WO2022049882A1 - Light source device - Google Patents
Light source device Download PDFInfo
- Publication number
- WO2022049882A1 WO2022049882A1 PCT/JP2021/025129 JP2021025129W WO2022049882A1 WO 2022049882 A1 WO2022049882 A1 WO 2022049882A1 JP 2021025129 W JP2021025129 W JP 2021025129W WO 2022049882 A1 WO2022049882 A1 WO 2022049882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lamp
- light source
- source device
- ultraviolet radiation
- lighting circuit
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 29
- 230000004888 barrier function Effects 0.000 claims abstract description 12
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 4
- 150000002367 halogens Chemical class 0.000 claims abstract description 4
- 229910052743 krypton Inorganic materials 0.000 claims description 10
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000460 chlorine Substances 0.000 claims description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 230000005469 synchrotron radiation Effects 0.000 claims description 2
- 238000004804 winding Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/16—Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/38—Devices for influencing the colour or wavelength of the light
- H01J61/40—Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/30—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
- H05B41/34—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp to provide a sequence of flashes
Definitions
- the present invention relates to a light source device.
- the present invention relates to a light source device composed of an ultraviolet radiation lamp and a lighting circuit that emit light by a dielectric barrier discharge.
- this type of ultraviolet radiation lamp is expected as a light source that can inactivate microorganisms and viruses while suppressing adverse effects on humans and animals, and is used in medical facilities, schools, government offices, and other facilities where people frequently gather. It is expected to be used in various situations such as automobiles, trains, buses, airplanes, and vehicles such as ships. Therefore, the light source device also meets such a demand, and the development of a miniaturized device is strongly required.
- the problem to be solved by the present invention is to provide a new structure of a light source device including an ultraviolet radiation lamp and a lighting circuit that emit light by a dielectric barrier discharge.
- the light source device is composed of an ultraviolet radiation lamp that emits light by a dielectric barrier discharge and a lighting circuit of the ultraviolet radiation lamp.
- the ultraviolet radiation lamp consists of a substantially rod-shaped arc tube filled with at least a light emitting gas containing halogen gas, and a pair of electrodes arranged inside the arc tube so that discharge plasma is generated in the extending direction of the arc tube.
- the lighting circuit constitutes a flyback circuit and is characterized in that the width (W) of the pulse voltage applied to the pair of electrodes is controlled to be 1000 nsec or less.
- the lighting circuit is characterized in that the width (W) of the pulse voltage applied to the pair of electrodes is controlled to be 800 nsec or less.
- the ultraviolet radiation lamp is characterized in that krypton and bromine or krypton and bromine are enclosed. Further, the ultraviolet radiation lamp is characterized by having a filter that emits light having a wavelength of 200 to 230 nm and cuts other UVC radiation.
- the length of the arc tube is controlled by controlling the width of the peak pulse voltage waveform applied to the pair of electrodes of the ultraviolet radiation lamp at zero voltage value to 1000 nsec or less by the flyback type lighting circuit. Even in the form of a lamp in which discharge plasma is generated in the direction, the discharge can be stabilized.
- the width of the peak pulse voltage waveform applied to the pair of electrodes of the ultraviolet radiation lamp at zero voltage value is controlled to 800 nsec or less by the flyback type lighting circuit, so that the ultraviolet light is emitted. Radiation efficiency can be increased.
- the overall configuration of the light source device according to the present invention is shown.
- the enlarged view of the excimer lamp which concerns on this invention is shown.
- the enlarged view of the excimer lamp which concerns on this invention is shown.
- the voltage applied to the lamp of the light source device according to the present invention shows a waveform.
- the experimental result of the light source apparatus which concerns on this invention is shown.
- the experimental result of the light source apparatus which concerns on this invention is shown.
- FIG. 1 shows the overall configuration of the light source device according to the present invention.
- the light source device is composed of an ultraviolet radiation lamp 1 (hereinafter, also simply referred to as “lamp”) and a lighting circuit S, and both electrodes of the lamp 1 are electrically connected to the secondary winding of the transformer 2.
- An input circuit 3 to which power is supplied from a commercial power source or a DC power source is connected to the primary winding of the transformer 2.
- a switching element 4 such as an FET element is connected to the other end of the primary winding of the transformer 2, and a control circuit 5 is connected to the gate of the switching element 4.
- This circuit is generally called a step-up flyback circuit, and a high voltage waveform is periodically generated in the secondary winding of the transformer 2 corresponding to the off timing of the switching element 4.
- the lighting circuit S is composed of a transformer 2, an input circuit 3, a switching element 4, and a control circuit 5.
- FIG. 2 shows an enlarged view of the ultraviolet radiation lamp according to the present invention.
- (A) is an external view of the lamp
- (b) is an internal structure of the lamp
- (c) is a sectional view taken along the line AA of (a).
- the lamp 1 is entirely composed of a rod-shaped arc tube 11, and a pair of electrodes 12 and 13 are present at both ends thereof.
- the arc tube 11 is made of quartz glass, which is a dielectric material, and contains krypton and chlorine as a discharge gas.
- plasma 14 is generated inside the arc tube 11 to form a utility pole, as shown in (b). Due to this discharge, the enclosed gas becomes an excimer state and generates UVC light having a wavelength of 222 nm.
- the ultraviolet radiation lamp according to the present invention emits light by utilizing a dielectric barrier discharge, and is also referred to as a dielectric barrier discharge lamp or an excimer lamp.
- a V-shaped holding table for holding the lamp 1 constitutes an electrode. Therefore, the lamp structure is formed by installing the arc tube 11 on the electrodes 12 and 13.
