WO2022049806A1 - Calibration device and method - Google Patents

Calibration device and method Download PDF

Info

Publication number
WO2022049806A1
WO2022049806A1 PCT/JP2021/008738 JP2021008738W WO2022049806A1 WO 2022049806 A1 WO2022049806 A1 WO 2022049806A1 JP 2021008738 W JP2021008738 W JP 2021008738W WO 2022049806 A1 WO2022049806 A1 WO 2022049806A1
Authority
WO
WIPO (PCT)
Prior art keywords
chart
image
distance
calibration
scale
Prior art date
Application number
PCT/JP2021/008738
Other languages
French (fr)
Japanese (ja)
Inventor
陽太 宮下
岳一 龍田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022049806A1 publication Critical patent/WO2022049806A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to a calibration device and a method for calibrating a virtual scale for measuring the size of a subject.
  • the distance to the subject or the size of the subject is acquired.
  • an illumination light and a spot light for measurement are illuminated on a subject, and a virtual scale for measuring the size of the subject is formed on the captured image in correspondence with the position of the spot light illuminated on the subject. It is displayed in.
  • Patent Document 1 describes to calibrate the relationship between the position of the spot light and the size of the subject.
  • the spot light for measurement is illuminated on a graph paper-shaped chart, and the calibration image obtained by imaging each distance from the chart shows the irradiation position of the measurement light and the size of a virtual scale of a specific size. It defines the relationship with.
  • An object of the present invention is to provide a calibration device and a method capable of calibrating a virtual scale for measuring the size of a subject in consideration of the influence of distortion and the like due to an imaging optical system.
  • the present invention is a calibration device that calibrates a virtual scale for displaying on a display and measuring the size of a subject, and is a chart provided with an index graphic plane composed of a plurality of index figures.
  • the index figure of is a chart in which two or more colors are separated based on a specific color evaluation standard or a transmission based on the transmission rate of the color filter of the image pickup element provided in the endoscope, and the internal vision.
  • the distance changing mechanism that changes the distance between the charts between the tip of the mirror and the chart, the reference position of the index graphic plane, and the irradiation position of the measurement light emitted from the tip of the endoscope toward the chart.
  • the image control processor is a reference position on an index graphic plane and an irradiation position of measurement light.
  • a calibration image obtained by imaging a chart in a state of matching with an endoscope is acquired, and a scale parameter for displaying a virtual scale on a display is acquired from the calibration image.
  • the specific color evaluation criterion is the hue circle, and the color of the index figure shall include white, black, or two or more of a plurality of colors corresponding to a plurality of hues separated by 100 ° or more in the hue circle. Is preferable. It is preferable that the background portion of the chart other than the index graphic plane is black.
  • the chart is preferably a light transmissive type.
  • the distance setting period in which the distance between charts is set by the distance changing mechanism only the irradiation position of the measured light is displayed and / or is displayed in the calibration image by turning off the backlight provided on the light transmission type chart. It is preferable to store the irradiation position of the measurement light and hide the index graphic plane. Calibration is performed by moving the tip of the endoscope or the chart by the position adjustment mechanism and turning on the backlight provided on the light transmissive chart during the calibration image acquisition period for acquiring the calibration image. It is preferable to display the irradiation position of the measurement light and to display the index graphic plane in the measurement image. In the calibration image acquisition period, it is preferable to display the alignment figure corresponding to the index figure plane on the calibration image in order to make the tip of the endoscope face the chart.
  • the distance between the charts is set to the set distance by sandwiching it between the endoscope holding part that holds the tip of the endoscope, the chart holding part on which the chart is placed, and the endoscope holding part and the chart holding part. It is preferable to provide a matching distance setting jig.
  • the display preferably displays the work of operations related to the calibration mode, including at least one of a distance changing mechanism, a position adjusting mechanism, a calibration image acquisition, or a scaling parameter acquisition.
  • the display preferably performs an operation display related to the calibration mode including at least one of a distance changing mechanism, a position adjusting mechanism, a calibration image acquisition, or a scale parameter acquisition.
  • the present invention is a calibration method for calibrating a virtual scale for displaying on a display and measuring the size of a subject, and is a chart provided with an index graphic plane composed of a plurality of index figures by a distance changing mechanism.
  • a distance change step that changes the distance between the chart and the tip of the endoscope, and a position adjustment mechanism that measures the reference position of the index graphic plane and the measurement emitted from the tip of the endoscope toward the chart.
  • the movement step to move the tip of the endoscope or the chart, and each time the distance between the charts is changed the reference position on the index graphic plane and the irradiation position of the measured light
  • the calibration image acquisition step to acquire the calibration image obtained by imaging the chart in the state of matching with the endoscope, and acquire the scale parameters for displaying the virtual scale on the display from the calibration image. It has a parameter acquisition step, and in the chart, the plurality of index figures are separated according to two or more colors based on a specific color evaluation standard, or the transmission rate of the color filter of the image pickup element provided in the endoscope. The separation is based on.
  • the distance changing step by turning off the backlight provided on the light-transmitting chart, only the irradiation position of the measured light is displayed in the calibration image, and the index graphic plane is not displayed. It is preferable to display it.
  • the irradiation position of the measurement light can be displayed and the index graphic plane can be displayed in the calibration image.
  • the index figure is a circle
  • the circumscribed rectangle extraction process for extracting the circumscribed rectangle inscribed in the index figure image in the calibration image and the fitting parameter of the ellipse inscribed in the circumscribed rectangle are calculated as scale parameters. It is preferable to perform the inscribed ellipse parameter calculation process.
  • the scale parameters include a scale parameter having a first distance between charts and a scale parameter having a second distance between charts.
  • the distance between charts is changed by a distance changing mechanism.
  • the interpolation process for calculating the parameter for the scale of the second distance is performed by performing the interpolation process based on the parameter for the scale of the first distance. It is preferable to perform the steps.
  • the present invention it is possible to calibrate the virtual scale for measuring the size of the subject in consideration of the influence of distortion and the like due to the imaging optical system.
  • FIG. 3 is an image diagram showing three concentric markers having the same color. It is an image diagram which shows three concentric markers of different colors. It is an image diagram which shows the distortion concentric marker. It is an image diagram which shows the intersection line and the scale. It is a schematic diagram of a calibration device. It is a plan view of a chart. It is explanatory drawing which shows the color wheel. It is a graph which shows the transmittance distribution of the color filter of an image sensor. It is a schematic diagram of the calibration mechanism provided with the distance change mechanism and the position adjustment mechanism.
  • the endoscope system 10 includes an endoscope 12, a light source device 13, a processor device 14, a display 15, a user interface 16, an extended processor device 17, and an extended display 18.
  • the endoscope 12 is optically connected to the light source device 13 and electrically connected to the processor device 14.
  • the endoscope 12 has an insertion portion 12a to be inserted into the body to be observed, an operation portion 12b provided at the base end portion of the insertion portion 12a, and a curved portion 12c and a tip provided on the tip end side of the insertion portion 12a. It has a portion 12d.
  • the curved portion 12c bends by operating the operating portion 12b.
  • the tip portion 12d is directed in a desired direction by the bending motion of the bending portion 12c.
  • the operation unit 12b includes a mode changeover switch 12f used for mode switching operation, a still image acquisition instruction switch 12g used for instructing acquisition of a still image to be observed, and a zoom operation unit used for operating the zoom lens 21b. 12h is provided.
  • the processor device 14 is electrically connected to the display 15 and the user interface 16.
  • the display 15 outputs and displays an image or information of an observation target processed by the processor device 14.
  • the user interface 16 has a keyboard, a mouse, a touch pad, a microphone, and the like, and has a function of accepting input operations such as function settings.
  • the expansion processor device 17 is electrically connected to the processor device 14.
  • the expansion display 18 outputs and displays an image, information, or the like processed by the expansion processor device 17.
  • the endoscope 12 has a normal observation mode, a special observation mode, a length measurement mode, and a calibration mode, and can be switched by the mode changeover switch 12f.
  • the normal observation mode is a mode in which the observation target is illuminated by the illumination light.
  • the special observation mode is a mode in which the observation target is illuminated with special light different from the illumination light.
  • the illumination light or the measurement light is illuminated on the observation target, and a virtual scale used for measuring the size of the observation target or the like is displayed on the captured image obtained by imaging the observation target.
  • the captured image on which the virtual scale is not superimposed is displayed on the display 15, while the captured image on which the virtual scale is superimposed is displayed on the extended display 18.
  • the virtual scale is calibrated in order to adjust the virtual scale, which may vary in size or the like depending on the image pickup optical system 21 of the endoscope 12, for each endoscope 12.
  • the illumination light is light used to give brightness to the entire observation target and observe the entire observation target.
  • Special light is light used to emphasize a specific area of an observation target.
  • the measurement light is the light used for displaying the virtual scale.
  • the virtual scale displayed on the image will be described, but the actual scale may be provided in the actual lumen so that the actual scale can be confirmed through the image. In this case, it is conceivable that the actual scale is inserted through the forceps channel of the endoscope 12 and the actual scale is projected from the tip portion 12d.
  • the screen of the display 15 freezes and also emits an alert sound (for example, "pee") to the effect that the still image is acquired. Then, the still image of the captured image obtained before and after the operation timing of the still image acquisition instruction switch 12g is stored in the still image storage unit 42 (see FIG. 3) in the processor device 14.
  • the still image storage unit 42 is a storage unit such as a hard disk or a USB (Universal Serial Bus) memory.
  • the processor device 14 can be connected to the network, the still image of the captured image is stored in the still image storage server (not shown) connected to the network in place of or in addition to the still image storage unit 42. You may.
  • the still image acquisition instruction may be given by using an operation device other than the still image acquisition instruction switch 12g.
  • a foot pedal may be connected to the processor device 14, and a still image acquisition instruction may be given when the user operates the foot pedal (not shown) with his / her foot. You may use the foot pedal for mode switching.
  • a gesture recognition unit (not shown) that recognizes a user's gesture is connected to the processor device 14, and when the gesture recognition unit recognizes a specific gesture performed by the user, a still image acquisition instruction is given. You may do it.
  • the mode switching may also be performed using the gesture recognition unit.
  • a line-of-sight input unit (not shown) provided near the display 15 is connected to the processor device 14, and the line-of-sight input unit recognizes that the user's line of sight is within a predetermined area of the display 15 for a certain period of time or longer. If this is the case, a still image acquisition instruction may be given.
  • a voice recognition unit (not shown) may be connected to the processor device 14, and when the voice recognition unit recognizes a specific voice emitted by the user, a still image acquisition instruction may be given. The mode switching may also be performed using the voice recognition unit.
  • an operation panel such as a touch panel may be connected to the processor device 14, and a still image acquisition instruction may be given when the user performs a specific operation on the operation panel. The mode switching may also be performed using the operation panel.
  • the tip of the endoscope 12 has a substantially circular shape, and the image pickup optical system 21 located closest to the subject side among the optical members constituting the image pickup optical system of the endoscope 12 and the subject.
  • the optical axis Ax of the imaging optical system 21 extends in a direction perpendicular to the paper surface.
  • the vertical first direction D1 is orthogonal to the optical axis Ax
  • the horizontal second direction D2 is orthogonal to the optical axis Ax and the first direction D1.
  • the imaging optical system 21 and the measurement light emitting unit 23 are arranged along the first direction D1.
  • the light source device 13 includes a light source unit 30 and a light source processor 31.
  • the light source unit 30 generates illumination light for illuminating the subject.
  • the illumination light emitted from the light source unit 30 is incident on the light guide LG and is applied to the subject through the illumination lens 22a provided in the illumination optical system 22.
  • the light source unit 30 includes, as a light source of illumination light, a white light source that emits white light, or a plurality of light sources including a white light source and a light source that emits light of other colors (for example, a blue light source that emits blue light). Is used.
  • the light source processor 31 is connected to the system control unit 41 of the processor device 14.
  • the illumination light may be a white mixed color light in which blue light, green light, and red light are combined.
  • the light source processor 31 controls the light source unit 30 based on an instruction from the system control unit 41.
  • the system control unit 41 gives an instruction regarding the light source control to the light source processor 31, and also controls the light source 23a (see FIG. 4) of the measurement light emission unit 23.
  • the system control unit 41 controls to turn on the illumination light or the special light and turn off the measurement light.
  • the system control unit 41 turns on the illumination light and controls to turn on the measurement light.
  • the system control unit 41 controls to turn off the illumination light and turn on the measurement light.
  • the tip portion 12d of the endoscope 12 is provided with an illumination optical system 22, an image pickup optical system 21, and a measurement light emission unit 23.
  • the illumination optical system 22 has an illumination lens 22aa, and the light from the light guide LG is irradiated to the observation target through the illumination lens 22a.
  • the image pickup optical system 21 includes an image pickup optical system 21a, a zoom lens 21b, and an image pickup element 32. The reflected light from the observation target is incident on the image pickup device 32 via the image pickup optical system 21a. As a result, a reflected image to be observed is formed on the image pickup device 32.
  • the image sensor 32 is a color image sensor, which captures a reflected image of a subject and outputs an image signal.
  • the image pickup device 32 is preferably a CCD (Charge Coupled Device) image pickup sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image pickup sensor, or the like.
  • the image pickup device 32 used in the present invention is a color image pickup sensor for obtaining a red image, a green image, and a red image of three colors of R (red), G (green), and B (blue).
  • the red image is an image output from a red pixel provided with a red color filter RF (see FIG. 19) in the image sensor 32.
  • the green image is an image output from a green pixel provided with a green color filter GF (see FIG. 19) in the image sensor 32.
  • the blue image is an image output from a blue pixel provided with a blue color filter BF (see FIG. 19) in the image sensor 32.
  • the image pickup device 32 is controlled by the image pickup control unit 33.
  • the image signal output from the image sensor 32 is transmitted to the CDS / AGC circuit 34.
  • the CDS / AGC circuit 34 performs correlated double sampling (CDS (Correlated Double Sampling)) and automatic gain control (AGC (Auto Gain Control)) on an image signal which is an analog signal.
  • CDS Correlated Double Sampling
  • AGC Automatic gain control
  • the image signal that has passed through the CDS / AGC circuit 34 is converted into a digital image signal by the A / D converter (A / D (Analog / Digital) converter) 35.
  • the A / D converted digital image signal is input to the processor device 14 via the communication I / F (Interface) 36 of the endoscope 12 and the communication I / F (Interface) 37 of the light source device 13.
  • the system control unit 41 configured by the image control processor operates a program embedded in the program storage memory to connect to the communication I / F (Interface) 37 of the light source device 13 and to receive a signal.
  • the functions of the processing unit 39 and the display control unit 40 are realized.
  • the receiving unit 38 receives the image signal transmitted from the communication I / F 37 and transmits it to the signal processing unit 39.
  • the signal processing unit 39 has a built-in memory for temporarily storing an image signal received from the receiving unit 38, and processes an image signal group which is a set of image signals stored in the memory to generate an captured image.
  • the receiving unit 38 may directly send the control signal related to the light source processor 31 to the system control unit 41.
  • the blue image of the captured image is on the B channel of the display 15, the green image of the captured image is on the G channel of the display 15, and the red image of the captured image is on the G channel.
  • the same signal allocation processing as in the normal observation mode is performed.
  • the signal processing unit 39 when the special observation mode is set, the red image of the captured image is not used for the display of the display 15, and the blue image of the captured image is used for the B channel and the G channel of the display 15. By assigning the green image of the captured image to the R channel of the display 15, the captured image of pseudo color is displayed on the display 15. Further, when the signal processing unit 39 is set to the length measurement mode, the signal processing unit 39 transmits the captured image including the irradiation position of the measurement light to the data transmission / reception unit 43. The data transmission / reception unit 43 transmits data related to the captured image to the expansion processor device 17. The data transmission / reception unit 43 can receive data or the like from the expansion processor device 17. The received data can be processed by the signal processing unit 39 or the system control unit 41.
  • the display control unit 40 displays the captured image generated by the signal processing unit 39 on the display 15.
  • the system control unit 41 performs various controls on the endoscope 12, the light source device 13, the processor device 14, and the extended processor device 17.
  • the image pickup device 32 is controlled via the image pickup control unit 33 provided in the endoscope 12.
  • the image pickup control unit 33 also controls the CDS / AGC34 and the A / D35 in accordance with the control of the image pickup element 32.
  • the expansion processor device 17 receives the data transmitted from the processor device 14 by the data transmission / reception unit 44.
  • the signal processing unit 45 performs processing related to the length measurement mode based on the data received by the data transmission / reception unit 44. Specifically, a virtual scale display pattern is determined from the captured image including the irradiation position of the measurement light, and the virtual scale based on the determined display pattern is superimposed and displayed on the captured image.
  • the display control unit 46 displays the captured image on which the virtual scale is superimposed and displayed on the extended display 18.
  • the data transmission / reception unit 44 can transmit data or the like to the processor device 14.
  • the measurement light emitting unit 23 includes a light source 23a, a diffractive optical element DOE23b (Diffractive Optical Element), a prism 23c, and a measurement light lens 23d.
  • the light source 23a emits light of a color that can be detected by the pixels of the image pickup element 32 (specifically, visible light), and is a light emitting element such as a laser light source LD (Laser Diode) or an LED (Light Emitting Diode). , Includes a condenser lens that collects the light emitted from this light emitting element.
  • the wavelength of the light emitted by the light source 23a is, for example, a red laser light of 600 nm or more and 650 nm or less, but light in another wavelength band, for example, green light of 495 nm or more and 570 nm or less is used. May be good.
  • the light source 23a is controlled by the system control unit 41, and emits light based on an instruction from the system control unit 41.
  • the DOE23b converts the light emitted from the light source into the measurement light for obtaining the measurement information.
  • the prism 23c is an optical member for changing the traveling direction of the measured light after conversion by the DOE23b.
  • the prism 23c changes the traveling direction of the measurement light so as to intersect the field of view of the imaging optical system 21. The details of the traveling direction of the measurement light will also be described later.
  • the measurement light Lm emitted from the prism 23c passes through the measurement light lens 23d and irradiates the subject.
  • a spot SP as a circular region is formed in the subject.
  • the position of the spot SP (irradiation position of the measured light) is specified by the irradiation position detection unit 54 (see FIG. 7), and a virtual scale representing the actual size is set according to the position of the spot SP.
  • the set virtual scale is displayed on the captured image.
  • the virtual scale includes a plurality of types such as a first virtual scale and a second virtual scale, and the user determines which type of virtual scale is displayed on the captured image. Selection is possible by instructions. As the user's instruction, for example, the user interface 16 is used.
  • the measurement light lens 23d may be a measurement assist slit formed in the tip portion 12d of the endoscope. Further, it is preferable to apply an antireflection coating (AR (Anti-Reflection) coating) (antireflection portion) to the measurement light lens 23d.
  • AR Anti-Reflection
  • the antireflection coat is provided by the irradiation position detection unit 54, which will be described later, when the measurement light is reflected without passing through the measurement light lens 23d and the ratio of the measurement light irradiated to the subject decreases. This is because it becomes difficult to recognize the position of the spot SP formed on the subject by the measurement light.
  • the measurement light emitting unit 23 may be any as long as it can emit the measurement light toward the field of view of the image pickup optical system 21.
  • the light source 23a may be provided in the light source device 13, and the light emitted from the light source 23a may be guided to the DOE 23b by an optical fiber.
  • the measurement light Lm may be emitted in a direction crossing the field of view of the imaging optical system 21 by installing the light sources 23a and DOE23b at an angle with respect to the optical axis Ax without using the prism 23c.
  • the measurement light Lm is emitted in a state where the optical axis Lm of the measurement light Lm intersects the optical axis Ax of the imaging optical system 21.
  • the measurement light Lm in the imaging range (indicated by arrows Qx, Qy, Qz) at each point. It can be seen that the positions of the spots SP formed on the subject (points where the arrows Qx, Qy, and Qz intersect with the optical axis Ax) are different.
  • the shooting angle of view of the imaging optical system 29b is represented in the region sandwiched between the two solid lines 48, and the measurement is performed in the central region (the region sandwiched by the two dotted lines 49 ") of the shooting angle of view where aberration is small. I am doing it.
  • the sensitivity of the movement of the spot position to the change in the observation distance is high, so that the size of the subject is large. Can be measured with high accuracy. Then, by taking an image of the subject illuminated by the measurement light with the image pickup device 32, an image pickup image including the spot SP can be obtained.
  • the position of the spot SP differs depending on the relationship between the optical axis Ax of the imaging optical system 21 and the optical axis Lm of the measured light Lm and the observation distance, but if the observation distance is short, the same actual size ( For example, the number of pixels indicating 5 mm) increases, and the number of pixels decreases as the observation distance increases.
  • the third direction D3 is a method orthogonal to the first direction D1 and the second direction.
  • the signal processing unit 45 of the expansion processor device 17 detects the position of the spot SP in the captured image in order to recognize the position of the spot SP and set the virtual scale. And a second signal processing unit 52 that sets a virtual scale according to the position of the spot SP.
  • the first signal processing unit 50 includes an irradiation position detection unit 54 that detects the irradiation position of the spot SP from the captured image. It is preferable that the irradiation position detection unit 54 acquires the coordinates of the center of gravity of the spot SP as the irradiation position of the spot SP.
  • the second signal processing unit 52 sets the first virtual scale as a virtual scale for measuring the size of the subject based on the irradiation position of the spot SP, and sets the scale display position of the first virtual scale. ..
  • the second signal processing unit 52 refers to the scale table 55 that stores the virtual scale image whose display pattern changes depending on the irradiation position of the spot SP and the irradiation position of the spot in association with the irradiation position of the spot, and irradiates the spot SP. Set the virtual scale corresponding to the position.
  • the virtual scale differs in size or shape, for example, depending on the irradiation position and scale display position of the spot SP.
  • the display of the virtual scale image will be described later.
  • the stored contents of the scale table 55 are maintained even when the power of the expansion processor device 17 is turned off.
  • the scale table 55 stores the scale parameter and the irradiation position in association with each other, but the distance to the subject corresponding to the irradiation position (distance between the tip portion 12d of the endoscope 12 and the subject) and the scale parameter. You may memorize it in association with.
  • the scale parameters are required for each irradiation position, and the data capacity becomes large. Therefore, considering the viewpoints such as the capacity of the memory that can be stored in the endoscope 12, the startup, and the processing time, the endoscope is used for endoscopy. It is preferable to hold it in the extended processor device 17 (or processor device 14) rather than holding it in a memory (not shown) in the mirror 12. Also, as will be described later, the virtual scale image is created from the scale parameters obtained by calibration, but if a virtual scale image is created from the scale parameters in the length measurement mode, loss time will occur and processing will occur. The real-time property of is impaired.
  • the virtual scale is not created from the representative points.
  • the virtual scale image is displayed using the updated scale table 55.
  • the irradiation position of the spot SP and the actual size of the subject correspond to the irradiation position of the spot SP instead of the virtual scale image to be superimposed and displayed on the length measurement image.
  • a reference scale that determines the size of the scale is displayed on the reference scale image in relation to the number of pixels.
  • the length measurement image is an image including an irradiation position of measurement light such as a spot SP and / or a virtual scale image, and is an image displayed on the extended display 18.
  • the reference scale image is an image including the irradiation position of the measurement light and / or the reference scale image, and is an image displayed on the extended display 18.
  • the second signal processing unit 52 provides a table update unit 56 for updating the scale table 55 when the endoscope 12 is connected to the endoscope connection unit (not shown) of the light source device 13.
  • the reason why the scale table 55 can be updated in this way is that the endoscope 12 has a different positional relationship between the optical axis Lm of the measurement light and the image pickup optical system 21 depending on the model and serial number, and accordingly. This is because the display pattern of the virtual scale image also changes.
  • a parameter table 57 that stores the scale parameters obtained in the calibration mode in association with the irradiation position is used. Details of the table update unit 56 and the parameter table 57 will be described later.
  • the parameter table 57 may be stored in association with the distance to the subject corresponding to the irradiation position (distance between the tip portion 12d of the endoscope 12 and the subject) and the representative point data.
  • the display control unit 46 controls the display mode of the virtual scale to be different depending on the irradiation position and the scale display position of the spot SP when the length measurement image in which the virtual scale is superimposed on the captured image is displayed on the extended display 18. .. Specifically, the display control unit 46 displays the length measurement image on which the first virtual scale is superimposed centering on the spot SP on the extended display 18.
