WO2022049320A1 - Nad+ precursors for use in the prevention and/or treatment of hereditary aortic aneurysms - Google Patents

Nad+ precursors for use in the prevention and/or treatment of hereditary aortic aneurysms Download PDF

Info

Publication number
WO2022049320A1
WO2022049320A1 PCT/ES2021/070638 ES2021070638W WO2022049320A1 WO 2022049320 A1 WO2022049320 A1 WO 2022049320A1 ES 2021070638 W ES2021070638 W ES 2021070638W WO 2022049320 A1 WO2022049320 A1 WO 2022049320A1
Authority
WO
WIPO (PCT)
Prior art keywords
adenine dinucleotide
precursor
nicotinamide
nad
use according
Prior art date
Application number
PCT/ES2021/070638
Other languages
Spanish (es)
French (fr)
Inventor
María MITTELBRUM HERRERO
Jorge OLLER PEDROSA
Enrique GABANDÉ RODRÍGUEZ
Original Assignee
Fundación Para La Investigación Biomedica Del Hospital 12 De Octubre
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Para La Investigación Biomedica Del Hospital 12 De Octubre, Universidad Autónoma de Madrid filed Critical Fundación Para La Investigación Biomedica Del Hospital 12 De Octubre
Publication of WO2022049320A1 publication Critical patent/WO2022049320A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7084Compounds having two nucleosides or nucleotides, e.g. nicotinamide-adenine dinucleotide, flavine-adenine dinucleotide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Definitions

  • the present invention relates to a nicotinamide adenine dinucleotide (NAD+) precursor, or to a pharmaceutical composition comprising it, for use in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration. Additionally, the present invention also relates to a nutraceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor, for use in preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of poor mitochondrial respiration. .
  • NAD+ nicotinamide adenine dinucleotide
  • Aortic aneurysm is a complex vascular pathology characterized by permanent dilation of the blood vessel wall.
  • AA vascular smooth muscle cells
  • Marfan syndrome There are mainly five autosomal dominant disorders currently known that affect the structure of the arterial walls: Marfan syndrome, Loeys-Dietz syndrome, vascular-type Ehlers-Danlos syndrome, Cutis laxa syndrome, and the vascular forms.
  • Marfan syndrome is the most common AAH, it is related to mutations in the extracellular protein fibrillin-1 and its typical cardiovascular symptoms are aortic dilatation and mitral valve dissection and prolapse. Their cardiovascular alterations are accompanied by characteristic musculoskeletal pathologies and lens dislocation.
  • AAH is a typically asymptomatic process that, therefore, is often undiagnosed and its progression is associated with devastating consequences, such as aortic rupture and sudden death due to uncontrolled bleeding.
  • Unfortunately there are currently only limited pharmacological treatments to delay the progression of these AHAs, but there is no treatment to reverse them.
  • the The only 2 options capable of preventing aneurysm rupture are endovascular repair or surgery. For this reason, there is an urgent need to identify the molecular mechanisms involved in AA and, in particular, in hereditary AA to develop pharmacological approaches that not only prevent, but also reverse said aortic aneurysms.
  • One aspect of the present invention refers to a precursor of nicotinamide adenine dinucleotide (NAD+), for use in the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of a deficient mitochondrial respiration. .
  • NAD+ nicotinamide adenine dinucleotide
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the onset and/or treatment of an aortic aneurysm of etiology inherited characterized by the presence of impaired mitochondrial respiration.
  • NAD+ nicotinamide adenine dinucleotide
  • the present invention also relates to a nutraceutical composition
  • a nutraceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration.
  • NAD+ nicotinamide adenine dinucleotide
  • Figure 2 Fbn1 mRNA levels.
  • (3A) qPCR-RT analysis of Tfam expression (left) and qPCR analysis of mtDNA content (right) in extracts of aortas from SM-Tfam +/+ and SM-Tfam'' mice after treatment with tamoxifen (Tmx ) for 28 weeks. (3B) Percentage of survival after treatment with Tmx injections in SM-Tfam +/+ and SM-Tfanr" mice, n 20.
  • VSMCs from Tfamflx/flx mice were transduced with lentiviral vectors expressing GFP (green fluorescent protein, LV-Mock) or those expressing Cre (LV-Cre) and analyzed 10 days later.
  • 4A RT-qPCR analysis of relative mRNA expression of Tfam, Mt-Nd1, Mt-Co1 and Slc2a1.
  • (4B) qPCR analysis of relative mtDNA content.
  • 4C Oxygen consumption rate (OCR) under basal respiration conditions (lower-left) and after the addition of oligomycin (I) and FCCP (II) to measure maximal respiration (lower-right), followed by a combination of rotenone and antimycin A (III).
  • OCR Oxygen consumption rate
  • Nicotinamide ribonucleoside treatment improves aortic homeostasis in a mouse model of Marfan syndrome
  • 5C Quantification of elastic band breaks in AsAo (left) and AbAo (middle) and media thickness 5 aortic (right).
  • Nicotinamide ribonucleoside treatment improves mitochondrial respiration and contractile phenotype in Marfan syndrome (MFS) cells
  • Figure 7 NR treatment of in vitro models of Familial forms of non-syndromic Thoracic Aortic Aneurysms and Dissections (FTAAD) and Loeys-Dietz syndrome (LDS).
  • NR Effect of NR on primary mouse VSMCs overexpressing ACTA2 R178H (7A1) or TGFBR2 G317W (7A2) as models of FTAAD and LDS, respectively.
  • VSMCs were treated for 5 days with NR.
  • 7A OCR (left) under basal respiration conditions (middle) and after the addition of oligomycin (I) and FCCP (II) to measure maximal respiration (right), followed by a combination of rotenone and antimycin A (III ).
  • bottom panel 6 shows the extracellular levels of lactate.
  • 7B qPCR analysis of relative mtDNA content.
  • 7C RT-qPCR analysis of mRNA expression of Tfam, Mt-Co1 and Ppargda.
  • Figure 8 NR treatment in female Marfan syndrome model mice.
  • hereditary aortic aneurysms are diseases that present significant differences in etiology
  • the present invention shows that the contractile phenotype changes that occur in these hereditary diseases are modulated by a decline in the mitochondrial metabolism of vascular smooth muscle cells (VSMCs). ) and that enhancing mitochondrial metabolism is an appropriate therapeutic approach to restore VSMC homeostasis and prevent the evolution and development of aortic aneurysms in these patients.
  • VSMCs vascular smooth muscle cells
  • the present invention describes how the precursors of nicotinamide adenine dinucleotide (NAD+) are capable of increasing the function of mitochondrial respiration, preventing and providing treatment for diseases that occur with poor mitochondrial respiration and, specifically, for the prevention of occurrence and treatment of hereditary aortic aneurysms.
  • NAD+ nicotinamide adenine dinucleotide
  • the present invention refers to a precursor of nicotinamide adenine dinucleotide (NAD+), for use in the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology (HAA) characterized by the presence of a poor mitochondrial respiration.
  • NAD+ nicotinamide adenine dinucleotide
  • the present invention discloses several in vitro and in vivo assays performed with samples from human Marfan syndrome patients, mouse models of Marfan syndrome and VSMC models of other AAH such as Loeys-Dietz syndrome and Familial forms of Dissections. and Non-syndromic Thoracic Aneurysms. These trials show how, in all cases, AAH show a common etiology in which there is a decline in mitochondrial respiration.
  • the animal model of Marfan syndrome, the pb neural39G + mouse reproduces aortic dilatation, aneurysms, and histologic features of median aortic degeneration found in patients with Marfan syndrome.
  • is that mtDNA and Tfam mRNA in pb n i c103 9G + aortas showed a lower than normal mtDNA content.
  • this model showed a reduction in mitochondrial respiration, accompanied by an increase in extracellular lactate production, an indicator of glycolysis.
  • OCR oxygen consumption rate
  • mtDNA and mitochondrial function gene expression were measured in aortas from Marfan syndrome patients.
  • the data from Example 1 indicate that aortic aneurysm samples from Marfan syndrome patients showed significantly lower levels of mtDNA and reduced transcription of genes encoding mitochondrial complexes or involving mitochondrial function, further showing a upregulation of genes involved in mitochondrial uncoupling and glycolytic redirection of metabolism.
  • analysis of smooth muscle actin (SMA) confirmed that the downregulation of mitochondrial genes was specific to VSMCs.
  • aortic VSMCs from Tfam flox/flox mice were transduced with lentiviral vectors encoding Cre recombinase (LV-Cre).
  • LV-Cre Cre recombinase
  • Tfam flox/flox mice were crossed with mice expressing the Cre ERT2 fusion protein under the muscle myosin promoter (Myh11-Cre ERT2 '). smooth (Myh11) in order to effect an effective abrogation of Tfam expression in aortas of Myh11-Cre ERT2 Tfam flox flox (SM-Tfam ⁇ ) mice, but not in Myh11-Cre ERT2 Tfam m/Wt mice ( SM-Tfam +/+ ) used as control.
  • AngII was infused into SM-Tfam'' and SM-Tfam + + mice 56 days after tamoxifen treatment. Histologic analysis of thoracic and abdominal aortic sections showed increased aortic diameter, aortic dissections, intramural hematomas, false lumen formation, and features of medial degeneration, including elastic fiber fragmentation and vascular architecture, demonstrating that decline in Mitochondrial respiration in VSMCs induces lethal aortic aneurysms and dissections in model animal models of Marfan syndrome.
  • the present invention shows, both in vitro and in vivo, how in said diseases the development of aortic aneurysms of hereditary etiology is promoted by a dysfunction of mitochondrial respiration specifically in VSMCs.
  • the disease or pathology characterized by the presence of poor mitochondrial respiration is an aortic aneurysm of hereditary aetiology (HAA) and, in particular, said AAH is selected from the group consisting of: syndrome of Marfan, Loeys-Dietz syndrome, Ehlers-Danlos syndrome of vascular type, Cutis laxa syndrome and Familial forms of Non-syndromic Thoracic Aneurysms and Dissections.
  • HAA hereditary aetiology
  • the present invention shows how the use of NAD+ precursors is an effective therapeutic approach to improve mitochondrial dysfunction in aortic aneurysms. 9 of hereditary aetiology, both preventing the development of these aneurysms and reversing their effects.
  • the examples of the present invention show how nicotinamide ribonucleoside (NR) is one of the different NAD+ precursors and, as it has good bioavailability and pharmacokinetic properties, is capable of rapidly improving mitochondrial metabolism, restoring the transcriptional profile , normalizing aortic functions, restoring the contractile properties of VSMCs and reducing aortic dilation, in vitro and in vivo, in animal models of hereditary aortic aneurysms, preventing lethal aortic dissections.
  • NR nicotinamide ribonucleoside
  • examples 3 and 4 of the present invention show, in vivo, how NR prevents, but also reverses, the development of aortic aneurysms in animal models (mice) of Marfan syndrome and, also, in vitro, in VSMCs. models of Marfan syndrome, Loeys-Dietz syndrome and familial forms of non-syndromic thoracic aneurysms and dissections.
  • example 3 of the present invention shows how NR improves mitochondrial metabolism and restores contractility in VSMCs that have hereditary aortic aneurysm mutations.
  • treatment with NR increased mitochondrial respiration and decreased lactate production in VSMCs model of Marfan syndrome (shFbnl- VSMCs), restoring the levels found in control VSMCs, increasing the contractility of said cells.
  • lentiviral vectors were used to overexpress ACTA2 R179H and TGFBR2 G357W , respectively, in VSMCs, which resulted in a reduced rate of VSMC consumption. oxygen content, mtDNA content, and mRNA expression of mitochondrial regulators, while increasing extracellular lactate levels.
  • Example 4 shows how NR treatment restores the transcriptional signature (gene expression profile) and contractile properties of aortic smooth muscle. in Marfan syndrome model mice and completely reverses defective aortic wall remodeling, aortic dilatation, and medial degeneration.
  • the present invention relates to a NAD+ precursor for use in preventing the onset and/or treating an aortic aneurysm of hereditary etiology characterized by the presence of "deficient mitochondrial respiration".
  • the present invention relates to the use of a NAD+ precursor in the preparation of a medicament for the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology characterized by the presence of deficient mitochondrial respiration.
  • the present invention also describes a method for the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of mitochondrial respiration, wherein said method comprises administering to a subject who needs it an effective amount of a NAD+ precursor.
  • an effective amount is understood, in relation to the therapeutic uses described in the present invention, as that which provides a therapeutic effect without providing unacceptable toxic effects in the patient.
  • the effective amount or dose of the drug depends on the compound and the condition or disease being treated and on, for example, the age, weight and clinical condition of the patient being treated, the form of administration, the patient's medical history, the severity of the disease and the potency of the administered compound.
  • the precursor of nicotinamide adenine dinucleotide is selected from: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid.
  • Niacin is, for the purposes of the present invention, vitamin B3.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM).
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
  • the precursor of nicotinamide adenine dinucleotide is nicotinic acid mononucleotide.
  • the precursor of nicotinamide adenine dinucleotide is nicotinic acid adenine dinucleotide.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide riboside (NR).
  • NAD+ precursors described in the present invention can also be used in pharmaceutical compositions.
  • another aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one precursor of nicotinamide adenine dinucleotide (NAD+) and at least one pharmaceutically acceptable excipient, for use in preventing the appearance and/or treatment of an aneurysm.
  • NAD+ nicotinamide adenine dinucleotide
  • aortic of hereditary etiology that is characterized by the presence of poor mitochondrial respiration.
  • the term “comprises” indicates that it includes a group of certain characteristics (for example, a group of characteristics A, B and C) is interpreted to mean that it includes those characteristics (A, B and C), but that it does not exclude the presence of other characteristics (for example, characteristics D or E), provided that they do not make the claim unworkable. Additionally, the terms “contains”, “includes”, “has” or “encompasses”, and the plural forms thereof, should be taken as synonymous with the term “comprises” for the purposes of the present invention. On the other hand, if the expression "consists of” is used, then no additional features are present in the apparatus/method/product, apart from those following said expression.
  • the term “comprises” can be replaced by any of the terms “consist of”, or “consists essentially of”. Accordingly, “comprises” may refer to a group of features A, B, and C, which may additionally include other features, such as E and D, provided that such features do not render the claim unenforceable, but said term “comprises ” also includes the situation where the characteristic group “consists of” or “consists essentially” of A, B and C.
  • the term “subject” refers, for the purposes of the present invention, to a human or an animal.
  • pharmaceutically acceptable means, for purposes of this invention, that which is licensed or licensed by a federal or state government regulatory agency or listed in the European, United States or other generally recognized pharmacopoeia for use in animals. , and more particularly in humans.
  • One embodiment of the invention relates to the use of a pharmaceutical composition comprising at least one precursor of nicotinamide adenine dinucleotide (NAD+) and at least 12 a pharmaceutically acceptable excipient, in the preparation of a medicament for the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of deficient mitochondrial respiration.
  • NAD+ nicotinamide adenine dinucleotide
  • Another embodiment refers to a method for the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of deficient mitochondrial respiration, wherein said method comprises administering to a subject who needs it an amount formulation of a pharmaceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one pharmaceutically acceptable excipient.
  • NAD+ nicotinamide adenine dinucleotide
  • excipient included in the pharmaceutical compositions described in the present invention refers to an inert component such as, but not limited to, co-solvents, surfactants, oils, humectants, emollients, preservatives, stabilizers and antioxidants.
  • an inert component such as, but not limited to, co-solvents, surfactants, oils, humectants, emollients, preservatives, stabilizers and antioxidants.
  • Any pharmacologically acceptable buffer can be used, such as TRIS or any phosphate buffer.
  • compositions can be included in capsules, tablets, sachets or sachets or any other type of presentation.
  • the compound of interest may be mixed with a carrier or diluted in a carrier or contained in a carrier in the form of an ampoule, capsule, tablet, sachet, sachet, or other container.
  • the carrier serves as a solvent, it may be solid, semi-solid or liquid and act as a carrier or medium for said active compound.
  • the compound of interest can be adsorbed on a solid granular medium.
  • suitable carriers are water, saline solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, lactose, terra alba, sucrose, cyclodextrins, amylose, magnesium stearate, talc, gelatin, agar, pectin. , acacia, stearic acid, cellulose alkyl ethers, silicon acid, fatty acids, fatty acid amines, fatty acid mono- and diglycerides, pentaerythrol fatty esters, polyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.
  • the vehicle or support can include sustained release materials known in the art, such as glyceryl monostearate or di-sterate alone or mixed with a wax.
  • the formulations may also include wetting agents, emulsifiers, suspending agents, preservatives, sweeteners, or flavoring agents.
  • the compositions may be formulated to provide rapid, sustained, or delayed release of the active agent after it is administered to the patient using methods known in the art. 13
  • compositions can be sterilized and mixed, if desired, with additional agents, emulsifiers, salt to influence osmotic pressure, buffers and/or coloring substances that do not react adversely with the active compounds.
  • One embodiment relates to the mode of administration, which can be any mode that effectively transports the compound of interest to the desired site of action, such as oral, rectal, or parenteral.
  • both solid and liquid dosage forms can be prepared.
  • the compound of interest is mixed into a formulation with other conventional ingredients such as talc, magnesium stearate, dicalcium phosphate, magnesium aluminum silicate, starch, lactose, acacia, methylcellulose, and functionally similar materials such as pharmaceutical carriers and diluents.
  • Capsules can be prepared by mixing the compound of interest with a pharmaceutically inert solvent and filling the mixture into a hard gelatin of appropriate size.
  • Soft capsules are prepared with machines for encapsulating suspensions of the compound of interest with an acceptable vegetable oil, light paraffin or inert oil.
  • Liquid dosage forms such as syrups, elixirs and suspensions can also be prepared. The water soluble forms can be dissolved in an aqueous vehicle together with sugar, flavors and preservatives to form a syrup.
  • An elixir is prepared using a hydroalcoholic vehicle (eg ethanol) with suitable sweeteners such as sugar or saccharin, together with aromatic flavoring agents.
  • Suspensions can be prepared with an aqueous vehicle and the aid of a suspending agent such as acacia, tragacanth, methylcellulose, and the like.
  • injectable solutions or suspensions for intradermal, intramuscular, intravascular and subcutaneous use are obvious to those skilled in the art.
  • compositions may include other non-toxic pharmaceutically acceptable diluents and excipients, including vehicles commonly used in pharmaceutical compositions commonly used in humans or animals.
  • the diluent is selected so as not to affect the biological activity of the composition.
  • compositions may include additives such as other excipients, adjuvant agents, non-therapeutic and non-immunogenic stabilizers, and the like.
  • excipients examples include, but are not limited to 14 co-solvents, surfactants, oils, humectants, emollients, preservatives, stabilizers and antioxidants. Any physiologically acceptable buffer can be used, such as Tris or phosphate buffers. Effective amounts of diluents or additives or excipients are those that are effective to obtain a pharmaceutically acceptable formulation in terms of solubility and biological activity.
  • unit dose refers to physically discrete units suitable as unitary doses for a subject where each unit contains a predetermined quantity of active material calculated to produce the appropriate therapeutic effect in association with the appropriate diluent, carrier or vehicle.
  • a preferred embodiment disclosed herein relates to the route of administration, which may be any route that efficiently transports the compound disclosed hereinabove, to the appropriate or desired site of action, such as oral. , nasal, topical, pulmonary, transdermal, or parenteral, eg, rectal, subcutaneous.
  • the NAD+ precursors, or the pharmaceutical compositions comprising them, described in the present invention can be used before, in combination with, or after another treatment or therapy that is useful in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration.
  • said treatment or therapy is a hypotensive or an inhibitor of the Angiotensin pathway.
  • the hypotensive is a beta-blocker.
  • beta-blockers include, but are not limited to Atenolol, Acebutolol, Betaxolol, Bisoprolol, Esmolol, Nebivol, among others.
  • the Angiotensin pathway inhibitor can be selected from Losarian, Olmesartan, Valsarian or Irbesartan, among others.
  • NAD+ precursors, or pharmaceutical compositions comprising them, described in the present invention can be used before, in combination with, or after another therapeutic component or additional active compound.
  • Said additional therapeutic component or active compound provides additive or synergistic biological activities.
  • active compound or “therapeutic component” should be taken synonymously and mean a chemical or biological entity that exerts therapeutic effects when administered to humans or animals.
  • NAD+ precursors described in the present invention can also be used as nutraceuticals or in nutraceutical compositions. This is the case, for example, of vitamin B3 and its derivatives.
  • nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the appearance of an aortic aneurysm of hereditary etiology that It is characterized by the presence of impaired mitochondrial respiration.
  • NAD+ nicotinamide adenine dinucleotide
  • the present invention also relates to a method of preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of poor mitochondrial respiration, wherein said method comprises administering to a subject in need an effective amount of a nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutical acceptable excipient.
  • a nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutical acceptable excipient.
  • NAD+ nicotinamide adenine dinucleotide
  • An effective amount is understood, in relation to the nutraceutical uses described in the present invention, as that which provides a beneficial effect for the health of the subject who ingests it, especially in the prevention of the appearance of diseases, without providing adverse effects. unacceptable toxicants in the subject.
  • the term “nutraceutical” or “nutraceutical composition” refers to a dietary supplement, to be taken by itself, or in combination with other foods, and that produces a beneficial effect on the health of the subject that consumes it. eat, especially in disease prevention.
  • nutraceutical composition is understood as a food composition, to be ingested separately or with food, which has a medicinal effect on human health.
  • the nicotinamide adenine dinucleotide (NAD + ) precursor is selected from: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid.
  • Niacin is, for the purposes of the present invention, vitamin B3.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM).
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
  • the precursor of nicotinamide adenine dinucleotide is nicotinic acid mononucleotide.
  • the precursor of nicotinamide adenine dinucleotide is nicotinic acid adenine dinucleotide.
  • the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide ribonucleoside (NR).
  • the nutraceutical composition for use according to the invention, is incorporated into a food preparation.
  • the nutraceutical composition for use according to the invention can also be included in a variety of food preparations, for example, products derived from milk, yogurt, curd, cheese (for example, fresh, cream, processed, soft and hard cheese), fermented milk , milk powder, a fermented milk-based product, an ice cream, a fermented cereal-based product, milk-based powder, beverages, and a pet food.
  • food preparations is used here in its broadest sense, including any type of product, in any form of presentation, that can be ingested by an animal, but excluding pharmaceutical and veterinary products.
  • food preparations are meat products (for example pâtés, frankfurters and salami or meat spreads), chocolate spreads, fillings (for example truffle, cream) and glazes, chocolate, confectionery (for example caramel, fondant or toffee), bakery products (cakes, pastries), sauces and soups, fruit juices and coffee whiteners.
  • Particularly interesting food preparations include food supplements and infant formulas.
  • nutraceutical composition for use according to the invention could also be used as an ingredient in other food products. Accordingly, in another aspect of the invention, food preparations containing the composition of the invention together with appropriate amounts of edible ingredients are provided.
  • the nutraceutical composition for use according to the invention is a food supplement.
  • the term "food supplement” refers to that fraction of food that is used to complete human or animal nutrition. If the nutraceutical composition for use according to the invention is used as a food supplement, it can be administered as such, or it can be mixed with a suitable drinking liquid, such as water, yoghurt, milk or fruit juice, or it can be mixed with solid or liquid foods. .
  • the food supplement may be in the form of tablets, pills, capsules, granules, powders, suspensions, sachets, lozenges, candies, bars, syrups and corresponding forms of administration, usually in unit dosage form.
  • mice were bred to mice carrying the MyH 11 -Cre ERT2 allele expressing a tamoxifen-inducible Cre recombinase under smooth muscle heavy chain myosin promoter regulatory sequences ( Myh11). Wild-type littermates were used as controls for Marfan mice and Tfam vvt/vvt MyH11-Cre ERT2 as control for Tfam flox/flox MyH11-Cre ERT2 .
  • AngII was dissolved in saline at a concentration of 1 pg Kg-1 min-1 using subcutaneous osmotic minipumps (Model 2004, Alzet Corp). Nicotinamide ribonucleoside (Novalix) was administered intraperitoneally at a concentration of 1000 mg/Kg in saline medium on alternate days.
  • mice were housed in pathogen-free animal facilities of the Carlos III National Cardiovascular Research Center (CNIC) and the Severo Ochoa Molecular Biology Center (CBMSO) following the animal care standards of these institutions.
  • CNIC National Cardiovascular Research Center
  • CBMSO Severo Ochoa Molecular Biology Center
  • the procedures with animals were approved by the Ethics Committee of the CNIC and the CBMSO-Universidad Autónoma de Madrid (UAM) and by the Community of Madrid (Rf. PROEX 283/16) in accordance with European Directive 2010/63EU and the 2007 Recommendation /526/EC in relation to the protection of animals used for experimentation and other scientific tasks, in force through Royal Decree 1201/2005. 18
  • BP Arterial blood pressure
  • BP-2000 Blood Pressure Analysis System (Visitech Systems, Apex, NC, USA). Mice were trained to measure PS every day for 5 consecutive days. After the training period, PS was measured one day before treatment to determine baseline PS in each cohort of mice. 15 consecutive measurements of systolic and diastolic PS were taken and the last 10 shots of each mouse were recorded and the mean value was obtained.
  • aortic diameter in isoflurane (2%) anesthetized mice was monitored with a VEVO 2100 high-frequency ultrasound scanner (VisualSonics, Toronto, Canada) at 30 micron resolution. Maximum aortic internal diameters were measured in diastole using VEVO 2100 software, version 1.5.0.
  • VSMC vascular smooth muscle cells
  • the Cre and GFP coding sequence was obtained by PCR amplification and cloned into the lentiviral vector pHRSIN (Oller et al. 2015 Mol Cell Biol 2015 3409-22).
  • Lentiviruses expressing murine Fbn1 targeting shRNA and control shRNA were purchased from Sigma Aldrich.
  • Lentiviruses expressing FCTA2 R179H and TGFBR2 G317W mutations and controls were supplied by Mark Lindsay.
  • Pseudotyped lentiviruses were produced by transient transfection of HEK-293T cells with calcium phosphate and concentrated culture supernatant by ultracentrifugation (2 hr at 128,000xg; Ultraclear Tubes; SW28 rotor and Optima L-100 XP Ultracentrifuge; Beckman). Viruses were suspended in cold sterile PBS and titrated by Jurkat cell transduction for 48 hr. Transduction efficiency (GFP-expressing cells and Puromycin-resistant cells) and cell death (propidium iodide staining) were quantified by flow cytometry (Oller et al., Nat Med, 2017. 23(2): p. 200-212).
  • Oxygen consumption rate was measured with an XF-96 Extracellular Flux Analyzers (Seahorse Bioscience) in 25,000 mouse aortic VSMCs or in 50,000 human fibroblasts seeded in unbuffered DMEM medium containing 25 mM glucose and CaCh 1 mM. Three measurements were taken under basal conditions and with the addition of oligomycin (1 mM), fluorocarbonyl cyano-phenylhydrazone (FCCP, 1.5 mM) and rotenone (100 nM) + antimycin A (1 mM). Extracellular lactate was determined with the Accutrend ® Plus system (Roche). 20 pL of conditioned medium were analyzed after 48 hours of activation. Lactate measurements were normalized to cell protein extracts.
  • DNA was amplified using primers specific for cytochrome c oxidase subunit 1 (mt-Co1) and mitochondrial 16S rRNA, and normalized with nuclear B2M and H2K control genes. Quantitative real-time PCRq was performed with the primers from Tables 1A (mouse primers) and 1B (human primers): Table 1A: Mouse Primers twenty-one
  • the qPCR reactions were carried out in triplicate with a SYBR master mix (Promega), according to the manufacturer's instructions. To examine the specificity of the probe, post-amplification melting-curve analyzes were performed. For each reaction only one melting temperature (Tm) was taken. The amount of target mRNA in the mixtures was estimated with the 1-CT relative quantification method, using B2M, YWHAZ and PP1A for normalization. Duplication ratios were calculated based on control mRNA expression levels.
  • the signal was visualized by enhanced chemiluminescence with Luminata Forte Western HRP Substrate (Millipore) and the ImageQuant LAS 4000 imaging system.
  • the following antibodies were used: anti-TFAM (Proteintec), Anti-MT-CO1 (Millipore), anti -VDAC (Abeam), anti-a-tubulin (Cell Signaling).
  • RNA from libraries was prepared according to the instructions of the “NEBNext Ultra Directional RNA Library Prep kit for Illumina” kit (New England Biolabs), following the 22 “Poly(A) mRNA Magnetic Isolation Module” protocol. Total RNA yield at the beginning of the protocol was >300 ng quantified by an Agilent 2100 Bioanalyzer using the RNA 6000 nano LabChip kit.
  • the obtained libraries were validated and quantified with an Agilent 2100 Bioanalyzer using a DNA7500 LabChip kit and an equimolar set of libraries was titrated by quantitative PCR using the "Kapa-SYBR FAST qPCR kit forLightCycler480" (Kapa BioSystems) and a reference standard for quantification.
  • the library pool was denatured before being seeded at 2.2 pM density in a flow cell, where clusters were formed and sequenced using a NextSeqTM 500 High Output Kit, on a NextSeq500 sequencer in a single 1x75 read. . Approximately 15 million reads were obtained after filtering for each sample.
  • aortas were perfused with saline. Aortas were then isolated and fixed in 10% formalin overnight at 4°C. Paraffin sections (5 pm) of fixed organs were stained with Masson-Trichrome, alcian blue, or Verhoeff elastic-van Gieson (EVG), or used for immunohistochemistry or immunofluorescence. Elastic fibers were stained with a modified Verhoeff Van Gieson elastin staining kit (Sigma Aldrich).
  • Elastic lamina tears defined as breaks in elastic fibers, were counted for the entire medial layer of three consecutive cross-sections in each mouse, using 4-16 mice in each experiment, and the mean number of tears was calculated.
  • the samples were incubated for immunohistochemistry or immunofluorescence with the following antibodies: anti-SMA (1/500, C6198, Sigma), polyclonal anti-TFAM (1/300, Prointech), polyclonal anti-MT-ND1 (1/300, Proteintech), monoclonal anti-Mt-CO1 (1/300 Invitrogene), polyclonal anti-HIF1A and anti-MYC (1/500 Novus biologicals). Specificity was determined by replacement of primary antibodies with unrelated IgG (Santa Cruz). For immunohistochemistry, endogenous peroxidase and biotin were blocked with 1% H2O2-methanol for 10 minutes and a biotin blocking kit (Vector Laboratories), respectively.
  • GraphPad Prism 6.01 software was used for analysis. Differences were analyzed by unidirectional, bidirectional, or repeated measures with bidirectional variance analysis (ANOVA) and Newmann's post hoc test (experiments with groups > 3), appropriately. For the survival curves, we analyzed the 24 differences with a log-rank test (Mantel-Cox). Statistical significance was assigned to *P ⁇ 0.05, **P ⁇ 0.01, ***P ⁇ 0.001 and ****P ⁇ 0.0001. The sample size was chosen empirically based on previous experience in calculating experimental variability; a statistical method was not used to predetermine the sample size. Outliers were identified and excluded using GraphPad Prism software. The number of animals used is described in the corresponding figure legends. All experiments were carried out with at least 3 biological replicates.
  • the experimental groups were balanced according to animal age, gender and weight. The animals were genotyped before the experiments and all of them were confined together and treated in the same way. Appropriate tests were chosen according to the distribution of the data. The variance was comparable between groups in the experiments described herein. For the rest of the experiments, no randomization was used to assign animals to experimental groups.
  • Example 1 Metabolic changes in Marfan syndrome.
  • the pp n icio39G + mouse animal model reproduces aortic dilatation, aneurysms, and histologic features of medial layer aortic degeneration found in patients with Marfan syndrome.
  • transcriptional analyzes of aortas from pp nitio39G /+ mice were carried out thanks to Ingenuity Pathway Analysis (IPA), it was observed that 6 of the 10 most altered canonical mechanisms were related to metabolism, including oxidative phosphorylation, mitochondrial dysfunction, fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, as shown in Figure 1A.
  • IPA Ingenuity Pathway Analysis
  • IPA prediction of important regulators described typical regulators found in Marfan syndrome (MFS) such as inducible nitric oxide synthase (Nos2) and growth factor beta 1 (Tgfbl).
  • MFS Marfan syndrome
  • Nos2 inducible nitric oxide synthase
  • Tgfbl growth factor beta 1
  • the pp n i c1 °39G + aortas showed reduced expression of all subunits of mitochondrial complexes, including genes encoding the nucleus and mitochondhas, as well as genes related to FAO and mitochondrial biogenesis and function (Tfam, Ppara, Pparg Ppargda, Ppargdb, and Sod2).
  • genes involved in mitochondrial uncoupling (Ucp2) and glycolytic redirection of metabolism (Hifla, Myc) were upregulated (Figure 1C).
  • RTq-PCR analysis confirmed the reduced expression of Tfam (Figure 1D).
  • Tfam control mtDNA levels and relative mtDNA content analysis in pp start 39G + aortas showed lower than normal mtDNA content (Figure 1E). 25
  • mtDNA and mitochondrial function gene expression were measured in aortas from Marfan syndrome patients.
  • aortic aneurysm samples from Marfan syndrome patients showed significantly lower levels of mtDNA (Figure 1J) and reduced transcription of genes encoding mitochondrial complexes (MT-ND1, SDHA, SDHB, CYCS, MTCO1, and MT-ATP6) or that involve mitochondrial function (TFAM, PPARA, PPARG, and PPARG1A).
  • the aneurysm samples showed an upregulation of genes involved in mitochondrial uncoupling and glycolytic redirection of metabolism (Figure 1K).
  • Example 2 Glycolytic metabolism in VSMCs causes aortic aneurysms similar to those found in Marfan syndrome
  • Tfam in vitro and in vivo were transduced with lentiviral vectors encoding Cre recombinase (LV-Cre). Tfam deletion was confirmed by analyzing Tfam mRNA levels and protein levels (Fig. 4A and B) against a control that did not encode Cre recombinase (LV-Mock). Consistent with its regulatory role in mtDNA levels, deletion of Tfam in VSMCs resulted in reduced mtDNA content, reduced expression of mtDNA-encoded genes Mt-Co1 and Mt-Nd1, reduced OCR, and increased lactate production ( Figures 4A-D).
  • Drastic decreases in mRNA expression of genes involved in contractility such as smooth muscle heavy chain myosin (Myh1), smooth muscle actin (Acta2), transgelin (Tglr ⁇ ), calponin (Cnn), and smoothelin ( Smtri) (fig. 4E). Furthermore, this was accompanied by mRNA expression of genes related to the secretion phenotype, such as osteopoietinal (Spp), metalloproteinase-9 (Mmp9), and inducible nitric oxide synthase (Nos2) (Fig. 4F). The increased expression of Mmp9 was accompanied by a marked increase in Mmp9 enzymatic activity in cell supernatants (FIG. 4F). These data suggest that mitochondrial respiration controls the contractile properties of VSMCs, while glycolytic conditions move these cells toward a secretory phenotype.
  • Myh1 smooth muscle heavy chain myosin
  • Acta2 smooth muscle actin
  • Tglr ⁇ transgelin
  • Tfam flox/flox mice were crossed with mice expressing the Cre ERT2 fusion protein under the smooth muscle myosin ( Myh1 ) promoter (Myh11-Cre ERT2).
  • Myh11-Cre ERT2 smooth muscle myosin
  • Tmx tamoxifen
  • AngII was infused into SM-Tfam' 7 ' and SM-Tfam + + mice 56 days after tamoxifen treatment (FIG. 3E).
  • Blood pressure analysis showed a mild increase in SM-Tfamr 7 ' mice (Fig. 3F).
  • ultrasound showed a rapid increase in the diameter of the aortae. 27 ascending (AsAo) and abdominal (AbAo) of SM-Tfanr' mice, supporting the predisposition of these mice to develop aortic aneurysms.
  • Histologic analysis of thoracic and abdominal aortic sections showed increased aortic diameter, aortic dissections, MIH, false lumen formation, and features of medial degeneration, including elastic fiber fragmentation and vascular architecture demonstrating that decline in mitochondrial respiration in VSMCs induce lethal aortic aneurysms and dissections in Marfan animal models.
  • Example 3 Enhancement of mitochondrial metabolism restores contractility in VSMCs having hereditary aortic aneurysm mutations.
  • NAD+ is a cofactor for several enzymes with critical roles in mitochondrial activity and metabolic health, and supplementation with NAD+ precursors has been proposed as a strategy to improve mitochondrial functions in several diseases related to mitochondrial decline (Verdin et al. , Science, 2015. 350(6265): pp. 1208-13, Prolla et al., Cell Metab, 2014. 19(2): pp. 178-80).
  • shFbn1-CM ⁇ _ ⁇ /s were treated with nicotinamide hboside (NR).
  • NR increased OCR and decreased lactate production in shFbn 1-VSMCs to levels found in control shFbnl-VSMCs (Fig. 6A and B).
  • Previous studies have indicated that NR controls mitochondrial metabolism by increasing the expression of Ppargda and Tfam through sirtuin activity. Exposure of shFbn1-CM ⁇ _ ⁇ /s to NR for 5 days increased the expression of Ppargla and Tfam showing a correlation with an increase in mtDNA and the expression of mtDNA encoding the Mt-Co1 transcript (Fig. 6C, D). .
  • NR treatment was able to reverse histological characteristics of degeneration in this Marfan syndrome model, such as medial thickness, elastic fiber fragmentation, proteoglycan deposition, and actin polymerization (Fig. 5C and Fig. 8C). NR treatment also restored Tfam mRNA expression and Mt-Co1 mtDNA content to normal levels (Fig. 5D and E).
  • RNA sequencing was performed on aortas from Marfan syndrome model mice and healthy control mice.
  • Hierarchical clustering and transcriptomic analysis revealed that NR treatment reversed the transcriptional changes observed in Fbn1 c1039G/+ aortas, changing 29 the expression levels to levels closer to those of the control than to those of Pb initio39G /+ E mice
  • NR treatment increased the expression levels of some transcription factors involved in the maintenance of the contractile phenotype and genes related to the smooth muscle contraction apparatus, such as smooth muscle actin (Acta2) and calponinal (Cnn1) ( Fig5F).
  • Acta2 smooth muscle actin
  • Cnn1 calponinal