- the discharge plasma 14 is generated so as to extend in the longitudinal direction of the lamp 1, but the discharge tends to be unstable depending on the contact relationship between the electrode and the arc tube.
- the present invention has been improved by devising the voltage waveform applied to the lamp, as will be described later.
- the lamp emits so-called UVC (200 nm to 280 nm or less).
- UVC so-called UVC
- UVC having a single wavelength at a wavelength of 208 nm is emitted
- chlorine and krypton are encapsulated
- UVC having a single wavelength at a wavelength of 222 nm is emitted.
- Light having a wavelength of 200 to 230 nm does not adversely affect the cell nucleus even if it irradiates a human body or an animal.
- the arc tube 11 has a rated power of 12 W, a total length of 40 mm, and an arc tube diameter of ⁇ 6 mm.
- FIG. 3 shows another embodiment of the ultraviolet radiation lamp according to the present invention.
- (A) shows the external view of the lamp, and (b) shows the internal structure of the lamp.
- This lamp has a different electrode structure as compared with the lamp shown in FIG. That is, the electrode 12 and the electrode 13 are formed so that a strip-shaped thin metal piece wraps around the arc tube 11. Feed lines 121 and 131 electrically connected to the transformer are connected to each electrode.
- the contact state between the electrode and the arc tube may be partially non-uniform, and the electrode may be partially separated from the surface of the arc tube. Therefore, the discharge tends to be unstable.
- the improvement is made by devising the voltage waveform applied to the lamp.
- a printing electrode may be used as the light source for the copying machine, but in the present embodiment, the electrode structure shown in FIGS. 2 and 3 is adopted in order to aim for a compact and inexpensive lamp.
- FIG. 4 shows a gate drive signal, a transformer primary current waveform, a transformer secondary voltage waveform, and a transformer secondary current waveform in the light source device according to the present invention. Since the flyback circuit is configured, when the gate drive signal supplied to the switching element is turned off, a single peak voltage waveform is generated in the secondary winding of the transformer 2, and a lamp current also flows. After that, the same waveform is repeatedly generated periodically according to the on / off timing of the gate drive signal.
- FIG. 5 shows the experimental results regarding the stability of utility poles. That is, the results of an experiment on the pulse width of the voltage applied to the lamp and the fluctuation of the discharge pole are shown.
- the vertical axis shows the fluctuation (positional stability) of the discharge pole, and the horizontal axis shows the pulse voltage width (nanoseconds).
- a lamp having the structure shown in FIG. 2 was used, and the fluctuation of the discharge pole was visually observed for about 10 seconds, and the discharge remained stable within the observation time as “stable”. Those that continue to fluctuate unstable are judged to be "unstable”.
- the pulse voltage width is a width at zero voltage value, and is indicated by “W” in FIG. Further, the adjustment of the pulse voltage width changes the inductance of the secondary winding of the transformer.
- the discharge pole was almost stable when the pulse voltage width was 1000 ns or less.
- the utility pole is stable or unstable.
- the pulse voltage width W is set to 1000 nsec or less. It can be seen that the discharge pole can be satisfactorily stabilized.
- a method of adjusting the pulse voltage width in addition to the method of adjusting the inductance of the transformer, there are a method of adjusting with a signal applied to the switchon element and a method of adjusting the core gap of the transformer.
- FIG. 6 shows the experimental results regarding the UV illuminance value. That is, an experiment on the pulse width of the voltage applied to the lamp and the luminous efficiency is shown.
- the vertical axis shows the integrated value of the wavelength of 200 nm to 230 nm, and the horizontal axis shows the pulse voltage width (nanoseconds).
- the pulse voltage width is the width at zero voltage value, and is indicated by “W” in FIG.
- the adjustment of the pulse voltage width changes the inductance of the secondary winding of the transformer.
- the graph of the experimental results is shown in FIG. 6, and when described as numerical values, the UV illuminance is 4.5 (mW / cm 2 ) at a pulse width of 837 nsec, and the UV illuminance is 4.6 (mW / cm 2 ) at a pulse width of 785 nsec.
- the UV illuminance value changes abruptly when the pulse voltage width is around 750 to 800 ns. Therefore, when the pulse voltage width is 800 ns or less, the UV illuminance value is as high as 4.5 (mW / cm 2 ), and when the pulse voltage width is 750 ns or less, the UV illuminance value is 4.8 (mW / cm 2). It can be seen that it is as high as cm 2 ).
- the pulse voltage width W when the pulse voltage width W is small, the voltage changes rapidly, and the impedance of the quartz glass (dielectric material) constituting the arc tube decreases, resulting in quartz. Since the potential loss in the glass is reduced, it can be presumed that the voltage can be efficiently supplied into the discharge space and the efficiency is improved accordingly.
- the experimental results shown in FIGS. 5 and 6 are the discharge lamps shown in FIGS. 2 and 3, and if the total length is at least 100 mm or less, almost the same results can be obtained even if the design specifications are slightly different. ..
- a plurality of lamps 1, for example, four lamps 1 can be connected in parallel.
- the voltage waveform generated in the secondary winding of the transformer can be equally supplied to the plurality of lamps.
- the present invention is characterized by adopting a flyback type circuit.
- a sine wave or a rectangular pulse wave voltage is often supplied to the lamp. This is because most of the discharge lamps using the dielectric barrier discharge known conventionally have a large total length of 100 mm or more, and in order to stably generate a discharge between the electrodes, the KV level is used. This is because a high voltage is required.
- the lamp in order to meet the demand for miniaturization, the lamp is also miniaturized, and a flyback type lighting circuit is adopted.
- the rated lamp power is several tens of watts, for example, 20 watts or less.
