WO2022049355A1 - Procédé de préparation d'une composition fertilisante par oxydation - Google Patents

Procédé de préparation d'une composition fertilisante par oxydation Download PDF

Info

Publication number
WO2022049355A1
WO2022049355A1 PCT/FR2021/051524 FR2021051524W WO2022049355A1 WO 2022049355 A1 WO2022049355 A1 WO 2022049355A1 FR 2021051524 W FR2021051524 W FR 2021051524W WO 2022049355 A1 WO2022049355 A1 WO 2022049355A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
humic substances
mass
average
plant
Prior art date
Application number
PCT/FR2021/051524
Other languages
English (en)
Inventor
Florence Cruz
Sylvain PLUCHON
Jean-Claude Yvin
Frédéric VIOLLEAU
Guillaume GOTTI
Marielle PAGES-HOMS
Original Assignee
Agro Innovation International
Ecole D’Ingenieurs De Purpan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agro Innovation International, Ecole D’Ingenieurs De Purpan filed Critical Agro Innovation International
Priority to US18/044,169 priority Critical patent/US20230331636A1/en
Priority to CA3191569A priority patent/CA3191569A1/fr
Priority to EP21778186.3A priority patent/EP4211096A1/fr
Publication of WO2022049355A1 publication Critical patent/WO2022049355A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/02Other organic fertilisers from peat, brown coal, and similar vegetable deposits
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/40Treatment of liquids or slurries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention relates to a method for preparing a fertilizer composition by oxidation of humic substances, the compositions thus obtained and their use as a fertilizer.
  • the fertilizing compositions prepared can in particular be used in agriculture, in particular for stimulating the growth of plants.
  • Humic substances are both macromolecular and supramolecular biomolecules [8]. Humic substances are largely responsible for the brown color of decomposed plant debris and also contribute to the black-brown color of soil surfaces. Humic substances are therefore very important components of the soil as they affect the physical and chemical properties of the soil and increase its fertility. In aquatic systems, such as rivers, humic substances make up about 50% of dissolved organic matter. Humic substances affect its pH and alkalinity.
  • Humic substances are complex and heterogeneous mixtures of polydispersed materials formed by chemical and biochemical reactions during the decomposition and transformation of plants and microbial residues, resulting in a process known as humification.
  • Plant lignin and its transformation products, as well as polysaccharides, melanin, cutin, proteins, lipids, nucleic acids, fine particles of carbonization residues, are important compounds participating in this humification process. .
  • Humic substances are substances with very complex structures which are however considered as chemical entities in their own right. According to the definition given by the International Humic Substance Society (IHSS), humic substances are complex and heterogeneous mixtures of polydisperse materials formed in soils, sediments and natural waters by biochemical and chemical reactions during decomposition and the transformation of plant and microbial remains (a process called humification).
  • IHSS International Humic Substance Society
  • Humic substances include in particular humic acids (HA), fulvic acids (FA) and humin.
  • HA humic acids
  • FA fulvic acids
  • humin humin
  • humic substances In the field of agriculture, the use of humic substances has many advantages.
  • an effective quantity of humic substances makes it possible to improve the state of health of the plants and the yield, with in particular a better use of water (reduced water consumption to make the same mass of dry matter), increased root length after germination, better rooting, increased biomass (leaves, stems, flowers and fruits) with better dry matter content, improved precocity of flowering and fruiting [1] .
  • the oxidation, for example ozonation, of a composition of humic substances makes it possible to optimize its fertilizing properties, compared with a composition of non-oxidized humic substances.
  • a composition of oxidized humic substances for example an ozonated composition of humic substances, significantly stimulated the absorption of minerals in the plant, compared to a composition of non-oxidized humic substances, for example a composition of non-ozonated humic substances.
  • the present invention which finds application in the field of agriculture, aims to provide a new process for preparing a fertilizing composition by oxidation humic substances, the compositions thus obtained and their use as a fertilizer.
  • the invention relates to a method for preparing a fertilizing composition, comprising a step of treating a liquid composition of humic substances whose mass-average hydrodynamic radius of the particles in solution, measured by Dynamic Light Scattering (DLS), is “Rh average before treatment” with an appropriate amount of oxidizing agent to obtain a liquid composition of oxidized humic substances whose mass average hydrodynamic radius of the particles in solution (Rh average after treatment), measured by DLS, CSt SUPERIOR TO AVERAGE Rh BEFORE TREATMENT-
  • DLS Dynamic Light Scattering
  • the invention relates to a fertilizing composition obtainable by the process according to the invention.
  • the invention relates to the use of a composition according to the invention as a stimulant for the absorption of minerals in a plant, preferably the minerals are chosen from nitrogen, phosphorus, potassium, calcium, magnesium and/or sulfur.
  • the invention relates to a method for fertilizing a plant, a soil or a growing medium comprising the application to said plant, said soil or said growing medium of a composition according to the invention.
  • the invention relates to a process for fertilizing a plant, a soil or a growing medium consisting in preparing a fertilizing composition by implementing the process of the invention, and applying, for example directly after the preparation, said fertilizing composition to the plant, to the soil or to the growing medium.
  • the present invention stems from the surprising advantages demonstrated by the inventors of the effect of oxidation, for example ozonation, on the fertilizing power of a liquid composition of humic substances.
  • the invention relates to a method for preparing a fertilizing composition, comprising a step of treating a liquid composition of humic substances whose mass-average hydrodynamic radius of the particles in solution, measured by Dynamic Light Scattering (DLS) , is "Rh average before treatment” with an appropriate amount of oxidizing agent to obtain a liquid composition of oxidized humic substances whose the mass-average hydrodynamic radius of the particles in solution (average Rh after treatment), measured by DLS, is greater than the Rhmo y before treatment
  • DLS Dynamic Light Scattering
  • the description also relates to a method for improving the fertilizing properties of a composition of humic substances, comprising a step of treating a liquid composition of humic substances whose mass-average hydrodynamic radius of the particles in solution, measured by Dynamic Light Scattering (DLS), is "Rh avg before treatment” with an appropriate amount of oxidizing agent to obtain a liquid composition of oxidized humic substances whose mass-average hydrodynamic radius of the particles in solution (Rh avg after treatment), measured by DLS, is higher than the average Rh n before treatment-
  • DLS Dynamic Light Scattering
  • the method comprises the following steps: a) obtaining a liquid composition of humic substances whose mass-average hydrodynamic radius of the particles in solution, measured by Dynamic Light Scattering (DLS), is “Rh average before treatment * , b) treating the liquid composition of humic substances with an appropriate amount of oxidizing agent to obtain an oxidized liquid composition of humic substances whose mass-average hydrodynamic radius of the particles in solution (average Rh n after treatment), MEASUREMENT by DLS, is higher than the Rhaverage before treatment-
  • DLS Dynamic Light Scattering
  • fertilizer composition(s) are synonyms and designate a composition, a substance, or a mixture substances, of natural or synthetic origin, applied or intended to be applied to plants or their rhizosphere or to fungi or their mycosphere, alone or mixed with another material, with the aim of providing plants or to fungi of nutrients or to improve their nutritional efficiency or to stimulate plant nutrition processes independently of the nutrients it contains, for the sole purpose of improving one or more of the characteristics of plants or their rhizosphere such as nutrient use efficiency, abiotic stress tolerance, quality characteristics or availability of nutrients confined to the soil and rhizosphere.
  • This definition is derived from the definition in European Union Regulation No. 2019 1009.
  • the inventors have in fact shown that it is possible to improve the fertilizing properties of a liquid composition of humic substances by treating said composition with an appropriate amount of oxidizing agent, for example an appropriate amount of ozone.
  • an appropriate amount of oxidizing agent for example an appropriate amount of ozone.
  • the inventors have in fact noticed, quite unexpectedly, that mild oxidation of a liquid composition of humic substances increases the mass-average hydrodynamic radius of the particles in solution (average Rh), measured by DLS, and that this increase in the average Rh was associated with an increase in the fertilizing properties of said composition.
  • the amount of oxidizing agent must be adapted to obtain a liquid composition of oxidized humic substances whose mass-average hydrodynamic radius of the particles in solution (Rh average after treatment), measured by DLS, is higher than the average Rh before treatment, measured by DLS.
  • DLS Dynamic Light Scattering
  • the principle of DLS is based on measurements of scattered light intensity fluctuation due to Brownian motion of the particles. The larger a particle the slower its movement will be. This phenomenon is described by the Stokes-Einstein law.
  • the incident laser beam will pass through the analyzed liquid composition.
  • the ray scattered at 90° (the most commonly used angle) will depend on the morphology of the particles.
  • the intensity variation of the scattered ray gives information on the diffusion of the particles and therefore on their size [11].
  • the values of Rh mean are calculated by weighting by the percentage by mass of each population.
  • the measured scatter intensity range can be 1.36 x 106 to 3.14 x 106 counts per second (cps). All measurements can be taken at a detection angle of 90° and all reported sizes are averages of 15 sequences of 5 s each.
  • a DLS protocol that can be implemented within the scope of the invention is described in the examples.
  • the DLS analyzes make it possible to measure the mass-average hydrodynamic radius of the particles in solution, that is to say the mass-average hydrodynamic radius of the particles of the soluble fraction of the composition. liquid of humic substances.
  • certain liquid compositions of humic substances may comprise a non-negligible amount of insoluble matter. This is the case, for example, when the liquid composition of humic substances is prepared from a raw material (eg peat) mixed with water.
  • a raw material eg peat
  • the person skilled in the art knows that he must carry out the measurements of the average Rh by DLS on the soluble fraction of the liquid composition of humic substances.
  • the soluble fraction can be obtained very easily by separating it from the insoluble fraction, for example by decantation, filtration or by centrifugation.
  • An example of separation of the soluble fraction and the insoluble fraction consists in centrifuging at 4800 rpm for 30 minutes.
  • the liquid composition of humic substances to be oxidized can be obtained from natural humic substances. It may for example be a raw material containing humic substances, for example peat, leonardite, lignite, hard coal or anthracite. Thus, a liquid composition of humic substances can be a liquid composition of peat, leonardite, lignite, coal or anthracite.
  • Peat is fossil organic matter formed by accumulation over long periods of time of dead organic matter, essentially plants, in an environment saturated with water. Peat forms most of the soils in peatlands. Peat can be more or less rich in humic substances depending on the degree of decomposition.
  • the degree of decomposition of peat is classified according to the Von Post scale which goes from H1 (least decomposed peat) to H 10 (most decomposed peat) [9].
  • Humus peat that is to say a peat classified from H6 to H 10 according to the Von Post scale, is the preferred peat for implementing the process according to the invention because it is richer in humic substances. than peat classified from H1 to H5 according to the Von Post scale.
  • Leonardite is a rock which can contain more than 90% by weight of humic substances. This rock has undergone more extensive degradation than peat, but less extensive than coal.
  • Lignite is a sedimentary rock composed of the fossil remains of plants. It is an intermediate rock between peat and coal.
  • Coal is a sedimentary carbonaceous rock corresponding to a specific quality of coal, intermediate between lignite and anthracite. Blackish in color, it comes from the carbonization of plant organisms.
  • Anthracite is a sedimentary rock of organic origin. It is a grey, blackish and shiny variety of coal extracted from the mines.
  • the liquid composition of humic substances to be oxidized can also be obtained from synthetic humic substances.
  • Synthetic humic substances can for example result from a process of synthesis [7] or from the transformation of natural humic substances, in particular by hemisynthesis.
  • Humic substances can also be extracted from organic matter (peat, leonardite, lignite, hard coal, anthracite, soils rich in humic substances, composts of plant waste, etc.) using an alkaline agent such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) and optionally subjected to purification [10].
  • Humic substances can in particular be extracted and/or purified by methods well known to those skilled in the art [5] [10].
  • the liquid composition of humic substances to be oxidized includes liquid compositions of a salt of humic substances.
  • a salt of humic substances is used, such as potassium humates or potassium salt of humic substances.
  • Salts of humic substances are sold commercially. Mention may be made, for example, of the potassium salt of humic substances marketed by the company Humatex under the brand name Dralig® (CAS 68514-28-3).
  • Dralig® product is prepared from humic substances extracted from natural Czech oxyhumolite with a high content of humic substances.
  • FIG. 5 shows the HPSEC profile of a liquid composition of humic substances which can be used in the method according to the invention (in dotted lines).