Abstract

The invention relates to a nicotinamide adenine dinucleotide (NAD+) precursor, or a pharmaceutical composition comprising same, for use in the prevention of the development of hereditary aortic aneurysms characterised by the presence of impaired mitochondrial respiration, and/or the treatment thereof. The invention also relates to a nutraceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor for use in preventing the development of hereditary aortic aneurysms characterised by the presence of impaired mitochondrial respiration.

Description

1 1
PRECURSORES DE NAD+ PARA USO EN LA PREVENCIÓN Y/O TRATAMIENTO DE ANEURISMAS AÓRTICOS HEREDITARIOS PRECURSORS OF NAD + FOR USE IN THE PREVENTION AND/OR TREATMENT OF HEREDITARY AORTIC ANEURYSMS
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se refiere a un precursor de nicotinamida adenina dinucleótido (NAD+), o a una composición farmacéutica que lo comprende, para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Adicionalmente, la presente invención también se refiere a una composición nutracéutica que comprende un precursor de nicotinamida adenina dinucleótido (NAD+), para uso en la prevención de la aparición de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. The present invention relates to a nicotinamide adenine dinucleotide (NAD+) precursor, or to a pharmaceutical composition comprising it, for use in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration. Additionally, the present invention also relates to a nutraceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor, for use in preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of poor mitochondrial respiration. .
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El aneurisma aórtico (AA) es una patología vascular compleja caracterizada por una dilatación permanente de la pared de los vasos sanguíneos. Aortic aneurysm (AA) is a complex vascular pathology characterized by permanent dilation of the blood vessel wall.
En función de su etiología, pueden distinguirse dos tipos de AA: aneurismas aórticos causados por un proceso degenerativo, asociado a factores de riesgo cardiovasculares y los aneurismas aórticos asociados a desórdenes hereditarios (AAH). Estos últimos están asociados con mutaciones heredables de varios genes, incluyendo aquellos que codifican para proteínas de la matriz extracelular (MEC), miembros de la vía de señalización TGFp y componentes actomiosínicos citoesqueletales de células vasculares lisas musculares (CMLVs). Depending on their etiology, two types of AA can be distinguished: aortic aneurysms caused by a degenerative process, associated with cardiovascular risk factors, and aortic aneurysms associated with hereditary disorders (HAA). The latter are associated with heritable mutations in several genes, including those that code for extracellular matrix proteins (ECM), members of the TGFp signaling pathway, and cytoskeletal actomyosin components of vascular smooth muscle cells (VSMCs).
Existen principalmente cinco desordenes autosómicos dominantes, conocidos actualmente, que afectan a la estructura de las paredes arteriales: el síndrome de Marfan, el síndrome de Loeys-Dietz, el síndrome de Ehlers-Danlos de tipo vascular, el síndrome de Cutis laxa y las formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. El síndrome de Marfan es el AAH más común, está relacionado con mutaciones en la proteína extracelular fibrilina-1 y sus síntomas típicos cardiovasculares son la dilatación aórtica y la disección y prolapso de la válvula mitral. Sus alteraciones cardiovasculares están acompañadas por características patologías musculoesqueléticas y la luxación del cristalino. There are mainly five autosomal dominant disorders currently known that affect the structure of the arterial walls: Marfan syndrome, Loeys-Dietz syndrome, vascular-type Ehlers-Danlos syndrome, Cutis laxa syndrome, and the vascular forms. Family members of non-syndromic Thoracic Aneurysms and Dissections. Marfan syndrome is the most common AAH, it is related to mutations in the extracellular protein fibrillin-1 and its typical cardiovascular symptoms are aortic dilatation and mitral valve dissection and prolapse. Their cardiovascular alterations are accompanied by characteristic musculoskeletal pathologies and lens dislocation.
El AAH es un proceso típicamente asintomático que, por ello, no suele estar diagnosticado y su progresión se encuentra asociada a consecuencias devastadoras, tales como la ruptura aórtica y una muerte repentina debida a una hemorragia incontrolada. Desafortunadamente, solamente existen a día de hoy tratamientos farmacológicos limitados para retrasar la progresión de dichos AAH, pero no existe ningún tratamiento para revertirlos. De hecho, las 2 únicas opciones capaces de prevenir la ruptura por aneurisma son las reparaciones endovasculares o cirugía. Por dicho motivo existe una necesidad urgente para identificar los mecanismos moleculares involucrados en los AA y, en particular, en los AA hereditarios para desarrollar enfoques farmacológicos que no solo prevengan, sino que reviertan también dichos aneurismas aórticos. AAH is a typically asymptomatic process that, therefore, is often undiagnosed and its progression is associated with devastating consequences, such as aortic rupture and sudden death due to uncontrolled bleeding. Unfortunately, there are currently only limited pharmacological treatments to delay the progression of these AHAs, but there is no treatment to reverse them. In fact, the The only 2 options capable of preventing aneurysm rupture are endovascular repair or surgery. For this reason, there is an urgent need to identify the molecular mechanisms involved in AA and, in particular, in hereditary AA to develop pharmacological approaches that not only prevent, but also reverse said aortic aneurysms.
BREVE DESCRIPCION DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Un aspecto de la presente invención se refiere a un precursor de nicotinamida adenina dinucleótido (NAD+), para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. One aspect of the present invention refers to a precursor of nicotinamide adenine dinucleotide (NAD+), for use in the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of a deficient mitochondrial respiration. .
Otro aspecto de la presente invención se refiere a una composición farmacéutica que comprende un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente nutracéuticamente aceptable, para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Another aspect of the present invention relates to a pharmaceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the onset and/or treatment of an aortic aneurysm of etiology inherited characterized by the presence of impaired mitochondrial respiration.
Adicionalmente, la presente invención también se refiere a una composición nutracéutica que comprende un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente nutracéuticamente aceptable, para uso en la prevención de la aparición de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Additionally, the present invention also relates to a nutraceutical composition comprising a nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Declive de la función mitocondrial en síndrome de Marfan Figure 1: Decline of mitochondrial function in Marfan syndrome
Análisis de secuenciación de ARN de cuatro ratones pbnicio39G + con tres rafOnes Fbn1+/+ de la misma camada (ratones macho de 20 semanas de edad). (1A) Predicción de las principales 10 vías canónicas predichas por análisis IPA (Ingenuity Pathway Analysis) en base a genes regulados diferencialmente. Las vías relativas al metabolismo están marcadas en negrita; P<0,01. (1 B) Activación o inhibición de reguladores principales predichos por análisis IPA (desviaciones>-2 corregidas y puntuación z-> 4; P<0,05). (1C) Expresión de genes que codifican complejos mitocondriales (Co) y enzimas de beta-oxidación de ácidos grasos, y genes relacionados con la función mitocondrial y la glicolisis; p<0,05. (1 D) Análisis RT-qPCR de la expresión de ARNm de Tfam y (1 E) análisis PCRq del contenido relativo de ADNmt, en extractos aórticos de ratones pbnici°39G + y pbn +/+ qe 20 semanas de edad. (1 F) Análisis RT- qPCR de la expresión de ARNm de Tfam y PPargd y (1G) análisis qPCR del contenido 3 relativo de ANDmt, en CMLVs transducidas con shFbnl- y respecto a shControl. (1 H) Tasa de consumo de oxígeno (OCR) en CMLVs shFbnl- y shControl en condiciones de respiración basal (centro) y después de la adición del inhibidor del complejo V oligomicina (I) y fluoro- carbonil ciano-fenilhidrazona (FCCP) (II) para medir la respiración máxima (derecha), seguido de una combinación de rotenona y antimicina A (III). (11) Niveles de lactato extracelular en sobrenadantes de CMLVs shFbnl- y shControl. Análisis de muestras de aortas ascendentes humanas de pacientes de síndrome de Marfan y de donantes control. (1 J) contenido ADNmt y (1 K) expresión de ARNm de genes que codifican componentes de complejos mitocondriales y de genes relacionados con la función mitocondrial y la glicolisis. (1 L) Inmunohistoquimica y cuantificación. Análisis de fibroblastos dérmicos primarios de 4 pacientes de síndrome de Marfan y 4 individuos sanos (control): (1 M y 1 N) OCR en fibroblastos dérmicos procedentes de muestras humanas con síndrome de Marfan y controles en condiciones de respiración basal y después de la adición de oligomicina (I), (FCCP) (II) y una combinación de rotenona y antimicina A (III); (10) niveles extracelulares de lactato; (1 P) análisis qPCR del contenido de ADNmt y análisis PCTq-RT de la expresión de ARNm de TFAM y PPARGC1A; (1Q) análisis RT-qPCR de la expresión de ARNm de MT-ND1, SDHA, CYCS, MT-CO1, MY-ATP6 (gráfica superior), UCP2, HIF1A, y MYC (gráfica inferior). Los datos de (1 D-R) son medias ± error medio estándar. La significación estadística fue evaluada por el test de t-Student. *P < 0.05, **P < 0.01 , ***P < 0.001 , ****p < 0.0001 frente los ratones controles, ratones Fbn1+/+ (D, E), shControl (F, G, H, I), o donantes sanos (J-Q). RNA sequencing analysis of four pb nicio39G + mice with three raf Ones Fbn1 +/+ from the same litter (20-week-old male mice). (1A) Prediction of the top 10 canonical pathways predicted by Ingenuity Pathway Analysis (IPA) based on differentially regulated genes. Pathways related to metabolism are marked in bold; P<0.01. (1B) Activation or inhibition of major regulators predicted by IPA analysis (corrected deviations>-2 and z-score->4;P<0.05). (1C) Expression of genes encoding mitochondrial complexes (Co) and fatty acid beta-oxidation enzymes, and genes related to mitochondrial function and glycolysis; p<0.05. (1 D) RT-qPCR analysis of Tfam mRNA expression and (1 E) qPCR analysis of relative mtDNA content, in aortic extracts from pb n i c i°39G + and pb n +/+ q e 20 mice weeks old. (1F) RT-qPCR analysis of Tfam and PPargd mRNA expression and (1G) qPCR analysis of content 3 relative DNAmt, in VSMCs transduced with shFbnl- and with respect to shControl. (1 H) Oxygen consumption rate (OCR) in shFbnl- and shControl VSMCs under basal respiration conditions (middle) and after addition of complex V inhibitor oligomycin (I) and fluorocarbonyl cyano-phenylhydrazone (FCCP) (II) to measure maximal respiration (right), followed by a combination of rotenone and antimycin A (III). (11) Extracellular lactate levels in supernatants of VSMCs shFbnl- and shControl. Analysis of human ascending aorta samples from Marfan syndrome patients and control donors. (1 J) mtDNA content and (1 K) mRNA expression of genes encoding components of mitochondrial complexes and of genes related to mitochondrial function and glycolysis. (1 L) Immunohistochemistry and quantification. Analysis of primary dermal fibroblasts from 4 Marfan syndrome patients and 4 healthy individuals (control): (1 M and 1 N) OCR on dermal fibroblasts from human samples with Marfan syndrome and controls under basal breathing conditions and after respiration. addition of oligomycin (I), (FCCP) (II) and a combination of rotenone and antimycin A (III); (10) extracellular lactate levels; (1P) qPCR analysis of mtDNA content and PCTq-RT analysis of TFAM and PPARGC1A mRNA expression; (1Q) RT-qPCR analysis of mRNA expression of MT-ND1, SDHA, CYCS, MT-CO1, MY-ATP6 (upper plot), UCP2, HIF1A, and MYC (lower plot). Data from (1 RD) are means ± mean standard error. Statistical significance was evaluated by the t-Student test. *P < 0.05, **P < 0.01, ***P < 0.001, ****p < 0.0001 vs. control mice, Fbn1+/+ mice (D, E), shControl (F, G, H, I) , or healthy donors (JQ).
Figura 2: Niveles del ARNm de Fbn1. Figure 2: Fbn1 mRNA levels.
Expresión del ARNm de Fbn1 después de transducción con shFbnl o shControl. Fbn1 mRNA expression after transduction with shFbnl or shControl.
Figura 3: La ablación condicional de Tfam en CMLVs produce una predisposición a aneurismas y disecciones aórticas similares a los ratones modelo de AAH. Figure 3: Conditional ablation of Tfam in VSMCs produces a predisposition to aneurysms and aortic dissections similar to AAH model mice.
(3A) Análisis PCRq-RT de la expresión de Tfam (izquierda) y análisis qPCR del contenido de ADNmt (derecha) en extractos de aortas de ratones SM-Tfam+/+ y SM-Tfam'' después de tratamiento con tamoxifeno (Tmx) durante 28 semanas. (3B) Porcentaje de supervivencia después de tratamiento con inyecciones de Tmx en ratones SM-Tfam+/+ y SM-Tfanr", n=20. (3C) Evolución de la presión sanguínea (BP diastólica -derecha- y sistólica -izquierda- después de tratamiento con inyecciones de Tmx en ratones SM-Tfam+/+ y SM-TfamY. (3D) Evolución de los diámetros máximos de la aorta ascendente (AsAo -izquierda) y aorta abdominal (AbAo -derecha) después de tratamiento con Tmx en ratones SM-Tfam+/+ y SM- TfamY. (3E) Diseño experimental para los ensayos de la figura 3H: 56 días (8 semanas) 4 después de tratamiento con inyecciones de Tmx, se implantaron minibombas de infusión del hipertensor Angiotensina-ll (Angll), en 6 ratones SM-Tfam+/+ y 10 ratones SM-Tfarrr'. El análisis por ultrasonidos y de la presión sanguínea (BP) se llevó a cabo 6 veces (triángulos vacíos). (3F) Evolución de la presión sanguínea sistólica (arriba-izquierda) y diastólica (arriba- derecha) y de los diámetros máximos AsAo (abajo-izquierda) y AbAo (abajo-derecha) después de la infusión de Angll. (3G) Incidencia de aneurismas aórticos (izquierda) y porcentaje de supervivencia (derecha) de ratones SM-Tfam+/+ y SM-Tfanr' con Angll de la misma cohorte que los ratones de 3E. (3H) Incidencia y localización de disecciones aórticas (izquierda) y hematomas intramurales (HIM) (derecha) en la misma cohorte de ratones mostrada en 3E. (A, C, D, F) Se muestran datos con media ± error estándar medio. La significación estadística fue analizada mediante el método de t-Student (A), mediante rango-logarítmico (Mantel-Cox) (B,) o mediante ANOVA bidirectional (C, D, F). (3A) qPCR-RT analysis of Tfam expression (left) and qPCR analysis of mtDNA content (right) in extracts of aortas from SM-Tfam +/+ and SM-Tfam'' mice after treatment with tamoxifen (Tmx ) for 28 weeks. (3B) Percentage of survival after treatment with Tmx injections in SM-Tfam +/+ and SM-Tfanr" mice, n=20. (3C) Evolution of blood pressure (diastolic BP -right- and systolic BP -left- after treatment with Tmx injections in SM-Tfam +/+ and SM-TfamY mice (3D) Evolution of the maximum diameters of the ascending aorta (AsAo -left) and abdominal aorta (AbAo -right) after treatment with Tmx in SM-Tfam +/+ and SM-TfamY mice (3E) Experimental design for the assays in Figure 3H: 56 days (8 weeks) 4 after treatment with Tmx injections, mini-infusion pumps of the hypertensive Angiotensin-ll (Angll) were implanted in 6 SM-Tfam +/+ mice and 10 SM-Tfarrr' mice. Ultrasound and blood pressure (BP) analysis were performed 6 times (open triangles). (3F) Evolution of systolic (top-left) and diastolic (top-right) blood pressure and of the maximum diameters AsAo (bottom-left) and AbAo (bottom-right) after AngII infusion. (3G) Incidence of aortic aneurysms (left) and percent survival (right) of SM-Tfam +/+ and SM-Tfanr' mice with AngII from the same cohort as the 3E mice. (3H) Incidence and location of aortic dissections (left) and intramural hematomas (IMH) (right) in the same cohort of mice shown in 3E. (A, C, D, F) Data with mean ± mean standard error are shown. Statistical significance was analyzed using the t-Student method (A), by log-rank (Mantel-Cox) (B,) or by bidirectional ANOVA (C, D, F).
Figura 4: Ablación in vitro de Tfam en CMLVs. Figure 4: In vitro ablation of Tfam in VSMCs.
CMLVs primarias de ratones Tfamflx/flx fueron transducidas con vectores lentivirales que expresan GFP (proteína fluorescente verde, LV-Mock) o con que expresan Cre (LV-Cre) y fueron analizadas 10 días después. (4A) Análisis de RT-qPCR de expresión de ARNm relativa de Tfam, Mt-Nd1, Mt-Co1 y Slc2a1. (4B) Análisis qPCR del contenido de ADNmt relativo. (4C) Tasa de consumo de oxígeno (OCR) en condiciones de respiración básales (abajo-izquierda) y después de la adición de oligomicina (I) y FCCP (II) para medir la respiración máxima (abajo- derecha), seguido de una combinación de rotenona y antimicina A (III). (4D) Niveles de lactato extracelular normalizado. (4E) Evaluación por PCRq-RT de la expresión relativa de ARNm de los genes contráctiles del músculo liso Myh11, Acta2, Cnn1, y Smtn. (4F) Evaluación de RT- qPCR de la expresión relativa de ARNm de genes de fenotipo sintético de CMLVs: Spp1,Nos2, Mmp9, y Mmp2. Primary VSMCs from Tfamflx/flx mice were transduced with lentiviral vectors expressing GFP (green fluorescent protein, LV-Mock) or those expressing Cre (LV-Cre) and analyzed 10 days later. (4A) RT-qPCR analysis of relative mRNA expression of Tfam, Mt-Nd1, Mt-Co1 and Slc2a1. (4B) qPCR analysis of relative mtDNA content. (4C) Oxygen consumption rate (OCR) under basal respiration conditions (lower-left) and after the addition of oligomycin (I) and FCCP (II) to measure maximal respiration (lower-right), followed by a combination of rotenone and antimycin A (III). (4D) Normalized extracellular lactate levels. (4E) qPCR-RT evaluation of relative mRNA expression of smooth muscle contractile genes Myh11, Acta2, Cnn1, and Smtn. (4F) RT-qPCR evaluation of relative mRNA expression of VSMC synthetic phenotype genes: Spp1, Nos2, Mmp9, and Mmp2.
Figura 5: El tratamiento con nicotinamida ribonucleósido mejora la homeostasis aórtica en un modelo de ratón de síndrome de Marfan Figure 5: Nicotinamide ribonucleoside treatment improves aortic homeostasis in a mouse model of Marfan syndrome
(5A) Diseño experimental: ratones macho controles (Fbn1+/+) y del modelo de Síndrome de Marfan (Fbn1c1039G/+) de 16 semanas fueron tratados con nicotinamida ribonucleósido (NR) o con vehículo durante 28 días (flechas). El análisis ecográficos y de presión sanguínea se llevó a cabo 5 veces (triángulos): n=9. (5B) Evolución del diámetro máximo de AsAo (arriba- izquierda) y AbAo (arriba-derecha) y de la presión sanguínea diastólica (abajo-izquierda) y sistólica (abajo-derecha) durante el tratamiento con NR; n=9. (5C) Cuantificación de las rupturas de bandas elásticas en AsAo (izquierda) y AbAo (centro) y del grosor de la media 5 aórtica (derecha). (5D) Análisis RT-qPCR de ARNm de Tfam (izquierda) y mt-Co1 (derecha). (5E) Análisis del contenido relativo de ADNmt. P< 0,05, cambios en escala logarítmica. El análisis estadístico fue evaluado mediante ANOVA bidirectional (C) o unidireccional (E-G). *P < 0.05, **P < 0.01 , ****P < 0.0001 para ratones Fpnicio39G/+ frenfe a rafones control Fbn1+/+ # P < 0.05, ####P < O.para ratones Fbn1c1039G/+NR frente a ratones control Fbn1c1039G/+. (5A) Experimental design: 16-week-old male control (Fbn1 +/+ ) and Marfan Syndrome model (Fbn1 c1039G/+ ) mice were treated with nicotinamide ribonucleoside (NR) or vehicle for 28 days (arrows). Ultrasound and blood pressure analysis were performed 5 times (triangles): n=9. (5B) Evolution of the maximum diameter of AsAo (top-left) and AbAo (top-right) and diastolic (bottom-left) and systolic (bottom-right) blood pressure during treatment with NR; n=9. (5C) Quantification of elastic band breaks in AsAo (left) and AbAo (middle) and media thickness 5 aortic (right). (5D) RT-qPCR analysis of Tfam (left) and mt-Co1 (right) mRNA. (5E) Analysis of relative mtDNA content. P<0.05, changes in logarithmic scale. Statistical analysis was evaluated by bidirectional (C) or unidirectional (EG) ANOVA. *P < 0.05, **P < 0.01, ****P < 0.0001 for Fp start 39G /+ mice Fbn1 +/+ controls # P < 0.05, ####P < 0. for Fbn1 c1039G/+ NR mice versus control Fbn1 c1039G/+ mice.
Figura 6: El tratamiento con nicotinamida ribonucleósido mejora la respiración mitocondrial y el fenotipo contráctil en células de síndrome de Marfan (MFS) Figure 6: Nicotinamide ribonucleoside treatment improves mitochondrial respiration and contractile phenotype in Marfan syndrome (MFS) cells
Se trataron CMLVs primarias, transducidas con shFbnl o shControl, con nicotinamida ribonucleósido (NR) durante 5 días. (6A) Tasa de consumo de oxígeno (OCR) en CMLVs shFbnl y shControl incubadas con o sin NR, en condiciones de respiración básales (abajo- izquierda) y después de la adición de oligomicina (I) y FCCP (II) para medir la respiración máxima (abajo-derecha), seguido de una combinación de rotenona y antimicina A (III). (6B) Niveles extracelulares de lactato. (6C) Análisis de qPCR del contenido de ADNmt. (6D) Análisis RT-qPCR de la expresión de ARNm de Tfam (izquierda), Ppargda (centro) y Mt-Co1 (derecha). (6E) Análisis RT-qPCR de la expresión de ARNm de Mmp9, Mmp2, Spp1, and Col1a1. Efecto del tratamiento con NR en fibroblastos dérmicos de 4 pacientes de síndrome de Marfan y 4 donantes sanos (control); las células fueron tratadas con NR durante 5 días. (6F) OCR (izquierda) en condiciones de respiración básales (centro) después de la adición de oligomicina (I) y FCCP (II) para medir la respiración máxima (derecha), seguido por una combinación de rotenona y antimicina A (III). (6G) Niveles de lactato extracelulares. (6H) Análisis PCRq del contenido de ADNmt. (6I) Análisis de expresión de ARNm de MTCO1, MT- ND6, TFAM, y HIF1A. (6J) Análisis de expresión de ARNm de COL1A1, ACAN, CNN2, y TGFB3. La significación estadística fue evaluada por ANOVA unidireccional: *P < 0.05, **P < 0.01 , ***P < 0.001 , ****P < 0.0001 frente a ShControl (A-E) o frente Control (F-J); # P < 0.05, ## P <0.01 , ###P < 0.001 , ####P < 0.0001 frente a ShFbnl (A-E) o frente a MFS (F-J). Primary VSMCs, transduced with shFbnl or shControl, were treated with nicotinamide ribonucleoside (NR) for 5 days. (6A) Oxygen consumption rate (OCR) in shFbnl and shControl VSMCs incubated with or without NR, under basal respiration conditions (lower-left) and after the addition of oligomycin (I) and FCCP (II) to measure the maximal respiration (bottom-right), followed by a combination of rotenone and antimycin A (III). (6B) Extracellular lactate levels. (6C) qPCR analysis of mtDNA content. (6D) RT-qPCR analysis of mRNA expression of Tfam (left), Ppargda (middle), and Mt-Co1 (right). (6E) RT-qPCR analysis of mRNA expression of Mmp9, Mmp2, Spp1, and Col1a1. Effect of NR treatment on dermal fibroblasts from 4 Marfan syndrome patients and 4 healthy donors (control); cells were treated with NR for 5 days. (6F) OCR (left) under basal respiration conditions (middle) after addition of oligomycin (I) and FCCP (II) to measure maximal respiration (right), followed by a combination of rotenone and antimycin A (III) . (6G) Extracellular lactate levels. (6H) qPCR analysis of mtDNA content. (6I) mRNA expression analysis of MTCO1, MT-ND6, TFAM, and HIF1A. (6J) mRNA expression analysis of COL1A1, ACAN, CNN2, and TGFB3. Statistical significance was assessed by one-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. ShControl (A-E) or vs. Control (F-J); # P < 0.05, ## P < 0.01, ###P < 0.001, ####P < 0.0001 against ShFbnl (A-E) or against MFS (F-J).