- the light source device is composed of an ultraviolet radiation lamp that emits light by a dielectric barrier discharge and a lighting circuit of the ultraviolet radiation lamp, and the ultraviolet radiation lamp is filled with a light emitting gas containing at least a halogen gas. It may have a substantially rod-shaped arc tube and a pair of electrodes arranged inside the arc tube so that discharge plasma is generated in the extending direction of the arc tube.
- the lighting circuit constitutes a flyback circuit and controls the width (W) of the pulse voltage applied to the pair of electrodes of the lamp to 1000 nsec or less to stabilize the discharge pole generated between the electrodes. be able to.
- the light source device can increase the UV illuminance value by controlling the width (W) of the pulse voltage applied to the pair of electrodes to 800 nsec or less.
- the light source device can emit UVC light having a peak value at a wavelength of 222 nm when the ultraviolet radiation lamp encapsulates krypton and chlorine, and also encloses krypton and bromine at a wavelength of 207 nm. UVC light with a peak value can be emitted.
- the light source device is provided with a filter that cuts UVC synchrotron radiation other than light having a wavelength of 200 to 230 nm, thereby inactivating viruses and killing bacteria, and more reliably affecting the human body. It can be done by avoiding it.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Discharge Lamp (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
The present invention addresses the problem of providing a light source device that is configured from a lighting circuit and an ultraviolet radiation lamp which emits light via dielectric barrier discharge, and that has a novel structure. The present invention is configured from an ultraviolet radiation lamp (1) and a lighting circuit (S). The present invention is characterized in that: the lamp (1) has a substantially rod-shaped arc tube (11) in which light emission gas including at least halogen gas is sealed, and a pair of electrodes (12, 13) which are disposed inside the arc tube (11) such that discharge plasma (14) is generated in the direction in which the arc tube (11) extends; and the lighting circuit (S) constitutes a flyback circuit and controls the width (W) of pulse voltage applied to the electrodes to be not more than 1000 ns.
Description
この発明は光源装置に関する。特に、誘電体バリア放電により発光する紫外線放射ランプと点灯回路から構成される光源装置に関する。
The present invention relates to a light source device. In particular, the present invention relates to a light source device composed of an ultraviolet radiation lamp and a lighting circuit that emit light by a dielectric barrier discharge.
近年、誘電体バリア放電により発光する紫外線放射ランプを使う殺菌装置が知られている。この紫外線放射ランプは誘電体材料である発光管を介在して配置された一対の電極により、いわゆる誘電体バリア放電を発生させて、内部に封入した発光ガスに対応した光を放射するものである。発光ガスとして、Kr(クリプトン)とCl(塩素)を封入した場合には波長222nmに単一ピークを有する紫外光を発生させる。
In recent years, a sterilizer that uses an ultraviolet radiation lamp that emits light by a dielectric barrier discharge has been known. This ultraviolet radiation lamp generates so-called dielectric barrier discharge by a pair of electrodes arranged via a light emitting tube which is a dielectric material, and emits light corresponding to the light emitting gas enclosed inside. .. When Kr (krypton) and Cl (chlorine) are encapsulated as the luminescent gas, ultraviolet light having a single peak at a wavelength of 222 nm is generated.
この種の紫外線放射ランプは、近年、人や動物への悪影響を抑制しつつ、微生物やウイルスを不活化できる光源として期待されており、医療施設、学校、役所等、頻繁に人が集まる施設や、自動車、電車、バス、飛行機、船等の乗物など、多様な場面で活用されることが期待されている。そのため、光源装置もこのような要求に対応し、小型化された装置の開発が強く求められている。
In recent years, this type of ultraviolet radiation lamp is expected as a light source that can inactivate microorganisms and viruses while suppressing adverse effects on humans and animals, and is used in medical facilities, schools, government offices, and other facilities where people frequently gather. It is expected to be used in various situations such as automobiles, trains, buses, airplanes, and vehicles such as ships. Therefore, the light source device also meets such a demand, and the development of a miniaturized device is strongly required.
この発明が解決しようする課題は、誘電体バリア放電により発光する紫外線放射ランプと点灯回路から構成される光源装置であって、新規な構造を提供することにある。
The problem to be solved by the present invention is to provide a new structure of a light source device including an ultraviolet radiation lamp and a lighting circuit that emit light by a dielectric barrier discharge.
この発明に係る光源装置は、誘電体バリア放電により発光する紫外線放射ランプと、この紫外線放射ランプの点灯回路より構成される。紫外線放射ランプは、少なくともハロゲンガスを含む発光ガスが封入された略棒状の発光管と、この発光管の内部において当該発光管の伸びる方向に放電プラズマが生成されるように配置された一対の電極を有し、点灯回路はフライバック回路を構成するとともに、前記一対の電極に印加されるパルス電圧の幅(W)が1000n秒以下となるよう制御することを特徴とする。
The light source device according to the present invention is composed of an ultraviolet radiation lamp that emits light by a dielectric barrier discharge and a lighting circuit of the ultraviolet radiation lamp. The ultraviolet radiation lamp consists of a substantially rod-shaped arc tube filled with at least a light emitting gas containing halogen gas, and a pair of electrodes arranged inside the arc tube so that discharge plasma is generated in the extending direction of the arc tube. The lighting circuit constitutes a flyback circuit and is characterized in that the width (W) of the pulse voltage applied to the pair of electrodes is controlled to be 1000 nsec or less.
