WO2022050187A1 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
WO2022050187A1
WO2022050187A1 PCT/JP2021/031538 JP2021031538W WO2022050187A1 WO 2022050187 A1 WO2022050187 A1 WO 2022050187A1 JP 2021031538 W JP2021031538 W JP 2021031538W WO 2022050187 A1 WO2022050187 A1 WO 2022050187A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
antenna
wireless communication
communication system
window glass
Prior art date
Application number
PCT/JP2021/031538
Other languages
French (fr)
Japanese (ja)
Inventor
聡 望月
秀樹 橋爪
晴彦 儘田
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2022050187A1 publication Critical patent/WO2022050187A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • B64U50/35In-flight charging by wireless transmission, e.g. by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a wireless communication system.
  • 5G which is currently operated as a wireless communication system, uses a high-frequency carrier wave of several GHz to several tens of G, and it is expected that a higher-frequency carrier wave will be used in the next-generation 6G and 7G wireless communication systems. Will be done. In addition, it is expected that the occupied bandwidth will be widened from several hundred MHz to several GHz.
  • a relay station or a base station in a wireless communication system is configured by, for example, a UAV (Unmanned Aerial Vehicle) such as a drone (see, for example, Patent Document 1).
  • UAV Unmanned Aerial Vehicle
  • a drone By moving a drone that functions as a relay station or a base station, the problem of radio wave propagation distance can be solved.
  • the wireless communication system includes a UAV that functions as a relay station or a base station, a terminal that receives a carrier wave via the UAV, and an antenna that receives power based on electromagnetic waves. It is provided with a window glass that wirelessly feeds the power received by the antenna to other electrically operating devices including the UAV via the antenna.
  • An example of the configuration of the antenna unit arranged on one window glass will be described.
  • An example of the configuration of the power storage circuit of the array antenna will be described.
  • An example of a more detailed structure of the array antennas A and B is shown. It is a figure simulating a multi-band antenna pattern.
  • An example of the band characteristic of the antenna circuit of FIG. 11 is shown.
  • the radio wave when wireless communication is used from a terminal located indoors (for example, a house 6), the radio wave may not be directly transmitted from the house 6 to the base station 1 due to the short propagation distance of the radio wave. obtain.
  • propagation paths 10 and 11 via a relay station installed on the roof of a neighboring building 3 can be secured, whereby communication between the house 6 and the base station 1 can be established.
  • the antennas of the relay stations on the roofs of the house 6 and the building 3 can be considered to be in a fixed position and do not move, and the propagation path from the house 6 to the base station 1 is treated as being secured. Can be done.
  • mobile terminals such as smartphones and wearable devices, or wireless communication devices mounted on cars are carried by people (codes 4 and 5) or cars, and therefore, these devices and base station 1 are used.
  • the propagation path between them changes over time.
  • the relay stations installed on the rooftops of the buildings 2 and 3 secure the propagation paths 7, 8, 9, and 10, whereby the communication between those devices and the base station 1 is established.
  • the above-mentioned communication is basically executed via the same route for both the uplink and the downlink.
  • FIG. 2 is a diagram simulating the radio section from the UE (User Equipment) to the front of the gNB (base station) for a general 5G communication network regardless of whether it is a local 5G or a WAN 5G.
  • a signal of a region 13 having a communication terminal or a network composed of a local 5G or a WAN 5G is transmitted to a base station 1, or data from a base station 1 is received in the region 13, a building is used.
  • 12 may be present in the path connecting the base station 1 and the region 13.
  • the signal transmitted from the region 13 propagates through the path 14, but is blocked by the building 12.
  • electric power cannot be propagated to the base station 1 which is a receiving point due to reflection, scattering, absorption and the like (reference numerals 15 and 16) which are physical phenomena of radio waves.
  • the array antenna 17 beamtracks to establish a propagation path 19 between the array antenna 17 installed on the roof of the building 12 and the region 13. And perform beamforming.
  • the array antenna 18 installed on the roof of the building 12 establishes a propagation path 20 between the array antenna 18 and the base station 1 by performing beam tracking and beamforming.
  • communication between the base station 1 and the region 13 is established. That is, the data of the device in the area 13 can be transmitted by relaying the array antennas 17 and 18 installed on the roof of the building 12 to the base station 1 located at a distance d.
  • the frequency to be used is fixed in a certain band, and the cell has a margin in consideration of the carrier frequency, the output level of the device, the spatial transmission loss, the transmission / reception antenna gain, and the like.
  • a large-capacity line that bundles various other wireless protocols such as 4G band, 5G (Sub6 band (FR1)), 28GHz band (FR2), LPWA (920MHz band), etc. Will be transmitted to the backbone radio protocol with.
  • FR1 Sub6 band
  • FR2 28GHz band
  • LPWA 920MHz band
  • the loss will be quadrupled, that is, the transmission power will be quadrupled. Considering the power ratio, it is 6 dB down. If the carrier frequency used for communication is doubled, the loss will be quadrupled. In addition to further shortening the communication distance, physical phenomena such as reflection, scattering, absorption, and interference cause adverse effects, and the stability of the network is significantly impaired. Since the optimum transmission / reception point always fluctuates with time due to multipath fading, the higher the frequency handled, the shorter the communication distance.
  • FIG. 3 is a schematic diagram illustrating a basic configuration of a wireless communication system according to an embodiment of the present invention, which is proposed in view of such a viewpoint. Since the same components as those in FIG. 2 are designated by the same reference numerals in FIG. 3, duplicated description will be omitted.
  • the wireless communication system of the present embodiment includes a drone or UAV21 that functions as a relay station.
  • the UAV 21 has a function corresponding to the array antennas (repeaters) 17 and 18 of FIG. 2 and a base station function, and is configured to be able to fly in the air.
  • the number of UAV21s is not limited to one as needed, and several tens of UAV21s may be arranged within a predetermined range, and the number of arrangements is not limited to a specific number.
  • the UAV 21 in FIG. 3 is a high-frequency carrier signal used for 5G or next-generation wireless communication with respect to a transmission signal to a region 13 having a terminal operating under local 5G or WAN 5G network conditions and a reception signal from the region 13, respectively.
  • the contract is established through the propagation paths 23, 24, 25, and 26 using the above.
  • the terminal in the area 13 performs beam tracking and beamforming 27 and 28 before communication, confirms the positions of the terminal and UAV21, and RSSI, S / N, Carrier Sense.
  • Information related to communication quality such as Level and packet error rate (PER), communication path, delay time, etc. is shared.
  • FIG. 3 is an example of a wireless network to be configured, and there is no limitation on the number of UAVs such as drones used as an actual configuration.
  • beam tracking and beam forming 29 and 30 are performed before communication to confirm whether or not they can communicate with each other, and communication quality, communication path, and delay time are performed. Information related to the above is shared between the UAV 21 and the base station 1.
  • the position of the UAV 21 is not fixed as in the array antennas (repeaters) 17 and 18 in FIG. 2, and the UAV 21 automatically and dynamically selects the position and flies.
  • the UAV 21 shares information on the reception sensitivity of the radio wave with the terminal in the region 13 and / or the base station 1, so that the possibility of interruption of the propagation path and the error rate are minimized.
  • the flight position is selected so that the reception intensity RSSI is maximized and the S / N ratio is maximized.
  • the plurality of UAVs 21 grasp each other's positions based on GNSS information and avoid collisions, and from the terminals held by the UAV 21s. Considering information related to communication quality, communication route, delay time, etc., the optimization of each other's relative position is measured, and the optimization of the own machine position is automatically and dynamically determined.
  • the wireless communication system in which the UAV 21 functions as a communication relay station or a base station as shown in FIG. 3 has an advantage that it can also support ultra-high frequency wireless communication having a short radio wave propagation distance.
  • the problem is how to secure the charge of the UAV 21 while minimizing the adverse effect on the communication delay specification of the wireless protocol used in the wireless network as much as possible.
  • the wireless communication system of this embodiment is arranged on the window glass of the buildings 2 and 3, and receives and stores the electric power of various electromagnetic waves traveling in the air and stores the electric power.
  • array antennas A and B that radiate the generated power.
  • UAV21 is ⁇ Information from base station 1, -Positional relationship information and transmission output information with the array antenna A or B-Output information transmitted from the UAV 21 to the array antenna A or B-RSSI (electrical strength) information received from the array antenna A or B-Communication paths 36 and 37
  • PER Packet Error Rate
  • the flightable range of the UAV 21 is represented by the area S as a cross-sectional view along the vertical direction.
  • the area S may be defined by the directions (30-32, 33-35) at which the array antennas A and B are capable of beam tracking and beamforming.
  • the flight range can be recognized by the UAV 21.
  • the flight range of UAV21 can be grasped as the volume of an elliptical cone in consideration of the radiation directivity of the array antennas A and B, and the volume V is given by the following equation. Be done.
  • V 2/3 ⁇ r1 ⁇ r2 ⁇ d
  • V Volume of flightable space
  • r1 Horizontal plane Frenel radius
  • r2 Vertical plane Frenel radius
  • d Height when made into an elliptical cone
  • the UAV21 determines its own communication quality environment, communication priority, and flightable range from the array antennas A and B that give control signals to the UAV21 and parameters such as RSSI, PER, and communication delay time of the UAV21. It is possible to recognize autonomously based on the information such as the pilot signal before the signal transmission.
  • the UAV 21 can be controlled to satisfy various parameters regarding the flight range and ensure communication quality. There is no limit to the number of UAV21 aircraft that exist within the flight range (volume V).
  • the UAV 21 since the UAV 21 has the role of a relay station or a base station, the communication quality with the higher-level base station 1 must be ensured. Therefore, the UAV 21 grasps the charge capacity of its own unit and calculates the communication quality with the base station 1. When the charge capacity is equal to or higher than the threshold value, the UAV 21 flies within the flightable range (volume V) and functions as a relay station or the like to ensure communication quality in the wireless communication system. On the other hand, when the charge capacity is below the threshold value, the UAV 21 can fly the same UAV 21'as the UAV 21 into the flightable range, transfer its own data to the UAV 21', and take over the role. Hereinafter, the same UAV21'that takes over may be referred to as a "copier".
  • the UAV21 can fly within the flightable range while sharing roles with the UAV21'which is a copier, and can receive wireless power supply from the array antenna A or B. Since the UAV 21 can receive wireless power supply from the array antennas A or B embedded in the window glass of the buildings 2, 3 and the like, the charge capacity of the UAV 21 rarely falls below the threshold value, and the copy operation from the UAV 21 to the UAV 21'is performed. Can be reduced in the number of situations where.
  • the UAV 21 can also receive wireless power supply from the window glass.
  • information on the cause of the failure is transmitted via the base station 1 or the like, and the UAV 21 is ordered to return to the base station (not shown). At that time, the UAV 21 will let the UAV 21', which is a copier, take over the information and the role.
  • Each of the antenna units ANTs 1 to 12 is configured to receive electromagnetic waves from the outside, store the electromagnetic waves in a storage battery or the like, and wirelessly supply power to the UAV 21 by microwaves.
  • the antenna configured on the window glass may be configured to have an array antenna configuration. Therefore, it can also have the functions of beamforming and beam tracking by a single window glass.
  • the stored electric power is not limited to the electric power used in the UAV 21, but may be used for other purposes.