Figura 7: El tratamiento con NR de modelos in vitro de formas Familiares de Disecciones y Aneurismas Aórticos Torácicos no sindrómicos (FTAAD) y de síndrome de Loeys-Dietz (LDS). Figure 7: NR treatment of in vitro models of Familial forms of non-syndromic Thoracic Aortic Aneurysms and Dissections (FTAAD) and Loeys-Dietz syndrome (LDS).
Efecto de NR en CMLVs primarias de ratón que sobreexpresan ACTA2R178H (7A1) o TGFBR2G317W (7A2) como modelos de FTAAD y LDS respectivamente. Las CMLVs fueron tratadas 5 días con NR. (7A) OCR (izquierda) en condiciones de respiración básales (centro) y después de la adición de oligomicina (I) y FCCP (II) para medir la respiración máxima (derecha), seguido de una combinación de rotenona y antimicina A (III). El panel inferior 6 muestra los niveles extracelulares de lactato. (7B) Análisis qPCR del contenido relativo de ADNmt. (7C) Análisis RT-qPCR de expresión de ARNm de Tfam, Mt-Co1 y Ppargda. (7D) Análisis RT-qPCR de expresión de ARNm de Mmp9, Mmp2, Spp1, y Col1a1. Los datos mostrados son las medias ± error medio estándar. La significación estadística fue evaluada por ANOVA unidireccional: *P < 0.05, **P < 0.01 , ***P < 0.001 , ****P < 0.0001 frente a Control;Effect of NR on primary mouse VSMCs overexpressing ACTA2 R178H (7A1) or TGFBR2 G317W (7A2) as models of FTAAD and LDS, respectively. VSMCs were treated for 5 days with NR. (7A) OCR (left) under basal respiration conditions (middle) and after the addition of oligomycin (I) and FCCP (II) to measure maximal respiration (right), followed by a combination of rotenone and antimycin A (III ). bottom panel 6 shows the extracellular levels of lactate. (7B) qPCR analysis of relative mtDNA content. (7C) RT-qPCR analysis of mRNA expression of Tfam, Mt-Co1 and Ppargda. (7D) RT-qPCR analysis of mRNA expression of Mmp9, Mmp2, Spp1, and Col1a1. Data shown are means ± mean standard error. Statistical significance was assessed by one-way ANOVA: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. Control;
# P < 0.05, ## P < 0.01 ,###P < 0.001 , ####P < 0.0001 frente a tratamiento con NR. # P < 0.05, ## P < 0.01, ###P < 0.001, ####P < 0.0001 versus NR treatment.
Figura 8:Tratamiento con NR en ratones hembra modelo de síndrome de Marfan. Figure 8: NR treatment in female Marfan syndrome model mice.
(8A) Diseño experimental: Ratones hembra Fbn1+/+ and pbn1c1039G/+
Figure imgf000007_0001
semanas de edad fueron tratados con vehículo o NR durante 28 días: n=4 ratones Fbn1+/+ n=3 ratones Pbn1c1039G/+ tratac|0S con vehículo; n=3 ratones pbn1c1039G/+ tratados con NR. Un análisis por ecografría y de presión sanguínea (BP) fue llevado a cabo 5 veces (triángulos). (8B) Diámetros máximos de AsAo (aorta ascendente - arriba/izquierda) y AbAo (aorta abdominal - arriba/derecha) y la BP diastólica (abajo/derecha) y sistólica (abajo/izquierda) después de tratamiento con NR. (8C) Cuantificación de las rupturas de elastina en la AsAo (izquierda) y el grosor de la capa media aórtica(derecha). La significación estadística fue evaluada por ANOVA bidirectional (8B) o unidireccional (8C). *P < 0.05, **P < 0.01 , ****P < 0.0001 para Pbn1c1039G/+ frente a pbn1c1039G/+ tratados con NR.
(8A) Experimental design: Fbn1 +/+ and pbn1 c1039G/+ female mice
Figure imgf000007_0001
weeks of age were treated with vehicle or NR for 28 days: n=4 Fbn1 +/+ mice n=3 Pbn1 c1039G/+ mice t ra t ac | 0S with vehicle; n=3 pbn1 c1039G/+ mice treated with NR. Ultrasound and blood pressure (BP) analysis were performed 5 times (triangles). (8B) Maximum diameters of AsAo (ascending aorta - top/left) and AbAo (abdominal aorta - top/right) and diastolic (bottom/right) and systolic (bottom/left) BP after NR treatment. (8C) Quantification of elastin breaks in the AsAo (left) and aortic medial thickness (right). Statistical significance was assessed by bidirectional (8B) or unidirectional (8C) ANOVA. *P < 0.05, **P < 0.01, ****P < 0.0001 for Pbn1 c1039G/+ versus pbn1 c1039G/+ treated with NR.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
A pesar de que los aneurismas aórticos hereditarios son enfermedades que presentan diferencias de etiología significativas, la presente invención muestra que los cambios de fenotipo contráctil que ocurren en estas enfermedades hereditarias están modulados por un declive en el metabolismo mitocondrial de las células musculares lisas vasculares (CMLVs) y que, potenciar el metabolismo mitocondrial es un enfoque terapéutico adecuado para restablecer la homeostasis de las CMLVs y prevenir la evolución y desarrollo de aneurismas aórticos en dichos pacientes. En la presente invención se describe cómo los precursores de nicotinamida adenina dinucleótido (NAD+) son capaces de incrementar la función de la respiración mitocondrial, previniendo y proporcionando tratamiento para enfermedades que cursan con una respiración mitocondrial deficiente y, en concreto, para la prevención de la aparición y tratamiento de los aneurismas aórticos hereditarios. Although hereditary aortic aneurysms are diseases that present significant differences in etiology, the present invention shows that the contractile phenotype changes that occur in these hereditary diseases are modulated by a decline in the mitochondrial metabolism of vascular smooth muscle cells (VSMCs). ) and that enhancing mitochondrial metabolism is an appropriate therapeutic approach to restore VSMC homeostasis and prevent the evolution and development of aortic aneurysms in these patients. The present invention describes how the precursors of nicotinamide adenine dinucleotide (NAD+) are capable of increasing the function of mitochondrial respiration, preventing and providing treatment for diseases that occur with poor mitochondrial respiration and, specifically, for the prevention of occurrence and treatment of hereditary aortic aneurysms.
Por tanto, la presente invención se refiere a un precursor de nicotinamida adenina dinucleótido (NAD+), para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria (AAH) que se caracteriza por la presencia de una respiración mitocondrial deficiente. 7 Therefore, the present invention refers to a precursor of nicotinamide adenine dinucleotide (NAD+), for use in the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology (HAA) characterized by the presence of a poor mitochondrial respiration. 7
La presente invención divulga varios ensayos in vitro e in vivo realizadas con muestras de pacientes humanos de síndrome de Marfan, modelos de ratón de síndrome de Marfan y modelos de CMLVs de otros AAH tales como el síndrome de Loeys-Dietz y de formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. Dichos ensayos muestran cómo, en todos los casos, los AAH muestran una etiología común en la que existe un declive de la respiración mitocondrial. The present invention discloses several in vitro and in vivo assays performed with samples from human Marfan syndrome patients, mouse models of Marfan syndrome and VSMC models of other AAH such as Loeys-Dietz syndrome and Familial forms of Dissections. and Non-syndromic Thoracic Aneurysms. These trials show how, in all cases, AAH show a common etiology in which there is a decline in mitochondrial respiration.
El modelo animal de Síndrome de Marfan, el ratón pbnicio39G + reproduce la dilatación aórtica, aneurismas y las características histológicas de la degeneración aórtica de la media encontrada en pacientes con síndrome de Marfan. Tal como muestra el ejemplo 1 , relativo a los mecanismos moleculares subyacentes de la formación de AA de etiología hereditaria, se llevaron a cabo análisis transcripcionales de aortas de ratones pbnicio39G/+ |_os n¡ve|es qe ADNmt y del ARNm Tfam en aortas pbnic1039G + mostró un contenido de ADNmt menor del normal. Además, dicho modelo mostró una reducción de la respiración mitocondrial, acompañado por un aumento de la producción extracelular de lactato, un indicador de glicolisis. The animal model of Marfan syndrome, the pb nicio39G + mouse reproduces aortic dilatation, aneurysms, and histologic features of median aortic degeneration found in patients with Marfan syndrome. As shown in example 1, relating to the molecular mechanisms underlying the formation of AA of hereditary etiology, transcriptional analyzes of aortas from pb n icio39G/+ |_ os n ¡ ve | is that mtDNA and Tfam mRNA in pb n i c103 9G + aortas showed a lower than normal mtDNA content. In addition, this model showed a reduction in mitochondrial respiration, accompanied by an increase in extracellular lactate production, an indicator of glycolysis.
Por otro lado, para modelizar el síndrome de Marfan in vitro, se silenció el gen Fbn1 en CMLVs primarias murinas. Los datos obtenidos in vitro confirmaron los datos obtenidos con los ratones modelo de Marfan. Además, el análisis de flujo de la tasa de consumo de oxígeno (OCR), reveló una reducción de la respiración mitocondrial en células con Fbnf-silenciado, acompañado por un aumento de la producción extracelular de lactato, un indicador de glicolisis. On the other hand, to model Marfan syndrome in vitro, the Fbn1 gene was silenced in primary murine VSMCs. The data obtained in vitro confirmed the data obtained with the Marfan model mice. Furthermore, flow-through analysis of oxygen consumption rate (OCR) revealed reduced mitochondrial respiration in Fbnf-silenced cells, accompanied by increased extracellular lactate production, an indicator of glycolysis.
Para confirmar estas observaciones en muestras humanas, se midió el ADNmt y la expresión de los genes de función mitocondrial en aortas de pacientes de síndrome de Marfan. A este respecto, los datos del ejemplo 1 indican que las muestras de aneurismas aórticos de pacientes de síndrome de Marfan mostraron niveles significativamente más bajos de ADNmt y transcripción reducida de genes codificadores de complejos mitocondriales o que involucran la función mitocondrial, mostrando, además, una regulación aumentada de genes involucrados en el desacoplamiento mitocondrial y la reconducción glicolítica del metabolismo. Además, el análisis de la actina muscular lisa (SMA) permitió confirmar que la regulación disminuida de los genes mitocondriales era específica a CMLVs. To confirm these observations in human samples, mtDNA and mitochondrial function gene expression were measured in aortas from Marfan syndrome patients. In this regard, the data from Example 1 indicate that aortic aneurysm samples from Marfan syndrome patients showed significantly lower levels of mtDNA and reduced transcription of genes encoding mitochondrial complexes or involving mitochondrial function, further showing a upregulation of genes involved in mitochondrial uncoupling and glycolytic redirection of metabolism. Furthermore, analysis of smooth muscle actin (SMA) confirmed that the downregulation of mitochondrial genes was specific to VSMCs.
Los datos obtenidos en el ejemplo 1 muestran que, tanto las aortas de ratones de síndrome de Marfan, como las aortas de pacientes humanos sufren un declive en la respiración mitocondrial. Además, este declive de la respiración mitocondrial implica una pérdida de actividad de fosforilación oxidativa (OXPHOS) que se compensa con un aumento en la tasa de glicolisis. 8 The data obtained in example 1 shows that both the aortas of Marfan syndrome mice and the aortas of human patients suffer from a decline in mitochondrial respiration. Furthermore, this decline in mitochondrial respiration implies a loss of oxidative phosphorylation activity (OXPHOS) that is compensated by an increase in the rate of glycolysis. 8
Así, para investigar si la reconducción del metabolismo hacia la glicolisis en AAH, y en particular en el síndrome de Marfan, juega un papel en la adquisición de un fenotipo sintético (responsable de síntesis de material que forma la matriz extracelular, tales como colágeno metalloproteinasas y proteoglicanos) y, en la progresión de la enfermedad aórtica. Se forzó el metabolismo glicolítico en CMLVs mediante depleción de Tfam in vitro e in vivo (ejemplo 2).Thus, to investigate whether the redirection of metabolism towards glycolysis in AAH, and in particular in Marfan syndrome, plays a role in the acquisition of a synthetic phenotype (responsible for the synthesis of material that forms the extracellular matrix, such as collagen metalloproteinases and proteoglycans) and, in the progression of aortic disease. Glycolytic metabolism in VSMCs was forced by Tfam depletion in vitro and in vivo (example 2).
Para los experimentos in vitro se transdujeron CMLVs aórticas de ratones Tfamflox/flox con vectores lentivirales codificando la recombinasa Cre (LV-Cre). Los resultados obtenidos del análisis de dichas CMLVs muestran que la respiración mitocondrial controla las propiedades contráctiles de dichas células promoviendo un cambio del metabolismo hacia un fenotipo secretor. For in vitro experiments, aortic VSMCs from Tfam flox/flox mice were transduced with lentiviral vectors encoding Cre recombinase (LV-Cre). The results obtained from the analysis of these VSMCs show that mitochondrial respiration controls the contractile properties of these cells, promoting a change in metabolism towards a secretory phenotype.
Por otro lado, para analizar el efecto de la eliminación de Tfam en CMLVs, in vivo, se cruzaron ratones Tfamflox/flox con ratones que expresan la proteína de fusión CreERT2 bajo el promotor (Myh11-CreERT2') de miosina de músculo liso (Myh11) con el fin de llevara cabo una abrogación efectiva de la expresión de Tfam en aortas de ratones Myh11-CreERT2 Tfamflox flox (SM-Tfam~~), pero no en ratones Myh11-CreERT2 Tfamm/Wt (SM-Tfam+/+) usados como control. Así, para evaluar la respuesta de ratones SM-Tfanr~a un test hipertensivo, se infundió Angll en ratones SM-Tfam'' y SM-Tfam+ + 56 días después de tratamiento con tamoxifeno. El análisis histológico de las secciones aórticas torácicas y abdominales mostraron un incremento del diámetro aórtico, disecciones aórticas, hematomas intramurales, formación de falso lumen y características de degeneración de la media, incluyendo fragmentación de fibras elásticas y arquitectura vascular, que demuestran que el declive de la respiración mitocondrial en CMLVs induce aneurismas aórticos y disecciones letales en modelos animales modelo de síndrome de Marfan. On the other hand, to analyze the effect of Tfam deletion in VSMCs, in vivo, Tfam flox/flox mice were crossed with mice expressing the Cre ERT2 fusion protein under the muscle myosin promoter (Myh11-Cre ERT2 '). smooth (Myh11) in order to effect an effective abrogation of Tfam expression in aortas of Myh11-Cre ERT2 Tfam flox flox (SM-Tfam~~) mice, but not in Myh11-Cre ERT2 Tfam m/Wt mice ( SM-Tfam +/+ ) used as control. Thus, to assess the response of SM-Tfam mice to a hypertensive test, AngII was infused into SM-Tfam'' and SM-Tfam + + mice 56 days after tamoxifen treatment. Histologic analysis of thoracic and abdominal aortic sections showed increased aortic diameter, aortic dissections, intramural hematomas, false lumen formation, and features of medial degeneration, including elastic fiber fragmentation and vascular architecture, demonstrating that decline in Mitochondrial respiration in VSMCs induces lethal aortic aneurysms and dissections in model animal models of Marfan syndrome.
Así, la presente invención muestra, tanto in vitro como in vivo, como en dichas enfermedades el desarrollo de aneurismas aórticos de etiología hereditaria se encuentra promovido por una disfunción de la respiración mitocondrial específicamente en CMLVs. Thus, the present invention shows, both in vitro and in vivo, how in said diseases the development of aortic aneurysms of hereditary etiology is promoted by a dysfunction of mitochondrial respiration specifically in VSMCs.
En una realización preferente de la invención, la enfermedad o patología que se caracteriza por la presencia de una respiración mitocondrial deficiente es un aneurisma aórtico de etiología hereditaria (AAH) y, en particular, dicho AAH se selecciona entre el grupo que consiste en: síndrome de Marfan, síndrome de Loeys-Dietz, síndrome de Ehlers-Danlos de tipo vascular, síndrome de Cutis laxa y formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. In a preferred embodiment of the invention, the disease or pathology characterized by the presence of poor mitochondrial respiration is an aortic aneurysm of hereditary aetiology (HAA) and, in particular, said AAH is selected from the group consisting of: syndrome of Marfan, Loeys-Dietz syndrome, Ehlers-Danlos syndrome of vascular type, Cutis laxa syndrome and Familial forms of Non-syndromic Thoracic Aneurysms and Dissections.
A este respecto, la presente invención muestra como el uso de precursores de NAD+ es un enfoque terapéutico efectivo para mejorar la disfunción mitocondrial en aneurismas aórticos 9 de etiología hereditaria, tanto previniendo el desarrollo de dichos aneurismas, como revirtiendo sus efectos. In this regard, the present invention shows how the use of NAD+ precursors is an effective therapeutic approach to improve mitochondrial dysfunction in aortic aneurysms. 9 of hereditary aetiology, both preventing the development of these aneurysms and reversing their effects.
En concreto, los ejemplos de la presente invención muestran como nicotinamida ribonucleósido (NR) es uno de los diferentes precursores de NAD+ y, que presenta una buena biodisponibilidad y propiedades farmacocinéticas, es capaz de mejorar el metabolismo mitocondrial de manera rápida, restaurar el perfil transcripcional, normalizando las funciones aórticas, restableciendo las propiedades contráctiles de las CMLVs y reduciendo la dilatación aórtica, in vitro y en in vivo, en modelos animales de aneurismas aórticos hereditarios, previniendo disecciones aórticas letales. Más en concreto, los ejemplos 3 y 4 de la presente invención muestra, in vivo, como NR previene, pero también revierte, el desarrollo de aneurismas aórticos en modelos animales (ratones) de síndrome de Marfan y, también, in vitro, en CMLVs modelos de síndrome de Marfan, de síndrome de Loeys-Dietz y de formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. Specifically, the examples of the present invention show how nicotinamide ribonucleoside (NR) is one of the different NAD+ precursors and, as it has good bioavailability and pharmacokinetic properties, is capable of rapidly improving mitochondrial metabolism, restoring the transcriptional profile , normalizing aortic functions, restoring the contractile properties of VSMCs and reducing aortic dilation, in vitro and in vivo, in animal models of hereditary aortic aneurysms, preventing lethal aortic dissections. More specifically, examples 3 and 4 of the present invention show, in vivo, how NR prevents, but also reverses, the development of aortic aneurysms in animal models (mice) of Marfan syndrome and, also, in vitro, in VSMCs. models of Marfan syndrome, Loeys-Dietz syndrome and familial forms of non-syndromic thoracic aneurysms and dissections.
Así, el ejemplo 3 de la presente invención muestra como NR mejora del metabolismo mitocondrial y restablece la contractibilidad en CMLVs que tienen mutaciones de aneurismas aórticos hereditarios. Por un lado, el tratamiento con NR incrementó la respiración mitocondrial y disminuyó la producción de lactato en CMLVs modelo de síndrome de Marfan (shFbnl- CMLVs), restableciendo los niveles encontrados en CMLVs de control, incrementando la contractibilidad de dichas células. Thus, example 3 of the present invention shows how NR improves mitochondrial metabolism and restores contractility in VSMCs that have hereditary aortic aneurysm mutations. On the one hand, treatment with NR increased mitochondrial respiration and decreased lactate production in VSMCs model of Marfan syndrome (shFbnl- VSMCs), restoring the levels found in control VSMCs, increasing the contractility of said cells.
Por otro lado, para imitar formas Familiares de Disecciones y Aneurismas Torácicos y de síndrome de Loeys-Dietz, se usaron vectores lentivirales para sobreexpresar ACTA2R179H y TGFBR2G357W, respectivamente, en CMLVs, que dio como resultado una reducción de la tasa de consumo de oxígeno, el contenido de ADNmt y la expresión de ARNm de los reguladores mitocondriales, mientras que incrementó los niveles de lactato extracelular. A este respecto, el tratamiento de dichas CMLVs modelos de formas Familiares de Disecciones y Aneurismas Torácicos y de síndrome de Loeys-Dietz, con NR, incrementó la respiración mitocondrial, el contenido de ADNmt y la expresión de ARNm de los reguladores mitocondriales, mientras que disminuyó los niveles de lactato extracelular. Además, el uso de NR también permitió incrementar la contractibilidad en dichas células. On the other hand, to mimic Familial forms of Thoracic Aneurysms and Dissections and Loeys-Dietz syndrome, lentiviral vectors were used to overexpress ACTA2 R179H and TGFBR2 G357W , respectively, in VSMCs, which resulted in a reduced rate of VSMC consumption. oxygen content, mtDNA content, and mRNA expression of mitochondrial regulators, while increasing extracellular lactate levels. In this regard, the treatment of these VSMCs, models of Familial forms of Thoracic Aneurysms and Dissections and Loeys-Dietz syndrome, with NR, increased mitochondrial respiration, mtDNA content and mRNA expression of mitochondrial regulators, while decreased extracellular lactate levels. In addition, the use of NR also allowed to increase the contractility in said cells.
Estos datos indican que en las CMLVs afectadas por aneurismas aórticos de origen genético se produce una pérdida de actividad de fosforilación oxidativa hacia la glicólisis, y que la mejora del estado metabólico mitocondrial in vitro con NR restaura su fenotipo de contractibilidad. These data indicate that in VSMCs affected by genetic aortic aneurysms, there is a loss of oxidative phosphorylation activity towards glycolysis, and that the improvement of the mitochondrial metabolic state in vitro with NR restores their contractility phenotype.
Por otro lado, el ejemplo 4 muestra como el tratamiento con NR restablece la firma transcripcional (perfil de expresión génica) y propiedades contráctiles del músculo liso aórtico en ratones modelo de síndrome de Marfan y revierte completamente la remodelación defectuosa de la pared aórtica, la dilatación aórtica y la degeneración medial. On the other hand, Example 4 shows how NR treatment restores the transcriptional signature (gene expression profile) and contractile properties of aortic smooth muscle. in Marfan syndrome model mice and completely reverses defective aortic wall remodeling, aortic dilatation, and medial degeneration.