また、前記点灯回路は、一対の電極に印加されるパルス電圧の幅(W)が800n秒以下となるよう制御することを特徴とする。
また、紫外線放射ランプは、クリプトンと臭素、もしくは、クリプトンと臭素を封入していることを特徴とする。
また、紫外線放射ランプは、波長200~230nmの光を放射するとともに、それ以外のUVCの放射光をカットするフィルタを有することを特徴とする。 Further, the lighting circuit is characterized in that the width (W) of the pulse voltage applied to the pair of electrodes is controlled to be 800 nsec or less.
Further, the ultraviolet radiation lamp is characterized in that krypton and bromine or krypton and bromine are enclosed.
Further, the ultraviolet radiation lamp is characterized by having a filter that emits light having a wavelength of 200 to 230 nm and cuts other UVC radiation.
また、紫外線放射ランプは、クリプトンと臭素、もしくは、クリプトンと臭素を封入していることを特徴とする。
また、紫外線放射ランプは、波長200~230nmの光を放射するとともに、それ以外のUVCの放射光をカットするフィルタを有することを特徴とする。 Further, the lighting circuit is characterized in that the width (W) of the pulse voltage applied to the pair of electrodes is controlled to be 800 nsec or less.
Further, the ultraviolet radiation lamp is characterized in that krypton and bromine or krypton and bromine are enclosed.
Further, the ultraviolet radiation lamp is characterized by having a filter that emits light having a wavelength of 200 to 230 nm and cuts other UVC radiation.
本発明に係る光源装置は、フライバック型点灯回路により、紫外線放射ランプの一対の電極に印加されるピークパルス電圧波形の電圧値ゼロにおける幅を1000n秒以下と制御させることで、発光管の長手方向に放電プラズマが生成されるランプ形態であっても、放電を安定させることができる。
In the light source device according to the present invention, the length of the arc tube is controlled by controlling the width of the peak pulse voltage waveform applied to the pair of electrodes of the ultraviolet radiation lamp at zero voltage value to 1000 nsec or less by the flyback type lighting circuit. Even in the form of a lamp in which discharge plasma is generated in the direction, the discharge can be stabilized.
さらに、本発明に係る光源装置は、フライバック型点灯回路により、紫外線放射ランプの一対の電極に印加されるピークパルス電圧波形の電圧値ゼロにおける幅を800n秒以下と制御することで、紫外光の放射効率を高めることができる。
Further, in the light source device according to the present invention, the width of the peak pulse voltage waveform applied to the pair of electrodes of the ultraviolet radiation lamp at zero voltage value is controlled to 800 nsec or less by the flyback type lighting circuit, so that the ultraviolet light is emitted. Radiation efficiency can be increased.
図1は本発明に係る光源装置の全体構成を示す。光源装置は紫外線放射ランプ1(以下、単に「ランプ」ともいう)と点灯回路Sより構成される、ランプ1の両電極は、トランス2の二次巻線に電気的に接続される。トランス2の一次巻線には、商用電源や直流電源から電力が供給される入力回路3が接続される。トランス2の一次巻線の他端には、FET素子などのスイッチング素子4が接続されており、スイッチング素子4のゲートには制御回路5が接続されている。この回路は、一般的に、昇圧フライバック回路と言われており、スイッチング素子4のオフタイミングに対応してトランス2の二次巻線に高い電圧波形が周期的に発生する。点灯回路Sはトランス2、入力回路3、スイッチング素子4、制御回路5より構成される。
FIG. 1 shows the overall configuration of the light source device according to the present invention. The light source device is composed of an ultraviolet radiation lamp 1 (hereinafter, also simply referred to as “lamp”) and a lighting circuit S, and both electrodes of the lamp 1 are electrically connected to the secondary winding of the transformer 2. An input circuit 3 to which power is supplied from a commercial power source or a DC power source is connected to the primary winding of the transformer 2. A switching element 4 such as an FET element is connected to the other end of the primary winding of the transformer 2, and a control circuit 5 is connected to the gate of the switching element 4. This circuit is generally called a step-up flyback circuit, and a high voltage waveform is periodically generated in the secondary winding of the transformer 2 corresponding to the off timing of the switching element 4. The lighting circuit S is composed of a transformer 2, an input circuit 3, a switching element 4, and a control circuit 5.
図2は本発明に係る紫外線放射ランプの拡大図を示す。(a)はランプの外観図、(b)はランプの内部構造、(c)は(a)のA-A断面図を示す。ランプ1は全体が棒状の発光管11よりなり、その両端に一対の電極12、13が存在する。発光管11は誘電体材料である石英ガラスからなり、内部に放電用ガスとして、クリプトンと塩素が封入されている。両電極に電圧が印加されると、(b)に示すように、発光管11の内部においてプラズマ14が発生して放電柱を形成する。この放電により、封入ガスがエキシマ状態となって波長222nmのUVC光を発生させる。本発明に係る紫外線放射ランプは、誘電体バリア放電を利用した発光を行うもので誘電体バリア放電ランプとも言うし、あるいは、エキシマランプとも言われる。
FIG. 2 shows an enlarged view of the ultraviolet radiation lamp according to the present invention. (A) is an external view of the lamp, (b) is an internal structure of the lamp, and (c) is a sectional view taken along the line AA of (a). The lamp 1 is entirely composed of a rod-shaped arc tube 11, and a pair of electrodes 12 and 13 are present at both ends thereof. The arc tube 11 is made of quartz glass, which is a dielectric material, and contains krypton and chlorine as a discharge gas. When a voltage is applied to both electrodes, plasma 14 is generated inside the arc tube 11 to form a utility pole, as shown in (b). Due to this discharge, the enclosed gas becomes an excimer state and generates UVC light having a wavelength of 222 nm. The ultraviolet radiation lamp according to the present invention emits light by utilizing a dielectric barrier discharge, and is also referred to as a dielectric barrier discharge lamp or an excimer lamp.