  • the windowpanes of buildings are arranged in a grid pattern or other regularly. Taking advantage of the structural characteristics of the windowpanes on the wall surface of the regularly arranged building, the windowpanes having an array antenna or a single antenna are lined up as shown in FIGS. 6 and ANT1-12. Since the array antennas configured on each of these windowpanes are further arranged as shown in ANTs 1 to 12 as shown in FIG. 6, the array antennas should be used as a group of windowpanes arranged in an orderly manner on the wall surface of the building. Is possible. It is possible to supply the UAV 21 with the electric power used in the UAV 21 as a wireless power supply by microwaves, and also transmit a control signal necessary for the UAV 21 at an appropriate timing. Further, the UAV 21 can be wirelessly fed while performing beamforming and beam tracking appropriately.
  • the circuit diagram and operating principle of the array antennas A or B (antenna units ANT1 to 12) will be described with reference to FIG. 7.
  • the array antennas A or B include, in addition to the antenna units ANT1 to 12, a CPU 40, a down-convert demodulation mixer 41, RF switches 42, 45, a preamplifier 43, a power amplifier 44, a power distributor 46, and a phase detector 47 to 52. It is composed of.
  • the CPU 40 controls the antenna units ANTs 1 to 12, specifically, generation of a baseband signal, demodulation of a received signal, estimation of an arrival direction of a radio wave based on phase calculation, determination of a transmission direction of a radio wave, and reception strength /. Calculation of PER / delay amount, calculation of attenuator adjustment amount for transmission / reception power, etc. are executed.
  • the RF switches 42 and 45 are connected to the power amplifier 44 side when emitting radio waves to the outside and transmitting electric power, and are connected to the preamplifier 43 side when receiving radio waves from the outside and receiving electric power. It works to be done.
  • the carrier wave generated by the CPU 40 is sent to the power amplifier 44 via the down-convert demodulation mixer 41 and the RF switch 42, amplified, and then passed through the power distributor 46 and the phase detectors 47 to 52 to each antenna unit ANT1. It is supplied to ⁇ 12.
  • An attenuator may be arranged in the circuit block of FIG. 7 for matching adjustment or output adjustment.
  • the preamplifier 43 and the power amplifier 44 are not limited to the positions shown in FIG. 7, and may be arranged on the antenna units ANT1 to 12 side of the power distributor 46 in a one-to-one correspondence with the individual antenna units ANT1 to 12. Further, an AD converter (ADC) may be mounted in the CPU 40, may be provided between the CPU 40 and the mixer 41, or an AD converter may be provided in each of the antenna units ANTs 1 to 12 on a one-to-one basis. May be good.
  • ADC AD converter
  • the antenna units ANTs 1 to 12 may be arranged so as to support digital beamforming, analog beamforming, and hybrid beamforming in which analog / digital are mixed.
  • a DA converter Digital-Analog Converter
  • an AD converter Analog-Digital Converter
  • the circuit block of FIG. 7 is a configuration example of a hardware circuit related to beamforming and beamforming, and a configuration example of a circuit that realizes beamtracking and beamforming is not limited to FIG. Further, the basic principles regarding beamforming and beam tracking in both of the array antennas configured as a single windowpane and the windowpanes group having the array antenna shown in FIG. 7 will be described below.
  • the arrangement interval of the antenna units ANT1 to 12 is W (see FIG. 6) and the phase difference between the antenna units ANT1 to 12 is ⁇ 1 to ⁇ 12
  • the phase difference ⁇ when power is received by each of the antenna units ANT1 to 12 Can be given by the following equation.
  • the arrival direction of the radio wave is determined based on the phase difference ⁇ 1 to 12. be able to.
  • a confirmation response signal for transmitting the reception of the radio wave to the transmission destination UAV 21 may be transmitted from the array antenna A or B.
  • the confirmation response signal is transmitted from the UAV21.
  • the radiation direction of the radio wave transmitted at the next timing is determined based on the phase difference ⁇ 1 to 12 calculated at the time of receiving the radio wave and in consideration of RSSI (electric field strength), PER, etc. received at the same time at the time of reception.
  • RSSI electric field strength
  • PER programmable attenuator
  • the CPU 40 performs beamforming by giving phase differences ⁇ 1 to ⁇ 12 to each antenna unit ANT1 to ANT1 to 12 when transmitting radio waves, and also performs beamforming when receiving radio waves. Beamtracking is executed by detecting the phase difference ⁇ 1 to ⁇ 12 of the received signal in 12. By providing a power detector (not shown), the correction amount for correcting the mismatch regarding the amplitude or phase generated by the adjustment of the power amplifier 44 at the time of transmitting the radio wave and the adjustment of the preamplifier 43 at the time of receiving the radio wave is also provided. , It is possible to realize maximum power transmission in a form in which phase matching is obtained.
  • the antenna units ANTs 1 to 12 have a function of receiving electric power from innumerable radio waves propagating in space and storing the received electric power in a storage battery.
  • the stored electric power is wirelessly supplied to the UAV 21 by electromagnetic waves transmitted via the antenna units ANTs 1 to 12, whereby the UAV 21 is charged.
  • radio waves used in various wireless protocols are crowded and flying in space. Radio waves cannot be visually observed, and it is difficult to grasp the status of innumerable radio waves in real time. Such radio waves cause an interference phenomenon due to interference, which causes deterioration of communication quality.
  • By recovering the electric power from such innumerable radio waves it can be used as a power source for charging the UAV 21 as described above, and can also contribute to the improvement of communication quality.
  • the radio waves generated during antenna radiation include radiation other than the main lobe such as side lobes and back lobes, which depend on the antenna system design.
  • the radio waves radiated by the antenna include radiated power in directions that the antenna does not need / does not need, which has characteristics such as omnidirectionality in the horizontal plane. In the present invention, such unnecessary radio waves can be collected in the vicinity of the transmitting antenna and used as electric power for charging the UAV 21.
  • the array antenna arranged on the window glass or the like recovers these useless electric powers in the vicinity of the transmitting antenna or in the distant field region, and stores the electric powers for another work amount. It can be converted and reused.
  • the antenna unit is arranged in a module 64 provided in the window sash 60, and the antenna element 62 may be arranged on the window glass 61.
  • the antenna elements 62 are arranged in a grid pattern in 4 rows and 4 columns, but the present invention is not limited to this, and it is sufficient if the antenna elements 62 are arranged with a certain regularity. Is not limited to the illustrated example.
  • the antenna arranged instead of the entire surface of the window as shown in FIG. 8 may be provided for a part of the area with respect to the window.
  • the plurality of antenna elements 62 have the RF module and the power storage circuit shown in FIG. 9 in the RF line 63 and the conductive window sash 60.
  • the antenna element 62 is a rectangular conductive layer in the example shown in FIG. 8, but is not limited thereto.
  • the type of antenna element is not limited to the pattern antenna, and general sleeve antennas, Yagi antennas, waveguides, horn antennas, leaky coaxial cables, dipole antennas, flat opening antennas, etc. can also be adopted. Further, the antenna may be directional or omnidirectional.
  • This power storage circuit includes a rectifier circuit 65 connected to the antenna unit ANT and a power storage circuit 66.
  • the rectifier circuit 65 is a full-wave rectifier circuit in the example of FIG. 9, but is not limited thereto.
  • the high frequency power (waveform) received by the antenna unit ANT is rectified via the rectifier circuit 65 composed of the inductance and the capacitance, and is stored in the power storage circuit 66.
  • the power storage circuit 66 can be mounted as a module 64 on a window sash 60 or the like.
  • the circuit configuration of the power storage circuit 66 is not limited to a specific one.
  • the array antenna A or B is not limited to the one that receives the radio wave of the radio protocol using the radio wave of a specific frequency, and the frequency of the received radio wave does not matter as long as it can be used for storage.
  • the type of wireless protocol is also not limited to a specific one. Further, there are no restrictions on the wireless power feeding method of the array antennas A or B, the structure of the software, and the operation.
  • the pattern antenna to be realized may be a multi-band system or a single-band system, and whether it is a single band or a multi-band can be selected according to the antenna design. Further, the antenna may have a structure capable of giving a varicap diode or a physical reactance component change, and may be configured to be able to dynamically change the frequency characteristics. Further, as a mounting technique for adjusting the frequency characteristics, a left-handed circuit using CRLH or a metamaterial may be mounted to realize real-time performance.
  • the array antenna A or B includes a transparent conductor 71 formed in the window 70.
  • the transparent conductors 71 are neatly arranged in the window 70 and function as an antenna.
  • Each antenna element 71 is composed of, for example, a cross-shaped conductor portion and a conductor orthogonal to the tip of the cross-shaped portion, but this is an example and is not limited to this shape.
  • Each antenna element 71 includes through conductors (VIA) 73 to 78 at the intersection 72 of the cross conductor portions.
  • VIA through conductors
  • the VIA 73 to 78 which are feeding points provided in each antenna element 71, use a medium 70 as a window as a substrate, and high-frequency signals are transmitted and received at these feeding points.
  • FIG. 11 is a diagram simulating a multi-band antenna pattern.
  • FIG. 12 shows an example of the frequency characteristics of the antenna circuit of FIG.
  • the frequency characteristics of the antenna of this embodiment are not limited to those having one pass band. As shown in FIG. 12, it may have two or more pass bands centered on frequencies f1 and f2. Further, the antenna may have a function of mounting a structure using a liquid crystal display or a metamaterial structure and dynamically adjusting the optimum frequency characteristics.
  • the end-to-end communication distance can be secured in a wider area than in the past.
  • a UAV capable of flying in the air is used as a base station or a relay station to form a wireless communication network, a propagation path is formed three-dimensionally, unlike a conventional system that is a communication network that is almost horizontal to the ground. can do. Therefore, it is possible to avoid obstacles and form a propagation path, and it becomes easy to secure a propagation distance in a wider area than in the conventional case.
  • the UAV can be a relay station or a base station, obstacles can be avoided and a propagation path can be formed, so that the occurrence of multipath can be suppressed and communication quality deterioration due to fading can be suppressed. It can be suppressed.
  • the UAV as a relay station or base station, unlike the relay station or base station that is conventionally fixed to the ground object, the position of the UAV that is the relay station or base station can be determined in real time depending on the communication state. , It becomes possible to optimize spatially.
  • the frequency with which the UAV returns to the base station is determined by wirelessly supplying power to the UAV functioning as such a relay station or base station from an array antenna installed on the window glass of a building or an automobile. It can be significantly reduced and the continuous flight time will be longer. If the flight time is long, one UAV can continuously function as a base station and a relay station, and communication efficiency is improved. There will be a considerable amount of delay when performing the takeover function with the alternative device at the time of replacement, but since the frequency of replacement can be reduced as much as possible, it will occur in the wireless network of the own device. The delay frequency can be suppressed as much as possible.
  • the various configurations shown in the above-described embodiments can be added, replaced, modified, deleted, and the like within a range obvious from well-known techniques and conventional means.
  • the communication system is not limited to 5G and 6G, and can be applied to Wi-Fi, LPWA, and all other radio protocols (modulated signal, unmodulated signal, and type of modulated signal).
  • the present invention is not limited to the radio communication frequency including AM / FM wave, millimeter wave, optical communication and the like, and the signal frequency band.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

Abstract

Provided is a sustainable and robust network without degrading the characteristics of next-generation communications. This wireless communication system comprises: a UAV which functions as a relay station or a base station; a terminal which receives carrier waves via the UAV; and a window glass which includes an antenna for receiving power based on electromagnetic waves, receives power via the antenna, and wirelessly supplies, via the antenna, power to other electrically operating devices including the UAV.

Description

無線通信システムWireless communication system
 本発明は、無線通信システムに関する。 The present invention relates to a wireless communication system.