Por ello, la presente invención se refiere a un precursor de NAD+ para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente . Therefore, the present invention relates to a NAD+ precursor for use in preventing the onset and/or treating an aortic aneurysm of hereditary etiology characterized by the presence of "deficient mitochondrial respiration".
Además, la presente invención se refiere al uso de un precursor de NAD+ en la elaboración de un medicamento para la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Furthermore, the present invention relates to the use of a NAD+ precursor in the preparation of a medicament for the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology characterized by the presence of deficient mitochondrial respiration.
La presente invención también describe un método para la prevención de la aparición y/o tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial, en donde dicho método comprende administrar a un sujeto que lo necesite una cantidad efectiva de un precursor de NAD+. The present invention also describes a method for the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of mitochondrial respiration, wherein said method comprises administering to a subject who needs it an effective amount of a NAD+ precursor.
Se entiende como cantidad efectiva, en relación con los usos terapéuticos descritos en la presente invención, como aquella que proporciona un efecto terapéutico sin proporcionar efectos tóxicos inaceptables en el paciente. La cantidad o dosis efectiva del medicamento depende del compuesto y de la condición o enfermedad tratada y de, por ejemplo, la edad, peso y condición clínica del paciente tratado, la forma de administración, el historial clínico del paciente, la gravedad de la enfermedad y la potencia del compuesto administrado. An effective amount is understood, in relation to the therapeutic uses described in the present invention, as that which provides a therapeutic effect without providing unacceptable toxic effects in the patient. The effective amount or dose of the drug depends on the compound and the condition or disease being treated and on, for example, the age, weight and clinical condition of the patient being treated, the form of administration, the patient's medical history, the severity of the disease and the potency of the administered compound.
En una realización particular, y a efectos de la presente invención, el precursor de nicotinamida adenina dinucleótido (NAD+) se selecciona entre: niacina (NA) o ácido nicotínico; nicotinamida (NAM); nicotinamida ribósido (NR); nicotinamida mononucleótido (NMN); ácido nicotínico mononucleótido; y ácido nicotínico adenina dinucleótido; o combinaciones de los mismos. In a particular embodiment, and for the purposes of the present invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is selected from: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
En una realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es niacina (NA) o ácido nicotínico. La niacina es, a efectos de la presente invención la vitamina B3. In a preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid. Niacin is, for the purposes of the present invention, vitamin B3.
En otra realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida (NAM). In another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM).
En otra realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida mononucleótido (NMN). In another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
En otra realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es ácido nicotínico mononucleótido. 11 In another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid mononucleotide. eleven
En otra realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es ácido nicotínico adenina dinucleótido. In another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid adenine dinucleotide.
En una realización muy preferente de la invención, el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida ribósido (NR). In a very preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide riboside (NR).
Los precursores de NAD+ descritos en la presente invención pueden ser utilizados también en composiciones farmacéuticas. The NAD+ precursors described in the present invention can also be used in pharmaceutical compositions.
Así, otro aspecto de la invención se refiere a una composición farmacéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente farmacéuticamente aceptable, para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Thus, another aspect of the invention relates to a pharmaceutical composition comprising at least one precursor of nicotinamide adenine dinucleotide (NAD+) and at least one pharmaceutically acceptable excipient, for use in preventing the appearance and/or treatment of an aneurysm. aortic of hereditary etiology that is characterized by the presence of poor mitochondrial respiration.
El término “comprende” indica que incluye un grupo de determinadas características (por ejemplo, un grupo de características A, B y C) se interpreta que significa que incluye esas características (A, B y C), pero que no excluye la presencia de otras características (por ejemplo, las características D o E), siempre que no hagan impracticable la reivindicación. Adicionalmente, los términos “contiene”, “incluye”, “tiene” o “engloba”, y las formas en plural de los mismos, deben tomarse como sinónimos del término “comprende” con los propósitos de la presente invención. Por otro lado, si se usa la expresión “consiste(n) en”, entonces no están presentes características adicionales en el aparato/método/producto, aparte de las que siguen a dicha expresión. En este sentido, con los propósitos de la presente invención, el término “comprende” puede ser reemplazado por cualquiera de los términos “consisten en”, o “consiste esencialmente en”. Por consiguiente, “comprende” puede referirse a un grupo de características A, B y C, que pueden incluir adicionalmente otras características, tales como E y D, con la condición de que dichas características no hagan impracticable la reivindicación, pero dicho término “comprende” también incluye la situación en la que el grupo de características “consiste en” o “consiste esencialmente” en A, B y C. The term "comprises" indicates that it includes a group of certain characteristics (for example, a group of characteristics A, B and C) is interpreted to mean that it includes those characteristics (A, B and C), but that it does not exclude the presence of other characteristics (for example, characteristics D or E), provided that they do not make the claim unworkable. Additionally, the terms "contains", "includes", "has" or "encompasses", and the plural forms thereof, should be taken as synonymous with the term "comprises" for the purposes of the present invention. On the other hand, if the expression "consists of" is used, then no additional features are present in the apparatus/method/product, apart from those following said expression. In this sense, for the purposes of the present invention, the term "comprises" can be replaced by any of the terms "consist of", or "consists essentially of". Accordingly, "comprises" may refer to a group of features A, B, and C, which may additionally include other features, such as E and D, provided that such features do not render the claim unenforceable, but said term "comprises ” also includes the situation where the characteristic group “consists of” or “consists essentially” of A, B and C.
Por otro lado, el término “sujeto” se refiere, a efectos de la presente invención, a un humano o a un animal. On the other hand, the term "subject" refers, for the purposes of the present invention, to a human or an animal.
El término “farmacéuticamente aceptable” se refiere, a efectos de la presente invención, a aquel autorizado o autorizadle por una agencia reguladora del gobierno federal o un gobierno estatal o enumerado en la farmacopea europea, estadounidense u otra farmacopea generalmente reconocida para su uso en animales, y más particularmente en seres humanos.The term "pharmaceutically acceptable" means, for purposes of this invention, that which is licensed or licensed by a federal or state government regulatory agency or listed in the European, United States or other generally recognized pharmacopoeia for use in animals. , and more particularly in humans.
Una realización de la invención se refiere al uso de una composición farmacéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos 12 un excipiente farmacéuticamente aceptable, en la elaboración de un medicamento para la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. One embodiment of the invention relates to the use of a pharmaceutical composition comprising at least one precursor of nicotinamide adenine dinucleotide (NAD+) and at least 12 a pharmaceutically acceptable excipient, in the preparation of a medicament for the prevention of the appearance and/or the treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of deficient mitochondrial respiration.
Otra realización se refiere a un método para la prevención de la aparición y/o tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente, en donde dicho método comprende administrar a un sujeto que lo necesite una cantidad efectiva de una composición farmacéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente farmacéuticamente aceptable. Another embodiment refers to a method for the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology that is characterized by the presence of deficient mitochondrial respiration, wherein said method comprises administering to a subject who needs it an amount formulation of a pharmaceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one pharmaceutically acceptable excipient.
El excipiente incluido en las composiciones farmacéuticas descritas en la presente invención se refiere, a un componente inerte tal como, pero sin limitarse a, codisolventes, tensioactivos, aceites, humectantes, emolientes, conservantes, estabilizadores y antioxidantes. Puede usarse cualquier tampón farmacológicamente aceptable, tal como TRIS o cualquier tampón fosfato. The excipient included in the pharmaceutical compositions described in the present invention refers to an inert component such as, but not limited to, co-solvents, surfactants, oils, humectants, emollients, preservatives, stabilizers and antioxidants. Any pharmacologically acceptable buffer can be used, such as TRIS or any phosphate buffer.
Dichas composiciones pueden incluirse en cápsulas, comprimidos, saquitos o sobres o cualquier otro tipo de presentación. Said compositions can be included in capsules, tablets, sachets or sachets or any other type of presentation.
Para elaborar dichas composiciones, se puede utilizar técnicas convencionales para la preparación de composiciones farmacéuticas. Por ejemplo, el compuesto de interés puede ser mezclado con un vehículo o diluido en un vehículo o contenido en un vehículo en forma de ampolla, cápsula, comprimido, sobre, saquito u otro recipiente. Cuando el vehículo sirve como disolvente, puede ser sólido, semi-sólido o líquido y actuar como excipiente o medio para dicho compuesto activo. El compuesto de interés puede ser adsorbido en un medio granular sólido. Algunos ejemplos de vehículos adecuados son agua, soluciones salinas, alcoholes, polietilenglicoles, aceite de ricino polihidroxietoxilado, aceite de cacahuete, aceite de oliva, lactosa, terra alba, sacarosa, ciclodextrinas, amilosa, estearato de magnesio, talco, gelatina, agar, pectina, acacia, ácido esteárico, éteres de alquilo de celulosa, ácido silicio, ácidos grasos, aminas de ácidos grasos, monoglicéridos y diglicéridos de ácidos grasos, esteres grasos de pentaeritrol, polietileno, hidroximetilcelulosa y polivinilpirrolidona. Asimismo, el vehículo o soporte puede incluir materiales de liberación sostenida conocidos en el estado de la técnica, tales como gliceril monoestearato o diesterato solo o mezclado con una cera. Las formulaciones pueden también incluir agentes humectantes, emulsificadores, agentes de suspensión, preservantes, edulcorantes o saborizantes. Las composiciones pueden ser formuladas para proporcionar una liberación rápida, sostenida o retardada del agente activo después de que sea administrada al paciente empleando métodos conocidos en el estado de la técnica. 13 To make such compositions, conventional techniques for the preparation of pharmaceutical compositions can be used. For example, the compound of interest may be mixed with a carrier or diluted in a carrier or contained in a carrier in the form of an ampoule, capsule, tablet, sachet, sachet, or other container. When the carrier serves as a solvent, it may be solid, semi-solid or liquid and act as a carrier or medium for said active compound. The compound of interest can be adsorbed on a solid granular medium. Some examples of suitable carriers are water, saline solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, peanut oil, olive oil, lactose, terra alba, sucrose, cyclodextrins, amylose, magnesium stearate, talc, gelatin, agar, pectin. , acacia, stearic acid, cellulose alkyl ethers, silicon acid, fatty acids, fatty acid amines, fatty acid mono- and diglycerides, pentaerythrol fatty esters, polyethylene, hydroxymethylcellulose and polyvinylpyrrolidone. Also, the vehicle or support can include sustained release materials known in the art, such as glyceryl monostearate or di-sterate alone or mixed with a wax. The formulations may also include wetting agents, emulsifiers, suspending agents, preservatives, sweeteners, or flavoring agents. The compositions may be formulated to provide rapid, sustained, or delayed release of the active agent after it is administered to the patient using methods known in the art. 13
Las composiciones farmacéuticas pueden ser esterilizadas y mezcladas, si así se desea, con agentes adicionales, emulsificantes, sal para influenciar la presión osmótica, tampones y/o sustancias colorantes que no reaccionan de manera adversa con los compuestos activos.The pharmaceutical compositions can be sterilized and mixed, if desired, with additional agents, emulsifiers, salt to influence osmotic pressure, buffers and/or coloring substances that do not react adversely with the active compounds.
Una realización se refiere al modo de administración, que puede ser cualquier modo que transporta de manera efectiva el compuesto de interés al lugar deseado de acción, tal como oral, rectal o parenteral. One embodiment relates to the mode of administration, which can be any mode that effectively transports the compound of interest to the desired site of action, such as oral, rectal, or parenteral.
Para administración oral, se pueden preparar tanto formas de dosificación sólidas como líquidas. Para preparar composiciones sólidas como comprimidos, el compuesto de interés se mezcla en una formulación con otros ingredientes convencionales tales como talco, estearato de magnesio, fosfato bicálcico, silicato de aluminio y magnesio, almidón, lactosa, acacia, metilcelulosa y materiales similares funcionalmente tales como vehículos y diluyentes farmacéuticos. For oral administration, both solid and liquid dosage forms can be prepared. To prepare solid compositions as tablets, the compound of interest is mixed into a formulation with other conventional ingredients such as talc, magnesium stearate, dicalcium phosphate, magnesium aluminum silicate, starch, lactose, acacia, methylcellulose, and functionally similar materials such as pharmaceutical carriers and diluents.
Las cápsulas pueden ser preparadas mezclando el compuesto de interés con un disolvente inerte farmacéuticamente y rellenando la mezcla en una gelatina dura de tamaño apropiado. Cápsulas blandas se preparan con máquinas de encapsulation de suspensiones del compuesto de interés con un aceite vegetal, una parafina ligera o un aceite inerte aceptables. Pueden ser preparadas también, formas de dosificación líquidas tales como jarabes, elixires y suspensiones. Las formas solubles en agua pueden ser disueltas en un vehículo acuoso junto con azúcar, aromas saboreantes y conservantes para formar un jarabe. Un elixir es preparado usando un vehículo hidroalcohólico (p.ej. etanol) con edulcorantes adecuados tales como azúcar o sacarina, junto con agentes aromáticos saborizantes. Las suspensiones pueden ser preparadas con un vehículo acuoso y la ayuda de un agente de suspensión tal como acacia, tragacanto, metilcelulosa y similares. Capsules can be prepared by mixing the compound of interest with a pharmaceutically inert solvent and filling the mixture into a hard gelatin of appropriate size. Soft capsules are prepared with machines for encapsulating suspensions of the compound of interest with an acceptable vegetable oil, light paraffin or inert oil. Liquid dosage forms such as syrups, elixirs and suspensions can also be prepared. The water soluble forms can be dissolved in an aqueous vehicle together with sugar, flavors and preservatives to form a syrup. An elixir is prepared using a hydroalcoholic vehicle (eg ethanol) with suitable sweeteners such as sugar or saccharin, together with aromatic flavoring agents. Suspensions can be prepared with an aqueous vehicle and the aid of a suspending agent such as acacia, tragacanth, methylcellulose, and the like.
Para aplicación parenteral son evidentes para el experto en la materia, el uso de soluciones o suspensiones inyectables, para uso intradermal, intramuscular, intravascular y subcutáneo.For parenteral application, the use of injectable solutions or suspensions for intradermal, intramuscular, intravascular and subcutaneous use are obvious to those skilled in the art.
Además del compuesto de interés las composiciones pueden incluir otros diluyentes y excipientes no tóxicos farmacéuticamente aceptables, incluyendo vehículos de utilización común en composiciones farmacéuticas de uso habitual en humanos o animales. El diluyente se selecciona de manera que no afecte a la actividad biológica de la composición. In addition to the compound of interest, the compositions may include other non-toxic pharmaceutically acceptable diluents and excipients, including vehicles commonly used in pharmaceutical compositions commonly used in humans or animals. The diluent is selected so as not to affect the biological activity of the composition.
Ejemplos de diluyentes usados especialmente en formulaciones inyectables son soluciones salinas orgánicas e inorgánicas, solución de Ringer, solución de dextrosa y solución de Hank. Además, las composiciones pueden incluir aditivos como otros excipientes, agentes adyuvantes, estabilizadores no terapéuticos y no inmunogénicos y similares. Examples of diluents used especially in injectable formulations are organic and inorganic saline solutions, Ringer's solution, dextrose solution and Hank's solution. In addition, the compositions may include additives such as other excipients, adjuvant agents, non-therapeutic and non-immunogenic stabilizers, and the like.
Ejemplos de excipientes que pueden incluirse en la formulación incluyen, pero no se limitan a 14 codisolventes, tensioactivos, aceites, humectantes, emolientes, conservantes, estabilizantes y antioxidantes. Se puede utilizar cualquier tampón fisiológicamente aceptable, tal como Tris o tampones de fosfato. Cantidades efectivas de diluyentes o aditivos o excipientes son aquellas que son efectivas para obtener una formulación farmacéuticamente aceptable en términos de solubilidad y actividad biológica. Examples of excipients that may be included in the formulation include, but are not limited to 14 co-solvents, surfactants, oils, humectants, emollients, preservatives, stabilizers and antioxidants. Any physiologically acceptable buffer can be used, such as Tris or phosphate buffers. Effective amounts of diluents or additives or excipients are those that are effective to obtain a pharmaceutically acceptable formulation in terms of solubility and biological activity.
Otra realización se refiere al régimen de dosificación. El término dosis unitaria se refiere a unidades físicamente discretas adecuadas como dosis unitarias para un sujeto en donde cada unidad contiene una cantidad predeterminada de material activo calculada para producir el efecto terapéutico adecuado en asociación con el diluyente, soporte o vehículo adecuado.Another embodiment relates to the dosage regimen. The term "unit dose" refers to physically discrete units suitable as unitary doses for a subject where each unit contains a predetermined quantity of active material calculated to produce the appropriate therapeutic effect in association with the appropriate diluent, carrier or vehicle.
Una realización preferida dada a conocer en el presente documento se refiere a la vía de administración, que puede ser cualquier vía que transporte de manera eficaz el compuesto dado a conocer anteriormente en el presente documento, al sitio de acción apropiado o deseado, tal como oral, nasal, tópica, pulmonar, transdérmica o parenteral, por ejemplo, rectal, subcutánea. A preferred embodiment disclosed herein relates to the route of administration, which may be any route that efficiently transports the compound disclosed hereinabove, to the appropriate or desired site of action, such as oral. , nasal, topical, pulmonary, transdermal, or parenteral, eg, rectal, subcutaneous.
Los precursores de NAD+, o las composiciones farmacéuticas que los comprenden, descritos en la presente invención, pueden ser utilizados antes de, en combinación con, o después de otro tratamiento o terapia que sea útil en la prevención de la aparición y/o tratamiento de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. En una realización de la invención dicho tratamiento o terapia es un hipotensor o un inhibidor de la ruta de Angiotensina. Preferentemente el hipotensor es un betabloqueante. Ejemplos no limitantes de betabloqueantes incluyen, pero no se limitan a Atenolol, Acebutolol, Betaxolol, Bisoprolol, Esmolol, Nebivol, entre otros. También preferentemente el inhibidor de la ruta de Angiotensina se puede seleccionar entre Losarían, Olmesartan, Valsarían o Irbesartan, entre otros. The NAD+ precursors, or the pharmaceutical compositions comprising them, described in the present invention, can be used before, in combination with, or after another treatment or therapy that is useful in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology characterized by the presence of impaired mitochondrial respiration. In one embodiment of the invention said treatment or therapy is a hypotensive or an inhibitor of the Angiotensin pathway. Preferably the hypotensive is a beta-blocker. Non-limiting examples of beta-blockers include, but are not limited to Atenolol, Acebutolol, Betaxolol, Bisoprolol, Esmolol, Nebivol, among others. Also preferably, the Angiotensin pathway inhibitor can be selected from Losarian, Olmesartan, Valsarian or Irbesartan, among others.