  • the first virtual scale for example, a circular measurement marker is used. In this case, as shown in FIG. 8, when the observation distance is close to the near end Px (see FIG. 6), the actual size is 5 mm (captured image) in line with the center of the spot SP1 formed on the tumor tm1 of the subject.
  • a virtual scale M1 indicating is displayed.
  • the virtual scale M1 Since the marker display position of the virtual scale M1 is located in the peripheral portion of the captured image affected by the distortion caused by the imaging optical system 21, the virtual scale M1 has an elliptical shape according to the influence of the distortion and the like. .. Since the above marker M1 substantially coincides with the range of the tumor tm1, the tumor tm1 can be measured to be about 5 mm. It should be noted that the spot may not be displayed on the captured image, and only the first virtual scale may be displayed.
  • the actual size is 5 mm (horizontal direction of the captured image) in accordance with the center of the spot SP2 formed on the tumor tm2 of the subject.
  • the virtual scale M2 indicating the vertical direction
  • the scale display position of the virtual scale M2 is located in the center of the captured image that is not easily affected by distortion by the imaging optical system 21, the virtual scale M2 is circular without being affected by distortion or the like. ing.
  • the actual size is 5 mm (horizontal direction of the captured image) so as to be aligned with the center of the spot SP3 formed on the tumor tm3 of the subject.
  • the virtual scale M3 indicating the vertical direction
  • the scale display position of the virtual scale M3 is located in the peripheral portion of the captured image affected by the distortion caused by the imaging optical system 21, the virtual scale M3 has an elliptical shape according to the influence of the distortion and the like. ..
  • the size of the first virtual scale corresponding to the same actual size of 5 mm becomes smaller as the observation distance becomes longer.
  • the shape of the first virtual scale differs depending on the marker display position according to the influence of the distortion caused by the imaging optical system 21.
  • the center of the spot SP and the center of the marker are displayed so as to coincide with each other.
  • the first virtual scale is placed at a position away from the spot SP. It may be displayed. However, even in this case as well, it is preferable to display the first virtual scale in the vicinity of the spot. Further, instead of deforming and displaying the first virtual scale, the first virtual scale in a state where the distortion aberration of the captured image is corrected and not deformed may be displayed on the corrected captured image.
  • the first virtual scale corresponding to the actual size of the subject of 5 mm is displayed, but the actual size of the subject is an arbitrary value (for example, 2 mm, depending on the observation target and the observation purpose). 3 mm, 10 mm, etc.) may be set.
  • the first virtual scale has a substantially circular shape, but as shown in FIG. 11, a cross shape in which vertical lines and horizontal lines intersect may be used. Further, a graduated cross shape in which a scale Mx is added to at least one of the vertical line and the horizontal line of the cross shape may be used. Further, as the first virtual scale, a distorted cross shape in which at least one of a vertical line and a horizontal line is tilted may be used.
  • the first virtual scale may be a circle in which a cross shape and a circle are combined and a cross shape.
  • the first virtual scale may be a measurement point cloud type in which a plurality of measurement point EPs corresponding to the actual size from the spot are combined.
  • the number of the first virtual scale may be one or a plurality, and the color of the first virtual scale may be changed according to the actual size.
  • three concentric virtual scales M4A, M4B, and M4C (the sizes are 2 mm, 5 mm, and 10 mm in diameter, respectively) having different sizes are placed on the tumor tm4.
  • the spot SP4 formed in the center may be displayed on the captured image. Since these three concentric virtual scales display a plurality of virtual scales, the trouble of switching can be saved, and measurement is possible even when the subject has a non-linear shape.
  • When displaying multiple concentric virtual scales centered on the spot instead of specifying the size and color for each virtual scale, prepare a combination of multiple conditions in advance and select from the combinations. You may be able to do it.
  • FIG. 12 all three concentric virtual scales are displayed in the same color (black), but when displaying a plurality of concentric markers, a plurality of colored concentric markers whose colors are changed by the virtual scales are displayed. May be.
  • the virtual scale M5A is represented by a dotted line representing red
  • the virtual scale M5B is represented by a solid line representing blue
  • the virtual scale M5C is represented by a alternate long and short dash line representing white.
  • the first virtual scale in addition to a plurality of concentric virtual scales, as shown in FIG. 14, a plurality of distorted concentric virtual scales in which each concentric circle is distorted may be used.
  • the distorted concentric virtual scales M6A, virtual scales M6B, and virtual scales M6C are displayed in the captured image centering on the spot SP5 formed on the tumor tm5.
  • the measurement light the light formed as a spot when the subject is irradiated is used, but other light may be used.
  • a planar measurement light formed as an intersecting line 58 on the subject may be used.
  • a second virtual scale consisting of a scale 59 as an index of the size of the subject (for example, polyp P) is generated on the intersection line 58 and the intersection line 58.
  • the irradiation position detection unit 54 detects the position of the intersection line 58 (irradiation position of the measurement light).
  • the calibration mode is performed using the calibration device 100 shown in FIG.
  • the calibration device 100 is a device for calibrating the virtual scale for displaying on the extended display 18 and measuring the size of the subject.
  • the calibration device 100 includes a chart 101, a distance changing mechanism 102, a position adjusting mechanism 103, an expansion processor device 17, and an expansion display 18.
  • the expansion processor device 17 and the expansion display 18 are also used as the endoscope system 10. Further, the expansion processor device 17 only needs to have at least the functions of the calibration image acquisition unit 121 and the scale parameter acquisition unit 122 required for the calibration mode.
  • the chart 101 is provided with an index graphic plane 104 composed of three index figures 104a, 104b, and 104c.
  • the index figure 104a is a circle having a diameter of 5 mm
  • the index figure 104b is a circle having a diameter of 10 mm
  • the index figure 104c is a circle having a diameter of 20 mm.
  • these index figures 104a, 104b, and 104c are affected by the imaging optical system 21 in the calibration image and have a shape such as an ellipse in which the circle is deformed.
  • the index figure plane 104 is a plane in which the index figures 104a, 104b, 104c are in contact with each other at the reference position ST at one point, but may be a concentric plane having the same center of the index figures 104a, 104b, 104c.
  • the index figure is circular, it may be a regular polygon. Also in this case, it may be a plane in which a plurality of regular polygons are in contact with each other at one reference position ST, or a concentric plane having the same center of gravity of the plurality of regular polygons.
  • the index figure may be a cross, a line segment, or the like.
  • the three index figures 104a, 104b, 104c are separated by two or more colors based on a specific color evaluation standard.
  • a specific color evaluation standard it is preferable to use the hue circle 105 shown in FIG.
  • the color of the index figure is preferably white, black, or includes two or more of a plurality of colors corresponding to hues separated by 100 ° or more on the hue circle 105.
  • B blue
  • G green
  • R red
  • C cyan
  • M magenta
  • Y yellow
  • white, green, and red are preferable as the color combination of the three index figures 104a, 104b, and 104c.
  • the colors of the index figures are separated based on the transmittance of the color filter of the image sensor 32.
  • the transmittance of the color filter of the image sensor 32 when the four colors of the red color filter RF, the green color filter GF, the blue color filter BF, and the blue-green color filter BGF have the transmission transmission distribution shown in FIG. 19, each color. It is preferable that the color corresponding to the wavelength range in which the transmittance of the color filter is equal to or higher than a certain level is the color of the index figure. In the case of the color filter of FIG.
  • the color near 450 nm, the color near 500 nm, the color near 550 nm, and the color near 630 nm which are the colors near the wavelength where the transmittance is the highest in each color filter, are used as index figures. It is preferable to use the color of.
  • the colors of the index figure n are the red signal value SRn of the index figure n, the green signal value SGn of the index figure n, and the blue signal of the index figure n. It is preferably determined based on the value SBn.
  • the light spectrum of the backlight 107 is L ( ⁇ )
  • the spectral sensitivity of the red pixel transmission of the red color filter RF
  • R transmission of the red color filter RF
  • G the spectral sensitivity of the green pixel
  • n is a natural number
  • the index figure is preferably filled with a specific color in order to make it easier to recognize the index figure in the circumscribed rectangle extraction process or the inscribed ellipse parameter calculation process described later.
  • all of the index figures 104a, 104b, and 104c may be filled, or only a part thereof may be filled.
  • the background portion 106 of the chart 101 other than the index graphic plane 104 is black.
  • the chart 101 is preferably a light transmission type that transmits light in order to display or hide the index graphic plane in the calibration image by the backlight 107. By making the chart 101 a light transmissive type, it is possible to increase the contrast of the index figure plane 104 and improve the recognition accuracy of the index figure.
  • the base material of the chart 101 is preferably a light-transmitting base material, and includes a glass plate, a ceramic plate, a metal plate, a film, a reversal film, and the like.
  • a sensitive material, an inkjet, a color resist or the like is preferable.
  • the base material of the chart 101 is a glass plate (reversal film) and the material that develops the color of the index figure is a color resist.
  • the chart 101 is provided with an alignment mark 108 used to face the chart 101 and the tip portion 12d of the endoscope.
  • the alignment mark 108 is wedge-shaped, and the chart 101 or the tip portion 12d is moved so that the alignment line AL (see FIG. 32) comes to the connecting portion 108a on the calibration image.
  • the distance changing mechanism 102 changes the inter-chart distance CD between the tip portion 12d of the endoscope and the chart 101.
  • the distance changing mechanism 102 mounts the chart 101.
  • the distance changing mechanism 102 is attached to the base 111 so as to be movable in the Z direction, which is the vertical direction.
  • a chart holding portion 109 on which the chart 101 is placed is attached to the distance changing mechanism 102. By moving the chart holding unit 109 in the Z direction, the inter-chart distance CD is changed.
  • the distance setting jig 112 corresponding to the set distance is sandwiched between the chart holding unit 109 and the endoscope holding unit 110, and the inter-chart distance CD is set to the set distance.
  • the distance between the charts can be set to 40 mm by sandwiching the distance setting jig 112 having a length of 40 mm between the chart holding portion 109 and the endoscope holding portion 110. can. It is preferable to use a distance setting jig whose length can be adjusted.
  • the position adjusting mechanism 103 adjusts the positional relationship between the reference position ST of the index graphic plane 104 of the chart 101 and the irradiation position (spot SP) of the measured light, so that the tip portion of the endoscope is adjusted.
  • the position adjusting mechanism 103 is attached to the base 111 so as to be movable in the X direction or the Y direction orthogonal to the Z direction.
  • the X direction is orthogonal to the Y direction.
  • the position adjusting mechanism 103 is attached with an endoscope holding portion 110 that holds the tip portion 12d of the endoscope. By moving the endoscope holding portion 110 in the X direction or the Y direction, the positional relationship between the reference position ST of the index graphic plane 104 on the XY plane and the irradiation position of the measurement light is adjusted.
  • the chart holding unit 109 is provided with a backlight 107 on the surface on which the chart is placed and around the surface thereof.
  • the backlight 107 can be turned on or off by the user.
  • the backlight 107 is turned off.
  • only the spot SP irradiation position of the measured light
  • the index figure plane 104 is hidden. By hiding the index graphic plane 104, the irradiation position detection unit 54 can easily recognize the irradiation position of the measurement light.
  • the irradiation position (spot SP) of the measurement light may be stored every time the distance between charts is set to the set distance.
  • the irradiation position of the measurement light is preferably stored in a temporary storage memory (not shown) for storing the irradiation position of the expansion processor device 17.
  • the backlight is backed up. Turn on the light 107.
  • the calibration image displays the index graphic plane 104 and the alignment mark 108 in addition to the spot SP, as shown in FIG. 22.
  • the endoscope holding portion 110 is rotatable in an XZ plane at an angle ⁇ in a specific range, or can be rotated at an angle ⁇ in a specific range, as shown in FIG. , It is preferable that the YZ plane can be rotated at an angle ⁇ in a specific range.
  • the tip portion 12d of the endoscope held by the endoscope holding portion 110 is rotated at angles ⁇ and ⁇ so that the optical axis Ax of the imaging optical system and the index graphic plane 104 of the chart are perpendicular to each other. This state is defined as a state in which the chart 101 and the tip portion 12d of the endoscope face each other.
  • the endoscope holding portion 110 may be rotatable at an angle ⁇ in a specific range on the XY plane. Depending on the shape of the endoscope insertion portion 12a held by the endoscope holding portion 110, the endoscope holding portion 110 is rotated at an angle ⁇ so that the chart 101 and the tip portion 12d of the endoscope are positive. It is preferable to deal with it.
  • a third signal processing unit 120 is provided for the calibration mode.
  • programs related to various processes are incorporated in a program memory (not shown).
  • the expansion processor device 17 is provided with a central control unit (not shown) configured by an image control processor. When the central control unit executes the program in the program memory, the functions of the first signal processing unit 50, the second signal processing unit 52, and the third signal processing unit 120 are realized as shown in FIG. 24.
  • the third signal processing unit 120 includes a calibration image acquisition unit 121, a scale parameter acquisition unit 122, and an interpolation processing unit 123.
  • the extended display 18 performs an operation display related to the calibration mode including at least one of the distance changing mechanism 102, the position adjusting mechanism 103, the acquisition of the calibration image, and the acquisition of the scale parameters.
  • the setting completion operation icon 132, the position adjustment completion icon 134, or the scale confirmation icon 136 which will be described later, are included in the operation display related to the calibration mode.
  • the "display" in the claims includes the extended display 18.
  • the calibration image acquisition unit 121 is in a state where the reference position ST of the index graphic plane 104 of the chart 101 and the irradiation position (spot SP) of the measurement light match when the calibration image acquisition instruction is given by the user interface 16.
  • the calibration image 124 obtained by imaging the chart 101 of the above with the endoscope 12 is acquired.
  • the index figures 104a, 104b, 104c which are circular in the chart 101, are elliptical index figure images 126a, which are deformed by the optical characteristics of the imaging optical system 21 and the like. It is 126b and 126c. The degree of deformation increases toward the periphery of the screen.
  • the scale parameter acquisition unit 122 acquires scale parameters for displaying the virtual scale on the extended display 18 from the calibration image 124.
  • the calibration image 124 includes a blue calibration image 124b output from the blue pixel of the image sensor 32, a green calibration image 124 g output from the green pixel of the image sensor 32, and a red calibration output from the red pixel of the image sensor 32. It consists of an image sensor 124r.
  • the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r of these three colors are subjected to binarization processing, extrinsic rectangle extraction processing, and inscribed ellipse parameter calculation processing, respectively.
  • the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r are weighted and added according to the color of the index figure.
  • the index figure 104a is white
  • the index figure 104b is green
  • the index figure 104c is blue as the color of the index figure
  • the blue calibration image 124b becomes the green calibration image 124g or the red calibration image 124r.
  • a green index graphic image 126b (an image corresponding to the index graphic 104b) is obtained by adding a specific weighting coefficient to the blue calibration image 124b or the red calibration image 124r and adding them. It is preferable to make it easy to recognize.
  • a white index graphic image 126c (an image corresponding to the index graphic 104a) is obtained by adding a specific weighting coefficient to the blue calibration image 124b or the green calibration image 124g and adding them. It is preferable to make it easy to recognize.
  • the index graphic image 126a and the index graphic image 126c are extracted by performing the binarization process for blue on the blue calibration image 124b. Further, the index graphic image 126b is extracted by performing the binarization process for green on the green calibration image 124g. The index graphic image 126a is extracted by performing the binarization process for red on the red calibration image 124r. The circumscribed rectangle extraction process is performed on the image after the binarization process. When performing the binarization process, it is preferable to perform processing such as shading correction and masking on the calibrated image of each color.
  • the circumscribed rectangle 128c circumscribed on the index graphic image 126c can be obtained. Further, by performing the circumscribed rectangle process on the green calibration image 124 g after the binarization process, the circumscribed rectangle 128b circumscribed on the index graphic image 126b can be obtained. Further, by performing the circumscribed rectangle process on the red calibration image 124r after the binarization process, the circumscribed rectangle 128a circumscribed on the index graphic image 126a can be obtained. The inscribed ellipse parameter calculation process is performed on the image after extracting these circumscribed rectangles.
  • the circumscribed rectangle processing or the inscribed ellipse parameter calculation processing it is preferable to use, for example, OpenCV's findContours, boundingRect, minAreaRect method, and the like. Further, it is preferable to extract the circumscribing rectangle by pattern matching, template matching, use of a learning model that has been machine-learned (for example, CNN (Convolutional Neural Network)), or the like.
  • CNN Convolutional Neural Network
  • the fitting parameter of the ellipse 130c inscribed in the circumscribed rectangle 128c is calculated by performing the inscribed ellipse parameter calculation process on the circumscribed rectangle 128c.
  • the calculated fitting parameter of the ellipse 130c becomes a scale parameter for displaying a virtual scale having a diameter of 20 mm.
  • the fitting parameter of the ellipse is composed of a plurality of parameters such as the center of the ellipse (X coordinate, Y coordinate), the length in the X axis direction, the length in the Y axis direction, and the inclination of the ellipse.
  • the fitting parameter of the ellipse 130b inscribed on the circumscribed rectangle 128b is calculated.
  • the calculated fitting parameter of the ellipse 130b becomes a scale parameter for displaying a virtual scale having a diameter of 10 mm.
  • the fitting parameter of the ellipse 130a inscribed in the circumscribed rectangle 128a is calculated.
  • the calculated fitting parameter of the ellipse 130a becomes a scale parameter for displaying a virtual scale having a diameter of 5 mm.
  • the fitting parameter of the inscribed ellipse is relatively excellent as a parameter when displaying a circle in an image of an endoscope.
  • an ellipse is generated from the fitting parameter of the inscribed ellipse.
  • a scale confirmation screen is displayed in which the generated ellipse is superimposed on the calibration image as a virtual scale.
  • the ellipses 130a, 130b, 130c generated from the fitting parameters of the inscribed ellipse are superimposed and displayed on the corresponding index graphic images 126a, 126b, 126c as virtual scales, respectively. Will be done.
  • the user who performs the calibration confirms whether the positions, sizes, etc. of the ellipses 130a, 130b, 130c match the index graphic images 126a, 126b, 126c. If it is determined that the user is matching, the user operates the scale confirmation icon 136 (see FIG. 34) using the user interface 16. When the scale confirmation icon 136 is operated, the third signal processing unit 120 associates the irradiation position of the measurement light with the scale parameter and stores it in the parameter table 57. On the other hand, if it is determined that the user does not match, the operation is restarted from the inter-chart distance CD.
  • the interpolation processing unit 123 performs interpolation processing based on the first distance scale parameter P2 obtained by setting the inter-chart distance CD by the distance change mechanism 102, so that the second distance scale parameter that is not in the first distance can be used. Calculate P2.
  • the inter-chart distance CD is changed at 1 mm intervals by the distance changing mechanism 102 and the scale parameter P1 of the first distance is acquired for each change, the inter-chart distance CD is 2 mm and the diameter is 5 mm.
  • the scale parameter (5 mm) of the virtual scale is PM5_2, the distance between charts is 3 mm, and the scale parameter (5 mm) of the virtual scale having a diameter of 5 mm is PM5_3.
  • a scale parameter having a distance CD between the charts of 2 mm and 3 mm, which is 2.5 mm, is calculated as a second distance scale parameter P2 by interpolation processing.
  • the scale parameter PM5_2.5 having a chart-to-chart distance CD of 2.5 mm is calculated as the second distance scale parameter P2 by the calculation for interpolation processing of (PM5_2 + PM5_3) / 2.
  • the 3.5 mm scale parameter PM5_3.5 whose inter-chart distance is between 3 mm and 4 mm is calculated by interpolation processing
  • the 4.5 mm scale parameter PM5_4 where the inter-chart distance is between 4 mm and 5 mm. 5 is calculated by interpolation processing.
  • the scale parameter obtained by the interpolation process is stored in the parameter table 57 in association with the irradiation position of the measurement light corresponding to the distance between the charts. As described above, in the actual calibration mode, even if the scale parameters can be obtained only for the discrete inter-chart distances, by using the interpolation processing, the scale parameters can be obtained for all the inter-chart distances. Obtainable.
  • the calibration mode is carried out in a dark room.
  • the user who calibrates the virtual scale sets the tip portion 12d of the endoscope on the endoscope holding portion 110, and places the chart 101 on the chart holding portion 109.
  • the user operates the mode changeover switch 12f to switch to the calibration mode.
  • the measurement light is applied to the chart 101.
  • the distance change step is executed.
  • the distance changing mechanism 102 creates an inter-chart distance CD between the chart 101 provided with the index graphic plane 104 consisting of the three index figures 104a, 104b, and 104c and the tip portion 12d of the endoscope. change.
  • the inter-chart distance CD for acquiring the scale parameter is predetermined as the set distance.
  • the set distance is preferably in the range of 1 mm to 50 mm and at intervals of 1 mm.
  • the distance change step by turning off the backlight 107 provided on the light transmission type chart 101, only the irradiation position of the measurement light is displayed in the calibration image, and the index graphic plane 104 is hidden. There is. This makes it easier for the irradiation position detection unit 54 to detect the irradiation position of the measurement light.
  • a setting completion operation icon 132 for instructing that the setting of the set distance is completed is displayed.
  • the user operates the setting completion operation icon 132 using the user interface 16.
  • the irradiation position detection unit 54 detects the irradiation position (position of the spot SP) of the measurement light.
  • the distance CD between charts may be set by the distance setting jig 112.
  • the measurement light may be turned off. In this case, the movement step is performed using only the alignment mark 108.
  • the distance changing step may be provided with a face-to-face confirmation step step for confirming whether or not the chart 101 and the tip portion 12d of the endoscope are facing each other.
  • a face-to-face confirmation step as shown in FIG. 31, in the calibration image 124, confirmation is performed with the roundness of the largest circular index graphic image 126c among the index graphic plane images 125.
  • the index graphic image 126c is inscribed in the rectangle 140 for checking the roundness, it is assumed that the chart 101 and the tip portion 12d of the endoscope face each other, assuming that the index graphic image 126c has the highest roundness. ..
  • the index graphic image 126c does not inscribe the rectangle 140 for checking the roundness and a part of the index graphic image 126c protrudes from the rectangle 140, it is assumed that they do not face each other. In this case, it is preferable to adjust the angles ⁇ and ⁇ of the tip portion 12d of the endoscope so as to face each other.
  • the work content 142 to be displayed on the extended display 18 as shown in FIG. 35, "Move the left end of the white circle to the spot SP. Completed. Then press the OK button. "
  • the shape of the virtual scale is a cross, it is judged whether or not they are facing each other based on whether or not the line thickness is the same on the top and bottom or left and right.
  • the shape of the virtual scale is a triangle, it is determined whether or not they face each other based on whether or not they have the same size on the top, bottom, left, and right.
  • a movement step is performed.
  • the tip of the endoscope is adjusted by the position adjusting mechanism 103 in order to adjust the positional relationship between the reference position ST of the index graphic plane 104 of the chart and the irradiation position SP of the measurement light.
  • Move 12d The movement of the tip portion 12d of the endoscope is performed in a plane parallel to the chart 101, that is, in the XY plane.
  • the index graphic plane 104 is displayed in the calibration image by turning on the backlight 107 provided on the light transmission type chart 101. This makes it easier for the scale parameter acquisition unit 122 to recognize the index graphic images 126a, 126b, 126c included in the index graphic plane image 125.
  • the alignment line AL is displayed in the vertical direction and the horizontal direction in the calibration image 124.
  • the tip portion 12d of the endoscope is moved in the X direction or the Y direction so that the alignment line AL comes to the connecting portion 108a of the alignment mark.
  • the vertical and horizontal alignment lines AL are cross-shaped lines, and the intersection of the vertical and horizontal alignment lines AL is located in the center of the screen. Therefore, by superimposing the intersection of the alignment line AL on the center of the index graphic plane image 125 of the chart 101, the alignment can be facilitated.
  • a position adjustment completion icon 134 for instructing that the reference position ST of the index graphic plane 104 and the irradiation position SP of the measurement light match is displayed. ing.
  • the user operates the position adjustment completion icon 134 using the user interface 16.
  • the calibration image acquisition step is performed.
  • the endoscope 12 captures a chart 101 in a state where the reference position ST of the index graphic plane 104 and the irradiation position SP of the measurement light match with the endoscope 12 to acquire a calibration image. do.