  • concentration of humic substances in the liquid composition is not limited. It can for example be between 100 and 1000 mg/L, preferably between 400 and 500 mg/L, for example approximately 550 mg/L.
  • the humic substance purity of the liquid composition of humic substances can also vary, for example depending on the source used. Of course, peat is generally less pure in humic substances than leonardite or a commercial powder of humic substances, such as the product Dralig® (CAS 68514-28-3).
  • the liquid composition of humic substances to be treated comprises at least 50% by dry mass of humic substances, for example at least 60%, at least 70%, at least 80%, at least 85%, at least least 90%, at least 95%, or at least 99% by dry mass of humic substances.
  • the appropriate amount of oxidizing agent necessary for the implementation of the method can depend on various parameters, such as the nature of the humic substances, the purity of the liquid composition of humic substances, the quantity of humic substances to be treated, the nature of the oxidizing agent, etc. Nevertheless, those skilled in the art will have no difficulty in determining the appropriate amount of oxidizing agent by simply measuring the average Rh by DLS , for example by following the evolution of the average Rh with increasing amounts of an agent. oxidant. These measurements can for example make it possible to define a quantity of oxidizing agent not to be exceeded so that the average Rh n after treatment, measured by DLS, is greater than the average Rh n before treatment, measured by DLS. Thus, it is easy to determine the appropriate amount of oxidizing agent for a given liquid composition of humic substances and a given oxidizing agent.
  • Figure 8B shows the evolution of the average Rh, measured by DLS, with increasing amounts of ozone.
  • the amount of oxidizing agent can be easily adapted so as to obtain, as far as possible, an average Rh, measured by DLS, the value of which is desired.
  • the amount of oxidizing agent is chosen to obtain a maximum value of average Rh, measured by DLS.
  • liquid compositions of humic substances may include a significant amount of insoluble matter. This is the case, for example, when treating a raw material (eg peat) mixed with water.
  • a raw material eg peat
  • DLS DLS measurements on the soluble fraction of the liquid composition comprising humic substances.
  • the soluble fraction can be obtained very easily by separating it from the insoluble fraction, for example by filtration or by centrifugation, as detailed previously in the description.
  • the average Rh after treatment is 3U minus 2 times higher than the average Rh before treatment, preferably at least 3 times, 4 times, 5 times, 6 times higher, for example at least
  • the treatment time is not limiting as long as one obtains an average Rh after treatment higher than the average Rh before treatment.
  • the duration of the treatment is between 5 minutes and 10 hours.
  • the quantity of oxidizing agent, and possibly the duration of the treatment are adapted to the initial quantity of humic substances and to the oxidizing agent used. The duration of the optimal treatment can therefore be easily adapted by the person skilled in the art.
  • the mass proportion of the particles in solution having a hydrodynamic radius of between 15 nm and 10,000 nm of the composition of oxidized humic substances, measured by DLS is at least 2 times greater than the mass proportion particles in solution having a hydrodynamic radius between 15 nm and 10000 nm of the composition of humic substances before oxidation, preferably at least 2.5 times, for example at least 3 times, at least 3.5 times, at least 4 times, at least 4.5 times, at least 5 times, at least 6 times.
  • Figures 7 and 8A show the evolution of the mass proportion of particles in solution having a hydrodynamic radius between 15 nm and 10,000 nm, measured by DLS, with increasing amounts of ozone.
  • the weight-average molar mass in solution (hereinafter "Mw") (expressed in Da) of the liquid composition of oxidized humic substances is greater than the Mw of the composition of humic substances before oxidation.
  • Mi molar mass relative to the retention time obtained in HPLC (resulting from the column calibration carried out with standards).
  • the calculation of Mw is generally done automatically by the HPLC device. To calculate Mw, it is possible to do it manually or to use software such as the Chromeleon software which is an HPLC data acquisition software.
  • Figures 1 and 2 illustrate the increase in Mw with increasing amounts of ozone.
  • the oxidizing agent is advantageously chosen from ozone, ultraviolet rays and/or hydrogen peroxide.
  • the oxidizing agents can be used alone or combined with each other to obtain the desired composition.
  • the oxidizing agent is ozone
  • Ozone is a particularly advantageous oxidizing agent because it is easy to use, inexpensive and the quantity of which is easy to control for the implementation of the method of the invention. Since ozone is unstable, it is produced at the place of consumption. On an industrial scale, ozone is generally produced by electrical discharges in tubular generators. This production is due to an ozone generator, which is essentially composed of two conductive electrodes held facing each other. The air or oxygen is compressed, then dried, and passes between these two electrodes where it is subjected to an electric discharge in a high voltage alternating current field. Some of the oxygen turns into ozone. A cooling circuit absorbs the excess heat produced by the discharge.
  • one of the electrodes or sometimes both are covered with a dielectric with high permittivity, of uniform thickness producing an equipotential surface.
  • the dielectrics used are glasses whose permittivity varies, depending on the chemical composition, from 4 to 6.5. Ozone is therefore produced by causing an oxygenated fluid to slowly circulate in the remaining space and by creating in the gaseous space a sinusoidal alternating voltage of sufficiently high amplitude.
  • the ozone can be gaseous ozone produced from oxygen, for example from air, from oxygen-enriched air or from pure oxygen.
  • An ozone generator suitable for implementing the invention is Lab2b or CFS1 from the company Ozonia (Suez).
  • the quantity of ozone is adapted to obtain an average Rh after treatment higher than the average Rh before treatment.
  • the quantity of ozone will therefore essentially depend on the quantity of humic substances present in the composition.
  • the mass of ozone/mass of humic substances ratio is less than 10.
  • the mass of ozone corresponds to the mass of ozone applied to the liquid composition of humic substances.
  • the mass of humic substances corresponds to the mass of humic substances present in the liquid composition of humic substances to be ozonated, that is to say the mass of humic substances before ozonation.
  • the mass of humic substances can be determined by HPLC.
  • the ratio mass of ozone/mass of humic substances can for example be less than 9, less than 8, less than 7, less than 6, less than 5, less than 4.5, less than 4, less than 3.5 , for example between 0.2 and 10, between 0.2 and 9, between 0.2 and 8, between 0.2 and 7, between 0.2 and 6, between 0.2 and 5 , between 0.2 and 3.5, between 0.5 and 3.5, between 1 and 10, between 1 and 9, between 1 and 8, between 1 and 7, between 1 and 6 , between 1 and 5, between 1 and 4, between 1 and 3, between 1 and 2, for example is equal to about 1.5.
  • ozone generator Any type of ozone generator can be used in the implementation of the method according to the invention.
  • air ozone generators dried air with a dew point of -50°C to - 70°C
  • low frequency ozone generators 50 Hz
  • medium frequency ozone generators 150 to 600 Hz
  • the ozone is produced and injected into a reactor, where the composition to be treated is injected beforehand.
  • Mention may be made, for example, of the CFS1 ozone generator from Ozonia, which is particularly suitable for implementing the method according to the invention. It is also possible to use excimers which are good generators of ozone.
  • reactors equipped with porous diffusers reactors equipped with turbines, and U-tube piston flow reactors, equipped with a pump to overcome pressure drops.
  • the gas containing ozone Before being injected into the liquid composition of humic substances, the gas containing ozone can be divided into "micro-bubbles", ie bubbling of the ozone, using various materials, for example using porous diffusers arranged in the lower part of the tanks or columns or a hydro-injector ensuring the spraying of the gas directly into the composition to be treated.
  • the latter has the advantage of a better rate of dissolution of the ozone in the treated composition.
  • the treatment is carried out by bubbling ozone into the liquid composition of humic substances, for example by bubbling 8 x W 4 at 0.5 grams of ozone per minute (g/min ), for example from 8 x W 4 g/min to 0.1 g/min, for example from 8.33 x W 4 g/min to 0.1 g/min of ozone, preferably from 1.5 x W 2 g/min at 1.9 x W 2 g/min ozone.
  • the duration of bubbling depends on the quantity of ozone that one wishes to apply.
  • the ozone concentration of the liquid composition is constant during the treatment, preferably the ozone concentration ranges from 1 g/m 3 to 120 g/m 3 , advantageously it is equal at approximately 20 g/m 3 .
  • the method according to the invention may comprise one or more additional steps, for example one or more steps chosen from:
  • liquid composition of oxidized humic substances for example freeze-drying, the liquid composition of oxidized humic substances; and granulating the liquid oxidized humic substance composition or a fertilizer composition comprising the liquid oxidized humic substance composition.
  • a fertilizing composition comprising the liquid composition of oxidized humic substances can be prepared by adding, to the composition of oxidized humic substances, a mineral fertilizer, preferably containing one or more minerals chosen from nitrogen, phosphorus, potassium , calcium, magnesium and/or sulfur, to ozonated humic substances. The addition can be done before or after the additional steps mentioned above.
  • the invention also relates to a fertilizing composition which can be obtained by the process according to the invention.
  • the mass-average hydrodynamic radius of the particles in solution (Rh mO yen), measured by DLS is greater than 50 nm, preferably greater than 75 nm, for example greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 500 nm, greater than 750 nm, greater than 1000 nm, greater than 1250 nm, greater than 1500 nm, greater than 1750 nm, greater than 2000 nm.
  • the mass proportion of particles in solution having a hydrodynamic radius of between 15 nm and 10,000 nm, measured by DLS is greater than 15%, preferably greater than 20%, for example greater than 25%, greater than 30%, over 35%, over 40%, over 45%, over 50%, over 55%, over 60%, over 65%, over 70%, over 75%, over 80%.
  • Mw of the fertilizing composition according to the invention is between 100 kDa and 300 kDa, for example between 100 kDa and 250 kDa, between 100 kDa and 200 kDa, between 100 kDa and 180 kDa, preferably between 150 kDa and 170 kDa, for example it is about 160 kDa.
  • the diagram of degradation of humic substances by ozone is presented in Figure 3, taken from [6].
  • the composition according to the invention further comprises one or more fertilizing substance(s) chosen from urea, ammonium sulphate, ammonium nitrate , phosphate, potassium chloride, ammonium sulfate, magnesium nitrate, manganese nitrate, zinc nitrate, copper nitrate, phosphoric acid, potassium nitrate and boric acid.
  • fertilizing substance(s) chosen from urea, ammonium sulphate, ammonium nitrate , phosphate, potassium chloride, ammonium sulfate, magnesium nitrate, manganese nitrate, zinc nitrate, copper nitrate, phosphoric acid, potassium nitrate and boric acid.
  • the composition according to the invention further comprises one or more mineral fertilizers.
  • the mineral fertilizer preferably comprises one or more minerals chosen from nitrogen, phosphorus, potassium, calcium, magnesium and/or sulphur. It has in fact been shown that oxidized humic substances allow better absorption of minerals by the plant compared to non-ozonated humic substances.
  • a composition according to the invention which also comprises one or more mineral fertilizers therefore has particularly advantageous properties.
  • Figure 5 shows the HPSEC profile of a fertilizing composition according to the invention which was obtained by implementing the method according to the invention (solid line).
  • Figure 7 shows a DLS profile of fertilizing compositions according to the invention which have been obtained by implementing the method according to the invention, with a mass ratio of ozone/mass of humic substances (R) equal to 0.1, equal to 0.5 or equal to 2.
  • composition according to the invention can be in liquid form, for example in the form of a fertilizing solution, or in solid form, for example in the form of granules.
  • the invention also relates to the use of a composition according to the invention as a stimulant for the absorption of minerals in a plant, preferably the minerals are chosen from nitrogen, phosphorus, potassium, calcium , magnesium and/or sulfur.
  • the invention also relates to the use of a composition according to the invention as a stimulant for the production of pigments in a plant, preferably the production of carotenoids, chlorophyll A and/or chlorophyll B.
  • the invention also relates to a method for fertilizing a plant, a soil or a growing medium comprising the application to said plant, said soil or said growing medium of a composition according to invention.
  • the invention also relates to a process for fertilizing a plant, a soil or a growing medium consisting in (i) preparing a fertilizing composition by implementing the process of the invention, and ( ii) applying, for example directly after the preparation, said fertilizing composition to the plant, to the soil or to the growing medium.
  • a culture support is intended to serve as a culture medium for a plant by making it possible both to anchor the absorbent organs of the plant and to bring them into contact with the solutions necessary for plant growth.
  • the process according to the invention makes it possible to stimulate the absorption of minerals in the plant.
  • the minerals are chosen from nitrogen, phosphorus, potassium, calcium, magnesium and/or sulphur.
  • the method according to the invention makes it possible to stimulate the production of pigments in the plant, preferably the production of carotenoids, chlorophyll A and/or chlorophyll B.
  • the use or the method according to the invention makes it possible to increase the photosynthetic activity of a plant and/or to stimulate the aerial and/or root growth of the plant.
  • the fertilizing composition is applied to the plant, to the soil or to the growing medium, in liquid form, directly after the treatment with the oxidizing agent.