Además, los precursores de NAD+, o las composiciones farmacéuticas que los comprenden, descritos en la presente invención, pueden ser utilizados antes de, en combinación con, o después de otro componente terapéutico o compuesto activo adicional. Dicho componente terapéutico o compuesto activo adicional proporciona actividades biológicas aditivas o sinérgicas. Con los propósitos de la presente descripción, los términos “compuesto activo” o “componente terapéutico” deben tomarse como sinónimos y significar una entidad química o biológica que ejerce efectos terapéuticos cuando se administra a seres humanos o animales.Furthermore, the NAD+ precursors, or pharmaceutical compositions comprising them, described in the present invention, can be used before, in combination with, or after another therapeutic component or additional active compound. Said additional therapeutic component or active compound provides additive or synergistic biological activities. For the purposes of the present description, the terms "active compound" or "therapeutic component" should be taken synonymously and mean a chemical or biological entity that exerts therapeutic effects when administered to humans or animals.
Los precursores de NAD+ descritos en la presente invención pueden ser utilizados también como nutracéuticos o en composiciones nutracéuticas. Este es el caso, por ejemplo, de la vitamina B3 y sus derivados. 15 The NAD+ precursors described in the present invention can also be used as nutraceuticals or in nutraceutical compositions. This is the case, for example, of vitamin B3 and its derivatives. fifteen
Así, otro aspecto de la invención se refiere a una composición nutracéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente nutracéuticamente aceptable, para uso en la prevención de la aparición de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente. Thus, another aspect of the invention relates to a nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the appearance of an aortic aneurysm of hereditary etiology that It is characterized by the presence of impaired mitochondrial respiration.
Adicionalmente, la presente invención también se refiere a un método de prevención de la aparición de un aneurisma aórtico de etiología hereditaria que se caracteriza por la presencia de una respiración mitocondrial deficiente, en donde dicho método comprende administrar a un sujeto que lo necesite una cantidad efectiva de una composición nutraceútica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente nutracéuticamente aceptable. Additionally, the present invention also relates to a method of preventing the appearance of an aortic aneurysm of hereditary etiology characterized by the presence of poor mitochondrial respiration, wherein said method comprises administering to a subject in need an effective amount of a nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutical acceptable excipient.
Se entiende como cantidad efectiva, en relación con los usos nutracéuticos descritos en la presente invención, como aquella que proporciona un efecto un efecto beneficioso para la salud del sujeto que lo ingiere, en especial en la prevención de la aparición de enfermedades, sin proporcionar efectos tóxicos inaceptables en el sujeto. An effective amount is understood, in relation to the nutraceutical uses described in the present invention, as that which provides a beneficial effect for the health of the subject who ingests it, especially in the prevention of the appearance of diseases, without providing adverse effects. unacceptable toxicants in the subject.
El término “nutracéuticamente aceptable” se refiere, a efectos de la presente invención, a todo aquello que es adecuado para su utilización en productos nutracéuticos. The term "nutraceutical acceptable" refers, for the purposes of the present invention, to everything that is suitable for use in nutraceutical products.
A efectos de la presente invención el término “nutraceútico” o “composición nutraceútica” se refiere a un suplemento dietético, para ser tomado por sí solo, o en combinación con otros alimentos, y que produce un efecto beneficioso para la salud del sujeto que lo ingiere, en especial en la prevención de enfermedades. For the purposes of the present invention, the term "nutraceutical" or "nutraceutical composition" refers to a dietary supplement, to be taken by itself, or in combination with other foods, and that produces a beneficial effect on the health of the subject that consumes it. eat, especially in disease prevention.
A efectos de la presente invención se entiende como composición nutracéutica una composición alimenticia, para ser ingerida de manera separada o con la alimentación, que tiene un efecto medicinal sobre la salud humana. For the purposes of the present invention, a nutraceutical composition is understood as a food composition, to be ingested separately or with food, which has a medicinal effect on human health.
En concreto, el precursor de nicotinamida adenina dinucleótido (NAD+) se selecciona entre: niacina (NA) o ácido nicotínico; nicotinamida (NAM); nicotinamida ribósido (NR); nicotinamida mononucleótido (NMN); ácido nicotínico mononucleótido; y ácido nicotínico adenina dinucleótido; o combinaciones de los mismos. Specifically, the nicotinamide adenine dinucleotide (NAD + ) precursor is selected from: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
En una realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es niacina (NA) o ácido nicotínico. La niacina es, a efectos de la presente invención la vitamina B3. In a preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid. Niacin is, for the purposes of the present invention, vitamin B3.
En otra realización preferente de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida (NAM). 16 In another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM). 16
En otra realización preferente más de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida mononucleótido (NMN). In yet another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
En otra realización preferente más de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es ácido nicotínico mononucleótido. In yet another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid mononucleotide.
En otra realización preferente más de la invención el precursor de nicotinamida adenina dinucleótido (NAD+) es ácido nicotínico adenina dinucleótido. In yet another preferred embodiment of the invention, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid adenine dinucleotide.
En una realización particularmente preferente el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida ribonucleósido (NR). In a particularly preferred embodiment, the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide ribonucleoside (NR).
En otra realización preferente de la composición nutracéutica para uso según la invención, la composición nutracéutica está incorporada en un preparado alimentario. In another preferred embodiment of the nutraceutical composition for use according to the invention, the nutraceutical composition is incorporated into a food preparation.
La composición nutracéutica para uso según la invención puede también incluirse en una variedad de preparados alimentarios, por ejemplo, productos derivados de la leche, yogur, cuajada, queso (por ejemplo, queso fresco, crema, procesados, blandos y duros), leche fermentada, leche en polvo, un producto fermentado a base de leche, un helado, un producto basado en cereal fermentado, polvo a base de leche, bebidas, y un alimento para mascotas.The nutraceutical composition for use according to the invention can also be included in a variety of food preparations, for example, products derived from milk, yogurt, curd, cheese (for example, fresh, cream, processed, soft and hard cheese), fermented milk , milk powder, a fermented milk-based product, an ice cream, a fermented cereal-based product, milk-based powder, beverages, and a pet food.
El término "preparados alimentarios" se utiliza aquí en su sentido más amplio, incluyendo cualquier tipo de producto, en cualquier forma de presentación, que puede ser ingerido por un animal, pero exceptuando productos farmacéuticos y de veterinaria. Ejemplos de otros preparados alimentarios son los productos cárnicos (por ejemplo, patés, salchichas de frankfurt y de salami o carne para untar), chocolate para untar, rellenos (por ejemplo, trufa, crema) y glaseados, chocolate, confitería (por ejemplo, caramelo, fondant o toffee), productos de panadería (pasteles, pastas), salsas y sopas, zumos de frutas y blanqueadores de café. Preparados alimentarios particularmente interesantes incluyen suplementos alimenticios y fórmulas infantiles. The term "food preparations" is used here in its broadest sense, including any type of product, in any form of presentation, that can be ingested by an animal, but excluding pharmaceutical and veterinary products. Examples of other food preparations are meat products (for example pâtés, frankfurters and salami or meat spreads), chocolate spreads, fillings (for example truffle, cream) and glazes, chocolate, confectionery (for example caramel, fondant or toffee), bakery products (cakes, pastries), sauces and soups, fruit juices and coffee whiteners. Particularly interesting food preparations include food supplements and infant formulas.
La composición nutracéutica para uso según la invención también podría ser utilizada como ingrediente en otros productos de alimentación. Por consiguiente, en otro aspecto de la invención, se proporcionan preparados alimentarios que contienen la composición de la invención junto con cantidades apropiadas de ingredientes comestibles. Preferiblemente, la composición nutracéutica para uso según la invención es un suplemento alimenticio. A efectos de la presente invención el término “suplemento alimenticio” se refiere a aquella fracción de alimento que se utiliza para completar la alimentación humana o animal. Si la composición nutracéutica para uso según la invención se utiliza como un suplemento alimenticio, puede administrarse como tal, o puede mezclarse con un líquido potable adecuado, tales como agua, yogur, leche o zumo de frutas, o puede mezclarse con sólidos o alimentos líquidos. En este 17 contexto, el suplemento alimenticio puede estar en forma de comprimidos, píldoras, cápsulas, gránulos, polvos, suspensiones, bolsitas, pastillas, dulces, barras, jarabes y formas correspondientes de la administración, por lo general en forma de dosis unitaria. The nutraceutical composition for use according to the invention could also be used as an ingredient in other food products. Accordingly, in another aspect of the invention, food preparations containing the composition of the invention together with appropriate amounts of edible ingredients are provided. Preferably, the nutraceutical composition for use according to the invention is a food supplement. For the purposes of the present invention, the term "food supplement" refers to that fraction of food that is used to complete human or animal nutrition. If the nutraceutical composition for use according to the invention is used as a food supplement, it can be administered as such, or it can be mixed with a suitable drinking liquid, such as water, yoghurt, milk or fruit juice, or it can be mixed with solid or liquid foods. . In this In this context, the food supplement may be in the form of tablets, pills, capsules, granules, powders, suspensions, sachets, lozenges, candies, bars, syrups and corresponding forms of administration, usually in unit dosage form.
EJEMPLOS EXAMPLES
Los ejemplos descritos a continuación tienen carácter ilustrativo y no pretenden limitar el ámbito de la presente invención. The examples described below are for illustrative purposes and are not intended to limit the scope of the present invention.
Se detallan a continuación los materiales y métodos utilizados en los ejemplos descritos en el presente documento. The materials and methods used in the examples described herein are detailed below.
Materiales y métodos Materials and methods
Ratones y procedimientos utilizados con animales Mice and procedures used with animals
El modelo animal de ratón con el alelo Fbn 1 C1O39G/+ fue previamente descrito por Habashi, J.P., et al (Science, 2006. 312(5770): p. 117-21). Para la ablación específica de Tfam en el músculo liso, se cruzaron ratones Tfamflox/flox con ratones portadores del alelo MyH 11 -CreERT2 que expresa una recombinasa Cre inducible por tamoxifeno bajo secuencias reguladoras del promotor de miosina de cadena pesada de músculo liso (Myh11). Hermanos de camada con fenotipo silvestre fue usada como control para los ratones de Marfan y los Tfamvvt/vvt MyH11- CreERT2como control dé los Tfamflox/flox MyH11-CreERT2. Para la eliminación condicional de Tfam en músculo liso, ratones Myh11-CreERT2 TFAMm/wt y Myh11-CreERT2 Tfamflox/flox de 3-4 semanas recibieron inyecciones (i.p.) de 1 mg tamoxifeno (Sigma Aldrich) durante 5 días consecutivos. Angll fue disuelta en salino a una concentración de 1 pg Kg-1 min-1 usando minibombas osmóticas subcutáneas (Model 2004, Alzet Corp). La nicotinamida ribonucleósido (Novalix) fue administrada de manera intraperitoneal a una concentración de 1000 mg/Kg en medio salino en días alternos. Los ratones se alojaron en instalaciones libres de patógenos para animales del Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) y del Centro de Biología Molecular Severo Ochoa (CBMSO) siguiendo los estándares de cuidado animal de dichas instituciones. Los procedimientos con animales fueron aprobados por el Comité de Ética del CNIC y del CBMSO-Universidad Autónoma de Madrid (UAM) y por la Comunidad de Madrid (Rf. PROEX 283/16) conforme a la Directiva europea 2010/63EU y la Recomendación 2007/526/EC con relación a la protección de animales usados para experimentación y otras tareas científicas, en vigor a través del Real Decreto 1201/2005. 18 The mouse animal model with the Fbn 1 C1O39G/+ allele was previously described by Habashi, JP, et al (Science, 2006. 312(5770): p. 117-21). For specific ablation of Tfam in smooth muscle, Tfam flox/flox mice were bred to mice carrying the MyH 11 -Cre ERT2 allele expressing a tamoxifen-inducible Cre recombinase under smooth muscle heavy chain myosin promoter regulatory sequences ( Myh11). Wild-type littermates were used as controls for Marfan mice and Tfam vvt/vvt MyH11-Cre ERT2 as control for Tfam flox/flox MyH11-Cre ERT2 . For conditional removal of Tfam in smooth muscle, Myh11-Cre ERT2 TFAM m/wt and Myh11-Cre ERT2 Tfam flox/flox mice aged 3-4 weeks received injections (ip) of 1 mg tamoxifen (Sigma Aldrich) for 5 consecutive days . AngII was dissolved in saline at a concentration of 1 pg Kg-1 min-1 using subcutaneous osmotic minipumps (Model 2004, Alzet Corp). Nicotinamide ribonucleoside (Novalix) was administered intraperitoneally at a concentration of 1000 mg/Kg in saline medium on alternate days. The mice were housed in pathogen-free animal facilities of the Carlos III National Cardiovascular Research Center (CNIC) and the Severo Ochoa Molecular Biology Center (CBMSO) following the animal care standards of these institutions. The procedures with animals were approved by the Ethics Committee of the CNIC and the CBMSO-Universidad Autónoma de Madrid (UAM) and by the Community of Madrid (Rf. PROEX 283/16) in accordance with European Directive 2010/63EU and the 2007 Recommendation /526/EC in relation to the protection of animals used for experimentation and other scientific tasks, in force through Royal Decree 1201/2005. 18
Determinación de la presión arterial y captación de imágenes ¡n vivo. Determination of blood pressure and capture of in vivo images.
La presión arterial sanguínea (PS) fue medida mediante en la cola mediante el uso de BP- 2000 Blood Pressure Analysis System (Visitech Systems, Apex, NC, USA). Los ratones fueron adiestrados para medir la PS cada día durante 5 días consecutivos. Después del periodo de adiestramiento, la PS fue medida un día antes del tratamiento para determinar el valor basal de PS en cada cohorte de ratones. Se tomaron 15 medidas consecutivas de PS sistólica y diastólica y las últimas 10 tomas de cada ratón fueron grabadas y se obtuvo el valor medio. Para las imágenes de ultrasonido in vivo, se monitorizó el diámetro aórtico en ratones anestesiados con isoflurano (2%) con un ecógrafo de ultrasonidos de alta frecuencia VEVO 2100 (VisualSonics, Toronto, Canadá) con una resolución de 30 mieras. Los diámetros aórticos internos máximos fueron medidos en diástole usando el software VEVO 2100, versión 1.5.0. Arterial blood pressure (BP) was measured in the tail using the BP-2000 Blood Pressure Analysis System (Visitech Systems, Apex, NC, USA). Mice were trained to measure PS every day for 5 consecutive days. After the training period, PS was measured one day before treatment to determine baseline PS in each cohort of mice. 15 consecutive measurements of systolic and diastolic PS were taken and the last 10 shots of each mouse were recorded and the mean value was obtained. For in vivo ultrasound imaging, aortic diameter in isoflurane (2%) anesthetized mice was monitored with a VEVO 2100 high-frequency ultrasound scanner (VisualSonics, Toronto, Canada) at 30 micron resolution. Maximum aortic internal diameters were measured in diastole using VEVO 2100 software, version 1.5.0.
Procedimientos celulares. Cell procedures.
El aislamiento y cultivo de células vasculares musculares lisas (VSMC) primarias de ratón fue descrito por Esteban, V., et al. (J Exp Med, 2011. 208(10): p. 2125-39). El tejido fue digerido con una solución de colagenasa y elastasa hasta que se obtuvo una única suspensión celular. Todos los experimentos con CMLVs primarias fueron llevados a cabo durante los pases 2-7. La transducción lentiviral se llevó a cabo en CMLVs durante 5 hr con una multiplicidad de infección= 3. El medio se reemplazó a continuación con DMEM fresco suplementado con 10% SFB y las células fueron cultivadas durante 7 días, tratadas con NR durante 3 días más y en ausencia de suero durante 16 hr. Las líneas celulares HEK-293T (CRL-1573) y de Jurkat (Clone E6-1 , TIB-152), necesarias para la producción de titulaciones elevadas de lentivirus y para la titulación de lentivirus respectivamente, fueron adquiridas de ATTC. Se compraron en Coriell Cell Repositories: 4 machos aparentemente sanos de control (GM00024, GN01717, GM03652, GM23963) y 4 machos y fibroblastos incompatibles de pacientes de síndrome de Marfan con disección aórtica, dos con mutaciones puntuales FBN1 (GM21499, GM21946) y dos con mutaciones haploinsuficientes-FB/VI (GM21983, GM21978). Los experimentos se llevaron a cabo durante pases 5-10. Todas las células eran negativas en micoplasma. Para la inmunotinción las células fueron fijadas con paraformaldehido 4% durante 10 minutos y permeabilizadas con Triton X-100 al 0,3% en PBS durante 10 minutos. Se incubaron las muestras durante 15 minutos con 1/500 647-Phalloidine (Millipore) y DAPI. Las imágenes fueron tomadas con un microscopio Zeiss-LSM-800 con un objetivo de inmersión de aceite de
Figure imgf000019_0001
19
The isolation and culture of primary mouse vascular smooth muscle cells (VSMC) was described by Esteban, V., et al. (J Exp Med, 2011. 208(10): p. 2125-39). The tissue was digested with a collagenase and elastase solution until a single cell suspension was obtained. All experiments with primary VSMCs were carried out during passages 2-7. Lentiviral transduction was carried out in VSMCs for 5 hr with a multiplicity of infection = 3. The medium was then replaced with fresh DMEM supplemented with 10% FBS and the cells were cultured for 7 days, treated with NR for a further 3 days. and in the absence of serum for 16 hr. HEK-293T (CRL-1573) and Jurkat (Clone E6-1, TIB-152) cell lines, required for the production of high titers of lentiviruses and for lentivirus titer respectively, were purchased from ATTC. Purchased from Coriell Cell Repositories: 4 apparently healthy control males (GM00024, GN01717, GM03652, GM23963) and 4 mismatched males and fibroblasts from Marfan syndrome patients with aortic dissection, two with FBN1 point mutations (GM21499, GM21946) and two with haploinsufficient mutations-FB/VI (GM21983, GM21978). The experiments were carried out for passages 5-10. All cells were mycoplasma negative. For immunostaining, cells were fixed with 4% paraformaldehyde for 10 minutes and permeabilized with 0.3% Triton X-100 in PBS for 10 minutes. Samples were incubated for 15 minutes with 1/500 647-Phalloidine (Millipore) and DAPI. Images were taken with a Zeiss-LSM-800 microscope with an oil immersion objective of
Figure imgf000019_0001
19
Producción de lentivirus e infección. Lentivirus production and infection.
La secuencia codificante Cre y GFP fue obtenida mediante amplificación por PCR y clonada en el vector lentiviral pHRSIN (Oller et al. 2015 Mol Cell Biol 2015 3409-22). Los lentivirus expresando ARNsh dirigido a Fbn1 murino y el ARNsh de control fueron comprados de Sigma Aldrich. Los lentivirus que expresan mutaciones FCTA2R179H y TGFBR2G317W y los controles fueron suministrados por Mark Lindsay. Lentivirus pseudo-tipados fueron producidos mediante transfección transitoria de células HEK-293T con fosfato cálcico y concentrados del sobrenadante de cultivo por ultracentrifugación (2 hr a 128,000xg; Ultraclear Tubes; SW28 rotor y Optima L-100 XP Ultracentrifuge; Beckman). Los virus fueron suspendidos en PBS frió estéril y titulados mediante transducción de células Jurkat durante 48 hr. La eficiencia de transducción (células expresando GFP y células resistentes en Puromicina) y la muerte celular (tinción con ¡oduro de propidio) fueron cuantificadas mediante citometría de flujo (Oller et al., Nat Med, 2017. 23(2): p. 200-212). The Cre and GFP coding sequence was obtained by PCR amplification and cloned into the lentiviral vector pHRSIN (Oller et al. 2015 Mol Cell Biol 2015 3409-22). Lentiviruses expressing murine Fbn1 targeting shRNA and control shRNA were purchased from Sigma Aldrich. Lentiviruses expressing FCTA2 R179H and TGFBR2 G317W mutations and controls were supplied by Mark Lindsay. Pseudotyped lentiviruses were produced by transient transfection of HEK-293T cells with calcium phosphate and concentrated culture supernatant by ultracentrifugation (2 hr at 128,000xg; Ultraclear Tubes; SW28 rotor and Optima L-100 XP Ultracentrifuge; Beckman). Viruses were suspended in cold sterile PBS and titrated by Jurkat cell transduction for 48 hr. Transduction efficiency (GFP-expressing cells and Puromycin-resistant cells) and cell death (propidium iodide staining) were quantified by flow cytometry (Oller et al., Nat Med, 2017. 23(2): p. 200-212).
Análisis de flujo extracelular y ensayos metabólicos. Extracellular flux analysis and metabolic assays.
La tasa de consumo de oxígeno (OCR) fue medida con un XF-96 Extracellular Flux Analyzers (Seahorse Bioscience) en 25.000 CMLVs aórticas de ratón o en 50.000 fibroblastos humanos fueron sembrados en un medio DMEM no tamponado que contenía glucosa 25 mM y CaCh 1 mM. Se tomaron 3 medidas en condiciones básales y con la adición de oligomicina (1 mM), fluoro-carbonil ciano-fenilhidrazona (FCCP, 1 ,5 mM) y rotenona (100 nM) + antimicina A (1 mM). El lactato extracelular fue determinado con Accutrend ® Plus system (Roche). Se analizaron 20 pL de medio condicionado después de 48 horas de activación. Las medidas de lactato se normalizaron con los extractos celulares de proteínas. Oxygen consumption rate (OCR) was measured with an XF-96 Extracellular Flux Analyzers (Seahorse Bioscience) in 25,000 mouse aortic VSMCs or in 50,000 human fibroblasts seeded in unbuffered DMEM medium containing 25 mM glucose and CaCh 1 mM. Three measurements were taken under basal conditions and with the addition of oligomycin (1 mM), fluorocarbonyl cyano-phenylhydrazone (FCCP, 1.5 mM) and rotenone (100 nM) + antimycin A (1 mM). Extracellular lactate was determined with the Accutrend ® Plus system (Roche). 20 pL of conditioned medium were analyzed after 48 hours of activation. Lactate measurements were normalized to cell protein extracts.