ここで、本実施例では、ランプ1を保持するV字形状の保持台が電極を構成している。このため、発光管11を電極12,電極13上に設置することでランプ構造が形成される。放電プラズマ14は、ランプ1の長手方向に伸びるように発生するが、電極と発光管の接触関係によっては、放電が不安定になりやすい。しかし、本発明は、後述するように、ランプに印加する電圧波形を工夫することで改善している。
Here, in this embodiment, a V-shaped holding table for holding the lamp 1 constitutes an electrode. Therefore, the lamp structure is formed by installing the arc tube 11 on the electrodes 12 and 13. The discharge plasma 14 is generated so as to extend in the longitudinal direction of the lamp 1, but the discharge tends to be unstable depending on the contact relationship between the electrode and the arc tube. However, the present invention has been improved by devising the voltage waveform applied to the lamp, as will be described later.
また、本発明の光源装置を殺菌装置の光源として使用する場合は、いわゆるUVC(200nm~280nm以下)を放射するランプであることが望ましい。特に、臭素とクリプトンを封入した場合は波長208nmに単一波長を有するUVCが放射されるし、塩素とクリプトンを封入した場合は波長222nmに単一波長を有するUVCが放射される。波長200~230nmの光は、人体や動物に照射しても、その細胞核に悪影響を及ぼすことはない。このため、これらの紫外線放射ランプを使うことで、人体への影響を回避しつつ、ウイルスや微生物を不活化できる光源装置を提供できる。また、波長200~230nm以外のUVC光をカットするフィルタを設けるで、人体での影響をより確実に回避できる。ランプ1について、数値例をあげると、発光管11は、定格電力12W、全長40mm、発光管径φ6mmである。
When the light source device of the present invention is used as the light source of the sterilizer, it is desirable that the lamp emits so-called UVC (200 nm to 280 nm or less). In particular, when bromine and krypton are encapsulated, UVC having a single wavelength at a wavelength of 208 nm is emitted, and when chlorine and krypton are encapsulated, UVC having a single wavelength at a wavelength of 222 nm is emitted. Light having a wavelength of 200 to 230 nm does not adversely affect the cell nucleus even if it irradiates a human body or an animal. Therefore, by using these ultraviolet radiation lamps, it is possible to provide a light source device capable of inactivating viruses and microorganisms while avoiding the influence on the human body. Further, by providing a filter that cuts UVC light having a wavelength other than 200 to 230 nm, the influence on the human body can be more reliably avoided. To give a numerical example of the lamp 1, the arc tube 11 has a rated power of 12 W, a total length of 40 mm, and an arc tube diameter of φ6 mm.
図3は、本発明に係る紫外線放射ランプの他の実施形態を示す。(a)はランプの外観図、(b)はランプの内部構造を示す。このランプは、図2に示したランプと比較して、電極構造が異なる。すなわち、電極12、電極13は帯状の薄肉金属片が発光管11を巻き付くように形成されている。各電極には、トランスと電気的に接続される給電線121、131が接続されている。この構造では、電極と発光管の接触状態が部分的に不均一となる場合があり、部分的には電極が発光管表面から離れている状態もありえる。このため、放電が不安定になりやすい。しかし、本発明では、後述するように、ランプに印加する電圧波形を工夫することで改善している。なお、複写機用光源には印刷電極を採用する場合もあるが、本実施形態では小型で安価なランプを目指し、図2、図3に示した電極構造を採用している。
FIG. 3 shows another embodiment of the ultraviolet radiation lamp according to the present invention. (A) shows the external view of the lamp, and (b) shows the internal structure of the lamp. This lamp has a different electrode structure as compared with the lamp shown in FIG. That is, the electrode 12 and the electrode 13 are formed so that a strip-shaped thin metal piece wraps around the arc tube 11. Feed lines 121 and 131 electrically connected to the transformer are connected to each electrode. In this structure, the contact state between the electrode and the arc tube may be partially non-uniform, and the electrode may be partially separated from the surface of the arc tube. Therefore, the discharge tends to be unstable. However, in the present invention, as will be described later, the improvement is made by devising the voltage waveform applied to the lamp. A printing electrode may be used as the light source for the copying machine, but in the present embodiment, the electrode structure shown in FIGS. 2 and 3 is adopted in order to aim for a compact and inexpensive lamp.
図4は、本発明に係る光源装置における、ゲート駆動信号、トランスの1次電流波形、トランスの2次電圧波形、トランスの2次電流波形を示す。フライバック回路を構成しているので、スイッチング素子に供給されるゲート駆動信号がオフになると、トランス2の二次巻線には単一ピークの電圧波形が発生して、ランプ電流も流れる。以後、ゲート駆動信号のオンオフタイミングに合わせて、同一の波形が繰り返し周期的に発生する。
FIG. 4 shows a gate drive signal, a transformer primary current waveform, a transformer secondary voltage waveform, and a transformer secondary current waveform in the light source device according to the present invention. Since the flyback circuit is configured, when the gate drive signal supplied to the switching element is turned off, a single peak voltage waveform is generated in the secondary winding of the transformer 2, and a lamp current also flows. After that, the same waveform is repeatedly generated periodically according to the on / off timing of the gate drive signal.