  • the acquired calibration image is sent to the extended processor device 17 via the processor device 14.
  • the calibration image acquisition unit 121 acquires the calibration image obtained by the endoscope 12 when the position adjustment completion icon 134 is operated as the calibration image for acquiring the scale parameter. As a result, the calibration image acquisition step is completed, and then the parameter acquisition step is performed.
  • the scale parameters for displaying the virtual scale on the extended display 18 are acquired from the calibration image 124.
  • Binarization processing, inscribed rectangle extraction processing, and inscribed ellipse parameter calculation processing are performed on the three colors of the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r included in the calibration image 124, respectively. ..
  • the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r are binarized for blue, binarized for green, and binarized for red, respectively.
  • the circumscribed rectangle extraction process the circumscribed rectangles 128a, 128b, 128c that circumscribe the index graphic images 126a, 126b, 126c in the calibration image 124 are extracted.
  • the fitting parameter of the ellipse inscribed in the circumscribed rectangles 128a, 128b, 128c is calculated as a scale parameter. As a result, the parameter acquisition step is completed, and then the virtual scale confirmation step is performed.
  • an ellipse is generated from the fitting parameter of the inscribed ellipse, which is a parameter for scale. Then, in order to confirm whether or not the user is appropriate as a virtual scale, the ellipses 130a, 130b, and 130c generated from the fitting parameters of the inscribed ellipse are used as virtual scales on the scale confirmation screen, and the corresponding index graphic images 126a are used. , 126b, 126c are superimposed and displayed (see FIG. 27).
  • the virtual scale confirmation step when the user looks at the scale confirmation screen and determines that the positions, sizes, etc. of the ellipses 130a, 130b, 130c match the index graphic images 126a, 126b, 126c, the user Uses the user interface 16 to operate the scale confirmation icon 136 provided on the extended display 18, as shown in FIG. 34.
  • the third signal processing unit 120 associates the irradiation position of the measurement light with the scale parameter and stores it in the parameter table 57. On the other hand, if it is determined that the user does not match, the operation is restarted from the inter-chart distance CD.
  • the interpolation processing step may be performed.
  • the interpolation processing step by performing interpolation processing based on the first distance scale parameter P2 obtained by setting the interchart distance CD by the distance change mechanism 102, the second distance scale parameter P2 that is not in the first distance is performed. Is calculated.
  • the second distance scale parameter obtained by the interpolation process is stored in the parameter table 57 in association with the irradiation position of the measurement light corresponding to the distance between the charts.
  • the alignment figure 150 corresponding to the index figure plane image 125 is provided in order to make the tip of the endoscope face the chart in the calibration image 124. It may be displayed. Similarly, in the calibration image 124, the alignment figure 151 corresponding to the alignment image 148 may be displayed in order to face the calibration image 124. When the position of the index figure plane image 125 and the alignment figure 150 are aligned and / or the positions of the alignment image 148 and the alignment image 151 are aligned, it is preferable that they face each other. After the movement step is completed, the alignment figures 150 and 151 are preferably hidden.
  • the hardware structure of the processing unit that executes various processes is Various processors as shown below.
  • the circuit configuration is changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units. It includes a programmable logic device (PLD), which is a possible processor, a dedicated electric circuit, which is a processor having a circuit configuration specially designed for executing various processes, and the like.
  • PLD programmable logic device
  • One processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). May be done. Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the hardware structure of the storage unit is a storage device such as an HDD (hard disk drive) or SSD (solid state drive).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Provided are a calibration device and method whereby calibration relating to a virtual scale is performed in consideration of the effect of distortion, etc., caused by an imaging optical system. In the present invention, a chart (101) is provided with an index figure plane (104) formed from three index figures (104a, 104b, 104c). The three index figures (104a, 104b, 104c) are separated by two or more colors on the basis of a specific color evaluation standard or on the basis of the transmittance of a color filter of an imaging element (32). A scale parameter for display of a virtual scale by an extended display (18) is acquired from a calibration image obtained by imaging of the chart (101) by an endoscope (12).

Description

キャリブレーション装置及び方法Calibration device and method
 本発明は、被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うキャリブレーション装置及び方法に関する。 The present invention relates to a calibration device and a method for calibrating a virtual scale for measuring the size of a subject.
 内視鏡装置では、被写体までの距離又は被写体の大きさなどを取得することが行われている。例えば、特許文献1では、照明光及び計測用のスポット光を被写体に照明し、被写体上に照明されたスポット光の位置に対応させて、被写体のサイズを計測するための仮想スケールを撮像画像上に表示している。また、特許文献1には、スポット光の位置と被写体の大きさとの関係性をキャリブレーションすることが記載されている。特許文献1では、計測用のスポット光を方眼紙状のチャートに照明し、チャートとの距離ごとに撮像して得られたキャリブレーション画像から、測定光の照射位置と特定サイズの仮想スケールの大きさとの関係を定めている。 In the endoscope device, the distance to the subject or the size of the subject is acquired. For example, in Patent Document 1, an illumination light and a spot light for measurement are illuminated on a subject, and a virtual scale for measuring the size of the subject is formed on the captured image in correspondence with the position of the spot light illuminated on the subject. It is displayed in. Further, Patent Document 1 describes to calibrate the relationship between the position of the spot light and the size of the subject. In Patent Document 1, the spot light for measurement is illuminated on a graph paper-shaped chart, and the calibration image obtained by imaging each distance from the chart shows the irradiation position of the measurement light and the size of a virtual scale of a specific size. It defines the relationship with.
国際公開第2018/051680号International Publication No. 2018/051680
 内視鏡装置によって得られた撮像画像の周辺部は、撮像光学系によって、被写体に歪み等が生ずることが知られている。これに対して、特許文献1では、撮像光学系による歪み等の影響を考慮せずに、仮想スケールを表示している。そのため、被写体が撮像画像の周辺部に位置する場合には、仮想スケールによって、被写体の大きさを正確に測ることができない場合があった。 It is known that the peripheral portion of the captured image obtained by the endoscope device is distorted by the imaging optical system. On the other hand, in Patent Document 1, the virtual scale is displayed without considering the influence of distortion and the like due to the imaging optical system. Therefore, when the subject is located in the peripheral portion of the captured image, it may not be possible to accurately measure the size of the subject by the virtual scale.
 本発明は、撮像光学系による歪み等の影響を考慮して、被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うことができるキャリブレーション装置及び方法を提供することを目的とする。 An object of the present invention is to provide a calibration device and a method capable of calibrating a virtual scale for measuring the size of a subject in consideration of the influence of distortion and the like due to an imaging optical system.
 本発明は、ディスプレイに表示して被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うキャリブレーション装置であって、複数の指標図形からなる指標図形平面が設けられたチャートであって、複数の指標図形は、2つ以上の色によって、特定の色評価基準に基づく分離、又は、内視鏡に設けられた撮像素子のカラーフィルタの透過率に基づく分離がされているチャートと、内視鏡の先端部とチャートとの間のチャート間距離を変更する距離変更機構と、指標図形平面の基準位置と、内視鏡の先端部からチャートに向けて照射される計測光の照射位置との位置関係を調整するために、内視鏡の先端部又はチャートを移動させる位置調整機構と、画像制御用プロセッサとを備え、画像制御用プロセッサは、指標図形平面の基準位置と計測光の照射位置とが合った状態のチャートを内視鏡で撮像して得られるキャリブレーション画像を取得し、キャリブレーション画像から、仮想スケールをディスプレイで表示するためのスケール用パラメータを取得する。 The present invention is a calibration device that calibrates a virtual scale for displaying on a display and measuring the size of a subject, and is a chart provided with an index graphic plane composed of a plurality of index figures. The index figure of is a chart in which two or more colors are separated based on a specific color evaluation standard or a transmission based on the transmission rate of the color filter of the image pickup element provided in the endoscope, and the internal vision. The distance changing mechanism that changes the distance between the charts between the tip of the mirror and the chart, the reference position of the index graphic plane, and the irradiation position of the measurement light emitted from the tip of the endoscope toward the chart. It is equipped with a position adjustment mechanism that moves the tip of the endoscope or the chart to adjust the positional relationship, and an image control processor. The image control processor is a reference position on an index graphic plane and an irradiation position of measurement light. A calibration image obtained by imaging a chart in a state of matching with an endoscope is acquired, and a scale parameter for displaying a virtual scale on a display is acquired from the calibration image.
 特定の色評価基準は色相環であり、指標図形の色は、白色、黒色、又は、色相環で100°以上それぞれ離れた複数の色相に対応する複数の色のうち2以上の色を含むことが好ましい。チャートのうち指標図形平面以外の背景部は黒色であることが好ましい。チャートは光透過型であることが好ましい。 The specific color evaluation criterion is the hue circle, and the color of the index figure shall include white, black, or two or more of a plurality of colors corresponding to a plurality of hues separated by 100 ° or more in the hue circle. Is preferable. It is preferable that the background portion of the chart other than the index graphic plane is black. The chart is preferably a light transmissive type.
 距離変更機構によりチャート間距離を設定する距離設定期間においては、光透過型のチャートに設けられたバックライトを消灯することにより、キャリブレーション画像において、計測光の照射位置のみを表示、及び/又は前記計測光の照射位置を記憶し、且つ、指標図形平面を非表示にすることが好ましい。位置調整機構により内視鏡の先端部又はチャートを移動させ、且つ、キャリブレーション画像を取得するキャリブレーション画像取得期間においては、光透過型のチャートに設けられたバックライトを点灯することにより、キャリブレーション画像において、計測光の照射位置を表示し、且つ、指標図形平面を表示することが好ましい。キャリブレーション画像取得期間では、内視鏡の先端部とチャートとを正対させるために、指標図形平面に対応する位置合わせ用図形をキャリブレーション画像に表示することが好ましい。 During the distance setting period in which the distance between charts is set by the distance changing mechanism, only the irradiation position of the measured light is displayed and / or is displayed in the calibration image by turning off the backlight provided on the light transmission type chart. It is preferable to store the irradiation position of the measurement light and hide the index graphic plane. Calibration is performed by moving the tip of the endoscope or the chart by the position adjustment mechanism and turning on the backlight provided on the light transmissive chart during the calibration image acquisition period for acquiring the calibration image. It is preferable to display the irradiation position of the measurement light and to display the index graphic plane in the measurement image. In the calibration image acquisition period, it is preferable to display the alignment figure corresponding to the index figure plane on the calibration image in order to make the tip of the endoscope face the chart.
 内視鏡の先端部を保持する内視鏡保持部と、チャートが載置されるチャート保持部と、内視鏡保持部とチャート保持部との間に挟んで、チャート間距離を設定距離に合わせる距離設定治具とを備えることが好ましい。ディスプレイは、距離変更機構、位置調整機構、キャリブレーション画像の取得、又は、スケール用パラメータの取得の少なくともいずれかを含むキャリブレーションモードに関連する操作の作業内容を表示することが好ましい。ディスプレイは、距離変更機構、位置調整機構、キャリブレーション画像の取得、又は、スケール用パラメータの取得の少なくともいずれかを含むキャリブレーションモードに関連する操作表示を行うことが好ましい。 The distance between the charts is set to the set distance by sandwiching it between the endoscope holding part that holds the tip of the endoscope, the chart holding part on which the chart is placed, and the endoscope holding part and the chart holding part. It is preferable to provide a matching distance setting jig. The display preferably displays the work of operations related to the calibration mode, including at least one of a distance changing mechanism, a position adjusting mechanism, a calibration image acquisition, or a scaling parameter acquisition. The display preferably performs an operation display related to the calibration mode including at least one of a distance changing mechanism, a position adjusting mechanism, a calibration image acquisition, or a scale parameter acquisition.
 本発明は、ディスプレイに表示して被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うキャリブレーション方法であって、距離変更機構によって、複数の指標図形からなる指標図形平面が設けられたチャートと内視鏡の先端部との間のチャート間距離を変更する距離変更ステップと、位置調整機構によって、指標図形平面の基準位置と、内視鏡の先端部からチャートに向けて照射される計測光の照射位置との位置関係を調整するために、内視鏡の先端部又はチャートを移動させる移動ステップと、チャート間距離を変更する毎に、指標図形平面の基準位置と計測光の照射位置とが合った状態のチャートを内視鏡で撮像して得られるキャリブレーション画像を取得するキャリブレーション画像取得ステップと、キャリブレーション画像から、仮想スケールをディスプレイで表示するためのスケール用パラメータを取得するパラメータ取得ステップとを有し、チャートにおいて、複数の指標図形は、2つ以上の色によって、特定の色評価基準に基づく分離、又は、内視鏡に設けられた撮像素子のカラーフィルタの透過率に基づく分離がされている。 The present invention is a calibration method for calibrating a virtual scale for displaying on a display and measuring the size of a subject, and is a chart provided with an index graphic plane composed of a plurality of index figures by a distance changing mechanism. A distance change step that changes the distance between the chart and the tip of the endoscope, and a position adjustment mechanism that measures the reference position of the index graphic plane and the measurement emitted from the tip of the endoscope toward the chart. In order to adjust the positional relationship with the light irradiation position, the movement step to move the tip of the endoscope or the chart, and each time the distance between the charts is changed, the reference position on the index graphic plane and the irradiation position of the measured light Acquire the calibration image acquisition step to acquire the calibration image obtained by imaging the chart in the state of matching with the endoscope, and acquire the scale parameters for displaying the virtual scale on the display from the calibration image. It has a parameter acquisition step, and in the chart, the plurality of index figures are separated according to two or more colors based on a specific color evaluation standard, or the transmission rate of the color filter of the image pickup element provided in the endoscope. The separation is based on.
 前記距離変更ステップにおいては、光透過型の前記チャートに設けられたバックライトを消灯することにより、前記キャリブレーション画像において、前記計測光の照射位置のみを表示し、且つ、前記指標図形平面を非表示にすることが好ましい。 In the distance changing step, by turning off the backlight provided on the light-transmitting chart, only the irradiation position of the measured light is displayed in the calibration image, and the index graphic plane is not displayed. It is preferable to display it.
 キャリブレーション画像取得ステップにおいては、光透過型の前記チャートに設けられたバックライトを点灯することにより、キャリブレーション画像において、計測光の照射位置を表示し、且つ、指標図形平面を表示することが好ましい。指標図形は円であり、パラメータ取得ステップでは、キャリブレーション画像における指標図形画像に外接する外接矩形を抽出する外接矩形抽出処理と、外接矩形に内接する楕円のフィッティングパラメータを、スケール用パラメータとして算出する内接楕円パラメータ算出処理とを行うことが好ましい。 In the calibration image acquisition step, by turning on the backlight provided in the light transmission type chart, the irradiation position of the measurement light can be displayed and the index graphic plane can be displayed in the calibration image. preferable. The index figure is a circle, and in the parameter acquisition step, the circumscribed rectangle extraction process for extracting the circumscribed rectangle inscribed in the index figure image in the calibration image and the fitting parameter of the ellipse inscribed in the circumscribed rectangle are calculated as scale parameters. It is preferable to perform the inscribed ellipse parameter calculation process.
 スケール用パラメータには、チャート間距離が第1距離のスケール用パラメータと、チャート間距離が第2距離のスケール用パラメータとが含まれ、パラメータ取得ステップにおいては、距離変更機構によってチャート間距離を変更する毎に、第1距離のスケール用パラメータを取得し、パラメータ取得ステップの後に、第1距離の前記スケール用パラメータに基づく補間処理を行うことによって、第2距離のスケール用パラメータを算出する補間処理ステップを行うことが好ましい。 The scale parameters include a scale parameter having a first distance between charts and a scale parameter having a second distance between charts. In the parameter acquisition step, the distance between charts is changed by a distance changing mechanism. Each time, the parameter for the scale of the first distance is acquired, and after the parameter acquisition step, the interpolation process for calculating the parameter for the scale of the second distance is performed by performing the interpolation process based on the parameter for the scale of the first distance. It is preferable to perform the steps.
 本発明によれば、撮像光学系による歪み等の影響を考慮して、被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うことができる。 According to the present invention, it is possible to calibrate the virtual scale for measuring the size of the subject in consideration of the influence of distortion and the like due to the imaging optical system.
内視鏡システムの概略図である。It is a schematic diagram of an endoscope system. 内視鏡の先端部を示す平面図である。It is a top view which shows the tip part of an endoscope. 内視鏡装置の機能を示すブロック図である。It is a block diagram which shows the function of an endoscope apparatus. 計測光出射部を示すブロック図である。It is a block diagram which shows the measurement light emission part. 計測光によって被写体上に形成されるスポットSPを示す説明図である。It is explanatory drawing which shows the spot SP formed on the subject by the measurement light. 内視鏡の先端部と観察距離の範囲Rx内の近端Px、中央付近Py、及び遠端Pzとの関係を示す説明図である。It is explanatory drawing which shows the relationship | 信号処理部の機能を示すブロック図である。It is a block diagram which shows the function of a signal processing part. 観察距離が近端Pxである場合のスポット及び第1の仮想スケールを示す画像図である。It is an image diagram which shows the spot and the 1st virtual scale when the observation distance is a near-end Px. 観察距離が中央付近Pyである場合のスポット及び第1の仮想スケールを示す画像図である。It is an image diagram which shows the spot and the 1st virtual scale when the observation distance is Py near the center. 観察距離が遠端Pzである場合のスポット及び第1の仮想スケールを示す画像図である。It is an image diagram which shows the spot and the 1st virtual scale when the observation distance is a far end Pz. 十字型、目盛り付き十字型、歪曲十字型、円及び十字型、及び計測用点群型の第1の仮想スケールを示す説明図である。It is explanatory drawing which shows the 1st virtual scale of the cross type, the graduated cross type, the distorted cross type, the circle and the cross type, and the point cloud type for measurement. 色がそれぞれ同じ3つの同心円状のマーカを示す画像図である。FIG. 3 is an image diagram showing three concentric markers having the same color. 色がそれぞれ異なる3つの同心円状のマーカを示す画像図である。It is an image diagram which shows three concentric markers of different colors. 歪曲同心円状のマーカを示す画像図である。It is an image diagram which shows the distortion concentric marker. 交差ライン及び目盛りを示す画像図である。It is an image diagram which shows the intersection line and the scale. キャリブレーション装置の概略図である。It is a schematic diagram of a calibration device. チャートの平面図である。It is a plan view of a chart. 色相環を表す説明図である。It is explanatory drawing which shows the color wheel. 撮像素子のカラーフィルタの透過率分布を示すグラフである。It is a graph which shows the transmittance distribution of the color filter of an image sensor. 距離変更機構及び位置調整機構を備えるキャリブレーション用機構の概略図である。It is a schematic diagram of the calibration mechanism provided with the distance change mechanism and the position adjustment mechanism. バックライト消灯時のキャリブレーション画像の画像図である。It is an image diagram of the calibration image when the backlight is turned off. バックライト点灯時のキャリブレーション画像の画像図である。It is an image diagram of the calibration image when the backlight is turned on. 内視鏡の先端部がXZ平面又はYZ平面で回転可能であることを示す説明図である。It is explanatory drawing which shows that the tip part of an endoscope can rotate in an XZ plane or a YZ plane. キャリブレーションモードに対応する信号処理部の機能を示すブロック図である。It is a block diagram which shows the function of the signal processing part corresponding to a calibration mode. 二値化処理又は外接矩形抽出処理を示す説明図である。It is explanatory drawing which shows the binarization processing or the circumscribed rectangle extraction processing. 内接楕円パラメータ算出処理を示す説明図である。It is explanatory drawing which shows the inscribed ellipse parameter calculation processing. スケール確認画面を示す画像図である。It is an image diagram which shows the scale confirmation screen. 補間処理を示す説明図である。It is explanatory drawing which shows the interpolation processing. キャリブレーションモードの一連の流れを示すフローチャートである。It is a flowchart which shows a series flow of a calibration mode. 設定完了操作アイコンを示す画像図である。It is an image diagram which shows the setting completion operation icon. 真円度確認用矩形を示す説明図である。It is explanatory drawing which shows the rectangle for confirmation of roundness. 移動ステップにおけるチャート画像の画像図である。It is an image diagram of a chart image in a moving step. 位置調整完了アイコンを示す画像図である。It is an image diagram which shows the position adjustment completion icon. スケール確認アイコンを示す画像図である。It is an image diagram which shows the scale confirmation icon. 作業内容を表示する画像図である。It is an image diagram which displays the work content. 位置合わせ用画像を示す画像図である。It is an image diagram which shows the image for alignment.
 図1に示すように、内視鏡システム10は、内視鏡12と、光源装置13と、プロセッサ装置14と、ディスプレイ15と、ユーザーインターフェース16と、拡張プロセッサ装置17と、拡張ディスプレイ18とを有する。内視鏡12は、光源装置13と光学的に接続され、且つ、プロセッサ装置14と電気的に接続される。内視鏡12は、観察対象の体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dとを有している。湾曲部12cは、操作部12bを操作することにより湾曲動作する。先端部12dは、湾曲部12cの湾曲動作によって所望の方向に向けられる。 As shown in FIG. 1, the endoscope system 10 includes an endoscope 12, a light source device 13, a processor device 14, a display 15, a user interface 16, an extended processor device 17, and an extended display 18. Have. The endoscope 12 is optically connected to the light source device 13 and electrically connected to the processor device 14. The endoscope 12 has an insertion portion 12a to be inserted into the body to be observed, an operation portion 12b provided at the base end portion of the insertion portion 12a, and a curved portion 12c and a tip provided on the tip end side of the insertion portion 12a. It has a portion 12d. The curved portion 12c bends by operating the operating portion 12b. The tip portion 12d is directed in a desired direction by the bending motion of the bending portion 12c.
 また、操作部12bには、モードの切り替え操作に用いるモード切替スイッチ12fと、観察対象の静止画の取得指示に用いられる静止画取得指示スイッチ12gと、ズームレンズ21bの操作に用いられるズーム操作部12hとが設けられている。 Further, the operation unit 12b includes a mode changeover switch 12f used for mode switching operation, a still image acquisition instruction switch 12g used for instructing acquisition of a still image to be observed, and a zoom operation unit used for operating the zoom lens 21b. 12h is provided.
 プロセッサ装置14は、ディスプレイ15及びユーザーインターフェース16と電気的に接続される。ディスプレイ15は、プロセッサ装置14で処理された観察対象の画像又は情報等を出力表示する。ユーザーインターフェース16は、キーボード、マウス、タッチパッド、マイク等を有し、機能設定等の入力操作を受け付ける機能を有する。拡張プロセッサ装置17は、プロセッサ装置14に電気的に接続されている。拡張ディスプレイ18は、拡張プロセッサ装置17で処理された画像又は情報等を出力表示する。 The processor device 14 is electrically connected to the display 15 and the user interface 16. The display 15 outputs and displays an image or information of an observation target processed by the processor device 14. The user interface 16 has a keyboard, a mouse, a touch pad, a microphone, and the like, and has a function of accepting input operations such as function settings. The expansion processor device 17 is electrically connected to the processor device 14. The expansion display 18 outputs and displays an image, information, or the like processed by the expansion processor device 17.
 内視鏡12は、通常観察モードと、特殊観察モードと、測長モードと、キャリブレーションモードを備えており、モード切替スイッチ12fによって切り替えられる。通常観察モードは、照明光によって観察対象を照明するモードである。特殊観察モードは、照明光と異なる特殊光によって観察対象を照明するモードである。測長モードは、照明光又は計測光を観察対象に照明し、且つ、観察対象の撮像により得られる撮像画像上に、観察対象の大きさなどの測定に用いられる仮想スケールを表示する。仮想スケールが重畳表示されない撮像画像はディスプレイ15に表示される一方、仮想スケールが重畳表示された撮像画像は拡張ディスプレイ18に表示される。キャリブレーションモードは、内視鏡12の撮像光学系21によってサイズ等にバラつきが生ずることがある仮想スケールを内視鏡12毎に調整するために、仮想スケールに関するキャリブレーションを行う。 The endoscope 12 has a normal observation mode, a special observation mode, a length measurement mode, and a calibration mode, and can be switched by the mode changeover switch 12f. The normal observation mode is a mode in which the observation target is illuminated by the illumination light. The special observation mode is a mode in which the observation target is illuminated with special light different from the illumination light. In the length measurement mode, the illumination light or the measurement light is illuminated on the observation target, and a virtual scale used for measuring the size of the observation target or the like is displayed on the captured image obtained by imaging the observation target. The captured image on which the virtual scale is not superimposed is displayed on the display 15, while the captured image on which the virtual scale is superimposed is displayed on the extended display 18. In the calibration mode, the virtual scale is calibrated in order to adjust the virtual scale, which may vary in size or the like depending on the image pickup optical system 21 of the endoscope 12, for each endoscope 12.