PCR en tiempo real y cuantitativa. Real-time and quantitative PCR.
Las aortas fueron extraídas después de perfusión con 5 mi de solución salina, y la capa adventicia se descartó. Se homogeneizó el tejido congelado con nitrógeno líquido usando aglutinante frío y un homogeneizador automático de microesferas (MagNA Lyzer, Roche). El ARN total fue aislado con TRIzol (Life Technologies). El ARN total (1 pg) fue digerido primero con ADNasa y la transcripción reversa efectuada con Maxima First Strand cDNA Synthesis Kit (ThermoFisher). Para los análisis de niveles de ADNmt, se extrajo el ADNtotal de células y tejidos con el SurePrep kit (Fisher Scientific) o con TRIzol respectivamente, de acuerdo con las instrucciones del fabricante. El ADN fue amplificado usando cebadores específicos para el citocromo c oxidasa subunidad 1 (mt-Co1) y ARNr 16S mitocondrial, y normalizado con genes de control B2M y H2K nucleares. La PCRq de tiempo real cuantitativa se llevó a cabo con los cebadores de las tablas 1A (cebadores de ratón) y 1 B (cebadores humanos): Tabla 1A: Cebadores de ratón
Figure imgf000021_0001
21
The aortas were removed after perfusion with 5 ml of saline, and the adventitial layer was discarded. Frozen tissue was homogenized with liquid nitrogen using cold binder and an automatic microsphere homogenizer (MagNA Lyzer, Roche). Total RNA was isolated with TRIzol (Life Technologies). Total RNA (1 pg) was first digested with DNase and reverse transcription performed with the Maxima First Strand cDNA Synthesis Kit (ThermoFisher). For analysis of mtDNA levels, total DNA from cells and tissues was extracted with the SurePrep kit (Fisher Scientific) or with TRIzol, respectively, according to the manufacturer's instructions. DNA was amplified using primers specific for cytochrome c oxidase subunit 1 (mt-Co1) and mitochondrial 16S rRNA, and normalized with nuclear B2M and H2K control genes. Quantitative real-time PCRq was performed with the primers from Tables 1A (mouse primers) and 1B (human primers): Table 1A: Mouse Primers
Figure imgf000021_0001
twenty-one
Tabla 1 B: Cebadores humanos
Figure imgf000022_0001
Table 1B: Human Primers
Figure imgf000022_0001
Las reacciones de PCRq se llevaron a cabo por triplicado con una master mix SYBR (Promega), de acuerdo con las instrucciones del fabricante. Para examinar la especificidad de la sonda, se llevaron a cabo análisis curva-fusión de post-amplificación. Para cada reacción se tomó solamente una temperatura de fusión (Tm). La cantidad de ARNm diana en las mezclas se estimó con el método de cuantificación relativa 1-CT, usando B2M, YWHAZ y PP1A para la normalización. Las relaciones de duplicación se calcularon en base a los niveles de expresión del ARNm del control. The qPCR reactions were carried out in triplicate with a SYBR master mix (Promega), according to the manufacturer's instructions. To examine the specificity of the probe, post-amplification melting-curve analyzes were performed. For each reaction only one melting temperature (Tm) was taken. The amount of target mRNA in the mixtures was estimated with the 1-CT relative quantification method, using B2M, YWHAZ and PP1A for normalization. Duplication ratios were calculated based on control mRNA expression levels.
Inmunoblot immunoblot
Para el análisis mediante inmunoblot o transferencia de Western, las células fueron lisadas a 4 °C en tampón RIPA que contenía inhibidores de proteasa y fosfatasa (Sigma). Las proteínas se separaron por SDS-PAGE y se transfirieron a una membrana Immobilion PVDF (M illipore) con un tamaño de poro de 0,45 pm. Las membranas PVDF se bloquearon con TBS-T (50 pM Tris, 150 mM NaCI y Tween-20 0,1%) que contenía 5% (p/v) de leche. Las membranas fueron incubadas con anticuerpos primarios a una dilución de 1/500 a 1/1000 seguido de lavados con TBS-T e incubación con anticuerpos secundarios conjugados HRP (GE Healthcare). La señal se visualizó por quimioluminiscencia aumentada con el sustrato Luminata Forte Western HRP Substrate (Millipore) y el sistema de imagen ImageQuant LAS 4000. Se usaron los siguientes anticuerpos: anti-TFAM (Proteintec), Anti-MT-CO1 (Millipore), anti-VDAC (Abeam), anti- a- tubulina (Cell Signaling). For immunoblot or Western blot analysis, cells were lysed at 4°C in RIPA buffer containing protease and phosphatase inhibitors (Sigma). Proteins were separated by SDS-PAGE and transferred to an Immobilion PVDF membrane (Millipore) with a pore size of 0.45 pm. PVDF membranes were blocked with TBS-T (50 pM Tris, 150 mM NaCl, and 0.1% Tween-20) containing 5% (w/v) milk. Membranes were incubated with primary antibodies at a dilution of 1/500 to 1/1000 followed by washes with TBS-T and incubation with HRP-conjugated secondary antibodies (GE Healthcare). The signal was visualized by enhanced chemiluminescence with Luminata Forte Western HRP Substrate (Millipore) and the ImageQuant LAS 4000 imaging system. The following antibodies were used: anti-TFAM (Proteintec), Anti-MT-CO1 (Millipore), anti -VDAC (Abeam), anti-a-tubulin (Cell Signaling).
Preparación de la librería y secuenciado Illumina Library preparation and Illumina sequencing
Las aortas fueron extraídas después de perfusión con una solución salina fría y la capa adventicia fue descartada. El tejido congelado fue homogeneizado y se aisló el ARN total con Trizol (Roche). Se preparó ARN de librerías de acuerdo con las instrucciones del kit “NEBNext Ultra Directional RNA Library Prep kit for Illumina” (New England Biolabs), siguiendo el 22 protocolo “Poly(A) mRNA Magnetic Isolation Module”. El rendimiento total de ARN total al principio del protocolo era >300 ng cuantificado por un Agilent 2100 Bioanalyzer usando el kit RNA 6000 nano LabChip. Las librerías obtenidas se validaron y cuantificaron con un Agilent 2100 Bioanalyzer usando un kit ADN7500 LabChip y un grupo de librerías equimolar fue titulado mediante PCR cuantitativo usando el “Kapa-SYBR FAST qPCR kit forLightCycler480” (Kapa BioSystems) y un estándar de referencia para la cuantificación. El grupo de librerías fue desnaturalizado antes de ser sembrado con una densidad 2,2 pM en una celda de flujo, donde se formaron clústeres que se secuenciaron usando un “NextSeq™ 500 High Output Kit”, en un secuenciador NextSeq500 en una sola lectura 1x75. Se obtuvieron aproximadamente 15 millones de lecturas después de filtrado para cada muestra. Los archivos Fastq se alinearon contra un genoma versión Mm usando un alineador STAR (base Space Sequence Hub, Illumina) y los perfiles de expresión fueron determinados usando CuffDiff2. Para identificar las funciones biológicas celulares, clústeres de genes y reguladores se usó un Ingenuity Pathway Analysis (IPA). The aortas were removed after perfusion with a cold saline solution and the adventitial layer was discarded. Frozen tissue was homogenized and total RNA isolated with Trizol (Roche). RNA from libraries was prepared according to the instructions of the “NEBNext Ultra Directional RNA Library Prep kit for Illumina” kit (New England Biolabs), following the 22 “Poly(A) mRNA Magnetic Isolation Module” protocol. Total RNA yield at the beginning of the protocol was >300 ng quantified by an Agilent 2100 Bioanalyzer using the RNA 6000 nano LabChip kit. The obtained libraries were validated and quantified with an Agilent 2100 Bioanalyzer using a DNA7500 LabChip kit and an equimolar set of libraries was titrated by quantitative PCR using the "Kapa-SYBR FAST qPCR kit forLightCycler480" (Kapa BioSystems) and a reference standard for quantification. The library pool was denatured before being seeded at 2.2 pM density in a flow cell, where clusters were formed and sequenced using a NextSeq™ 500 High Output Kit, on a NextSeq500 sequencer in a single 1x75 read. . Approximately 15 million reads were obtained after filtering for each sample. Fastq files were aligned against an Mm version genome using a STAR aligner (Base Space Sequence Hub, Illumina) and expression profiles were determined using CuffDiff2. Ingenuity Pathway Analysis (IPA) was used to identify cell biological functions, gene clusters and regulators.
Histología aórtica. aortic histology.
Después de llevar a cabo la eutanasia de los ratones por inhalación con CO2, se llevó a cabo la perfusión de las aortas con solución salina. Se aislaron a continuación las aortas y se fijaron con formalina al 10% durante la noche a 4 °C. Las secciones parafinadas (5 pm) de los órganos fijados se tiñeron con Masson-Tricrome, alcian azul o Verhoeff elastic-van Gieson (EVG), o se usaron para inmunohistoquímica o para inmunofluorescencia. Las fibras elásticas se tiñeron con un kit de tinción de elastina modificado Verhoeff Van Gieson (Sigma Aldrich). Se contaron las roturas de lámina elástica, definidas como interrupciones en las fibras elásticas, para la capa medial completa de tres secciones transversales consecutivas en cada ratón, usando 4-16 ratones en cada experimento, y se calculó el número medio de roturas. Para las inmunotinciones las secciones desparafinadas fueron rehidratadas, hervidas para recuperar antígenos (tampón citrato 10 mM, Thton-x al 0,05%, pH= 6) y bloqueadas durante 45 minutos en PBS con suero de cabra normal al 10%, suero de caballo al 5%, Thton-x al 0,05% y BSA al 2%. Las muestras fueron incubadas para inmunohistoquímica o para inmunofluorescencia con los siguientes anticuerpos: anti-SMA (1/500, C6198, Sigma), anti- TFAM policlonal (1/300, Prointech), anti-MT-ND1 policlonal (1/300, Proteintech), anti-Mt-CO1 monoclonal (1/300 Invitrogene), anti-HIF1A y anti-MYC policlonales (1/500 Novus biologicals). La especificidad fue determinada mediante sustitución de anticuerpos primarios con IgG (Santa Cruz) no relacionados. Para la inmunohistoquímica, se bloquearon peroxidasa endógena y biotina con 1 % H2O2-metanol durante 10 minutos y un kit de bloqueo de biotina (Vector Laboratories), respectivamente. Se desarrolló el color al mismo tiempo en todas las 23 muestras con DAB (Vector Laboratories) y las secciones fueron contrateñidas con hematoxilina y montadas en DPX (fluka). Para inmunofluorescencia, se usaron anticuerpos secundarios anti-conejo conjugado a cabra Alexa-Fluor-546 y anti-conejo conjugado a cabra Alexa- Fluor-647 (BD Pharmigen). Para la determinación de F-actina, la aortas fijadas se integraron en OCT (Tissue-Tek Sakura), se incubaron secciones transversales de 5 pm durante 30 minutos con 1 :1000 Phalloidine-657 (Millipore), y después de 10 minutos de incubación con Triton X-100 0,3% en PBS. Se montaron las secciones con DAPI en un medio de montaje Citifluor AF4 (Aname). Las imágenes se tomaron con 1024 x 1024 pixels y 8 bits usando un microscopio Zeiss-LSM800 con objetivos de inmersión de aceite de 40x. After euthanizing the mice by CO 2 inhalation, the aortas were perfused with saline. Aortas were then isolated and fixed in 10% formalin overnight at 4°C. Paraffin sections (5 pm) of fixed organs were stained with Masson-Trichrome, alcian blue, or Verhoeff elastic-van Gieson (EVG), or used for immunohistochemistry or immunofluorescence. Elastic fibers were stained with a modified Verhoeff Van Gieson elastin staining kit (Sigma Aldrich). Elastic lamina tears, defined as breaks in elastic fibers, were counted for the entire medial layer of three consecutive cross-sections in each mouse, using 4-16 mice in each experiment, and the mean number of tears was calculated. For immunostaining, deparaffinized sections were rehydrated, boiled to recover antigens (10 mM citrate buffer, 0.05% Thton-x, pH=6) and blocked for 45 minutes in PBS with 10% normal goat serum, 5% horse, 0.05% Thton-x and 2% BSA. The samples were incubated for immunohistochemistry or immunofluorescence with the following antibodies: anti-SMA (1/500, C6198, Sigma), polyclonal anti-TFAM (1/300, Prointech), polyclonal anti-MT-ND1 (1/300, Proteintech), monoclonal anti-Mt-CO1 (1/300 Invitrogene), polyclonal anti-HIF1A and anti-MYC (1/500 Novus biologicals). Specificity was determined by replacement of primary antibodies with unrelated IgG (Santa Cruz). For immunohistochemistry, endogenous peroxidase and biotin were blocked with 1% H2O2-methanol for 10 minutes and a biotin blocking kit (Vector Laboratories), respectively. Color developed at the same time in all 23 samples with DAB (Vector Laboratories) and sections were counterstained with hematoxylin and mounted in DPX (fluka). For immunofluorescence, Alexa-Fluor-546 conjugated goat anti-rabbit and Alexa-Fluor-647 conjugated goat anti-rabbit secondary antibodies (BD Pharmigen) were used. For F-actin determination, fixed aortas were embedded in OCT (Tissue-Tek Sakura), 5 pm cross-sections were incubated for 30 minutes with 1:1000 Phalloidine-657 (Millipore), and after 10 minutes of incubation with 0.3% Triton X-100 in PBS. Sections were mounted with DAPI in Citifluor AF4 mounting medium (Aname). Images were taken at 1024 x 1024 pixels and 8 bits using a Zeiss-LSM800 microscope with 40x oil immersion objectives.
Zimografía en gelatina gelatin zymography
Sobrenadantes de cultivos celulares fueron preparados como describe Oller, J., et al. (Nat Med, 2017. 23(2): p. 200-212). Los extractos (15 pg) se fraccionaron en condiciones no reductoras en 10% gel SDS-poliacñlamida gue contenía 0.1% gelatina. Los geles fueron lavados tres veces con 2,5% Triton X-100 durante 2 horas a temperatura ambiente, incubados durante la noche a 37 °C en 50 mM Tris-HCI pH= 7,5, 10 mM CaCh y 200 mM NaCI, y teñidos con azul Coomasie. Las áreas de actividad MMP o gelatinolítica se visualizaron en forma de bandas transparentes. Las imágenes fueron analizadas con software Quantity One (Bio-Rad). Cell culture supernatants were prepared as described by Oller, J., et al. (Nat Med, 2017. 23(2): p. 200-212). Extracts (15 pg) were fractionated under non-reducing conditions on 10% SDS-polyacylamide gel containing 0.1% gelatin. The gels were washed three times with 2.5% Triton X-100 for 2 hours at room temperature, incubated overnight at 37 °C in 50 mM Tris-HCI pH= 7.5, 10 mM CaCh and 200 mM NaCl, and stained with Coomasie blue. Areas of MMP or gelatinolytic activity were visualized as transparent bands. The images were analyzed with Quantity One software (Bio-Rad).
Muestras humanas human samples
El estudio fue aprobado por el comité de ética e investigación clínica del Instituto de Salud Carlos III y la Universidad de Cantabria (B2017/BMD-3676 AORTASANA-CM, ref. 27/2013; respectivamente). Las aortas usadas como control se obtuvieron de manera anónima de donantes de órganos para trasplantes después de gue se obtuvo consentimiento por escrito de las familias. Durante la preparación del corazón para trasplante, se recogió para el estudio el exceso de tejido aórtico ascendiente. Se obtuvieron las muestras de pacientes durante cirugía de raíz aórtica, electiva o de emergencia, por una disección de aneurisma aórtico. Se recogieron los datos clínicos del paciente manteniendo su anonimato. Los tejidos fueron fijados inmediatamente, se guardaron a temperatura ambiente 48 h y se incluyeron en parafina. La extracción de ADN y ARN de las secciones parafinadas se llevó a cabo con el kit All Prep DNA/RNA FFPE (Quiagen). The study was approved by the ethics and clinical research committee of the Carlos III Health Institute and the University of Cantabria (B2017/BMD-3676 AORTASANA-CM, ref. 27/2013; respectively). Control aortas were obtained anonymously from transplant organ donors after written consent was obtained from the families. During preparation of the heart for transplantation, excess ascending aortic tissue was collected for study. Samples were obtained from patients during elective or emergency aortic root surgery for aortic aneurysm dissection. The patient's clinical data was collected while maintaining his anonymity. Tissues were immediately fixed, stored at room temperature for 48 h, and embedded in paraffin. DNA and RNA extraction from the paraffin-embedded sections was carried out with the All Prep DNA/RNA FFPE kit (Quiagen).
Análisis estadísticos Statistical analysis
Se usó el software GraphPad Prism 6.01 para el análisis. Las diferencias se analizaron mediante medidas unidireccionales, bidireccionales, o por medidas repetidas con un análisis de vahanza bidirectional (ANOVA) y con el test post hoc de Newmann (experimentos con grupos > 3), de manera adecuada. Para las curvas de supervivencia, se analizaron las 24 diferencias con un test de log-rank (Mantel-Cox). La significación estadística fue asignada a *P<0,05, **P<0,01 , ***P<0.001 y ****P<0,0001 . El tamaño de muestra se escogió de manera empírica en base a experiencia previa en el cálculo de variabilidad experimental, no se usó un método estadístico para predeterminar el tamaño de la muestra. Valores atípicos se identificaron y se excluyeron usando el software GraphPad Prism. El número de animales usados se describe en las correspondientes leyendas de las figuras. Todos los experimentos fueron llevados a cabo con al menos 3 réplicas biológicas. Los grupos experimentales fueron equilibrados en función de edad animal, género y peso. Los animales fueron genotipados antes de los experimentos y, todos ellos estuvieron recluidos juntos y tratados de la misma manera. Se escogieron tests apropiados de acuerdo con la distribución de los datos. La vañanza fue comparable entre grupos en los experimentos descritos en el presente documento. Para el resto de los experimentos, no se usó ninguna aleatoñzación para asignar animales a grupos experimentales. GraphPad Prism 6.01 software was used for analysis. Differences were analyzed by unidirectional, bidirectional, or repeated measures with bidirectional variance analysis (ANOVA) and Newmann's post hoc test (experiments with groups > 3), appropriately. For the survival curves, we analyzed the 24 differences with a log-rank test (Mantel-Cox). Statistical significance was assigned to *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. The sample size was chosen empirically based on previous experience in calculating experimental variability; a statistical method was not used to predetermine the sample size. Outliers were identified and excluded using GraphPad Prism software. The number of animals used is described in the corresponding figure legends. All experiments were carried out with at least 3 biological replicates. The experimental groups were balanced according to animal age, gender and weight. The animals were genotyped before the experiments and all of them were confined together and treated in the same way. Appropriate tests were chosen according to the distribution of the data. The variance was comparable between groups in the experiments described herein. For the rest of the experiments, no randomization was used to assign animals to experimental groups.
Ejemplo 1 : Cambios metabólicos en el síndrome de Marfan. Example 1: Metabolic changes in Marfan syndrome.
El modelo animal de ratón ppnicio39G + reproduce la dilatación aórtica, aneurismas y las características histológicas de la degeneración aórtica de capa medial encontrada en pacientes con síndrome de Marfan. Para identificar los mecanismos moleculares subyacentes de la formación de AA de etiología hereditaria se llevaron a cabo análisis transcripcionales de aortas de ratones ppnicio39G/+ gracias a Ingenuity Pathway Analysis (IPA), se observó que 6 de los 10 mecanismos canónicos más alterados se relacionan con el metabolismo, incluyendo la fosforilación oxidativa, disfunción mitocondrial, -oxidación de ácidos grasos (FAO) y el ciclo del ácido tricarboxílico (TCA), tal como se muestra en la figura 1A. La predicción IPA de los reguladores importantes describió reguladores típicos encontrados del síndrome de Marfan (MFS) como la sintasa de óxido nítrico inducible (Nos2) y el factor de crecimiento beta 1 (Tgfbl). Este análisis apuntó hacia un aumento de la actividad del regulador glicolítico Factor Inducible por Hipoxia (Hifla) y a una reducción de la activad de los reguladores de la biogénesis y de la función mitocondrial, incluyendo Tfam (Figura 1 B). Las aortas ppnic1°39G + mostraron una reducción de la expresión de todas las subunidades de complejos mitocondhales, incluidos los genes de codificación de núcleo y mitocondhas, así como los genes relativos a la FAO y a la biogénesis y función mitocondrial (Tfam, Ppara, Pparg Ppargda, Ppargdb, y Sod2). Por el contrario, los genes involucrados en el desacoplamiento mitocondrial (Ucp2) y la reconducción glicolítica del metabolismo (Hifla, Myc) estaban aumentados (Figura 1C). El análisis de PCR-RTq confirmó la expresión reducida de Tfam (Figura 1 D). Los niveles de ADNmt del control de Tfam y el análisis del contenido de ADNmt relativo en aortas ppnicio39G + mostró un contenido de ADNmt menor del normal (Figura 1 E). 25 The pp n icio39G + mouse animal model reproduces aortic dilatation, aneurysms, and histologic features of medial layer aortic degeneration found in patients with Marfan syndrome. To identify the underlying molecular mechanisms of the formation of AA of hereditary etiology, transcriptional analyzes of aortas from pp nitio39G /+ mice were carried out thanks to Ingenuity Pathway Analysis (IPA), it was observed that 6 of the 10 most altered canonical mechanisms were related to metabolism, including oxidative phosphorylation, mitochondrial dysfunction, fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, as shown in Figure 1A. The IPA prediction of important regulators described typical regulators found in Marfan syndrome (MFS) such as inducible nitric oxide synthase (Nos2) and growth factor beta 1 (Tgfbl). This analysis pointed to an increase in the activity of the glycolytic regulator Hypoxia Inducible Factor (Hifla) and a reduction in the activity of regulators of biogenesis and mitochondrial function, including Tfam (Figure 1B). The pp n i c1 °39G + aortas showed reduced expression of all subunits of mitochondrial complexes, including genes encoding the nucleus and mitochondhas, as well as genes related to FAO and mitochondrial biogenesis and function (Tfam, Ppara, Pparg Ppargda, Ppargdb, and Sod2). In contrast, genes involved in mitochondrial uncoupling (Ucp2) and glycolytic redirection of metabolism (Hifla, Myc) were upregulated (Figure 1C). RTq-PCR analysis confirmed the reduced expression of Tfam (Figure 1D). Tfam control mtDNA levels and relative mtDNA content analysis in pp start 39G + aortas showed lower than normal mtDNA content (Figure 1E). 25