  • the application can be done continuously, that is to say that the fertilizing composition in liquid form is applied to the soil or to the growing medium in a continuous flow as the treatment with the oxidizing agent.
  • composition according to the invention can be applied to the plant via the leaf or root route.
  • the soil is an acid soil.
  • acidic soil is soil with a pH below pH 6.5.
  • the inventors have in fact shown that under acidic conditions the ozonated humic substances precipitate less than the non-ozonated humic substances, and that they therefore retain their fertilizing properties.
  • the present invention finds application in the treatment of a very wide variety of plants. Among these, we can mention in particular:
  • cereals e.g. wheat, maize
  • oilseeds e.g. soya, sunflower
  • - grassland plants useful for animal feed specialized crops such as, in particular, market gardening (eg lettuce, spinach, tomato, melon), vines, arboriculture (pear, apple, nectarine), or horticulture (eg roses).
  • market gardening eg lettuce, spinach, tomato, melon
  • vines e.g., tomato, melon
  • arboriculture pear, apple, nectarine
  • horticulture eg roses
  • Figure 1 is an HPSEC curve which shows the evolution of the weight average molar mass in solution (Mw) of the liquid composition of humic substances during the treatment with ozone. The figure also shows the evolution of the Number Average Molecular Mass (Mn) of the liquid composition of humic substances during treatment with ozone.
  • FIG. 2 is an HPSEC curve which shows the evolution of the mean molar mass by weight in solution (Mw) of the liquid composition of humic substances as a function of the “mass of ozone/mass of humic substances” ratio.
  • Mw mean molar mass by weight in solution
  • Mn Number Average Molecular Mass
  • Figure 3 represents the process of degradation of humic substances by oxidation with ozone.
  • Figure 4 illustrates the assembly of a batch reactor used for the ozonation of a liquid composition of humic substances.
  • Figure 5 is an HPSEC profile of an ozonated humic substance composition (parent composition of Example 1) and a non-ozonated humic substance composition (control composition of Example 1).
  • the solid line shows the ozonated composition and the dotted line shows the non-ozonated control composition.
  • Figure 6 is a histogram obtained from the HPSEC data of Figure 5 which represents the percentage of the different families of humic substances according to their molecular mass.
  • FIG. 7 is a DLS (Dynamic light scattering) analysis which shows the evolution of the size of humic substances with increasing amounts of ozone.
  • Figure 9 is a curve which compares the evolution of the length of the leaves of maize treated with a composition of ozonated humic substances (1.5.2+SN) and a composition of non-ozonated humic substances (T.2+SN ).
  • Figure 10 represents the average leaf length of maize treated with an ozonated humic substance composition (1) and a non-ozonated humic substance composition (0).
  • Figure 11 is a curve which compares the evolution of the length of the roots of maize treated with a composition of ozonated humic substances (1.5.2+SN) and a composition of non-ozonated humic substances (T.2+SN ).
  • Figure 12 represents the average root length of maize treated with an ozonated humic substance composition (1) and a non-ozonated humic substance composition (0).
  • FIG. 13 is a histogram which compares the length of the roots of maize treated with a composition of minerals, a composition of non-ozonated humic substances (T.2+SN), a composition of ozonated humic substances with a ratio “ mass of ozone/mass of humic substances” of 0.5 (0.5.2+SN), a composition of ozonated humic substances with a “mass of ozone/mass of humic substances” ratio of 1.5 (1.5.2 +SN) and a composition of ozonated humic substances with a “mass of ozone/mass of humic substances” ratio of 3.5 (3.5.2+SN).
  • Figure 14 is a bar graph comparing the carotenoid content of maize leaves treated with an ozonated humic substance composition (left) and a non-ozonated humic substance composition (right).
  • Figure 15 is a bar graph comparing the chlorophyll A content of maize leaves treated with an ozonated humic substance composition (left) and a non-ozonated humic substance composition (right).
  • FIG. 16 Figure 16 is a bar graph comparing the chlorophyll B content of maize leaves treated with an ozonated humic substance composition (left) and a non-ozonated humic substance composition (right).
  • Figure 17 is an HPSEC profile of a liquid composition of non-ozonated humic substances before and after lyophilization.
  • Figure 18 is an HPSEC profile of a liquid composition of ozonated humic substances before and after lyophilization.
  • Figure 19 is a curve showing the precipitation of humic substances as a function of pH in a liquid composition of ozonated humic substances (in solid lines) and in a liquid composition of non-ozonated humic substances (in dotted lines).
  • a liquid composition of humic substances was obtained by diluting 11 grams of a potassium salt powder of humic substances (Dralig® product marketed by the company Humatex - CAS 68514-28-3) in 20 liters of water, to obtain 20 liters of a composition with a concentration of humic substances of 550 mg/L.
  • This liquid composition of humic substances was used in the examples below as “control composition”.
  • the ozonation reaction was carried out in a conventional batch reactor described in Figure 4.
  • the reactor used was a simple glass bottle (1) containing IL of the composition of humic substances at 550 mg/L (2) . This solution was stirred with a magnetic stirrer (3).
  • the ozone was produced with an ozone generator (CFS1 - Ozonia) powered by pure oxygen (4).
  • the ozone concentration used was 20 g/m 3 in the gas flow entering the reactor (with a flow rate of 1.67x10'2 g/min of ozone) and was monitored using the ozone analyzer.
  • ozone (5) The flow of gas entering the reactor was regulated at 50 L/h using a flow meter (6).
  • the temperature of the incoming gas was measured with a thermometer (7) and was between 17 and 22°C.
  • the gas was injected into the composition of humic substances with a glass inlet and a frit comprising pores of an average size of 200 ⁇ m (8).
  • the excess ozone was then destroyed in a second reactor (9) containing a solution of potassium iodide (Kl) at 50 g/L (10).
  • a valve was used to control the reaction (11). When the ozone was not used in the reactor, it was sent directly to the destroyer (9).
  • the ozonation time was 50 minutes for IL of composition of humic substances at 550 mg/L.
  • compositions of ozonated humic substances were diluted to a quarter with MilliQ water.
  • the liquid composition of humic substances thus obtained was used in the examples below as “stock composition”.
  • the measured scatter intensity range was 1.36 x 106 to 3.14 x 106 counts per second (cps). All measurements were taken at a 90° detection angle and all sizes reported are averages of 15 sequences of 5 seconds each. The reproducibility of the samples was analyzed 3 times. 20 ⁇ L of each solution was used and all solutions were adjusted to 25°C in the sample chamber of the instrument and allowed to equilibrate for 5 min.
  • a disposable microcuvette (WYATT technology) was used to perform the DLS measurement.
  • Dynamics software (WYATT technology) was used to control the acquisition of measurements and analyze the data.
  • Example 2 characterization of the fertilizing composition
  • control composition and the stock composition were also analyzed by DLS (Dynamic light scattering).
  • DLS is an analytical technique based on the Brownian motion of particles, described by the Stokes-Einstein equation. It has been used to study the aggregation of humic substances.
  • the DLS allowed to determine the hydrodynamic radius (Rh) and the polydispersity of humic substances in solution.
  • the measured scattering intensity range was 1.36 x 10 6 - 3.14 x 10 6 counts per second (cps). All measurements were taken at a 90° detection angle and all sizes reported are averages of 15 sequential runs of 5 seconds each. Samples were analyzed 26 times for reproducibility. 20 ⁇ L of each composition was used and all solutions were adjusted to 25°C in the measuring chamber and allowed to equilibrate for 5 mins.
  • a disposable microcuvette (WYATT technology) was used to perform the DLS analysis.
  • Dynamics software (WYATT technology) was used to control the acquisition of measurements and analyze the data.
  • HPSEC results with RI detector are shown in Figures 1 and 2 (Mw and Mn) and Figures 5 and 6.
  • DLS results are shown in Figures 7 and 8.
  • Figures 1 and 2 show the evolution of Mw and Mn during treatment with ozone.
  • Figure 5 shows that ozonation leads to a structural modification of humic substances.
  • the signal increases (around 5.2 minutes), which attests to the solubilization of certain molecules.
  • the peak at 6 min is degraded in favor of several populations relating to smaller molar masses (at 6.6; 7.0; 7.7 and 8.9 minutes). It should be noted that the peak at 10 minutes corresponds to all the small molecules (size ⁇ 100 Da) in particular the salts contained in the mobile phase of the HPLC.
  • Figure 6 represents the different percentages of the different families of humic substances according to the molecular mass.
  • Figure 6 demonstrates an appearance of compounds with a molar mass greater than 170 kDa in the parent composition, whereas with the control composition, this family of molecules is not observed.
  • Figure 6 also shows that ozonation leads to the formation of smaller humic substance molecules.
  • FIG. 7 is a DLS (Dynamic light scattering) analysis which shows the evolution of the size of humic substances with increasing amounts of ozone.
  • Rh hydrodynamic radius
  • R mass ratio of ozone/mass of humic substances
  • Figure 8A is a histogram obtained from the DLS data of Figure 7 which shows the mass distribution of humic substances as a function of their hydrodynamic radius (Rh) with increasing amounts of ozone.
  • Composition "1.5.2+SN” (ozonated humic substances): 10 liters of stock composition (Example 1) were supplemented with hydroponic solutions, namely 2.5 mL of a solution of nitrogen, phosphorus and potassium (FloraGro® from General Hydroponics), 2.5 mL of a nitrogen and calcium solution (FloraMicro® from General Hydroponics) and 2.5 mL of a solution of phosphorus, potassium, magnesium and sulfur (FloraBloom® from General Hydroponics).
  • hydroponic solutions namely 2.5 mL of a solution of nitrogen, phosphorus and potassium (FloraGro® from General Hydroponics), 2.5 mL of a nitrogen and calcium solution (FloraMicro® from General Hydroponics) and 2.5 mL of a solution of phosphorus, potassium, magnesium and sulfur (FloraBloom® from General Hydroponics).
  • T.2+SN composition non-ozonated humic substances: 10 liters of control composition (Example 1) were supplemented with hydroponic solutions, namely 2.5 mL of a solution of nitrogen, phosphorus and potassium (FloraGro® from General Hydroponics), 2.5 mL of a nitrogen and calcium solution (FloraMicro® from General Hydroponics) and 2.5 mL of a solution of phosphorus, potassium, magnesium and sulfur (FloraBloom® from General Hydroponics).
  • hydroponic solutions namely 2.5 mL of a solution of nitrogen, phosphorus and potassium (FloraGro® from General Hydroponics), 2.5 mL of a nitrogen and calcium solution (FloraMicro® from General Hydroponics) and 2.5 mL of a solution of phosphorus, potassium, magnesium and sulfur (FloraBloom® from General Hydroponics).
  • Length of the leaves [0156] The length of the leaves was measured at each renewal of the compositions and at
  • Table 5 Statistical analyzes / Tukey (HSD) / Analysis of the differences between the modalities with a confidence interval at 95% (leaf length).
  • the length of the roots was measured at each renewal of the compositions and at D17. The results are shown in Figure 11. The average leaf length at D17 is shown in Figure 12.
  • Table 7 Statistical analyzes / Tukey (HSD) / Analysis of the differences between the modalities with a 95% confidence interval (length of the roots).
  • Table 8 Statistical analyzes / Newman-Keuls (SNK) / Analysis of the differences between the modalities with a confidence interval at 95% (length of the roots). The results show that the length of the roots is significantly greater with the composition comprising ozonated humic substances, compared with the composition comprising non-ozonated humic substances.
  • Example 4 influence of the amount of ozone
  • composition "0.5.2+SN” (ozonated humic substances ratio 0.5): corresponds to the composition "1.5.2+SN” except that the humic substances have been ozonated with a mass ratio of ozone/mass of humic substances of 0.5.
  • composition “3.5.2+SN” (ozonated humic substances ratio 3.5): corresponds to the composition “1.5.2+SN” except that the humic substances have been ozonated with a mass ratio of ozone/mass of humic substances of 3.5.
  • hydroponic cultures were maintained for 16 days, with a renewal of the compositions every 2-3 days.
  • Example 3 The plants obtained in Example 3 were used to measure the chlorophyll and carotenoid content of the leaves by UV-Vis spectrophotometry.
  • each tube was deposited on a 96-well plate in 6 replicas of 300 ⁇ L per well (that is to say 6 ⁇ 300 ⁇ L for tube 1 and 6 ⁇ 300 ⁇ L for tube 2).
  • Chlorophyll B 34.09xA 645 - 15.28xA6 63
  • freeze-drying is to determine whether the transition to the solid state of ozonated humic substances induces an intra and inter molecular rearrangement. If so, it can be deduced that the molecules should be used in solution and not in the form of solids.
  • Figure 17 shows the curves obtained for the non-ozonated composition. The figure shows that the curves are similar, the two profiles being relatively close. Freeze-drying has little influence on non-ozonated humic substances (figure below).
  • the ozonated humic substances according to the process of the invention are very stable and resist freeze-drying.
  • the ozonated humic substances according to the invention can therefore be prepared both in liquid form and in solid form (freeze-dried form) without alteration.
  • Example 1 The “control” and “mother” compositions of Example 1 were used. .
  • the compositions were placed in vials and acidified with increasing volumes of 0.1 mol/L HCl.
  • the flasks were weighed beforehand empty (m fiaC on) - All the acidified compositions were then stirred and then centrifuged. The pellets and the supernatants were separated, the pH of the supernatant was measured, the pellet was oven-dried.
  • the vials were then weighed with the pellet (m C uiot+mfiacon) - The weighings were made once the samples had returned to ambient temperature.
  • FIG 19 shows that the more the solution was acidified, the more the humic substances tended to precipitate. However, the non-ozonated humic substances were precipitated up to 60% while the ozonated humic substances were only precipitated at 30%. Ozonation therefore improved the solubility of humic substances in acidic pH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Fertilizers (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

L'invention concerne un procédé de préparation d'une composition fertilisante, comprenant une étape de traitement d'une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement » avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement) mesuré par DLS, est supérieur au Rhmoyen avant traitement; une composition susceptible d'être obtenue par le procédé et son utilisation.

Description

Procédé de préparation d'une composition fertilisante par oxydation
Domaine Technique
[0001] L'invention concerne un procédé pour préparer une composition fertilisante par oxydation des substances humiques, les compositions ainsi obtenues et leur utilisation comme fertilisant. Les compositions fertilisantes préparées peuvent notamment être utilisées en agriculture, en particulier pour stimuler la croissance des plantes.
Technique antérieure
[0002] Les substances humiques sont des biomolécules à caractère à la fois macromoléculaire et supramoléculaire [8]. Les substances humiques sont en grande partie responsables de la couleur brune des débris végétaux décomposés et contribuent également à la couleur brun noir de la surface des sols. Les substances humiques sont donc des composants très importants du sol car ils affectent les propriétés physiques et chimiques du sol et augmentent sa fertilité. Dans les systèmes aquatiques, tels que les rivières, les substances humiques représentent environ 50% de la matière organique dissoute. Les substances humiques en affectent le pH et l'alcalinité.
[0003] Les substances humiques sont des mélanges complexes et hétérogènes de matériaux polydispersés formés par des réactions chimiques et biochimiques lors de la décomposition et de la transformation des plantes et des résidus microbiens, résultant d'un processus connu sous le nom d'humification. La lignine des plantes et ses produits de transformation, ainsi que les polysaccharides, la mélanine, la cutine, les protéines, les lipides, les acides nucléiques, les fines particules de résidus de carbonisation, sont des composés importants participant à ce processus d'humification.
[0004] Les substances humiques sont des substances de structures très complexes qui sont toutefois considérées comme des entités chimiques à part entière. Selon la définition donnée par l'international Humic Substance Society (IHSS), les substances humiques sont des mélanges complexes et hétérogènes de matériaux polydispersés formés dans les sols, les sédiments et les eaux naturelles par des réactions biochimiques et chimiques lors de la décomposition et de la transformation de restes végétaux et microbiens (un processus appelé humification).
[0005] Les substances humiques comprennent notamment les acides humiques (AH), les acides fulviques (AF) et l'humine. [0006] Le tableau suivant est une représentation possible des propriétés physico-chimiques des acides humiques, fulviques et de l'humine selon [5].
[0007] [Table 1]
Figure imgf000003_0001
[0008] Dans le domaine de l'agriculture, l'utilisation des substances humiques présente de nombreux avantages. En particulier, une quantité efficace de substances humiques permet d'améliorer l'état de santé des plantes et le rendement, avec notamment une meilleure utilisation de l'eau (consommation d'eau réduite pour faire la même masse de matière sèche), une augmentation de la longueur des racines après germination, un meilleur enracinement, une augmentation de la biomasse (feuilles, tiges, fleurs et fruits) avec une meilleur teneur en matières sèches, une amélioration de la précocité de la floraison et de la fructification [1].
[0009] Les déposants ont mis en évidence que l'oxydation, par exemple l'ozonation, d'une composition de substances humiques permettait d'en optimiser ses propriétés fertilisantes, par rapport à une composition de substances humiques non-oxydée. En particulier, les déposants ont mis en évidence qu'une composition de substances humiques oxydée, par exemple une composition de substances humiques ozonée, stimulait significativement l'absorption de minéraux chez la plante, par rapport à une composition de substances humiques non-oxydée, par exemple une composition de substances humiques non-ozonée.
Résumé de l'invention
[0010] La présente invention, qui trouve application dans le domaine de l'agriculture, vise à proposer un nouveau procédé de préparation d'une composition fertilisante par oxydation des substances humiques, les compositions ainsi obtenues et leur utilisation comme fertilisant.
[0011] Selon un premier aspect, l'invention concerne un procédé de préparation d'une composition fertilisante, comprenant une étape de traitement d'une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement » avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement), meSUTe par DLS, CSt SUperîeUT aU Rhmoyen avant traitement-
[0012] Selon un troisième aspect, l'invention concerne une composition fertilisante susceptible d'être obtenue par le procédé selon l'invention.
[0013] Selon un quatrième aspect, l'invention concerne l'utilisation d'une composition selon l'invention comme stimulant de l'absorption de minéraux chez une plante, de préférence les minéraux sont choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre.
[0014] Selon un cinquième aspect, l'invention concerne un procédé de fertilisation d'une plante d'un sol ou d'un support de culture comprenant l'application à ladite plante, audit sol ou audit support de culture d'une composition selon l'invention.
[0015] Selon un sixième aspect, l'invention concerne un procédé de fertilisation d'une plante, d'un sol ou d'un support de culture consistant à préparer une composition fertilisante en mettant en œuvre le procédé de l'invention, et appliquer, par exemple directement après la préparation, ladite composition fertilisante à la plante, au sol ou au support de culture.
Description détaillée
[0016] La présente invention découle des avantages surprenants mis en évidence par les inventeurs de l'effet de l'oxydation, par exemple l'ozonation, sur le pouvoir fertilisant d'une composition liquide de substances humiques.
[0017] Procédé pour préparer une composition fertilisante
[0018] L'invention concerne un procédé de préparation d'une composition fertilisante, comprenant une étape de traitement d'une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement » avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement), meSUre par DLS, est supérieur au Rhmoyen avant traitement’
[0019] La description concerne également un procédé pour améliorer les propriétés fertilisantes d'une composition de substances humiques, comprenant une étape de traitement d'une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement » avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement), mesuré par DLS, est supérieur au Rhmoyen avant traitement-
[0020] Dans un mode de réalisation particulier, le procédé comprend les étapes suivantes : a) obtenir une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement * , b) traiter la composition liquide de substances humiques avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement), meSUre par DLS, est supérieur au Rhmoyen avant traitement-
[0021] Les termes « composition(s) fertilisante(s) », « substance(s) fertilisante(s) » ou « produit(s) fertilisant(s) » sont synonymes et désignent une composition, une substance, ou un mélange de substances, d'origine naturelle ou d'origine synthétique, appliqués ou destinés à être appliqués sur des végétaux ou leur rhizosphère ou sur des champignons ou leur mycosphère, seuls ou mélangés avec une autre matière, dans le but d'apporter aux végétaux ou aux champignons des éléments nutritifs ou d'améliorer leur efficacité nutritionnelle ou de stimuler les processus de nutrition des végétaux indépendamment des éléments nutritifs qu'il contient, dans le seul but d'améliorer une ou plusieurs des caractéristiques des végétaux ou de leur rhizosphère comme l'efficacité d'utilisation des éléments nutritifs, la tolérance au stress abiotique, les caractéristiques qualitatives ou la disponibilité des éléments nutritifs confinés dans le sol et la rhizosphère. Cette définition est dérivée de la définition du Règlement de l'Union Européenne n° 2019 1009.
[0022] L'art antérieur décrit déjà des procédés de traitement des substances humiques avec des agents oxydants tels que l'ozone [2-4]. Néanmoins, ces procédés ne concernent pas la préparation de compositions fertilisantes. Les procédés d'oxydation des substances humiques décrits dans l'art antérieur ont pour but de dégrader lesdites substances notamment dans un but de nettoyage. Par conséquent, les substances humiques sont traitées avec des quantités d'agent oxydant très importantes qui dégradent fortement les substances humiques. A l'inverse de ce qui est mis en œuvre dans l'art antérieur, l'oxydation dans le cadre de l'invention est très douce.
[0023] De façon surprenante, les inventeurs se sont aperçus qu'une composition liquide de substances humiques traitées avec une quantité appropriée d'agent oxydant, par exemple une faible quantité d'ozone, avait des propriétés fertilisantes supérieures à celles d'une composition de substances humiques non traitée.
[0024] Les inventeurs ont en effet montré qu'il était possible d'améliorer les propriétés fertilisantes d'une composition liquide de substances humiques en traitant ladite composition avec une quantité appropriée d'agent oxydant, par exemple une quantité appropriée d'ozone. Les inventeurs se sont en effet aperçus, de façon tout à fait inattendue, qu'une oxydation douce d'une composition liquide de substances humiques augmente le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen), mesuré par DLS, et que cette augmentation du Rhmoyen était associée à une augmentation des propriétés fertilisantes de ladite composition.
[0025] Ainsi, pour améliorer les propriétés fertilisantes d'une composition liquide de substances humiques, la quantité d'agent oxydant doit être adaptée pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen après traitement), mesuré par DLS, est supérieur au Rhmoyen avant traitement, mesure par DLS.
[0026] Les procédés d'oxydation des substances humiques décrits dans l'art antérieur n'ont pas permis de mettre en évidence ce phénomène d'augmentation du Rhmoyen car, comme expliqué ci-dessus, les substances humiques sont traitée avec des quantités d'agent oxydant largement supérieures aux quantités utilisées pour la mise en œuvre du procédé selon l'invention.
[0027] Mesure du rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen) par DLS
[0028] La DLS (Dynamic Light Scattering) est une technique permettant d'analyser la taille des particules présentes dans une composition liquide, en mesurant le Rhmoyen- Il s'agit de la technique de mesure la plus couramment utilisée pour analyser la taille des particules dans la gamme nanométrique.
[0029] Brièvement, le principe de la DLS est basé sur les mesures de fluctuation d'intensité de lumière diffusées dues au mouvement Brownien des particules. Plus une particule est grosse plus son déplacement va être lent. Ce phénomène est décrit par la loi de Stokes-Einstein. En pratique, le faisceau laser incident va traverser la composition liquide analysée. Le rayon diffusé à 90° (angle le plus communément utilisé) va être fonction de la morphologie des particules. La variation d'intensité du rayon diffusé donne des informations sur la diffusion des particules et donc sur leur taille [11]. Les valeurs de Rhmoyen se calculent en pondérant par le pourcentage en masse de chaque population.
[0030] Les mesures de DLS peuvent être réalisées avec un Dynapro Nanostar (WYATT technology) équipé d'un laser ( = 662 nm). La plage d'intensité de diffusion mesurée peut être de 1,36.106 à 3,14.106 coups par seconde (cps). Toutes les mesures peuvent être prises à un angle de détection de 90° et toutes les tailles rapportées sont des moyennes de 15 séquences de 5 s chacune. Un protocole de DLS qui peut être mis en œuvre dans le cadre de l'invention est décrit dans les exemples.
[0031] Dans le cadre de l'invention, les analyses DLS permettent de mesurer le rayon hydrodynamique moyen en masse des particules en solution, c'est-à-dire le rayon hydrodynamique moyen en masse des particules de la fraction soluble de la composition liquide de substances humiques.
[0032] Comme expliqué ci-après, certaines compositions liquides de substances humiques peuvent comprendre une quantité non négligeable de matières insolubles. C'est le cas, par exemple, lorsque la composition liquide de substances humiques est préparée à partir d'une matière brute (ex. de la tourbe) mélangée à de l'eau. Dans ce cas particulier, l'Homme du métier sait qu'il doit effectuer les mesures du Rhmoyen par DLS sur la fraction soluble de la composition liquide de substances humiques. La fraction soluble peut être obtenue très facilement en la séparant de la fraction insoluble, par exemple par décantation, filtration ou par centrifugation. Un exemple de séparation de la fraction soluble et de la fraction insoluble consiste à centrifuger à 4800 rpm pendant 30 minutes. Ces paramètres permettent de précipiter la matière insoluble sans toutefois précipiter les particules solubles, notamment les substances humiques solubles de grande taille.
[0033] Composition liquide de substances humiques
[0034] La composition liquide de substances humiques à oxyder peut être obtenue à partir de substances humiques naturelles. Il peut par exemple s'agir d'une matière brute contenant des substances humiques, par exemple de la tourbe, de la léonardite, du lignite, de la houille ou de l'anthracite. Ainsi, une composition liquide de substances humiques peut être une composition liquide de tourbe, de léonardite, de lignite, de houille ou d'anthracite. [0035] La tourbe est une matière organique fossile formée par accumulation sur de longues périodes de temps de matière organique morte, essentiellement des végétaux, dans un milieu saturé en eau. La tourbe forme la majeure partie des sols des tourbières. La tourbe peut être plus ou moins riche en substances humiques selon le degré de décomposition. Le degré de décomposition de la tourbe est classé selon l'échelle de Von Post qui va de H1 (Tourbe la moins décomposée) H 10 (tourbe la plus décomposée) [9]. La tourbe humus, c'est-à-dire une tourbe classée de H6 à H 10 selon l'échelle de Von Post, est la tourbe préférée pour la mise en œuvre du procédé selon l'invention car elle est plus riche en substances humique que la tourbe classée de H1 à H5 selon l'échelle de Von Post.
[0036] La léonardite est une roche qui peut contenir plus de 90% en poids de substances humiques. Cette roche a subi une dégradation plus poussée que la tourbe, mais moins poussée que la houille.
[0037] Le lignite est une roche sédimentaire composée de restes fossiles de plantes. C'est une roche intermédiaire entre la tourbe et la houille.
[0038] La houille est une roche carbonée sédimentaire correspondant à une qualité spécifique de charbon, intermédiaire entre le lignite et l'anthracite. De couleur noirâtre, elle provient de la carbonisation d'organismes végétaux.
[0039] L'anthracite est une roche sédimentaire d'origine organique. C'est une variété de charbon grise, noirâtre et brillante extraite des mines.
[0040] La composition liquide de substances humiques à oxyder peut également être obtenue à partir de substances humiques synthétiques. Les substances humiques synthétiques peuvent par exemple résulter d'un processus de synthèse [7] ou de la transformation de substances humiques naturelles, notamment par hémisynthèse.
[0041] Les substances humiques peuvent également être extraites de matières organiques (tourbe, léonardite, lignite, houille, anthracite, sols riches en substances humiques, composts de déchets végétaux, etc.) à l'aide d'un agent alcalin tel que l'hydroxyde de sodium (NaOH) ou l'hydroxyde de potassium (KOH) et éventuellement soumises à une purification [10]. Les substances humiques peuvent notamment être extraites et/ou purifiées par des procédés bien connus de l'Homme du métier [5] [10].
[0042] La composition liquide de substances humiques à oxyder englobe les compositions liquides d'un sel de substances humiques. Parmi les sels préférés, on peut notamment citer les sels d'ammonium, les sels sodiques, les sels potassiques. De préférence, on utilise un sel potassique de substances humiques, tel que les humâtes de potassium ou le sel potassique de substances humiques. Des sels de substances humiques sont vendus dans le commerce. On peut par exemple citer le sel potassique de substances humiques commercialisé par la société Humatex sous la marque Dralig® (CAS 68514-28-3). Le produit Dralig® est préparé à partir de substances humiques extraites de l'oxyhumolite naturel tchèque à grand contenu de substances humiques.
[0043] L'homme du métier n'aura aucune difficulté à préparer une composition liquide de substances humiques à partir de substances humiques ou d'un sel de substances humiques. Il suffit par exemple de mélanger des substances humiques ou un sel de substances humiques avec un solvant tel que de l'eau. La Figure 5 montre le profil HPSEC d'une composition liquide de substances humiques qui peut être utilisée dans le procédé selon l'invention (en pointillés).
[0044] L'Homme du métier peut facilement adapter la concentration en substances humiques de la composition liquide selon les besoins, par exemple en adaptant la quantité de solvant. La concentration en substances humiques de la composition liquide n'est pas limitée. Elle peut par exemple être comprise entre 100 et 1000 mg/L, de préférence entre 400 et 500 mg/L, par exemple environ 550 mg/L.
[0045] La pureté en substances humiques de la composition liquide de substances humiques peut également varier, par exemple en fonction de la source utilisée. Bien entendu, la tourbe est généralement moins pure en substances humiques que la léonardite ou qu'une poudre commerciale de substances humiques, tel que le produit Dralig® (CAS 68514-28-3). Dans un mode de réalisation particulier, la composition liquide de substances humiques à traiter comprend au moins 50% en masse sèche de substances humiques, par exemple au moins 60%, au moins 70%, au moins 80%, au moins 85%, au moins 90%, au moins 95%, ou au moins 99% en masse sèche de substances humiques.
[0046] Traitement avec /'agent oxydant
[0047] La quantité appropriée d'agent oxydant nécessaire à la mise en œuvre du procédé peut dépendre de différents paramètres, tel que la nature des substances humiques, la pureté de la composition liquide de substances humiques, la quantité de substances humiques à traiter, la nature de l'agent oxydant, etc. Néanmoins, l'Homme du métier n'aura aucune difficulté à déterminer la quantité appropriée d'agent oxydant en mesurant simplement le Rhmoyen par DLS, par exemple en suivant l'évolution du Rhmoyen avec des quantités croissantes d'un agent oxydant. Ces mesures peuvent par exemple permettre de définir une quantité d'agent oxydant à ne pas dépasser pour que le Rhmoyen après traitement, mesuré par DLS, soit supérieur au Rhmoyen avant traitement, mesuré par DLS. Ainsi, il est facile de déterminer la quantité appropriée d'agent oxydant pour une composition liquide de substances humiques donnée et un agent oxydant donné.
[0048] La Figure 8B montre l'évolution du Rhmoyen, mesuré par DLS, avec des quantités croissantes d'ozone.
[0049] La quantité d'agent oxydant peut être facilement adaptée de manière à obtenir, dans la mesure du possible, un Rhmoyen, mesuré par DLS, dont la valeur est souhaitée. Par exemple, la quantité d'agent oxydant est choisie pour obtenir une valeur maximale de Rhmoyen, mesuré par DLS.
[0050] La détermination d'une quantité appropriée d'agent oxydant pour la mise en œuvre du procédé de l'invention est donc à la portée de l'Homme du métier et ne présente aucune difficulté particulière. Toutefois, certaines compositions liquides de substances humiques peuvent comprendre une quantité non négligeable la matière insoluble. C'est le cas, par exemple, lorsqu'on traite une matière brute (ex. de la tourbe) mélangée à de l'eau. Dans ce cas particulier, l'Homme du métier sait que pour analyser les particules en solution par DLS, il est nécessaire d'effectuer les mesures de DLS sur la fraction soluble de la composition liquide comprenant des substances humiques. La fraction soluble peut être obtenue très facilement en la séparant de la fraction insoluble, par exemple par filtration ou par centrifugation, comme détaillé auparavant dans description.
[0051] Bien évidemment, une fois que la quantité d'agent oxydant appropriée a été déterminée, il n'est plus nécessaire de suivre le ou les paramètres de DLS susmentionnés pour mettre en œuvre le procédé de l'invention. Il suffit simplement de traiter la composition liquide de substances humiques avec une quantité d'agent oxydant appropriée.
[0052] Avantageusement, le Rhmoyen après traitement eSt 3U mOÏnS 2 fOÏS Supérieur aU Rhmoyen avant traitement, de préférence au moins 3 fois, 4 fois, 5 fois, 6 fois supérieur, par exemple au moins
7 fois supérieur, 8 fois supérieur, 9 fois supérieur, 10 fois supérieur, 15 fois supérieur, 20 fois supérieur, 25 fois supérieur, 30 fois supérieur, 35 fois supérieur, 40 fois supérieur, 45 fois supérieur, 50 fois supérieur, 55 fois supérieur, 60 fois supérieur, 65 fois supérieur, 70 fois supérieur.
[0053] Le temps de traitement n'est pas limitatif tant que l'on obtient un Rhmoyen après traitement supérieur au Rhmoyen avant traitement- En général, la durée du traitement est comprise entre 5 minute et 10 heures. En fait, la quantité d'agent oxydant, et éventuellement la durée du traitement, sont adaptées à la quantité initiale de substances humiques et à l'agent oxydant utilisé. La durée du traitement optimale pourra donc être facilement adaptée par l'Homme du métier [0054] Dans un mode de réalisation particulier, la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm de la composition de substances humiques oxydée, mesurée par DLS, est au moins 2 fois supérieure à la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm de la composition de substances humiques avant oxydation, de préférence au moins 2,5 fois, par exemple au moins 3 fois, au moins 3,5 fois, au moins 4 fois, au moins 4,5 fois, au moins 5 fois, au moins 6 fois supérieure.
[0055] Les Figures 7 et 8A montrent l'évolution de la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm, mesurée par DLS, avec des quantités croissantes d'ozone.
[0056] Dans un autre mode de réalisation particulier, la masse molaire moyenne en poids en solution (ci-après « Mw ») (exprimée en Da) de la composition liquide de substances humiques oxydée, est supérieure à la Mw de la composition de substances humiques avant oxydation.
[0057] Mw peut être calculé selon la formule suivante :
Figure imgf000011_0001
avec hi = intensité du signal HPLC, et
Mi = masse molaire relative au temps de rétention obtenu en HPLC (issue de la calibration de colonne réalisée avec des standards).
[0058] Le calcul de Mw est généralement fait automatiquement par l'appareil HPLC. Pour calculer Mw, il est possible de le faire manuellement ou d'utiliser un logiciel tel que le logiciel Chroméléon qui est un logiciel d'acquisition de donnée HPLC.
[0059] Les Figures 1 et 2 illustrent l'augmentation de Mw avec des quantités croissantes d'ozone.
[0060] L'agent oxydant est avantageusement choisi parmi l'ozone, les ultra-violets et/ou le peroxyde d'hydrogène. Les agents oxydants peuvent être utilisés seuls ou combinés entre eux pour obtenir la composition souhaitée.
[0061] L 'agent oxydant est l'ozone
[0062] L'ozone est un agent oxydant particulièrement intéressant car facile à utiliser, peu cher et dont la quantité est facile à contrôler pour la mise en œuvre du procédé de l'invention. [0063] L'ozone étant instable, il est produit sur le lieu de consommation. A l'échelle industrielle, l'ozone est généralement produit par décharges électriques dans des générateurs tubulaires. Cette production est due à un générateur d'ozone, qui est essentiellement composé de deux électrodes conductrices maintenues en regard l'une de l'autre. L'air ou l'oxygène est comprimé, puis séché, et passe entre ces deux électrodes où il est soumis à un effluve électrique dans un champ de courant alternatif à haute tension. Une partie de l'oxygène se transforme en ozone. Un circuit de refroidissement absorbe l'excès de chaleur produite par la décharge. Pour homogénéiser la décharge, l'une des électrodes ou parfois les deux, sont recouvertes d'un diélectrique à permittivité élevé, d'épaisseur uniforme réalisant une surface équipotentielle. Généralement, les diélectriques mis en œuvre sont des verres dont la permittivité varie, selon la composition chimique, de 4 à 6,5. L'ozone est donc produit en faisant circuler lentement dans l'espace restant un fluide oxygéné et en créant dans l'espace gazeux une tension alternative sinusoïdale d'amplitude suffisamment élevée.
[0064] L'ozone peut être de l'ozone gazeux produit à partir d'oxygène, par exemple à partir d'air, à partir d'air enrichi en oxygène ou à partir d'oxygène pur. Un ozoneur adapté à la mise en œuvre de l'invention est le Lab2b ou CFS1 de la société Ozonia (Suez).
[0065] Comme détaillé ci-dessus, la quantité d'ozone est adaptée pour obtenir un Rhmoyen après traitement supérieur au Rhmoyen avant traitement- La quantité d'ozone va donc essentiellement dépendre de la quantité de substances humiques présentes dans la composition. Dans un mode de réalisation particulier, le ratio masse d'ozone/masse de substances humiques est inférieur à 10. La masse d'ozone correspond à la masse d'ozone appliquée à la composition liquide de substances humiques. La masse de substances humiques correspond à la masse de substances humiques présente dans la composition liquide de substances humiques à ozoner, c'est-à-dire la masse de substances humiques avant l'ozonation. La masse de substances humiques peut être déterminée par HPLC. Le ratio masse d'ozone/masse de substances humiques peut par exemple être inférieur à 9, inférieur à 8, inférieur à 7, inférieur à 6, inférieur à 5, inférieur à 4,5, inférieur à 4, inférieur à 3,5, par exemple compris entre 0,2 et 10, compris entre 0,2 et 9, compris entre 0,2 et 8, compris entre 0,2 et 7, compris entre 0,2 et 6, compris entre 0,2 et 5, compris entre 0,2 et 3,5, compris entre 0,5 et 3,5, compris entre 1 et 10, compris entre 1 et 9, compris entre 1 et 8, compris entre 1 et 7, compris entre 1 et 6, compris entre 1 et 5, compris entre 1 et 4, compris entre 1 et 3, compris entre 1 et 2, par exemple est égal à environ 1,5.
[0066] Tout type d'ozoneur peut être utilisé dans la mise en œuvre du procédé selon l'invention. Par exemple, des ozoneurs à air (air séché avec un point de rosée de -50°C à - 70°C), les ozoneurs à basse fréquence (50 Hz) dont la production unitaire par heure est environ de 1 à 3 kg d'ozone et les ozoneurs à moyenne fréquence (150 à 600 Hz) dont la production unitaire peut atteindre 60 kg par heure. C'est dans ces derniers que l'ozone est produit et injecté dans un réacteur, où est préalablement injectée la composition à traiter. On peut par exemple citer l'ozoneur CFS1 de chez Ozonia qui est particulièrement adapté à la mise en œuvre du procédé selon l'invention. On peut également utiliser les excimères qui sont de bons générateurs d'ozone.
[0067] Il existe plusieurs sortes de réacteurs. Par exemple, des réacteurs équipés de diffuseurs poreux, des réacteurs équipés de turbines, et des réacteurs à flux piston tube en U, équipé d'une pompe pour vaincre les pertes de charge.
[0068] Avant d'être injecté dans la composition liquide de substances humiques, le gaz contenant l'ozone peut être divisé en "micro-bulles", i.e. bullage de l'ozone, à l'aide de divers matériels, par exemple à l'aide de diffuseurs poreux disposés en partie basse des cuves ou colonnes ou d'un hydro-injecteur assurant la pulvérisation du gaz directement dans la composition à traiter. Ce dernier présente l'avantage d'un meilleur taux de dissolution de l'ozone dans la composition traitée. Ainsi, dans un mode de réalisation préféré, le traitement est réalisé par bullage de l'ozone dans la composition liquide de substances humiques, par exemple par bullage de 8 x W4 à 0,5 gramme d'ozone par minute (g/min), par exemple de 8 x W4 g/min à 0,1 g/min, par exemple de 8,33 x W4 g/min à 0,1 g/min d'ozone, de préférence de 1,5 x W2 g/min à 1,9 x W2 g/min d'ozone. La durée de bullage dépend de la quantité d'ozone que l'on souhaite appliquer.
[0069] Dans un mode de réalisation particulier, la concentration en ozone de la composition liquide est constante au cours du traitement, de préférence la concentration d'ozone va de 1 g/m3 à 120 g/m3, avantageusement elle est égale à environ 20 g/m3.
[0070] Autres étapes
[0071] Le procédé selon l'invention peut comprendre une ou plusieurs étapes additionnelles, par exemple une ou plusieurs étapes choisies parmi :
- préparer une composition fertilisante comprenant la composition liquide de substances humiques oxydée ou utiliser directement la composition liquide de substances humiques oxydée comme composition fertilisante ;
- sécher, par exemple lyophiliser, la composition liquide de substances humiques oxydée ; et granuler la composition liquide de substances humiques oxydée ou une composition fertilisante comprenant la composition liquide de substances humiques oxydée.
[0072] Une composition fertilisante comprenant la composition liquide de substances humiques oxydée peut être préparée en ajoutant, à la composition de substances humiques oxydée, un engrais minéraux, de préférence contenant un ou plusieurs minéraux choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre, aux substances humiques ozonées. L'ajout peut se faire avant ou après les étapes additionnelles susmentionnées.
[0073] Composition fertilisante
[0074] L'invention concerne également une composition fertilisante susceptible d'être obtenue par le procédé selon l'invention.
[0075] Avantageusement, le rayon hydrodynamique moyen en masse des particules en solution (RhmOyen), mesuré par DLS, est supérieur à 50 nm, de préférence supérieur à 75 nm, par exemple supérieur à 100 nm, supérieur à 150 nm, supérieur à 200 nm, supérieur à 250 nm, supérieur à 500 nm, supérieur à 750 nm, supérieur à 1000 nm, supérieur à 1250 nm, supérieur à 1500 nm, supérieur à 1750 nm, supérieur à 2000 nm.
[0076] Avantageusement, la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm, mesurée par DLS, est supérieure à 15%, de préférence supérieure à 20%, par exemple supérieure à 25%, supérieure à 30%, supérieure à 35%, supérieure à 40%, supérieure à 45%, supérieure à 50%, supérieure à 55%, supérieure à 60%, supérieure à 65%, supérieure à 70%, supérieure à 75%, supérieure à 80%.
[0077] Avantageusement, Mw de la composition fertilisante selon l'invention est comprise entre 100 kDa et 300 kDa, par exemple entre 100 kDa et 250 kDa, entre 100 KDa et 200 kDa, entre 100 kDa et 180 kDa, de préférence comprise entre 150 kDa et 170 kDa, par exemple elle est d'environ 160 kDa. La réaction d'oxydation majoritaire des substances humiques permet la création d'un ozonure primaire sur une double liaison C=C puis la formation de fonctions cétones, aldéhydes ou acides carboxyliques, comme illustré ci-après :
Figure imgf000014_0001
[0078] Au sens de l'invention, l'oxydation permet donc de dégrader les substances humiques en plus petites molécules. Le schéma de dégradation des substances humiques par l'ozone est présenté dans la Figure 3, tirée de [6].
[0079] Dans un mode de réalisation particulier, la composition selon l'invention comprend en outre une ou plusieurs substance(s) fertilisante(s) choisie(s) parmi l'urée, le sulfate d'ammonium, le nitrate d'ammonium, le phosphate, le chlorure de potassium, du sulfate d'ammonium, le nitrate de magnésium, le nitrate de manganèse, le nitrate de zinc, le nitrate de cuivre, l'acide phosphorique, le nitrate de potassium et l'acide borique.
[0080] De préférence, la composition selon l'invention comprend en outre un ou plusieurs engrais minéraux. L'engrais minéraux comprend de préférence un ou plusieurs minéraux choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre. Il a en effet été montré que les substances humiques oxydées permettaient une meilleure absorption des minéraux par la plante par rapport à des substances humiques non ozonées. Une composition selon l'invention qui comprend en outre un ou plusieurs engrais minéraux présente donc des propriétés particulièrement avantageuses.
[0081] La Figure 5 montre le profil HPSEC d'une composition fertilisante selon l'invention qui a été obtenue par la mise en œuvre du procédé selon l'invention (trait plein).
[0082] La Figure 7 montre un profil DLS de compositions fertilisantes selon l'invention qui ont été obtenue par la mise en œuvre du procédé selon l'invention, avec un ratio masse d'ozone/masse de substances humiques (R) égal à 0,1, égal à 0,5 ou égal à 2.
[0083] La composition selon l'invention peut être sous forme liquide, par exemple sous forme de solution fertilisante, ou sous forme solide, par exemple sous forme de granulés.
[0084] Utilisation de la composition fertilisante et procédé de fertilisation
[0085] L'invention concerne également l'utilisation d'une composition selon l'invention comme stimulant de l'absorption de minéraux chez une plante, de préférence les minéraux sont choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre.
[0086] L'invention concerne également l'utilisation d'une composition selon l'invention comme stimulant de la production de pigments chez une plante, de préférence la production de caroténoïdes, de chlorophylle A et/ou de chlorophylle B.
[0087] L'invention concerne également un procédé de fertilisation d'une plante, d'un sol ou d'un support de culture comprenant l'application à ladite plante, audit sol ou audit support de culture d'une composition selon l'invention. [0088] L'invention concerne également un procédé de fertilisation d'une plante, d'un sol ou d'un support de culture consistant à (i) préparer une composition fertilisante en mettant en oeuvre le procédé de l'invention, et (ii) appliquer, par exemple directement après la préparation, ladite composition fertilisante à la plante, au sol ou au support de culture.
[0089] Au sens de l'invention, un support de culture est destiné à servir de milieu de culture à une plante en permettant à la fois d'ancrer les organes absorbants de la plante et de les mettre en contact avec les solutions nécessaires à la croissance de la plante.
[0090] Avantageusement, le procédé selon l'invention permet de stimuler l'absorption de minéraux chez la plante. De préférence les minéraux sont choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre.
[0091] Avantageusement, le procédé selon l'invention permet de stimuler la production de pigments chez la plante, de préférence la production de caroténoïdes, de chlorophylle A et/ou de chlorophylle B.
[0092] Avantageusement, l'utilisation ou le procédé selon l'invention permet d'augmenter l'activité photosynthétique d'une plante et/ou de stimuler la croissance aérienne et/ou racinaire de la plante.
[0093] Dans un mode de réalisation particulier, la composition fertilisante est appliquée à la plante, au sol ou au support de culture, sous forme liquide, directement après le traitement avec l'agent oxydant. Dans ce mode de réalisation, l'application peut se faire en continue, c'est-à-dire que la composition fertilisante sous forme liquide est appliquée au sol ou au support de culture en flux continu au fur et à mesure du traitement avec l'agent oxydant.
[0094] La composition selon l'invention peut être appliquée à la plante par voie foliaire ou racinaire.
[0095] Dans un mode de réalisation particulier, le sol est un sol acide. En agriculture, un sol acide est un sol ayant un pH inférieur à pH 6,5. Les inventeurs ont en effet montré qu'en conditions acides les substances humiques ozonées précipitaient moins que les substances humiques non-ozonées, et qu'elles conservaient donc leurs propriétés fertilisantes.
[0096] La présente invention trouve application dans le traitement d'une très grande variété de plantes. Parmi celles-ci, on citera en particulier :
- les plantes de grande culture telles que les céréales (ex. blé, maïs),
- les protéagineux (ex. pois),
- les oléagineux (ex. soja, tournesol),
- les plantes prairiales utiles pour l'alimentation animale, les cultures spécialisées telles qu'en particulier le maraîchage (ex. laitue, épinards, tomate, melon), la vigne, l'arboriculture (poire, pomme, nectarine), ou l'horticulture (ex. rosiers).
Description des figures
[0097] [Fig. 1] La Figure 1 est une courbe HPSEC qui montre l'évolution de la masse molaire moyenne en poids en solution (Mw) de la composition liquide de substances humiques au cours du traitement à l'ozone. La figure montre également l'évolution de la Masse Moléculaire Moyenne en Nombre (Mn) de la composition liquide de substances humiques au cours du traitement à l'ozone.
[0098] [Fig. 2] La Figure 2 est une courbe HPSEC qui montre l'évolution de la masse molaire moyenne en poids en solution (Mw) de la composition liquide de substances humiques en fonction du ratio « masse d'ozone/masse de substances humiques ». La figure montre également l'évolution de la Masse Moléculaire Moyenne en Nombre (Mn) de la composition liquide de substances humiques en fonction du ratio « masse d'ozone/masse de substances humiques ».
[0099] [Fig. 3] La Figure 3 représente le processus de dégradation des substances humiques par oxydation à l'ozone.
[0100] [Fig. 4] La Figure 4 illustre le montage d'un réacteur batch utilisé pour l'ozonation d'une composition liquide de substances humiques.
[0101] [Fig. 5] La Figure 5 est un profil HPSEC d'une composition de substances humiques ozonée (composition mère de l'Exemple 1) et d'une composition de substances humiques non-ozonée (composition témoin de l'Exemple 1). En trait plein la composition ozonée et en pointillés la composition témoin non-ozonée.
[0102] [Fig. 6] La Figure 6 est un histogramme obtenu à partir des données HPSEC de la Figure 5 qui représente le pourcentage des différentes familles de substances humiques en fonction de leur masse moléculaire.
[0103] [Fig. 7] La Figure 7 est une analyse DLS (Dynamic light scattering) qui montre l'évolution de la taille des substances humiques avec des quantités croissantes d'ozoneen. La figure montre l'apparition de molécules de substances humiques avec un rayon hydrodynamique (Rh) plus grand (familles de particules 2 et 3) avec un ratio masse d'ozone/masse de substances humiques (R) égal à 0,1, R=0,5 et R=2. Avec R=8, on observe une dégradation des substances humiques de grande taille (famille 3) en de plus petites molécules (familles 1 & 2).
[0104] [Fig. 8A] La Figure 8A est un histogramme obtenu à partir des données DLS de la Figure 7 qui montre la distribution massique des substances humiques en fonction de leur rayon hydrodynamique (Rh) avec des quantités croissantes d'ozone. La figure montre que la proportion massique des particules en solution de taille comprise entre 15 nm et 10000 nm augmente lorsque le ratio masse d'ozone/masse de substances humiques (R) est égal à 0,1, R=0,5 et R=2.
[0105] [Fig. 8B] La Figure 8B est un histogramme obtenu à partir des données DLS de la Figure 7 qui montre le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen) avec des quantités croissantes d'ozone. La figure montre que le Rhmoyen augmente lorsque le ratio masse d'ozone/masse de substances humiques (R) est égal à 0,1, R=0,5 et R=2.
[0106] [Fig. 9] La Figure 9 est une courbe qui compare l'évolution de la longueur des feuilles de maïs traité avec une composition de substances humiques ozonée (1,5.2+SN) et une composition de substances humiques non-ozonée (T.2+SN).
[0107] [Fig. 10] La Figure 10 représente la longueur moyenne des feuilles de maïs traité avec une composition de substances humiques ozonée (1) et une composition de substances humiques non-ozonée (0).
[0108] [Fig. 11] La Figure 11 est une courbe qui compare l'évolution de la longueur des racines de maïs traité avec une composition de substances humiques ozonée (1,5.2+SN) et une composition de substances humiques non-ozonée (T.2+SN).
[0109] [Fig. 12] La Figure 12 représente la longueur moyenne des racines de maïs traité avec une composition de substances humiques ozonée (1) et une composition de substances humiques non-ozonée (0).
[0110] [Fig. 13] La Figure 13 est un histogramme qui qui compare la longueur des racines de maïs traité avec une composition de minéraux, une composition de substances humiques non-ozonée (T.2+SN), une composition de substances humiques ozonée avec un ratio « masse d'ozone/masse de substances humiques » de 0,5 (0,5.2+SN), une composition de substances humiques ozonée avec un ratio « masse d'ozone/masse de substances humiques » de 1,5 (1,5.2+SN) et une composition de substances humiques ozonée avec un ratio « masse d'ozone/masse de substances humiques » de 3,5 (3,5.2+SN). [0111] [Fig. 14] La Figure 14 est un histogramme qui compare la teneur en caroténoïdes des feuilles de maïs traité avec une composition de substances humiques ozonée (à gauche) et une composition de substances humiques non-ozonée (à droite).
[0112] [Fig. 15] La Figure 15 est un histogramme qui compare la teneur en chlorophylle A des feuilles de maïs traité avec une composition de substances humiques ozonée (à gauche) et une composition de substances humiques non-ozonée (à droite).
[0113] [Fig. 16] La Figure 16 est un histogramme qui compare la teneur en chlorophylle B des feuilles de maïs traité avec une composition de substances humiques ozonée (à gauche) et une composition de substances humiques non-ozonée (à droite). [0114] [Fig. 17] La Figure 17 est un profil HPSEC d'une composition liquide de substances humiques non-ozonée avant et après lyophilisation.
[0115] [Fig. 18] La Figure 18 est un profil HPSEC d'une composition liquide de substances humiques ozonée avant et après lyophilisation.
[0116] [Fig. 19] La Figure 19 est une courbe qui montre la précipitation des substances humiques en fonction du pH dans une composition liquide de substances humiques ozonée (en trait pleins) et dans une composition liquide de substances humiques non-ozonée (en pointillés).
EXEMPLES
[0118] Exemple 1 : Matériels et méthodes
[0119] Procédé de préparation d'une composition fertilisante
[0120] Une composition liquide de substances humiques a été obtenue en diluant 11 grammes d'une poudre de sel potassique de substances humiques (Produit Dralig® commercialisé par la société Humatex - CAS 68514-28-3) dans 20 litres d'eau, pour obtenir 20 litres d'une composition de concentration en substances humiques de 550 mg/L. Cette composition liquide de substances humiques a été utilisée dans les exemples ci-après comme « composition témoin ».
[0121] La réaction d'ozonation a été réalisée dans un réacteur batch classique décrit dans la Figure 4. Le réacteur utilisé était une simple bouteille en verre (1) contenant IL de la composition de substances humiques à 550 mg/L (2). Cette solution a été agitée avec un agitateur magnétique (3). L'ozone a été produit avec un ozoneur (CFS1 - Ozonia) alimenté par de l'oxygène pur (4). La concentration d'ozone utilisée était de 20 g/m3 dans le flux de gaz entrant dans le réacteur (avec un débit de l,67xl0’2 g/min d'ozone) et a été suivie grâce à l'analyseur d'ozone (5). Le débit de gaz entrant dans le réacteur a été régulé à 50 L/h grâce à un débitmètre (6). La température du gaz entrant a été mesurée avec un thermomètre (7) et était comprise entre 17 et 22°C. Le gaz a été injecté dans la composition de substances humiques avec une arrivée en verre et un fritté comportant des pores de taille 200 pm en moyenne (8). L'ozone en excès a ensuite été détruit dans un second réacteur (9) contenant une solution d'iodure de potassium (Kl) à 50 g/L (10). Une vanne a été utilisée afin de maîtriser la réaction (11). Lorsque l'ozone n'était pas utilisé dans le réacteur, il était directement dirigé vers le destructeur (9).
[0122] Le temps d'ozonation a été de 50 minutes pour IL de composition de substances humiques à 550 mg/L.
[0123] Le pH de la composition de substances humiques ainsi traitées avec l'ozone a ensuite été ajusté à pH = 7,0 avec une solution d'acide chlorhydrique 0,1 mol/L et le cas échéant avec une solution d'hydroxyde de sodium à 0,1 mol/L.
[0124] Les compositions de substances humiques ozonées ont été diluées au quart avec de l'eau MilliQ. La composition liquide de substances humiques ainsi obtenue a été utilisée dans les exemples ci-après comme « composition mère ».
[0125] Mesures DLS [0126] Les mesures de DLS ont été réalisées avec un Dynapro Nanostar (WYATT technology) équipé d'un laser ( = 662 nm). La plage d'intensité de diffusion mesurée était de 1,36.106 à 3,14.106 coups par seconde (cps). Toutes les mesures ont été prises à un angle de détection de 90° et toutes les tailles rapportées sont des moyennes de 15 séquences de 5 secondes chacune. La reproductibilité des échantillons a été analysée 3 fois. 20 pL de chaque solution ont été utilisés et toutes les solutions ont été ajustées à 25°C dans la chambre d'échantillon de l'instrument et laissées à l'équilibre pendant 5 min. Une microcuvette jetable (technologie WYATT) a été utilisée pour effectuer la mesure DLS. Le logiciel Dynamics (technologie WYATT) a été utilisé pour piloter les acquisitions de mesures et analyser les données.
[0127] Exemple 2 : caractérisation de la composition fertilisante
[0128] Les compositions de substances humiques témoins (i.e. avant ozonation) et ozonées selon l'Exemple 1 (composition mère) ont été analysées par HPSEC. Cette analyse a été faite à l'aide d'une chaîne Dionex Ultimate 3000 équipée d'une colonne TSK G2000SWXL (Phenomenex, USA - 7,5 x 300 mm). La chaîne disposait d'un échantillonneur automatique ainsi que d'une pompe isocratique. Deux détecteurs ont été utilisés : un détecteur UV- Visible avec une longueur d'onde de détection fixée à 254 nm (analyse des doubles liaisons C=C) et un détecteur Ri Optilab T-rEX (WYATT Technology). L'éluant utilisé était un mélange acide acétique / acétate de sodium à lOmM avec le pH fixé à 7. L'éluant a été filtré à 0,45 pm et 0,1 pm. Le débit utilisé était de 1 mL/min. Le volume d'injection des échantillons était de 20 pL.
[0129] La composition témoin et la composition mère ont également été analysées par DLS (Dynamic light scattering). La DLS est une technique analytique basée sur le mouvement brownien des particules, décrit par l'équation de Stokes-Einstein. Elle a été utilisée pour étudier l'agrégation des substances humiques. De plus, la DLS a permis de déterminer le rayon hydrodynamique (Rh) et la polydispersité des substances humiques en solution.
[0130] Les expériences de DLS ont été réalisées avec un Dynapro Nanostar 22 (technologie WYATT) équipé d'un laser ( = 662 nm). La plage d'intensité de diffusion mesurée était de 1,36 x 106 - 3,14 x 106 comptes par seconde (cps). Toutes les mesures ont été prises à un angle de détection de 90° et toutes les tailles rapportées sont des moyennes de 15 exécutions séquentielles de 5 secondes chacune. Les échantillons ont été analysés 26 fois pour la reproductibilité. 20 pL de chaque composition ont été utilisés et toutes les solutions ont été ajustées à 25°C dans la chambre de mesure et elles ont été laissées s'équilibrer pendant 5 min. Une microcuvette jetable (technologie WYATT) a été utilisée pour effectuer l'analyse DLS. Le logiciel Dynamics (technologie WYATT) a été utilisé pour piloter les acquisitions de mesures et analyser les données.
[0131] Les résultats HPSEC avec détecteur RI sont présentés aux Figures 1 et 2 (Mw et Mn) et aux Figures 5 et 6. Les résultats DLS sont présentés aux Figures 7 et 8.
[0132] Mw et Mn
[0133] Les Figures 1 et 2 montrent l'évolution de Mw et Mn au cours du traitement avec l'ozone.
[0134] HPSEC avec détecteur Ri
[0135] La Figure 5 montre que l'ozonation conduit à une modification structurale des substances humiques. En ce qui concerne les agrégats, on s'aperçoit que le signal augmente (vers 5,2 minutes) ce qui atteste la solubilisation de certaines molécules. Le pic à 6min quant à lui se dégrade au profit de plusieurs populations relatives à des masses molaires plus petites (à 6,6 ; 7,0 ; 7,7 et 8,9 minutes). A noter que le pic à 10 minutes correspond à toutes les petites molécules (taille < 100 Da) notamment les sels contenus dans la phase mobile de l'HPLC.
[0136] La Figure 6 représente les différents pourcentages des différentes familles de substances humiques en fonction de la masse moléculaire. La Figure 6 met en évidence une apparition de composés de masse molaire supérieure à 170kDa dans la composition mère alors qu'avec la composition témoin on n'observe pas cette famille de molécule. La Figure 6 montre également que l'ozonation conduit à la formation de plus petites molécules de substance humique.
[0137] DLS
[0138] La Figure 7 est une analyse DLS (Dynamic light scattering) qui montre l'évolution de la taille des substances humiques avec des quantités croissantes d'ozoneen. La figure montre l'apparition de molécules de substances humiques avec un rayon hydrodynamique (Rh) plus grand (familles de particules 2 et 3) avec un ratio masse d'ozone/masse de substances humiques (R) égal à 0,1, R=0,5 et R=2. Avec R=8, on observe une dégradation des substances humiques de grande taille (famille 3) en de plus petites molécules (familles 1 & 2).
[0139] La Figure 8A est un histogramme obtenu à partir des données DLS de la Figure 7 qui montre la distribution massique des substances humiques en fonction de leur rayon hydrodynamique (Rh) avec des quantités croissantes d'ozone. La figure montre que la proportion massique des particules en solution de taille comprise entre 15 nm et 10000 nm augmente lorsque le ratio masse d'ozone/masse de substances humiques (R) est égal à 0,1, R=0,5 et R=2.
[0140] La Figure 8B est un histogramme obtenu à partir des données DLS de la Figure 7 qui montre le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen) avec des quantités croissantes d'ozone. La figure montre que le hmoyen augmente lorsque le ratio masse d'ozone/masse de substances humiques (R) est égal à 0,1, R=0,5 et R=2.
[0141] On déduit des Figures 7, 8A et 8B, notamment de la Figure 8B, que la quantité d'ozone nécessaire pour avoir un R=0,l, un R=0,5 et un R=2 correspond à une quantité appropriée d'ozone au sens de l'invention. Par contre, la quantité d'ozone nécessaire pour avoir un R=8 ne correspond pas à une quantité appropriée d'ozone au sens de l'invention.
[0142] Exemple 3 : effets sur la croissance végétale
[0143] Matériels et méthodes
[0144] Plusieurs compositions ont été préparées :
[0145] Composition « 1,5.2+SN » (substances humiques ozonées) : 10 litres de composition mère (Exemple 1) ont été supplémentés avec des solutions hydroponiques, à savoir 2,5 mL d'une solution d'azote, phosphore et potassium (FloraGro® de la société Général hydroponics), 2,5 mL d'une solution d'azote et calcium (FloraMicro® de la société Général hydroponics) et 2,5 mL d'une solution de phosphore, potassium, magnésium et soufre (FloraBloom® de la société Général hydroponics).
[0146] Composition « T.2+SN » (substances humiques non ozonées) : 10 litres de composition témoin (Exemple 1) ont été supplémentés avec des solutions hydroponiques, à savoir 2,5 mL d'une solution d'azote, phosphore et potassium (FloraGro® de la société Général hydroponics), 2,5 mL d'une solution d'azote et calcium (FloraMicro® de la société Général hydroponics) et 2,5 mL d'une solution de phosphore, potassium, magnésium et soufre (FloraBloom® de la société Général hydroponics).
[0147] La composition des solutions FloraMicro, FloraGro et FloraBloom ajoutées dans les compositions de substances humiques est présentée dans les tableaux 2 à 4 ci-après respectivement. [0148] [Table 2]
Figure imgf000024_0001
Tab eau 2 : Composition de la solution FloraMicro (NPK : 5-0-1).
[0149] [Table 3]
Figure imgf000024_0002
Tableau 3 : Composition de la solution FloraGro (NPK : 3-1-6). [0150] [Table 4]
Figure imgf000024_0003
Tableau 4 : Composition de la solution FloraBloom (NPK : 0-5-4).
[0151] A JO, 400 graines de maïs de la variété Amaretto ont été placées sur de la vermiculite imbibée d'eau dans l'obscurité pendant 48 heures à 30°C, afin d'initier la germination.
[0152] A J2, les graines germées ont été placées en culture hydroponique selon 2 modalités (200 graines par modalité) :
- Modalité 1 : 35 mL de composition « 1,5.2+SN »
- Modalité 0 : 35 mL de composition « T.2+SN » [0153] Les cultures hydroponiques ont été maintenues pendant 16 jours, avec un renouvèlement des compositions tous les 2-3 jours.
[0154] Résultats
[0155] Longueur des feuilles [0156] La longueur des feuilles a été mesurée à chaque renouvellement des compositions et à
J16. Les résultats sont présentés à la Figure 9. La longueur moyenne des feuilles à J17 est présentée à la Figure 10.
[0157] Les résultats ont été analysés statistiquement (Analyse des différences entre les modalités avec un intervalle de confiance à 95%) selon le test ANOVA. Les calculs sont présentés dans les Tableaux 5 et 6.
[0158] [Table 5]
Figure imgf000025_0001
Tableau 5 : Analyses statistiques / Tukey (HSD) / Analyse des différences entre es modalités avec un intervalle de confiance à 95% (longueur des feuilles).
[0159] [Table 6]
Figure imgf000025_0002
modalités avec un intervalle de confiance à 95% (longueur des feuilles). [0160] Les résultats montrent que la longueur des feuilles est significativement plus importante avec la composition comprenant des substances humiques ozonées, par rapport à la composition comprenant des substances humiques non-ozonées.
[0161] Il a également été montré que l'aire des feuilles augmentait significativement avec la composition comprenant des substances humiques ozonées, par rapport à la composition comprenant des substances humiques non-ozonées (résultats non-présentés).
[0162] Longueur des racines
[0163] La longueur des racines a été mesurée à chaque renouvellement des compositions et à J17. Les résultats sont présentés à la Figure 11. La longueur moyenne des feuilles à J17 est présentée à la Figure 12.
[0164] Les résultats ont été analysés statistiquement (Analyse des différences entre les modalités avec un intervalle de confiance à 95%) selon le test ANOVA. Les calculs sont présentés dans les Tableaux 7 et 8.
[0165] [Table 7]
Figure imgf000026_0001
Tableau 7 : Analyses statistiques / Tukey (HSD) / Analyse des différences entre es modalités avec un intervalle de confiance à 95% (longueur des racines).
[0166] [Table 8]
Figure imgf000026_0002
Tableau 8 : Analyses statistiques / Newman-Keuls (SNK) / Analyse des différences entre les modalités avec un intervalle de confiance à 95% (longueur des racines). [0167] Les résultats montrent que la longueur des racines est significativement plus importante avec la composition comprenant des substances humiques ozonées, par rapport à la composition comprenant des substances humiques non-ozonées.
[0168] Exemple 4 : influence de la quantité d'ozone
[0169] Plusieurs compositions ont été préparées :
- Composition « 1,5.2+SN » (substances humiques ozonées ratio 1,5) : cf. Exemple 3.
- Composition « 0,5.2+SN » (substances humiques ozonées ratio 0,5) : correspond à la composition « 1,5.2+SN » sauf que les substances humiques ont été ozonées avec un ratio masse d'ozone/masse de substances humiques de 0,5.
- Composition « 3,5.2+SN » (substances humiques ozonées ratio 3,5) : correspond à la composition « 1,5.2+SN » sauf que les substances humiques ont été ozonées avec un ratio masse d'ozone/masse de substances humiques de 3,5.
- Composition « T.2+SN » (substances humiques non ozonées) : cf. Exemple 3
[0170] A J0, 80 graines de maïs de la variété Amaretto ont été placées sur de la vermiculite imbibée d'eau dans l'obscurité pendant 48 heures à 30°C, afin d'initier la germination.
[0171] A J2, les graines germées ont été placées en culture hydroponique selon 4 modalités (20 graines par modalité) :
- 35 mL de composition « 0,5.2+SN »
- 35 mL de composition « 1,5.2+SN »
- 35 mL de composition « 3,5.2+SN »
- 35 mL de composition « T.2+SN ».
[0172] Les cultures hydroponiques ont été maintenues pendant 16 jours, avec un renouvèlement des compositions tous les 2-3 jours.
[0173] Résultats
[0174] La longueur des racines a été mesurée à J14. Les résultats sont présentés à la Figure 13.
[0175] Les résultats montrent que la longueur des racines augmente avec l'augmentation du ratio masse d'ozone/masse de substances humiques. [0176] Exemple 5 : effets sur l'activité Dhotosvnthétiaue
[0177] Les plantes obtenues à l'Exemple 3 ont été utilisées pour mesurer la teneur des feuilles en chlorophylles et en caroténoïdes par spectrophotométrie UV-Visible.
[0178] Matériel et méthodes
[0179] 0.5 g de feuilles broyées (broyage au mortier) ont été mis dans deux tubes flacon de lmL chacun. 4,5 mL de solution MeOH 100% ont été ajoutés au premier tube. 4,5mL de solution MeOH/3%KOH (0,3g de KOH dilué dans lOmL de MeOH 100%) ont été ajoutés au deuxième tube. Les deux tubes ont ensuite été vortexés puis ils ont été laissés 15min dans de la glace. Les tubes ont ensuite été centrifugés à 10000 RPM pendant 10min à 4°C.
[0180] Le contenu de chaque tube a été déposé sur une plaque 96 puits en 6 réplicas de 300pL par puit (c'est-à-dire 6 x 300pL pour le tube 1 et 6 x 300pL pour le tube 2).
[0181] L'absorbance de chaque puit a été mesurée par TECAN et analysée sur le logiciel « Tecan control » selon les conditions suivantes :
- Tube avec MeOH 100% : lecture à 663nm, 645nm et 470nm
- Tube avec MeOH/3%KOH : lecture à 472nm et 508nm.
[0182] Les teneurs en caroténoïdes et en chlorophylles A et B ont été mesurées selon les équations suivantes :
- Caroténoïdes (en pg/mL) = (A472X 1724,3 - A508x2450,l) / 270,9
- Chlorophylle A (en pg/mL) = 16,72xA663 - 9,16xA645
- Chlorophylle B (en pg/mL) = 34,09xA645 - 15,28xA663
[0183] Résultats
[0184] Les résultats sont présentés aux Figures 14 à 16 et dans le Tableau 9 ci-après.
[0185] [Table 9]
Figure imgf000028_0001
[0186] Les résultats montrent que les teneurs en caroténoïdes et en chlorophylles augmentent lorsque le maïs est traité avec la composition comprenant des substances humiques ozonées, par rapport à la composition comprenant des substances humiques non-ozonées. [0187] Exemple 6 : Analyses phvsico-chimiaue des substances humiaues témoins et ozonées
[0188] Effet de la lyophilisation
[0189] Le but de la lyophilisation est de déterminer si le passage à l'état solide des substances humiques ozonés, induit un réarrangement intra et inter moléculaire. Dans l'affirmative, on peut en déduire que les molécules devront être utilisées en solution et non sous forme de solides.
[0190] Protocole
[0191] 15 mL de des compositions « témoin » et « mère » de l'Exemple 1 ont été lyophilisées. Les compositions lyophilisées ont ensuite été dissoutes dans 15 mL d'eau MilliQ. Les solutions ainsi obtenues ont ensuite été analysées par HPSEC.
[0192] Résultats HPSEC
[0193] La Figure 17 montre que les courbes obtenues pour la composition non ozonée. La figure montre que les courbes sont similaires, les deux profils étant relativement proches. La lyophilisation n'influe que peu sur les substances humiques non ozonées (figure ci-dessous).
[0194] Dans le cas des substances humiques ozonées (Figure 18), on a obtenu des différences similaires à celles obtenues avec les substances humiques non ozonés. Il y avait un décalage de 8 secondes entre les deux courbes. De plus l'intensité du pic à 8 min était plus importante après la lyophilisation pour les substances humiques ozonées. Mis à part ces différences, les courbes sont similaires.
[0195] Les substances humiques ozonés selon le procédé de l'invention sont très stables et résistent à la lyophilisation. Les substances humiques ozonées selon l'invention peuvent donc être préparées à la fois sous forme liquide et sous forme solide (forme lyophilisée) sans altération.
[0196] Solubilité des substances humiaues en fonction du DH
[0197] Protocole
[0198] Les compositions « témoin » et « mère » de l'Exemple 1 ont été utilisées. . Les compositions ont été placées dans des flacons et acidifiées avec des volumes croissants d'HCI à 0,1 mol/L. Les flacons ont été préalablement pesés vides (mfiaCon)- Toutes les compositions acidifiées ont ensuite été agitées puis centrifugées. Les culots et les surnageants ont été séparés, le pH du surnageant a été mesuré, le culot a quant à lui été séché à l'étuve. Les flacons ont ensuite été pesés avec le culot (mCuiot+mfiacon)- Les pesées se sont faites une fois que les échantillons sont revenus à température ambiante.
[0199] Pour chaque échantillon le pourcentage massique des substances humiques a été calculé selon la formule suivante :
% SH massique ((mcu|ot + mf|aCon) mf|aCon) X 100 / I ISH initial avec :
%SHmassique = % de substances humiques insolubles mcuiot = masse du culot mfiacon = masse du flacon vide mSH initiai = masse de substances humiques mises dans le flacon avant acidification.
[0200] Résultats
[0201] Le pH a été mesuré pour tous les échantillons. Mis à part pour l'échantillon sans ajout d'HCI pour lequel la différence est importante (3 unités pH), les autres valeurs de pH étaient relativement proches les unes des autres pour un même volume d'HCI ajouté.
[0202] La Figure 19 montre que plus on a acidifié la solution plus on a eu tendance à faire précipiter les substances humiques. Cependant les substances humiques non ozonées ont été précipitées à hauteur de 60% tandis que les substances humiques ozonées ont été précipitées à 30% seulement. L'ozonation a donc amélioré la solubilité des substances humiques dans les pH acides.
BIBLIOGRAPHIE
[1] Y. Karakurt, H. Unlu, H. Unlu, H. Padem, The influence of foliar and soil fertilization of humic acid on yield and quality of pepper, Acta Agric. Scand. Sect. B Soil Plant Sci. 59 (2009) 233-237.
[2] B.L. Loeb, C.M. Thompson, J. Drago, H. Takahara, S. Baig, Worldwide Ozone Capacity for Treatment of Drinking Water and Wastewater: A Review, Ozone Sci. Eng. 34 (2012) 64- 77.
[3] A.A.-P. Pascual A. A4 - Llorca, I. A4 - Canut, A., Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities, Trends Food Sci. Technol. v. 18 (2007) S29-S35-2007 v.18.
[4] M. Bataller, E. Veliz, R. Pérez-Rey, L.A. Fernandez, M. Gutierrez, A. Marquez, Ozone swimming pool water treatment under tropical conditions, Ozone Sci. Eng. 22 (2000) 677- 682.
[5] Stevenson, 1994, Humus Chemistry, Deuxième édition, Wiley, New York (https: //books. google.fr/books/about/Humus_Chemist ry.html?id=7kCQch_YKoMC&redir_esc =y ).
[6] X. Zhong et al. Formation of Aldehydes and Carboxylic acids in humic acid ozonation. Water Air Soil Pollut. (2017) p228.
[7] Hanninen et al., 1987, La science de l'environnement total, 62, 201-210
[8] Fuentes M., Simultaneous Presence of Diverse Molecular Patterns in Humic Substances in Solution, J. Phys. Chem. B (2007) 111, 35, 10577-10582.
[9] Les amendements organiques, Utilisation des matières organiques en construction (http://www.alaindehaye.com/Amendements%20organi.%205.PDF).
[10] Saito et al., Alkaline Extraction of Humic Substances, Brazilian Journal of Chemical Engineering, Vol. 31, No. 03, pp. 675 - 682, July - September, 2014.
[11] Bhattacharjee S. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release (2016) 235, 337-351.

Claims

REVENDICATIONS
Procédé de préparation d'une composition fertilisante, comprenant une étape de traitement d une composition liquide de substances humiques dont le rayon hydrodynamique moyen en masse des particules en solution, mesuré par Dynamic Light Scattering (DLS), est « Rhmoyen avant traitement » avec une quantité appropriée d'agent oxydant pour obtenir une composition liquide de substances humiques oxydée dont le rayon hydrodynamique moyen en masse des particules en Solution (Rhmoyen après traitement), meSUre par DLS, eSt Supérieur au Rhmoyen avant traitement-
2. Procédé selon la revendication 1, ladite composition liquide de substances humiques est obtenue à partir de la tourbe, de la léonardite, du lignite, de la houille ou de l'anthracite.
3. Procédé selon l'une quelconque des revendications 1 à 2, ladite composition liquide de substances humiques comprend au moins 50% en masse sèche de substances humiques.
4. Procédé selon l'une quelconque des revendications 1 à 3, ledit agent oxydant est choisi parmi l'ozone, les ultra-violets et/ou le peroxyde d'hydrogène.
5. Procédé selon l'une quelconque des revendications 1 à 4, ledit le Rhmoyen après traitement est aU moins 5 fois supérieur au Rhmoyen avant traitement-
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm de la composition de substances humiques oxydée, mesurée par DLS, est au moins 2 fois supérieure à la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm de la composition de substances humiques avant oxydation.
7. Composition fertilisante susceptible d'être obtenue par le procédé selon les revendications 1 à 6.
8. Composition fertilisante selon la revendication 7, caractérisée en ce que le rayon hydrodynamique moyen en masse des particules en solution (Rhmoyen), mesuré par DLS, est supérieur à 50 nm.
9. Composition selon la revendication 7 ou 8, caractérisée en ce que la proportion massique des particules en solution ayant un rayon hydrodynamique compris entre 15 nm et 10000 nm, mesurée par DLS, est supérieure à 15%.
10. Composition selon l'une quelconque des revendications 7 à 9, comprenant en outre un ou plusieurs engrais minéraux, de préférence contenant un ou plusieurs minéraux choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et le soufre.
11. Utilisation d'une composition selon l'une quelconque des revendications 7 à 10 comme stimulant de l'absorption de minéraux chez une plante, de préférence les minéraux sont choisis parmi l'azote, le phosphore, le potassium, le calcium, le magnésium et/ou le soufre.
12. Utilisation d'une composition selon l'une quelconque des revendications 7 à 10 comme stimulant de la production de pigments chez une plante, de préférence la production de caroténoïdes, de chlorophylle A et/ou de chlorophylle B.
13. Utilisation selon l'une quelconque des revendications 11 et 12, pour stimuler la croissance aérienne et/ou racinaire de la plante.
14. Procédé de fertilisation d'une plante, d'un sol ou d'un support de culture comprenant l'application à la plante, audit sol ou audit support de culture d'une composition selon l'une des revendications 7 à 10.
15. Procédé de fertilisation d'une plante, d'un sol ou d'un support de culture consistant à :
- préparer une composition fertilisante en mettant en œuvre un procédé selon l'une quelconque des revendications 1 à 6, et
- appliquer ladite composition fertilisante à la plante, au sol ou au support de culture.
16. Procédé selon l'une quelconque des revendications 14 à 15, caractérisé en ce que l'application à la plante, au sol ou audit support de culture permet de stimuler l'absorption de minéraux chez une plante et/ou de stimuler la production de pigments chez la plante.
17. Procédé selon l'une quelconque des revendications 14 à 16, caractérisé en ce que la composition est appliquée à un sol acide.
PCT/FR2021/051524 2020-09-07 2021-09-06 Procédé de préparation d'une composition fertilisante par oxydation WO2022049355A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/044,169 US20230331636A1 (en) 2020-09-07 2021-09-06 Oxidative method for preparing a fertilizing composition
CA3191569A CA3191569A1 (fr) 2020-09-07 2021-09-06 Procede de preparation d'une composition fertilisante par oxydation
EP21778186.3A EP4211096A1 (fr) 2020-09-07 2021-09-06 Procédé de préparation d'une composition fertilisante par oxydation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2009050A FR3113903B1 (fr) 2020-09-07 2020-09-07 Procédé de préparation d’une composition fertilisante par oxydation
FRFR2009050 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022049355A1 true WO2022049355A1 (fr) 2022-03-10

Family

ID=73698997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051524 WO2022049355A1 (fr) 2020-09-07 2021-09-06 Procédé de préparation d'une composition fertilisante par oxydation

Country Status (5)

Country Link
US (1) US20230331636A1 (fr)
EP (1) EP4211096A1 (fr)
CA (1) CA3191569A1 (fr)
FR (1) FR3113903B1 (fr)
WO (1) WO2022049355A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530638A1 (fr) * 2016-10-21 2019-08-28 Fertinagro Biotech, S.L. Procédé amélioré d'extraction de substances humides à partir de carbone
US20200230065A1 (en) * 2017-02-14 2020-07-23 Agro Innovation International Humic Substance-Encapsulated Particles, Compositions and Method of Making the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530638A1 (fr) * 2016-10-21 2019-08-28 Fertinagro Biotech, S.L. Procédé amélioré d'extraction de substances humides à partir de carbone
US20200230065A1 (en) * 2017-02-14 2020-07-23 Agro Innovation International Humic Substance-Encapsulated Particles, Compositions and Method of Making the Same

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A.A.-P. PASCUALLLORCACANUT: "Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities", TRENDS FOOD SCI. TECHNOL., vol. 18, 2007, pages S29 - S35, XP005924501, DOI: 10.1016/j.tifs.2006.10.006
B.L. LOEBC.M. THOMPSONJ. DRAGOH. TAKAHARAS. BAIG: "Worldwide Ozone Capacity for Treatment of Drinking Water and Wastewater: A Review", OZONE SCI. ENG, vol. 34, 2012, pages 64 - 77
BHATTACHARJEE S: "DLS and zeta potential - What they are and what they are not?", JOURNAL OF CONTROLLED RELEASE, vol. 235, 2016, pages 337 - 351, XP029633356, DOI: 10.1016/j.jconrel.2016.06.017
FUENTES M.: "Simultaneous Presence of Diverse Molecular Patterns in Humic Substances in Solution", J. PHYS. CHEM. B, vol. 111, no. 35, 2007, pages 10577 - 10582, XP055476810, DOI: 10.1021/jp0738154
HANNINEN ET AL., LA SCIENCE DE L'ENVIRONNEMENT TOTAL, vol. 62, 1987, pages 201 - 210
KHAN A ET AL: "Effect of humic acid on the growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (Pisum sativum L)", JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, CHEMICAL SOCIETY OF PAKISTAN, KARACHI, PK, vol. 35, no. 1, 1 February 2013 (2013-02-01), pages 206 - 211, XP009527837, ISSN: 0253-5106 *
M. BATALLERE. VELIZR. PÉREZ-REYL.A. FERNANDEZM. GUTIERREZA. MARQUEZ: "Ozone swimming pool water treatment under tropical conditions", OZONE SCI. ENG., vol. 22, 2000, pages 677 - 682
SAITO ET AL.: "Alkaline Extraction of Humic Substances", BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 31, no. 03, 2014, pages 675 - 682, XP002798205, DOI: 10.1590/0104-6632.20140313s00002512
STEVENSON: "Humus Chemistry", 1994, WILEY
X. ZHONG ET AL.: "Formation of Aldehydes and Carboxylic acids in humic acid ozonation", WATER AIR SOIL POLLUT, 2017, pages 228
Y. KARAKURTH. UNLUH. UNLUH. PADEM: "The influence of foliar and soil fertilization of humic acid on yield and quality of pepper", ACTA AGRIC. SCAND. SECT. B SOIL PLANT SCI., vol. 59, 2009, pages 233 - 237

Also Published As

Publication number Publication date
EP4211096A1 (fr) 2023-07-19
FR3113903A1 (fr) 2022-03-11
US20230331636A1 (en) 2023-10-19
CA3191569A1 (fr) 2022-03-10
FR3113903B1 (fr) 2023-02-24

Similar Documents

Publication Publication Date Title
CA2786236C (fr) Composes phosphates et leur utilisation en tant qu&#39;engrais
WO2008053339B1 (fr) Fabrication de molécules organiques fonctionnellement efficaces provenant du clivage de la lignite
EP2346796B1 (fr) Complexes metalliques; leur utilisation pour la preparation de compositions a usage agricole
Beig et al. Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.)
M’Sadak et al. Caractérisation qualitative du digestat solide de la bio méthanisation industrielle des fientes avicoles et alternative de son exploitation agronomique hors sol
WO2022049355A1 (fr) Procédé de préparation d&#39;une composition fertilisante par oxydation
Groga et al. Étude comparative de la qualité de la symbiose (Anabaena azollae, Azolla caroliniana), du compost et du NPK sur la croissance végétative et le rendement de la tomate (Lycopersicon esculentum mill. Solanacée) à Daloa (Côte d’Ivoire)
Cherepanov Growth regulating activity of p-aminobenzoic acid–D-glucose system melanoidins
EP2211624B1 (fr) Utilisation des substances humiques comme activateurs des agents moleculaires specifiques de l&#39;absorption du fer chez la plante
Aranaz et al. The molecular conformation, but not disaggregation, of humic acid in water solution plays a crucial role in promoting plant development in the natural environment
BE1003937A3 (fr) Composition de carbonate acide de magnesium et utilisation.
US20230120812A1 (en) Organic Water-Soluble Fertilizer with Humic Properties
Krichkovskaya et al. Composition of bioactive compounds for cultivation of brassica juncea czern
Gunes et al. Effects of ZnO nanoparticules produced with green synthesis on germination and seedling of Salvia officinalis L. seeds
Mandey et al. Utilization of polyfloral honey in the synthesis of gold nanoparticles and evaluation of its potency as an antibacterial against S. aureus and E. coli
WO2023111468A1 (fr) Dispositifs contenant des ingrédients actifs vis-à-vis des plantes appliqués sur le sol ou les parties aériennes des plantes
Sebastian et al. Synthesis, Characterization and Application of Potassium Incorporated Nitrogenous Nano Fertilizer
Masmoudi et al. Compost: a remedy for affected soils by climatic change when applying humic substances.
WO2019122775A1 (fr) Stimulation de la nitrification d&#39;un sol avec des compositions comprenant un extrait de plante
Niemialkowska-Butrym et al. Optical properties of humic acids in selected organic wastes
CA2987911C (fr) Procede et dispositif de mise en oeuvre d&#39;une composition nutritive inorganique de fer
Pospisilova et al. Changes in several properties of humic acids after application of exogenous organic materials
Missaoui et al. Folcare biostimulant application in pea (Pisum sativum) crops under ZnO bionanoparticle exposure
Huynh et al. A Comparative Study on the Use of Fine and Ultra-Fine-Crushed Lime Foliar Fertilizer for Rice Growth
Dissanayake et al. Improvement of Quality of Biocatalytic Fertilizer Through Incorporation of Biomass-Based Nutrients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3191569

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023004075

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778186

Country of ref document: EP

Effective date: 20230411

ENP Entry into the national phase

Ref document number: 112023004075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230303