 なお、照明光は、観察対象全体に明るさを与えて観察対象全体を観察するために用いられる光である。特殊光は、観察対象のうち特定領域を強調するために用いられる光である。計測光は、仮想スケールの表示に用いられる光である。また、本実施形態では、画像上に表示する仮想スケールについて説明を行うが、実際の管腔内に実スケールを設け、実スケールを画像を通して確認できるようにしてもよい。この場合には、実スケールは、内視鏡12の鉗子チャンネルを通して、挿入し、先端部12dから実スケールを突出させることが考えられる。 The illumination light is light used to give brightness to the entire observation target and observe the entire observation target. Special light is light used to emphasize a specific area of an observation target. The measurement light is the light used for displaying the virtual scale. Further, in the present embodiment, the virtual scale displayed on the image will be described, but the actual scale may be provided in the actual lumen so that the actual scale can be confirmed through the image. In this case, it is conceivable that the actual scale is inserted through the forceps channel of the endoscope 12 and the actual scale is projected from the tip portion 12d.
 ユーザーが静止画取得指示スイッチ12gを操作することにより、ディスプレイ15の画面がフリーズ表示し、合わせて、静止画取得を行う旨のアラート音(例えば「ピー」)を発する。そして、静止画取得指示スイッチ12gの操作タイミング前後に得られる撮像画像の静止画が、プロセッサ装置14内の静止画保存部42(図3参照)に保存される。なお、静止画保存部42はハードディスクやUSB(Universal Serial Bus)メモリなどの記憶部である。プロセッサ装置14がネットワークに接続可能である場合には、静止画保存部42に代えて又は加えて、ネットワークに接続された静止画保存サーバ(図示しない)に撮像画像の静止画を保存するようにしてもよい。 When the user operates the still image acquisition instruction switch 12g, the screen of the display 15 freezes and also emits an alert sound (for example, "pee") to the effect that the still image is acquired. Then, the still image of the captured image obtained before and after the operation timing of the still image acquisition instruction switch 12g is stored in the still image storage unit 42 (see FIG. 3) in the processor device 14. The still image storage unit 42 is a storage unit such as a hard disk or a USB (Universal Serial Bus) memory. When the processor device 14 can be connected to the network, the still image of the captured image is stored in the still image storage server (not shown) connected to the network in place of or in addition to the still image storage unit 42. You may.
 なお、静止画取得指示スイッチ12g以外の操作機器を用いて、静止画取得指示を行うようにしてもよい。例えば、プロセッサ装置14にフットペダルを接続し、ユーザーが足でフットペダル(図示しない)を操作した場合に、静止画取得指示を行うようにしてもよい。モード切替についてのフットペダルで行うようにしてもよい。また、プロセッサ装置14に、ユーザーのジェスチャーを認識するジェスチャー認識部(図示しない)を接続し、ジェスチャー認識部が、ユーザーによって行われた特定のジェスチャーを認識した場合に、静止画取得指示を行うようにしてもよい。モード切替についても、ジェスチャー認識部を用いて行うようにしてもよい。 It should be noted that the still image acquisition instruction may be given by using an operation device other than the still image acquisition instruction switch 12g. For example, a foot pedal may be connected to the processor device 14, and a still image acquisition instruction may be given when the user operates the foot pedal (not shown) with his / her foot. You may use the foot pedal for mode switching. Further, a gesture recognition unit (not shown) that recognizes a user's gesture is connected to the processor device 14, and when the gesture recognition unit recognizes a specific gesture performed by the user, a still image acquisition instruction is given. You may do it. The mode switching may also be performed using the gesture recognition unit.
 また、ディスプレイ15の近くに設けた視線入力部(図示しない)をプロセッサ装置14に接続し、視線入力部が、ディスプレイ15のうち所定領域内にユーザーの視線が一定時間以上入っていることを認識した場合に、静止画取得指示を行うようにしてもよい。また、プロセッサ装置14に音声認識部(図示しない)を接続し、音声認識部が、ユーザーが発した特定の音声を認識した場合に、静止画取得指示を行うようにしてもよい。モード切替についても、音声認識部を用いて行うようにしてもよい。また、プロセッサ装置14に、タッチパネルなどのオペレーションパネル(図示しない)を接続し、オペレーションパネルに対してユーザーが特定の操作を行った場合に、静止画取得指示を行うようにしてもよい。モード切替についても、オペレーションパネルを用いて行うようにしてもよい。 Further, a line-of-sight input unit (not shown) provided near the display 15 is connected to the processor device 14, and the line-of-sight input unit recognizes that the user's line of sight is within a predetermined area of the display 15 for a certain period of time or longer. If this is the case, a still image acquisition instruction may be given. Further, a voice recognition unit (not shown) may be connected to the processor device 14, and when the voice recognition unit recognizes a specific voice emitted by the user, a still image acquisition instruction may be given. The mode switching may also be performed using the voice recognition unit. Further, an operation panel (not shown) such as a touch panel may be connected to the processor device 14, and a still image acquisition instruction may be given when the user performs a specific operation on the operation panel. The mode switching may also be performed using the operation panel.
 図2に示すように、内視鏡12の先端部は略円形となっており、内視鏡12の撮像光学系を構成する光学部材のうち最も被写体側に位置する撮像光学系21と、被写体に対して照明光を照射するための照明光学系22と、計測光を被写体に照明するための計測光出射部23と、処置具を被写体に向けて突出させるための開口24と、送気送水を行うための送気送水ノズル25とが設けられている。 As shown in FIG. 2, the tip of the endoscope 12 has a substantially circular shape, and the image pickup optical system 21 located closest to the subject side among the optical members constituting the image pickup optical system of the endoscope 12 and the subject. An illumination optical system 22 for irradiating the subject with illumination light, a measurement light emission unit 23 for illuminating the subject with the measurement light, an opening 24 for projecting the treatment tool toward the subject, and air supply / water supply. Is provided with an air supply / water supply nozzle 25 for performing the above.
 撮像光学系21の光軸Axは、紙面に対して垂直な方向に延びている。縦の第1方向D1は、光軸Axに対して直交しており、横の第2方向D2は、光軸Ax及び第1方向D1に対して直交する。撮像光学系21と計測光出射部23とは、第1方向D1に沿って配列されている。 The optical axis Ax of the imaging optical system 21 extends in a direction perpendicular to the paper surface. The vertical first direction D1 is orthogonal to the optical axis Ax, and the horizontal second direction D2 is orthogonal to the optical axis Ax and the first direction D1. The imaging optical system 21 and the measurement light emitting unit 23 are arranged along the first direction D1.
 図3に示すように、光源装置13は、光源部30と、光源用プロセッサ31とを備えている。光源部30は、被写体を照明するための照明光を発生する。光源部30から出射された照明光は、ライトガイドLGに入射され、照明光学系22に設けられた照明レンズ22aを通って被写体に照射される。光源部30としては、照明光の光源として、白色光を出射する白色光源、又は、白色光源とその他の色の光を出射する光源(例えば青色光を出射する青色光源)を含む複数の光源等が用いられる。光源用プロセッサ31は、プロセッサ装置14のシステム制御部41と接続されている。なお、照明光としては、青色光、緑色光、及び赤色光をそれぞれ組み合わせた白色の混色光としてもよい。この場合には、赤色光の照射範囲に比べて緑色光の照射範囲のほうが大きくなるように、照明レンズ22aの光学設計を行うことが好ましい。 As shown in FIG. 3, the light source device 13 includes a light source unit 30 and a light source processor 31. The light source unit 30 generates illumination light for illuminating the subject. The illumination light emitted from the light source unit 30 is incident on the light guide LG and is applied to the subject through the illumination lens 22a provided in the illumination optical system 22. The light source unit 30 includes, as a light source of illumination light, a white light source that emits white light, or a plurality of light sources including a white light source and a light source that emits light of other colors (for example, a blue light source that emits blue light). Is used. The light source processor 31 is connected to the system control unit 41 of the processor device 14. The illumination light may be a white mixed color light in which blue light, green light, and red light are combined. In this case, it is preferable to design the illumination lens 22a so that the irradiation range of the green light is larger than the irradiation range of the red light.
 光源用プロセッサ31は、システム制御部41からの指示に基づいて光源部30を制御する。システム制御部41は、光源用プロセッサ31に対して、光源制御に関する指示を行う他に、計測光出射部23の光源23a(図4参照)も制御する。通常観察モード又は特殊観察モードの場合には、システム制御部41は、照明光又は特殊光を点灯し、計測光を消灯する制御を行う。測長モードの場合には、システム制御部41は、照明光を点灯し、計測光を点灯する制御を行う。キャリブレーションモードの場合には、システム制御部41は、照明光を消灯し、計測光を点灯する制御を行う。 The light source processor 31 controls the light source unit 30 based on an instruction from the system control unit 41. The system control unit 41 gives an instruction regarding the light source control to the light source processor 31, and also controls the light source 23a (see FIG. 4) of the measurement light emission unit 23. In the case of the normal observation mode or the special observation mode, the system control unit 41 controls to turn on the illumination light or the special light and turn off the measurement light. In the case of the length measurement mode, the system control unit 41 turns on the illumination light and controls to turn on the measurement light. In the calibration mode, the system control unit 41 controls to turn off the illumination light and turn on the measurement light.
 内視鏡12の先端部12dには、照明光学系22、撮像光学系21、及び計測光出射部23が設けられている。照明光学系22は照明レンズ22aaを有しており、この照明レンズ22aを介して、ライトガイドLGからの光が観察対象に照射される。撮像光学系21は、撮像光学系21a、ズームレンズ21b、及び撮像素子32を有している。観察対象からの反射光は、撮像光学系21aを介して、撮像素子32に入射する。これにより、撮像素子32に観察対象の反射像が結像される。 The tip portion 12d of the endoscope 12 is provided with an illumination optical system 22, an image pickup optical system 21, and a measurement light emission unit 23. The illumination optical system 22 has an illumination lens 22aa, and the light from the light guide LG is irradiated to the observation target through the illumination lens 22a. The image pickup optical system 21 includes an image pickup optical system 21a, a zoom lens 21b, and an image pickup element 32. The reflected light from the observation target is incident on the image pickup device 32 via the image pickup optical system 21a. As a result, a reflected image to be observed is formed on the image pickup device 32.
 撮像素子32はカラーの撮像センサであり、被検体の反射像を撮像して画像信号を出力する。この撮像素子32は、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサ等であることが好ましい。本発明で用いられる撮像素子32は、R(赤)、G(緑)B(青)の3色の赤色画像、緑色画像、及び赤色画像を得るためのカラーの撮像センサである。赤色画像は、撮像素子32において赤色のカラーフィルタRF(図19参照)が設けられた赤色画素から出力される画像である。緑色画像は、撮像素子32において緑色のカラーフィルタGF(図19参照)が設けられた緑色画素から出力される画像である。青色画像は、撮像素子32において青色のカラーフィルタBF(図19参照)が設けられた青色画素から出力される画像である。撮像素子32は、撮像制御部33によって制御される。 The image sensor 32 is a color image sensor, which captures a reflected image of a subject and outputs an image signal. The image pickup device 32 is preferably a CCD (Charge Coupled Device) image pickup sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image pickup sensor, or the like. The image pickup device 32 used in the present invention is a color image pickup sensor for obtaining a red image, a green image, and a red image of three colors of R (red), G (green), and B (blue). The red image is an image output from a red pixel provided with a red color filter RF (see FIG. 19) in the image sensor 32. The green image is an image output from a green pixel provided with a green color filter GF (see FIG. 19) in the image sensor 32. The blue image is an image output from a blue pixel provided with a blue color filter BF (see FIG. 19) in the image sensor 32. The image pickup device 32 is controlled by the image pickup control unit 33.
 撮像素子32から出力される画像信号は、CDS/AGC回路34に送信される。CDS/AGC回路34は、アナログ信号である画像信号に相関二重サンプリング(CDS(Correlated Double Sampling))や自動利得制御(AGC(Auto Gain Control))を行う。CDS/AGC回路34を経た画像信号は、A/D変換器(A/D(Analog /Digital)コンバータ)35により、デジタル画像信号に変換される。A/D変換されたデジタル画像信号は、内視鏡12の通信I/F(Interface)36及び光源装置13の通信I/F(Interface)37を介して、プロセッサ装置14に入力される。 The image signal output from the image sensor 32 is transmitted to the CDS / AGC circuit 34. The CDS / AGC circuit 34 performs correlated double sampling (CDS (Correlated Double Sampling)) and automatic gain control (AGC (Auto Gain Control)) on an image signal which is an analog signal. The image signal that has passed through the CDS / AGC circuit 34 is converted into a digital image signal by the A / D converter (A / D (Analog / Digital) converter) 35. The A / D converted digital image signal is input to the processor device 14 via the communication I / F (Interface) 36 of the endoscope 12 and the communication I / F (Interface) 37 of the light source device 13.
 プロセッサ装置14は、各種処理又は制御などに関するプログラムがプログラム格納メモリ(図示しない)に組み込まれている。画像制御用プロセッサによって構成されるシステム制御部41は、プログラム格納メモリに組み込まれたプログラムを動作することによって、光源装置13の通信I/F(Interface)37と接続される受信部38と、信号処理部39と、表示制御部40の機能が実現する。 In the processor device 14, programs related to various processes or controls are incorporated in a program storage memory (not shown). The system control unit 41 configured by the image control processor operates a program embedded in the program storage memory to connect to the communication I / F (Interface) 37 of the light source device 13 and to receive a signal. The functions of the processing unit 39 and the display control unit 40 are realized.
 受信部38は、通信I/F37から伝送されてきた画像信号を受信して信号処理部39に伝達する。信号処理部39は、受信部38から受けた画像信号を一時記憶するメモリを内蔵しており、メモリに記憶された画像信号の集合である画像信号群を処理して、撮像画像を生成する。なお、受信部38は、光源用プロセッサ31に関連する制御信号については、システム制御部41に直接送るようにしてもよい。 The receiving unit 38 receives the image signal transmitted from the communication I / F 37 and transmits it to the signal processing unit 39. The signal processing unit 39 has a built-in memory for temporarily storing an image signal received from the receiving unit 38, and processes an image signal group which is a set of image signals stored in the memory to generate an captured image. The receiving unit 38 may directly send the control signal related to the light source processor 31 to the system control unit 41.
 信号処理部39では、通常観察モードに設定されている場合には、撮像画像の青色画像はディスプレイ15のBチャンネルに、撮像画像の緑色画像はディスプレイ15のGチャンネルに、撮像画像の赤色画像はディスプレイ15のRチャンネルにそれぞれ割り当てる信号割り当て処理を行うことによって、カラーの撮像画像がディスプレイ15に表示する。測長モードについても、通常観察モードと同様の信号割り当て処理を行う。 In the signal processing unit 39, when the normal observation mode is set, the blue image of the captured image is on the B channel of the display 15, the green image of the captured image is on the G channel of the display 15, and the red image of the captured image is on the G channel. By performing signal allocation processing assigned to each R channel of the display 15, a color captured image is displayed on the display 15. Also in the length measurement mode, the same signal allocation processing as in the normal observation mode is performed.
 一方、信号処理部39では、特殊観察モードに設定されている場合には、撮像画像の赤色画像はディスプレイ15の表示には使用せず、撮像画像の青色画像をディスプレイ15のBチャンネルとGチャンネルに割り当て、撮像画像の緑色画像をディスプレイ15のRチャンネルに割り当てることによって、疑似カラーの撮像画像をディスプレイ15に表示する。また、信号処理部39では、測長モードに設定されている場合には、計測光の照射位置を含む撮像画像をデータ送受信部43に送信する。データ送受信部43は、撮像画像に関するデータを拡張プロセッサ装置17に送信する。なお、データ送受信部43は、拡張プロセッサ装置17からのデータ等の受信が可能である。受信したデータは、信号処理部39又はシステム制御部41にて処理が可能である。 On the other hand, in the signal processing unit 39, when the special observation mode is set, the red image of the captured image is not used for the display of the display 15, and the blue image of the captured image is used for the B channel and the G channel of the display 15. By assigning the green image of the captured image to the R channel of the display 15, the captured image of pseudo color is displayed on the display 15. Further, when the signal processing unit 39 is set to the length measurement mode, the signal processing unit 39 transmits the captured image including the irradiation position of the measurement light to the data transmission / reception unit 43. The data transmission / reception unit 43 transmits data related to the captured image to the expansion processor device 17. The data transmission / reception unit 43 can receive data or the like from the expansion processor device 17. The received data can be processed by the signal processing unit 39 or the system control unit 41.
 表示制御部40は、信号処理部39によって生成された撮像画像をディスプレイ15に表示する。システム制御部41は、内視鏡12、光源装置13、プロセッサ装置14、及び拡張プロセッサ装置17に対して、各種の制御を行う。内視鏡12に設けられた撮像制御部33を介して、撮像素子32の制御を行う。撮像制御部33は、撮像素子32の制御に合わせて、CDS/AGC34及びA/D35の制御も行う。 The display control unit 40 displays the captured image generated by the signal processing unit 39 on the display 15. The system control unit 41 performs various controls on the endoscope 12, the light source device 13, the processor device 14, and the extended processor device 17. The image pickup device 32 is controlled via the image pickup control unit 33 provided in the endoscope 12. The image pickup control unit 33 also controls the CDS / AGC34 and the A / D35 in accordance with the control of the image pickup element 32.
 拡張プロセッサ装置17は、プロセッサ装置14から送信されたデータをデータ送受信部44にて受信する。信号処理部45は、データ送受信部44で受信したデータに基づいて、測長モードに関連する処理を行う。具体的には、計測光の照射位置を含む撮像画像から仮想スケールの表示パターンを決定し、決定した表示パターンに基づく仮想スケールを撮像画像に重畳表示させる処理を行う。表示制御部46は、仮想スケールが重畳表示された撮像画像を拡張ディスプレイ18に表示させる。なお、データ送受信部44は、プロセッサ装置14にデータ等を送信することが可能である。 The expansion processor device 17 receives the data transmitted from the processor device 14 by the data transmission / reception unit 44. The signal processing unit 45 performs processing related to the length measurement mode based on the data received by the data transmission / reception unit 44. Specifically, a virtual scale display pattern is determined from the captured image including the irradiation position of the measurement light, and the virtual scale based on the determined display pattern is superimposed and displayed on the captured image. The display control unit 46 displays the captured image on which the virtual scale is superimposed and displayed on the extended display 18. The data transmission / reception unit 44 can transmit data or the like to the processor device 14.
 図4に示すように、計測光出射部23は、光源23aと、回折光学素子DOE23b(Diffractive Optical Element)と、プリズム23cと、計測光用レンズ23dとを備える。光源23aは、撮像素子32の画素によって検出可能な色の光(具体的には可視光)を出射するものであり、レーザー光源LD(Laser Diode)又はLED(Light Emitting Diode)等の発光素子と、この発光素子から出射される光を集光する集光レンズとを含む。 As shown in FIG. 4, the measurement light emitting unit 23 includes a light source 23a, a diffractive optical element DOE23b (Diffractive Optical Element), a prism 23c, and a measurement light lens 23d. The light source 23a emits light of a color that can be detected by the pixels of the image pickup element 32 (specifically, visible light), and is a light emitting element such as a laser light source LD (Laser Diode) or an LED (Light Emitting Diode). , Includes a condenser lens that collects the light emitted from this light emitting element.
 本実施形態では、光源23aが出射する光の波長は、例えば、600nm以上650nm以下の赤色のレーザー光を使用するが、その他の波長帯域の光、例えば、495nm以上570nm以下の緑色光を用いてもよい。光源23aはシステム制御部41によって制御され、システム制御部41からの指示に基づいて光出射を行う。DOE23bは、光源から出射した光を、計測情報を得るための計測光に変換する。 In the present embodiment, the wavelength of the light emitted by the light source 23a is, for example, a red laser light of 600 nm or more and 650 nm or less, but light in another wavelength band, for example, green light of 495 nm or more and 570 nm or less is used. May be good. The light source 23a is controlled by the system control unit 41, and emits light based on an instruction from the system control unit 41. The DOE23b converts the light emitted from the light source into the measurement light for obtaining the measurement information.
 プリズム23cは、DOE23bで変換後の計測光の進行方向を変えるための光学部材である。プリズム23cは、撮像光学系21の視野と交差するように、計測光の進行方向を変更する。計測光の進行方向の詳細についても、後述する。プリズム23cから出射した計測光Lmは、計測光用レンズ23dを通って、被写体へと照射される。 The prism 23c is an optical member for changing the traveling direction of the measured light after conversion by the DOE23b. The prism 23c changes the traveling direction of the measurement light so as to intersect the field of view of the imaging optical system 21. The details of the traveling direction of the measurement light will also be described later. The measurement light Lm emitted from the prism 23c passes through the measurement light lens 23d and irradiates the subject.
 計測光が被写体に照射されることにより、図5に示すように、被写体において、円状領域としてのスポットSPが形成される。このスポットSPの位置(計測光の照射位置)は、照射位置検出部54(図7参照)によって特定され、また、スポットSPの位置に応じて、実寸サイズを表す仮想スケールが設定される。設定された仮想スケールは、撮像画像上に表示される。なお、仮想スケールには、後述するように、第1の仮想スケール、第2の仮想スケールなど複数の種類が含まれ、いずれの種類の仮想スケールを撮像画像上に表示するかについては、ユーザーの指示によって選択が可能となっている。ユーザーの指示としては、例えば、ユーザーインターフェース16が用いられる。 By irradiating the subject with the measured light, as shown in FIG. 5, a spot SP as a circular region is formed in the subject. The position of the spot SP (irradiation position of the measured light) is specified by the irradiation position detection unit 54 (see FIG. 7), and a virtual scale representing the actual size is set according to the position of the spot SP. The set virtual scale is displayed on the captured image. As will be described later, the virtual scale includes a plurality of types such as a first virtual scale and a second virtual scale, and the user determines which type of virtual scale is displayed on the captured image. Selection is possible by instructions. As the user's instruction, for example, the user interface 16 is used.
 なお、計測光用レンズ23dに代えて、内視鏡の先端部12dに形成される計測補助用スリットとしてもよい。また、計測光用レンズ23dには、反射防止コート(AR(Anti-Reflection)コート)(反射防止部)を施すことが好ましい。このように反射防止コートを設けるのは、計測光が計測光用レンズ23dを透過せずに反射して、被写体に照射される計測光の割合が低下すると、後述する照射位置検出部54が、計測光により被写体上に形成されるスポットSPの位置を認識し難くなるためである。 Instead of the measurement light lens 23d, it may be a measurement assist slit formed in the tip portion 12d of the endoscope. Further, it is preferable to apply an antireflection coating (AR (Anti-Reflection) coating) (antireflection portion) to the measurement light lens 23d. In this way, the antireflection coat is provided by the irradiation position detection unit 54, which will be described later, when the measurement light is reflected without passing through the measurement light lens 23d and the ratio of the measurement light irradiated to the subject decreases. This is because it becomes difficult to recognize the position of the spot SP formed on the subject by the measurement light.
 なお、計測光出射部23は、計測光を撮像光学系21の視野に向けて出射できるものであればよい。例えば、光源23aが光源装置13に設けられ、光源23aから出射された光が光ファイバによってDOE23bにまで導光されるものであってもよい。また、プリズム23cを用いずに、光源23a及びDOE23bの向きを光軸Axに対して斜めに設置することで、撮像光学系21の視野を横切る方向に計測光Lmを出射させる構成としてもよい。 The measurement light emitting unit 23 may be any as long as it can emit the measurement light toward the field of view of the image pickup optical system 21. For example, the light source 23a may be provided in the light source device 13, and the light emitted from the light source 23a may be guided to the DOE 23b by an optical fiber. Further, the measurement light Lm may be emitted in a direction crossing the field of view of the imaging optical system 21 by installing the light sources 23a and DOE23b at an angle with respect to the optical axis Ax without using the prism 23c.
 計測光の進行方向については、図6に示すように、計測光Lmの光軸Lmが撮像光学系21の光軸Axと交差する状態で、計測光Lmを出射する。観察距離の範囲Rxにおいて観察可能であるとすると、範囲Rxの近端Px、中央付近Py、及び遠端Pzでは、各点での撮像範囲(矢印Qx、Qy、Qzで示す)における計測光Lmによって被写体上に形成されるスポットSPの位置(各矢印Qx、Qy、Qzが光軸Axと交わる点)が異なることが分かる。なお、撮像光学系29bの撮影画角は2つの実線48で挟まれる領域内で表され、この撮影画角のうち収差の少ない中央領域(2つの点線49「で挟まれる領域)で計測を行うようにしている。 As for the traveling direction of the measurement light, as shown in FIG. 6, the measurement light Lm is emitted in a state where the optical axis Lm of the measurement light Lm intersects the optical axis Ax of the imaging optical system 21. Assuming that observation is possible in the range Rx of the observation distance, in the near-end Px, near-center Py, and far-end Pz of the range Rx, the measurement light Lm in the imaging range (indicated by arrows Qx, Qy, Qz) at each point. It can be seen that the positions of the spots SP formed on the subject (points where the arrows Qx, Qy, and Qz intersect with the optical axis Ax) are different. The shooting angle of view of the imaging optical system 29b is represented in the region sandwiched between the two solid lines 48, and the measurement is performed in the central region (the region sandwiched by the two dotted lines 49 ") of the shooting angle of view where aberration is small. I am doing it.
 以上のように、計測光の光軸Lmを光軸Axと交差する状態で、計測光Lmを出射することによって、観察距離の変化に対するスポット位置の移動の感度が高いことから、被写体の大きさを高精度に計測することができる。そして、計測光が照明された被写体を撮像素子32で撮像することによって、スポットSPを含む撮像画像が得られる。撮像画像では、スポットSPの位置は、撮像光学系21の光軸Axと計測光Lmの光軸Lmとの関係、及び観察距離に応じて異なるが、観察距離が近ければ、同一の実寸サイズ(例えば5mm)を示すピクセル数が多くなり、観察距離が遠ければピクセル数が少なくなる。第3方向D3は、第1方向D1及び第2方向に直交する方法である。 As described above, by emitting the measurement light Lm in a state where the optical axis Lm of the measurement light intersects the optical axis Ax, the sensitivity of the movement of the spot position to the change in the observation distance is high, so that the size of the subject is large. Can be measured with high accuracy. Then, by taking an image of the subject illuminated by the measurement light with the image pickup device 32, an image pickup image including the spot SP can be obtained. In the captured image, the position of the spot SP differs depending on the relationship between the optical axis Ax of the imaging optical system 21 and the optical axis Lm of the measured light Lm and the observation distance, but if the observation distance is short, the same actual size ( For example, the number of pixels indicating 5 mm) increases, and the number of pixels decreases as the observation distance increases. The third direction D3 is a method orthogonal to the first direction D1 and the second direction.
 図7に示すように、拡張プロセッサ装置17の信号処理部45は、スポットSPの位置認識、及び仮想スケールの設定を行うために、撮像画像におけるスポットSPの位置を検出する第1信号処理部50と、スポットSPの位置に応じて仮想スケールを設定する第2信号処理部52とを備えている。 As shown in FIG. 7, the signal processing unit 45 of the expansion processor device 17 detects the position of the spot SP in the captured image in order to recognize the position of the spot SP and set the virtual scale. And a second signal processing unit 52 that sets a virtual scale according to the position of the spot SP.
 第1信号処理部50は、撮像画像からスポットSPの照射位置を検出する照射位置検出部54を備えている。照射位置検出部54では、スポットSPの照射位置として、スポットSPの重心位置座標を取得することが好ましい。 The first signal processing unit 50 includes an irradiation position detection unit 54 that detects the irradiation position of the spot SP from the captured image. It is preferable that the irradiation position detection unit 54 acquires the coordinates of the center of gravity of the spot SP as the irradiation position of the spot SP.
 第2信号処理部52は、スポットSPの照射位置に基づいて、被写体のサイズを計測するための仮想スケールとして、第1の仮想スケールを設定し、第1の仮想スケールのスケール表示位置を設定する。第2信号処理部52は、スポットSPの照射位置及びスケール表示位置によって表示パターンが変わる仮想スケール画像と、スポットの照射位置とを関連付けて記憶するスケール用テーブル55を参照して、スポットSPの照射位置に対応する仮想スケールを設定する。 The second signal processing unit 52 sets the first virtual scale as a virtual scale for measuring the size of the subject based on the irradiation position of the spot SP, and sets the scale display position of the first virtual scale. .. The second signal processing unit 52 refers to the scale table 55 that stores the virtual scale image whose display pattern changes depending on the irradiation position of the spot SP and the irradiation position of the spot in association with the irradiation position of the spot, and irradiates the spot SP. Set the virtual scale corresponding to the position.
 仮想スケールは、スポットSPの照射位置及びスケール表示位置によって、例えば、大きさ、又は、形状が異なっている。仮想スケール画像の表示に関しては、後述する。また、スケール用テーブル55については、拡張プロセッサ装置17の電源をOFFにした場合であっても、保存内容が維持される。なお、スケール用テーブル55は、スケール用パラメータと照射位置とを関連付けて記憶するが、照射位置に対応する被写体との距離(内視鏡12の先端部12dと被写体との距離)とスケール用パラメータとを関連付けて記憶してもよい。 The virtual scale differs in size or shape, for example, depending on the irradiation position and scale display position of the spot SP. The display of the virtual scale image will be described later. Further, the stored contents of the scale table 55 are maintained even when the power of the expansion processor device 17 is turned off. The scale table 55 stores the scale parameter and the irradiation position in association with each other, but the distance to the subject corresponding to the irradiation position (distance between the tip portion 12d of the endoscope 12 and the subject) and the scale parameter. You may memorize it in association with.
 なお、スケール用パラメータについては、照射位置毎に必要になり、データ容量が大きくなることから、内視鏡12における保存可能なメモリの容量、起動、及び処理時間などの観点を考慮し、内視鏡12内のメモリ(図示しない)に保持するよりも、拡張プロセッサ装置17(又はプロセッサ装置14)内に保持したほうが好ましい。また、仮想スケールの画像は、後述するように、キャリブレーションによって得られたスケール用パラメータから作成しているが、測長モード時にスケール用パラメータから仮想スケール画像を作成すると、ロスタイムが発生し、処理のリアルタイム性が損なわれる。 It should be noted that the scale parameters are required for each irradiation position, and the data capacity becomes large. Therefore, considering the viewpoints such as the capacity of the memory that can be stored in the endoscope 12, the startup, and the processing time, the endoscope is used for endoscopy. It is preferable to hold it in the extended processor device 17 (or processor device 14) rather than holding it in a memory (not shown) in the mirror 12. Also, as will be described later, the virtual scale image is created from the scale parameters obtained by calibration, but if a virtual scale image is created from the scale parameters in the length measurement mode, loss time will occur and processing will occur. The real-time property of is impaired.
 そのため、内視鏡12を内視鏡接続部に接続し、一度、スケール用パラメータから仮想スケール画像を作成してスケール用テーブル55を更新した後は、代表点から仮想スケールを作成するのではなく、更新後のスケール用テーブル55を用いて、仮想スケール画像の表示を行うようにする。また、第2信号処理部52においては、画像の重畳表示などが困難になる非常時には、測長画像に重畳表示する仮想スケール画像の代わりに、スポットSPの照射位置と被写体の実寸サイズに対応するピクセル数との関係から、スケールの大きさを定める基準スケールが、基準スケール用画像に表示される。なお、測長画像は、スポットSPなどの計測光の照射位置及び/又は仮想スケール画像を含む画像であって、拡張ディスプレイ18で表示される画像である。基準スケール用画像は、計測光の照射位置及び/又は基準スケール画像を含む画像であって、拡張ディスプレイ18で表示される画像である。 Therefore, after connecting the endoscope 12 to the endoscope connection portion, once creating a virtual scale image from the scale parameters and updating the scale table 55, the virtual scale is not created from the representative points. , The virtual scale image is displayed using the updated scale table 55. Further, in the second signal processing unit 52, in an emergency when it becomes difficult to superimpose and display the image, the irradiation position of the spot SP and the actual size of the subject correspond to the irradiation position of the spot SP instead of the virtual scale image to be superimposed and displayed on the length measurement image. A reference scale that determines the size of the scale is displayed on the reference scale image in relation to the number of pixels. The length measurement image is an image including an irradiation position of measurement light such as a spot SP and / or a virtual scale image, and is an image displayed on the extended display 18. The reference scale image is an image including the irradiation position of the measurement light and / or the reference scale image, and is an image displayed on the extended display 18.
 また、第2信号処理部52は、内視鏡12を、光源装置13の内視鏡接続部(図示しない)に接続した場合には、スケール用テーブル55を更新するためのテーブル更新部56を備えている。このようにスケール用テーブル55を更新できるようにしているのは、内視鏡12は、機種及びシリアル番号によって、計測光の光軸Lmと撮像光学系21との位置関係が異なり、それに従って、仮想スケール画像の表示パターンも変わってくるためである。テーブル更新部56では、キャリブレーションモード時に得られるスケール用パラメータと、照射位置とを関連付けて記憶するパラメータテーブル57が用いられる。テーブル更新部56及びパラメータテーブル57の詳細については、後述する。なお、パラメータテーブル57については、照射位置に対応する被写体との距離(内視鏡12の先端部12dと被写体との距離)と代表点データとを関連付けて記憶してもよい。 Further, the second signal processing unit 52 provides a table update unit 56 for updating the scale table 55 when the endoscope 12 is connected to the endoscope connection unit (not shown) of the light source device 13. I have. The reason why the scale table 55 can be updated in this way is that the endoscope 12 has a different positional relationship between the optical axis Lm of the measurement light and the image pickup optical system 21 depending on the model and serial number, and accordingly. This is because the display pattern of the virtual scale image also changes. In the table update unit 56, a parameter table 57 that stores the scale parameters obtained in the calibration mode in association with the irradiation position is used. Details of the table update unit 56 and the parameter table 57 will be described later. The parameter table 57 may be stored in association with the distance to the subject corresponding to the irradiation position (distance between the tip portion 12d of the endoscope 12 and the subject) and the representative point data.
 表示制御部46は、仮想スケールを撮像画像に重畳した測長画像を拡張ディスプレイ18に表示する場合において、仮想スケールを、スポットSPの照射位置及びスケール表示位置に応じて表示態様が異なる制御を行う。具体的には、表示制御部46は、スポットSPを中心として、第1の仮想スケールを重畳した測長画像を拡張ディスプレイ18に表示する。第1の仮想スケールとしては、例えば、円型の計測マーカを用いる。この場合、図8に示すように、観察距離が近端Px(図6参照)に近い場合には、被写体の腫瘍tm1上に形成されたスポットSP1の中心に合わせて、実寸サイズ5mm(撮像画像の水平方向及び垂直方向)を示す仮想スケールM1が表示される。 The display control unit 46 controls the display mode of the virtual scale to be different depending on the irradiation position and the scale display position of the spot SP when the length measurement image in which the virtual scale is superimposed on the captured image is displayed on the extended display 18. .. Specifically, the display control unit 46 displays the length measurement image on which the first virtual scale is superimposed centering on the spot SP on the extended display 18. As the first virtual scale, for example, a circular measurement marker is used. In this case, as shown in FIG. 8, when the observation distance is close to the near end Px (see FIG. 6), the actual size is 5 mm (captured image) in line with the center of the spot SP1 formed on the tumor tm1 of the subject. A virtual scale M1 indicating (horizontal and vertical directions) is displayed.
 仮想スケールM1のマーカ表示位置は、撮像光学系21による歪みの影響を受ける撮像画像の周辺部に位置しているため、仮想スケールM1は、歪み等の影響に合わせて、楕円状となっている。以上のマーカM1は腫瘍tm1の範囲とはほぼ一致しているため、腫瘍tm1は5mm程度と計測することができる。なお、撮像画像に対しては、スポットを表示せず、第1の仮想スケールのみを表示するようにしてもよい。 Since the marker display position of the virtual scale M1 is located in the peripheral portion of the captured image affected by the distortion caused by the imaging optical system 21, the virtual scale M1 has an elliptical shape according to the influence of the distortion and the like. .. Since the above marker M1 substantially coincides with the range of the tumor tm1, the tumor tm1 can be measured to be about 5 mm. It should be noted that the spot may not be displayed on the captured image, and only the first virtual scale may be displayed.
 また、図9に示すように、観察距離が中央付近Py(図6参照)に近い場合、被写体の腫瘍tm2上に形成されたスポットSP2の中心に合わせて、実寸サイズ5mm(撮像画像の水平方向及び垂直方向)を示す仮想スケールM2が表示される。仮想スケールM2のスケール表示位置は、撮像光学系21によって歪みの影響を受けにくい撮像画像の中心部に位置しているため、仮想スケールM2は、歪み等の影響を受けることなく、円状となっている。 Further, as shown in FIG. 9, when the observation distance is close to Py near the center (see FIG. 6), the actual size is 5 mm (horizontal direction of the captured image) in accordance with the center of the spot SP2 formed on the tumor tm2 of the subject. And the virtual scale M2 indicating the vertical direction) is displayed. Since the scale display position of the virtual scale M2 is located in the center of the captured image that is not easily affected by distortion by the imaging optical system 21, the virtual scale M2 is circular without being affected by distortion or the like. ing.
 また、図10に示すように、観察距離が遠端Pz(図6参照)に近い場合、被写体の腫瘍tm3上に形成されたスポットSP3の中心に合わせて、実寸サイズ5mm(撮像画像の水平方向及び垂直方向)を示す仮想スケールM3が表示される。仮想スケールM3のスケール表示位置は、撮像光学系21による歪みの影響を受ける撮像画像の周辺部に位置しているため、仮想スケールM3は、歪み等の影響に合わせて、楕円状となっている。以上の図8~図10に示すように、観察距離が長くなるにつれて同一の実寸サイズ5mmに対応する第1の仮想スケールの大きさが小さくなっている。また、マーカ表示位置によって、撮像光学系21による歪みの影響に合わせて、第1の仮想スケールの形状も異なっている。 Further, as shown in FIG. 10, when the observation distance is close to the far end Pz (see FIG. 6), the actual size is 5 mm (horizontal direction of the captured image) so as to be aligned with the center of the spot SP3 formed on the tumor tm3 of the subject. And the virtual scale M3 indicating the vertical direction) is displayed. Since the scale display position of the virtual scale M3 is located in the peripheral portion of the captured image affected by the distortion caused by the imaging optical system 21, the virtual scale M3 has an elliptical shape according to the influence of the distortion and the like. .. As shown in FIGS. 8 to 10 above, the size of the first virtual scale corresponding to the same actual size of 5 mm becomes smaller as the observation distance becomes longer. Further, the shape of the first virtual scale differs depending on the marker display position according to the influence of the distortion caused by the imaging optical system 21.
 なお、図8~図10では、スポットSPの中心とマーカの中心を一致させて表示しているが、計測精度上問題にならない場合には、スポットSPから離れた位置に第1の仮想スケールを表示してもよい。ただし、この場合にもスポットの近傍に第1の仮想スケールを表示することが好ましい。また、第1の仮想スケールを変形して表示するのではなく、撮像画像の歪曲収差を補正し変形させない状態の第1の仮想スケールを補正後の撮像画像に表示するようにしてもよい。 In FIGS. 8 to 10, the center of the spot SP and the center of the marker are displayed so as to coincide with each other. However, if there is no problem in terms of measurement accuracy, the first virtual scale is placed at a position away from the spot SP. It may be displayed. However, even in this case as well, it is preferable to display the first virtual scale in the vicinity of the spot. Further, instead of deforming and displaying the first virtual scale, the first virtual scale in a state where the distortion aberration of the captured image is corrected and not deformed may be displayed on the corrected captured image.
 また、図8~図10では、被写体の実寸サイズ5mmに対応する第1の仮想スケールを表示しているが、被写体の実寸サイズは観察対象や観察目的に応じて任意の値(例えば、2mm、3mm、10mm等)を設定してもよい。また、図8~図10では、第1の仮想スケールを、略円型としているが、図11に示すように、縦線と横線が交差する十字型としてもよい。また、十字型の縦線と横線の少なくとも一方に、目盛りMxを付けた目盛り付き十字型としてもよい。また、第1の仮想スケールとして、縦線、横線のうち少なくともいずれかを傾けた歪曲十字型としてもよい。また、第1の仮想スケールを、十字型と円を組み合わせた円及び十字型としてもよい。その他、第1の仮想スケールを、スポットから実寸サイズに対応する複数の測定点EPを組み合わせた計測用点群型としてもよい。また、第1の仮想スケールの数は一つでも複数でもよいし、実寸サイズに応じて第1の仮想スケールの色を変化させてもよい。 Further, in FIGS. 8 to 10, the first virtual scale corresponding to the actual size of the subject of 5 mm is displayed, but the actual size of the subject is an arbitrary value (for example, 2 mm, depending on the observation target and the observation purpose). 3 mm, 10 mm, etc.) may be set. Further, in FIGS. 8 to 10, the first virtual scale has a substantially circular shape, but as shown in FIG. 11, a cross shape in which vertical lines and horizontal lines intersect may be used. Further, a graduated cross shape in which a scale Mx is added to at least one of the vertical line and the horizontal line of the cross shape may be used. Further, as the first virtual scale, a distorted cross shape in which at least one of a vertical line and a horizontal line is tilted may be used. Further, the first virtual scale may be a circle in which a cross shape and a circle are combined and a cross shape. In addition, the first virtual scale may be a measurement point cloud type in which a plurality of measurement point EPs corresponding to the actual size from the spot are combined. Further, the number of the first virtual scale may be one or a plurality, and the color of the first virtual scale may be changed according to the actual size.
 なお、第1の仮想スケールとして、図12に示すように、大きさが異なる3つの同心円状の仮想スケールM4A、M4B、M4C(大きさはそれぞれ直径が2mm、5mm、10mm)を、腫瘍tm4上に形成されたスポットSP4を中心として、撮像画像上に表示するようにしてもよい。この3つの同心円状の仮想スケールは、仮想スケールを複数表示するので切替の手間が省け、また、被写体が非線形な形状をしている場合でも計測が可能である。なお、スポットを中心として同心円状の仮想スケールを複数表示する場合には、大きさや色を仮想スケール毎に指定するのではなく、複数の条件の組合せを予め用意しておきその組み合わせの中から選択できるようにしてもよい。 As the first virtual scale, as shown in FIG. 12, three concentric virtual scales M4A, M4B, and M4C (the sizes are 2 mm, 5 mm, and 10 mm in diameter, respectively) having different sizes are placed on the tumor tm4. The spot SP4 formed in the center may be displayed on the captured image. Since these three concentric virtual scales display a plurality of virtual scales, the trouble of switching can be saved, and measurement is possible even when the subject has a non-linear shape. When displaying multiple concentric virtual scales centered on the spot, instead of specifying the size and color for each virtual scale, prepare a combination of multiple conditions in advance and select from the combinations. You may be able to do it.
 図12では、3つの同心円状の仮想スケールを全て同じ色(黒)で表示しているが、複数の同心円状のマーカを表示する場合、仮想スケールによって色を変えた複数の色付き同心円状のマーカとしてもよい。図13に示すように、仮想スケールM5Aは赤色を表す点線、仮想スケールM5Bは青色を表す実線、仮想スケールM5Cは白を表す一点鎖線で表示している。このように仮想スケールの色を変えることで識別性が向上し、容易に計測を行うことができる。 In FIG. 12, all three concentric virtual scales are displayed in the same color (black), but when displaying a plurality of concentric markers, a plurality of colored concentric markers whose colors are changed by the virtual scales are displayed. May be. As shown in FIG. 13, the virtual scale M5A is represented by a dotted line representing red, the virtual scale M5B is represented by a solid line representing blue, and the virtual scale M5C is represented by a alternate long and short dash line representing white. By changing the color of the virtual scale in this way, the distinctiveness is improved and measurement can be easily performed.
 また、第1の仮想スケールとしては、複数の同心円状の仮想スケールの他、図14に示すように、各同心円を歪曲させた複数の歪曲同心円状の仮想スケールを用いてもよい。この場合、歪曲同心円状の仮想スケールM6A、仮想スケールM6B、仮想スケールM6Cが、腫瘍tm5に形成されたスポットSP5を中心に撮像画像に表示されている。 Further, as the first virtual scale, in addition to a plurality of concentric virtual scales, as shown in FIG. 14, a plurality of distorted concentric virtual scales in which each concentric circle is distorted may be used. In this case, the distorted concentric virtual scales M6A, virtual scales M6B, and virtual scales M6C are displayed in the captured image centering on the spot SP5 formed on the tumor tm5.
 なお、計測光については、被写体に照射された場合に、スポットとして形成される光を用いているが、その他の光を用いるようにしてもよい。例えば、被写体に照射された場合に、図15に示すように、被写体上に交差ライン58として形成される平面状の計測光を用いてもよい。この場合は、仮想スケールとして、交差ライン58及び交差ライン58上に被写体の大きさ(例えば、ポリープP)の指標となる目盛り59からなる第2の仮想スケールを生成する。平面状の計測光を用いる場合には、照射位置検出部54は、交差ライン58の位置(計測光の照射位置)を検出する。交差ライン58が下方に位置する程、観察距離が近く、交差ライン58が上方に位置する程、観察距離が遠くなる。これに従い、交差ライン58が下方に位置する程、目盛り59の間隔は大きくなり、交差ライン58が上方に位置する程、目盛り59の間隔は小さくなる。 As the measurement light, the light formed as a spot when the subject is irradiated is used, but other light may be used. For example, when the subject is irradiated, as shown in FIG. 15, a planar measurement light formed as an intersecting line 58 on the subject may be used. In this case, as a virtual scale, a second virtual scale consisting of a scale 59 as an index of the size of the subject (for example, polyp P) is generated on the intersection line 58 and the intersection line 58. When a planar measurement light is used, the irradiation position detection unit 54 detects the position of the intersection line 58 (irradiation position of the measurement light). The lower the crossing line 58 is, the closer the observation distance is, and the higher the crossing line 58 is, the farther the observation distance is. Accordingly, the lower the crossing line 58 is, the larger the spacing between the scales 59 is, and the higher the crossing line 58 is located, the smaller the spacing between the scales 59 is.
 キャリブレーションモードは、図16に示すキャリブレーション装置100を用いて行われる。キャリブレーション装置100は、拡張ディスプレイ18に表示して被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うための装置である。キャリブレーション装置100は、チャート101、距離変更機構102、位置調整機構103、拡張プロセッサ装置17、拡張ディスプレイ18を備える。なお、拡張プロセッサ装置17及び拡張ディスプレイ18は、内視鏡システム10と兼用である。また、拡張プロセッサ装置17は、キャリブレーションモードに必要なキャリブレーション画像取得部121及びスケール用パラメータ取得部122の機能が少なくともあればよい。 The calibration mode is performed using the calibration device 100 shown in FIG. The calibration device 100 is a device for calibrating the virtual scale for displaying on the extended display 18 and measuring the size of the subject. The calibration device 100 includes a chart 101, a distance changing mechanism 102, a position adjusting mechanism 103, an expansion processor device 17, and an expansion display 18. The expansion processor device 17 and the expansion display 18 are also used as the endoscope system 10. Further, the expansion processor device 17 only needs to have at least the functions of the calibration image acquisition unit 121 and the scale parameter acquisition unit 122 required for the calibration mode.