Para modelizar el síndrome de Marfan in vitro, se silenció Fbn1 en vectores lentivirales en CMLVs primarias murinas (Figura 2). Las shFbnl -CML\/s tenían una expresión reducida de manera significativa de Tfam y Ppargda, confirmando los datos obtenidos con los ratones modelo de Marfan (Figura 1 F), que estaba correlacionada con una reducción en el contenido de ADNmt (Figura 1G). El análisis de flujo de la velocidad de consumo de oxígeno (OCR), índice de la fosforilación oxidativa mitocondrial (OXPHOS), reveló una reducción de la respiración mitocondrial en células con Fbn1 -silenciado (Figura 1 H). Esto estaba acompañado por un aumento de la producción extracelular de lactato, un indicador de glicolisis (Figura 11).To model Marfan syndrome in vitro, Fbn1 was silenced in lentiviral vectors in primary murine VSMCs (Figure 2). The shFbnl -CML\/s had significantly reduced expression of Tfam and Ppargda, confirming the data obtained with the Marfan model mice (Figure 1F), which was correlated with a reduction in mtDNA content (Figure 1G). . Flow analysis of the oxygen consumption rate (OCR), index of mitochondrial oxidative phosphorylation (OXPHOS), revealed reduced mitochondrial respiration in Fbn1-silenced cells (Figure 1H). This was accompanied by an increase in extracellular lactate production, an indicator of glycolysis (FIG. 11).
Para confirmar estas observaciones en muestras humanas, se midió el ADNmt y la expresión de los genes de función mitocondrial en aortas de pacientes de síndrome de Marfan. En comparación con muestras control de sujetos sanos, las muestras de aneurismas aórticos de pacientes de síndrome de Marfan mostraron niveles significativamente más bajos de ADNmt (Figura 1 J) y transcripción reducida de genes codificadores de complejos mitocondriales (MT- ND1, SDHA, SDHB, CYCS, MTCO1, y MT-ATP6) o que involucran la función mitocondrial (TFAM, PPARA, PPARG y PPARG1A). Además, las muestras de aneurisma mostraron una regulación aumentada de genes involucrados en el desacoplamiento mitocondrial y la reconducción glicolítica del metabolismo (Figura 1 K). El análisis histológico de las proteínas mitocondriales MT-ND1 , SDHA, y TFAM y de los genes relacionados con la glicolisis HIF1A and MYC (figura 1 L). La co-inmunotinción de actina muscular lisa (SMA) confirmó que la regulación disminuida de los genes mitocondriales era específica a CMLVs. Además, el análisis in vitro de la capacidad respiratoria mitocondrial en cultivos de fibroblastos primarios dérmicos de individuos de síndrome de Marfan y de cuatro donantes sanos mostró la relación entre el síndrome de Marfan y una OCR reducida, elevada producción de lactato y menor contenido de ADNmt (Figuras 1 M, 1 N y 1 P). En línea con las conclusiones obtenidas en aortas humanas de síndrome de Marfan, fibroblastos primarios dérmicos de síndrome de Marfan mostraron un contenido bajo de ARNm de MTND1, SDHA, MT-CO1, MT-AP6, TFAM, y PRARGC1A, y una expresión elevada de UCP2, HIF1A y MYC (Fig. 1 Q). Estos datos sugieren que las aortas de ratones de síndrome de Marfan y de pacientes humanos sufren un declive en la respiración mitocondrial y una reconducción del metabolismo hacia la glicolisis. To confirm these observations in human samples, mtDNA and mitochondrial function gene expression were measured in aortas from Marfan syndrome patients. Compared with control samples from healthy subjects, aortic aneurysm samples from Marfan syndrome patients showed significantly lower levels of mtDNA (Figure 1J) and reduced transcription of genes encoding mitochondrial complexes (MT-ND1, SDHA, SDHB, CYCS, MTCO1, and MT-ATP6) or that involve mitochondrial function (TFAM, PPARA, PPARG, and PPARG1A). Furthermore, the aneurysm samples showed an upregulation of genes involved in mitochondrial uncoupling and glycolytic redirection of metabolism (Figure 1K). Histological analysis of the mitochondrial proteins MT-ND1 , SDHA, and TFAM and of the genes related to glycolysis HIF1A and MYC (figure 1L). Smooth muscle actin (SMA) co-immunostaining confirmed that the downregulation of mitochondrial genes was specific to VSMCs. In addition, in vitro analysis of mitochondrial respiratory capacity in primary dermal fibroblast cultures from individuals with Marfan syndrome and from four healthy donors showed the relationship between Marfan syndrome and reduced OCR, elevated lactate production, and lower mtDNA content. (Figures 1M, 1N and 1P). In line with the findings in human Marfan syndrome aortas, primary Marfan syndrome dermal fibroblasts showed low mRNA content of MTND1, SDHA, MT-CO1, MT-AP6, TFAM, and PRARGC1A, and high expression of UCP2, HIF1A and MYC (Fig. 1Q). These data suggest that the aortas of Marfan syndrome mice and human patients suffer from a decline in mitochondrial respiration and a redirection of metabolism toward glycolysis.
Ejemplo 2: el metabolismo glicolítico en CMLVs causa aneurisma aórtico similares a los encontrados en síndrome de Marfan Example 2: Glycolytic metabolism in VSMCs causes aortic aneurysms similar to those found in Marfan syndrome
Para investigar si la reconducción del metabolismo hacia la glicolisis en el síndrome de Marfan juega un papel en la adquisición de un fenotipo sintético y la progresión de la enfermedad aórtica, se forzó la conversión de células CMLVs en células glicolíticas mediante depleción de 26 To investigate whether the redirection of metabolism towards glycolysis in Marfan syndrome plays a role in the acquisition of a synthetic phenotype and the progression of aortic disease, the conversion of VSMCs to glycolytic cells was forced by depletion of 26
Tfam in vitro e in vivo. Para los experimentos in vitro se transdujeron CMLVs aórticas de ratones Tfamflox/flox con vectores lentivirales codificando la recombinasa Cre (LV-Cre). La eliminación de Tfam se confirmó analizando los niveles de ARNm de Tfam y los niveles de proteína (Fig. 4A y B) frente a un control que no codificaba la recombinasa Cre (LV-Mock). De acuerdo con su papel regulador de los niveles de ADNmt, la eliminación de Tfam en CMLVs produjo una reducción del contenido de ADNmt, una expresión reducida de los genes codificados por ADNmt Mt-Co1 y Mt-Nd1, una OCR reducida y un incremento de producción de lactato (figuras 4A-D). También se observaron disminuciones drásticas de la expresión de ARNm de genes involucrados en la contractibilidad, tales como miosina de cadena pesada de músculo liso (Myh1 ), actina de músculo liso (Acta2), transgelina (Tglrí), calponina (Cnn ) y smoothelin (Smtrí) (fig. 4E). Además, esto estuvo acompañada de una expresión de ARNm de genes relacionados con el fenotipo de secreción, tales como osteopoyetinal (Spp ), metaloproteinasa-9 (Mmp9) y la sintasa de óxido nítrico inducible (Nos2) (Fig. 4F). La expresión aumentada de Mmp9 estaba acompañada de un incremento marcado de la actividad enzimática de Mmp9 en sobrenadantes celulares (Fig. 4F). Estos datos sugieren que la respiración mitocondñal controla las propiedades contráctiles de las CMLVs, mientras que las condiciones glicolíticas mueven estas células hacia un fenotipo secretor. Tfam in vitro and in vivo. For in vitro experiments, aortic VSMCs from Tfam flox/flox mice were transduced with lentiviral vectors encoding Cre recombinase (LV-Cre). Tfam deletion was confirmed by analyzing Tfam mRNA levels and protein levels (Fig. 4A and B) against a control that did not encode Cre recombinase (LV-Mock). Consistent with its regulatory role in mtDNA levels, deletion of Tfam in VSMCs resulted in reduced mtDNA content, reduced expression of mtDNA-encoded genes Mt-Co1 and Mt-Nd1, reduced OCR, and increased lactate production (Figures 4A-D). Drastic decreases in mRNA expression of genes involved in contractility, such as smooth muscle heavy chain myosin (Myh1), smooth muscle actin (Acta2), transgelin (Tglrí), calponin (Cnn), and smoothelin ( Smtri) (fig. 4E). Furthermore, this was accompanied by mRNA expression of genes related to the secretion phenotype, such as osteopoietinal (Spp), metalloproteinase-9 (Mmp9), and inducible nitric oxide synthase (Nos2) (Fig. 4F). The increased expression of Mmp9 was accompanied by a marked increase in Mmp9 enzymatic activity in cell supernatants (FIG. 4F). These data suggest that mitochondrial respiration controls the contractile properties of VSMCs, while glycolytic conditions move these cells toward a secretory phenotype.
Para analizar el efecto de la eliminación de Tfam en CMLVs in vivo, se cruzaron ratones Tfamflox/flox con ratones que expresan la proteína de fusión CreERT2 bajo el promotor (Myh11- CreERT2) de miosina de músculo liso (Myh1 ). El análisis después de 28 semanas de tratamiento con tamoxifeno (Tmx) confirmó una abrogación efectiva de la expresión de Tfam en aortas de ratones Myh11-CreERT2 Tfamfíox/flox, pero no en ratones Myh11-CreERT2 Tfam'7'717'7'71 (ratones SM-Tfam'7' y SM-Tfam+/+, respectivamente), tratados con tamoxifeno (Fig. 3A). La eliminación de Tfam estuvo acompañada por un menor contenido de ADNmt (Figura 3A). El análisis de vida media mostró un descenso significativo en la supervivencia con un 100% de mortalidad en ratones SM-Tfam'' antes de las 33 semanas después del tratamiento con tamoxifeno (Fig. 3B). El análisis longitudinal del fenotipo vascular reveló una presión sanguínea menor junto con un diámetro aórtico mayor (Fig 3C y D). El análisis histológico de ratones SM-Tfam'7' 28 semanas después de tratamiento con tamoxifeno reveló disecciones aórticas, hematomas intramurales (IMH) y degeneración medial con degradación de lámina de elastina y acumulación de proteoglicano en la aorta ascendiente. To test the effect of Tfam knockdown in VSMCs in vivo, Tfam flox/flox mice were crossed with mice expressing the Cre ERT2 fusion protein under the smooth muscle myosin ( Myh1 ) promoter (Myh11-Cre ERT2). Analysis after 28 weeks of tamoxifen (Tmx) treatment confirmed effective abrogation of Tfam expression in aortas from Myh11-Cre ERT2 Tfam fiox/flox mice , but not in Myh11-Cre ERT2 Tfam' 7 ' 717 ' 7 mice. '71 (SM-Tfam ' 7 ' and SM-Tfam +/+ mice, respectively), treated with tamoxifen (FIG. 3A). Tfam deletion was accompanied by lower mtDNA content (Figure 3A). Half-life analysis showed a significant decrease in survival with 100% mortality in SM-Tfam'' mice before 33 weeks after tamoxifen treatment (FIG. 3B). Longitudinal analysis of the vascular phenotype revealed a lower blood pressure along with a larger aortic diameter (Fig 3C and D). Histological analysis of SM-Tfam' 7 ' mice 28 weeks after tamoxifen treatment revealed aortic dissections, intramural hematomas (IMH), and medial degeneration with elastin lamina degradation and proteoglycan accumulation in the ascending aorta.
Para evaluar cómo responden ratones SM-Tfam'' a un test hipertensivo, se infundió Angll en ratones SM-Tfam'7' y SM-Tfam+ + 56 días después de tratamiento con tamoxifeno (fig. 3E). El análisis de la presión sanguínea mostró un incremento suave en ratones SM-Tfamr7' (Fig. 3F). Además, mediante ecografías se apreció un incremento rápido del diámetro de las aortas 27 ascendiente (AsAo) y abdominal (AbAo) de los ratones SM-Tfanr', apoyando la predisposición de dichos ratones a desarrollar aneurismas aórticos. De manera más importante, el tratamiento de S M-Tf a rrr' con Angll produjo aneurismas aórticos y disecciones aórticas letales rápidamente, reduciendo la supervivencia media (F¡. 3G). El análisis post mortem reveló la presencia de hematomas intramurales (HIM) y rupturas aórticas con hemotórax o hemoabdomen (Fig. 3H). El análisis histológico de las secciones aórticas torácicas y abdominales mostraron un incremento del diámetro aórtico, disecciones aórticas, HIM, formación de lumen falsa y características de degeneración medial, incluyendo fragmentación de fibras elásticas y arquitectura vascular que demuestran que el declive de la respiración mitocondrial en CMLVs induce aneurismas aórticos y disecciones letales en modelos animales de Marfan. To assess how SM-Tfam'' mice respond to a hypertensive test, AngII was infused into SM-Tfam' 7 ' and SM-Tfam + + mice 56 days after tamoxifen treatment (FIG. 3E). Blood pressure analysis showed a mild increase in SM-Tfamr 7 ' mice (Fig. 3F). In addition, ultrasound showed a rapid increase in the diameter of the aortae. 27 ascending (AsAo) and abdominal (AbAo) of SM-Tfanr' mice, supporting the predisposition of these mice to develop aortic aneurysms. More importantly, treatment of S M-Tf a rrr' with AngII produced rapidly fatal aortic aneurysms and aortic dissections, reducing median survival (Fj. 3G). Post-mortem analysis revealed the presence of intramural hematomas (IMH) and aortic ruptures with hemothorax or hemoabdomen (Fig. 3H). Histologic analysis of thoracic and abdominal aortic sections showed increased aortic diameter, aortic dissections, MIH, false lumen formation, and features of medial degeneration, including elastic fiber fragmentation and vascular architecture demonstrating that decline in mitochondrial respiration in VSMCs induce lethal aortic aneurysms and dissections in Marfan animal models.
Ejemplo 3: La mejora del metabolismo mitocondrial restablece la contractibilidad en CMLVs que tienen mutaciones de aneurismas aórticos hereditarios. Example 3: Enhancement of mitochondrial metabolism restores contractility in VSMCs having hereditary aortic aneurysm mutations.
NAD+ es un cofactor de vahos enzimas con funciones críticas en la actividad mitocondrial y en la salud metabólica, y la suplementación con precursores de NAD+ ha estado propuesta como estrategia para mejorar las funciones mitocondriales en varias enfermedades relacionadas con el declive mitocondrial (Verdin et al., Science, 2015. 350(6265): p. 1208-13; Prolla et al., Cell Metab, 2014. 19(2): p. 178-80). Para investigar el potencial terapéutico de una potenciación del metabolismo mitocondrial con NAD+ en aneurismas aórticos hereditarios se trataron shFbn1-CM\_\/s con nicotinamida hbósido (NR). NR incrementó la OCR y disminuyó la producción de lactato en shFbn 1-CMLVs a niveles encontrados en shFbnl- CMLVs de control (Fig. 6A y B). Estudios previos habían indicado que NR controla el metabolismo mitocondrial incrementado la expresión de Ppargda y Tfam a través de la actividad de sirtuina. La exposición de shFbn1-CM\_\/s a NR durante 5 días incrementó la expresión de Ppargla y Tfam mostrando una correlación con un incremento en el ADNmt y la expresión de ADNmt codificante del transcrito de Mt-Co1 (Fig. 6C, D). El tratamiento de shFbn 1-CMLVs con NR también incrementó la intensidad de fluorescencia de actina polimehzada (F-actina), un índice de contractibilidad de CMLVs, mientras que disminuyó la expresión y actividad de la matriz pro-remodeladora de las metaloproteinasas Mmp9 y Mmp2 y de los genes pro-fibróticos Spp1 y Collagenl (CoHaT) (Fig. 6E), a la vez que restauró el contenido de ADNmt y los niveles de ARNm de MT-CO1, MT-ND6, TFAM, y HIF1A (Fig. 6I). Adicionalmente, el tratamiento con NR redujo la expresión de las proteínas de colagenol la matriz extracelular (MEC) (COL1A1) y de agrecano (A CAN) y de los factores pro-fibróticos TGFB3 y del factor de crecimiento de tejido conectivo (CNN2) (Fig. 6J). 28 NAD+ is a cofactor for several enzymes with critical roles in mitochondrial activity and metabolic health, and supplementation with NAD+ precursors has been proposed as a strategy to improve mitochondrial functions in several diseases related to mitochondrial decline (Verdin et al. , Science, 2015. 350(6265): pp. 1208-13, Prolla et al., Cell Metab, 2014. 19(2): pp. 178-80). To investigate the therapeutic potential of an enhancement of mitochondrial metabolism with NAD+ in hereditary aortic aneurysms, shFbn1-CM\_\/s were treated with nicotinamide hboside (NR). NR increased OCR and decreased lactate production in shFbn 1-VSMCs to levels found in control shFbnl-VSMCs (Fig. 6A and B). Previous studies have indicated that NR controls mitochondrial metabolism by increasing the expression of Ppargda and Tfam through sirtuin activity. Exposure of shFbn1-CM\_\/s to NR for 5 days increased the expression of Ppargla and Tfam showing a correlation with an increase in mtDNA and the expression of mtDNA encoding the Mt-Co1 transcript (Fig. 6C, D). . Treatment of shFbn 1-VSMCs with NR also increased the fluorescence intensity of polymehzada actin (F-actin), an index of VSMC contractility, while it decreased the expression and activity of the pro-remodeling matrix metalloproteinases Mmp9 and Mmp2. and the pro-fibrotic genes Spp1 and Collagenl (CoHaT) (Fig. 6E), while restoring the mtDNA content and mRNA levels of MT-CO1, MT-ND6, TFAM, and HIF1A (Fig. 6I ). Additionally, NR treatment reduced the expression of collagen extracellular matrix (ECM) (COL1A1) and aggrecan (A CAN) proteins and of the pro-fibrotic factors TGFB3 and connective tissue growth factor (CNN2) ( Fig. 6J). 28
Para explorar si el metabolismo mitocondrial también se ve afectado en otros aneurismas aórticos hereditarios, se obtuvieron modelos de otros aneurismas aórticos hereditarios mediante la sobreexpresión de mutaciones causantes de dichas enfermedades en CMLVs primarios. Para imitar formas familiares de disecciones y aneurismas torácicos y de síndrome de Loeys-Dietz, se usaron vectores lentivirales para sobreexpresar Acta2R179H y TGFBR2G357W, respectivamente. La sobreexpresión de Acta2R179H y TGFBR2G357W redujo el OCR, el contenido de ADNmt y la expresión de ARNm de los reguladores mitocondriales, mientras que incrementó los niveles de lactato extracelular (Fig. 7A-C), sugiriendo que las mutaciones de aneurismas aórticos fuerzan un uso predomintante de la glicólisis como fuente de energía celular. La incubación de las células con NR revirtió el efecto de ambas mutaciones para dichos parámetros metabólicos (Fig. 7A-C). Además, el uso de NR también permitió incrementar la contractibilidad, medida por la polimerización de F-actina mientras que produjo una disminución de la expresión y reducir la actividad de la matriz de metaloproteinasas y de otros marcadores de secreción (Fig. 7D). Estos datos indican que en las CMLVs afectadas por aneurismas aórticos de origen genético se produce un cambio del metabolismo de OXPHOS hacia la glicólisis, y que la mejora del estado metabólico mitocondrial in vitro restaura su fenotipo de contractibilidad. To explore whether mitochondrial metabolism is also affected in other hereditary aortic aneurysms, models of other hereditary aortic aneurysms were obtained by overexpression of disease-causing mutations in primary VSMCs. To mimic familial forms of thoracic aneurysms and dissections and Loeys-Dietz syndrome, lentiviral vectors were used to overexpress Acta2 R179H and TGFBR2 G357W , respectively. Overexpression of Acta2 R179H and TGFBR2 G357W reduced OCR, mtDNA content, and mRNA expression of mitochondrial regulators, while increasing extracellular lactate levels (Fig. 7A-C), suggesting that aortic aneurysm mutations force a predominant use of glycolysis as a source of cellular energy. Incubation of cells with NR reversed the effect of both mutations for these metabolic parameters (Fig. 7A-C). In addition, the use of NR also allowed to increase the contractility, measured by the polymerization of F-actin while it produced a decrease in the expression and reduced the activity of matrix metalloproteinases and other secretion markers (Fig. 7D). These data indicate that in VSMCs affected by genetic aortic aneurysms, there is a change in the metabolism of OXPHOS towards glycolysis, and that the improvement of the mitochondrial metabolic state in vitro restores its contractility phenotype.
Ejemplo 4: El tratamiento con nicotinamida ribósido revierte el aneurisma en un modelo de ratón de síndrome de Marfan Example 4: Nicotinamide Riboside Treatment Reverses Aneurysm in a Mouse Model of Marfan Syndrome
Se evaluó el potencial terapéutico de NR para prevenir y revertir el desarrollo de aneurismas en ratones modelo de síndrome de Marfan modulando su metabolismo mitocondrial. Ratones Fbn1c1039G/+ de 16 semanas de edad recibieron inyecciones intraperitoneales de NR en días alternos durante 28 días (Fig. 5A; Fig. 8A). La dilatación aórtica y la presión sanguínea se normalizaron completamente después de 7 días de tratamiento en ratones macho y hembra (Fig. 5B, Fig. 8B). Además, el tratamiento con NR fue capaz de revertir características histológicas de degeneración en dicho modelo de síndrome de Marfan, tales como el espesor medial, la fragmentación de fibras elásticas, la deposición de proteoglicanos y la polimerización de actina (Fig. 5C y Fig. 8C). El tratamiento con NR también restauró la expresión de ARNm de Tfam y Mt-Co1 el contenido de ADNmt a niveles normales (Fig. 5D yE). The therapeutic potential of NR to prevent and reverse the development of aneurysms in Marfan syndrome model mice by modulating their mitochondrial metabolism was evaluated. 16-week-old Fbn1 c1039G/+ mice received intraperitoneal injections of NR every other day for 28 days (Fig. 5A; Fig. 8A). Aortic dilatation and blood pressure completely normalized after 7 days of treatment in male and female mice (Fig. 5B, Fig. 8B). In addition, NR treatment was able to reverse histological characteristics of degeneration in this Marfan syndrome model, such as medial thickness, elastic fiber fragmentation, proteoglycan deposition, and actin polymerization (Fig. 5C and Fig. 8C). NR treatment also restored Tfam mRNA expression and Mt-Co1 mtDNA content to normal levels (Fig. 5D and E).
Para caracterizar el efecto del tratamiento con NR a nivel molecular, se llevó a cabo la secuenciación de ARN en aortas de ratones modelo de síndrome de Marfan y en ratones de control sanos. La agrupación jerárquica y el análisis transcriptómico reveló que el tratamiento con NR revirtió los cambios transcripcionales observados en aortas Fbn1c1039G/+, cambiando 29 los niveles de expresión a niveles más cercanos a los del control que a los de ratones Pbn icio39G/+ E| tratamiento con NR incrementó los niveles de expresión de algunos factores de transcripción involucrados en el mantenimiento del fenotipo contráctil y en los genes relacionados con el aparato de contracción del músculo liso, tales como la actina de músculo liso (Acta2) y calponinal (Cnn1) (Fig 5F). Así, el potenciamiento de las funciones mitocondriales con NR restablece rápidamente la firma transcripcional y propiedades contráctiles del músculo liso aórtico en ratones modelo de síndrome de Marfan y revierte completamente la remodelación de la pared aórtica, la dilatación aórtica y la degeneración medial. To characterize the effect of NR treatment at the molecular level, RNA sequencing was performed on aortas from Marfan syndrome model mice and healthy control mice. Hierarchical clustering and transcriptomic analysis revealed that NR treatment reversed the transcriptional changes observed in Fbn1 c1039G/+ aortas, changing 29 the expression levels to levels closer to those of the control than to those of Pb initio39G /+ E mice | NR treatment increased the expression levels of some transcription factors involved in the maintenance of the contractile phenotype and genes related to the smooth muscle contraction apparatus, such as smooth muscle actin (Acta2) and calponinal (Cnn1) ( Fig5F). Thus, enhancement of mitochondrial functions with NR rapidly restores the transcriptional signature and contractile properties of aortic smooth muscle in Marfan syndrome model mice and completely reverses aortic wall remodeling, aortic dilatation, and medial degeneration.

Claims

REIVINDICACIONES
1 . Precursor de nicotinamida adenina dinucleótido (NAD+), para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria (AAH) que se caracteriza por la presencia de una respiración mitocondrial deficiente. 1 . Nicotinamide adenine dinucleotide (NAD+) precursor, for use in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology (HAA) characterized by the presence of impaired mitochondrial respiration.
2. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con la reivindicación 1 , en el que el aneurisma aórtico de etiología hereditaria (AAH) se selecciona entre el grupo que consiste en: síndrome de Marfan, síndrome de Loeys-Dietz, síndrome de Ehlers-Danlos de tipo vascular, síndrome de Cutis laxa y formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. 2. Nicotinamide adenine dinucleotide precursor for use according to claim 1, wherein the aortic aneurysm of hereditary etiology (AAH) is selected from the group consisting of: Marfan syndrome, Loeys-Dietz syndrome, Ehlers syndrome -Danlos of vascular type, Cutis laxa syndrome and Familial forms of Non-syndromic Thoracic Aneurysms and Dissections.
3. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 o 2, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) se selecciona entre: niacina (NA) o ácido nicotínico; nicotinamida (NAM); nicotinamida ribósido (NR); nicotinamida mononucleótido (NMN); ácido nicotínico mononucleótido; y ácido nicotínico adenina dinucleótido; o combinaciones de los mismos. 3. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 or 2, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is selected from: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
4. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es niacina (NA) o ácido nicotínico. 4. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is niacin (NA) or nicotinic acid.
5. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida (NAM). 5. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is nicotinamide (NAM).
6. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida ribósido (NR). 6. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is nicotinamide riboside (NR).
7. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida mononucleótido (NMN). 31 7. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is nicotinamide mononucleotide (NMN). 31
8. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico mononucleótido. 8. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is nicotinic acid mononucleotide.
9. Precursor de nicotinamida adenina dinucleótido para uso de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico adenina dinucleótido. 9. Nicotinamide adenine dinucleotide precursor for use according to any of claims 1 to 3, wherein the nicotinamide adenine dinucleotide (NAD + ) precursor is nicotinic acid adenine dinucleotide.
10. Composición farmacéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente farmacéuticamente aceptable, para uso en la prevención de la aparición y/o el tratamiento de un aneurisma aórtico de etiología hereditaria (AAH) que se caracteriza por la presencia de una respiración mitocondrial deficiente. 10. Pharmaceutical composition comprising at least one precursor of nicotinamide adenine dinucleotide (NAD+) and at least one pharmaceutically acceptable excipient, for use in the prevention of the appearance and/or treatment of an aortic aneurysm of hereditary etiology (HAA) that occurs characterized by the presence of impaired mitochondrial respiration.
11. Composición farmacéutica para uso de acuerdo con la reivindicación 10, en el que el aneurisma aórtico de etiología hereditaria (AAH) se selecciona entre el grupo que consiste en: síndrome de Marfan, síndrome de Loeys-Dietz, síndrome de Ehlers-Danlos de tipo vascular, síndrome de Cutis laxa y formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. 11. Pharmaceutical composition for use according to claim 10, wherein the hereditary aortic aneurysm (HAA) is selected from the group consisting of: Marfan syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome of vascular type, Cutis laxa syndrome and Familial forms of non-syndromic Thoracic Aneurysms and Dissections.
12. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 u 11 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) se selecciona entre el grupo que consiste en: niacina (NA) o ácido nicotínico; nicotinamida (NAM); nicotinamida ribósido (NR); nicotinamida mononucleótido (NMN); ácido nicotínico mononucleótido; y ácido nicotínico adenina dinucleótido; o combinaciones de los mismos. 12. Pharmaceutical composition for use according to any of claims 10 or 11, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is selected from the group consisting of: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
13. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es niacina (NA) o ácido nicotínico. 13. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid.
14. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida (NAM). 32 14. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM). 32
15. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida ribósido (NR). 15. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide riboside (NR).
16. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida mononucleótido (NMN). 16. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
17. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico mononucleótido. 17. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid mononucleotide.
18. Composición farmacéutica para uso de acuerdo con cualquiera de las reivindicaciones 10 a 12, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico adenina dinucleótido. 18. Pharmaceutical composition for use according to any of claims 10 to 12, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid adenine dinucleotide.
19. Composición nutracéutica que comprende al menos un precursor de nicotinamida adenina dinucleótido (NAD+) y al menos un excipiente nutracéuticamente aceptable, para uso en la prevención de la aparición de un aneurisma aórtico de etiología hereditaria (AAH)que se caracteriza por la presencia de una respiración mitocondrial deficiente. 19. Nutraceutical composition comprising at least one nicotinamide adenine dinucleotide (NAD+) precursor and at least one nutraceutically acceptable excipient, for use in preventing the appearance of an aortic aneurysm of hereditary etiology (HAA) characterized by the presence of poor mitochondrial respiration.
20. Composición nutracéutica para uso de acuerdo con la reivindicación 19, en el que el aneurisma aórtico de etiología hereditaria (AAH) se selecciona entre el grupo que consiste en: síndrome de Marfan, síndrome de Loeys-Dietz, síndrome de Ehlers-Danlos de tipo vascular, síndrome de Cutis laxa y formas Familiares de Disecciones y Aneurismas Torácicos no sindrómicos. 20. Nutraceutical composition for use according to claim 19, wherein the hereditary aortic aneurysm (HAA) is selected from the group consisting of: Marfan syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome of vascular type, Cutis laxa syndrome and Familial forms of non-syndromic Thoracic Aneurysms and Dissections.
21. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 o 20, en el que el precursor de nicotinamida adenina dinucleótido (NAD+) se selecciona entre el grupo que consiste en: niacina (NA) o ácido nicotínico; nicotinamida (NAM); nicotinamida ribósido (NR); nicotinamida mononucleótido (NMN); ácido nicotínico mononucleótido; y ácido nicotínico adenina dinucleótido; o combinaciones de los mismos. 21. Nutraceutical composition for use according to any of claims 19 or 20, wherein the precursor of nicotinamide adenine dinucleotide (NAD + ) is selected from the group consisting of: niacin (NA) or nicotinic acid; nicotinamide (NAM); nicotinamide riboside (NR); nicotinamide mononucleotide (NMN); nicotinic acid mononucleotide; and nicotinic acid adenine dinucleotide; or combinations thereof.
22. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es niacina (NA) o ácido nicotínico. 33 22. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is niacin (NA) or nicotinic acid. 33
23. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida (NAM). 23. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide (NAM).
24. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida ribósido (NR). 24. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide riboside (NR).
25. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es nicotinamida mononucleótido (NMN). 25. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinamide mononucleotide (NMN).
26. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico mononucleótido. 26. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid mononucleotide.
27. Composición nutracéutica para uso de acuerdo con cualquiera de las reivindicaciones 19 a 21 , en el que el precursor de nicotinamida adenina dinucleótido (NAD+) es el ácido nicotínico adenina dinucleótido. 27. Nutraceutical composition for use according to any of claims 19 to 21, in which the precursor of nicotinamide adenine dinucleotide (NAD + ) is nicotinic acid adenine dinucleotide.
PCT/ES2021/070638 2020-09-04 2021-09-03 Nad+ precursors for use in the prevention and/or treatment of hereditary aortic aneurysms WO2022049320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030906A ES2898240A1 (en) 2020-09-04 2020-09-04 NAD + precursors for use in the prevention and/or treatment of hereditary aortic aneurysms (Machine-translation by Google Translate, not legally binding)
ESP202030906 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022049320A1 true WO2022049320A1 (en) 2022-03-10

Family

ID=80491646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070638 WO2022049320A1 (en) 2020-09-04 2021-09-03 Nad+ precursors for use in the prevention and/or treatment of hereditary aortic aneurysms

Country Status (2)

Country Link
ES (1) ES2898240A1 (en)
WO (1) WO2022049320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115778973A (en) * 2022-11-25 2023-03-14 复旦大学附属中山医院 Application of beta-nicotinamide nucleotide in preparation of medicine for treating aortic aneurysm

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CERUTTI RAFFAELE ET AL.: "NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease", CELL METABOLISM, vol. 19, no. 6, 3 June 2014 (2014-06-03), pages 1042 - 1049, XP055406212, ISSN: 1550-4131, DOI: 10.1016/j.cmet. 2014.04.00 1 *
HORIMATSU TETSUO ET AL.: "Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: role of NAD( )/nicotinamide", CARDIOVASCULAR RESEARCH, vol. 116, no. 14, 1 December 2020 (2020-12-01), pages 2226 - 2238, XP055914686, ISSN: 0008-6363, DOI: 10.1093/cvr/cvz303 *
SARTOR ET AL.: "Strategies to prevent aortic complications in Marfan syndrome", JOURNAL OF THORACIC DISEASE, vol. 9, no. 6, 5 January 2017 (2017-01-05), pages S434 - S438, XP055914693, ISSN: 2072-1439, DOI: 10.21037/jtd. 2017.04.6 9 *
SRIVASTAVA SARIKA: "Emerging therapeutic roles for NAD+ metabolism in mitochondrial and age-related disorders", CLINICAL AND TRANSLATIONAL MEDICINE UNITED STATES, vol. 5, no. 1, 30 November 2016 (2016-11-30), pages 25, XP055914696, ISSN: 2001-1326, DOI: 10.1186/s40169-016-0104-7 pubmed:27465020 *
VAN DER PLUIJM INGRID ET AL.: "Decreased mitocondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation", CARDIOVASCULAR RESEARCH, vol. 114, no. 13, 1 November 2018 (2018-11-01), pages 1776 - 1793, XP055914688, ISSN: 1755-3245, DOI: 10.1093/cvr/cvyl50 *
WATSON ALANNA ET AL.: "Nicotinamide Phosphoribosyltransferase in Smooth Muscle Cells Maintains Genome Integrity, Resists Aortic Medial Degeneration, and is Suppressed in Human Thoracic Aortic Aneurysm Disease", CIRCULATION RESEARCH, vol. 120, no. 12, 9 June 2017 (2017-06-09), pages 1889 - 1902, XP055914692, ISSN: 1524-4571, DOI: 10.1161/CIRCRESAHA.116.310022 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115778973A (en) * 2022-11-25 2023-03-14 复旦大学附属中山医院 Application of beta-nicotinamide nucleotide in preparation of medicine for treating aortic aneurysm

Also Published As

Publication number Publication date
ES2898240A1 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
Ni et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy
Kim et al. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice
Erdely et al. Protection of wistar furth rats from chronic renal disease is associated with maintained renal nitric oxide synthase
ES2913225T3 (en) Valproic acid for the treatment or prevention of pathological conditions associated with excess fibrin deposition and/or thrombus formation
Ben-Shalom et al. Primary hyperoxalurias: diagnosis and treatment
JP2019505559A (en) Methods for improving liver regeneration
US9878010B2 (en) Methods of treating metabolic disorders
del Carmen Asensio-Lopez et al. Pharmacological inhibition of the mitochondrial NADPH oxidase 4/PKCα/Gal-3 pathway reduces left ventricular fibrosis following myocardial infarction
Zhang et al. Novel Pgc-1α/Atf5 Axis partly activates Upr mt and mediates Cardioprotective role of Tetrahydrocurcumin in pathological cardiac hypertrophy
EP3229839A1 (en) New methods and uses
Feng et al. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury
Sun et al. Astragaloside IV ameliorates myocardial infarction induced apoptosis and restores cardiac function
Guan et al. Endoplasmic reticulum stress caused by left ventricular hypertrophy in rats: effects of telmisartan
CN105899211A (en) Treatment of hepatic fibrosis using an inhibitor of CBP/catenin
Wilson et al. Resveratrol prevents pulmonary trunk remodeling but not right ventricular hypertrophy in monocrotaline-induced pulmonary hypertension
WO2022049320A1 (en) Nad+ precursors for use in the prevention and/or treatment of hereditary aortic aneurysms
Yeh Cellular senescence and aging.
Gupta et al. Hypoxia signaling in cardiovascular diseases
Bobrowski et al. Hyperoxaluria and systemic oxalosis: current therapy and future directions
Su et al. Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway
Oosterhuis et al. Targeting multiple pathways reduces renal and cardiac fibrosis in rats with subtotal nephrectomy followed by coronary ligation
van Duin et al. Pulmonary vasodilation by phosphodiesterase 5 inhibition is enhanced and nitric oxide independent in early pulmonary hypertension after myocardial infarction
Chevalier Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations
Iacobazzi et al. Accelerated cardiac aging in patients with congenital heart disease
Abdel-Hamid et al. Peyronie's disease: perspectives on therapeutic targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863767

Country of ref document: EP

Kind code of ref document: A1