図5は放電柱の安定性に関する実験結果を示す。すなわち、ランプへの印加電圧のパルス幅と放電柱のふらつきに関する実験の結果を示す。縦軸は放電柱のフラツキ(位置的安定性)を示し、横軸はパルス電圧幅(ナノ秒)を示している。実験は、図2に示した構造のランプを使い、放電柱のフラツキは、放電状態を目視にて10秒程度観察するとともに、観察時間内において、放電が安定し続けたものを「安定」、不安定に変動し続けたものを「不安定」と判断している。なお、パルス電圧幅は、電圧値ゼロにおける幅であり、図4にて「W」で示すものである。また、パルス電圧幅の調整は、トランスの二次巻線のインダクタンスを変化させている。
FIG. 5 shows the experimental results regarding the stability of utility poles. That is, the results of an experiment on the pulse width of the voltage applied to the lamp and the fluctuation of the discharge pole are shown. The vertical axis shows the fluctuation (positional stability) of the discharge pole, and the horizontal axis shows the pulse voltage width (nanoseconds). In the experiment, a lamp having the structure shown in FIG. 2 was used, and the fluctuation of the discharge pole was visually observed for about 10 seconds, and the discharge remained stable within the observation time as "stable". Those that continue to fluctuate unstable are judged to be "unstable". The pulse voltage width is a width at zero voltage value, and is indicated by “W” in FIG. Further, the adjustment of the pulse voltage width changes the inductance of the secondary winding of the transformer.
図5に示す実験結果より、パルス電圧幅が1000ns以下である場合に、放電柱は、ほぼ安定していることが確認できた。一方で、1000nsを超える場合には、放電柱は安定したり、不安定であったりである。この結果、本発明のような、放電プラズマが発光管の伸びる方向に形成されるランプ構造において、フライバック方式で電圧を供給する方式においては、パルス電圧幅Wを1000n秒以下に設定することで、放電柱を良好に安定できることがわかる。
From the experimental results shown in FIG. 5, it was confirmed that the discharge pole was almost stable when the pulse voltage width was 1000 ns or less. On the other hand, when it exceeds 1000 ns, the utility pole is stable or unstable. As a result, in the lamp structure in which the discharge plasma is formed in the extending direction of the arc tube as in the present invention, in the method of supplying the voltage by the flyback method, the pulse voltage width W is set to 1000 nsec or less. It can be seen that the discharge pole can be satisfactorily stabilized.
パルス電圧幅を調整する方法としては、トランスのインダクタンスを調整する方法以外に、スイッチン素子に印加する信号で調整する方法、トランスのコアギャップを調整する方法がある。
As a method of adjusting the pulse voltage width, in addition to the method of adjusting the inductance of the transformer, there are a method of adjusting with a signal applied to the switchon element and a method of adjusting the core gap of the transformer.
図6はUV照度値に関する実験結果を示す。すなわち、ランプへの印加電圧のパルス幅と発光効率に関する実験を示す。縦軸は波長200nm~230nmの積分値を示し、横軸はパルス電圧幅(ナノ秒)を示している。なお、図5に示した実験と同様に、パルス電圧幅は、電圧値ゼロにおける幅であり、図4にて「W」で示すものである。また、パルス電圧幅の調整は、トランスの二次巻線のインダクタンスを変化させている。
FIG. 6 shows the experimental results regarding the UV illuminance value. That is, an experiment on the pulse width of the voltage applied to the lamp and the luminous efficiency is shown. The vertical axis shows the integrated value of the wavelength of 200 nm to 230 nm, and the horizontal axis shows the pulse voltage width (nanoseconds). As in the experiment shown in FIG. 5, the pulse voltage width is the width at zero voltage value, and is indicated by “W” in FIG. Further, the adjustment of the pulse voltage width changes the inductance of the secondary winding of the transformer.
図6に実験結果のグラフを示すが、数値と記載すると、パルス幅837n秒においてUV照度4.5(mW/cm2)、パルス幅785n秒においてUV照度4.6(mW/cm2)、パルス幅732n秒においてUV照度4.9(mW/cm2)、パルス幅695n秒においてUV照度5.0(mW/cm2)、パルス幅646n秒においてUV照度5.0(mW/cm2)である。
The graph of the experimental results is shown in FIG. 6, and when described as numerical values, the UV illuminance is 4.5 (mW / cm 2 ) at a pulse width of 837 nsec, and the UV illuminance is 4.6 (mW / cm 2 ) at a pulse width of 785 nsec. UV illuminance 4.9 (mW / cm 2 ) at a pulse width of 732 n seconds, UV illuminance 5.0 (mW / cm 2 ) at a pulse width of 695 n seconds, and UV illuminance 5.0 (mW / cm 2 ) at a pulse width of 646 n seconds. Is.
この結果、パルス電圧幅が750~800ns付近において、UV照度値が急激に変化することが分かる。従って、パルス電圧幅が800ns以下である場合にUV照度値は4.5(mW/cm2)と高く、また、パルス電圧幅が750ns以下である場合にUV照度値は4.8(mW/cm2)と高いことが分かる。
As a result, it can be seen that the UV illuminance value changes abruptly when the pulse voltage width is around 750 to 800 ns. Therefore, when the pulse voltage width is 800 ns or less, the UV illuminance value is as high as 4.5 (mW / cm 2 ), and when the pulse voltage width is 750 ns or less, the UV illuminance value is 4.8 (mW / cm 2). It can be seen that it is as high as cm 2 ).
このように、パルス電圧幅とUV照度値の関係について、パルス電圧幅Wが小さいと電圧の変化は急激になり、発光管を構成する石英ガラス(誘電体材料)のインピーダンスが低下して、石英ガラスでの電位ロスが少なくなるので、その分、効率的に放電空間内に電圧が供給できて効率が上がるものと推測できる。
As described above, regarding the relationship between the pulse voltage width and the UV illuminance value, when the pulse voltage width W is small, the voltage changes rapidly, and the impedance of the quartz glass (dielectric material) constituting the arc tube decreases, resulting in quartz. Since the potential loss in the glass is reduced, it can be presumed that the voltage can be efficiently supplied into the discharge space and the efficiency is improved accordingly.
図5、図6に示す実験結果は、図2、図3に示す放電ランプであって、少なくとも全長100mm以下の場合は多少の設計仕様が異なったとしても、概ね同一の結果を得ることができる。
The experimental results shown in FIGS. 5 and 6 are the discharge lamps shown in FIGS. 2 and 3, and if the total length is at least 100 mm or less, almost the same results can be obtained even if the design specifications are slightly different. ..
なお、図1に示す光源装置の構成において、ランプ1を複数個、例えば4個、並列に接続することも可能である。この場合は、トランスの2次巻線に発生する電圧波形を複数のランプに等しく供給できる。
In the configuration of the light source device shown in FIG. 1, a plurality of lamps 1, for example, four lamps 1 can be connected in parallel. In this case, the voltage waveform generated in the secondary winding of the transformer can be equally supplied to the plurality of lamps.
ここで、本発明はフライバック型回路を採用することを特徴としている。一般に、誘電体バリア放電を利用した放電ランプの点灯装置では、正弦波や矩形パルス波の電圧をランプに供給することが多い。これは、従来から知られている誘電体バリア放電を利用した放電ランプは、一般に、全長は100mm以上と大きいものが多く、また、電極間に安定的に放電を発生させるためには、KVレベルの高い電圧が必要となるからである。その一方で、本発明に係る光源装置は小型化の要請に答えるために、ランプも小型化しており、また、フライバック式の点灯回路を採用している。数値例をあげると定格ランプ電力が数十W、例えば20W以下となる。
Here, the present invention is characterized by adopting a flyback type circuit. In general, in a discharge lamp lighting device using a dielectric barrier discharge, a sine wave or a rectangular pulse wave voltage is often supplied to the lamp. This is because most of the discharge lamps using the dielectric barrier discharge known conventionally have a large total length of 100 mm or more, and in order to stably generate a discharge between the electrodes, the KV level is used. This is because a high voltage is required. On the other hand, in the light source device according to the present invention, in order to meet the demand for miniaturization, the lamp is also miniaturized, and a flyback type lighting circuit is adopted. To give a numerical example, the rated lamp power is several tens of watts, for example, 20 watts or less.
本発明に係る光源装置は、誘電体バリア放電により発光する紫外線放射ランプと、この紫外線放射ランプの点灯回路とより構成されており、紫外線放射ランプは、少なくともハロゲンガスを含む発光ガスが封入された略棒状の発光管と、この発光管の内部において当該発光管の伸びる方向に放電プラズマが生成されるように配置された一対の電極を有しえちる。そして、点灯回路は、フライバック回路を構成するとともに、ランプの一対の電極に印加されるパルス電圧の幅(W)を1000n秒以下に制御することで、電極間に発生する放電柱を安定させることができる。
The light source device according to the present invention is composed of an ultraviolet radiation lamp that emits light by a dielectric barrier discharge and a lighting circuit of the ultraviolet radiation lamp, and the ultraviolet radiation lamp is filled with a light emitting gas containing at least a halogen gas. It may have a substantially rod-shaped arc tube and a pair of electrodes arranged inside the arc tube so that discharge plasma is generated in the extending direction of the arc tube. The lighting circuit constitutes a flyback circuit and controls the width (W) of the pulse voltage applied to the pair of electrodes of the lamp to 1000 nsec or less to stabilize the discharge pole generated between the electrodes. be able to.
さらに、本発明に係る光源装置は、一対の電極に印加されるパルス電圧の幅(W)を800n秒以下に制御することで、UV照度値を高めることができる。
Further, the light source device according to the present invention can increase the UV illuminance value by controlling the width (W) of the pulse voltage applied to the pair of electrodes to 800 nsec or less.
さらに、本発明に係る光源装置は、紫外線放射ランプがクリプトンと塩素を封入すること波長222nmにピーク値を有するUVC光を放射することができて、また、クリプトンと臭素を封入すること波長207nmにピーク値を有するUVC光を放射することができる。
Further, the light source device according to the present invention can emit UVC light having a peak value at a wavelength of 222 nm when the ultraviolet radiation lamp encapsulates krypton and chlorine, and also encloses krypton and bromine at a wavelength of 207 nm. UVC light with a peak value can be emitted.
さらに、本発明に係る光源装置は、波長200~230nmの光以外のUVCの放射光をカットするフィルタを設けることで、ウイルスを不活化させて細菌を死滅させるとともに、人体への影響をより確実に回避することでできる。
Further, the light source device according to the present invention is provided with a filter that cuts UVC synchrotron radiation other than light having a wavelength of 200 to 230 nm, thereby inactivating viruses and killing bacteria, and more reliably affecting the human body. It can be done by avoiding it.
1 エキシマランプ
2 トランス
3 入力回路
4 スイッチング素子
5 駆動回路
1 Excimer lamp 2 Transformer 3 Input circuit 4 Switching element 5 Drive circuit
2 トランス
3 入力回路
4 スイッチング素子
5 駆動回路
1 Excimer lamp 2 Transformer 3 Input circuit 4 Switching element 5 Drive circuit
Claims (4)
- 誘電体バリア放電により発光する紫外線放射ランプと、この紫外線放射ランプの点灯回路とより構成される光源装置において、
前記紫外線放射ランプは、少なくともハロゲンガスを含む発光ガスが封入された略棒状の発光管と、この発光管の内部において当該発光管の伸びる方向に放電プラズマが生成されるように配置された一対の電極を有し、
前記点灯回路は、フライバック回路を構成するとともに、前記一対の電極に印加されるパルス電圧の幅(W)を1000n秒以下となるよう制御することを特徴とする光源装置。 In a light source device composed of an ultraviolet radiation lamp that emits light by a dielectric barrier discharge and a lighting circuit of this ultraviolet radiation lamp.
The ultraviolet radiation lamp has a substantially rod-shaped arc tube filled with a light emitting gas containing at least halogen gas, and a pair of light emitting tubes arranged so as to generate discharge plasma in the extending direction of the light emitting tube. Has an electrode,
The lighting circuit constitutes a flyback circuit and is a light source device characterized in that the width (W) of a pulse voltage applied to the pair of electrodes is controlled to be 1000 nsec or less. - 前記点灯回路は、前記一対の電極に印加されるパルス電圧の幅(W)を800n秒以下となるよう制御することを特徴とする請求項1に記載の光源装置。 The light source device according to claim 1, wherein the lighting circuit controls the width (W) of the pulse voltage applied to the pair of electrodes so as to be 800 nsec or less.
- 前記紫外線放射ランプは、クリプトンと塩素を封入している、もしくはクリプトンと臭素を封入していることを特徴とする請求項1に記載の光源装置。 The light source device according to claim 1, wherein the ultraviolet radiation lamp contains krypton and chlorine, or contains krypton and bromine.
- 前記紫外線放射ランプは、波長200~230nmの光を放射するとともに、それ以外のUVCの放射光をカットするフィルタを有することを特徴とするウイルスの不活化と細菌の死滅させることを特徴とする請求項1に記載の光源装置。
The ultraviolet radiating lamp emits light having a wavelength of 200 to 230 nm, and has a filter that cuts synchrotron radiation of other UVCs. Item 1. The light source device according to Item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-146947 | 2020-09-01 | ||
JP2020146947A JP2022041627A (en) | 2020-09-01 | 2020-09-01 | Light source device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022049882A1 true WO2022049882A1 (en) | 2022-03-10 |
Family
ID=80491053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/025129 WO2022049882A1 (en) | 2020-09-01 | 2021-07-02 | Light source device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022041627A (en) |
WO (1) | WO2022049882A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243591A (en) * | 1999-02-18 | 2000-09-08 | Ushio Inc | Dielectric barrier discharge lamp light source device |
JP2007242363A (en) * | 2006-03-07 | 2007-09-20 | Toshiba Corp | Ultraviolet generator |
JP2009195825A (en) * | 2008-02-21 | 2009-09-03 | Orc Mfg Co Ltd | Ultraviolet irradiation apparatus |
JP6025756B2 (en) * | 2011-03-07 | 2016-11-16 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Sterilizer and method of operating sterilizer |
JP2020099524A (en) * | 2018-12-21 | 2020-07-02 | ウシオ電機株式会社 | Ultraviolet light irradiation device |
-
2020
- 2020-09-01 JP JP2020146947A patent/JP2022041627A/en active Pending
-
2021
- 2021-07-02 WO PCT/JP2021/025129 patent/WO2022049882A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000243591A (en) * | 1999-02-18 | 2000-09-08 | Ushio Inc | Dielectric barrier discharge lamp light source device |
JP2007242363A (en) * | 2006-03-07 | 2007-09-20 | Toshiba Corp | Ultraviolet generator |
JP2009195825A (en) * | 2008-02-21 | 2009-09-03 | Orc Mfg Co Ltd | Ultraviolet irradiation apparatus |
JP6025756B2 (en) * | 2011-03-07 | 2016-11-16 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Sterilizer and method of operating sterilizer |
JP2020099524A (en) * | 2018-12-21 | 2020-07-02 | ウシオ電機株式会社 | Ultraviolet light irradiation device |
Also Published As
Publication number | Publication date |
---|---|
JP2022041627A (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5122284B2 (en) | Corona discharge lamp | |
JP4811135B2 (en) | Ultraviolet radiation equipment | |
JP2013069533A (en) | Excimer lamp | |
US12080542B2 (en) | Light irradiation device | |
WO2022049882A1 (en) | Light source device | |
WO2023162346A1 (en) | Light source device | |
JP2019064842A (en) | Ozone generation apparatus and excimer lamp lighting method | |
JP5379386B2 (en) | UV irradiation equipment | |
WO2008029445A1 (en) | Discharge lamp lighting apparatus | |
JP7397417B2 (en) | Light source device and sterilization and deodorization device | |
CN116326208A (en) | Light source device, lighting circuit of dielectric barrier discharge lamp, and lighting method of dielectric barrier discharge lamp | |
US20240258094A1 (en) | Excimer lamp | |
KR102313624B1 (en) | Ultra Violet Discharge Lamp Having a Variable Control UV Irradiation Range | |
CN215266190U (en) | Excimer ultraviolet light source device | |
JP6692522B2 (en) | Low-pressure mercury lamp and device using the same | |
JP2005209397A (en) | Dielectric barrier discharge lamp, and ultraviolet-ray irradiation device | |
JP2024013462A (en) | excimer lamp | |
JP2001319796A (en) | Lighting device for discharge lamp | |
JP4280841B2 (en) | Discharge lamp lighting device and ultraviolet irradiation device using the same | |
KR100590153B1 (en) | Effective electronic ballast with peak-booster and active steady current function for t5 fluorescent lamps | |
JPH11297278A (en) | Rare gas discharge lamp and lighting device thereof | |
Tamuri et al. | Design and construct of simmer power supply for xenon flashlamp | |
JP2003133099A (en) | X-ray device and laser device | |
JP2001155683A (en) | Rare gas flash discharge lamp and its lighting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21863940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21863940 Country of ref document: EP Kind code of ref document: A1 |