 図17に示すように、チャート101は、3つの指標図形104a、104b、104cからなる指標図形平面104が設けられている。指標図形104aは直径5mmの円形であり、指標図形104bは直径10mmの円形であり、指標図形104cは直径20mmの円形である。これら指標図形104a、104b、104cは、後述するように、キャリブレーション画像では撮像光学系21の影響を受けて、円形が変形した楕円などの形になる。なお、チャート101に複数の指標図形を設けることにより、各指標図形に対応するサイズの仮想スケールのスケール用パラメータを同時に取得することができる。これにより、1つの指標図形で仮想スケールのスケール用パラメータを取得する場合と比べて、キャリブレーションの時間を短縮することができる。 As shown in FIG. 17, the chart 101 is provided with an index graphic plane 104 composed of three index figures 104a, 104b, and 104c. The index figure 104a is a circle having a diameter of 5 mm, the index figure 104b is a circle having a diameter of 10 mm, and the index figure 104c is a circle having a diameter of 20 mm. As will be described later, these index figures 104a, 104b, and 104c are affected by the imaging optical system 21 in the calibration image and have a shape such as an ellipse in which the circle is deformed. By providing a plurality of index figures on the chart 101, it is possible to simultaneously acquire scale parameters of a virtual scale having a size corresponding to each index figure. As a result, the calibration time can be shortened as compared with the case of acquiring the scale parameter of the virtual scale with one index figure.
 指標図形平面104は、指標図形104a、104b、104cが一点の基準位置STで接している平面としているが、指標図形104a、104b、104cの中心を同じにする同心円型の平面としてもよい。また、指標図形を円形としているが、正多角形としてもよい。この場合においても、複数の正多角形を一点の基準位置STで接している平面、又は、複数の正多角形の重心を同じにする同心型の平面としてもよい。また、指標図形は、十字、又は、線分などでもよい。 The index figure plane 104 is a plane in which the index figures 104a, 104b, 104c are in contact with each other at the reference position ST at one point, but may be a concentric plane having the same center of the index figures 104a, 104b, 104c. Further, although the index figure is circular, it may be a regular polygon. Also in this case, it may be a plane in which a plurality of regular polygons are in contact with each other at one reference position ST, or a concentric plane having the same center of gravity of the plurality of regular polygons. Further, the index figure may be a cross, a line segment, or the like.
 3つの指標図形104a、104b、104cは、2つ以上の色によって、特定の色評価基準に基づく分離がされている。特定の色評価基準としては、図18に示す色相環105を用いることが好ましい。指標図形の色は、白色、黒色、又は色相環105で100°以上それぞれ離れた色相に対応する複数の色のうち2以上の色を含むことが好ましい。 The three index figures 104a, 104b, 104c are separated by two or more colors based on a specific color evaluation standard. As a specific color evaluation standard, it is preferable to use the hue circle 105 shown in FIG. The color of the index figure is preferably white, black, or includes two or more of a plurality of colors corresponding to hues separated by 100 ° or more on the hue circle 105.
 ここで、色相環で100°以上離れた色相に対応する複数の色の組み合わせとしては、B(青)、G(緑)、R(赤)(それぞれ色相環で120°離れている)、又は、C(シアン)、M(マゼンタ)、Y(イエロー)(それぞれ色相環で120°離れている)がある。例えば、3つの指標図形104a、104b、104cの色の組み合わせとしては、白、緑、赤が好ましい。 Here, as a combination of a plurality of colors corresponding to hues separated by 100 ° or more in the color wheel, B (blue), G (green), R (red) (each separated by 120 ° in the color wheel), or , C (cyan), M (magenta), Y (yellow) (each separated by 120 ° in the color wheel). For example, white, green, and red are preferable as the color combination of the three index figures 104a, 104b, and 104c.
 また、指標図形の色は、撮像素子32のカラーフィルタの透過率に基づいて分離されていることが好ましい。例えば、撮像素子32において、4色の赤色カラーフィルタRF、緑色カラーフィルタGF、青色カラーフィルタBF、青緑色カラーフィルタBGFが、図19に示す透過率の分布を有している場合には、各色のカラーフィルタの透過率が一定以上となる波長域に対応する色を、指標図形の色とすることが好ましい。図19のカラーフィルタの場合であれば、各カラーフィルタにおいて透過率が最も高くなる波長付近の色である450nm付近の色、500nm付近の色、550nm付近の色、630nm付近の色を、指標図形の色とすることが好ましい。 Further, it is preferable that the colors of the index figures are separated based on the transmittance of the color filter of the image sensor 32. For example, in the image pickup element 32, when the four colors of the red color filter RF, the green color filter GF, the blue color filter BF, and the blue-green color filter BGF have the transmission transmission distribution shown in FIG. 19, each color. It is preferable that the color corresponding to the wavelength range in which the transmittance of the color filter is equal to or higher than a certain level is the color of the index figure. In the case of the color filter of FIG. 19, the color near 450 nm, the color near 500 nm, the color near 550 nm, and the color near 630 nm, which are the colors near the wavelength where the transmittance is the highest in each color filter, are used as index figures. It is preferable to use the color of.
 また、バックライト107として白色光を用いる場合には、指標図形n(nは自然数)の色は、指標図形nの赤色信号値SRn、指標図形nの緑色信号値SGn、指標図形nの青色信号値SBnに基づいて定めることが好ましい。バックライト107の光のスペクトルをL(λ)、赤色画素の分光感度(赤色カラーフィルタRFの透過率)をR(λ)、緑色画素の分光感度(緑色カラーフィルタGFの透過率)をG(λ)、青色画素の分光感度(青色カラーフィルタBFの透過率)をB(λ)とした場合には、指標図形nの赤色信号値SRn、指標図形nの緑色信号値SGn、指標図形nの青色信号値SBnは、下記の[数1]の通りになる。
Figure JPOXMLDOC01-appb-M000001
When white light is used as the backlight 107, the colors of the index figure n (n is a natural number) are the red signal value SRn of the index figure n, the green signal value SGn of the index figure n, and the blue signal of the index figure n. It is preferably determined based on the value SBn. The light spectrum of the backlight 107 is L (λ), the spectral sensitivity of the red pixel (transmission of the red color filter RF) is R (λ), and the spectral sensitivity of the green pixel (transmission of the green color filter GF) is G (). λ), when the spectral sensitivity of the blue pixel (transparency of the blue color filter BF) is B (λ), the red signal value SRn of the index figure n, the green signal value SGn of the index figure n, and the index figure n The blue signal value SBn is as shown in [Equation 1] below.
Figure JPOXMLDOC01-appb-M000001
 ここで、指標図形n(nは自然数)の色としては、SR1、SG1、SB1の3成分をS1などで表記した場合に、S1、S2、・・・、Snが分離しやすい色の組み合わせを選ぶのが好ましい。Snは3成分であるため、指標図形は3つ(n=3)とし、S1、S2、S3が直交に近いほど分離しやすいため特に好ましい。 Here, as the color of the index figure n (n is a natural number), when the three components SR1, SG1, and SB1 are represented by S1, etc., a combination of colors in which S1, S2, ..., Sn can be easily separated is used. It is preferable to choose. Since Sn has three components, the number of index figures is three (n = 3), and the closer S1, S2, and S3 are to orthogonality, the easier it is to separate, which is particularly preferable.
 指標図形は、後述の外接矩形抽出処理又は内接楕円パラメータ算出処理で指標図形を認識し易くするために、特定の色で塗りつぶされていることが好ましい。この場合、指標図形104a、104b、104cのうち全てを塗りつぶしてもよく、一部のみを塗りつぶしてもよい。また、チャート101のうち指標図形平面104以外の背景部106は黒とすることが好ましい。また、チャート101は、後述するように、バックライト107によってキャリブレーション画像で指標図形平面を表示又は非表示させるために、光を透過させる光透過型であることが好ましい。チャート101を光透過型とすることで、指標図形平面104のコントラストを高くして、指標図形の認識精度を向上させることができる。 The index figure is preferably filled with a specific color in order to make it easier to recognize the index figure in the circumscribed rectangle extraction process or the inscribed ellipse parameter calculation process described later. In this case, all of the index figures 104a, 104b, and 104c may be filled, or only a part thereof may be filled. Further, it is preferable that the background portion 106 of the chart 101 other than the index graphic plane 104 is black. Further, as will be described later, the chart 101 is preferably a light transmission type that transmits light in order to display or hide the index graphic plane in the calibration image by the backlight 107. By making the chart 101 a light transmissive type, it is possible to increase the contrast of the index figure plane 104 and improve the recognition accuracy of the index figure.
 チャート101の基材は光透過型の基材であることが好ましく、ガラス板、セラミック板、金属板、フィルム、リバーサルフィルムなどがある。指標図形平面の色を発色させるための材料としては、感材、インクジェット、カラーレジストなどであることが好ましい。例えば、指標図形の色が2色以上の場合には、チャート101の基材はガラス板(リバーサルフィルム)で、指標図形の色を発色させる材料はカラーレジストであることが好ましい。 The base material of the chart 101 is preferably a light-transmitting base material, and includes a glass plate, a ceramic plate, a metal plate, a film, a reversal film, and the like. As the material for developing the color of the index graphic plane, a sensitive material, an inkjet, a color resist or the like is preferable. For example, when the color of the index figure is two or more, it is preferable that the base material of the chart 101 is a glass plate (reversal film) and the material that develops the color of the index figure is a color resist.
 チャート101には、チャート101と内視鏡の先端部12dとを正対させるために用いられるアライメントマーク108が設けられている。アライメントマーク108はくさび型であり、キャリブレーション画像上でアライメントラインAL(図32参照)が連結部108aにくるように、チャート101又は先端部12dを動かす。 The chart 101 is provided with an alignment mark 108 used to face the chart 101 and the tip portion 12d of the endoscope. The alignment mark 108 is wedge-shaped, and the chart 101 or the tip portion 12d is moved so that the alignment line AL (see FIG. 32) comes to the connecting portion 108a on the calibration image.
 図20に示すように、距離変更機構102は、内視鏡の先端部12dとチャート101との間のチャート間距離CDを変更する。距離変更機構102は、チャート101を載置する。距離変更機構102は、鉛直方向であるZ方向に移動可能に基台111に取り付けられている。距離変更機構102には、チャート101を載置するチャート保持部109が取り付けられている。チャート保持部109がZ方向に移動することによって、チャート間距離CDが変更される。 As shown in FIG. 20, the distance changing mechanism 102 changes the inter-chart distance CD between the tip portion 12d of the endoscope and the chart 101. The distance changing mechanism 102 mounts the chart 101. The distance changing mechanism 102 is attached to the base 111 so as to be movable in the Z direction, which is the vertical direction. A chart holding portion 109 on which the chart 101 is placed is attached to the distance changing mechanism 102. By moving the chart holding unit 109 in the Z direction, the inter-chart distance CD is changed.
 チャート間距離CDを設定距離に合わせる場合には、設定距離に対応する距離設定治具112を、チャート保持部109と内視鏡保持部110との間に挟んで、チャート間距離CDを設定距離にすることが好ましい。例えば、設定距離を40mmにする場合には、長さ40mmの距離設定治具112をチャート保持部109と内視鏡保持部110との間に挟むことで、チャート間距離を40mmにすることができる。距離設定治具は、長さを調整可能なものを使用することが好ましい。 When adjusting the inter-chart distance CD to the set distance, the distance setting jig 112 corresponding to the set distance is sandwiched between the chart holding unit 109 and the endoscope holding unit 110, and the inter-chart distance CD is set to the set distance. Is preferable. For example, when the set distance is set to 40 mm, the distance between the charts can be set to 40 mm by sandwiching the distance setting jig 112 having a length of 40 mm between the chart holding portion 109 and the endoscope holding portion 110. can. It is preferable to use a distance setting jig whose length can be adjusted.
 図20に示すように、位置調整機構103は、チャート101の指標図形平面104の基準位置STと計測光の照射位置(スポットSP)との位置関係を調整するために、内視鏡の先端部12dを移動させる。位置調整機構103は、Z方向に直交するX方向又はY方向に移動可能に基台111に取り付けられている。X方向はY方向と直交する。位置調整機構103には、内視鏡の先端部12dを保持する内視鏡保持部110が取り付けられている。内視鏡保持部110がX方向又はY方向に移動することによって、XY平面における指標図形平面104の基準位置STと計測光の照射位置との位置関係が調整される。 As shown in FIG. 20, the position adjusting mechanism 103 adjusts the positional relationship between the reference position ST of the index graphic plane 104 of the chart 101 and the irradiation position (spot SP) of the measured light, so that the tip portion of the endoscope is adjusted. Move 12d. The position adjusting mechanism 103 is attached to the base 111 so as to be movable in the X direction or the Y direction orthogonal to the Z direction. The X direction is orthogonal to the Y direction. The position adjusting mechanism 103 is attached with an endoscope holding portion 110 that holds the tip portion 12d of the endoscope. By moving the endoscope holding portion 110 in the X direction or the Y direction, the positional relationship between the reference position ST of the index graphic plane 104 on the XY plane and the irradiation position of the measurement light is adjusted.
 チャート保持部109には、チャートを載置する面及びその周囲にバックライト107が設けられている。バックライト107は、ユーザーにより点灯又は消灯が可能である。距離変更機構102によりチャート間距離CDを設定する距離設定期間においては、バックライト107を消灯する。バックライト107の消灯時には、内視鏡12が光透過型のチャート101を撮像して得られるキャリブレーション画像では、図21に示すように、スポットSP(計測光の照射位置)のみが表示され、指標図形平面104が非表示となる。指標図形平面104が非表示となることで、照射位置検出部54が計測光の照射位置を認識しやすくなる。また、距離設定期間においては、チャート間距離が設定距離に設定される毎に、計測光の照射位置(スポットSP)を記憶するようにしてもよい。計測光の照射位置は、拡張プロセッサ装置17の照射位置記憶用の一時保存メモリ(図示しない)に記憶することが好ましい。 The chart holding unit 109 is provided with a backlight 107 on the surface on which the chart is placed and around the surface thereof. The backlight 107 can be turned on or off by the user. During the distance setting period in which the distance CD between charts is set by the distance changing mechanism 102, the backlight 107 is turned off. When the backlight 107 is turned off, only the spot SP (irradiation position of the measured light) is displayed in the calibration image obtained by the endoscope 12 imaging the light transmission type chart 101 as shown in FIG. 21. The index figure plane 104 is hidden. By hiding the index graphic plane 104, the irradiation position detection unit 54 can easily recognize the irradiation position of the measurement light. Further, in the distance setting period, the irradiation position (spot SP) of the measurement light may be stored every time the distance between charts is set to the set distance. The irradiation position of the measurement light is preferably stored in a temporary storage memory (not shown) for storing the irradiation position of the expansion processor device 17.
 一方、距離設定期間の後であって、位置調整機構103により内視鏡の先端部12dをX方向又はY方向に移動させ、且つ、キャリブレーション画像を取得するキャリブレーション画像取得期間においては、バックライト107を点灯する。バックライト107の点灯時には、キャリブレーション画像では、図22に示すように、スポットSPの他、指標図形平面104及びアライメントマーク108が表示されるようになる。これにより、指標図形平面の基準位置STとスポットSPとの位置調整が可能になり、また、外接矩形抽出処理又は内接楕円パラメータ算出処理による指標図形平面の認識が可能となる。 On the other hand, after the distance setting period, in the calibration image acquisition period in which the tip portion 12d of the endoscope is moved in the X direction or the Y direction by the position adjusting mechanism 103 and the calibration image is acquired, the backlight is backed up. Turn on the light 107. When the backlight 107 is lit, the calibration image displays the index graphic plane 104 and the alignment mark 108 in addition to the spot SP, as shown in FIG. 22. As a result, the positions of the reference position ST and the spot SP of the index graphic plane can be adjusted, and the index graphic plane can be recognized by the extrinsic rectangle extraction process or the inscribed ellipse parameter calculation process.
 チャート101と内視鏡の先端部12dとを正対させるために、内視鏡保持部110は、図23に示すように、XZ平面にて特定範囲の角度ψで回転可能であること、又は、YZ平面において特定範囲の角度φで回転可能であることが好ましい。内視鏡保持部110に保持された内視鏡の先端部12dを角度ψ、φで回転させて、撮像光学系の光軸Axとチャートの指標図形平面104を垂直する。この状態を、チャート101と内視鏡の先端部12dとが正対した状態とする。なお、内視鏡保持部110は、XY平面にて特定範囲の角度θで回転可能としてもよい。内視鏡保持部110に保持された内視鏡の挿入部12aの形状状態によっては、内視鏡保持部110を角度θで回転させて、チャート101と内視鏡の先端部12dとが正対することが好ましい。 In order to face the chart 101 and the tip portion 12d of the endoscope, the endoscope holding portion 110 is rotatable in an XZ plane at an angle ψ in a specific range, or can be rotated at an angle ψ in a specific range, as shown in FIG. , It is preferable that the YZ plane can be rotated at an angle φ in a specific range. The tip portion 12d of the endoscope held by the endoscope holding portion 110 is rotated at angles ψ and φ so that the optical axis Ax of the imaging optical system and the index graphic plane 104 of the chart are perpendicular to each other. This state is defined as a state in which the chart 101 and the tip portion 12d of the endoscope face each other. The endoscope holding portion 110 may be rotatable at an angle θ in a specific range on the XY plane. Depending on the shape of the endoscope insertion portion 12a held by the endoscope holding portion 110, the endoscope holding portion 110 is rotated at an angle θ so that the chart 101 and the tip portion 12d of the endoscope are positive. It is preferable to deal with it.
 拡張プロセッサ装置17においては、キャリブレーションモード用に第3信号処理部120が設けられている。なお、拡張プロセッサ装置17においては、各種処理に関するプログラムがプログラム用メモリ(図示しない)に組み込まれている。拡張プロセッサ装置17には、画像制御用プロセッサによって構成される中央制御部(図示しない)が設けられている。中央制御部がプログラム用メモリ内のプログラムを実行することによって、図24に示すように、第1信号処理部50、第2信号処理部52、第3信号処理部120の機能が実現する。 In the expansion processor device 17, a third signal processing unit 120 is provided for the calibration mode. In the expansion processor device 17, programs related to various processes are incorporated in a program memory (not shown). The expansion processor device 17 is provided with a central control unit (not shown) configured by an image control processor. When the central control unit executes the program in the program memory, the functions of the first signal processing unit 50, the second signal processing unit 52, and the third signal processing unit 120 are realized as shown in FIG. 24.
 第3信号処理部120は、キャリブレーション画像取得部121、スケール用パラメータ取得部122、補間処理部123を備えている。拡張ディスプレイ18は、距離変更機構102、位置調整機構103、キャリブレーション画像の取得、又はスケール用パラメータの取得の少なくともいずれかを含むキャリブレーションモードに関連する操作表示を行う。本実施形態では、後述の設定完了操作アイコン132、位置調整完了アイコン134、又は、スケール確認アイコン136が、キャリブレーションモードに関連する操作表示に含まれる。なお、請求の範囲の「ディスプレイ」には、拡張ディスプレイ18が含まれる。 The third signal processing unit 120 includes a calibration image acquisition unit 121, a scale parameter acquisition unit 122, and an interpolation processing unit 123. The extended display 18 performs an operation display related to the calibration mode including at least one of the distance changing mechanism 102, the position adjusting mechanism 103, the acquisition of the calibration image, and the acquisition of the scale parameters. In the present embodiment, the setting completion operation icon 132, the position adjustment completion icon 134, or the scale confirmation icon 136, which will be described later, are included in the operation display related to the calibration mode. The "display" in the claims includes the extended display 18.
 キャリブレーション画像取得部121は、ユーザーインターフェース16によりキャリブレーション画像取得指示が行われた場合に、チャート101の指標図形平面104の基準位置STと計測光の照射位置(スポットSP)とが合った状態のチャート101を内視鏡12で撮像して得られるキャリブレーション画像124を取得する。図25に示すように、キャリブレーション画像124においては、チャート101では円形となっている指標図形104a、104b、104cが、撮像光学系21の光学特性等によって変形した楕円状の指標図形画像126a、126b、126cとなっている。変形度合いは、画面周辺になるほど大きくなっている。 The calibration image acquisition unit 121 is in a state where the reference position ST of the index graphic plane 104 of the chart 101 and the irradiation position (spot SP) of the measurement light match when the calibration image acquisition instruction is given by the user interface 16. The calibration image 124 obtained by imaging the chart 101 of the above with the endoscope 12 is acquired. As shown in FIG. 25, in the calibration image 124, the index figures 104a, 104b, 104c, which are circular in the chart 101, are elliptical index figure images 126a, which are deformed by the optical characteristics of the imaging optical system 21 and the like. It is 126b and 126c. The degree of deformation increases toward the periphery of the screen.
 スケール用パラメータ取得部122は、キャリブレーション画像124から、仮想スケールを拡張ディスプレイ18で表示するためのスケール用パラメータを取得する。キャリブレーション画像124は、撮像素子32の青色画素から出力された青色キャリブレーション画像124b、撮像素子32の緑色画素から出力された緑色キャリブレーション画像124g、撮像素子32の赤色画素から出力された赤色キャリブレーション画像124rからなる。これら3色の青色キャリブレーション画像124b、緑色キャリブレーション画像124g、赤色キャリブレーション画像124rに対して、それぞれ二値化処理、外接矩形抽出処理、内接楕円パラメータ算出処理を行う。 The scale parameter acquisition unit 122 acquires scale parameters for displaying the virtual scale on the extended display 18 from the calibration image 124. The calibration image 124 includes a blue calibration image 124b output from the blue pixel of the image sensor 32, a green calibration image 124 g output from the green pixel of the image sensor 32, and a red calibration output from the red pixel of the image sensor 32. It consists of an image sensor 124r. The blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r of these three colors are subjected to binarization processing, extrinsic rectangle extraction processing, and inscribed ellipse parameter calculation processing, respectively.
 なお、指標図形の色によって、青色キャリブレーション画像124b、緑色キャリブレーション画像124g、赤色キャリブレーション画像124rについて、それぞれ重み付け加算することが好ましい。例えば、指標図形の色として、指標図形104aが白色、指標図形104bが緑色、指標図形104cが青色とする場合には、青色キャリブレーション画像124bは、緑色キャリブレーション画像124g又は赤色キャリブレーション画像124rに特定の重み付け係数を付加して加算することにより、青色の指標図形画像126a(指標図形104cに対応する画像)を認識し易い状態にすることが好ましい。また、緑色キャリブレーション画像124gは、青色キャリブレーション画像124b又は赤色キャリブレーション画像124rに特定の重み付け係数を付加して加算することにより、緑色の指標図形画像126b(指標図形104bに対応する画像)を認識し易い状態にすることが好ましい。また、赤色キャリブレーション画像124rは、青色キャリブレーション画像124b又は緑色キャリブレーション画像124gに特定の重み付け係数を付加して加算することにより、白色の指標図形画像126c(指標図形104aに対応する画像)を認識し易い状態にすることが好ましい。 It is preferable that the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r are weighted and added according to the color of the index figure. For example, when the index figure 104a is white, the index figure 104b is green, and the index figure 104c is blue as the color of the index figure, the blue calibration image 124b becomes the green calibration image 124g or the red calibration image 124r. It is preferable to add and add a specific weighting coefficient to make the blue index graphic image 126a (image corresponding to the index graphic 104c) easy to recognize. Further, in the green calibration image 124g, a green index graphic image 126b (an image corresponding to the index graphic 104b) is obtained by adding a specific weighting coefficient to the blue calibration image 124b or the red calibration image 124r and adding them. It is preferable to make it easy to recognize. Further, in the red calibration image 124r, a white index graphic image 126c (an image corresponding to the index graphic 104a) is obtained by adding a specific weighting coefficient to the blue calibration image 124b or the green calibration image 124g and adding them. It is preferable to make it easy to recognize.
 青色キャリブレーション画像124bに対して青色用の二値化処理を行うことによって、指標図形画像126aと指標図形画像126cが抽出される。また、緑色キャリブレーション画像124gに対して緑色用の二値化処理を行うことによって、指標図形画像126bが抽出される。あた、赤色キャリブレーション画像124rに対して赤色用の二値化処理を行うことによって、指標図形画像126aが抽出される。これら二値化処理後の画像に対して、外接矩形抽出処理が行われる。なお、二値化処理を行う際には、各色のキャリブレーション画像に対してシェーディング補正、マスキングなどの処理を行うことが好ましい。 The index graphic image 126a and the index graphic image 126c are extracted by performing the binarization process for blue on the blue calibration image 124b. Further, the index graphic image 126b is extracted by performing the binarization process for green on the green calibration image 124g. The index graphic image 126a is extracted by performing the binarization process for red on the red calibration image 124r. The circumscribed rectangle extraction process is performed on the image after the binarization process. When performing the binarization process, it is preferable to perform processing such as shading correction and masking on the calibrated image of each color.
 二値化処理後の青色キャリブレーション画像124bに対して外接矩形処理を行うことにより、指標図形画像126cに外接する外接矩形128cが得られる。また、二値化処理後の緑色キャリブレーション画像124gに対して外接矩形処理を行うことにより、指標図形画像126bに外接する外接矩形128bが得られる。また、二値化処理後の赤色キャリブレーション画像124rに対して外接矩形処理を行うことにより、指標図形画像126aに外接する外接矩形128aが得られる。これら外接矩形抽出後の画像に対して、内接楕円パラメータ算出処理が行われる。なお、外接矩形処理又は内接楕円パラメータ算出処理については、例えば、OpenCVのfindContours、boundingRect、minAreaRectメソッドなどを用いることが好ましい。また、外接矩形の抽出は、パターンマッチング、テンプレートマッチング、機械学習(例えば、CNN(Convolutional Neural Network))済みの学習モデルの使用などにより行うことが好ましい。 By performing the circumscribed rectangle process on the blue calibration image 124b after the binarization process, the circumscribed rectangle 128c circumscribed on the index graphic image 126c can be obtained. Further, by performing the circumscribed rectangle process on the green calibration image 124 g after the binarization process, the circumscribed rectangle 128b circumscribed on the index graphic image 126b can be obtained. Further, by performing the circumscribed rectangle process on the red calibration image 124r after the binarization process, the circumscribed rectangle 128a circumscribed on the index graphic image 126a can be obtained. The inscribed ellipse parameter calculation process is performed on the image after extracting these circumscribed rectangles. For the circumscribed rectangle processing or the inscribed ellipse parameter calculation processing, it is preferable to use, for example, OpenCV's findContours, boundingRect, minAreaRect method, and the like. Further, it is preferable to extract the circumscribing rectangle by pattern matching, template matching, use of a learning model that has been machine-learned (for example, CNN (Convolutional Neural Network)), or the like.
 図26に示すように、外接矩形128cに対して内接楕円パラメータ算出処理を行うことにより、外接矩形128cに内接する楕円130cのフィッティングパラメータが算出される。算出された楕円130cのフィッティングパラメータが、直径20mmの仮想スケールを表示するためのスケール用パラメータとなる。楕円のフィッティングパラメータは例えば、楕円の中心(X座標、Y座標)、X軸方向の長さ、Y軸方向の長さ、楕円の傾きなどの複数のパラメータから構成される。 As shown in FIG. 26, the fitting parameter of the ellipse 130c inscribed in the circumscribed rectangle 128c is calculated by performing the inscribed ellipse parameter calculation process on the circumscribed rectangle 128c. The calculated fitting parameter of the ellipse 130c becomes a scale parameter for displaying a virtual scale having a diameter of 20 mm. The fitting parameter of the ellipse is composed of a plurality of parameters such as the center of the ellipse (X coordinate, Y coordinate), the length in the X axis direction, the length in the Y axis direction, and the inclination of the ellipse.
 同様にして、外接矩形128bに対して内接楕円パラメータ算出処理を行うことにより、外接矩形128bに内接する楕円130bのフィッティングパラメータが算出される。算出された楕円130bのフィッティングパラメータが、直径10mmの仮想スケールを表示するためのスケール用パラメータとなる。また、外接矩形128aに対して内接楕円パラメータ算出処理を行うことにより、外接矩形128aに内接する楕円130aのフィッティングパラメータが算出される。算出された楕円130aのフィッティングパラメータが、直径5mmの仮想スケールを表示するためのスケール用パラメータとなる。なお、内接楕円のフィッティングパラメータは、内視鏡の画像で円を表示する場合のパラメータとして比較的優れている。 Similarly, by performing the inscribed ellipse parameter calculation process on the circumscribed rectangle 128b, the fitting parameter of the ellipse 130b inscribed on the circumscribed rectangle 128b is calculated. The calculated fitting parameter of the ellipse 130b becomes a scale parameter for displaying a virtual scale having a diameter of 10 mm. Further, by performing the inscribed ellipse parameter calculation process on the circumscribed rectangle 128a, the fitting parameter of the ellipse 130a inscribed in the circumscribed rectangle 128a is calculated. The calculated fitting parameter of the ellipse 130a becomes a scale parameter for displaying a virtual scale having a diameter of 5 mm. The fitting parameter of the inscribed ellipse is relatively excellent as a parameter when displaying a circle in an image of an endoscope.
 内接楕円のフィッティングパラメータが算出されると、内接楕円のフィッティングパラメータから楕円を生成する。そして、図27に示すように、生成した楕円を、仮想スケールとして、キャリブレーション画像に重ねて表示するスケール確認画面を表示する。図27の場合であれば、スケール確認画面においては、内接楕円のフィッティングパラメータから生成される楕円130a、130b、130cが、仮想スケールとして、それぞれ対応する指標図形画像126a、126b、126cに重畳表示される。なお、内接楕円のフィッティングパラメータを用いることで、楕円を生成するだけでなく、円から線分に、線分から円に、十字から格子にそれぞれ変換することが可能である。 When the fitting parameter of the inscribed ellipse is calculated, an ellipse is generated from the fitting parameter of the inscribed ellipse. Then, as shown in FIG. 27, a scale confirmation screen is displayed in which the generated ellipse is superimposed on the calibration image as a virtual scale. In the case of FIG. 27, on the scale confirmation screen, the ellipses 130a, 130b, 130c generated from the fitting parameters of the inscribed ellipse are superimposed and displayed on the corresponding index graphic images 126a, 126b, 126c as virtual scales, respectively. Will be done. By using the fitting parameter of the inscribed ellipse, it is possible not only to generate an ellipse but also to convert from a circle to a line segment, from a line segment to a circle, and from a cross to a grid.
 キャリブレーションを行うユーザーは、楕円130a、130b、130cの位置、サイズ等が、指標図形画像126a、126b、126cにマッチングしているかどうかを確認する。ユーザーがマッチングしていると判断した場合には、ユーザーは、ユーザーインターフェース16を用いて、スケール確認アイコン136(図34参照)を操作する。スケール確認アイコン136が操作されると、第3信号処理部120は、計測光の照射位置とスケール用パラメータとを対応付けて、パラメータテーブル57に記憶させる。一方、ユーザーがマッチングしていないと判断した場合には、再度、チャート間距離CDからやり直しを行う。 The user who performs the calibration confirms whether the positions, sizes, etc. of the ellipses 130a, 130b, 130c match the index graphic images 126a, 126b, 126c. If it is determined that the user is matching, the user operates the scale confirmation icon 136 (see FIG. 34) using the user interface 16. When the scale confirmation icon 136 is operated, the third signal processing unit 120 associates the irradiation position of the measurement light with the scale parameter and stores it in the parameter table 57. On the other hand, if it is determined that the user does not match, the operation is restarted from the inter-chart distance CD.
 補間処理部123は、距離変更機構102によってチャート間距離CDを設定して得られる第1距離のスケール用パラメータP2に基づく補間処理を行うことによって、第1距離に無い第2距離のスケール用パラメータP2を算出する。図28に示すように、距離変更機構102によってチャート間距離CDを1mm間隔で変更し、変更毎に第1距離のスケール用パラメータP1を取得した場合において、チャート間距離CDが2mmで、直径5mmの仮想スケールのスケール用パラメータ(5mm)をPM5_2とし、チャート間距離が3mmで、直径5mmの仮想スケールのスケール用パラメータ(5mm)をPM5_3とする。チャート間距離CDが2mmと3mmの中間の2.5mmのスケール用パラメータを、第2距離のスケール用パラメータP2として、補間処理で算出する。具体的には、(PM5_2+PM5_3)/2とする補間処理用の演算によって、チャート間距離CDが2.5mmのスケール用パラメータPM5_2.5が、第2距離のスケール用パラメータP2として、算出される。 The interpolation processing unit 123 performs interpolation processing based on the first distance scale parameter P2 obtained by setting the inter-chart distance CD by the distance change mechanism 102, so that the second distance scale parameter that is not in the first distance can be used. Calculate P2. As shown in FIG. 28, when the inter-chart distance CD is changed at 1 mm intervals by the distance changing mechanism 102 and the scale parameter P1 of the first distance is acquired for each change, the inter-chart distance CD is 2 mm and the diameter is 5 mm. The scale parameter (5 mm) of the virtual scale is PM5_2, the distance between charts is 3 mm, and the scale parameter (5 mm) of the virtual scale having a diameter of 5 mm is PM5_3. A scale parameter having a distance CD between the charts of 2 mm and 3 mm, which is 2.5 mm, is calculated as a second distance scale parameter P2 by interpolation processing. Specifically, the scale parameter PM5_2.5 having a chart-to-chart distance CD of 2.5 mm is calculated as the second distance scale parameter P2 by the calculation for interpolation processing of (PM5_2 + PM5_3) / 2.
 同様にして、チャート間距離が3mmと4mmの間の3.5mmのスケール用パラメータPM5_3.5を補間処理により算出し、チャート間距離が4mmと5mmの間の4.5mmのスケール用パラメータPM5_4.5を補間処理により算出する。補間処理によって得られるスケール用パラメータは、チャート間距離に対応する計測光の照射位置と対応付けられて、パラメータテーブル57に記憶される。以上のように、実際のキャリブレーションモードでは、離散的なチャート間距離についてしかスケール用パラメータが得られない場合であっても、補間処理を用いることで、全てのチャート間距離についてスケール用パラメータを得ることができる。 Similarly, the 3.5 mm scale parameter PM5_3.5 whose inter-chart distance is between 3 mm and 4 mm is calculated by interpolation processing, and the 4.5 mm scale parameter PM5_4 where the inter-chart distance is between 4 mm and 5 mm. 5 is calculated by interpolation processing. The scale parameter obtained by the interpolation process is stored in the parameter table 57 in association with the irradiation position of the measurement light corresponding to the distance between the charts. As described above, in the actual calibration mode, even if the scale parameters can be obtained only for the discrete inter-chart distances, by using the interpolation processing, the scale parameters can be obtained for all the inter-chart distances. Obtainable.
 次に、キャリブレーションモードの一連の流れについて、図29のフローチャートに沿って説明する。キャリブレーションモードの実施は、暗室にて行われる。仮想スケールのキャリブレーションを行うユーザーは、内視鏡の先端部12dを内視鏡保持部110にセットし、また、チャート101をチャート保持部109に載置する。次に、ユーザーは、モード切替スイッチ12fを操作して、キャリブレーションモードに切り替える。これにより、計測光がチャート101に照射される。この状態で、距離変更ステップを実行する。なお、以下のステップにおいては、キャリブレーションモードに関連する操作の作業内容として、各ステップにおける作業内容が分かるように、拡張ディスプレイ18に各ステップの作業内容を表示することが好ましい。 Next, a series of calibration mode flows will be described with reference to the flowchart of FIG. 29. The calibration mode is carried out in a dark room. The user who calibrates the virtual scale sets the tip portion 12d of the endoscope on the endoscope holding portion 110, and places the chart 101 on the chart holding portion 109. Next, the user operates the mode changeover switch 12f to switch to the calibration mode. As a result, the measurement light is applied to the chart 101. In this state, the distance change step is executed. In the following steps, it is preferable to display the work contents of each step on the extended display 18 so that the work contents of each step can be understood as the work contents of the operation related to the calibration mode.
 距離変更ステップでは、距離変更機構102によって、3つの指標図形104a、104b、104cからなる指標図形平面104が設けられたチャート101と、内視鏡の先端部12dとの間のチャート間距離CDを変更する。距離変更ステップでは、スケール用パラメータを取得するチャート間距離CDが、設定距離として予め定められている。例えば、設定距離は、1mm~50mmの範囲で、1mm間隔とすることが好ましい。 In the distance changing step, the distance changing mechanism 102 creates an inter-chart distance CD between the chart 101 provided with the index graphic plane 104 consisting of the three index figures 104a, 104b, and 104c and the tip portion 12d of the endoscope. change. In the distance change step, the inter-chart distance CD for acquiring the scale parameter is predetermined as the set distance. For example, the set distance is preferably in the range of 1 mm to 50 mm and at intervals of 1 mm.
 距離変更ステップにおいては、光透過型のチャート101に設けられたバックライト107を消灯することにより、キャリブレーション画像において、計測光の照射位置のみ表示し、且つ、指標図形平面104を非表示にしている。これにより、照射位置検出部54は、計測光の照射位置の検出し易くなる。 In the distance change step, by turning off the backlight 107 provided on the light transmission type chart 101, only the irradiation position of the measurement light is displayed in the calibration image, and the index graphic plane 104 is hidden. There is. This makes it easier for the irradiation position detection unit 54 to detect the irradiation position of the measurement light.
 距離変更ステップでは、図30に示すように、拡張ディスプレイ18においては、設定距離の設定が完了したことを指示するための設定完了操作アイコン132が表示されている。チャート間距離CDが設定距離に設定されたら、ユーザーは、ユーザーインターフェース16を用いて、設定完了操作アイコン132を操作する。これに従って、照射位置検出部54は、計測光の照射位置(スポットSPの位置)を検出する。なお、距離変更ステップでは、チャート間距離CDを距離設定治具112で設定してもよい。距離変更ステップの後は、計測光を消灯してもよい。この場合には、アライメントマーク108のみを用いて移動ステップを行うことになる。 In the distance change step, as shown in FIG. 30, on the extended display 18, a setting completion operation icon 132 for instructing that the setting of the set distance is completed is displayed. When the inter-chart distance CD is set to the set distance, the user operates the setting completion operation icon 132 using the user interface 16. According to this, the irradiation position detection unit 54 detects the irradiation position (position of the spot SP) of the measurement light. In the distance changing step, the distance CD between charts may be set by the distance setting jig 112. After the distance change step, the measurement light may be turned off. In this case, the movement step is performed using only the alignment mark 108.
 なお、距離変更ステップにおいては、距離変更ステップでは、チャート101と内視鏡の先端部12dとが正対しているかどうかを確認する正対確認ステップステップを設けてもよい。正対確認ステップでは、図31に示すように、キャリブレーション画像124において、指標図形平面画像125のうち一番大きい円形の指標図形画像126cの真円度で確認を行う。指標図形画像126cが真円度確認用矩形140に内接した場合には、指標図形画像126cの真円度が最も高いとして、チャート101と内視鏡の先端部12dが正対しているとする。一方、指標図形画像126cが真円度確認用矩形140に内接せず一部がはみ出しているなどの場合には、正対していないとする。この場合には、正対するように、内視鏡の先端部12dの角度ψ、φを調整することが好ましい。なお、正対しているかどうかを行うステップにおいては、拡張ディスプレイ18に表示する作業内容142として、図35に示すように、「白い円の左端がスポットSPのところに来るように動かしてください。完了したら、OKボタンを押してください」などがある。 In the distance changing step, the distance changing step may be provided with a face-to-face confirmation step step for confirming whether or not the chart 101 and the tip portion 12d of the endoscope are facing each other. In the face-to-face confirmation step, as shown in FIG. 31, in the calibration image 124, confirmation is performed with the roundness of the largest circular index graphic image 126c among the index graphic plane images 125. When the index graphic image 126c is inscribed in the rectangle 140 for checking the roundness, it is assumed that the chart 101 and the tip portion 12d of the endoscope face each other, assuming that the index graphic image 126c has the highest roundness. .. On the other hand, when the index graphic image 126c does not inscribe the rectangle 140 for checking the roundness and a part of the index graphic image 126c protrudes from the rectangle 140, it is assumed that they do not face each other. In this case, it is preferable to adjust the angles ψ and φ of the tip portion 12d of the endoscope so as to face each other. In the step of determining whether or not to face each other, as the work content 142 to be displayed on the extended display 18, as shown in FIG. 35, "Move the left end of the white circle to the spot SP. Completed. Then press the OK button. "
 なお、仮想スケールの形状が十字の場合には、上下又は左右で線の太さが同じかどうかで正対しているかどうかを判断する。また、仮想スケールの形状が三角形の場合には、上下又は左右でサイズが同じかどうかで正対しているかどうかを判断する。 If the shape of the virtual scale is a cross, it is judged whether or not they are facing each other based on whether or not the line thickness is the same on the top and bottom or left and right. When the shape of the virtual scale is a triangle, it is determined whether or not they face each other based on whether or not they have the same size on the top, bottom, left, and right.
 距離変更ステップの後は、移動ステップが行われる。図32に示すように、移動ステップでは、位置調整機構103によって、チャートの指標図形平面104の基準位置STと計測光の照射位置SPとの位置関係を調整するために、内視鏡の先端部12dを移動させる。内視鏡の先端部12dの移動は、チャート101と平行な面内、即ち、XY平面内で行われる。 After the distance change step, a movement step is performed. As shown in FIG. 32, in the moving step, the tip of the endoscope is adjusted by the position adjusting mechanism 103 in order to adjust the positional relationship between the reference position ST of the index graphic plane 104 of the chart and the irradiation position SP of the measurement light. Move 12d. The movement of the tip portion 12d of the endoscope is performed in a plane parallel to the chart 101, that is, in the XY plane.
 移動ステップにおいては、光透過型のチャート101に設けられたバックライト107を点灯することにより、キャリブレーション画像において、指標図形平面104を表示にしている。これにより、スケール用パラメータ取得部122によって、指標図形平面画像125に含まれる指標図形画像126a、126b、126cの認識し易くなる。 In the movement step, the index graphic plane 104 is displayed in the calibration image by turning on the backlight 107 provided on the light transmission type chart 101. This makes it easier for the scale parameter acquisition unit 122 to recognize the index graphic images 126a, 126b, 126c included in the index graphic plane image 125.
 移動ステップでは、キャリブレーション画像124において、縦方向と横方向にアライメントラインALが表示される。アライメントラインALがアライメントマークの連結部108aにくるように、内視鏡の先端部12dをX方向又はY方向に移動させる。この場合、縦方向と横方向のアライメントラインALは十字線であり、それら縦方向と横方向のアライメントラインALの交差点は画面中央に位置している。したがって、チャート101の指標図形平面画像125の中心にアライメントラインALの交差点を重ね合わせることで、位置合わせを容易にすることができる。 In the movement step, the alignment line AL is displayed in the vertical direction and the horizontal direction in the calibration image 124. The tip portion 12d of the endoscope is moved in the X direction or the Y direction so that the alignment line AL comes to the connecting portion 108a of the alignment mark. In this case, the vertical and horizontal alignment lines AL are cross-shaped lines, and the intersection of the vertical and horizontal alignment lines AL is located in the center of the screen. Therefore, by superimposing the intersection of the alignment line AL on the center of the index graphic plane image 125 of the chart 101, the alignment can be facilitated.
 移動ステップでは、図33に示すように、拡張ディスプレイ18においては、指標図形平面104の基準位置STと計測光の照射位置SPとが合ったことを指示するための位置調整完了アイコン134が表示されている。指標図形平面104の基準位置STと計測光の照射位置SPとが合った状態になった場合には、ユーザーは、ユーザーインターフェース16を用いて、位置調整完了アイコン134を操作する。 In the movement step, as shown in FIG. 33, on the extended display 18, a position adjustment completion icon 134 for instructing that the reference position ST of the index graphic plane 104 and the irradiation position SP of the measurement light match is displayed. ing. When the reference position ST of the index graphic plane 104 and the irradiation position SP of the measurement light are in the same state, the user operates the position adjustment completion icon 134 using the user interface 16.
 位置調整完了アイコン134が操作されると、キャリブレーション画像取得ステップが行われる。キャリブレーション画像取得ステップでは、内視鏡12が、指標図形平面104の基準位置STと計測光の照射位置SPとが合った状態のチャート101を内視鏡12で撮像してキャリブレーション画像を取得する。取得したキャリブレーション画像は、プロセッサ装置14を介して、拡張プロセッサ装置17に送られる。キャリブレーション画像取得部121は、位置調整完了アイコン134が操作された時点で内視鏡12で得られるキャリブレーション画像を、スケール用パラメータを取得するためのキャリブレーション画像として、取得する。これにより、キャリブレーション画像取得ステップが完了し、次に、パラメータ取得ステップが行われる。 When the position adjustment completion icon 134 is operated, the calibration image acquisition step is performed. In the calibration image acquisition step, the endoscope 12 captures a chart 101 in a state where the reference position ST of the index graphic plane 104 and the irradiation position SP of the measurement light match with the endoscope 12 to acquire a calibration image. do. The acquired calibration image is sent to the extended processor device 17 via the processor device 14. The calibration image acquisition unit 121 acquires the calibration image obtained by the endoscope 12 when the position adjustment completion icon 134 is operated as the calibration image for acquiring the scale parameter. As a result, the calibration image acquisition step is completed, and then the parameter acquisition step is performed.
 パラメータ取得ステップでは、キャリブレーション画像124から、仮想スケールを拡張ディスプレイ18で表示するためのスケール用パラメータを取得する。キャリブレーション画像124に含まれる3色の青色キャリブレーション画像124b、緑色キャリブレーション画像124g、赤色キャリブレーション画像124rに対して、それぞれ二値化処理、外接矩形抽出処理、内接楕円パラメータ算出処理を行う。 In the parameter acquisition step, the scale parameters for displaying the virtual scale on the extended display 18 are acquired from the calibration image 124. Binarization processing, inscribed rectangle extraction processing, and inscribed ellipse parameter calculation processing are performed on the three colors of the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r included in the calibration image 124, respectively. ..
 二値化処理では、青色キャリブレーション画像124b、緑色キャリブレーション画像124g、赤色キャリブレーション画像124rに対して、それぞれ青色用の二値化処理、緑色用の二値化処理、赤色用の二値化処理を行う。外接矩形抽出処理では、キャリブレーション画像124における指標図形画像126a、126b、126cに外接する外接矩形128a、128b、128cを抽出する。内接楕円パラメータ算出処理では、外接矩形128a、128b、128cに内接する楕円のフィッティングパラメータを、スケール用パラメータとして算出する。これにより、パラメータ取得ステップが完了し、次に、仮想スケール確認ステップが行われる。 In the binarization process, the blue calibration image 124b, the green calibration image 124g, and the red calibration image 124r are binarized for blue, binarized for green, and binarized for red, respectively. Perform the process. In the circumscribed rectangle extraction process, the circumscribed rectangles 128a, 128b, 128c that circumscribe the index graphic images 126a, 126b, 126c in the calibration image 124 are extracted. In the inscribed ellipse parameter calculation process, the fitting parameter of the ellipse inscribed in the circumscribed rectangles 128a, 128b, 128c is calculated as a scale parameter. As a result, the parameter acquisition step is completed, and then the virtual scale confirmation step is performed.
 仮想スケール確認ステップでは、スケール用パラメータである内接楕円のフィッティングパラメータから楕円を生成する。そして、ユーザーが仮想スケールとして適正かどうかを確認するために、スケール確認画面において、内接楕円のフィッティングパラメータから生成される楕円130a、130b、130cを、仮想スケールとして、それぞれ対応する指標図形画像126a、126b、126cに重畳表示する(図27参照)。仮想スケール確認ステップでは、ユーザーが、スケール確認画面を見て、楕円130a、130b、130cの位置、サイズ等が、指標図形画像126a、126b、126cにマッチングしていると判断した場合には、ユーザーは、図34に示すように、ユーザーインターフェース16を用いて、拡張ディスプレイ18に設けられたスケール確認アイコン136を操作する。 In the virtual scale confirmation step, an ellipse is generated from the fitting parameter of the inscribed ellipse, which is a parameter for scale. Then, in order to confirm whether or not the user is appropriate as a virtual scale, the ellipses 130a, 130b, and 130c generated from the fitting parameters of the inscribed ellipse are used as virtual scales on the scale confirmation screen, and the corresponding index graphic images 126a are used. , 126b, 126c are superimposed and displayed (see FIG. 27). In the virtual scale confirmation step, when the user looks at the scale confirmation screen and determines that the positions, sizes, etc. of the ellipses 130a, 130b, 130c match the index graphic images 126a, 126b, 126c, the user Uses the user interface 16 to operate the scale confirmation icon 136 provided on the extended display 18, as shown in FIG. 34.
 スケール確認アイコン136が操作された場合には、第3信号処理部120は、計測光の照射位置とスケール用パラメータとを対応付けて、パラメータテーブル57に記憶させる。一方、ユーザーがマッチングしていないと判断した場合には、再度、チャート間距離CDからやり直しを行う。 When the scale confirmation icon 136 is operated, the third signal processing unit 120 associates the irradiation position of the measurement light with the scale parameter and stores it in the parameter table 57. On the other hand, if it is determined that the user does not match, the operation is restarted from the inter-chart distance CD.
 仮想スケール確認ステップが完了したら、距離変更ステップで、チャート間距離CDを次の設定距離に変更して、同様の操作等を行う。そして、全ての設定距離について、スケール用パラメータの取得が完了するまで、同様の操作等を行う。 After the virtual scale confirmation step is completed, change the distance CD between charts to the next set distance in the distance change step, and perform the same operation. Then, the same operation or the like is performed for all the set distances until the acquisition of the scale parameters is completed.
 なお、キャリブレーションモードにおいては、補間処理ステップを行ってもよい。補間処理ステップでは、距離変更機構102によってチャート間距離CDを設定して得られる第1距離のスケール用パラメータP2に基づく補間処理を行うことによって、第1距離に無い第2距離のスケール用パラメータP2を算出する。補間処理によって得られる第2距離のスケール用パラメータは、チャート間距離に対応する計測光の照射位置と対応付けられて、パラメータテーブル57に記憶される。 In the calibration mode, the interpolation processing step may be performed. In the interpolation processing step, by performing interpolation processing based on the first distance scale parameter P2 obtained by setting the interchart distance CD by the distance change mechanism 102, the second distance scale parameter P2 that is not in the first distance is performed. Is calculated. The second distance scale parameter obtained by the interpolation process is stored in the parameter table 57 in association with the irradiation position of the measurement light corresponding to the distance between the charts.
 なお、移動ステップにおいては、図36に示すように、キャリブレーション画像124において、内視鏡の先端部とチャートとを正対させるために、指標図形平面画像125に対応する位置合わせ用図形150を表示してもよい。また、同様に、キャリブレーション画像124において、正対させるために、アライメント画像148に対応する位置合わせ用図形151を表示してもよい。指標図形平面画像125と位置合わせ用図形150との位置が合い、及び/又は、アライメント画像148と位置合わせ用画像151との位置が合った場合に、正対したとすることが好ましい。なお、移動ステップ完了後は、位置合わせ用図形150、151は非表示とすることが好ましい。 In the moving step, as shown in FIG. 36, in order to make the tip of the endoscope face the chart in the calibration image 124, the alignment figure 150 corresponding to the index figure plane image 125 is provided. It may be displayed. Similarly, in the calibration image 124, the alignment figure 151 corresponding to the alignment image 148 may be displayed in order to face the calibration image 124. When the position of the index figure plane image 125 and the alignment figure 150 are aligned and / or the positions of the alignment image 148 and the alignment image 151 are aligned, it is preferable that they face each other. After the movement step is completed, the alignment figures 150 and 151 are preferably hidden.
 上記実施形態において、信号処理部39、表示制御部40、システム制御部41、第1信号処理部50、第2信号処理部52、照射位置検出部54、スケール用テーブル55、テーブル更新部56、パラメータテーブル57、第3信号処理部120、キャリブレーション画像取得部121、スケール用パラメータ取得部122、補間処理部123といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。 In the above embodiment, the signal processing unit 39, the display control unit 40, the system control unit 41, the first signal processing unit 50, the second signal processing unit 52, the irradiation position detection unit 54, the scale table 55, the table update unit 56, The hardware structure of the processing unit that executes various processes such as the parameter table 57, the third signal processing unit 120, the calibration image acquisition unit 121, the scale parameter acquisition unit 122, and the interpolation processing unit 123 is Various processors as shown below. For various processors, the circuit configuration is changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units. It includes a programmable logic device (PLD), which is a possible processor, a dedicated electric circuit, which is a processor having a circuit configuration specially designed for executing various processes, and the like.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). May be done. Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units. Second, as typified by System On Chip (SoC), there is a form that uses a processor that realizes the functions of the entire system including multiple processing units with one IC (Integrated Circuit) chip. be. As described above, the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。また、記憶部のハードウェア的な構造はHDD(hard disc drive)やSSD(solid state drive)等の記憶装置である。 Furthermore, the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined. The hardware structure of the storage unit is a storage device such as an HDD (hard disk drive) or SSD (solid state drive).
10 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c 湾曲部
12d 先端部
12f モード切替スイッチ
12g 静止画取得指示スイッチ
12h ズーム操作部
13 光源装置
14 プロセッサ装置
15 ディスプレイ
16 ユーザーインターフェース
17 拡張プロセッサ装置
18 拡張ディスプレイ
21 撮像光学系
22 照明光学系
22a 照明レンズ
23 計測光出射部
23a 光源
23b DOE
23c プリズム
23d 計測光用レンズ
24 開口
25 送気送水ノズル
30 光源部
32 撮像素子
34 CDS/AGC回路
35 A/D変換器
36 通信I/F
37 通信I/F
38 受信部
39 信号処理部
40 表示制御部
41 システム制御部
42 静止画保存部
43 データ送受信部
44 データ送受信部
45 信号処理部
46 表示制御部
48 実線
49 点線
50 第1信号処理部
52 第2信号処理部
54 照射位置検出部
55 スケール用テーブル
56 テーブル更新部
57 パラメータテーブル
58 交差ライン
59 目盛り
100 キャリブレーション装置
101 チャート
102 距離変更機構
103 位置調整機構
104 指標図形平面
104a、104b、104c 指標図形
105 色相環
106 背景部
107 バックライト
108 アライメントマーク
108a 連結部
109 チャート保持部
110 内視鏡保持部
111 基台
112 距離設定治具
121 キャリブレーション画像取得部
122 スケール用パラメータ取得部
123 補間処理部
124 キャリブレーション画像
124b 青色キャリブレーション画像
124g 緑色キャリブレーション画像
124r 赤色キャリブレーション画像
125 指標図形平面画像
126a、126b、126c 指標図形画像
128a、128b、128c 外接矩形
130a、130b、130c 楕円
132 設定完了操作アイコン
134 位置調整完了アイコン
136 スケール確認アイコン
140 真円度確認用矩形
142 作業内容
148 アライメント画像
151、152 位置合わせ用図形
AL アライメントライン
BF 青色カラーフィルタ
BGF 青緑色カラーフィルタ
CD チャート間距離
D1 第1方向
D2 第2方向
D3 第3方向
EP 測定点
GF 緑色カラーフィルタ
RF 赤色カラーフィルタ
tm1、tm2、tm3、tm4、tm5 腫瘍
SP スポット
SP1、SP2、SP3、SP4、SP5 スポット
ST 基準位置
M1、M2、M3 仮想スケール
M4A、M4B、M4C、M5A、M5B、M5C 同心円状のマーカ
M6A、M6B、M6C 歪曲同心円状のマーカ
Mx 目盛り
P ポリープ
P1 第1距離のスケール用パラメータ
P2 第2距離のスケール用パラメータ
10 Endoscopic system 12 Endoscope 12a Insertion part 12b Operation part 12c Curved part 12d Tip part 12f Mode changeover switch 12g Still image acquisition instruction switch 12h Zoom operation part 13 Light source device 14 Processor device 15 Display 16 User interface 17 Expansion processor device 18 Extended display 21 Imaging optical system 22 Illumination optical system 22a Illumination lens 23 Measurement light emission unit 23a Light source 23b DOE
23c Prism 23d Measurement light lens 24 Aperture 25 Air supply / water supply nozzle 30 Light source 32 Image sensor 34 CDS / AGC circuit 35 A / D converter 36 Communication I / F
37 Communication I / F
38 Reception unit 39 Signal processing unit 40 Display control unit 41 System control unit 42 Still image storage unit 43 Data transmission / reception unit 44 Data transmission / reception unit 45 Signal processing unit 46 Display control unit 48 Solid line 49 Dotted line 50 First signal processing unit 52 Second signal Processing unit 54 Irradiation position detection unit 55 Scale table 56 Table update unit 57 Parameter table 58 Crossing line 59 Scale 100 Calibration device 101 Chart 102 Distance change mechanism 103 Position adjustment mechanism 104 Index graphic plane 104a, 104b, 104c Index graphic 105 hue Ring 106 Background part 107 Backlight 108 Alignment mark 108a Connecting part 109 Chart holding part 110 Endoscope holding part 111 Base 112 Distance setting jig 121 Calibration image acquisition part 122 Scale parameter acquisition part 123 Interpolation processing part 124 Calibration Image 124b Blue calibration image 124g Green calibration image 124r Red calibration image 125 Index graphic plane image 126a, 126b, 126c Index graphic image 128a, 128b, 128c External rectangle 130a, 130b, 130c Elliptical 132 Setting complete operation icon 134 Position adjustment Completion icon 136 Scale confirmation icon 140 Roundness confirmation rectangle 142 Work content 148 Alignment image 151, 152 Alignment figure AL Alignment line BF Blue color filter BGF Blue-green color filter CD Chart distance D1 1st direction D2 2nd direction D3 3rd direction EP measurement point GF Green color filter RF Red color filter tm1, tm2, tm3, tm4, tm5 Tumor SP Spot SP1, SP2, SP3, SP4, SP5 Spot ST Reference position M1, M2, M3 Virtual scale M4A, M4B , M4C, M5A, M5B, M5C Concentric markers M6A, M6B, M6C Distorted concentric markers Mx Scale P Polyp P1 Parameter for 1st distance scale P2 Parameter for 2nd distance scale

Claims (15)

  1.  ディスプレイに表示して被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うキャリブレーション装置であって、
     複数の指標図形からなる指標図形平面が設けられたチャートであって、前記複数の指標図形は、2つ以上の色によって、特定の色評価基準に基づく分離、又は、内視鏡に設けられた撮像素子のカラーフィルタの透過率に基づく分離がされているチャートと、
     前記内視鏡の先端部と前記チャートとの間のチャート間距離を変更する距離変更機構と、
     前記指標図形平面の基準位置と、前記内視鏡の先端部から前記チャートに向けて照射される計測光の照射位置との位置関係を調整するために、前記内視鏡の先端部又は前記チャートを移動させる位置調整機構と、
     画像制御用プロセッサとを備え、
     前記画像制御用プロセッサは、
     前記指標図形平面の基準位置と前記計測光の照射位置とが合った状態の前記チャートを前記内視鏡で撮像して得られるキャリブレーション画像を取得し、
     前記キャリブレーション画像から、前記仮想スケールを前記ディスプレイで表示するためのスケール用パラメータを取得するキャリブレーション装置。
    It is a calibration device that calibrates the virtual scale for displaying on the display and measuring the size of the subject.
    It is a chart provided with an index figure plane composed of a plurality of index figures, and the plurality of index figures are separated by two or more colors based on a specific color evaluation standard, or provided in an endoscope. A chart that is separated based on the transmittance of the color filter of the image pickup element, and
    A distance changing mechanism that changes the distance between charts between the tip of the endoscope and the chart,
    In order to adjust the positional relationship between the reference position of the index graphic plane and the irradiation position of the measurement light emitted from the tip of the endoscope toward the chart, the tip of the endoscope or the chart The position adjustment mechanism to move the
    Equipped with an image control processor
    The image control processor is
    A calibration image obtained by imaging the chart in a state where the reference position of the index graphic plane and the irradiation position of the measurement light match with the endoscope is acquired.
    A calibration device that acquires scale parameters for displaying the virtual scale on the display from the calibration image.
  2.  前記特定の色評価基準は色相環であり、
     前記指標図形の色は、白色、黒色、又は、前記色相環で100°以上それぞれ離れた複数の色相に対応する複数の色のうち2以上の色を含む請求項1記載のキャリブレーション装置。
    The particular color evaluation criterion is the color wheel.
    The calibration device according to claim 1, wherein the color of the index figure includes white, black, or two or more of a plurality of colors corresponding to a plurality of hues separated by 100 ° or more in the color wheel.
  3.  前記チャートのうち前記指標図形平面以外の背景部は黒色である請求項1または2記載のキャリブレーション装置。 The calibration device according to claim 1 or 2, wherein the background portion of the chart other than the index graphic plane is black.
  4.  前記チャートは光透過型である請求項1ないし3いずれか1項記載のキャリブレーション装置。 The calibration device according to any one of claims 1 to 3, wherein the chart is a light transmission type.
  5.  前記距離変更機構により前記チャート間距離を設定する距離設定期間においては、前記光透過型のチャートに設けられたバックライトを消灯することにより、前記キャリブレーション画像において、前記計測光の照射位置のみを表示、及び/又は前記計測光の照射位置を記憶し、且つ、前記指標図形平面を非表示にする請求項4記載のキャリブレーション装置。 During the distance setting period in which the distance between the charts is set by the distance changing mechanism, by turning off the backlight provided on the light transmission type chart, only the irradiation position of the measured light is displayed in the calibration image. The calibration device according to claim 4, wherein the display and / or the irradiation position of the measurement light is stored and the index graphic plane is hidden.
  6.  前記位置調整機構により前記内視鏡の先端部又は前記チャートを移動させ、且つ、前記キャリブレーション画像を取得するキャリブレーション画像取得期間においては、前記光透過型のチャートに設けられたバックライトを点灯することにより、前記キャリブレーション画像において、前記計測光の照射位置を表示し、且つ、前記指標図形平面を表示する請求項4記載のキャリブレーション装置。 During the calibration image acquisition period in which the tip of the endoscope or the chart is moved by the position adjustment mechanism and the calibration image is acquired, the backlight provided on the light transmissive chart is turned on. The calibration device according to claim 4, wherein the calibration image displays the irradiation position of the measurement light and displays the index graphic plane.
  7.  キャリブレーション画像取得期間では、内視鏡の先端部とチャートとを正対させるために、指標図形平面に対応する位置合わせ用図形をキャリブレーション画像に表示する請求項6記載のキャリブレーション装置。 The calibration device according to claim 6, which displays an alignment figure corresponding to the index figure plane on the calibration image in order to make the tip of the endoscope face the chart during the calibration image acquisition period.
  8.  前記内視鏡の先端部を保持する内視鏡保持部と、
     前記チャートが載置されるチャート保持部と、
     前記内視鏡保持部と前記チャート保持部との間に挟んで、前記チャート間距離を設定距離に合わせる距離設定治具とを備える請求項1ないし7いずれか1項記載のキャリブレーション装置。
    An endoscope holding portion that holds the tip of the endoscope,
    The chart holding unit on which the chart is placed and the chart holding unit
    The calibration device according to any one of claims 1 to 7, further comprising a distance setting jig that is sandwiched between the endoscope holding portion and the chart holding portion and that adjusts the distance between charts to the set distance.
  9.  前記ディスプレイは、前記距離変更機構、前記位置調整機構、前記キャリブレーション画像の取得、又は、前記スケール用パラメータの取得の少なくともいずれかを含むキャリブレーションモードに関連する操作の作業内容を表示する請求項1ないし8いずれか1項記載のキャリブレーション装置。 The display is claimed to display the work contents of an operation related to a calibration mode including at least one of the distance changing mechanism, the position adjusting mechanism, the acquisition of the calibration image, or the acquisition of the parameters for scale. The calibration device according to any one of 1 to 8.
  10.  前記ディスプレイは、前記距離変更機構、前記位置調整機構、前記キャリブレーション画像の取得、又は、前記スケール用パラメータの取得の少なくともいずれかを含むキャリブレーションモードに関連する操作表示を行う請求項1ないし9いずれか1項記載のキャリブレーション装置。 Claims 1 to 9 indicate that the display performs an operation display related to a calibration mode including at least one of the distance changing mechanism, the position adjusting mechanism, the acquisition of the calibration image, and the acquisition of the parameters for scale. The calibration device according to any one of the items.
  11.  ディスプレイに表示して被写体のサイズを計測するための仮想スケールに関するキャリブレーションを行うキャリブレーション方法であって、
     距離変更機構によって、複数の指標図形からなる指標図形平面が設けられたチャートと内視鏡の先端部との間のチャート間距離を変更する距離変更ステップと、
     位置調整機構によって、前記指標図形平面の基準位置と、前記内視鏡の先端部から前記チャートに向けて照射される計測光の照射位置との位置関係を調整するために、前記内視鏡の先端部又は前記チャートを移動させる移動ステップと、
     前記チャート間距離を変更する毎に、前記指標図形平面の基準位置と前記計測光の照射位置とが合った状態の前記チャートを前記内視鏡で撮像して得られるキャリブレーション画像を取得するキャリブレーション画像取得ステップと、
     前記キャリブレーション画像から、前記仮想スケールを前記ディスプレイで表示するためのスケール用パラメータを取得するパラメータ取得ステップとを有し、
     前記チャートにおいて、前記複数の指標図形は、2つ以上の色によって、特定の色評価基準に基づく分離、又は、前記内視鏡に設けられた撮像素子のカラーフィルタの透過率に基づく分離がされているキャリブレーション方法。
    It is a calibration method that calibrates the virtual scale for displaying on the display and measuring the size of the subject.
    A distance changing step for changing the distance between charts between a chart provided with an index figure plane composed of a plurality of index figures and the tip of the endoscope by a distance changing mechanism, and
    In order to adjust the positional relationship between the reference position of the index graphic plane and the irradiation position of the measurement light emitted from the tip of the endoscope toward the chart by the position adjustment mechanism, the endoscope is used. A moving step for moving the tip or the chart,
    Every time the distance between the charts is changed, the chart in a state where the reference position of the index graphic plane and the irradiation position of the measurement light match is imaged with the endoscope, and the calibration image obtained is acquired. Image acquisition step and
    It has a parameter acquisition step of acquiring a scale parameter for displaying the virtual scale on the display from the calibration image.
    In the chart, the plurality of index figures are separated by two or more colors based on a specific color evaluation standard or based on the transmittance of a color filter of an image pickup device provided in the endoscope. Calibration method.
  12.  前記距離変更ステップにおいては、光透過型の前記チャートに設けられたバックライトを消灯することにより、前記キャリブレーション画像において、前記計測光の照射位置のみを表示し、且つ、前記指標図形平面を非表示にする請求項11記載のキャリブレーション方法。 In the distance changing step, by turning off the backlight provided on the light-transmitting chart, only the irradiation position of the measured light is displayed in the calibration image, and the index graphic plane is not displayed. The calibration method according to claim 11, which is displayed.
  13.  前記キャリブレーション画像取得ステップにおいては、光透過型の前記チャートに設けられたバックライトを点灯することにより、前記キャリブレーション画像において、前記計測光の照射位置を表示し、且つ、前記指標図形平面を表示する請求項11記載のキャリブレーション方法。 In the calibration image acquisition step, by turning on the backlight provided in the light transmission type chart, the irradiation position of the measurement light is displayed in the calibration image, and the index graphic plane is displayed. The calibration method according to claim 11 to be displayed.
  14.  前記指標図形は円であり、
     前記パラメータ取得ステップでは、前記キャリブレーション画像における指標図形画像に外接する外接矩形を抽出する外接矩形抽出処理と、前記外接矩形に内接する楕円のフィッティングパラメータを、前記スケール用パラメータとして算出する内接楕円パラメータ算出処理とを行う請求項11ないし13いずれか1項記載のキャリブレーション方法。
    The index figure is a circle.
    In the parameter acquisition step, the circumscribed rectangle extraction process for extracting the circumscribed rectangle inscribed in the index graphic image in the calibration image and the fitting parameter of the ellipse inscribed in the circumscribed rectangle are calculated as the scale parameters. The calibration method according to any one of claims 11 to 13, wherein the parameter calculation process is performed.
  15.  前記スケール用パラメータには、前記チャート間距離が第1距離のスケール用パラメータと、前記チャート間距離が第2距離のスケール用パラメータとが含まれ、
     前記パラメータ取得ステップにおいては、前記距離変更機構によって前記チャート間距離を変更する毎に、前記第1距離のスケール用パラメータを取得し、
     前記パラメータ取得ステップの後に、前記第1距離の前記スケール用パラメータに基づく補間処理を行うことによって、前記第2距離のスケール用パラメータを算出する補間処理ステップを行う請求項11ないし14いずれか1項記載のキャリブレーション方法。
    The scale parameters include a scale parameter having a chart-to-chart distance of a first distance and a scale parameter having a chart-to-chart distance of a second distance.
    In the parameter acquisition step, every time the distance between the charts is changed by the distance changing mechanism, the scale parameter of the first distance is acquired.
    Any one of claims 11 to 14 that performs an interpolation processing step of calculating the scale parameter of the second distance by performing an interpolation process based on the scale parameter of the first distance after the parameter acquisition step. The calibration method described.
PCT/JP2021/008738 2020-09-02 2021-03-05 Calibration device and method WO2022049806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147690A JP2023171978A (en) 2020-09-02 2020-09-02 Calibration device and method
JP2020-147690 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049806A1 true WO2022049806A1 (en) 2022-03-10

Family

ID=80490849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008738 WO2022049806A1 (en) 2020-09-02 2021-03-05 Calibration device and method

Country Status (2)

Country Link
JP (1) JP2023171978A (en)
WO (1) WO2022049806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116883515A (en) * 2023-09-06 2023-10-13 菲特(天津)检测技术有限公司 Optical environment adjusting method and optical calibration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528688A (en) * 2000-03-30 2003-09-30 シビヨン, インコーポレイテッド Apparatus and method for calibrating an endoscope
JP2008253503A (en) * 2007-04-04 2008-10-23 Hoya Corp Picture characteristic measuring apparatus and sensitivity measuring method for electronic endoscope
JP2017512554A (en) * 2014-03-19 2017-05-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Medical device, system, and method using eye tracking
US20190028614A1 (en) * 2016-01-15 2019-01-24 Barco Nv System and method for endoscope calibration
JP2020130634A (en) * 2019-02-20 2020-08-31 富士フイルム株式会社 Endoscope apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528688A (en) * 2000-03-30 2003-09-30 シビヨン, インコーポレイテッド Apparatus and method for calibrating an endoscope
JP2008253503A (en) * 2007-04-04 2008-10-23 Hoya Corp Picture characteristic measuring apparatus and sensitivity measuring method for electronic endoscope
JP2017512554A (en) * 2014-03-19 2017-05-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Medical device, system, and method using eye tracking
US20190028614A1 (en) * 2016-01-15 2019-01-24 Barco Nv System and method for endoscope calibration
JP2020130634A (en) * 2019-02-20 2020-08-31 富士フイルム株式会社 Endoscope apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116883515A (en) * 2023-09-06 2023-10-13 菲特(天津)检测技术有限公司 Optical environment adjusting method and optical calibration device
CN116883515B (en) * 2023-09-06 2024-01-16 菲特(天津)检测技术有限公司 Optical environment adjusting method and optical calibration device

Also Published As

Publication number Publication date
JP2023171978A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2018051680A1 (en) Endoscope system
US7289233B2 (en) Optical film measuring device
JP7115897B2 (en) endoscope device
US20190086198A1 (en) Methods, systems and computer program products for determining object distances and target dimensions using light emitters
EP3164056B1 (en) System and method for corneal topography with flat panel display
WO2022049806A1 (en) Calibration device and method
JP7099971B2 (en) Endoscope device, calibration device, and calibration method
JP7029359B2 (en) Endoscope device and its operation method as well as programs for endoscope devices
JP7069062B2 (en) Endoscope device
CN114207499A (en) Endoscope system and method for operating same
US20230200682A1 (en) Endoscope system and method of operating the same
WO2021039718A1 (en) Endoscope system and method for operating same
JP7214840B2 (en) endoscope, endoscopic device
JP6924727B2 (en) Endoscope device
JP2018163107A (en) Lens meter
JP2020014808A (en) Endoscope apparatus, operation method for the same, and program for endoscope apparatus
JP2023545309A (en) Portable 3D image measurement device, 3D image measurement method using the same, and medical image matching system
JP2018163106A (en) Lens meter
WO2021225026A1 (en) Test chart, check system, and check method
JP6885762B2 (en) Lens meter
JP2001338278A (en) Form-measuring apparatus
JPWO2020153186A1 (en) Endoscope device
US12029386B2 (en) Endoscopy service support device, endoscopy service support system, and method of operating endoscopy service support device
EP4094668A1 (en) Endoscopy service support device, endoscopy service support system, and method of operating endoscopy service support device
WO2023279172A1 (en) Method, device and system for combining scleral and corneal topography data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP