の挙動を検出し、検出された前記眼球の挙動に基づき前記復帰品質を求める、
前記(3)乃至(7)の何れかに記載の情報処理装置。
(9)
 前記自動運転制御部は、
 前記眼球の挙動に基づき前記運転者の覚醒状態を推定し、推定された前記覚醒状態に基づき前記復帰品質を求める、
前記(8)に記載の情報処理装置。
(10)
 前記自動運転制御部は、
 前記骨格情報に基づき前記運転者の前記車両の運転席への着座状態を検出し、検出された前記着座状態に基づき前記復帰品質を求める、
前記(3)乃至(9)の何れかに記載の情報処理装置。
(11)
 前記自動運転制御部は、
 前記骨格情報に基づき、前記運転席が非運転位置状態および運転位置状態の何れの状態であるかを、前記着座状態として検出する、
前記(10)に記載の情報処理装置。
(12)
 前記自動運転制御部は、
 前記骨格情報に基づき、前記運転者に対して発した通知への応答動作を検出し、検出された前記応答動作に基づき前記復帰品質を求める、
前記(3)乃至(11)の何れかに記載の情報処理装置。
(13)
 前記骨格情報および前記顔の情報は、それぞれ時間情報を含む、
前記(3)乃至(12)の何れかに記載の情報処理装置。
(14)
 前記自動運転制御部は、
 前記数値化された前記復帰品質に対して、前記復帰品質を評価した評価項目毎に重み付けを行い、前記数値化され前記重み付けされた前記評価項目毎の前記復帰品質を合算して、前記運転者の前記復帰品質の総合評価値を求める、
前記(1)乃至(13)の何れかに記載の情報処理装置。
(15)
 プロセッサにより実行される、
 車両の運転者の状態を取得する取得工程と、
 前記車両を自律走行させる自動運転を制御する自動運転制御工程と、
を含み、
 前記自動運転制御工程は、
 前記取得工程に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
情報処理方法。
(16)
 コンピュータに、
 車両の運転者の状態を取得する取得工程と、
 前記車両を自律走行させる自動運転を制御する自動運転制御工程と、
を実行させ、
 前記自動運転制御工程は、
 前記取得工程に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
ための情報処理プログラム。
The present technology can also have the following configurations.
(1)
The acquisition unit that acquires the state of the driver of the vehicle,
An automatic driving control unit that controls automatic driving to drive the vehicle autonomously,
Equipped with
The automatic operation control unit is
Based on the state of the driver acquired by the acquisition unit, the return quality, which is the quality of action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
Information processing equipment.
(2)
The automatic operation control unit is
Control is performed to evacuate the vehicle according to the situation during the automatic driving of the vehicle, and the driver is monitored in order to return from the automatic driving to the manual driving before the evacuating driving.
The information processing apparatus according to (1) above.
(3)
The acquisition unit
Obtaining the skeleton information and face information of the driver,
The automatic operation control unit is
The driver monitoring is performed based on the skeleton information and the face information of the driver.
The information processing apparatus according to (1) or (2) above.
(4)
The automatic operation control unit is
The skeleton information and the face information acquired by the acquisition unit are parameterized, and the return quality is quantified based on the parameters generated by the parameterization.
The information processing apparatus according to (3) above.
(5)
The automatic operation control unit is
The position of the driver in the vehicle is tracked based on the skeletal information, and the return quality is obtained based on the tracked position.
The information processing apparatus according to (3) or (4) above.
(6)
The automatic operation control unit is
The movement of the driver's foot is detected based on the skeletal information, and the return quality is obtained based on the detected movement of the foot.
The information processing apparatus according to any one of (3) to (5).
(7)
The automatic operation control unit is
The position and orientation of the driver's head are detected based on the skeleton information and the face information, and the return quality is obtained based on the detected position and orientation of the head.
The information processing apparatus according to any one of (3) to (6).
(8)
The automatic operation control unit is
The behavior of the driver's eyeball is detected based on the facial information, and the return quality is obtained based on the detected behavior of the eyeball.
The information processing apparatus according to any one of (3) to (7).
(9)
The automatic operation control unit is
The driver's wakefulness is estimated based on the behavior of the eyeball, and the return quality is obtained based on the estimated wakefulness.
The information processing apparatus according to (8) above.
(10)
The automatic operation control unit is
The seated state of the driver in the driver's seat of the vehicle is detected based on the skeleton information, and the return quality is obtained based on the detected seated state.
The information processing apparatus according to any one of (3) to (9).
(11)
The automatic operation control unit is
Based on the skeleton information, it is detected as the seated state whether the driver's seat is in the non-driving position state or the driving position state.
The information processing apparatus according to (10) above.
(12)
The automatic operation control unit is
Based on the skeleton information, the response operation to the notification issued to the driver is detected, and the return quality is obtained based on the detected response operation.
The information processing apparatus according to any one of (3) to (11).
(13)
The skeleton information and the face information each include time information.
The information processing apparatus according to any one of (3) to (12).
(14)
The automatic operation control unit is
The quantified return quality is weighted for each evaluation item for which the return quality is evaluated, and the return quality for each of the quantified and weighted evaluation items is added up to obtain the driver. To obtain the comprehensive evaluation value of the return quality of
The information processing apparatus according to any one of (1) to (13).
(15)
Performed by the processor,
The acquisition process to acquire the state of the driver of the vehicle and
An automatic driving control process that controls automatic driving to drive the vehicle autonomously,
Including
The automatic operation control process is
Based on the state of the driver acquired in the acquisition process, the return quality, which is the quality of the action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
Information processing method.
(16)
On the computer
The acquisition process to acquire the state of the driver of the vehicle and
An automatic driving control process that controls automatic driving to drive the vehicle autonomously,
To execute,
The automatic operation control process is
Based on the state of the driver acquired in the acquisition process, the return quality, which is the quality of the action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
Information processing program for.
50,50a,50b,50c 俯瞰表示
51a 近距離表示部
51b 中距離表示部
51c 遠距離表示部
53a 自動運転可能区間
53b 復帰体勢維持区間
53c 運転復帰必須区間
80 LDM初期データ
81 運転者個人復帰特性辞書
82 RRR
83 車両ダイナミクス特性
85 道路環境データ
86 自車両情報
90 道路環境静的データ
91 搭載機器情報
92 道路対応可否情報
93 運転者対応可否情報
95 統計標準モデル
96 自己覚醒・復帰行動学習データ
97 運転者の通常運転姿勢データ
100 HMI
101 運転者復帰遅延評価部
102 走行路事前予測性取得範囲推定部
103 遠隔支援管制・操舵支援対応可否モニタリング部
104 運転者行動変容達成レベル推定部
105 自車走行路実績情報提供部
106 ODD適用推定部
107 自動運転利用許可統合制御部
108 運転者行動品質評価部
132 顔・上半身・眼球用カメラ
133 身体姿勢・頭部用カメラ
140 高鮮度更新LDM
200 運転者行動評価部
201a,201b 学習部
202 評価部
220 3D頭部モデル生成処理
230 3D身体モデル生成処理
250 ユーザ不可知分類処理
1010 運転者行動応答評価部
1040 優良復帰操舵行動評価ポイント加算部
1041 ペナルティ行動累計加算記録部
2000 運転者情報生成部
2001,2104 パラメータ生成部
2002 運転者DB
2003 適合部
2004 監視・抽出・変換部
2005 準備状態評価部
2006 バッファメモリ
2100 3D頭部モデル生成部
2101 顔識別情報抽出部
2102 身体モデル生成部
2103 モデル拡張部
2105 記憶部
2202 メッシュ化頭部モデル
2302 身体モデル
10101 入力部
10112 自動運転制御部
50, 50a, 50b, 50c Bird's-eye view display 51a Short-distance display section 51b Medium-distance display section 51c Long-distance display section 53a Automatic operation possible section 53b Return posture maintenance section 53c Operation return required section 80 LDM initial data 81 Driver's individual return characteristic dictionary 82 RRR
83 Vehicle dynamics characteristics 85 Road environment data 86 Own vehicle information 90 Road environment static data 91 Installed equipment information 92 Road compatibility information 93 Driver support availability information 95 Statistical standard model 96 Self-awakening / return behavior learning data 97 Driver's normal Driving posture data 100 HMI
101 Driver return delay evaluation unit 102 Driving road advance predictability acquisition range estimation unit 103 Remote support control / steering support availability monitoring unit 104 Driver behavior change achievement level estimation unit 105 Own vehicle driving road performance information provision unit 106 ODD application estimation Unit 107 Automatic driving permission integrated control unit 108 Driver behavior quality evaluation unit 132 Face / upper body / eyeball camera 133 Body posture / head camera 140 High freshness update LDM
200 Driver behavior evaluation unit 201a, 201b Learning unit 202 Evaluation unit 220 3D head model generation processing 230 3D body model generation processing 250 User unknown classification processing 1010 Driver behavior response evaluation unit 1040 Excellent return steering behavior evaluation point addition unit 1041 Penalty action cumulative addition recording unit 2000 Driver information generation unit 2001, 2104 Parameter generation unit 2002 Driver DB
2003 Conformity unit 2004 Monitoring / extraction / conversion unit 2005 Preparation status evaluation unit 2006 Buffer memory 2100 3D head model generation unit 2101 Face identification information extraction unit 2102 Body model generation unit 2103 Model expansion unit 2105 Storage unit 2202 Meshed head model 2302 Body model 10101 Input unit 10112 Automatic operation control unit

Claims (16)

  1.  車両の運転者の状態を取得する取得部と、
     前記車両を自律走行させる自動運転を制御する自動運転制御部と、
    を備え、
     前記自動運転制御部は、
     前記取得部に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
    情報処理装置。
    The acquisition unit that acquires the state of the driver of the vehicle,
    An automatic driving control unit that controls automatic driving to drive the vehicle autonomously,
    Equipped with
    The automatic operation control unit is
    Based on the state of the driver acquired by the acquisition unit, the return quality, which is the quality of action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
    Information processing equipment.
  2.  前記自動運転制御部は、
     前記車両の前記自動運転中の状況に応じて前記車両を退避走行させる制御を行い、前記退避走行させる前に前記自動運転から前記手動運転に復帰させるために、前記運転者監視を行う、
    請求項1に記載の情報処理装置。
    The automatic operation control unit is
    Control is performed to evacuate the vehicle according to the situation during the automatic driving of the vehicle, and the driver is monitored in order to return from the automatic driving to the manual driving before the evacuating driving.
    The information processing apparatus according to claim 1.
  3.  前記取得部は、
     前記運転者の骨格情報と顔の情報とを取得し、
     前記自動運転制御部は、
     前記運転者の骨格情報と顔の情報とに基づき前記運転者監視を行う、
    請求項1に記載の情報処理装置。
    The acquisition unit
    Obtaining the skeleton information and face information of the driver,
    The automatic operation control unit is
    The driver monitoring is performed based on the skeleton information and the face information of the driver.
    The information processing apparatus according to claim 1.
  4.  前記自動運転制御部は、
     前記取得部により取得された前記骨格情報と前記顔の情報とをパラメータ化し、前記パラメータ化により生成されたパラメータに基づき、前記復帰品質の前記数値化を行う、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The skeleton information and the face information acquired by the acquisition unit are parameterized, and the return quality is quantified based on the parameters generated by the parameterization.
    The information processing apparatus according to claim 3.
  5.  前記自動運転制御部は、
     前記骨格情報に基づき前記運転者の前記車両内での位置を追跡し、追跡された前記位置に基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The position of the driver in the vehicle is tracked based on the skeletal information, and the return quality is obtained based on the tracked position.
    The information processing apparatus according to claim 3.
  6.  前記自動運転制御部は、
     前記骨格情報に基づき前記運転者の足の動きを検出し、検出された前記足の動きに基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The movement of the driver's foot is detected based on the skeletal information, and the return quality is obtained based on the detected movement of the foot.
    The information processing apparatus according to claim 3.
  7.  前記自動運転制御部は、
     前記骨格情報および前記顔の情報に基づき前記運転者の頭部の位置および向きを検出し、検出された前記頭部の位置および向きに基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The position and orientation of the driver's head are detected based on the skeleton information and the face information, and the return quality is obtained based on the detected position and orientation of the head.
    The information processing apparatus according to claim 3.
  8.  前記自動運転制御部は、
     前記顔の情報に基づき前記運転者の眼球の挙動を検出し、検出された前記眼球の挙動に基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The behavior of the driver's eyeball is detected based on the facial information, and the return quality is obtained based on the detected behavior of the eyeball.
    The information processing apparatus according to claim 3.
  9.  前記自動運転制御部は、
     前記眼球の挙動に基づき前記運転者の覚醒状態を推定し、推定された前記覚醒状態に基づき前記復帰品質を求める、
    請求項8に記載の情報処理装置。
    The automatic operation control unit is
    The driver's wakefulness is estimated based on the behavior of the eyeball, and the return quality is obtained based on the estimated wakefulness.
    The information processing apparatus according to claim 8.
  10.  前記自動運転制御部は、
     前記骨格情報に基づき前記運転者の前記車両の運転席への着座状態を検出し、検出された前記着座状態に基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    The seated state of the driver in the driver's seat of the vehicle is detected based on the skeleton information, and the return quality is obtained based on the detected seated state.
    The information processing apparatus according to claim 3.
  11.  前記自動運転制御部は、
     前記骨格情報に基づき、前記運転席が非運転位置状態および運転位置状態の何れの状態であるかを、前記着座状態として検出する、
    請求項10に記載の情報処理装置。
    The automatic operation control unit is
    Based on the skeleton information, it is detected as the seated state whether the driver's seat is in the non-driving position state or the driving position state.
    The information processing apparatus according to claim 10.
  12.  前記自動運転制御部は、
     前記骨格情報に基づき、前記運転者に対して発した通知への応答動作を検出し、検出された前記応答動作に基づき前記復帰品質を求める、
    請求項3に記載の情報処理装置。
    The automatic operation control unit is
    Based on the skeleton information, the response operation to the notification issued to the driver is detected, and the return quality is obtained based on the detected response operation.
    The information processing apparatus according to claim 3.
  13.  前記骨格情報および前記顔の情報は、それぞれ時間情報を含む、
    請求項3に記載の情報処理装置。
    The skeleton information and the face information each include time information.
    The information processing apparatus according to claim 3.
  14.  前記自動運転制御部は、
     前記数値化された前記復帰品質に対して、前記復帰品質を評価した評価項目毎に重み付けを行い、前記数値化され前記重み付けされた前記評価項目毎の前記復帰品質を合算して、前記運転者の前記復帰品質の総合評価値を求める、
    請求項1に記載の情報処理装置。
    The automatic operation control unit is
    The quantified return quality is weighted for each evaluation item for which the return quality is evaluated, and the return quality for each of the quantified and weighted evaluation items is added up to obtain the driver. To obtain the comprehensive evaluation value of the return quality of
    The information processing apparatus according to claim 1.
  15.  プロセッサにより実行される、
     車両の運転者の状態を取得する取得工程と、
     前記車両を自律走行させる自動運転を制御する自動運転制御工程と、
    を含み、
     前記自動運転制御工程は、
     前記取得工程に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
    情報処理方法。
    Performed by the processor,
    The acquisition process to acquire the state of the driver of the vehicle and
    An automatic driving control process that controls automatic driving to drive the vehicle autonomously,
    Including
    The automatic operation control process is
    Based on the state of the driver acquired in the acquisition process, the return quality, which is the quality of the action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
    Information processing method.
  16.  コンピュータに、
     車両の運転者の状態を取得する取得工程と、
     前記車両を自律走行させる自動運転を制御する自動運転制御工程と、
    を実行させ、
     前記自動運転制御工程は、
     前記取得工程に取得された前記運転者の状態に基づき、前記車両の走行が前記自動運転から前記運転者の運転による手動運転に復帰する際の行動の質である復帰品質を求め、求めた前記復帰品質を数値化することで、前記運転者に対する運転者監視を行う、
    ための情報処理プログラム。
    On the computer
    The acquisition process to acquire the state of the driver of the vehicle and
    An automatic driving control process that controls automatic driving to drive the vehicle autonomously,
    To execute,
    The automatic operation control process is
    Based on the state of the driver acquired in the acquisition process, the return quality, which is the quality of the action when the driving of the vehicle returns from the automatic driving to the manual driving by the driver's operation, is obtained and obtained. By quantifying the return quality, the driver is monitored for the driver.
    Information processing program for.
PCT/JP2021/031604 2020-09-07 2021-08-27 Information processing device, information processing method, and information processing program WO2022050200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546298A JPWO2022050200A1 (en) 2020-09-07 2021-08-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150184 2020-09-07
JP2020-150184 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022050200A1 true WO2022050200A1 (en) 2022-03-10

Family

ID=80491769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031604 WO2022050200A1 (en) 2020-09-07 2021-08-27 Information processing device, information processing method, and information processing program

Country Status (2)

Country Link
JP (1) JPWO2022050200A1 (en)
WO (1) WO2022050200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115359532A (en) * 2022-08-23 2022-11-18 润芯微科技(江苏)有限公司 Human face emotion capturing and outputting device based on 3D sensing
JP7496447B2 (en) 2022-09-12 2024-06-06 ソフトバンク株式会社 Monitoring support system, control method for monitoring support device, and control program for monitoring support device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115356A (en) * 2014-12-12 2016-06-23 ソニー株式会社 Automatic drive control device, automatic drive control method, and program
JP2018127112A (en) * 2017-02-08 2018-08-16 パナソニックIpマネジメント株式会社 Arousal level estimation device and arousal level estimation method
JP2018180689A (en) * 2017-04-05 2018-11-15 株式会社デンソー Driving shift control system and driving shift control method
WO2019097944A1 (en) * 2017-11-17 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 Information processing device and information processing method
WO2019188398A1 (en) * 2018-03-30 2019-10-03 ソニーセミコンダクタソリューションズ株式会社 Information processing device, moving apparatus, method, and program
WO2020054458A1 (en) * 2018-09-13 2020-03-19 ソニーセミコンダクタソリューションズ株式会社 Information processing device, transport device and method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115356A (en) * 2014-12-12 2016-06-23 ソニー株式会社 Automatic drive control device, automatic drive control method, and program
JP2018127112A (en) * 2017-02-08 2018-08-16 パナソニックIpマネジメント株式会社 Arousal level estimation device and arousal level estimation method
JP2018180689A (en) * 2017-04-05 2018-11-15 株式会社デンソー Driving shift control system and driving shift control method
WO2019097944A1 (en) * 2017-11-17 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 Information processing device and information processing method
WO2019188398A1 (en) * 2018-03-30 2019-10-03 ソニーセミコンダクタソリューションズ株式会社 Information processing device, moving apparatus, method, and program
WO2020054458A1 (en) * 2018-09-13 2020-03-19 ソニーセミコンダクタソリューションズ株式会社 Information processing device, transport device and method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115359532A (en) * 2022-08-23 2022-11-18 润芯微科技(江苏)有限公司 Human face emotion capturing and outputting device based on 3D sensing
JP7496447B2 (en) 2022-09-12 2024-06-06 ソフトバンク株式会社 Monitoring support system, control method for monitoring support device, and control program for monitoring support device

Also Published As

Publication number Publication date
JPWO2022050200A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN112672943B (en) Information processing apparatus, mobile device, method, and program
CN111315627B (en) Information processing apparatus and information processing method
JP7155122B2 (en) Vehicle control device and vehicle control method
US20240294194A1 (en) Information processing apparatus, moving apparatus, and method, and program
JP7080598B2 (en) Vehicle control device and vehicle control method
CN112041910B (en) Information processing apparatus, mobile device, method, and program
CN111247394B (en) Information processing apparatus and information processing method
WO2022050199A1 (en) Information processing device, information processing method, and information processing program
JP7431223B2 (en) Information processing device, mobile device, method, and program
JPWO2019202881A1 (en) Information processing equipment, mobile devices, information processing systems, and methods, and programs
KR20200113202A (en) Information processing device, mobile device, and method, and program
WO2022050200A1 (en) Information processing device, information processing method, and information processing program
CN114930422B (en) Information processing apparatus, mobile device, information processing system, information processing method, and program
WO2023277012A1 (en) Information processing system and information processing device
JP7238193B2 (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864258

Country of ref document: EP

Kind code of ref document: A1