 現在無線通信システムとして運用されている5Gは、数GHz~数十Gの高周波の搬送波を使用しており、次世代の6G、7Gの無線通信システムでは、更に高周波の搬送波が使用されると予想される。また、占有帯域幅も数百MHzから数GHzのように広帯域化が進むことが予想される。 5G, which is currently operated as a wireless communication system, uses a high-frequency carrier wave of several GHz to several tens of G, and it is expected that a higher-frequency carrier wave will be used in the next-generation 6G and 7G wireless communication systems. Will be done. In addition, it is expected that the occupied bandwidth will be widened from several hundred MHz to several GHz.
 5G通信システムや次世代の通信システムでは、大容量通信、低遅延特性などを獲得できる一方で、電波伝搬の物理現象として、電波の伝搬距離が著しく減少してしまうという問題を有する。伝搬距離の減少に対処するため、電波の出力を上げることが検討され得るが、電波の人体への影響や、各国電波法やEMC規格などの制約から、電波の出力を際限なく大きくすることはできない。 In 5G communication systems and next-generation communication systems, while large-capacity communication and low delay characteristics can be obtained, there is a problem that the propagation distance of radio waves is significantly reduced as a physical phenomenon of radio wave propagation. It may be considered to increase the output of radio waves in order to deal with the decrease in propagation distance, but due to the influence of radio waves on the human body and restrictions such as the Radio Law and EMC standards of each country, it is not possible to increase the output of radio waves endlessly. Can not.
 5Gを含む次世代通信システムを従来の通信システムから持続的に堅牢とするためには次のような問題点、課題点が存在する。
 (1)搬送波が高周波であるため、物理的な伝搬損失による影響のため伝搬距離が短い。
 (2)搬送波が高周波であるため、障害物の影響を著しく受ける。
 (3)4G LTEで構築されているような端末-基地局間の通信ネットワークを5G、6G等に適用するためには、現実的ではない数の基地局を市中に設置しなければならない。
In order to make the next-generation communication system including 5G sustainable and robust from the conventional communication system, there are the following problems and problems.
(1) Since the carrier wave has a high frequency, the propagation distance is short due to the influence of physical propagation loss.
(2) Since the carrier wave has a high frequency, it is significantly affected by obstacles.
(3) In order to apply the communication network between terminals and base stations as constructed by 4G LTE to 5G, 6G, etc., an unrealistic number of base stations must be installed in the city.
 このような課題解決のため、無線通信システムにおける中継局又は基地局を、例えばドローン等のUAV(Unmanned Aerial Vehicle)により構成するシステムが提案されている(例えば、特許文献1参照)。中継局、または基地局として機能するドローンが移動することにより、電波の伝搬距離の問題を解消することができる。 In order to solve such a problem, a system has been proposed in which a relay station or a base station in a wireless communication system is configured by, for example, a UAV (Unmanned Aerial Vehicle) such as a drone (see, for example, Patent Document 1). By moving a drone that functions as a relay station or a base station, the problem of radio wave propagation distance can be solved.
 UAVに多数の端末が多接続状態で低遅延通信を要求している際に、UAVの充電が尽きそうになった場合、通信確立状態を確保することが困難になるという問題があるが、対応可能な一例として本提案に以降記載する。 When a large number of terminals are requesting low-delay communication from the UAV in a multi-connection state, if the UAV is about to run out of charge, there is a problem that it becomes difficult to secure the communication establishment state. As a possible example, it will be described below in this proposal.
特開2019-102872号公報Japanese Unexamined Patent Publication No. 2019-102872
 本発明は、このような課題に鑑み、次世代通信が持つ伝搬距離、通信時間的な制約等の特徴を劣化させることなく持続的に、かつ堅牢なネットワークを提供することを目的とする。 In view of such problems, it is an object of the present invention to provide a sustainable and robust network without deteriorating characteristics such as propagation distance and communication time restrictions of next-generation communication.
 上記目的を達成するため、本発明に係る無線通信システムは、中継局又は基地局として機能するUAVと、前記UAVを介して搬送波を受信する端末と、電磁波に基づく電力を受電するアンテナを含み、前記アンテナにより受電された電力を前記UAVを含む電気的に動作する他のデバイスに前記アンテナを介して無線給電する窓ガラスとを備える。 In order to achieve the above object, the wireless communication system according to the present invention includes a UAV that functions as a relay station or a base station, a terminal that receives a carrier wave via the UAV, and an antenna that receives power based on electromagnetic waves. It is provided with a window glass that wirelessly feeds the power received by the antenna to other electrically operating devices including the UAV via the antenna.
 本発明によれば、次世代通信が持つ伝搬距離、通信時間的な制約等の特徴を劣化させることなく持続的に、かつ堅牢なネットワークを提供することができる。 According to the present invention, it is possible to provide a sustainable and robust network without deteriorating characteristics such as propagation distance and communication time restrictions of next-generation communication.
従来の4G、または5G等に基づく無線通信システムの問題点について説明する概略図である。It is a schematic diagram explaining the problem of the wireless communication system based on the conventional 4G, 5G and the like. 従来の4G、または5G等に基づく無線通信システムの問題点について説明する概略図である。It is a schematic diagram explaining the problem of the wireless communication system based on the conventional 4G, 5G and the like. 本発明の実施の形態に係る無線通信システムの基本構成を説明する概略図である。It is a schematic diagram explaining the basic structure of the wireless communication system which concerns on embodiment of this invention. 本発明の実施の形態に係る無線通信システムの基本構成を説明する概略図である。It is a schematic diagram explaining the basic structure of the wireless communication system which concerns on embodiment of this invention. UAV21の飛行可能範囲を説明する概略図である。It is a schematic diagram explaining the flight range of UAV21. ビルの窓ガラスに配置される、アレーアンテナA又はBを構成するアンテナユニットANT1~12の例を説明する。An example of the antenna units ANTs 1 to 12 constituting the array antennas A or B, which are arranged on the window glass of the building, will be described. アレーアンテナA又はB(アンテナユニット:ANT1~12)の回路図である。It is a circuit diagram of an array antenna A or B (antenna unit: ANT1-12). 一の窓ガラスに配置されるアンテナユニットの構成例を説明する。An example of the configuration of the antenna unit arranged on one window glass will be described. アレーアンテナの蓄電回路の構成例について説明する。An example of the configuration of the power storage circuit of the array antenna will be described. アレーアンテナA及びBの更なる詳細な構造の一例を示す。An example of a more detailed structure of the array antennas A and B is shown. マルチバンドのアンテナパターンを模擬した図である。It is a figure simulating a multi-band antenna pattern. 図11のアンテナ回路の帯域特性の一例を示している。An example of the band characteristic of the antenna circuit of FIG. 11 is shown.
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。 Hereinafter, this embodiment will be described with reference to the attached drawings. In the attached drawings, functionally the same elements may be displayed with the same number. The accompanying drawings show embodiments and implementation examples in accordance with the principles of the present disclosure, but these are for the purpose of understanding the present disclosure and are never used for the limited interpretation of the present disclosure. is not it. The description of the present specification is merely a typical example, and does not limit the scope of claims or application examples of the present disclosure in any sense.
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 In this embodiment, the description is given in sufficient detail for those skilled in the art to implement the present disclosure, but other implementations and embodiments are also possible and do not deviate from the scope and spirit of the technical idea of the present disclosure. It is necessary to understand that it is possible to change the structure and structure and replace various elements. Therefore, the following description should not be construed as limited to this.
 実施の形態の説明の前に、図1及び図2を参照して、従来の4G又は5G等に基づく無線通信システムの問題点について説明する。 Before the description of the embodiment, the problems of the conventional wireless communication system based on 4G, 5G, etc. will be described with reference to FIGS. 1 and 2.
 5Gの無線通信システムにおいて、屋内(例えば住宅6)に位置する端末から無線通信を利用する場合、電波の伝搬距離が短いことから、住宅6から基地局1に対し直接電波を伝達できないことがあり得る。この場合、例えば近隣のビル3の屋上に設置された中継局を介する伝搬経路10及び11を確保し、これにより住宅6と基地局1との間の通信を確立することができる。このとき、住宅6、及びビル3の屋上の中継局のアンテナは一定の位置にあり動かないものとして考えることができ、住宅6から基地局1までの伝搬経路は確保できているものとして扱うことができる。 In a 5G wireless communication system, when wireless communication is used from a terminal located indoors (for example, a house 6), the radio wave may not be directly transmitted from the house 6 to the base station 1 due to the short propagation distance of the radio wave. obtain. In this case, for example, propagation paths 10 and 11 via a relay station installed on the roof of a neighboring building 3 can be secured, whereby communication between the house 6 and the base station 1 can be established. At this time, the antennas of the relay stations on the roofs of the house 6 and the building 3 can be considered to be in a fixed position and do not move, and the propagation path from the house 6 to the base station 1 is treated as being secured. Can be done.
 一方、スマートフォンやウェアラブル機器などの携帯端末、又は車に搭載された無線通信機器等は、人(符号4、5)、又は車によって持ち運ばれ、このため、それらの機器と基地局1との間の伝搬経路は時間と共に変化する。その際は、ビル2やビル3の屋上等に設置された中継局により伝搬経路7、8、9、10が確保され、これにより、それらの機器と基地局1との間の通信が確立される。なお、上記のような通信は、基本的にはアップリンク、ダウンリンクともに同経路を介して実行される。 On the other hand, mobile terminals such as smartphones and wearable devices, or wireless communication devices mounted on cars are carried by people (codes 4 and 5) or cars, and therefore, these devices and base station 1 are used. The propagation path between them changes over time. In that case, the relay stations installed on the rooftops of the buildings 2 and 3 secure the propagation paths 7, 8, 9, and 10, whereby the communication between those devices and the base station 1 is established. To. It should be noted that the above-mentioned communication is basically executed via the same route for both the uplink and the downlink.
 携帯端末等が人又は車により移動する結果、基地局1でカバーできないエリアに移動する場合には、ハード/ソフトハンドオーバーが実施され、新たな基地局に対して適切な中継局を上記同様に選択し、通信が確立される。なお、5Gのシステム構築の方法は2つある。1つは、閉領域において5Gシステムを構成するローカル5G(Private 5G)であり、もう1つは、企業活動以外で利用する機会が多いWAN5Gである。日常的に利用されるWAN5Gは、端末数、ネットワーク回線数、利用者数、アプリケーション数、市場規模のいずれもローカル5Gに比べて圧倒的に多い。本発明は、WAN5Gだけでなく、ローカル5Gにも適用可能であり、アプリケーションによる制限もない。 When the mobile terminal or the like moves to an area that cannot be covered by the base station 1 as a result of moving by a person or a car, a hard / soft handover is performed, and an appropriate relay station for the new base station is provided in the same manner as described above. Select and communication is established. There are two ways to build a 5G system. One is a local 5G (Private 5G) that constitutes a 5G system in a closed area, and the other is WAN5G, which is often used for purposes other than corporate activities. WAN5G, which is used on a daily basis, has an overwhelmingly large number of terminals, network lines, users, applications, and market size compared to local 5G. The present invention is applicable not only to WAN 5G but also to local 5G, and is not limited by the application.
 図2は、ローカル5GかWAN5Gかに関係なく、一般的な5G通信ネットワークについて、UE(User Equipment)からgNB(基地局)手前の無線区間について模擬している図である。例えば、ローカル5Gで構成された、又はWAN5Gで構成された通信端末、又はネットワークを持つ領域13の信号を基地局1まで送信、又は基地局1からのデータを領域13で受信する場合、建築物12が、基地局1と領域13とを結ぶ経路中に存在する場合がある。領域13から送信された信号は経路14を通って伝搬するが、建築物12により阻止されてしまう。具体的には、電波の物理現象である反射、散乱、吸収等(符号15、16)により、受信点である基地局1まで電力を伝搬することができない。 FIG. 2 is a diagram simulating the radio section from the UE (User Equipment) to the front of the gNB (base station) for a general 5G communication network regardless of whether it is a local 5G or a WAN 5G. For example, when a signal of a region 13 having a communication terminal or a network composed of a local 5G or a WAN 5G is transmitted to a base station 1, or data from a base station 1 is received in the region 13, a building is used. 12 may be present in the path connecting the base station 1 and the region 13. The signal transmitted from the region 13 propagates through the path 14, but is blocked by the building 12. Specifically, electric power cannot be propagated to the base station 1 which is a receiving point due to reflection, scattering, absorption and the like (reference numerals 15 and 16) which are physical phenomena of radio waves.
 ただし、現行5Gでは、ビームフォーミング、ビームトラッキング等の技術によって通信の品質向上を図ることができる。例えば図2に示すように、送信経路14で通信ができない場合は、ビル12の屋上に設置されたアレーアンテナ17と領域13との間で伝搬経路19を確立するため、アレーアンテナ17がビームトラッキング及びビームフォーミングを実行する。同様に、ビル12の屋上に設置されたアレーアンテナ18は、ビームトラッキング及びビームフォーミングを実行することにより、アレーアンテナ18と基地局1との間で伝搬経路20を確立する。この伝搬経路19と20が確立されることで、基地局1と領域13との間の通信が確立される。つまり、領域13にあるデバイスのデータを、距離dだけ離れた位置にある基地局1まで、建築物12の屋上に設置されたアレーアンテナ17、18を中継して伝達することができる。 However, with the current 5G, it is possible to improve the quality of communication by using technologies such as beamforming and beam tracking. For example, as shown in FIG. 2, when communication cannot be performed on the transmission path 14, the array antenna 17 beamtracks to establish a propagation path 19 between the array antenna 17 installed on the roof of the building 12 and the region 13. And perform beamforming. Similarly, the array antenna 18 installed on the roof of the building 12 establishes a propagation path 20 between the array antenna 18 and the base station 1 by performing beam tracking and beamforming. By establishing the propagation paths 19 and 20, communication between the base station 1 and the region 13 is established. That is, the data of the device in the area 13 can be transmitted by relaying the array antennas 17 and 18 installed on the roof of the building 12 to the base station 1 located at a distance d.
 従来の無線通信システムでの通信経路設計は、利用周波数がある帯域で固定されており、搬送波周波数、デバイスの出力レベル、空間伝送損失、送受信アンテナ利得等を考慮して、マージンを持たせたセル設計即ち基地局の配置設計を行ってきた。しかし、5Gや次世代の無線通信については、4G帯域、5G(Sub6帯域(FR1))、28GHz帯(FR2)、LPWA(920MHz帯)など、その他様々な無線プロトコルを一手に束ね、大容量回線を持つ基幹無線プロトコルへと伝送することになる。基地局の固定化、一局集中型ではなく、機能/物理分散的なソフトウエア基地局が動的にハードデバイスを移動することが重要となってくる。今後、6G、またその先へ通信世代が移っていく際、搬送波の中心周波数は確実に増加し、通信距離は物理的に短縮されてしまう。この伝搬距離の短縮は、通信速度の向上とトレードオフの関係となる。 In the communication path design in the conventional wireless communication system, the frequency to be used is fixed in a certain band, and the cell has a margin in consideration of the carrier frequency, the output level of the device, the spatial transmission loss, the transmission / reception antenna gain, and the like. We have been designing, that is, designing the layout of base stations. However, for 5G and next-generation wireless communication, a large-capacity line that bundles various other wireless protocols such as 4G band, 5G (Sub6 band (FR1)), 28GHz band (FR2), LPWA (920MHz band), etc. Will be transmitted to the backbone radio protocol with. It is important for software base stations that are functional / physically distributed, rather than fixed base stations and centralized to one station, to dynamically move hard devices. In the future, when the communication generation shifts to 6G and beyond, the center frequency of the carrier wave will surely increase, and the communication distance will be physically shortened. This shortening of the propagation distance has a trade-off relationship with the improvement of the communication speed.
 既存の5Gで利用される無線通信システムにおいて、一般的な既存5G無線通信の概念を説明したが、今後の無線通信に利用される搬送波の周波数はより高周波となり、帯域幅は広帯域となる。そのため、周波数、帯域、アンテナゲイン、アンテナ高、送信電力、受信感度、指向性、伝搬環境等を同条件とした場合の電波の自由空間の通信距離と伝搬損失Lは以下の式[数1]により一般的に表現することができる。 In the existing wireless communication system used in 5G, the general concept of existing 5G wireless communication has been explained, but the frequency of the carrier wave used for future wireless communication will be higher and the bandwidth will be wider. Therefore, the communication distance and propagation loss L in the free space of radio waves under the same conditions of frequency, band, antenna gain, antenna height, transmission power, reception sensitivity, directivity, propagation environment, etc. are expressed by the following equation [Equation 1]. Can be expressed more generally.
[数1]
L=(4πd/λ)
 ただし、
L : 自由空間伝搬損失
d : 通信距離
λ : 波長
[Number 1]
L = (4πd / λ) 2
However,
L: Free space propagation loss d: Communication distance λ: Wavelength
 通信距離が2倍になれば、損失は4倍、つまり送信電力は1/4になる。電力比で考えると6dBダウンとなる。通信に用いる搬送波周波数が倍になれば、損失は4倍となるため、4G LTEに比べ、5GのようなFR2帯域(28GHz帯)を利用した通信、またその後の次世代通信に用いられる周波数において、より通信距離が一層短縮されると共に、反射、散乱、吸収、干渉などの物理現象が悪影響を引き起こし、ネットワークの安定性が著しく損なわれることとなる。マルチパスフェージングにより常に最適な送受信ポイントが時間で変動する為、扱う周波数がより高周波になればなるほど通信距離も短くなる。 If the communication distance is doubled, the loss will be quadrupled, that is, the transmission power will be quadrupled. Considering the power ratio, it is 6 dB down. If the carrier frequency used for communication is doubled, the loss will be quadrupled. In addition to further shortening the communication distance, physical phenomena such as reflection, scattering, absorption, and interference cause adverse effects, and the stability of the network is significantly impaired. Since the optimum transmission / reception point always fluctuates with time due to multipath fading, the higher the frequency handled, the shorter the communication distance.
 図3は、このような観点に鑑みて提案される、本発明の実施の形態に係る無線通信システムの基本構成を説明する概略図である。図2と同一の構成要素に関しては、図3において同一の符号を付しているので、重複する説明は省略する。 FIG. 3 is a schematic diagram illustrating a basic configuration of a wireless communication system according to an embodiment of the present invention, which is proposed in view of such a viewpoint. Since the same components as those in FIG. 2 are designated by the same reference numerals in FIG. 3, duplicated description will be omitted.
 本実施の形態の無線通信システムは、中継局として機能するドローン又はUAV21を備えている。UAV21は、図2のアレーアンテナ(中継器)17及び18に相当する機能と基地局機能を有し、空中を飛行可能に構成される。UAV21は、必要に応じて1機に限らず、所定の範囲内に数十機配置しても良く、配置数は特定の数には限定されない。 The wireless communication system of the present embodiment includes a drone or UAV21 that functions as a relay station. The UAV 21 has a function corresponding to the array antennas (repeaters) 17 and 18 of FIG. 2 and a base station function, and is configured to be able to fly in the air. The number of UAV21s is not limited to one as needed, and several tens of UAV21s may be arranged within a predetermined range, and the number of arrangements is not limited to a specific number.
 図3のUAV21は、ローカル5GやWAN5Gネットワーク条件下で動作する端末を持つ領域13への送信信号、及び領域13からの受信信号に関し、それぞれ5G、又は次世代無線通信に用いられる高周波の搬送波信号を用いた伝搬経路23、24、25、26を通じ、コントラクトを確立する。その際、領域13内の端末は、UAV21と通信を確立するため、通信前にビームトラッキング、及びビームフォーミング27、28を行い、端末及びUAV21の位置を確認し、RSSI、S/N、Carrier Sense Level、パケットエラー率(PER)等の通信品質、通信経路、遅延時間等に関わる情報を共有する。図3は構成する無線ネットワークの一例であり、実際の構成として用いるドローン等のUAVに関する機数に制約はない。 The UAV 21 in FIG. 3 is a high-frequency carrier signal used for 5G or next-generation wireless communication with respect to a transmission signal to a region 13 having a terminal operating under local 5G or WAN 5G network conditions and a reception signal from the region 13, respectively. The contract is established through the propagation paths 23, 24, 25, and 26 using the above. At that time, in order to establish communication with UAV21, the terminal in the area 13 performs beam tracking and beamforming 27 and 28 before communication, confirms the positions of the terminal and UAV21, and RSSI, S / N, Carrier Sense. Information related to communication quality such as Level and packet error rate (PER), communication path, delay time, etc. is shared. FIG. 3 is an example of a wireless network to be configured, and there is no limitation on the number of UAVs such as drones used as an actual configuration.
 同様に、UAV21と基地局1との通信を確立するために、通信前にビームトラッキング、及びビームフォーミング29、30を行い、互いに通信可能か否かを確認し、通信品質、通信経路、遅延時間等に関わる情報をUAV21と基地局1との間で共有する。 Similarly, in order to establish communication between UAV 21 and base station 1, beam tracking and beam forming 29 and 30 are performed before communication to confirm whether or not they can communicate with each other, and communication quality, communication path, and delay time are performed. Information related to the above is shared between the UAV 21 and the base station 1.
 このとき、UAV21の位置は、図2のアレーアンテナ(中継器)17、18のように固定的ではなく、UAV21は、自動、及び動的にその位置を選択し、飛行する。その際の有する機能の例として、UAV21は、領域13の端末、及び/又は基地局1と電波の受信感度に関する情報を共有し、最も伝搬経路の途絶の可能性やエラーレートが最小となるよう、かつ、受信強度RSSIが最大となり、S/N比が最大となるような飛行位置を選択する。 At this time, the position of the UAV 21 is not fixed as in the array antennas (repeaters) 17 and 18 in FIG. 2, and the UAV 21 automatically and dynamically selects the position and flies. As an example of the function possessed at that time, the UAV 21 shares information on the reception sensitivity of the radio wave with the terminal in the region 13 and / or the base station 1, so that the possibility of interruption of the propagation path and the error rate are minimized. In addition, the flight position is selected so that the reception intensity RSSI is maximized and the S / N ratio is maximized.
 なお、UAV21が複数機同時に同一のエリアを飛行している際は、複数のUAV21は、互いの位置をGNSS情報等に基づいて把握して衝突を回避しつつ、UAV21同士がそれぞれ抱える端末からの通信品質、通信経路、遅延時間等に関わる情報を考慮し、互いの相対位置の最適化を測り、自機位置についても最適化を自動、かつ動的に判断する。 When a plurality of UAV21s are flying in the same area at the same time, the plurality of UAVs 21 grasp each other's positions based on GNSS information and avoid collisions, and from the terminals held by the UAV 21s. Considering information related to communication quality, communication route, delay time, etc., the optimization of each other's relative position is measured, and the optimization of the own machine position is automatically and dynamically determined.
 この図3のような、UAV21が通信の中継局又は基地局として機能する無線通信システムでは、電波伝搬距離の短い超高周波無線通信にも対応することができるという利点がある。その一方で、無線ネットワークに利用される無線プロトコルが持つ通信遅延仕様に悪影響を可能な限り最小限に留めつつ、UAV21の充電をいかに確保するかが問題となる。 The wireless communication system in which the UAV 21 functions as a communication relay station or a base station as shown in FIG. 3 has an advantage that it can also support ultra-high frequency wireless communication having a short radio wave propagation distance. On the other hand, the problem is how to secure the charge of the UAV 21 while minimizing the adverse effect on the communication delay specification of the wireless protocol used in the wireless network as much as possible.
 そこで、この実施の形態の無線通信システムは、図4に示すように、ビル2や3の窓ガラスに配置され、空中を往来する様々な電磁波の電力を受電して蓄電すると共に、その蓄電された電力を放射するアレーアンテナA、Bを提案する。 Therefore, as shown in FIG. 4, the wireless communication system of this embodiment is arranged on the window glass of the buildings 2 and 3, and receives and stores the electric power of various electromagnetic waves traveling in the air and stores the electric power. We propose array antennas A and B that radiate the generated power.
 図4において、UAV21は、ローカル5GやWAN5Gネットワーク条件下で動作する端末を持つ領域13との通信38を確立しているとする。
 UAV21は、
・基地局1からの情報、
・アレーアンテナA又はBとの位置関係情報や送信出力情報
・UAV21からアレーアンテナA又はBへ送信する出力情報
・アレーアンテナA又はBから受信したRSSI(電界強度)情報
・通信経路36、37を利用したテストパイロット信号の送受信による通信データから算出されたPER(Packet Error Rate)の情報
などから、自機位置の最適化をリアルタイムで判断し飛行する。
In FIG. 4, it is assumed that the UAV 21 has established a communication 38 with an area 13 having a terminal operating under local 5G or WAN 5G network conditions.
UAV21 is
・ Information from base station 1,
-Positional relationship information and transmission output information with the array antenna A or B-Output information transmitted from the UAV 21 to the array antenna A or B-RSSI (electrical strength) information received from the array antenna A or B- Communication paths 36 and 37 From the PER (Packet Error Rate) information calculated from the communication data obtained by sending and receiving the test pilot signal used, the optimization of the position of the own aircraft is judged in real time and the flight is performed.
 この時、UAV21の飛行可能範囲は、垂直方向に沿った断面図としては面積Sで表される。面積Sは、アレーアンテナA及びBがビームトラッキング及びビームフォーミングが可能な方向(30~32、33~35)により規定され得る。飛行可能範囲は、UAV21により認識され得る。 At this time, the flightable range of the UAV 21 is represented by the area S as a cross-sectional view along the vertical direction. The area S may be defined by the directions (30-32, 33-35) at which the array antennas A and B are capable of beam tracking and beamforming. The flight range can be recognized by the UAV 21.
 現実には、UAV21の飛行可能範囲は、図5に示すように、アレーアンテナA、Bの放射指向性を考慮し、楕円錐の体積として把握することができ、その体積Vを次式で与えられる。  In reality, as shown in FIG. 5, the flight range of UAV21 can be grasped as the volume of an elliptical cone in consideration of the radiation directivity of the array antennas A and B, and the volume V is given by the following equation. Be done. The
[数2]
V=2/3・r1・r2・d
 V:飛行可能空間の体積
 r1:水平面フレネル半径
 r2:垂直面フレネル半径
 d:楕円錐としたときの高さ
[Number 2]
V = 2/3 ・ r1 ・ r2 ・ d
V: Volume of flightable space r1: Horizontal plane Frenel radius r2: Vertical plane Frenel radius d: Height when made into an elliptical cone
 UAV21は、自身の通信品質環境、通信の優先順位、飛行可能な飛行可能範囲を、UAV21の持つRSSI、PER、通信遅延時間等のパラメータやUAV21に制御信号を与えるアレーアンテナA、Bからの(への)信号送信前のパイロット信号等の情報に基づき自律的に認識することが可能である。UAV21は、飛行可能範囲に関する各種パラメータを満たし、通信品質を確保するよう制御されることができる。飛行可能範囲(体積V)内に存在するUAV21の機体数に制限は無い。 The UAV21 determines its own communication quality environment, communication priority, and flightable range from the array antennas A and B that give control signals to the UAV21 and parameters such as RSSI, PER, and communication delay time of the UAV21. It is possible to recognize autonomously based on the information such as the pilot signal before the signal transmission. The UAV 21 can be controlled to satisfy various parameters regarding the flight range and ensure communication quality. There is no limit to the number of UAV21 aircraft that exist within the flight range (volume V).
 ただし、UAV21は中継局又は基地局の役割を持つため、上位の基地局1との通信品質は確保しなければならない。このため、UAV21は、自機の充電容量を把握すると共に、基地局1との通信品質を計算する。充電容量が閾値以上である場合には、UAV21は上記飛行可能範囲(体積V)の中を飛行して中継局等として機能し、無線通信システムにおける通信品質を確保する。一方で、充電容量が閾値を下回る場合、UAV21は、飛行可能範囲にUAV21と同一のUAV21’を飛来させ、そのUAV21’に、自身のデータを転送して、役割を引き継がせることができる。以下、引き継ぎを行う同一のUAV21’は、「コピー機」と称することがある。 However, since the UAV 21 has the role of a relay station or a base station, the communication quality with the higher-level base station 1 must be ensured. Therefore, the UAV 21 grasps the charge capacity of its own unit and calculates the communication quality with the base station 1. When the charge capacity is equal to or higher than the threshold value, the UAV 21 flies within the flightable range (volume V) and functions as a relay station or the like to ensure communication quality in the wireless communication system. On the other hand, when the charge capacity is below the threshold value, the UAV 21 can fly the same UAV 21'as the UAV 21 into the flightable range, transfer its own data to the UAV 21', and take over the role. Hereinafter, the same UAV21'that takes over may be referred to as a "copier".
 UAV21は、コピー機であるUAV21’と役割分担をしながら飛行可能範囲を飛行し、無線給電をアレーアンテナA又はBから受けることができる。UAV21は、ビル2、3等の窓ガラスに埋め込まれたアレーアンテナA又はBから無線給電を受けることができるため、UAV21の充電容量が閾値を下回ることは少なく、UAV21からUAV21’へのコピー動作が必要となる場面は少なくすることができる。 The UAV21 can fly within the flightable range while sharing roles with the UAV21'which is a copier, and can receive wireless power supply from the array antenna A or B. Since the UAV 21 can receive wireless power supply from the array antennas A or B embedded in the window glass of the buildings 2, 3 and the like, the charge capacity of the UAV 21 rarely falls below the threshold value, and the copy operation from the UAV 21 to the UAV 21'is performed. Can be reduced in the number of situations where.
 ビル(建築用)の窓ガラス以外にも、例えば自動車のシールドガラス(窓ガラス)や、スマートフォン等の移動体端末のタッチパネル等のガラスなどにも同様のアレーアンテナを配置することで、そのような窓ガラスからもUAV21は無線給電を受けることができる。UAV21に何らかのハードウエアに関する故障が検知された場合には、その故障の原因に関する情報が基地局1等を経由して送信され、UAV21はベースステーション(図示せず)への帰還を命じられる。その際、UAV21は、コピー機であるUAV21’に情報と役割を引き継がせることとなる。 In addition to the window glass of buildings (for construction), for example, by arranging similar array antennas on the shield glass (window glass) of automobiles and the glass of touch panels of mobile terminals such as smartphones, such The UAV 21 can also receive wireless power supply from the window glass. When a failure related to some hardware is detected in the UAV 21, information on the cause of the failure is transmitted via the base station 1 or the like, and the UAV 21 is ordered to return to the base station (not shown). At that time, the UAV 21 will let the UAV 21', which is a copier, take over the information and the role.
 図6を参照して、ビルの窓ガラスに配置される、アレーアンテナA又はBを構成するアンテナユニットANT1~12の例を説明する。アンテナユニットANT1~12の各々は、それぞれ外部から電磁波を受電して、蓄電池等に蓄電すると共に、UAV21にマイクロ波による無線給電することが可能なように構成されている。窓ガラスに構成されるアンテナはアレイアンテナの構成を持つ構成でも構わない。そのため、1枚の窓ガラスによるビームフォーミング、ビームトラッキングの機能を有することもできる。蓄電された電力はUAV21で利用される電力のみならず、他の用途に利用される場合もある。 An example of the antenna units ANTs 1 to 12 constituting the array antennas A or B, which are arranged on the window glass of the building, will be described with reference to FIG. Each of the antenna units ANTs 1 to 12 is configured to receive electromagnetic waves from the outside, store the electromagnetic waves in a storage battery or the like, and wirelessly supply power to the UAV 21 by microwaves. The antenna configured on the window glass may be configured to have an array antenna configuration. Therefore, it can also have the functions of beamforming and beam tracking by a single window glass. The stored electric power is not limited to the electric power used in the UAV 21, but may be used for other purposes.
 ビルの窓ガラスは、多くの場合、格子状、その他規則的に配置されている。このような規則的に配置されたビル壁面の窓ガラスの構造上特徴を生かし、アレーアンテナや単体のアンテナを持つ窓ガラスが、図6に示すようにANT1~12のように並んでいる。これら窓ガラス1枚1枚に構成されたアレーアンテナが、さらに図6のようにANT1~12のように並んでいるため、ビル壁面に整然と並んだ窓ガラス群として、これをアレイアンテナとすることが可能となる。UAV21に対しUAV21で利用する電力を、マイクロ波による無線給電として供給すると共に、適切なタイミングにてUAV21に必要な制御信号も送信することが可能である。また、UAV21に対し、適切にビームフォーミング、ビームトラッキングを行いながら、無線給電を行うことができる。 In many cases, the windowpanes of buildings are arranged in a grid pattern or other regularly. Taking advantage of the structural characteristics of the windowpanes on the wall surface of the regularly arranged building, the windowpanes having an array antenna or a single antenna are lined up as shown in FIGS. 6 and ANT1-12. Since the array antennas configured on each of these windowpanes are further arranged as shown in ANTs 1 to 12 as shown in FIG. 6, the array antennas should be used as a group of windowpanes arranged in an orderly manner on the wall surface of the building. Is possible. It is possible to supply the UAV 21 with the electric power used in the UAV 21 as a wireless power supply by microwaves, and also transmit a control signal necessary for the UAV 21 at an appropriate timing. Further, the UAV 21 can be wirelessly fed while performing beamforming and beam tracking appropriately.
 図7を参照して、アレーアンテナA又はB(アンテナユニットANT1~12)の回路図と動作原理を説明する。アレーアンテナA又はBは、アンテナユニットANT1~12の他、CPU40、ダウンコンバート復調用ミキサ41、RFスイッチ42、45、プリアンプ43、パワーアンプ44、電力分配器46、及び位相器47~52を備えて構成される。 The circuit diagram and operating principle of the array antennas A or B (antenna units ANT1 to 12) will be described with reference to FIG. 7. The array antennas A or B include, in addition to the antenna units ANT1 to 12, a CPU 40, a down-convert demodulation mixer 41, RF switches 42, 45, a preamplifier 43, a power amplifier 44, a power distributor 46, and a phase detector 47 to 52. It is composed of.
 CPU40は、アンテナユニットANT1~12の制御を司り、具体的には、ベースバンド信号の生成、受信信号の復調、位相計算に基づく電波の到来方向の推定、電波の送信方向の決定、受信強度/PER/遅延量の計算、送受信電力のための減衰器調整量の計算等を実行する。 The CPU 40 controls the antenna units ANTs 1 to 12, specifically, generation of a baseband signal, demodulation of a received signal, estimation of an arrival direction of a radio wave based on phase calculation, determination of a transmission direction of a radio wave, and reception strength /. Calculation of PER / delay amount, calculation of attenuator adjustment amount for transmission / reception power, etc. are executed.
 RFスイッチ42、45は、外部に電波を放出して電力を送信する際には、パワーアンプ44側に接続され、外部から電波を受信して電力を受信する際には、プリアンプ43側に接続されるよう動作する。CPU40で生成された搬送波は、ダウンコンバート復調用ミキサ41及びRFスイッチ42を介してパワーアンプ44に送られて増幅された後、電力分配器46及び位相器47~52を介して各アンテナユニットANT1~12に供給される。なお、図7の回路ブロック内に、マッチング調整のため、あるいは出力調整のために、減衰器を配置しても良い。 The RF switches 42 and 45 are connected to the power amplifier 44 side when emitting radio waves to the outside and transmitting electric power, and are connected to the preamplifier 43 side when receiving radio waves from the outside and receiving electric power. It works to be done. The carrier wave generated by the CPU 40 is sent to the power amplifier 44 via the down-convert demodulation mixer 41 and the RF switch 42, amplified, and then passed through the power distributor 46 and the phase detectors 47 to 52 to each antenna unit ANT1. It is supplied to ~ 12. An attenuator may be arranged in the circuit block of FIG. 7 for matching adjustment or output adjustment.
 プリアンプ43、パワーアンプ44は、図7の位置に限定するものではなく、電力分配器46よりアンテナユニットANT1~12側に、個々のアンテナユニットANT1~12と一対一対応で配置されても良い。また、AD変換器(ADC)をCPU40内に搭載しても良いし、CPU40とミキサ41との間に設けても良いし、又は各アンテナユニットANT1~12に一対一でAD変換器を設けてもよい。 The preamplifier 43 and the power amplifier 44 are not limited to the positions shown in FIG. 7, and may be arranged on the antenna units ANT1 to 12 side of the power distributor 46 in a one-to-one correspondence with the individual antenna units ANT1 to 12. Further, an AD converter (ADC) may be mounted in the CPU 40, may be provided between the CPU 40 and the mixer 41, or an AD converter may be provided in each of the antenna units ANTs 1 to 12 on a one-to-one basis. May be good.
 また、アンテナユニットANT1~12は、ディジタルビームフォーミング、アナログビームフォーミング、アナログ/ディジタル混在のハイブリッドビームフォーミングに対応するように配置しても良い。一般的にはDA変換器(Digital-Analog Converter)がパワーアンプ44の手前に配置され、AD変換器(Analog-Digital Converter)がプリアンプ43の前段に配置される。 Further, the antenna units ANTs 1 to 12 may be arranged so as to support digital beamforming, analog beamforming, and hybrid beamforming in which analog / digital are mixed. Generally, a DA converter (Digital-Analog Converter) is arranged in front of the power amplifier 44, and an AD converter (Analog-Digital Converter) is arranged in front of the preamplifier 43.
 図7の回路ブロックは、ビームフォーミング、ビームトラッキングに関するハードウエア回路の構成例であり、ビームトラッキング、ビームフォーミングを実現する回路の構成例は、図7に限定されるものではない。また、以下に窓ガラス単体に構成されたアレーアンテナで行うもの、かつ図7に示すアレイアンテナを有する窓ガラス群で構成される両者におけるビームフォーミング、及びビームトラッキングに関する基本原理を説明する。
アンテナユニットANT1~12の配置間隔をW(図6参照)、アンテナユニットANT1~12の間の位相差をφ1~φ12としたとき、各アンテナユニットANT1~12で電力を受信した際の位相差Δφは、以下の式で与えることができる。
The circuit block of FIG. 7 is a configuration example of a hardware circuit related to beamforming and beamforming, and a configuration example of a circuit that realizes beamtracking and beamforming is not limited to FIG. Further, the basic principles regarding beamforming and beam tracking in both of the array antennas configured as a single windowpane and the windowpanes group having the array antenna shown in FIG. 7 will be described below.
When the arrangement interval of the antenna units ANT1 to 12 is W (see FIG. 6) and the phase difference between the antenna units ANT1 to 12 is φ1 to φ12, the phase difference Δφ when power is received by each of the antenna units ANT1 to 12 Can be given by the following equation.
[数3]
 Δφ=(2π/λ)・W・sinθ
[Number 3]
Δφ = (2π / λ) ・ W ・ sinθ
 図7に例示する回路において、各アンテナユニットANT1~12で受信した信号の時間遅延量を信号の位相差φ1~φ12で表した場合、電波の到来方向を位相差φ1~12に基づいて判定することができる。また、電波を受信したことを送信先のUAV21に伝える確認応答信号がアレーアンテナA又はBから送信され得る。送信先がANT1~12の際、同様に確認応答信号はUAV21より送信される。 In the circuit illustrated in FIG. 7, when the time delay amount of the signal received by each antenna unit ANT1 to 12 is represented by the phase difference φ1 to φ12 of the signal, the arrival direction of the radio wave is determined based on the phase difference φ1 to 12. be able to. Further, a confirmation response signal for transmitting the reception of the radio wave to the transmission destination UAV 21 may be transmitted from the array antenna A or B. Similarly, when the transmission destination is ANT1 to 12, the confirmation response signal is transmitted from the UAV21.
 更に、次のタイミングで送信する電波の放射方向は、電波の受信時に計算された位相差φ1~12に基づき、受信時に同時に受信したRSSI(電界強度)、PER等を考慮して決定される。このとき、パワーアンプ44のゲイン量、又はプログラマブルアッテネータ(減衰器)の減衰量も併せて調整され、上記位相シフト量より決定された放射角度θと共に、図7中で矢印53で示される電波の放射方向が制御される。 Further, the radiation direction of the radio wave transmitted at the next timing is determined based on the phase difference φ1 to 12 calculated at the time of receiving the radio wave and in consideration of RSSI (electric field strength), PER, etc. received at the same time at the time of reception. At this time, the gain amount of the power amplifier 44 or the attenuation amount of the programmable attenuator (attenuator) is also adjusted, and the radio wave indicated by the arrow 53 in FIG. 7 is adjusted together with the radiation angle θ determined from the phase shift amount. The radial direction is controlled.
 各アンテナユニットANT1~12の位相差φ1~12をどのように設定した場合にどの放射方向にどれだけのアンテナゲインが与えられるかは、予めアレーアンテナ設計時に解析されている。CPU40は、この事前の解析結果に従い、電波の送信時においては、各アンテナユニットANT1~12に位相差φ1~φ12を与えてビームフォーミングを実行すると共に、電波の受信時においては、アンテナユニットANT1~12における受信信号の位相差φ1~12を検知して、ビームトラッキングを実行する。なお、電波の送信時におけるパワーアンプ44の調整、及び電波の受信時におけるプリアンプ43の調整により発生する振幅又は位相に関するミスマッチを補正するための補正量についても、図示しない電力検知器を設けることにより、最大電力伝送を位相整合が得られた形で実現することが可能である。 How much antenna gain is given in which radiation direction when the phase difference φ1 to 12 of each antenna unit ANT1 to 12 is set is analyzed in advance at the time of array antenna design. According to this preliminary analysis result, the CPU 40 performs beamforming by giving phase differences φ1 to φ12 to each antenna unit ANT1 to ANT1 to 12 when transmitting radio waves, and also performs beamforming when receiving radio waves. Beamtracking is executed by detecting the phase difference φ1 to φ12 of the received signal in 12. By providing a power detector (not shown), the correction amount for correcting the mismatch regarding the amplitude or phase generated by the adjustment of the power amplifier 44 at the time of transmitting the radio wave and the adjustment of the preamplifier 43 at the time of receiving the radio wave is also provided. , It is possible to realize maximum power transmission in a form in which phase matching is obtained.
 アンテナユニットANT1~12は、空間を伝搬する無数の電波からの電力を受電して、この受電電力を蓄電池に蓄電する機能を有する。蓄電された電力は、適宜UAV21にアンテナユニットANT1~12を介して送出される電磁波により無線給電され、これによりUAV21が充電される。現在、空間には様々な無線プロトコルで利用されている電波がひしめき合い、飛び交っている。電波は目視ができず、リアルタイムで無数の電波の状況を把握することは困難である。そのような電波は混信による干渉現象を引き起こし、通信品質劣化の原因となっている。このような無数の電波から電力を回収することにより、上述のようにUAV21への充電の電源とすることが出来ると共に、通信品質向上にも寄与し得る。 The antenna units ANTs 1 to 12 have a function of receiving electric power from innumerable radio waves propagating in space and storing the received electric power in a storage battery. The stored electric power is wirelessly supplied to the UAV 21 by electromagnetic waves transmitted via the antenna units ANTs 1 to 12, whereby the UAV 21 is charged. Currently, radio waves used in various wireless protocols are crowded and flying in space. Radio waves cannot be visually observed, and it is difficult to grasp the status of innumerable radio waves in real time. Such radio waves cause an interference phenomenon due to interference, which causes deterioration of communication quality. By recovering the electric power from such innumerable radio waves, it can be used as a power source for charging the UAV 21 as described above, and can also contribute to the improvement of communication quality.
 ビームフォーミングが基礎技術となる5Gを含む次世代無線通信ネットワークにおいても、アンテナ放射時に発生する電波は、アンテナシステム設計に依存するサイドローブ、バックローブ等のメインローブ以外の放射を含んでいる。また、アンテナが放射する電波は、水平面内無指向性のような特徴を持つ、アンテナが必要としない/されない方向への放射電力を含んでいる。本発明では、このような不要な電波を、送信アンテナ近傍にて回収し、UAV21の充電のための電力として利用することができる。 Even in the next-generation wireless communication network including 5G, where beamforming is the basic technology, the radio waves generated during antenna radiation include radiation other than the main lobe such as side lobes and back lobes, which depend on the antenna system design. Also, the radio waves radiated by the antenna include radiated power in directions that the antenna does not need / does not need, which has characteristics such as omnidirectionality in the horizontal plane. In the present invention, such unnecessary radio waves can be collected in the vicinity of the transmitting antenna and used as electric power for charging the UAV 21.
 現在使用されているアンテナの多くは、電波を放射すべき方向とは異なる無駄な方向に多くの電力を放射している。本実施の形態によれば、窓ガラス等に配置されたアレーアンテナにより、これらの無駄な電力を送信アンテナの近傍、又は遠方界領域にて回収し、その電力を蓄電して別の仕事量へと変換し再利用することが可能になる。 Many of the antennas currently in use radiate a lot of power in a useless direction different from the direction in which radio waves should be radiated. According to the present embodiment, the array antenna arranged on the window glass or the like recovers these useless electric powers in the vicinity of the transmitting antenna or in the distant field region, and stores the electric powers for another work amount. It can be converted and reused.
 図8を参照して、一の窓ガラスに配置されるアンテナユニットの構成例を説明する。アンテナユニットは、窓サッシ60内に設けられたモジュール64に配置され、窓ガラス61に、アンテナ素子62を配列して構成され得る。アンテナ素子62は、図8の例では格子状に4行4列に配置されているが、これに限定されるものではなく、一定の規則性を持って配置されていれば十分であり、枚数も図示の例に限定されない。図8のように窓全面ではなく、配置されるアンテナは窓に対して一部の領域に対して設けられても良い。 With reference to FIG. 8, a configuration example of an antenna unit arranged on one window glass will be described. The antenna unit is arranged in a module 64 provided in the window sash 60, and the antenna element 62 may be arranged on the window glass 61. In the example of FIG. 8, the antenna elements 62 are arranged in a grid pattern in 4 rows and 4 columns, but the present invention is not limited to this, and it is sufficient if the antenna elements 62 are arranged with a certain regularity. Is not limited to the illustrated example. The antenna arranged instead of the entire surface of the window as shown in FIG. 8 may be provided for a part of the area with respect to the window.
 また、1枚の窓に複数のアンテナ素子62が配置される必要はなく、1枚の窓に1つのアンテナ素子62が形成され、ビル全体に配置された複数のアンテナ素子62によりアレーアンテナA又はBが形成されてもよい。なお、複数のアンテナ素子62は、RF線路63及び導電性の窓サッシ60内に、図9に示すRFモジュール及び蓄電回路を有する。アンテナ素子62は、図8に図示の例では、矩形の導電層であるが、これに限定されるものではない。アンテナ素子のタイプも、パターンアンテナには限られず、一般的なスリーブアンテナ、Yagiアンテナ、導波管、ホーンアンテナ、漏洩同軸ケーブル、ダイポールアンテナ、平面開口等アンテナなどを採用することも可能である。また、アンテナは、指向性であってもよいし、無指向性であってもよい。 Further, it is not necessary to arrange a plurality of antenna elements 62 in one window, one antenna element 62 is formed in one window, and the array antenna A or the array antenna A or by the plurality of antenna elements 62 arranged in the entire building. B may be formed. The plurality of antenna elements 62 have the RF module and the power storage circuit shown in FIG. 9 in the RF line 63 and the conductive window sash 60. The antenna element 62 is a rectangular conductive layer in the example shown in FIG. 8, but is not limited thereto. The type of antenna element is not limited to the pattern antenna, and general sleeve antennas, Yagi antennas, waveguides, horn antennas, leaky coaxial cables, dipole antennas, flat opening antennas, etc. can also be adopted. Further, the antenna may be directional or omnidirectional.
 図9を参照して、アレーアンテナの蓄電回路の構成例について説明する。この蓄電回路は、アンテナユニットANTに接続される整流回路65と、蓄電回路66とから構成される。整流回路65は、図9の例では全波整流回路であるが、これに限定されるものではない。アンテナユニットANTで受信した高周波電力(波形)は、インダクタンス、及びキャパシタンスで構成される整流回路65を介して整流され、蓄電回路66に蓄電される。蓄電回路66は、一例として、窓サッシ60等にモジュール64として実装されることが可能である。蓄電回路66の回路構成は特定のものには限定されない。 An example of the configuration of the power storage circuit of the array antenna will be described with reference to FIG. This power storage circuit includes a rectifier circuit 65 connected to the antenna unit ANT and a power storage circuit 66. The rectifier circuit 65 is a full-wave rectifier circuit in the example of FIG. 9, but is not limited thereto. The high frequency power (waveform) received by the antenna unit ANT is rectified via the rectifier circuit 65 composed of the inductance and the capacitance, and is stored in the power storage circuit 66. As an example, the power storage circuit 66 can be mounted as a module 64 on a window sash 60 or the like. The circuit configuration of the power storage circuit 66 is not limited to a specific one.
 また、アレーアンテナA又はBは、特定の周波数の電波を用いた無線プロトコルの電波を受電対象とするものには限られず、蓄電に利用可能であれば、受電する電波の周波数は不問である。無線プロトコルの種類も特定のものには限定されない。また、アレーアンテナA又はBの無線給電方法、ソフトウエアの構造、動作についても制約は無い。 Further, the array antenna A or B is not limited to the one that receives the radio wave of the radio protocol using the radio wave of a specific frequency, and the frequency of the received radio wave does not matter as long as it can be used for storage. The type of wireless protocol is also not limited to a specific one. Further, there are no restrictions on the wireless power feeding method of the array antennas A or B, the structure of the software, and the operation.
 実現するパターンアンテナは、マルチバンド方式であってもよいし、シングルバンド方式であってもよく、シングルバンド、マルチバンドかは、アンテナの設計に応じて選択可能である。また、アンテナは、バリキャップダイオードや物理的なリアクタンス成分変化を与えることのできる構造を有し、動的に周波数特性を変更することが可能に構成されていてもよい。更に、周波数特性調整のための実装技術として、リアルタイム性実現のためにCRLH、あるいはメタマテリアルを用いた左手系回路を実装しても構わない。 The pattern antenna to be realized may be a multi-band system or a single-band system, and whether it is a single band or a multi-band can be selected according to the antenna design. Further, the antenna may have a structure capable of giving a varicap diode or a physical reactance component change, and may be configured to be able to dynamically change the frequency characteristics. Further, as a mounting technique for adjusting the frequency characteristics, a left-handed circuit using CRLH or a metamaterial may be mounted to realize real-time performance.
 図10を参照して、アレーアンテナA及びBの更なる詳細な構造の一例を示す。このアレーアンテナA又はBは、窓70に形成された透明導体71を備える。この透明導体71は、窓70に整然と配列され、アンテナとして機能する。各アンテナ素子71は、一例として十字の導体部と、その十字部の先端と直交する導体とから構成されるが、これは一例であり、この形状に限定されるものではない。 With reference to FIG. 10, an example of a more detailed structure of the array antennas A and B is shown. The array antenna A or B includes a transparent conductor 71 formed in the window 70. The transparent conductors 71 are neatly arranged in the window 70 and function as an antenna. Each antenna element 71 is composed of, for example, a cross-shaped conductor portion and a conductor orthogonal to the tip of the cross-shaped portion, but this is an example and is not limited to this shape.
 各アンテナ素子71は、十字の導体部の交差部72において貫通導体(VIA)73~78を備えている。図10の例では、3行×3列に格子状に配置されたMIMOアレイアンテナを例示しているが、格子の縦横方向におけるアンテナの数は特定の数には限定されない。各アンテナ素子71に設けられた給電点であるVIA73~78は、窓としての媒体70を基板とし、これら給電点において高周波の信号が受送信される。図11は、マルチバンドのアンテナパターンを模擬した図である。図12は、図11のアンテナ回路の周波数特性の一例を示している。 Each antenna element 71 includes through conductors (VIA) 73 to 78 at the intersection 72 of the cross conductor portions. In the example of FIG. 10, the MIMO array antennas arranged in a grid pattern in 3 rows × 3 columns are illustrated, but the number of antennas in the vertical and horizontal directions of the grid is not limited to a specific number. The VIA 73 to 78, which are feeding points provided in each antenna element 71, use a medium 70 as a window as a substrate, and high-frequency signals are transmitted and received at these feeding points. FIG. 11 is a diagram simulating a multi-band antenna pattern. FIG. 12 shows an example of the frequency characteristics of the antenna circuit of FIG.
 本実施の形態のアンテナの周波数特性は、1つの通過帯域を有するものには制限されない。図12のように、周波数f1、f2を中心とする2つ又はそれ以上の通過帯域を有していても構わない。また、アンテナは、液晶を用いた構造や、メタマテリアル構造を実装し、動的に最適な周波数特性が調整できる機能を有していても構わない。 The frequency characteristics of the antenna of this embodiment are not limited to those having one pass band. As shown in FIG. 12, it may have two or more pass bands centered on frequencies f1 and f2. Further, the antenna may have a function of mounting a structure using a liquid crystal display or a metamaterial structure and dynamically adjusting the optimum frequency characteristics.
[効果]
 以上説明したように、本実施の形態のシステムによれば、以下のような効果が得られる。
(1)従来に比べ、End to Endの通信距離がより広域に確保できる。
 (説明)空中を飛行可能なUAVを基地局又は中継局として無線通信ネットワークを形成するため、従来のシステムが略地面に水平な通信網であるのとは異なり、伝搬経路を三次元的に形成することができる。このため、障害物を回避して伝搬経路を形成することができ、伝搬距離を従来と比べてより広域に確保することが容易となる。
[effect]
As described above, according to the system of the present embodiment, the following effects can be obtained.
(1) The end-to-end communication distance can be secured in a wider area than in the past.
(Explanation) Since a UAV capable of flying in the air is used as a base station or a relay station to form a wireless communication network, a propagation path is formed three-dimensionally, unlike a conventional system that is a communication network that is almost horizontal to the ground. can do. Therefore, it is possible to avoid obstacles and form a propagation path, and it becomes easy to secure a propagation distance in a wider area than in the conventional case.
(2)無線信号を用いた通信ネットワーク全体の信頼性向上を図ることができる。
 (説明)UAVを中継局又は基地局とすることができることから、障害物を回避して伝搬経路を形成することができることから、マルチパスの発生を抑制することができ、フェージングによる通信品質劣化を抑えることができる。また、UAVを中継局又は基地局として利用することにより、従来地上物に固定されている中継局又は基地局とは異なり、通信状態によりリアルタイムに中継局や基地局であるUAVの位置を時間的、空間的に最適化することが可能となる。そして、このような中継局又は基地局として機能するUAVに対して、ビルや自動車等の窓ガラスに設置されたアレーアンテナから電力の無線給電を行うことにより、UAVがベースステーションに帰還する頻度を著しく減少させることができ、連続した飛行時間が長くなる。飛行時間が長くなれば、基地局、中継局としての機能を1つのUAVに継続的に担わせることができ、通信効率が向上する。交代の際の代替機との引継ぎ機能を実行する際には少なからずより多くの遅延時間が発生するが、交代の頻度を限りなく少なくすることが出来るため、自機が抱える無線ネットワークで発生する遅延頻度を極力押さえることが出来る。
(2) It is possible to improve the reliability of the entire communication network using wireless signals.
(Explanation) Since the UAV can be a relay station or a base station, obstacles can be avoided and a propagation path can be formed, so that the occurrence of multipath can be suppressed and communication quality deterioration due to fading can be suppressed. It can be suppressed. In addition, by using the UAV as a relay station or base station, unlike the relay station or base station that is conventionally fixed to the ground object, the position of the UAV that is the relay station or base station can be determined in real time depending on the communication state. , It becomes possible to optimize spatially. Then, the frequency with which the UAV returns to the base station is determined by wirelessly supplying power to the UAV functioning as such a relay station or base station from an array antenna installed on the window glass of a building or an automobile. It can be significantly reduced and the continuous flight time will be longer. If the flight time is long, one UAV can continuously function as a base station and a relay station, and communication efficiency is improved. There will be a considerable amount of delay when performing the takeover function with the alternative device at the time of replacement, but since the frequency of replacement can be reduced as much as possible, it will occur in the wireless network of the own device. The delay frequency can be suppressed as much as possible.
(3)通信される情報の優先順位の選定が物理的に可能となる。
 (説明)従来の無線通信システムでは、送受信される無線信号の優先順位の選定は、5Gでも利用されているように、無線信号の送受信前に送受信されるパイロット信号、又は情報に関する信号ヘッダに含まれるステータス情報に従い実行されている。非常/緊急事態の際には、指定された任意の情報を持つ無線信号品質が確保されるために最優先でUAVの飛行経路を自動的に判断し、従来の電気的な優先選定に加え、物理的に選定し、飛行することができる。
(3) It is physically possible to select the priority of the information to be communicated.
(Explanation) In a conventional wireless communication system, selection of priority of transmitted / received wireless signals is included in a pilot signal transmitted / received before transmission / reception of a wireless signal or a signal header related to information, as is used in 5G. It is executed according to the status information. In the event of an emergency / emergency, the UAV's flight path is automatically determined with the highest priority to ensure the radio signal quality with any specified information, in addition to the conventional electrical priority selection. It can be physically selected and flown.
(4)空間に存在するメインの通信には関係のない電波を回収(エナジーハーベスト)、及び蓄電することで、伝搬経路上の不要なマルチパス経路を断ち切ることにつながり、他システムとの共存がより効果的となる。
 (説明)他のシステムとの干渉、同一の周波数を用いる隣接セル間のセル間干渉等の条件下において、不要電波の電力を回収することは、干渉波を他システムに与えず、また他システムから干渉波を受けないこととなり、受信点において不要なマルチパスの発生を抑制することに繋がる。
ただし、マルチパスからの通信経路を積極的に利用する通信方式においては、ソフト的に回収機能を停止(OFF)させることができる。
(4) By collecting and storing radio waves that are not related to the main communication existing in the space (energy harvesting), it leads to cutting off unnecessary multipath paths on the propagation path and coexisting with other systems. It will be more effective.
(Explanation) Under conditions such as interference with other systems and cell-to-cell interference between adjacent cells using the same frequency, recovering the power of unnecessary radio waves does not give interference waves to other systems, and other systems. It will not receive the interference wave from the above, which will lead to the suppression of the generation of unnecessary multipath at the receiving point.
However, in the communication method that positively uses the communication path from the multipath, the collection function can be stopped (OFF) by software.
(5)従来技術と比較して効率的な無線給電を行うことが可能となる。
(説明)MIMOアレーアンテナを用い、給電対象となるUAVの位置の情報をGNSS、又はMIMOアレーアンテナによるビームトラッキング等により取得し、ビームフォーミング技術によりUAVに対し無線給電を行うことができる。MIMOアレーアンテナは、ビルの窓に埋め込まれる場合、MIMOアレーアンテナとUAVとの間の障害物を少なくすることができることから、他システムからの干渉を抑えつつ給電を実行することができる。また、通信経路間損失を抑えることが出来るため、高効率な無線給電を実現することが可能となる。
(5) It is possible to perform more efficient wireless power supply as compared with the conventional technology.
(Explanation) Using a MIMO array antenna, information on the position of a UAV to be fed can be acquired by GNSS, beam tracking by a MIMO array antenna, or the like, and wireless power can be supplied to the UAV by beamforming technology. When the MIMO array antenna is embedded in the window of a building, the obstacles between the MIMO array antenna and the UAV can be reduced, so that power can be supplied while suppressing interference from other systems. Further, since the loss between communication paths can be suppressed, it is possible to realize highly efficient wireless power supply.
[変形例]
 上述した実施の形態に示す各種構成は、周知技術や慣用手段から自明な範囲において様々な追加、置換、改変、削除等が可能である。また、通信システムは、5G、 6Gには限定されず、Wi-Fi、 LPWA、その他全ての無線プロトコル(変調信号、無変調信号、また変調信号の種類)に適用可能である。また、AM/FM波、ミリ波、光通信等を含めた無線通信周波数、信号周波数帯域にも本発明は制約を持たない。
[Modification example]
The various configurations shown in the above-described embodiments can be added, replaced, modified, deleted, and the like within a range obvious from well-known techniques and conventional means. Further, the communication system is not limited to 5G and 6G, and can be applied to Wi-Fi, LPWA, and all other radio protocols (modulated signal, unmodulated signal, and type of modulated signal). Further, the present invention is not limited to the radio communication frequency including AM / FM wave, millimeter wave, optical communication and the like, and the signal frequency band.
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の公知の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. .. Further, it is possible to add / delete / replace other known configurations with respect to a part of the configurations of each embodiment.
1…基地局、 2、3…ビル、 6…住宅、 7、8、9、10…伝搬経路、 12…建築物、 13…領域、 14…送信経路、 17、18…アレーアンテナ(中継器)
19~26…伝搬経路、 40…CPU、 41…ミキサ、 42…RFスイッチ、 43…プリアンプ、 44…パワーアンプ、 45…RFスイッチ、 46…電力分配器、 47~52…位相器、 61…窓ガラス、 62…アンテナ素子、 63…RF線路、 64…窓サッシ、 65…整流回路、 66…蓄電回路、 70…窓、 71…透明導体、 72…交差部、 73~78…貫通導体(VIA)、 A,B…アレーアンテナ、 ANT1~12…アンテナユニット。
1 ... base station, 2, 3 ... building, 6 ... house, 7, 8, 9, 10 ... propagation path, 12 ... building, 13 ... area, 14 ... transmission path, 17, 18 ... array antenna (repeater)
19-26 ... Propagation path, 40 ... CPU, 41 ... Mixer, 42 ... RF switch, 43 ... Preamplifier, 44 ... Power amplifier, 45 ... RF switch, 46 ... Power distributor, 47-52 ... Phaser, 61 ... Window Glass, 62 ... antenna element, 63 ... RF line, 64 ... window sash, 65 ... rectifying circuit, 66 ... power storage circuit, 70 ... window, 71 ... transparent conductor, 72 ... intersection, 73-78 ... through conductor (VIA) , A, B ... Array antenna, ANT1-12 ... Antenna unit.

Claims (8)

  1.  中継局又は基地局として機能するUAVと、
     前記UAVを介して搬送波を受信する端末と、
     電磁波に基づく電力を受電するアンテナを含み、前記アンテナにより受電、及び蓄電された電力を前記UAVを含む電気的に動作する他のデバイスに前記アンテナを介して無線給電する窓ガラスとを備えた無線通信システム。
    UAVs that function as relay stations or base stations,
    A terminal that receives a carrier wave via the UAV,
    A wireless device including an antenna that receives electric power based on electromagnetic waves, and a window glass that wirelessly supplies electric power received and stored by the antenna to other electrically operating devices including the UAV via the antenna. Communications system.
  2.  前記窓ガラスは、建築用窓ガラス、自動車用窓ガラス、スマートフォン等の移動体端末のガラスである、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the window glass is a glass for a mobile terminal such as a window glass for construction, a window glass for automobiles, and a smartphone.
  3.  前記窓ガラスは、前記UAVに向けて蓄電した電力を給電するよう構成されたデバイスを備える、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the window glass includes a device configured to supply electric power stored toward the UAV.
  4.  前記窓ガラスは、ビームトラッキングにより前記UAVの位置を確認し、ビームフォーミングにより前記UAVに向けて電磁波を放射するよう構成されたデバイスを備える、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the window glass includes a device configured to confirm the position of the UAV by beam tracking and emit an electromagnetic wave toward the UAV by beamforming.
  5.  前記アンテナは、ビルの複数の窓ガラスに配置される複数のアンテナユニットを含む、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the antenna includes a plurality of antenna units arranged on a plurality of windowpanes of a building.
  6.  前記UAVは、RSSI、PER、通信遅延情報(Communication Latency)を含む各種パラメータに基づき、自身の通信品質環境、及び通信の優先順位を自律的に判断し、飛行可能範囲に関する上記各種パラメータを満たし、通信品質を確保する機能を有する、請求項1に記載の無線通信システム。 The UAV autonomously determines its own communication quality environment and communication priority based on various parameters including RSSI, PER, and communication delay information (Communication Latency), and satisfies the above various parameters regarding the flight range. The wireless communication system according to claim 1, which has a function of ensuring communication quality.
  7.  前記UAVとは別の第2のUAVを更に備え、前記UAVが充電のためベースステーションに帰還する場合に、前記第2のUAVが、前記UAVの情報を引き継ぐコピー機として機能する、請求項1に記載の無線通信システム。 A second UAV different from the UAV is further provided, and when the UAV returns to the base station for charging, the second UAV functions as a copier that inherits the information of the UAV. The wireless communication system described in.
  8.  無線給電より充電のための帰還の頻度を著しく減少させる機能を持つUAVを用いた、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, which uses a UAV having a function of significantly reducing the frequency of return for charging rather than wireless power supply.
PCT/JP2021/031538 2020-09-01 2021-08-27 Wireless communication system WO2022050187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146514 2020-09-01
JP2020146514A JP2023156537A (en) 2020-09-01 2020-09-01 wireless communication system

Publications (1)

Publication Number Publication Date
WO2022050187A1 true WO2022050187A1 (en) 2022-03-10

Family

ID=80491709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031538 WO2022050187A1 (en) 2020-09-01 2021-08-27 Wireless communication system

Country Status (2)

Country Link
JP (1) JP2023156537A (en)
WO (1) WO2022050187A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514961A (en) * 2015-02-19 2018-06-07 オシア,インク. Embedded wireless power facility embedded or evaporated surface antenna
JP2019092097A (en) * 2017-11-16 2019-06-13 富士通株式会社 Wireless relay method, control device, wireless relay system, and program
JP2019102872A (en) * 2017-11-29 2019-06-24 株式会社豊田中央研究所 Radio relay system, mobile repeating installation and base station
JP2019213079A (en) * 2018-06-06 2019-12-12 Hapsモバイル株式会社 Cell optimization by remote control via HAPS flight control communication line
JP2020114700A (en) * 2019-01-17 2020-07-30 三菱ロジスネクスト株式会社 Power supply system for unmanned flight body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514961A (en) * 2015-02-19 2018-06-07 オシア,インク. Embedded wireless power facility embedded or evaporated surface antenna
JP2019092097A (en) * 2017-11-16 2019-06-13 富士通株式会社 Wireless relay method, control device, wireless relay system, and program
JP2019102872A (en) * 2017-11-29 2019-06-24 株式会社豊田中央研究所 Radio relay system, mobile repeating installation and base station
JP2019213079A (en) * 2018-06-06 2019-12-12 Hapsモバイル株式会社 Cell optimization by remote control via HAPS flight control communication line
JP2020114700A (en) * 2019-01-17 2020-07-30 三菱ロジスネクスト株式会社 Power supply system for unmanned flight body

Also Published As

Publication number Publication date
JP2023156537A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
Zhang et al. A survey on 5G millimeter wave communications for UAV-assisted wireless networks
CN111010223B (en) Millimeter wave full-duplex unmanned aerial vehicle communication relay transmission method
Huang et al. Airplane-aided integrated networking for 6G wireless: Will it work?
US11303020B2 (en) High gain relay antenna system with multiple passive reflect arrays
CN108464030B (en) Method and system for communicating with beamforming antennas
RU2515503C2 (en) Communication method and system for directional transmission of digital data between aircraft and ground station
WO2018230039A1 (en) Antenna device
US20040162115A1 (en) Wireless antennas, networks, methods, software, and services
US20140045420A1 (en) Methods and systems for providing high-speed connectivity to aircraft
AU2007313939A1 (en) Multi-Link Aircraft Cellular System for simultaneous communication with multiple terrestrial cell sites
US11451944B2 (en) In-vehicle communication system
Tadayon et al. Inflight broadband connectivity using cellular networks
WO2022142845A1 (en) Spectrum usage method, system, antenna, and network device
Salehi et al. Ultra-reliable low-latency communication for aerial vehicles via multi-connectivity
CN110719596B (en) Base station antenna design method for greatly improving ground-air communication signal coverage quality
Najmeddin et al. Energy-efficient resource allocation for UAV-enabled wireless powered communications
CN110650525A (en) Multi-beam distributed power MAC protocol communication method
US10847882B1 (en) Electronic device and communication method
WO2022050187A1 (en) Wireless communication system
Yaacoub Travel Hopping Enabled Resource Allocation (THEResA) and delay tolerant networking through the use of UAVs in railroad networks
Alsarayreh et al. Intelligent Reflecting Surface-UAV Systems in the Internet of Things Network: A Survey
Habiba et al. Backhauling 5G Small Cells with Massive‐MIMO‐Enabled mmWave Communication
Li et al. Reliable communications in aerial sensor networks by using a hybrid antenna
Park et al. A novel cell deployment for UAM communications in 5g-advanced network
Aldhaibani et al. Enhancing link quality in a multi-hop relay in LTE-A employing directional antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP