WO2022050175A1 - Resin composition and molded body - Google Patents

Resin composition and molded body Download PDF

Info

Publication number
WO2022050175A1
WO2022050175A1 PCT/JP2021/031405 JP2021031405W WO2022050175A1 WO 2022050175 A1 WO2022050175 A1 WO 2022050175A1 JP 2021031405 W JP2021031405 W JP 2021031405W WO 2022050175 A1 WO2022050175 A1 WO 2022050175A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
resin composition
resin
composition according
unit
Prior art date
Application number
PCT/JP2021/031405
Other languages
French (fr)
Japanese (ja)
Inventor
友絵 田邊
悠介 山縣
泰典 樽谷
翔一郎 矢野
紗彩 塩野
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2022546283A priority Critical patent/JPWO2022050175A1/ja
Publication of WO2022050175A1 publication Critical patent/WO2022050175A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a resin composition and a molded product.
  • epoxy resins are known to have high strength and elastic modulus of their cured products, and are excellent in heat resistance and chemical resistance, and are used for various purposes in the industrial field.
  • the cured product of the epoxy resin has low flexibility and has a problem in fracture characteristics against strain.
  • cracks may occur due to the application of vibration or force, and improvement thereof has been desired.
  • Patent Document 1 a technique of adding a rubber material to an epoxy resin (see Patent Document 1) and a technique of modifying the epoxy resin itself (see Patent Document 2) are disclosed.
  • Patent Documents 1 and 2 can secure a certain degree of flexibility, none of them can secure sufficient growth, and further improvement is desired.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a resin composition capable of achieving both strength and elongation at a high level as compared with the conventional epoxy resin.
  • Another object of the present invention is to provide a molded product having excellent strength and good flexibility.
  • the gist structure of the present invention that solves the above problems is as follows.
  • the resin composition of the present invention is characterized by containing a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and a ratio of butylene units of 0 mol%, and a curing agent. ..
  • the resin composition of the present invention can achieve both strength and elongation at a high level as compared with the conventional epoxy resin.
  • the sheet molded product of the present invention is characterized in that the above resin composition is used.
  • the sheet molded product of the present invention can realize good flexibility while having excellent strength.
  • the present invention it is possible to provide a resin composition having both strength and elongation at a high level as compared with a conventional epoxy resin. Further, according to the present invention, it is possible to provide a molded product having excellent strength and good flexibility.
  • the resin composition of the present invention comprises an epoxy resin and A crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and a proportion of butylene units of 0 mol%. It is characterized by containing a curing agent.
  • a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and having a butylene unit ratio of 0 mol% contains a non-conjugated olefin unit and is derived from the non-conjugated olefin unit when it is greatly distorted.
  • the crystal component is disintegrated, and the energy can be dissipated by the melting energy. Therefore, in the resin composition of the present invention, strength and elongation can be achieved at a high level by containing the above-mentioned copolymer in addition to the epoxy resin having excellent hardness.
  • the resin composition of the present invention contains an epoxy resin. By containing the epoxy resin in the resin composition, the strength (hardness) of the cured product can be increased.
  • the state of the epoxy resin, the epoxy equivalent, the molecular weight, the molecular structure and the like are not limited, and can be appropriately selected according to the required performance.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and ring-type aliphatic epoxy.
  • Epoxy and glycidyl of unsaturated polymers such as resin, polyvalent aromatic or aliphatic carboxylic acid polyglycidyl ester, polyvalent phenol polyglycidyl ether, polyhydric alcohol glycidyl ether, nitrogen-containing heterocyclic compound polyglycidyl ether, polybutadiene, etc. Examples thereof include unsaturated monoepoxyd polymers such as methacrylate.
  • the content of the epoxy resin is not particularly limited, but from the viewpoint of the balance between the strength and elongation of the resin composition, the content of the epoxy resin with respect to the total content of the epoxy resin and the copolymer described later. Is preferably 35 to 65% by mass. By setting the content of the epoxy resin to 35% by mass or more, more excellent strength can be obtained, and by setting the content of the epoxy resin to 65% by mass or less, the content of the copolymer described later will be obtained. Can be secured and the decrease in elongation can be suppressed more reliably.
  • the resin composition of the present invention contains a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and having a ratio of butylene units of 0 mol%.
  • a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and having a ratio of butylene units of 0 mol%.
  • the conjugated diene unit in the copolymer is a structural unit derived from the conjugated diene compound as a monomer.
  • the conjugated diene unit can exhibit the elongation and strength of the copolymer.
  • the conjugated diene compound refers to a conjugated diene compound.
  • the conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene compound as a monomer of the multiplex copolymer contains 1,3-butadiene and / or isoprene from the viewpoint of effectively improving the strength of the resin composition using the obtained multiplex copolymer. It is preferably contained, more preferably composed of only 1,3-butadiene and / or isoprene, and even more preferably composed of only 1,3-butadiene.
  • the conjugated diene unit in the multi-dimensional copolymer preferably contains 1,3-butadiene unit and / or isoprene unit, and may consist only of 1,3-butadiene unit and / or isoprene unit. It is preferable that it consists of only 1,3-butadiene units.
  • the content of the conjugated diene unit in the copolymer is preferably 3 mol% or more, more preferably 5 mol% or more, and further preferably 6 mol% or more. This is because when the content of the conjugated diene unit is 3 mol% or more of the total amount of the multiple copolymer, a resin composition having excellent elongation can be obtained.
  • the content of the conjugated diene unit is preferably 70 mol% or less, more preferably 50 mol% or less, further preferably 40 mol% or less, still more preferably 30 mol% or less. .. This is because when the content of the conjugated diene unit is 70 mol% or less, the weather resistance is excellent. Therefore, the content of the conjugated diene unit is preferably in the range of 3 to 70 mol% of the entire copolymer, and more preferably in the range of 5 to 60 mol%.
  • the non-conjugated olefin unit in the copolymer is a structural unit derived from the non-conjugated olefin compound as a monomer.
  • the crystal component derived from the non-conjugated olefin unit dissipates to dissipate energy.
  • the non-conjugated olefin compound refers to an aliphatic unsaturated hydrocarbon having one or more carbon-carbon double bonds.
  • the non-conjugated olefin compound preferably has 2 to 10 carbon atoms.
  • non-conjugated olefin compound examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene, vinyl pivalate and 1-phenylthioethane. , N-vinylpyrrolidone and other heteroatomic substituted alkene compounds and the like.
  • the non-conjugated olefin compound may be used alone or in combination of two or more.
  • the non-conjugated olefin compound as a monomer of the copolymer is a non-cyclical non-conjugated olefin compound from the viewpoint of further improving the weather resistance of the resin composition and tires using the obtained copolymer.
  • the acyclic non-conjugated olefin compound is more preferably ⁇ -olefin, further preferably an ⁇ -olefin containing ethylene, and particularly preferably composed of ethylene alone.
  • the non-conjugated olefin unit in the copolymer is preferably an acyclic non-conjugated olefin unit, and the acyclic non-conjugated olefin unit is more preferably an ⁇ -olefin unit. It is more preferable that it is an ⁇ -olefin unit containing an ethylene unit, and particularly preferably it is composed of only an ethylene unit.
  • the content of the non-conjugated olefin unit in the copolymer is preferably 25 mol% or more, more preferably 30 mol% or more, further preferably 35 mol% or more, still more preferably 45 mol% or more. Is even more preferable, and 50 mol% or more is particularly preferable. Further, the content of the non-conjugated olefin unit is preferably 97 mol% or less, more preferably 94 mol% or less, still more preferably 90 mol% or less.
  • the content of the non-conjugated olefin unit is 25 mol% or more of the total amount of the copolymer, as a result, the content of the conjugated diene unit and the aromatic vinyl unit described later is reduced, the weather resistance is improved, and the strength is increased. improves. Further, when the content of the non-conjugated olefin unit is 97 mol% or less, the content of the conjugated diene unit and the aromatic vinyl unit described later increases as a result, and the elongation is improved.
  • the content of the non-conjugated olefin unit is preferably in the range of 25 to 97 mol%, more preferably in the range of 25 to 94 mol%, and even more preferably in the range of 35 to 90 mol%.
  • the copolymer preferably further has an aromatic vinyl unit.
  • the aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer. By including the aromatic vinyl unit, the flexibility of the copolymer can be further enhanced.
  • the aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound.
  • the aromatic vinyl compound preferably has 8 to 10 carbon atoms.
  • aromatic vinyl compounds examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and the like. ..
  • the aromatic vinyl compound may be used alone or in combination of two or more.
  • the aromatic vinyl compound as the monomer of the copolymer preferably contains styrene from the viewpoint of improving the weather resistance of the resin composition using the obtained copolymer, and is composed of only styrene. Is more preferable.
  • the aromatic vinyl unit in the copolymer preferably contains a styrene unit, and more preferably consists of only a styrene unit.
  • the aromatic ring in the aromatic vinyl unit is not included in the main chain of the plural copolymer unless it is bonded to an adjacent unit.
  • the content of the aromatic vinyl unit in the copolymer is preferably 1 mol% or more, and more preferably 2 mol% or more. Further, the content of the aromatic vinyl unit is preferably 30 mol% or less, more preferably 25 mol% or less, and further preferably 20 mol% or less.
  • the content of the aromatic vinyl unit in the copolymer is 1 mol% or more, the durability at high temperature is improved. Further, when the content of the aromatic vinyl unit is 30 mol% or less, the effect of the conjugated diene unit and the non-conjugated olefin unit becomes remarkable. Therefore, the content of the aromatic vinyl unit is preferably in the range of 1 to 30 mol% of the entire copolymer, and more preferably in the range of 2 to 25 mol%.
  • the number of types of monomers in the copolymer is not particularly limited except that the copolymer contains a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit as a suitable component. do not have.
  • the copolymer may have other structural units other than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit, but the content of the other structural units obtains the desired effect. From the viewpoint, it is preferably 30 mol% or less, more preferably 20 mol% or less, further preferably 10 mol% or less, and not contained, that is, the content is 0 mol%. Is particularly preferred.
  • the ratio of the butylene unit is 0 mol% (there is no butylene unit). That is, the copolymer A does not contain hydrogenated styrene-butadiene copolymers such as styrene-ethylene / butylene-styrene (SEBS).
  • SEBS hydrogenated styrene-butadiene copolymers
  • the copolymer has crystallinity. This makes it possible to effectively increase the strength of the resin composition after curing.
  • the adjustment for making the copolymer crystalline is, for example, the ratio of each monomer unit including the non-conjugated olefin unit and the order of charging each monomer when synthesizing the copolymer. Alternatively, it can be carried out by appropriately changing the type of catalyst used for synthesizing the copolymer.
  • the existence of the "crystallinity" of the copolymer can be confirmed by confirming the melting point in the measurement by a differential scanning calorimeter (DSC) based on JIS K 7121-1987.
  • DSC differential scanning calorimeter
  • the copolymer preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 10,000 to 10,000,000, more preferably 50,000 to 2,000,000. It is more preferably ⁇ 2,000,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • polystyrene is used as a standard substance by gel permeation chromatography (GPC).
  • the copolymer preferably has a melting point of 30 to 130 ° C., more preferably 30 to 110 ° C., as measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the melting point of the copolymer is 30 ° C. or higher, the crystallinity of the copolymer is high, the wear resistance of the resin composition is further improved, and the durability after crosslinking can be further improved.
  • the melting point of the copolymer is 130 ° C. or lower, the workability of the resin composition is improved.
  • the melting point is a value measured by the method described in Examples.
  • the copolymer preferably has a glass transition temperature (Tg) of 0 ° C. or lower, preferably ⁇ 100 to ⁇ 10 ° C., as measured by a differential scanning calorimeter (DSC). More preferred.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • the copolymer preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%, and more preferably 5 to 45%. More preferred.
  • the crystallinity of the copolymer is 0.5% or more, the crystallinity due to the non-conjugated olefin unit can be sufficiently ensured, and the fracture resistance can be further improved.
  • the crystallinity of the copolymer is 50% or less, the workability at the time of kneading the resin composition is improved, and the tackiness of the resin composition containing the copolymer is improved. Workability when doing this is also improved.
  • the crystallinity is a value measured by the method described in Examples.
  • the main chain of the copolymer has only an acyclic structure.
  • the strength of the resin composition can be further improved, and the durability after crosslinking can be further improved.
  • NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure.
  • a peak derived from the cyclic structure existing in the main chain for example, a peak appearing at 10 to 24 ppm for a three-membered ring to a five-membered ring
  • the main chain of the multipolymer is the main chain.
  • the copolymer can be produced through a polymerization step using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers, and if necessary, a coupling step, a cleaning step, and other steps. It may go through a process.
  • the catalyst composition described below the reactivity of the conjugated diene compound is higher than that of the non-conjugated olefin compound and the aromatic vinyl compound.
  • the non-conjugated olefin compound and / or the aromatic compound is present in the presence of the conjugated diene compound. It tends to be difficult to polymerize vinyl compounds. Further, it is also liable to be difficult due to the characteristics of the catalyst to polymerize the conjugated diene compound first and then additionally polymerize the non-conjugated olefin compound and the aromatic vinyl compound.
  • the method for producing the copolymer for example, the one described in International Publication No. 2015/190072 can be used.
  • the content of the copolymer is not particularly limited, but from the viewpoint of the balance between the strength and elongation of the resin composition, the content of the copolymer with respect to the total content of the epoxy resin and the copolymer.
  • the ratio is preferably 35 to 65% by mass.
  • the resin composition of the present invention contains a curing agent in addition to the above-mentioned epoxy resin and copolymer.
  • the curing agent can cure the epoxy resin and increase the strength of the resin composition.
  • the type of the curing agent is not particularly limited, and can be appropriately selected depending on the required performance. For example, amines, acid anhydrides, phenols, polyamides and the like can be mentioned.
  • an acid anhydride having the following structure from the viewpoint of achieving both strength and elongation of the resin composition at a higher level.
  • the content of the curing agent is not particularly limited, and can be appropriately adjusted according to the type of epoxy resin, the degree of curing, and the like.
  • the content of the curing agent is 100 parts by mass of the epoxy resin (in the case of containing the thermoplastic resin, the total amount of the epoxy resin and the thermoplastic resin). On the other hand, it is preferably 0.1 to 10 parts by mass.
  • the resin composition of the present invention further contains a thermoplastic resin.
  • a thermoplastic resin is not particularly limited, but a resin having a hydroxyl group is preferable from the viewpoint of achieving both strength and elongation of the resin composition at a higher level.
  • the thermoplastic resin having a hydroxyl group include a phenoxy resin, a dicyclopentadiene resin, a terpene phenol resin, a terpene resin, a rosin resin, and an alkylphenol resin.
  • the phenoxy resin is a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin, and the phenoxy resin in a broad sense obtained by subjecting a polyfunctional epoxy resin to a polyfunctional phenol by a double addition reaction is also included in the phenoxy resin.
  • the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A type and bisphenol F type copolymerized phenoxy resin, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, and biphenyl type phenoxy resin.
  • Examples thereof include a phenoxy resin copolymerized with a bisphenol S-type phenoxy resin.
  • a bisphenol A type phenoxy resin or a copolymerized phenoxy resin of bisphenol A type and bisphenol F type is preferable, and it may be used alone or in combination of two or more.
  • the dicyclopentadiene resin is a petroleum resin produced by using dicyclopentadiene as a main raw material, which is obtained by dimerizing cyclopentadiene.
  • dicyclopentadiene resin a commercially available product can be used. For example, among the trade names "Quinton (registered trademark) 1000 series", which is an alicyclic petroleum resin manufactured by Nippon Zeon Corporation, "1105, 1325, 1340 "and the like.
  • the terpene phenol resin can be obtained, for example, by reacting terpenes with various phenols using a Friedel-Crafts type catalyst, or by further condensing with formalin.
  • the raw material terpenes are not particularly limited, and monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferable, those containing ⁇ -pinene are more preferable, and ⁇ -pinene is particularly preferable.
  • terpene phenol resin for example, trade names "Tamanol 803L”, “Tamanol 901” (manufactured by Arakawa Chemical Industry Co., Ltd.), and trade name “YS Polystar (registered trademark) U” series.
  • the terpene resin is a solid resin obtained by blending turpentine oil obtained at the same time as obtaining rosin from a pine tree or a polymerization component separated from the turpentine and polymerizing using a Friedelcrafts type catalyst. Yes, ⁇ -pinene resin, ⁇ -pinene resin and the like can be mentioned.
  • Commercially available products can be used as the terpene resin.
  • the product name "YS Resin” series PX-1250, TR-105, etc.
  • the product name "Picolite” series manufactured by Hercules Co., Ltd. A115, S115, etc.
  • the rosin resin is a residue left after collecting balsams such as pine fat (pine Yani), which is the sap of a plant of the Pinaceae family, and distilling terepine essential oil.
  • Natural resins as the main component modified resins obtained by modifying them, rosin, etc., and hydrogenated resins. Examples thereof include natural resin rosins, their polymerized rosins and partially hydrogenated rosins; glycerin ester rosins, their partially hydrogenated rosins, fully hydrogenated rosins and polymerized rosins; pentaerythritol ester rosins, their partially hydrogenated rosins and polymerized rosins. ..
  • Examples of natural resin rosin include raw pine rosin, gum rosin contained in tall oil, tall oil rosin, and wood rosin.
  • rosin resin a commercially available product can be used, for example, the product name "Neotoll 105" (manufactured by Harima Kasei Co., Ltd.), the product name "SN Tuck 754" (manufactured by San Nopco Ltd.), and the product name "Lime Resin”. No.
  • the alkylphenol resin is obtained, for example, by a condensation reaction between alkylphenol and formaldehyde under a catalyst.
  • a commercially available product can be used as the alkylphenol resin.
  • the product name "Hitanol 1502P” alkylphenol formaldehyde resin, manufactured by Hitachi Kasei Co., Ltd.
  • the product name "Tackiroll 201” alkylphenol formaldehyde resin, Taoka Chemical Industry Co., Ltd.
  • the content of the thermoplastic resin is not particularly limited, but from the viewpoint of achieving both the strength and elongation of the resin composition at a higher level, the total content of the epoxy resin, the copolymer, and the thermoplastic resin is not limited.
  • the content of the epoxy resin is 15 to 50% by mass
  • the content of the copolymer is 15 to 50% by mass
  • the content of the thermoplastic resin is 30 to 60% by mass with respect to the amount. It is preferable to have.
  • the resin composition of the present invention further contains an antioxidant.
  • the antiaging agent preferably has two or more phenyl groups containing a branched alkyl group.
  • examples of such an antioxidant include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds and phosphorus compounds.
  • an antiaging agent it is preferable to contain a compound having two or more phenyl groups having a branched alkyl group.
  • the dispersibility of the copolymer can be improved and the dispersibility of the copolymer can be improved when kneading at a high temperature in the production of a film. It is possible to suppress gelation of the polymer.
  • the compound having two or more phenyl groups containing a branched alkyl group may be used alone or in combination of two or more.
  • the compound having two or more phenyl groups containing a branched alkyl group is preferably a compound having a structure represented by the following formula (1) or formula (2).
  • R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 are hydrogen atoms, linear alkyl groups, cyclic alkyl groups, or branched alkyl groups. Yes, at least one of R 1 to R 8 ; and at least one of R 11 to R 18 and R 21 to R 24 are branched alkyl groups. R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 may be the same or different from each other.
  • R 9 is a hydrocarbon group.
  • a 1 and A 2 are linking groups.
  • E is a trivalent heteroatom.
  • the number of carbon atoms of the linear alkyl group is preferably 1 to 12, more preferably 1 to 8, further preferably 1 to 5, and even more preferably 1 to 3.
  • Specific examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and an n-octyl group. Examples thereof include an n-nonyl group, an n-decyl group and an n-dodecyl group.
  • the linear alkyl group may further have a substituent such as a halogen atom.
  • the linear alkyl group is preferably an unsubstituted linear alkyl group, more preferably a methyl group, an ethyl group, or an n-propyl group.
  • the cyclic alkyl group preferably has 5 to 12 carbon atoms, more preferably 6 to 12 carbon atoms, and even more preferably 6 to 8 carbon atoms.
  • Specific examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • the cyclic alkyl group may further have a substituent such as an alkyl group having 1 to 3 carbon atoms and a halogen atom.
  • the cyclic alkyl group is preferably an unsubstituted cyclic alkyl group, more preferably a cyclohexyl group.
  • the number of carbon atoms of the branched alkyl group is preferably 3 to 12, more preferably 3 to 8, further preferably 4 to 8, and even more preferably 4 to 6.
  • Specific examples of the branched alkyl group include an isopropyl group, a 2-butyl group, a tert-butyl group, a tert-pentyl group, a 2-hexyl group, a 2-heptyl group, a 2-octyl group, a 2-dodecyl group and the like. Can be mentioned.
  • the branched alkyl group may further have a substituent such as a halogen atom.
  • the branched alkyl group is preferably an unsubstituted branched alkyl group, more preferably an isopropyl group, a 2-butyl group, a tert-butyl group, or a tert-pentyl group, and more preferably a tert-butyl group. Alternatively, it is more preferably a tert-pentyl group.
  • Examples of the hydrocarbon group represented by R 9 include an alkyl group, an alkenyl group, an alkynyl group and the like.
  • Examples of the alkyl group include the linear alkyl group, the cyclic alkyl group, and the branched alkyl group exemplified above, and the preferred range is also the same.
  • the alkenyl group and the alkynyl group those having 2 to 8 carbon atoms are preferable, and examples thereof include a vinyl group and the like.
  • Examples of the linking group represented by A 1 and A 2 include a divalent hydrocarbon group having 1 to 6 carbon atoms, and a heteroatom having a divalent value or more (for example, an oxygen atom, a sulfur atom, etc.). But it may be.
  • the hydrocarbon of the above hydrocarbon group may be a saturated hydrocarbon or an unsaturated hydrocarbon.
  • the linking group is preferably a saturated hydrocarbon group, and the linking group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the linking group may further have a substituent such as a halogen atom, a methyl group or an ethyl group.
  • Examples of the trivalent heteroatom represented by E include a sulfur atom and a phosphorus atom, and among them, a phosphorus atom is preferable.
  • R 1 to R 4 and at least one of R 5 to R 8 are branched alkyl groups, respectively.
  • the formula (2) from the group consisting of the group Ra selected from R 11 to R 14 , the group Rb selected from R 15 to R 18 , and the group Rc selected from R 21 to R 24 . It is preferred that at least two selected are branched alkyl groups.
  • the phenyl group having a branched alkyl group preferably has a plurality of branched alkyl groups.
  • the compound having the structure represented by the formula (1) is preferably as follows: R 1 and R 8 are branched alkyl groups; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are branched or linear alkyl groups; R 9 are unsaturated hydrocarbon groups; A 1 is a divalent saturated hydrocarbon group.
  • the compound having the structure represented by the formula (1) is more preferably as follows: R 1 and R 8 are unsubstituted branched alkyl groups having 3 to 6 carbon atoms; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are unsubstituted branched alkyl groups having 4 to 5 carbon atoms. Alkyl group or unsubstituted linear alkyl group having 1 to 3 carbon atoms; R 9 is an unsubstituted vinyl group; A 1 is an alkyl group substituted or unsubstituted methylene group.
  • the compound having the structure represented by the formula (1) it is more preferable that the compound has the structure represented by the following formula (3) or the formula (4).
  • R 11 , R 13 , R 16 , R 18 and R 21 are branched alkyl groups;
  • R 12 , R 14 , R 15 , R 17 , R 22 and R 23 are hydrogen atoms;
  • R 24 is a linear alkyl group;
  • a 2 Is a divalent saturated hydrocarbon group containing an oxygen atom;
  • E is a sulfur atom or a phosphorus atom.
  • R 11 , R 13 , R 16 , R 18 and R 21 are unsubstituted branched alkyl groups having 3 to 5 carbon atoms;
  • R 12 , R 14 , R 15 and R 17 , R 22 and R 23 are hydrogen atoms;
  • R 24 is an unsubstituted linear alkyl group having 1 to 3 carbon atoms;
  • a 2 is an unsubstituted alkyleneoxy group having 2 to 5 carbon atoms (in -OR-, R is an unsubstituted alkylene group having 2 to 5 carbon atoms).
  • E is a phosphorus atom.
  • the compound having the structure represented by the formula (2) it is more preferable that the compound has the structure represented by the following formula (5).
  • the compound having two or more phenyl groups having a branched alkyl group is particularly preferably a compound having a structure represented by the above formula (4) or the above formula (5).
  • the content of the antioxidant is preferably 0.1 part by mass or more and 10 parts by mass or less with respect to the total amount (100 parts by mass) of the epoxy resin and the copolymer (and the thermoplastic resin).
  • the content of the antiaging agent is 0.1 part by mass or more, the effect of improving the dispersibility of the copolymer and suppressing gelation can be sufficiently obtained, and when the content is 10 parts by mass or less, the effect is obtained. It is fully demonstrated.
  • the resin composition of the present invention further contains a styrene-based elastomer as a compatibilizer. This is to achieve both the strength and elongation of the resin composition at a higher level.
  • the styrene-based elastomer may be any as long as it has an effect as a compatibilizer, and is not particularly limited.
  • SBS styrene / butadiene copolymer
  • SEBS styrene / ethylenebutylene / styrene block copolymer
  • SEPS styrene / ethylenepropylene / styrene block copolymer
  • SEEPS styrene / ethylene / ethylenepropylene / styrene block.
  • SEEPS styrene / ethylene / ethylenepropylene / styrene block.
  • SEEPS styrene / ethylene / ethylenepropylene / styrene block.
  • SEEPS styrene / ethylene / ethylenepropylene / styrene block.
  • SEEPS styrene / ethylene
  • the styrene-based elastomer preferably contains at least one of a styrene-butadiene copolymer (SBS) and a styrene-ethylenebutylene-styrene block copolymer (SEBS).
  • SBS styrene-butadiene copolymer
  • SEBS styrene-ethylenebutylene-styrene block copolymer
  • the content of the styrene-based elastomer is preferably 1 to 20 parts by mass when the total content of the epoxy resin and the copolymer (and the thermoplastic resin) is 100 parts by mass. It is more preferably 5 to 15 parts by mass.
  • the content of the styrene-based elastomer is 1 part by mass or more with respect to 100 parts by mass of the total content of the epoxy resin and the copolymer, the effect as a compatibilizer can be surely exhibited.
  • the content of the styrene-based elastomer is 20 parts by mass or less, the epoxy resin as a resin can sufficiently function as a matrix.
  • the resin composition of the present invention contains polymer components other than the copolymer, fillers such as carbon black and silica, and softening of oil and the like. It is possible to include an agent, a cross-linking agent such as sulfur or an organic peroxide, and various vulcanization accelerators.
  • the above-mentioned components do not contain fillers, oils, or sulfur in order to fully exert the functions of the resin composition.
  • a vulcanization accelerator because it contributes to the miniaturization of the domain size in the resin composition. Further, among the vulcanization accelerators, it is more preferable to use a dithiocarbamate-based accelerator.
  • the sheet molded product of the present invention is characterized in that the above-mentioned resin composition of the present invention is used.
  • the sheet molded product of the present invention formed by using the above-mentioned resin composition has excellent strength and flexibility.
  • the sheet molded body is a resin composition formed into a sheet and cured.
  • the shape and size of the sheet molded product are not particularly limited, and can be appropriately selected depending on the applicable article and the required performance.
  • the method for manufacturing the sheet molded product of the present invention is not particularly limited.
  • a sheet-shaped molded product can be obtained by molding the resin composition of the present invention into a sheet shape (creating a pre-molded product), heating it as necessary, and allowing it to stand for a certain period of time.
  • the sheet molded product of the present invention can be used for various purposes.
  • tire parts automobile parts (automobile seats, automobile batteries (lithium ion batteries, etc.), weather strips, hose tubes, anti-vibration rubbers, cables, sealing materials, etc.), conveyor belts, crawlers, etc.
  • T m Melting point (T m ) The melting point of the copolymer was measured according to JIS K 7121-1987 using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
  • the glass transition temperature (Tg) of the copolymer was measured according to JIS K 7121-1987 using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
  • Crystallinity was calculated from the crystal melting energy of polyethylene, which is a 100% crystal component, and the melting peak energy of the obtained copolymer, and the energy ratio between polyethylene and the copolymer.
  • the melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
  • ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and copolymerization was carried out at 75 ° C. for a total of 9 hours.
  • 1,3-butadiene was continuously added to 0.6 mL / min. 108 g of a toluene solution containing 27 g of 1,3-butadiene was added at the rate of.
  • 1 ml of an isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in an amount of 5% by mass was added to the pressure-resistant stainless steel reactor to terminate the reaction.
  • the copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain a copolymer.
  • the obtained copolymer has a number average molecular weight (Mn), a weight average molecular weight (Mw), a molecular weight distribution (Mw / Mn), a butadiene unit, an ethylene unit, a styrene unit content, a melting point ( Tm ), and a heat absorption peak.
  • Energy, glass transition temperature (Tg) and crystallinity were measured by the above methods. The results are shown in Table 1. Further, when the main chain structure of the obtained copolymer was confirmed by the above method, no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart. It was confirmed that the main chain consisted only of an acyclic structure.
  • 1,3-Butadiene was continuously added at 1.1 to 1.2 mL / min. 280 g of a toluene solution containing 70 g of 1,3-butadiene was added at the rate of. Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction. Then, the copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain the copolymer B.
  • a sample of the resin composition was prepared according to the formulation shown in Table 2. Specifically, a mixture of a thermoplastic resin (phenoxy resin) and an epoxy resin is prepared, and a copolymer, a styrene-based elastomer, a vulcanization accelerator, and an antiaging agent are added to the mixture, and then 10 at 130 ° C. Kneading was performed with a plastic mill under the condition of 1 minute. Then, after lowering the temperature to 100 ° C., a curing agent was added, and kneading was performed with a plast mill for 30 seconds. A sample of the obtained resin composition was pressed at 100 ° C.
  • Phenoxy resin "YP-70” manufactured by Nittetsu Chemical & Materials Co., Ltd. * 2 Bisphenol A type epoxy resin: Mitsubishi Chemical Corporation “JER1001” * 3 Glycerin Bis Anhydrotrimeritate Monoacetate: NEW JAPAN CHEMICAL CO., LTD.
  • the present invention it is possible to provide a resin composition having both strength and elongation at a high level as compared with a conventional epoxy resin. Further, according to the present invention, it is possible to provide a molded product having excellent strength and good flexibility.

Abstract

The present invention provides a resin composition which is capable of achieving a good balance between strength and elongation at higher levels in comparison to conventional epoxy resins. In order to achieve the above, the present invention is characterized by containing: an epoxy resin; a crystalline copolymer that has a conjugated diene unit and a non-conjugated olefin unit, while having a proportion of a butylene unit of 0 mol%; and a curing agent.

Description

樹脂組成物及び成形体Resin composition and molded product
 本発明は、樹脂組成物及び成形体に関するものである。 The present invention relates to a resin composition and a molded product.
 従来、エポキシ樹脂は、その硬化物の強度や弾性率が大きく、また、耐熱性や耐薬品性に優れていること等が知られており、工業分野において様々な用途に利用されている。その一方、エポキシ樹脂の硬化物は、柔軟性が低く、歪みに対する破壊特性に課題があった。エポキシ樹脂の硬化物が自動車や電気部品に使用される場合、振動や力が加わることでひび割れが発生することがあり、その改善が望まれていた。 Conventionally, epoxy resins are known to have high strength and elastic modulus of their cured products, and are excellent in heat resistance and chemical resistance, and are used for various purposes in the industrial field. On the other hand, the cured product of the epoxy resin has low flexibility and has a problem in fracture characteristics against strain. When a cured epoxy resin is used for automobiles and electric parts, cracks may occur due to the application of vibration or force, and improvement thereof has been desired.
 このような課題を解決するため、例えば、エポキシ樹脂中にゴム材料を添加する技術や(特許文献1参照)、エポキシ樹脂自体の変性を行う技術(特許文献2参照)が開示されている。 In order to solve such a problem, for example, a technique of adding a rubber material to an epoxy resin (see Patent Document 1) and a technique of modifying the epoxy resin itself (see Patent Document 2) are disclosed.
特開平7-268079号公報Japanese Unexamined Patent Publication No. 7-268079 特開2003-246837号公報Japanese Unexamined Patent Application Publication No. 2003-246837
 しかしながら、特許文献1及び2に開示された技術では、ある程度の柔軟性を確保できるものの、いずれも十分な伸びを確保できておらず、さらなる改善が望まれていた。 However, although the techniques disclosed in Patent Documents 1 and 2 can secure a certain degree of flexibility, none of them can secure sufficient growth, and further improvement is desired.
 そこで、本発明は、上記従来技術の問題を解決し、従来のエポキシ樹脂に比べて、強度と伸びが高いレベルで両立できる樹脂組成物を提供することを目的とする。
 また、本発明は、優れた強度を有しつつ、柔軟性も良好な成形体を提供することを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a resin composition capable of achieving both strength and elongation at a high level as compared with the conventional epoxy resin.
Another object of the present invention is to provide a molded product having excellent strength and good flexibility.
 上記課題を解決する本発明の要旨構成は、以下の通りである。 The gist structure of the present invention that solves the above problems is as follows.
 本発明の樹脂組成物は、共役ジエン単位と非共役オレフィン単位とを有し、且つブチレン単位の割合が0mol%である結晶性の共重合体と、硬化剤と、を含むことを特徴とする。
 かかる本発明の樹脂組成物は、従来のエポキシ樹脂に比べて、強度と伸びが高いレベルで両立できる。
The resin composition of the present invention is characterized by containing a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and a ratio of butylene units of 0 mol%, and a curing agent. ..
The resin composition of the present invention can achieve both strength and elongation at a high level as compared with the conventional epoxy resin.
 また、本発明のシート成形体は、上記の樹脂組成物を用いたことを特徴とする。
 かかる本発明のシート成形体は、優れた強度を有しつつ、良好な柔軟性を実現できる。
Further, the sheet molded product of the present invention is characterized in that the above resin composition is used.
The sheet molded product of the present invention can realize good flexibility while having excellent strength.
 本発明によれば、従来のエポキシ樹脂に比べて、強度と伸びが高いレベルで両立できる樹脂組成物を提供することができる。
 また、本発明によれば、優れた強度を有しつつ、柔軟性も良好な成形体を提供することができる。
According to the present invention, it is possible to provide a resin composition having both strength and elongation at a high level as compared with a conventional epoxy resin.
Further, according to the present invention, it is possible to provide a molded product having excellent strength and good flexibility.
 以下に、本発明の樹脂組成物及びシート成形体について、その実施形態に基づき、詳細に例示説明する。 Hereinafter, the resin composition and the sheet molded product of the present invention will be described in detail as examples based on the embodiments thereof.
<樹脂組成物>
 本発明の樹脂組成物は、エポキシ樹脂と、
 共役ジエン単位と非共役オレフィン単位とを有し、且つブチレン単位の割合が0mol%である結晶性の共重合体と、
 硬化剤と、を含むことを特徴とする。
<Resin composition>
The resin composition of the present invention comprises an epoxy resin and
A crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and a proportion of butylene units of 0 mol%.
It is characterized by containing a curing agent.
 共役ジエン単位と非共役オレフィン単位とを有し、且つブチレン単位の割合が0mol%である結晶性の共重合体は、非共役オレフィン単位を含み、大きく歪んだ際に、該非共役オレフィン単位に由来する結晶成分が崩壊し、融解エネルギーによって、エネルギーを散逸することができる。そのため、本発明の樹脂組成物では、硬度に優れるエポキシ樹脂に加えて、上述の共重合体を含有させることによって、強度と伸びとを高いレベルで両立することができる。 A crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and having a butylene unit ratio of 0 mol% contains a non-conjugated olefin unit and is derived from the non-conjugated olefin unit when it is greatly distorted. The crystal component is disintegrated, and the energy can be dissipated by the melting energy. Therefore, in the resin composition of the present invention, strength and elongation can be achieved at a high level by containing the above-mentioned copolymer in addition to the epoxy resin having excellent hardness.
(エポキシ樹脂)
 本発明の樹脂組成物は、エポキシ樹脂を含む。樹脂組成物中にエポキシ樹脂を含有することによって、硬化物の強度(硬度)を高めることができる。
 前記エポキシ樹脂の状態、エポキシ当量、分子量、分子構造等に制限はなく、要求される性能に応じて、適宜選択することができる。
(Epoxy resin)
The resin composition of the present invention contains an epoxy resin. By containing the epoxy resin in the resin composition, the strength (hardness) of the cured product can be increased.
The state of the epoxy resin, the epoxy equivalent, the molecular weight, the molecular structure and the like are not limited, and can be appropriately selected according to the required performance.
 前記エポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂、多価芳香族又は脂肪族カルボン酸ポリグリシジルエステル、多価フェノールポリグリシジルエーテル、多価アルコールグリシジルエーテル、窒素含有複素環化合物のポリグリシジルエーテル、ポリブタジエン等の不飽和重合体のエポキシ化物、グリシジルメタクリレート等の不飽和モノエポキシド重合体等が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and ring-type aliphatic epoxy. Epoxy and glycidyl of unsaturated polymers such as resin, polyvalent aromatic or aliphatic carboxylic acid polyglycidyl ester, polyvalent phenol polyglycidyl ether, polyhydric alcohol glycidyl ether, nitrogen-containing heterocyclic compound polyglycidyl ether, polybutadiene, etc. Examples thereof include unsaturated monoepoxyd polymers such as methacrylate.
 前記エポキシ樹脂の含有量については、特に限定はされないが、樹脂組成物の強度と伸びとのバランスの観点から、前記エポキシ樹脂と後述する共重合体の合計含有量に対する、前記エポキシ樹脂の含有率が35~65質量%であることが好ましい。前記エポキシ樹脂の含有率を35質量%以上とすることで、より優れた強度を得ることができ、前記エポキシ樹脂の含有率を65質量%以下とすることで、後述する共重合体の含有量を確保し、伸びの低下をより確実に抑えることができる。 The content of the epoxy resin is not particularly limited, but from the viewpoint of the balance between the strength and elongation of the resin composition, the content of the epoxy resin with respect to the total content of the epoxy resin and the copolymer described later. Is preferably 35 to 65% by mass. By setting the content of the epoxy resin to 35% by mass or more, more excellent strength can be obtained, and by setting the content of the epoxy resin to 65% by mass or less, the content of the copolymer described later will be obtained. Can be secured and the decrease in elongation can be suppressed more reliably.
(共重合体)
 本発明の樹脂組成物は、上述したエポキシ樹脂に加えて、共役ジエン単位と非共役オレフィン単位とを有し、且つブチレン単位の割合が0mol%である結晶性の共重合体を含む。
 前記共重合体を含むことによって、応力がかかった際のエネルギー分散効果を付与することができ、強度を高いレベルで維持しつつ、樹脂組成物の伸びを高めることができる。
(Copolymer)
In addition to the above-mentioned epoxy resin, the resin composition of the present invention contains a crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and having a ratio of butylene units of 0 mol%.
By including the copolymer, it is possible to impart an energy dispersion effect when stress is applied, and it is possible to enhance the elongation of the resin composition while maintaining the strength at a high level.
 前記共重合体における共役ジエン単位は、単量体としての共役ジエン化合物に由来する構成単位である。該共役ジエン単位は、共重合体の伸びや強度を発現することができる。ここで、共役ジエン化合物とは、共役系のジエン化合物を指す。該共役ジエン化合物は、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。前記共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
 そして、多元共重合体の単量体としての共役ジエン化合物は、得られる多元共重合体を用いた樹脂組成物の強度を効果的に向上させる観点から、1,3-ブタジエン及び/又はイソプレンを含むことが好ましく、1,3-ブタジエン及び/又はイソプレンのみからなることがより好ましく、1,3-ブタジエンのみからなることがさらに好ましい。別の言い方をすると、多元共重合体における共役ジエン単位は、1,3-ブタジエン単位及び/又はイソプレン単位を含むことが好ましく、1,3-ブタジエン単位及び/又はイソプレン単位のみからなることがより好ましく、1,3-ブタジエン単位のみからなることがさらに好ましい。
The conjugated diene unit in the copolymer is a structural unit derived from the conjugated diene compound as a monomer. The conjugated diene unit can exhibit the elongation and strength of the copolymer. Here, the conjugated diene compound refers to a conjugated diene compound. The conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. The conjugated diene compound may be used alone or in combination of two or more.
The conjugated diene compound as a monomer of the multiplex copolymer contains 1,3-butadiene and / or isoprene from the viewpoint of effectively improving the strength of the resin composition using the obtained multiplex copolymer. It is preferably contained, more preferably composed of only 1,3-butadiene and / or isoprene, and even more preferably composed of only 1,3-butadiene. In other words, the conjugated diene unit in the multi-dimensional copolymer preferably contains 1,3-butadiene unit and / or isoprene unit, and may consist only of 1,3-butadiene unit and / or isoprene unit. It is preferable that it consists of only 1,3-butadiene units.
 また、前記共重合体は、前記共役ジエン単位の含有量が、3mol%以上であることが好ましく、5mol%以上であることがより好ましく、6mol%以上であることがさらに好ましい。前記共役ジエン単位の含有量が、多元共重合体全体の3mol%以上であると、伸びに優れる樹脂組成物が得られるためである。さらに、前記共役ジエン単位の含有量は、70mol%以下であることが好ましく、50mol%以下であることがより好ましく、40mol%以下であることがさらに好ましく、30mol%以下であることがよりさらに好ましい。共役ジエン単位の含有量が、70mol%以下であると、耐候性に優れるためである。そのため、前記共役ジエン単位の含有量は、前記共重合体全体の3~70mol%の範囲が好ましく、5~60mol%の範囲がより好ましい。 Further, the content of the conjugated diene unit in the copolymer is preferably 3 mol% or more, more preferably 5 mol% or more, and further preferably 6 mol% or more. This is because when the content of the conjugated diene unit is 3 mol% or more of the total amount of the multiple copolymer, a resin composition having excellent elongation can be obtained. Further, the content of the conjugated diene unit is preferably 70 mol% or less, more preferably 50 mol% or less, further preferably 40 mol% or less, still more preferably 30 mol% or less. .. This is because when the content of the conjugated diene unit is 70 mol% or less, the weather resistance is excellent. Therefore, the content of the conjugated diene unit is preferably in the range of 3 to 70 mol% of the entire copolymer, and more preferably in the range of 5 to 60 mol%.
 前記共重合体における非共役オレフィン単位は、単量体としての非共役オレフィン化合物に由来する構成単位である。該非共役オレフィン単位は、大きく歪んだ際に、当該非共役オレフィン単位に由来する結晶成分が崩壊することによって、エネルギーを散逸する。ここで、非共役オレフィン化合物とは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。該非共役オレフィン化合物は、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、N-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。前記非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、共重合体の単量体としての非共役オレフィン化合物は、得られる共重合体を用いた樹脂組成物及びタイヤ等の耐候性をより向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、当該非環状の非共役オレフィン化合物は、α-オレフィンであることがより好ましく、エチレンを含むα-オレフィンであることがさらに好ましく、エチレンのみからなることが特に好ましい。別の言い方をすると、共重合体における非共役オレフィン単位は、非環状の非共役オレフィン単位であることが好ましく、また、当該非環状の非共役オレフィン単位は、α-オレフィン単位であることがより好ましく、エチレン単位を含むα-オレフィン単位であることがさらに好ましく、エチレン単位のみからなることが特に好ましい。 The non-conjugated olefin unit in the copolymer is a structural unit derived from the non-conjugated olefin compound as a monomer. When the non-conjugated olefin unit is greatly distorted, the crystal component derived from the non-conjugated olefin unit dissipates to dissipate energy. Here, the non-conjugated olefin compound refers to an aliphatic unsaturated hydrocarbon having one or more carbon-carbon double bonds. The non-conjugated olefin compound preferably has 2 to 10 carbon atoms. Specific examples of the non-conjugated olefin compound include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene, vinyl pivalate and 1-phenylthioethane. , N-vinylpyrrolidone and other heteroatomic substituted alkene compounds and the like. The non-conjugated olefin compound may be used alone or in combination of two or more. The non-conjugated olefin compound as a monomer of the copolymer is a non-cyclical non-conjugated olefin compound from the viewpoint of further improving the weather resistance of the resin composition and tires using the obtained copolymer. The acyclic non-conjugated olefin compound is more preferably α-olefin, further preferably an α-olefin containing ethylene, and particularly preferably composed of ethylene alone. In other words, the non-conjugated olefin unit in the copolymer is preferably an acyclic non-conjugated olefin unit, and the acyclic non-conjugated olefin unit is more preferably an α-olefin unit. It is more preferable that it is an α-olefin unit containing an ethylene unit, and particularly preferably it is composed of only an ethylene unit.
 また、前記共重合体は、前記非共役オレフィン単位の含有量が、25mol%以上であることが好ましく、30mol%以上であることがより好ましく、35mol%以上であることがさらに好ましく、45mol%以上であることがより一層好ましく、50mol%以上であることが特に好ましい。さらに、前記非共役オレフィン単位の含有量が、97mol%以下であることが好ましく、94mol%以下であることがさらに好ましく、90mol%以下であることがより一層好ましい。非共役オレフィン単位の含有量が、共重合体全体の25mol%以上であると、結果として共役ジエン単位や後述する芳香族ビニル単位の含有量が減少して、耐候性が向上したり、強度が向上する。また、非共役オレフィン単位の含有量が97mol%以下であると、結果として共役ジエン単位や後述する芳香族ビニル単位の含有量が増加し、伸びが向上する。そのため、前記非共役オレフィン単位の含有量は、共重合体全体の25~97mol%の範囲が好ましく、25~94mol%の範囲がより好ましく、35~90mol%の範囲がさらに好ましい。 Further, the content of the non-conjugated olefin unit in the copolymer is preferably 25 mol% or more, more preferably 30 mol% or more, further preferably 35 mol% or more, still more preferably 45 mol% or more. Is even more preferable, and 50 mol% or more is particularly preferable. Further, the content of the non-conjugated olefin unit is preferably 97 mol% or less, more preferably 94 mol% or less, still more preferably 90 mol% or less. When the content of the non-conjugated olefin unit is 25 mol% or more of the total amount of the copolymer, as a result, the content of the conjugated diene unit and the aromatic vinyl unit described later is reduced, the weather resistance is improved, and the strength is increased. improves. Further, when the content of the non-conjugated olefin unit is 97 mol% or less, the content of the conjugated diene unit and the aromatic vinyl unit described later increases as a result, and the elongation is improved. Therefore, the content of the non-conjugated olefin unit is preferably in the range of 25 to 97 mol%, more preferably in the range of 25 to 94 mol%, and even more preferably in the range of 35 to 90 mol%.
 前記共重合体においては、さらに芳香族ビニル単位を有することが好ましい。芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。該芳香族ビニル単位を含むことで、共重合体の柔軟性をより高めることができる。ここで、芳香族ビニル化合物とは、少なくともビニル基で置換された芳香族化合物を指し、共役ジエン化合物には包含されないものとする。該芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。前記芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
 そして、前記共重合体の単量体としての芳香族ビニル化合物は、得られる共重合体を用いた樹脂組成物の耐候性を向上させる観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
 なお、芳香族ビニル単位における芳香族環は、隣接する単位と結合しない限り、多元共重合体の主鎖には含まれない。
The copolymer preferably further has an aromatic vinyl unit. The aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer. By including the aromatic vinyl unit, the flexibility of the copolymer can be further enhanced. Here, the aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound. The aromatic vinyl compound preferably has 8 to 10 carbon atoms. Examples of such aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene and the like. .. The aromatic vinyl compound may be used alone or in combination of two or more.
The aromatic vinyl compound as the monomer of the copolymer preferably contains styrene from the viewpoint of improving the weather resistance of the resin composition using the obtained copolymer, and is composed of only styrene. Is more preferable. In other words, the aromatic vinyl unit in the copolymer preferably contains a styrene unit, and more preferably consists of only a styrene unit.
The aromatic ring in the aromatic vinyl unit is not included in the main chain of the plural copolymer unless it is bonded to an adjacent unit.
 前記共重合体は、前記芳香族ビニル単位の含有量が、1mol%以上であることが好ましく、2mol%以上であることがさらに好ましい。また、前記芳香族ビニル単位の含有量が、30mol%以下であることが好ましく、25mol%以下であることがより好ましく、20mol%以下であることがさらに好ましい。前記共重合体における前記芳香族ビニル単位の含有量が1mol%以上であると、高温における耐久性が向上する。また、前記芳香族ビニル単位の含有量が30mol%以下であると、共役ジエン単位及び非共役オレフィン単位による効果が顕著になる。そのため、前記芳香族ビニル単位の含有量は、共重合体全体の1~30mol%の範囲が好ましく、2~25mol%の範囲がより好ましい。 The content of the aromatic vinyl unit in the copolymer is preferably 1 mol% or more, and more preferably 2 mol% or more. Further, the content of the aromatic vinyl unit is preferably 30 mol% or less, more preferably 25 mol% or less, and further preferably 20 mol% or less. When the content of the aromatic vinyl unit in the copolymer is 1 mol% or more, the durability at high temperature is improved. Further, when the content of the aromatic vinyl unit is 30 mol% or less, the effect of the conjugated diene unit and the non-conjugated olefin unit becomes remarkable. Therefore, the content of the aromatic vinyl unit is preferably in the range of 1 to 30 mol% of the entire copolymer, and more preferably in the range of 2 to 25 mol%.
 なお、前記共重合体における単量体の種類の数としては、共重合体が共役ジエン単位と非共役オレフィン単位と、好適成分である芳香族ビニル単位とを含有すること以外は、特に制限はない。該共重合体は、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位以外の、その他の構成単位を有していてもよいが、その他の構成単位の含有量は、所望の効果を得る観点から、共重合体全体の30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%以下であることがさらに好ましく、含有しないこと、即ち、含有量が0mol%であることが特に好ましい。 The number of types of monomers in the copolymer is not particularly limited except that the copolymer contains a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit as a suitable component. do not have. The copolymer may have other structural units other than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit, but the content of the other structural units obtains the desired effect. From the viewpoint, it is preferably 30 mol% or less, more preferably 20 mol% or less, further preferably 10 mol% or less, and not contained, that is, the content is 0 mol%. Is particularly preferred.
 ここで、前記共重合体については、ブチレン単位の割合が0mol%である(ブチレン単位を有しない)。つまり、上記共重合体Aは、スチレン-エチレン/ブチレン-スチレン(SEBS)といった、スチレン-ブタジエン共重合体の水添物は含まれない。 Here, for the copolymer, the ratio of the butylene unit is 0 mol% (there is no butylene unit). That is, the copolymer A does not contain hydrogenated styrene-butadiene copolymers such as styrene-ethylene / butylene-styrene (SEBS).
 また、前記共重合体は結晶性を有する。これにより、樹脂組成物の硬化後の強度を効果的に高めることができる。なお、前記共重合体を結晶性とするための調整は、例えば、非共役オレフィン単位をはじめとする各単量体単位の割合や、共重合体を合成する際の各単量体の投入順序や、共重合体の合成に用いる触媒の種類などを適宜変更することにより、行うことができる。
 なお、共重合体の「結晶性」は、JIS K 7121-1987に準拠した示差走査熱量計(DSC)による測定において、融点が確認されることにより、その存在を認めることができるものとする。
In addition, the copolymer has crystallinity. This makes it possible to effectively increase the strength of the resin composition after curing. The adjustment for making the copolymer crystalline is, for example, the ratio of each monomer unit including the non-conjugated olefin unit and the order of charging each monomer when synthesizing the copolymer. Alternatively, it can be carried out by appropriately changing the type of catalyst used for synthesizing the copolymer.
The existence of the "crystallinity" of the copolymer can be confirmed by confirming the melting point in the measurement by a differential scanning calorimeter (DSC) based on JIS K 7121-1987.
 前記共重合体は、ポリスチレン換算の重量平均分子量(Mw)が10,000~10,000,000であることが好ましく、50,000~2,000,000であることがより好ましく、100,000~2,000,000であることがさらに好ましい。前記共重合体のMwが10,000以上であることにより、樹脂組成物の機械的強度を十分に確保することができ、また、Mwが10,000,000以下であることにより、高い柔軟性を保持することができる。 The copolymer preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 10,000 to 10,000,000, more preferably 50,000 to 2,000,000. It is more preferably ~ 2,000,000. When the Mw of the copolymer is 10,000 or more, the mechanical strength of the resin composition can be sufficiently secured, and when the Mw is 10,000,000 or less, high flexibility is achieved. Can be retained.
 なお、上述した重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。 For the above-mentioned weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn), polystyrene is used as a standard substance by gel permeation chromatography (GPC).
 本発明の樹脂組成物において、前記共重合体は、示差走査熱量計(DSC)で測定した融点が30~130℃であることが好ましく、30~110℃であることがさらに好ましい。前記共重合体の融点が30℃以上であれば、前記共重合体の結晶性が高くなり、樹脂組成物の耐摩耗性がさらに向上し、架橋後の耐久性をさらに向上させることができる。また、前記共重合体の融点が130℃以下であれば、樹脂組成物の作業性が向上する。
 ここで、該融点は、実施例に記載の方法で測定した値である。
In the resin composition of the present invention, the copolymer preferably has a melting point of 30 to 130 ° C., more preferably 30 to 110 ° C., as measured by a differential scanning calorimeter (DSC). When the melting point of the copolymer is 30 ° C. or higher, the crystallinity of the copolymer is high, the wear resistance of the resin composition is further improved, and the durability after crosslinking can be further improved. Further, when the melting point of the copolymer is 130 ° C. or lower, the workability of the resin composition is improved.
Here, the melting point is a value measured by the method described in Examples.
 本発明の樹脂組成物において、前記共重合体は、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0℃以下であることが好ましく、-100~-10℃であることがさらに好ましい。共重合体(a1)のガラス転移温度が0℃以下であれば、樹脂組成物の作業性が向上する。
 ここで、該ガラス転移温度は、実施例に記載の方法で測定した値である。
In the resin composition of the present invention, the copolymer preferably has a glass transition temperature (Tg) of 0 ° C. or lower, preferably −100 to −10 ° C., as measured by a differential scanning calorimeter (DSC). More preferred. When the glass transition temperature of the copolymer (a1) is 0 ° C. or lower, the workability of the resin composition is improved.
Here, the glass transition temperature is a value measured by the method described in Examples.
 本発明の樹脂組成物において、前記共重合体は、結晶化度が0.5~50%であることが好ましく、3~45%であることがさらに好ましく、5~45%であることがより一層好ましい。共重合体の結晶化度が0.5%以上であれば、非共役オレフィン単位に起因する結晶性を十分に確保して、耐破壊性をさらに向上させることができる。また、共重合体の結晶化度が50%以下であれば、樹脂組成物の混練の際の作業性が向上し、また、共重合体を配合した樹脂組成物のタッキネスが向上するため、成形する際の作業性も向上する。
 ここで、該結晶化度は、実施例に記載の方法で測定した値である。
In the resin composition of the present invention, the copolymer preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%, and more preferably 5 to 45%. More preferred. When the crystallinity of the copolymer is 0.5% or more, the crystallinity due to the non-conjugated olefin unit can be sufficiently ensured, and the fracture resistance can be further improved. Further, when the crystallinity of the copolymer is 50% or less, the workability at the time of kneading the resin composition is improved, and the tackiness of the resin composition containing the copolymer is improved. Workability when doing this is also improved.
Here, the crystallinity is a value measured by the method described in Examples.
 本発明の樹脂組成物において、前記共重合体は、主鎖が非環状構造のみからなることが好ましい。これにより、樹脂組成物の強度をさらに向上させることができ、架橋後の耐久性をさらに向上させることができる。
 なお、前記共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環~五員環については、10~24ppmに現れるピーク)が観測されない場合、その多元共重合体の主鎖は、非環状構造のみからなることを示す。
In the resin composition of the present invention, it is preferable that the main chain of the copolymer has only an acyclic structure. Thereby, the strength of the resin composition can be further improved, and the durability after crosslinking can be further improved.
In addition, NMR is used as a main measuring means for confirming whether or not the main chain of the copolymer has a cyclic structure. Specifically, when a peak derived from the cyclic structure existing in the main chain (for example, a peak appearing at 10 to 24 ppm for a three-membered ring to a five-membered ring) is not observed, the main chain of the multipolymer is the main chain. , Indicates that it consists only of a non-cyclic structure.
 前記共重合体は、共役ジエン化合物と、非共役オレフィン化合物と、芳香族ビニル化合物とを単量体として用いる重合工程を経て製造でき、さらに、必要に応じ、カップリング工程、洗浄工程、その他の工程を経てもよい。
 ここで、前記共重合体の製造においては、重合触媒の存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらをまず重合させることが好ましい。特に後述の触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び/又は芳香族ビニル化合物を重合させることが困難となり易い。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上困難となり易い。
 前記共重合体の製造方法としては、例えば、国際公開第2015/190072号に記載のものを用いることができる。
The copolymer can be produced through a polymerization step using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers, and if necessary, a coupling step, a cleaning step, and other steps. It may go through a process.
Here, in the production of the copolymer, it is preferable that only the non-conjugated olefin compound and the aromatic vinyl compound are added without adding the conjugated diene compound in the presence of the polymerization catalyst, and these are first polymerized. In particular, when the catalyst composition described below is used, the reactivity of the conjugated diene compound is higher than that of the non-conjugated olefin compound and the aromatic vinyl compound. Therefore, the non-conjugated olefin compound and / or the aromatic compound is present in the presence of the conjugated diene compound. It tends to be difficult to polymerize vinyl compounds. Further, it is also liable to be difficult due to the characteristics of the catalyst to polymerize the conjugated diene compound first and then additionally polymerize the non-conjugated olefin compound and the aromatic vinyl compound.
As the method for producing the copolymer, for example, the one described in International Publication No. 2015/190072 can be used.
 前記共重合体の含有量については、特に限定はされないが、樹脂組成物の強度と伸びとのバランスの観点から、前記エポキシ樹脂と前記共重合体の合計含有量に対する、前記共重合体の含有率が35~65質量%であることが好ましい。前記共重合体の含有率を35質量%以上とすることで、より優れた伸びを実現でき、前記共重合体の含有率を65質量%以下とすることで、前記エポキシ樹脂の含有量を確保し、強度の低下を確実に抑えることができる。 The content of the copolymer is not particularly limited, but from the viewpoint of the balance between the strength and elongation of the resin composition, the content of the copolymer with respect to the total content of the epoxy resin and the copolymer. The ratio is preferably 35 to 65% by mass. By setting the content of the copolymer to 35% by mass or more, more excellent elongation can be realized, and by setting the content of the copolymer to 65% by mass or less, the content of the epoxy resin is secured. However, the decrease in strength can be reliably suppressed.
(硬化剤)
 本発明の樹脂組成物は、上述したエポキシ樹脂及び共重合体に加えて、硬化剤を含む。
 硬化剤は、エポキシ樹脂を硬化させ、樹脂組成物の強度を高めることができる。
 前記硬化剤の種類については特に限定はされず、要求される性能に応じて、適宜選択することができる。例えば、アミン類、酸無水物、フェノール類、ポリアミド等が挙げられる。
(Hardener)
The resin composition of the present invention contains a curing agent in addition to the above-mentioned epoxy resin and copolymer.
The curing agent can cure the epoxy resin and increase the strength of the resin composition.
The type of the curing agent is not particularly limited, and can be appropriately selected depending on the required performance. For example, amines, acid anhydrides, phenols, polyamides and the like can be mentioned.
 これらの硬化剤の中でも、樹脂組成物の強度と伸びをより高いレベルで両立させる観点からは、例えば以下の構造を有する酸無水物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000001
Among these curing agents, it is preferable to use, for example, an acid anhydride having the following structure from the viewpoint of achieving both strength and elongation of the resin composition at a higher level.
Figure JPOXMLDOC01-appb-C000001
 前記硬化剤の含有量については、特に限定はされず、エポキシ樹脂の種類や、硬化の度合等に応じて適宜調整することができる。
 例えば、樹脂組成物の強度と伸びとのバランスの観点からは、前記硬化剤の含有量を、エポキシ樹脂(熱可塑性樹脂を含む場合は、エポキシ樹脂と熱可塑性樹脂の合計量)100質量部に対して0.1~10質量部とすることが好ましい。
The content of the curing agent is not particularly limited, and can be appropriately adjusted according to the type of epoxy resin, the degree of curing, and the like.
For example, from the viewpoint of the balance between the strength and elongation of the resin composition, the content of the curing agent is 100 parts by mass of the epoxy resin (in the case of containing the thermoplastic resin, the total amount of the epoxy resin and the thermoplastic resin). On the other hand, it is preferably 0.1 to 10 parts by mass.
(その他成分)
 また、本発明の樹脂組成物は、さらに、熱可塑性樹脂を含むことが好ましい。樹脂組成物に柔軟性を付与し、より優れた伸びを実現できるためである。
 前記熱可塑性樹脂の種類については、特に限定はされないが、より高いレベルで樹脂組成物の強度と伸びとを両立できる観点から、水酸基を有する樹脂であることが好ましい。
 前記水酸基を有する熱可塑性樹脂については、例えば、フェノキシ樹脂、ジシクロペンタジエン樹脂、テルペンフェノール樹脂、テルペン樹脂、ロジン樹脂、アルキルフェノール樹脂等が挙げられる。
(Other ingredients)
Further, it is preferable that the resin composition of the present invention further contains a thermoplastic resin. This is because the resin composition is given flexibility and more excellent elongation can be realized.
The type of the thermoplastic resin is not particularly limited, but a resin having a hydroxyl group is preferable from the viewpoint of achieving both strength and elongation of the resin composition at a higher level.
Examples of the thermoplastic resin having a hydroxyl group include a phenoxy resin, a dicyclopentadiene resin, a terpene phenol resin, a terpene resin, a rosin resin, and an alkylphenol resin.
 前記フェノキシ樹脂は、ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルであり、多官能エポキシ樹脂と多官能フェノール類とを重付加反応させて得られる広義のフェノキシ樹脂もフェノキシ樹脂に含むものとする。
 前記フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂、ビフェニル型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、ビフェニル型フェノキシ樹脂とビスフェノールS型フェノキシ樹脂との共重合フェノキシ樹脂等が挙げられる。中でも、ビスフェノールA型フェノキシ樹脂またはビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂が好ましく、単独で用いられてもよいし、2種以上が併用されてもよい。  
The phenoxy resin is a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin, and the phenoxy resin in a broad sense obtained by subjecting a polyfunctional epoxy resin to a polyfunctional phenol by a double addition reaction is also included in the phenoxy resin.
Examples of the phenoxy resin include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A type and bisphenol F type copolymerized phenoxy resin, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, and biphenyl type phenoxy resin. Examples thereof include a phenoxy resin copolymerized with a bisphenol S-type phenoxy resin. Among them, a bisphenol A type phenoxy resin or a copolymerized phenoxy resin of bisphenol A type and bisphenol F type is preferable, and it may be used alone or in combination of two or more.
 前記ジシクロペンタジエン樹脂は、シクロペンタジエンを二量体化して得られるジシクロペンタジエンを主原料に製造された石油樹脂である。前記ジシクロペンタジエン樹脂としては、市販品を利用することができ、例えば、日本ゼオン株式会社製脂環式系石油樹脂である商品名「クイントン(登録商標)1000シリーズ」の内「1105、1325、1340」等が挙げられる。 The dicyclopentadiene resin is a petroleum resin produced by using dicyclopentadiene as a main raw material, which is obtained by dimerizing cyclopentadiene. As the dicyclopentadiene resin, a commercially available product can be used. For example, among the trade names "Quinton (registered trademark) 1000 series", which is an alicyclic petroleum resin manufactured by Nippon Zeon Corporation, "1105, 1325, 1340 "and the like.
 前記テルペンフェノール樹脂は、例えば、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、又はさらにホルマリンで縮合する方法で得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネン等のモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。該テルペンフェノール樹脂としては、市販品を利用することができ、例えば、商品名「タマノル803L」、「タマノル901」(荒川化学工業株式会社製)、商品名「YSポリスター(登録商標)U」シリーズ、「YSポリスター(登録商標)T」シリーズ、「YSポリスター(登録商標)S」シリーズ、「YSポリスター(登録商標)G」シリーズ、「YSポリスター(登録商標)N」シリーズ、「YSポリスター(登録商標)K」シリーズ、「YSポリスター(登録商標)TH」シリーズ(ヤスハラケミカル株式会社製)等が挙げられる。 The terpene phenol resin can be obtained, for example, by reacting terpenes with various phenols using a Friedel-Crafts type catalyst, or by further condensing with formalin. The raw material terpenes are not particularly limited, and monoterpene hydrocarbons such as α-pinene and limonene are preferable, those containing α-pinene are more preferable, and α-pinene is particularly preferable. Commercially available products can be used as the terpene phenol resin, for example, trade names "Tamanol 803L", "Tamanol 901" (manufactured by Arakawa Chemical Industry Co., Ltd.), and trade name "YS Polystar (registered trademark) U" series. , "YS Polystar (registered trademark) T" series, "YS Polystar (registered trademark) S" series, "YS Polystar (registered trademark) G" series, "YS Polystar (registered trademark) N" series, "YS Polystar (registered trademark)" Examples thereof include the "K" series and the "YS Polystar (registered trademark) TH" series (manufactured by Yasuhara Chemical Co., Ltd.).
 前記テルペン樹脂は、マツ属の木からロジンを得る際に同時に得られるテレピン油、或いは、これから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等が挙げられる。該テルペン樹脂としては、市販品を利用することができ、例えば、ヤスハラケミカル株式会社製の商品名「YSレジン」シリーズ(PX-1250、TR-105等)、ハーキュリーズ社製の商品名「ピコライト」シリーズ(A115、S115等)等が挙げられる。 The terpene resin is a solid resin obtained by blending turpentine oil obtained at the same time as obtaining rosin from a pine tree or a polymerization component separated from the turpentine and polymerizing using a Friedelcrafts type catalyst. Yes, β-pinene resin, α-pinene resin and the like can be mentioned. Commercially available products can be used as the terpene resin. For example, the product name "YS Resin" series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd. and the product name "Picolite" series manufactured by Hercules Co., Ltd. (A115, S115, etc.) and the like.
 前記ロジン樹脂は、マツ科の植物の樹液である松脂(松ヤニ)等のバルサム類を集めてテレピン精油を蒸留した後に残る残留物で、ロジン酸(アビエチン酸、パラストリン酸、イソピマール酸等)を主成分とする天然樹脂、及びそれらを変性、水素添加等で加工した変性樹脂、水添樹脂である。例えば、天然樹脂ロジン、その重合ロジンや部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジンや重合ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや重合ロジン等が挙げられる。天然樹脂ロジンとして、生松ヤニやトール油に含まれるガムロジン、トール油ロジン、ウッドロジン等がある。前記ロジン樹脂としては、市販品を利用することができ、例えば、商品名「ネオトール105」(ハリマ化成株式会社製)、商品名「SNタック754」(サンノプコ株式会社製)、商品名「ライムレジンNo.1」、「ペンセルA」及び「ペンセルAD」(荒川化学工業株式会社製)、商品名「ポリペール」及び「ペンタリンC」(イーストマンケミカル株式会社製)、商品名「ハイロジン(登録商標)S」(大社松精油株式会社製)等が挙げられる。 The rosin resin is a residue left after collecting balsams such as pine fat (pine Yani), which is the sap of a plant of the Pinaceae family, and distilling terepine essential oil. Natural resins as the main component, modified resins obtained by modifying them, rosin, etc., and hydrogenated resins. Examples thereof include natural resin rosins, their polymerized rosins and partially hydrogenated rosins; glycerin ester rosins, their partially hydrogenated rosins, fully hydrogenated rosins and polymerized rosins; pentaerythritol ester rosins, their partially hydrogenated rosins and polymerized rosins. .. Examples of natural resin rosin include raw pine rosin, gum rosin contained in tall oil, tall oil rosin, and wood rosin. As the rosin resin, a commercially available product can be used, for example, the product name "Neotoll 105" (manufactured by Harima Kasei Co., Ltd.), the product name "SN Tuck 754" (manufactured by San Nopco Ltd.), and the product name "Lime Resin". No. 1 ”,“ Pencel A ”and“ Pencel AD ”(manufactured by Arakawa Chemical Industry Co., Ltd.), product names“ Polypale ”and“ Pentalin C ”(manufactured by Eastman Chemical Co., Ltd.), product name“ Hyrosin (registered trademark) "S" (manufactured by Taisha Matsusei Oil Co., Ltd.) and the like can be mentioned.
 前記アルキルフェノール樹脂は、例えば、アルキルフェノールとホルムアルデヒドとの触媒下における縮合反応によって得られる。該アルキルフェノール樹脂としては、市販品を利用することができ、例えば、商品名「ヒタノール1502P」(アルキルフェノールホルムアルデヒド樹脂、日立化成株式会社製)、商品名「タッキロール201」(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「タッキロール250-I」(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「タッキロール250-III」(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業株式会社製)、商品名「R7521P」、「SP1068」、「R7510PJ」、「R7572P」及び「R7578P」(SI GROUP INC.製)等が挙げられる。 The alkylphenol resin is obtained, for example, by a condensation reaction between alkylphenol and formaldehyde under a catalyst. As the alkylphenol resin, a commercially available product can be used. For example, the product name "Hitanol 1502P" (alkylphenol formaldehyde resin, manufactured by Hitachi Kasei Co., Ltd.) and the product name "Tackiroll 201" (alkylphenol formaldehyde resin, Taoka Chemical Industry Co., Ltd.) can be used. Product name "Tackiroll 250-I" (brominated alkylphenol formaldehyde resin, manufactured by Taoka Chemical Industry Co., Ltd.), Product name "Tackiroll 250-III" (brominated alkylphenol formaldehyde resin, manufactured by Taoka Chemical Industry Co., Ltd.), Examples thereof include product names "R7521P", "SP1068", "R7510PJ", "R7572P" and "R7578P" (manufactured by SIGROUP INC.).
 前記熱可塑性樹脂の含有量については、特に限定はされないが、樹脂組成物の強度と伸びをより高いレベルで両立させる観点からは、前記エポキシ樹脂と前記共重合体と前記熱可塑性樹脂の合計含有量に対する、前記エポキシ樹脂の含有率が15~50質量%であり、前記共重合体の含有率が15~50質量%であり、且つ、前記熱可塑性樹脂の含有率が30~60質量%であることが好ましい。 The content of the thermoplastic resin is not particularly limited, but from the viewpoint of achieving both the strength and elongation of the resin composition at a higher level, the total content of the epoxy resin, the copolymer, and the thermoplastic resin is not limited. The content of the epoxy resin is 15 to 50% by mass, the content of the copolymer is 15 to 50% by mass, and the content of the thermoplastic resin is 30 to 60% by mass with respect to the amount. It is preferable to have.
 また、本発明の樹脂組成物は、さらに、老化防止剤を含むことが好ましい。樹脂組成物の強度と伸びをより高いレベルで両立させるためである。
 同様の観点から、前記老化防止剤は、分岐アルキル基を含有するフェニル基を2つ以上有するものであることが好ましい。このような老化防止剤については、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。特に、老化防止剤として、分岐アルキル基を有するフェニル基を2つ以上有する化合物を含有することが好ましい。このように、分岐アルキル基付きのフェニル基を2つ以上有する化合物を老化防止剤として用いることにより、フィルム作製にあたって高温で混練する際、共重合体の分散性を向上させることができるとともに、共重合体のゲル化を抑制することができる。前記分岐アルキル基を含有するフェニル基を2つ以上有する化合物は、一種単独で用いてもよいし、二種以上を組み合わせで用いてもよい。
Further, it is preferable that the resin composition of the present invention further contains an antioxidant. This is to achieve both the strength and elongation of the resin composition at a higher level.
From the same viewpoint, the antiaging agent preferably has two or more phenyl groups containing a branched alkyl group. Examples of such an antioxidant include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds and phosphorus compounds. In particular, as an antiaging agent, it is preferable to contain a compound having two or more phenyl groups having a branched alkyl group. As described above, by using a compound having two or more phenyl groups with a branched alkyl group as an antiaging agent, the dispersibility of the copolymer can be improved and the dispersibility of the copolymer can be improved when kneading at a high temperature in the production of a film. It is possible to suppress gelation of the polymer. The compound having two or more phenyl groups containing a branched alkyl group may be used alone or in combination of two or more.
 より具体的に、分岐アルキル基を含有するフェニル基を2つ以上有する化合物としては、下記式(1)又は式(2)で表される構造を有する化合物であることが好ましい。 More specifically, the compound having two or more phenyl groups containing a branched alkyl group is preferably a compound having a structure represented by the following formula (1) or formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(1)及び式(2)において、R~R、R11~R18、及び、R21~R24は、水素原子、直鎖アルキル基、環状アルキル基、又は分岐アルキル基であり、R~Rのうち少なくとも1つ;並びに、R11~R18及びR21~R24のうち少なくとも1つは、分岐アルキル基である。R~R、R11~R18、及び、R21~R24は、互いに同じであってもよいし、異なっていてもよい。Rは、炭化水素基である。A及びAは、連結基である。Eは、3価のヘテロ原子である。 In the above formulas (1) and (2), R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 are hydrogen atoms, linear alkyl groups, cyclic alkyl groups, or branched alkyl groups. Yes, at least one of R 1 to R 8 ; and at least one of R 11 to R 18 and R 21 to R 24 are branched alkyl groups. R 1 to R 8 , R 11 to R 18 , and R 21 to R 24 may be the same or different from each other. R 9 is a hydrocarbon group. A 1 and A 2 are linking groups. E is a trivalent heteroatom.
 上記直鎖アルキル基の炭素数は、1~12であることが好ましく、1~8であることがより好ましく、1~5であることがさらに好ましく、1~3であることが一層好ましい。直鎖アルキル基として、具体的には、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ぺンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。なお、直鎖アルキル基は、ハロゲン原子等の置換基をさらに有していてもよい。
 直鎖アルキル基は、以上の中でも、無置換の直鎖アルキル基であることが好ましく、メチル基、エチル基、又はn-プロピル基であることがより好ましい。
 上記環状アルキル基の炭素数は、5~12であることが好ましく、6~12であることがより好ましく、6~8であることがさらに好ましい。環状アルキル基として、具体的には、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。なお、環状アルキル基は、炭素数1~3のアルキル基、ハロゲン原子等の置換基をさらに有していてもよい。
 環状アルキル基は、以上の中でも、無置換の環状アルキル基であることが好ましく、シクロヘキシル基であることがより好ましい。
 上記分岐アルキル基の炭素数は、3~12であることが好ましく、3~8であることがより好ましく、4~8であることがさらに好ましく、4~6であることが一層好ましい。分岐アルキル基として、具体的には、例えば、イソプロピル基、2-ブチル基、tert-ブチル基、tert-ペンチル基、2-ヘキシル基、2-ヘプチル基、2-オクチル基、2-ドデシル基等が挙げられる。なお、分岐アルキル基は、ハロゲン原子等の置換基をさらに有していてもよい。
 分岐アルキル基は、以上の中でも、無置換の分岐アルキル基であることが好ましく、イソプロピル基、2-ブチル基、tert-ブチル基、又はtert-ペンチル基であることがより好ましく、tert-ブチル基又はtert-ペンチル基であることがさらに好ましい。
The number of carbon atoms of the linear alkyl group is preferably 1 to 12, more preferably 1 to 8, further preferably 1 to 5, and even more preferably 1 to 3. Specific examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and an n-octyl group. Examples thereof include an n-nonyl group, an n-decyl group and an n-dodecyl group. The linear alkyl group may further have a substituent such as a halogen atom.
Among the above, the linear alkyl group is preferably an unsubstituted linear alkyl group, more preferably a methyl group, an ethyl group, or an n-propyl group.
The cyclic alkyl group preferably has 5 to 12 carbon atoms, more preferably 6 to 12 carbon atoms, and even more preferably 6 to 8 carbon atoms. Specific examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like. The cyclic alkyl group may further have a substituent such as an alkyl group having 1 to 3 carbon atoms and a halogen atom.
Among the above, the cyclic alkyl group is preferably an unsubstituted cyclic alkyl group, more preferably a cyclohexyl group.
The number of carbon atoms of the branched alkyl group is preferably 3 to 12, more preferably 3 to 8, further preferably 4 to 8, and even more preferably 4 to 6. Specific examples of the branched alkyl group include an isopropyl group, a 2-butyl group, a tert-butyl group, a tert-pentyl group, a 2-hexyl group, a 2-heptyl group, a 2-octyl group, a 2-dodecyl group and the like. Can be mentioned. The branched alkyl group may further have a substituent such as a halogen atom.
Among the above, the branched alkyl group is preferably an unsubstituted branched alkyl group, more preferably an isopropyl group, a 2-butyl group, a tert-butyl group, or a tert-pentyl group, and more preferably a tert-butyl group. Alternatively, it is more preferably a tert-pentyl group.
 Rで表される炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。アルキル基としては、上で例示した直鎖アルキル基、環状アルキル基、及び分岐アルキル基が挙げられ、好ましい範囲も同様である。また、アルケニル基及びアルキニル基としては、炭素数2~8のものが好ましく、例えば、ビニル基等が挙げられる。 Examples of the hydrocarbon group represented by R 9 include an alkyl group, an alkenyl group, an alkynyl group and the like. Examples of the alkyl group include the linear alkyl group, the cyclic alkyl group, and the branched alkyl group exemplified above, and the preferred range is also the same. Further, as the alkenyl group and the alkynyl group, those having 2 to 8 carbon atoms are preferable, and examples thereof include a vinyl group and the like.
 A及びAで表される連結基としては、炭素数1~6の2価の炭化水素基が挙げられ、また、2価以上のヘテロ原子(例えば、酸素原子、硫黄原子等)を含んでもよい。上記炭化水素基の炭化水素は、飽和炭化水素であってもよく、不飽和炭化水素であってもよい。中でも、連結基は、飽和炭化水素基であることが好ましく、また、上記連結基の炭素数は、1~5であることが好ましく、1~4であることがより好ましい。なお、連結基は、ハロゲン原子、メチル基、エチル基等の置換基をさらに有していてもよい。 Examples of the linking group represented by A 1 and A 2 include a divalent hydrocarbon group having 1 to 6 carbon atoms, and a heteroatom having a divalent value or more (for example, an oxygen atom, a sulfur atom, etc.). But it may be. The hydrocarbon of the above hydrocarbon group may be a saturated hydrocarbon or an unsaturated hydrocarbon. Among them, the linking group is preferably a saturated hydrocarbon group, and the linking group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms. The linking group may further have a substituent such as a halogen atom, a methyl group or an ethyl group.
 Eで表される3価のヘテロ原子としては、硫黄原子、リン原子等が挙げられ、中でも、リン原子であることが好ましい。 Examples of the trivalent heteroatom represented by E include a sulfur atom and a phosphorus atom, and among them, a phosphorus atom is preferable.
 式(1)においては、R~Rのうち少なくとも1つ、及び、R~Rのうち少なくとも1つが、それぞれ、分岐アルキル基であることが好ましい。また、式(2)においては、R11~R14から選択される基Ra;R15~R18から選択される基Rb;及び、R21~R24から選択される基Rcからなる群より選択される少なくとも2つが、分岐アルキル基であることが好ましい。
 さらに、分岐アルキル基を有するフェニル基(分岐アルキル基付きフェニル基)は、複数の分岐アルキル基を有することが好ましい。中でも、式(1)及び式(2)において、R~Rのうち少なくとも2つ;R~Rのうち少なくとも2つ;R11~R14のうち少なくとも2つ;及び、R15~R18のうち少なくとも2つが、分岐アルキル基であることが好ましい。
In the formula (1), it is preferable that at least one of R 1 to R 4 and at least one of R 5 to R 8 are branched alkyl groups, respectively. Further, in the formula (2), from the group consisting of the group Ra selected from R 11 to R 14 , the group Rb selected from R 15 to R 18 , and the group Rc selected from R 21 to R 24 . It is preferred that at least two selected are branched alkyl groups.
Further, the phenyl group having a branched alkyl group (phenyl group with a branched alkyl group) preferably has a plurality of branched alkyl groups. Among them, in the formulas ( 1 ) and (2), at least two of R1 to R4 ; at least two of R5 to R8; at least two of R11 to R14 ; and R15 . It is preferable that at least two of the to R18 are branched alkyl groups.
 例えば、式(1)で表される構造を有する化合物としては、以下の通りであることが好ましい:
 R及びRが分岐アルキル基;R、R、R及びRが水素原子;R及びRが分岐アルキル基又は直鎖アルキル基;Rが不飽和炭化水素基;Aが2価の飽和炭化水素基。
For example, the compound having the structure represented by the formula (1) is preferably as follows:
R 1 and R 8 are branched alkyl groups; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are branched or linear alkyl groups; R 9 are unsaturated hydrocarbon groups; A 1 is a divalent saturated hydrocarbon group.
 また、式(1)で表される構造を有する化合物としては、以下の通りであることがより好ましい:
 R及びRが炭素数3~6の無置換の分岐アルキル基;R、R、R及びRが水素原子;R及びRが炭素数4~5の無置換の分岐アルキル基又は炭素数1~3の無置換の直鎖アルキル基;Rが無置換のビニル基;Aがアルキル基で置換された、もしくは無置換のメチレン基。
Further, the compound having the structure represented by the formula (1) is more preferably as follows:
R 1 and R 8 are unsubstituted branched alkyl groups having 3 to 6 carbon atoms; R 2 , R 4 , R 5 and R 7 are hydrogen atoms; R 3 and R 6 are unsubstituted branched alkyl groups having 4 to 5 carbon atoms. Alkyl group or unsubstituted linear alkyl group having 1 to 3 carbon atoms; R 9 is an unsubstituted vinyl group; A 1 is an alkyl group substituted or unsubstituted methylene group.
 さらに、式(1)で表される構造を有する化合物としては、下記式(3)又は式(4)で表される構造を有する化合物であることがさらに好ましい。 Further, as the compound having the structure represented by the formula (1), it is more preferable that the compound has the structure represented by the following formula (3) or the formula (4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、式(2)で表される構造としては、以下の通りであることが好ましい:
 R11、R13、R16、R18及びR21が分岐アルキル基;R12、R14、R15、R17、R22及びR23が水素原子;R24が直鎖アルキル基;Aが酸素原子を含む2価の飽和炭化水素基;Eが硫黄原子又はリン原子。
The structure represented by the formula (2) is preferably as follows:
R 11 , R 13 , R 16 , R 18 and R 21 are branched alkyl groups; R 12 , R 14 , R 15 , R 17 , R 22 and R 23 are hydrogen atoms; R 24 is a linear alkyl group; A 2 Is a divalent saturated hydrocarbon group containing an oxygen atom; E is a sulfur atom or a phosphorus atom.
 さらに、式(2)で表される構造としては、以下の通りであることがより好ましい:
 R11、R13、R16、R18及びR21が炭素数3~5の無置換の分岐アルキル基;R12、R14、R15、R17、R22及びR23が水素原子;R24が炭素数1~3の無置換の直鎖アルキル基;Aが炭素数2~5の無置換のアルキレンオキシ基(-OR-において、Rが炭素数2~5の無置換のアルキレン);Eがリン原子。
Further, the structure represented by the formula (2) is more preferably as follows:
R 11 , R 13 , R 16 , R 18 and R 21 are unsubstituted branched alkyl groups having 3 to 5 carbon atoms; R 12 , R 14 , R 15 and R 17 , R 22 and R 23 are hydrogen atoms; R 24 is an unsubstituted linear alkyl group having 1 to 3 carbon atoms; A 2 is an unsubstituted alkyleneoxy group having 2 to 5 carbon atoms (in -OR-, R is an unsubstituted alkylene group having 2 to 5 carbon atoms). E is a phosphorus atom.
 さらにまた、式(2)で表される構造を有する化合物としては、下記式(5)で表される構造を有する化合物であることがさらに好ましい。 Furthermore, as the compound having the structure represented by the formula (2), it is more preferable that the compound has the structure represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 そして、分岐アルキル基を有するフェニル基を2つ以上有する化合物としては、以上の中でも、上記式(4)又は式(5)で表される構造を有する化合物であることが特に好ましい。 The compound having two or more phenyl groups having a branched alkyl group is particularly preferably a compound having a structure represented by the above formula (4) or the above formula (5).
 上記老化防止剤の含有量は、エポキシ樹脂と共重合体(と熱可塑性樹脂)の合計量(100質量部)に対して、0.1質量部以上10質量部以下であることが好ましい。老化防止剤の含有量が0.1質量部以上であれば、共重合体の分散性の向上及びゲル化の抑制の効果が十分に得られ、また、10質量部以下含まれることで効果が十分発揮される。 The content of the antioxidant is preferably 0.1 part by mass or more and 10 parts by mass or less with respect to the total amount (100 parts by mass) of the epoxy resin and the copolymer (and the thermoplastic resin). When the content of the antiaging agent is 0.1 part by mass or more, the effect of improving the dispersibility of the copolymer and suppressing gelation can be sufficiently obtained, and when the content is 10 parts by mass or less, the effect is obtained. It is fully demonstrated.
 さらにまた、本発明の樹脂組成物は、相溶化剤として、スチレン系エラストマーをさらに含むことが好ましい。樹脂組成物の強度と伸びをより高いレベルで両立させるためである。 Furthermore, it is preferable that the resin composition of the present invention further contains a styrene-based elastomer as a compatibilizer. This is to achieve both the strength and elongation of the resin composition at a higher level.
 前記スチレン系エラストマーは、相溶化剤としての効果を奏するものであればよく、特に限定はされない。例えば、スチレン・ブタジエン共重合体(SBS)や、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)、スチレン・エチレン・エチレンプロピレン・スチレンブロック共重合体(SEEPS)等が挙げられる。
 これらの中でも、前記スチレン系エラストマーは、スチレン・ブタジエン共重合体(SBS)及びスチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)のうちの少なくとも一種を含むことが好ましい。
The styrene-based elastomer may be any as long as it has an effect as a compatibilizer, and is not particularly limited. For example, styrene / butadiene copolymer (SBS), styrene / ethylenebutylene / styrene block copolymer (SEBS), styrene / ethylenepropylene / styrene block copolymer (SEPS), styrene / ethylene / ethylenepropylene / styrene block. Examples include copolymers (SEEPS) and the like.
Among these, the styrene-based elastomer preferably contains at least one of a styrene-butadiene copolymer (SBS) and a styrene-ethylenebutylene-styrene block copolymer (SEBS).
 また、前記スチレン系エラストマーの含有量については、前記エポキシ樹脂と前記共重合体(と熱可塑性樹脂)の合計含有量を100質量部としたときに、1~20質量部であることが好ましく、5~15質量部であることがより好ましい。前記スチレン系エラストマーの含有量が前記エポキシ樹脂と前記共重合体の合計含有量100質量部質量部に対して1質量部以上である場合、相溶化剤としての効果を確実に奏することができるためであり、一方、前記スチレン系エラストマーの含有量が20質量部以下の場合、マトリックスとして樹脂としてのエポキシ樹脂が十分に機能できるであるためである。 The content of the styrene-based elastomer is preferably 1 to 20 parts by mass when the total content of the epoxy resin and the copolymer (and the thermoplastic resin) is 100 parts by mass. It is more preferably 5 to 15 parts by mass. When the content of the styrene-based elastomer is 1 part by mass or more with respect to 100 parts by mass of the total content of the epoxy resin and the copolymer, the effect as a compatibilizer can be surely exhibited. On the other hand, when the content of the styrene-based elastomer is 20 parts by mass or less, the epoxy resin as a resin can sufficiently function as a matrix.
 なお、本発明の樹脂組成物は、上述した熱可塑性樹脂、老化防止剤及びスチレン系エラストマーの他にも、前記共重合体以外のポリマー成分、カーボンブラックやシリカ等の充填剤、オイル等の軟化剤、硫黄や有機過酸化物等の架橋剤、各種加硫促進剤などを含むことが可能である。 In addition to the above-mentioned thermoplastic resin, antiaging agent and styrene elastomer, the resin composition of the present invention contains polymer components other than the copolymer, fillers such as carbon black and silica, and softening of oil and the like. It is possible to include an agent, a cross-linking agent such as sulfur or an organic peroxide, and various vulcanization accelerators.
 ただし、本発明においては、樹脂組成物の機能を十分に発揮するためには、上述した成分のうち、充填剤やオイル、硫黄を含まないことが好ましい。 However, in the present invention, it is preferable that the above-mentioned components do not contain fillers, oils, or sulfur in order to fully exert the functions of the resin composition.
 また、本発明においては、加硫促進剤を含むことで、樹脂組成物中のドメインサイズの微細化に寄与するため好ましい。さらに、前記加硫促進剤の中でも、ジチオカルバメート系の促進剤を使用することがより好ましい。 Further, in the present invention, it is preferable to include a vulcanization accelerator because it contributes to the miniaturization of the domain size in the resin composition. Further, among the vulcanization accelerators, it is more preferable to use a dithiocarbamate-based accelerator.
<シート成形体>
 次に、本発明のシート成形体について説明する。本発明のシート成形体は、上述した本発明の樹脂組成物を用いたことを特徴とする。
 上述の樹脂組成物を用いて形成された本発明のシート成形体は、優れた強度を有しつつ、柔軟性も良好である。
<Sheet molded body>
Next, the sheet molded body of the present invention will be described. The sheet molded product of the present invention is characterized in that the above-mentioned resin composition of the present invention is used.
The sheet molded product of the present invention formed by using the above-mentioned resin composition has excellent strength and flexibility.
 ここで、シート成形体とは、樹脂組成物をシート状に成形し、硬化させたものである。前記シート成形体の形状やサイズについては、特に限定はされず、適用する物品や要求される性能に応じて適宜選択することができる。 Here, the sheet molded body is a resin composition formed into a sheet and cured. The shape and size of the sheet molded product are not particularly limited, and can be appropriately selected depending on the applicable article and the required performance.
 本発明のシート成形体の製造方法については特に限定はされない。例えば、本発明の樹脂組成物をシート状に成形した(プレ成形体を作製した)後、必要に応じて加熱を行い、一定時間置くことで、シート状の成形体を得ることができる。 The method for manufacturing the sheet molded product of the present invention is not particularly limited. For example, a sheet-shaped molded product can be obtained by molding the resin composition of the present invention into a sheet shape (creating a pre-molded product), heating it as necessary, and allowing it to stand for a certain period of time.
 なお、本発明のシート成形体は、種々の用途に用いることができる。例えば、タイヤの部材や、自動車用部品(自動車用シート、自動車用電池(リチウムイオン電池等)、ウェザーストリップ類、ホースチューブ類、防振ゴム類、ケーブル類、シール材等)、コンベアベルト、クローラー、防振ゴム、ホース、樹脂配管、吸音材、寝具、事務機器用精密部品(OAローラー)、自転車用フレーム、ゴルフボール、テニスラケット、ゴルフシャフト、樹脂添加剤、フィルター、接着剤、粘着剤、インキ、医療器具(医療用チューブ、バック、マイクロニードル、ゴムスリーブ、人工臓器、キャップ、パッキン、注射器ガスケット、薬栓、義足、義肢)、化粧品(UVパウダー、パフ、容器、ワックス、シャンプー、コンディショナー)、洗剤、建築材料(フロア材、制震ゴム、免震ゴム、建築フィルム、吸音材、防水シート、断熱材、目地材、シール材)、包装材、液晶材料、有機EL材料、有機半導体材料、電子材料、電子デバイス、通信機器、航空機部品、機械部品、電子部品、農業用資材、電線、ケーブル、繊維(ウェアラブル基盤)、日用品(歯ブラシ、靴底、眼鏡、疑似餌、双眼鏡、玩具、防塵マスク、ガーデンホース)、ロボット部品、光学部品、道路資材(アスファルト、ガードレール、ポール、標識)、保護具(靴、防弾チョッキ)、電気機器外装部品、OA外装部品、ソール、シール材等に用いることが可能である。 The sheet molded product of the present invention can be used for various purposes. For example, tire parts, automobile parts (automobile seats, automobile batteries (lithium ion batteries, etc.), weather strips, hose tubes, anti-vibration rubbers, cables, sealing materials, etc.), conveyor belts, crawlers, etc. , Anti-vibration rubber, hose, resin piping, sound absorbing material, bedding, precision parts for office equipment (OA roller), bicycle frame, golf ball, tennis racket, golf shaft, resin additive, filter, adhesive, adhesive, Ink, medical equipment (medical tubes, bags, microneedles, rubber sleeves, artificial organs, caps, packings, injector gaskets, drug stoppers, artificial legs, artificial limbs), cosmetics (UV powder, puffs, containers, waxes, shampoos, conditioners) , Detergent, building materials (floor materials, anti-vibration rubber, seismic isolation rubber, building films, sound absorbing materials, waterproof sheets, heat insulating materials, joint materials, sealing materials), packaging materials, liquid crystal materials, organic EL materials, organic semiconductor materials, Electronic materials, electronic devices, communication equipment, aircraft parts, mechanical parts, electronic parts, agricultural materials, electric wires, cables, fibers (wearable bases), daily necessities (toothbrushes, shoe soles, eyeglasses, artificial bait, binoculars, toys, dustproof masks) , Garden hose), robot parts, optical parts, road materials (asphalt, guard rails, poles, signs), protective equipment (shoes, bulletproof vests), electrical equipment exterior parts, OA exterior parts, soles, sealing materials, etc. Is.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(共重合体の分析)
 後述のように合成した共重合体の、数平均分子量(Mn)、重量平均分子量(Mw)、ブタジエン単位、エチレン単位及びスチレン単位の含有量、融点、吸熱ピークエネルギー、ガラス転移温度、結晶化度を測定し、主鎖構造を確認した。
(Analysis of copolymer)
Number average molecular weight (Mn), weight average molecular weight (Mw), butadiene unit, ethylene unit and styrene unit content, melting point, heat absorption peak energy, glass transition temperature, crystallinity of the copolymer synthesized as described later. Was measured, and the main chain structure was confirmed.
(1)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8121GPC/HT、カラム:東ソー社製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)
Gel permeation chromatography [GPC: HLC-8121 GPC / HT manufactured by Toso Co., Ltd., column: GMH HR -H (S) HT x 2 manufactured by Toso Co., Ltd., detector: differential refractometer (RI)] to obtain monodisperse polystyrene. As a reference, the polystyrene-equivalent number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the copolymer were determined. The measured temperature is 40 ° C.
(2)ブタジエン単位、エチレン単位、スチレン単位の含有量
 共重合体中のブタジエン単位、エチレン単位、スチレン単位の含有量(mol%)を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)の各ピークの積分比より求めた。
(2) Content of butadiene unit, ethylene unit, styrene unit The content (mol%) of butadiene unit, ethylene unit, and styrene unit in the copolymer can be determined by 1 1 H-NMR spectrum (100 ° C, d-tetrachloroethane standard). : 6 ppm) was calculated from the integral ratio of each peak.
(3)融点(T
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体の融点を測定した。
(3) Melting point (T m )
The melting point of the copolymer was measured according to JIS K 7121-1987 using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
(4)吸熱ピークエネルギー
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、10℃/分の昇温速度で-150℃から150℃まで昇温し、その時(1st run)の0~120℃における吸熱ピークエネルギーを測定した。
(4) Endothermic peak energy Using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000"), the temperature rise rate at 10 ° C / min in accordance with JIS K 7121-1987. The temperature was raised from −150 ° C. to 150 ° C., and the endothermic peak energy at 0 to 120 ° C. at that time (1st run) was measured.
(5)ガラス転移温度(Tg)
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。
(5) Glass transition temperature (Tg)
The glass transition temperature (Tg) of the copolymer was measured according to JIS K 7121-1987 using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
(6)結晶化度
 100%結晶成分のポリエチレンの結晶融解エネルギーと、得られた共重合体の融解ピークエネルギーを測定し、ポリエチレンと共重合体とのエネルギー比率から、結晶化度を算出した。なお、融解ピークエネルギーは、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で測定した。
(6) Crystallinity The crystallinity was calculated from the crystal melting energy of polyethylene, which is a 100% crystal component, and the melting peak energy of the obtained copolymer, and the energy ratio between polyethylene and the copolymer. The melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
(7)主鎖構造の確認
 合成した共重合体について、13C-NMRスペクトルを測定した。
(7) Confirmation of main chain structure 13 C-NMR spectrum was measured for the synthesized copolymer.
(共重合体Aの合成)
 十分に乾燥した2000mL耐圧ステンレス反応器に、スチレン52gとトルエン762gを加えた。
 窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体:1,3-[(t-Bu)MeSi]Gd[N(SiHMe] 0.031mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート:[MeNHPhB(C] 0.031mmolを仕込み、トルエン 21gを加えて触媒溶液とした。その触媒溶液を前記耐圧ステンレス反応器に加え、60℃に加温した。なお、「t-Bu」はtert-ブチル基、「Me」はメチル基、「Ph」はフェニル基を意味する(以下同じ)。
 次いで、エチレンを圧力1.0MPaでその耐圧ステンレス反応器に投入し、75℃で計9時間共重合を行った。1,3-ブタジエンは、連続的に0.6mL/min.の速度で1,3-ブタジエン 27gを含むトルエン溶液 108gを加えた。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mlを、該耐圧ステンレス反応器に加えて反応を停止させた。
 その後、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体を得た。
 得られた共重合体について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位、スチレン単位の含有量、融点(T)、吸熱ピークエネルギー、ガラス転移温度(Tg)、結晶化度を、上記の方法で測定した。結果を表1に示す。
 また、得られた共重合体について、上記の方法で主鎖構造を確認したところ、13C-NMRスペクトルチャートにおいて、10~24ppmにピークが観測されなかったことから、合成した共重合体は、主鎖が非環状構造のみからなることを確認した。
(Synthesis of copolymer A)
52 g of styrene and 762 g of toluene were added to a sufficiently dried 2000 mL pressure resistant stainless steel reactor.
In a glove box under a nitrogen atmosphere, a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadolinium complex: 1,3-[(t-Bu) in a glass container. ) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2 ) 2 ] 0.031 mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate: [Me 2 NHPhB (C 6 F 5 ) 4 ] 0.031 mmol It was charged and 21 g of toluene was added to prepare a catalytic solution. The catalyst solution was added to the pressure resistant stainless steel reactor and heated to 60 ° C. In addition, "t-Bu" means a tert-butyl group, "Me" means a methyl group, and "Ph" means a phenyl group (the same applies hereinafter).
Next, ethylene was charged into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and copolymerization was carried out at 75 ° C. for a total of 9 hours. 1,3-butadiene was continuously added to 0.6 mL / min. 108 g of a toluene solution containing 27 g of 1,3-butadiene was added at the rate of.
Then, 1 ml of an isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in an amount of 5% by mass was added to the pressure-resistant stainless steel reactor to terminate the reaction.
Then, the copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain a copolymer.
The obtained copolymer has a number average molecular weight (Mn), a weight average molecular weight (Mw), a molecular weight distribution (Mw / Mn), a butadiene unit, an ethylene unit, a styrene unit content, a melting point ( Tm ), and a heat absorption peak. Energy, glass transition temperature (Tg) and crystallinity were measured by the above methods. The results are shown in Table 1.
Further, when the main chain structure of the obtained copolymer was confirmed by the above method, no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart. It was confirmed that the main chain consisted only of an acyclic structure.
(共重合体Bの合成)
 十分に乾燥した2000mL耐圧ステンレス反応器に、スチレン 91gとトルエン 379gを加えた。
 窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体:1,3-[(t-Bu)MeSi]Gd[N(SiHMe] 0.1mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート:[MeNHPhB(C] 0.1mmol及びトリイソブチルアルミニウム 0.3mmolを仕込み、トルエン 63mLを加えて触媒溶液とした。その触媒溶液を前記耐圧ステンレス反応器に加え、60℃に加温した。
 次いで、エチレンを圧力1~1.5MPaでその耐圧ステンレス反応器に投入し、85℃で計4時間共重合を行った。1,3-ブタジエンは、連続的に1.1~1.2mL/min.の速度で1,3-ブタジエン 70gを含むトルエン溶液 280gを加えた。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5) 5質量%のイソプロパノール溶液1mLをその耐圧ステンレス反応器に加えて反応を停止させた。
 次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体Bを得た。
(Synthesis of copolymer B)
91 g of styrene and 379 g of toluene were added to a fully dried 2000 mL pressure resistant stainless steel reactor.
In a glove box under a nitrogen atmosphere, a mono (bis (1,3-tert-butyldimethylsilyl) indenyl) bis (bis (dimethylsilyl) amide) gadrinium complex: 1,3-[(t-Bu) is placed in a glass container. ) Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2 ) 2 ] 0.1 mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate: [Me 2 NHPhB (C 6 F 5 ) 4 ] 0.1 mmol and 0.3 mmol of triisobutylaluminum was charged, and 63 mL of toluene was added to prepare a catalytic solution. The catalyst solution was added to the pressure resistant stainless steel reactor and heated to 60 ° C.
Then, ethylene was charged into the pressure resistant stainless steel reactor at a pressure of 1 to 1.5 MPa, and copolymerization was carried out at 85 ° C. for a total of 4 hours. 1,3-Butadiene was continuously added at 1.1 to 1.2 mL / min. 280 g of a toluene solution containing 70 g of 1,3-butadiene was added at the rate of.
Then, 1 mL of a 5% by mass isopropanol solution of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure resistant stainless steel reactor to terminate the reaction.
Then, the copolymer was separated using a large amount of methanol and vacuum dried at 50 ° C. to obtain the copolymer B.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<樹脂組成物及びシート成形体のサンプル作製>
 表2に示す配合処方に従い、樹脂組成物のサンプルを作製した。具体的には、熱可塑性樹脂(フェノキシ樹脂)とエポキシ樹脂の混合物を作製し、該混合物に、共重合体、スチレン系エラストマー、加硫促進剤及び老化防止剤を添加した後、130℃で10分間の条件でプラストミルによる混練を行った。その後、100℃まで温度を下げた後、硬化剤を添加し、30秒間プラストミルによる混練を行った。
 得られた樹脂組成物のサンプルを、100℃にて3分間プレスを行い、プレシート成形体を作製した。その後、プレシート成形体を、190℃にて10分間プレスをおこなうことで、硬化させ、シート成形体のサンプルを得た。
 なお、表2の各成分の配合量は、熱可塑性100質量部に対する質量部で表示している。
<Preparation of samples of resin composition and sheet molded product>
A sample of the resin composition was prepared according to the formulation shown in Table 2. Specifically, a mixture of a thermoplastic resin (phenoxy resin) and an epoxy resin is prepared, and a copolymer, a styrene-based elastomer, a vulcanization accelerator, and an antiaging agent are added to the mixture, and then 10 at 130 ° C. Kneading was performed with a plastic mill under the condition of 1 minute. Then, after lowering the temperature to 100 ° C., a curing agent was added, and kneading was performed with a plast mill for 30 seconds.
A sample of the obtained resin composition was pressed at 100 ° C. for 3 minutes to prepare a presheet molded product. Then, the pre-sheet molded product was pressed at 190 ° C. for 10 minutes to cure it, and a sample of the sheet-molded product was obtained.
The blending amount of each component in Table 2 is indicated by the mass part with respect to 100 parts by mass of the thermoplastic.
<評価>
(1)強度(破断点強度)
 各サンプルのシート成形体について、JIS K 6251:2017年に準拠し、破断点強度(MPa)の測定を行った。
 評価については、値が大きい程、破断点強度が大きく、強度に優れることを示す。評価結果を表2に示す。なお、サンプル5(比較例)のシート成形体については、硬度が大きく、打ち抜きができなかったため、破断点強度の測定が行えなかった。
<Evaluation>
(1) Strength (breaking point strength)
The breaking point strength (MPa) was measured for each sample sheet molded product in accordance with JIS K 6251: 2017.
Regarding the evaluation, the larger the value, the larger the breaking point strength and the better the strength. The evaluation results are shown in Table 2. The sheet molded body of Sample 5 (Comparative Example) had a high hardness and could not be punched, so that the breaking point strength could not be measured.
(2)伸び(破断点伸び)
 各サンプルのシート成形体について、JIS K 6251:2017年に準拠し、破断点伸び(%)の測定を行った。
 なお、評価については、値が大きい程、破断点伸びが大きく、伸び性に優れることを示す。評価結果を表2に示す。なお、サンプル5(比較例)のシート成形体については、硬度が大きく、打ち抜きができなかったため、破断点伸びの測定が行えなかった。
(2) Elongation (elongation at break point)
The break point elongation (%) was measured for the sheet molded product of each sample in accordance with JIS K 6251: 2017.
As for the evaluation, the larger the value, the larger the elongation at the breaking point and the better the extensibility. The evaluation results are shown in Table 2. The sheet molded body of Sample 5 (Comparative Example) had a high hardness and could not be punched, so that the elongation at the breaking point could not be measured.
(3)ドメインサイズ
 サンプル1~4の樹脂組成物について、プレシート成形体作製時(硬化前)のドメインサイズと、シート成形体作製時(硬化後)のドメインサイズを、原子間力顕微鏡(AFM)により測定した。測定結果を表2に示す。
 なお、本実施例でのドメインは、共重合体A又はBとなる。
(3) Domain size For the resin compositions of Samples 1 to 4, the domain size at the time of preparing the presheet molded body (before curing) and the domain size at the time of producing the sheet molded body (after curing) are determined by an atomic force microscope (AFM). Was measured by. The measurement results are shown in Table 2.
The domain in this example is the copolymer A or B.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
*1 フェノキシ樹脂:日鉄ケミカル&マテリアル株式会社製「YP-70」
*2 ビスフェノールA型エポキシ樹脂:三菱ケミカル株式会社「JER1001」
*3 グリセリンビス アンヒドロトリメリテート モノアセテート:新日本理化株式会社「リカシッド TMTA-C」
*4 上記の方法で合成した共重合体A及びB
*5 水添スチレン系熱可塑性エラストマー(SEBS):旭化成株式会社「タフテック(登録商標)M1913」
*6 ジメチルジチオカルバミン酸亜鉛、「2-PZ」
*7 6-tert-ブチル-4-[3-[(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]プロピル]-2-メチルフェノール:住友化学株式会社「スミライザー(登録商標)GP」
* 1 Phenoxy resin: "YP-70" manufactured by Nittetsu Chemical & Materials Co., Ltd.
* 2 Bisphenol A type epoxy resin: Mitsubishi Chemical Corporation "JER1001"
* 3 Glycerin Bis Anhydrotrimeritate Monoacetate: NEW JAPAN CHEMICAL CO., LTD. "Ricashid TMTA-C"
* 4 Copolymers A and B synthesized by the above method
* 5 Hydrogenated styrene-based thermoplastic elastomer (SEBS): Asahi Kasei Corporation "Tough Tech (registered trademark) M1913"
* 6 Zinc dimethyldithiocarbamate, "2-PZ"
* 7 6-tert-Butyl-4- [3-[(2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphepine-6-yl) ) Oxy] Propyl] -2-Methylphenol: Sumitomo Chemical Co., Ltd. "Smilizer (registered trademark) GP"
 表2に示す実施例の結果から、本発明に従う実施例のシート成形体のサンプルは、強度とと伸びとが高いレベルで両立できていることがわかる。一方、比較例のシート成形体のサンプルは、硬度が大きく、柔軟性がなかったため、破断点強度及び破断点伸びのいずれも測定ができなかった。
 また、ドメインサイズについては、加硫促進剤の存在によりドメインサイズが微細化する傾向がみられる。
From the results of the examples shown in Table 2, it can be seen that the sample of the sheet molded product of the example according to the present invention has both strength and elongation at a high level. On the other hand, since the sample of the sheet molded product of the comparative example had high hardness and was not flexible, neither the breaking point strength nor the breaking point elongation could be measured.
Regarding the domain size, there is a tendency for the domain size to become finer due to the presence of the vulcanization accelerator.
 本発明によれば、従来のエポキシ樹脂に比べて、強度と伸びが高いレベルで両立できる樹脂組成物を提供することができる。
 また、本発明によれば、優れた強度を有しつつ、柔軟性も良好な成形体を提供することができる。
According to the present invention, it is possible to provide a resin composition having both strength and elongation at a high level as compared with a conventional epoxy resin.
Further, according to the present invention, it is possible to provide a molded product having excellent strength and good flexibility.

Claims (17)

  1.  エポキシ樹脂と、
     共役ジエン単位と非共役オレフィン単位とを有し、且つブチレン単位の割合が0mol%である結晶性の共重合体と、
     硬化剤と、を含むことを特徴とする、樹脂組成物。
    Epoxy resin and
    A crystalline copolymer having a conjugated diene unit and a non-conjugated olefin unit and a proportion of butylene units of 0 mol%.
    A resin composition comprising, and a curing agent.
  2.  前記エポキシ樹脂と前記共重合体の合計含有量に対する、前記エポキシ樹脂の含有率が35~65質量%であることを特徴とする、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the epoxy resin is 35 to 65% by mass with respect to the total content of the epoxy resin and the copolymer.
  3.  さらに、熱可塑性樹脂を含むことを特徴とする、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a thermoplastic resin.
  4.  前記エポキシ樹脂と前記共重合体と前記熱可塑性樹脂の合計含有量に対する、前記エポキシ樹脂の含有率が15~50質量%であり、前記共重合体の含有率が15~50質量%であり、且つ、前記熱可塑性樹脂の含有率が30~60質量%であることを特徴とする、請求項3に記載の樹脂組成物。 The content of the epoxy resin is 15 to 50% by mass, and the content of the copolymer is 15 to 50% by mass with respect to the total content of the epoxy resin, the copolymer, and the thermoplastic resin. The resin composition according to claim 3, wherein the content of the thermoplastic resin is 30 to 60% by mass.
  5.  さらに、老化防止剤を含み、
     該老化防止剤は、分岐アルキル基を含有するフェニル基を2つ以上有することを特徴とする、請求項1~4のいずれか1項に記載の樹脂組成物。
    In addition, it contains an anti-aging agent
    The resin composition according to any one of claims 1 to 4, wherein the antiaging agent has two or more phenyl groups containing a branched alkyl group.
  6.  さらに、スチレン系エラストマーを含むことを特徴とする、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising a styrene-based elastomer.
  7.  さらに、ジチオカルバメート系加硫促進剤を含むことを特徴とする、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, further comprising a dithiocarbamate-based vulcanization accelerator.
  8.  前記共重合体の主鎖が、非環状構造のみからなることを特徴とする、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the main chain of the copolymer has only an acyclic structure.
  9.  前記共重合体が、芳香族ビニル単位をさらに有することを特徴とする、請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the copolymer further has an aromatic vinyl unit.
  10.  前記共重合体は、前記共役ジエン単位の含有率が5~70mol%であり、前記非共役オレフィン単位の含有率が25~94mol%であり、且つ、芳香族ビニル単位の含有率が1~30mol%であることを特徴とする、請求項1~9のいずれか1項に記載の樹脂組成物。 The copolymer has a conjugated diene unit content of 5 to 70 mol%, a non-conjugated olefin unit content of 25 to 94 mol%, and an aromatic vinyl unit content of 1 to 30 mol%. The resin composition according to any one of claims 1 to 9, wherein the resin composition is%.
  11.  前記共重合体は、示差走査熱量計(DSC)で測定した融点が30~130℃であることを特徴とする、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the copolymer has a melting point of 30 to 130 ° C. as measured by a differential scanning calorimeter (DSC).
  12.  前記共重合体の重量平均分子量(Mw)が50,000~2,000,000であることを特徴とする、請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the copolymer has a weight average molecular weight (Mw) of 50,000 to 2,000,000.
  13.  前記共重合体は、結晶化度が0.5~50%であることを特徴とする、請求項1~12のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the copolymer has a crystallinity of 0.5 to 50%.
  14.  前記共重合体は、前記非共役オレフィン単位がエチレン単位のみからなることを特徴とする、請求項1~13のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the copolymer comprises only ethylene units as the non-conjugated olefin unit.
  15.  前記共重合体は、前記芳香族ビニル単位がスチレン単位を含むことを特徴とする、請求項9~14のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 9 to 14, wherein the copolymer contains a styrene unit as the aromatic vinyl unit.
  16.  前記共重合体は、前記共役ジエン単位が1,3-ブタジエン単位及び/又はイソプレン単位を含むことを特徴とする、請求項1~15のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 15, wherein the copolymer contains 1,3-butadiene units and / or isoprene units in the conjugated diene unit.
  17.  請求項1~16のいずれか1項に記載の樹脂組成物を用いたことを特徴とする、シート成形体。 A sheet molded product, characterized in that the resin composition according to any one of claims 1 to 16 is used.
PCT/JP2021/031405 2020-09-01 2021-08-26 Resin composition and molded body WO2022050175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546283A JPWO2022050175A1 (en) 2020-09-01 2021-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147090 2020-09-01
JP2020147090 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022050175A1 true WO2022050175A1 (en) 2022-03-10

Family

ID=80491731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031405 WO2022050175A1 (en) 2020-09-01 2021-08-26 Resin composition and molded body

Country Status (2)

Country Link
JP (1) JPWO2022050175A1 (en)
WO (1) WO2022050175A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268079A (en) * 1994-03-31 1995-10-17 Somar Corp Epoxy resin composition
JP2000103964A (en) * 1998-07-30 2000-04-11 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
JP2003246837A (en) * 2002-02-26 2003-09-05 Asahi Kasei Epoxy Kk Epoxy resin and curable resin composition
WO2019116656A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
WO2019116655A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
WO2019216110A1 (en) * 2018-05-08 2019-11-14 株式会社ブリヂストン Vulcanized rubber composition, tire tread and tire
WO2019216109A1 (en) * 2018-05-08 2019-11-14 株式会社ブリヂストン Vulcanized rubber composition, tire tread and tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268079A (en) * 1994-03-31 1995-10-17 Somar Corp Epoxy resin composition
JP2000103964A (en) * 1998-07-30 2000-04-11 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition
JP2003246837A (en) * 2002-02-26 2003-09-05 Asahi Kasei Epoxy Kk Epoxy resin and curable resin composition
WO2019116656A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
WO2019116655A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, anti-vibration device, seismic isolation device, and hose
WO2019216110A1 (en) * 2018-05-08 2019-11-14 株式会社ブリヂストン Vulcanized rubber composition, tire tread and tire
WO2019216109A1 (en) * 2018-05-08 2019-11-14 株式会社ブリヂストン Vulcanized rubber composition, tire tread and tire

Also Published As

Publication number Publication date
JPWO2022050175A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN106170515B (en) Composition for thermoplastic elastomer, medical container body and medical container
JP5865849B2 (en) Hydrogenated block copolymer and composition containing the same
CN110776862B (en) Special hot-melt pressure-sensitive adhesive for anti-counterfeiting adhesive tape and preparation method thereof
KR101917736B1 (en) Rubber composition for shoe sole and molded article comprising the same
JP7064909B2 (en) Thermoplastic resin compositions and molded products
US20060155044A1 (en) Styrenic block copolymer compositions to be used for the manufacture of transparent, gel free films
US5349015A (en) Melt blending acid or anhydride-crafted block copolymer pellets with epoxy resin
US20210324126A1 (en) Thermoplastic elastomer composition and molded body
WO2022050175A1 (en) Resin composition and molded body
US20090264590A1 (en) High molecular weight coupled block copolymer compositions
Dhanania et al. Phosphorylated cardanol prepolymer grafted guayule natural rubber: an advantageous green natural rubber
WO2020241683A1 (en) Resin molded body, tire, automotive part, and resin composition
WO2020241684A1 (en) Resin molded body, tire, automotive part, and resin composition
WO2021205824A1 (en) Fiber reinforced plastic and molded product
WO2019044660A1 (en) Multi-block copolymer composition obtained by modification treatment, and film
JP4615357B2 (en) Thermoplastic polymer composition, molded article and multilayer structure excellent in barrier property
CN109641996A (en) Curable Petropols, Its Preparation Method And Use
JP7403297B2 (en) Compositions and polymer moldings
JP2003128870A (en) Thermoplastic elastomer composition
JP2021091792A (en) Composition and polymer molding
WO2021221103A1 (en) Laminate and product
JP2021091794A (en) Composition and polymer molding
CN113302253B (en) Hot melt adhesive composition and method for producing same
JP2020196256A (en) Method of recovering shape of resin molded product
JP4730505B2 (en) Adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864233

Country of ref document: EP

Kind code of ref document: A1