WO2022047750A1 - Lbt参数的确定方法、装置、设备及介质 - Google Patents

Lbt参数的确定方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022047750A1
WO2022047750A1 PCT/CN2020/113606 CN2020113606W WO2022047750A1 WO 2022047750 A1 WO2022047750 A1 WO 2022047750A1 CN 2020113606 W CN2020113606 W CN 2020113606W WO 2022047750 A1 WO2022047750 A1 WO 2022047750A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
lbt
cot
time domain
information
Prior art date
Application number
PCT/CN2020/113606
Other languages
English (en)
French (fr)
Inventor
顾昕钰
赵振山
丁伊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102874.1A priority Critical patent/CN115804203A/zh
Priority to PCT/CN2020/113606 priority patent/WO2022047750A1/zh
Publication of WO2022047750A1 publication Critical patent/WO2022047750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a method, apparatus, device and medium for determining a Listen Before Talk (ListenBeforeTalk, LBT) parameter.
  • LBT Listen Before Talk
  • D2D communication refers to direct communication between user equipments within a certain distance, without the need for a base station to relay. Using D2D communication in unlicensed spectrum has become a solution to improve the throughput of the communication system.
  • a D2D terminal accesses an unlicensed frequency band, it needs to use the LBT to obtain the channel occupancy time (Channel Occupation time, COT), and transmit data in the time slot in the COT.
  • COT Channel occupancy time
  • the group cooperation mode is adopted, after a specific terminal, that is, the group head terminal, obtains COT by performing LBT, each time slot in the COT is shared with other terminals for use, and each terminal adopts a fixed time slot allocation mode in the COT completes its own data transmission in one or more time slots.
  • Embodiments of the present application provide a method, apparatus, device, and storage medium for determining an LBT parameter.
  • the technical solution is as follows.
  • a method for determining an LBT parameter is provided, which is applied in a first terminal, and the method includes:
  • the multiple terminals include the first terminal and at least one second terminal, and the first terminal and the second terminal are terminals in the same communication group;
  • LBT parameters are determined according to the first information.
  • an apparatus for determining LBT parameters which is applied in a first terminal, and the apparatus includes:
  • a receiving module configured to acquire first information of multiple terminals, the multiple terminals include the first terminal and at least one second terminal, the first terminal and the second terminal are in the same communication group terminal;
  • a determination module configured to determine the LBT parameter according to the first information.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The processor is configured to load and execute the executable instructions to implement the LBT parameter determination method as described in the above aspects.
  • a computer-readable storage medium in which executable instructions are stored, the executable instructions are loaded and executed by the processor to achieve the above-mentioned aspects The method for determining the LBT parameters described above.
  • a computer program product wherein executable instructions are stored in the computer program product, and the executable instructions are loaded and executed by the processor to implement the LBT parameters described in the above aspects method of determination.
  • a chip for executing the method for determining an LBT parameter as described in the above aspect.
  • the first terminal obtains the first information of the multiple terminals, and the first terminal determines the LBT parameters according to the first information of the multiple terminals, so that the COT that meets the transmission requirements of the multiple terminals can be obtained when the LBT is successful, which not only improves the efficiency of the multiple terminals
  • the communication efficiency during group communication can also avoid waste of communication resources of unlicensed spectrum as much as possible.
  • FIG. 1 is an architecture diagram of a communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application
  • FIG. 4 is a schematic diagram of basic time slot allocation provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of basic time slot allocation and additional time slot allocation provided by an exemplary embodiment of the present application.
  • FIG. 7 is a block diagram of an apparatus for determining an LBT parameter provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Unlicensed spectrum is the spectrum allocated by countries and regions that can be used for radio equipment communication. This spectrum is generally considered to be shared spectrum, that is, communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. To use this spectrum, there is no need to apply for an exclusive spectrum license from the government.
  • a communication device follows the "LBT" principle, that is, before a communication device transmits a signal on an unlicensed spectrum channel, it needs to perform channel listening first, and the communication device can perform signal transmission only when the channel detection result is that the channel is idle. ; If the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot perform signal transmission.
  • LBT Low Channel Occupancy Time
  • LBT methods on unlicensed spectrum include Cat-1LBT, Cat-2LBT, Cat-3LBT and Cat-4LBT, where:
  • Cat-1 LBT can mean that the communication device transmits without channel detection after the end of the gap
  • Cat-2LBT may refer to single-slot channel detection performed by communication equipment, specifically, Cat-2LBT may include single-slot channel detection of 25 microseconds and single-slot channel detection of 16 microseconds;
  • Cat-3LBT may refer to that the channel detection method of the communication device is multi-slot channel detection based on random backoff with fixed contention window size;
  • Cat-4LBT may refer to that the channel detection method of the communication device is multi-slot channel detection based on random fallback based on contention window size adjustment.
  • Cat-4LBT may include different channel access priorities according to the priority of transmission services. 1 is the channel access parameter corresponding to different channel access priorities under Cat-4LBT. The smaller the value of p, the higher the channel access priority.
  • Table 1 shows the channel access parameters corresponding to different channel access priorities. The smaller the value of p is, the higher the channel access priority.
  • mp refers to the number of back-off time slots corresponding to the channel access priority p
  • CW p refers to the contention window size corresponding to the channel access priority p
  • CW min,p refers to the minimum value of CW p corresponding to the channel access priority p
  • CW max,p refers to the maximum value of CW p corresponding to the channel access priority p
  • T mcot,p refers to the channel access priority The maximum occupied time length of the channel corresponding to stage p.
  • T mcot,p is 8 milliseconds or 10 milliseconds is determined according to whether there are other technologies to share the channel, and is generally 10 milliseconds.
  • the manner of determining this value is not within the scope of consideration of the present application, and 10 milliseconds is used as an example in the following description.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system may include: a terminal 10 and a network device 20 .
  • the number of terminals 10 is usually multiple, and one or more terminals 10 may be distributed in a cell managed by each network device 20 .
  • the terminal 10 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem with wireless communication functions, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • D2D communication is used for communication between multiple terminals 10 .
  • one terminal 10 is the group head terminal, and the other terminals 10 are group member terminals.
  • the network device 20 is a device deployed in the access network to provide the terminal 10 with a wireless communication function.
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with network device functions may vary, for example, in 5G NR systems, they are called gNodeBs or gNBs.
  • the name "network equipment” may change.
  • network devices for the convenience of description, in the embodiments of the present application, the above-mentioned apparatuses for providing a wireless communication function for the terminal 10 are collectively referred to as network devices.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, and the NR system may be a communication system supporting NR-U, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • FIG. 2 shows a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application. The method is applied to the first terminal described in FIG. 1, and the method includes:
  • Step 202 acquiring first information of multiple terminals
  • a plurality of terminals are terminals that communicate in a group communication manner.
  • the multiple terminals are terminals using D2D communication.
  • the plurality of terminals are terminals that communicate using unlicensed spectrum.
  • a plurality of terminals are terminals that communicate using the shared COT method.
  • the shared COT mode is a communication mode in which the first terminal shares the obtained time domain unit in the COT with the second terminal after the LBT succeeds.
  • the first terminal is a group head terminal
  • the second terminal is a group member terminal.
  • the time domain unit may be a slot.
  • the sharing mode of COT can be fixed allocation or sequential allocation.
  • the multiple terminals include a first terminal and at least one second terminal.
  • the first terminal and the second terminal are terminals in the same communication group.
  • the plurality of terminals include at least one of a group head terminal and a group member terminal.
  • the multiple terminals include a group head terminal and three group member terminals.
  • the first information is related information when multiple terminals share COT.
  • the first information is related information when the multiple terminals adopt the group communication mode.
  • the first information is information related to the number of time slots required by multiple terminals in the shared COT.
  • the first information includes at least one of the following information:
  • the first quantity is used to indicate the number of terminals participating in the COT sharing, or the first quantity is used to indicate the number of terminals participating in the COT sharing and having data to be sent.
  • the first number is related to the number of time slots required by multiple terminals in the COT. When the first number is larger, the number of time slots required by multiple terminals in the COT is greater; The number of time slots required in the COT is also smaller.
  • the first number includes the number of the first terminal and the second terminal. Alternatively, the first number includes the number of group head terminals and group member terminals.
  • the subcarrier spacing is related to the slot length. For a COT of the same length, under different subcarrier intervals, the number of time slots included in the COT is different.
  • a certain terminal when the amount of data to be sent by the terminal is large, additional time domain units need to be allocated.
  • a certain terminal is the first terminal, and/or a certain terminal is the second terminal.
  • the priority information of the data to be sent of the terminal is used to indicate the importance of the data to be sent. For example, in the scenario of the Internet of Vehicles, data packets used to indicate an accident or distress have a higher priority, and data packets used to indicate instant messaging or online music have a lower priority.
  • the delay information of the data to be sent of the terminal is used to indicate the transmission delay requirement of the data to be sent. For example, data packets used for audio and video calls have higher requirements on transmission delay, while data packets used for navigation map information or online music have lower requirements on transmission delay.
  • the amount of data to be sent is related to whether the terminal needs to allocate additional time domain units.
  • the first terminal receives the first information sent by the second terminal; or, or, the first terminal receives the first information sent by the network device, and the first information is sent by the second terminal to the network device.
  • the first terminal receives the first information sent by the second terminal on the first carrier, where the first carrier is an unlicensed carrier or a licensed carrier.
  • the first carrier is an unlicensed carrier or a licensed carrier.
  • a second terminal performs LBT on an unlicensed frequency band, and after obtaining a COT when the LBT is successful, the COT is used to send (all or part of the information items) the first information to the first terminal, and the first terminal receives the first information. a message.
  • Step 204 Determine LBT parameters according to the first information.
  • the first terminal determines the LBT parameter according to the first information.
  • the LBT parameters include but are not limited to: LBT parameters corresponding to Cat-1 LBT, LBT parameters corresponding to Cat-2 LBT, LBT parameters corresponding to Cat-3 LBT, and LBT parameters corresponding to Cat-4 LBT, as shown in Table 1 above.
  • the LBT parameters include, but are not limited to: at least one of p , mp, CWp , CWmin, p , CWmax, p , and Tmcot,p .
  • m p refers to the number of back-off time slots corresponding to the channel access priority p
  • CW p refers to the contention window size corresponding to the channel access priority p
  • CW min,p refers to the CW corresponding to the channel access priority p
  • the minimum value of p , CW max,p refers to the maximum value of CW p corresponding to the channel access priority p
  • T mcot,p refers to the maximum occupancy time of the channel corresponding to the channel access priority p.
  • the first terminal performs LBT according to the determined LBT parameters, shares the time domain unit in the COT obtained after the LBT succeeds with the second terminal, and multiple terminals use the shared time domain unit in the COT for data transmission.
  • the first terminal obtains the relevant information when multiple terminals share the COT, and the group head terminal determines the LBT parameters according to the first information, so that when the LBT is successful, it is possible to obtain the information that meets the requirements of the multiple terminals.
  • the COT that meets the transmission requirements not only improves the communication efficiency of multiple terminals in group communication, but also avoids the waste of communication resources of unlicensed spectrum as much as possible.
  • FIG. 3 shows a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application. The method is applied to the first terminal described in FIG. 1, and the method includes:
  • Step 302 The first terminal acquires first information of multiple terminals, where the first information includes a first number and a subcarrier spacing;
  • a plurality of terminals are terminals that communicate in a group communication manner.
  • the multiple terminals are terminals using D2D communication.
  • the plurality of terminals are terminals that communicate using unlicensed spectrum.
  • a plurality of terminals are terminals that communicate using the shared COT method.
  • the shared COT mode is a communication mode in which the first terminal shares the obtained time domain unit in the COT with the second terminal after the LBT succeeds.
  • the first terminal may be a group head terminal, and the second terminal may be a group member terminal.
  • the time domain unit may be a time slot.
  • the multiple terminals include a first terminal and at least one second terminal.
  • the first terminal and the second terminal are terminals in the same communication group.
  • the plurality of terminals include at least one of a group head terminal and a group member terminal.
  • the multiple terminals include a group head terminal and three group member terminals.
  • the first information includes: the first number and the subcarrier spacing.
  • the first quantity is used to indicate the number of terminals participating in the COT sharing, or the first quantity is used to indicate the number of terminals participating in the COT sharing and having data to be sent.
  • the first number is related to the number of time slots required by multiple terminals in the COT. When the first number is larger, the number of time slots required by multiple terminals in the COT is greater; The number of time slots required in the COT is also smaller.
  • the first number includes the number of the first terminal and the second terminal. Alternatively, the first number includes the number of group head terminals and group member terminals.
  • the slot length depends on the subcarrier spacing, and the wider the subcarrier spacing, the shorter the duration of the slot.
  • the number of time slots in each subframe in the NR system depends on the parameter ⁇ , which has five values, namely 0, 1, 2, 3, and 4. As shown in Table 2:
  • T mcot,p is also determined, and the number of time slots in the COT is: T mcot,p / duration of each time slot.
  • the first terminal receives the first information sent by the second terminal on the first carrier, where the first carrier is an unlicensed carrier or a licensed carrier.
  • the first carrier is an unlicensed carrier or a licensed carrier.
  • a second terminal performs LBT on an unlicensed frequency band, and after obtaining a COT when the LBT is successful, the COT is used to send (all or part of the information items) the first information to the first terminal, and the first terminal receives the first information. a message.
  • Step 304 the first terminal determines the LBT parameter according to the first number and the subcarrier spacing
  • each terminal in the multiple terminals can be allocated to a time domain unit.
  • the plurality of terminals include a first terminal and a second terminal. For example, each terminal is assigned a time slot.
  • the candidate COT includes three maximum channel occupation durations: 2 ms corresponding to Cat-1 LBT; 3 ms corresponding to Cat-2 LBT; 10 ms corresponding to Cat-3 LBT. That is, the three candidate COTs are 2 ms, 3 ms, and 10 ms, respectively.
  • the first terminal selects the first COT from the multiple candidate COTs according to the first number and the subcarrier interval, and determines the first LBT parameter corresponding to the first COT.
  • the first COT is greater than or equal to a first product, where the first product is the product of the first number and the time slot length, and the time slot length is determined according to the subcarrier spacing.
  • the first terminal calculates the time slot length according to the subcarrier interval. Then, according to the first number, and with each terminal occupying one time slot as the basic principle, calculate the appropriate LBT priority parameter that accommodates all terminals as much as possible:
  • the required maximum channel occupation duration T mcot,p is:
  • the first terminal determines the LBT parameter according to the calculated T mcot,p and the corresponding relationship shown in Table 1.
  • T mcot,p is 2 milliseconds
  • the LBT parameter corresponding to the Cat-1 LBT is used
  • T mcot,p is 3
  • T mcot,p is 10 ms
  • the LBT parameters corresponding to Cat-2 LBT are used
  • T mcot,p is 10 milliseconds
  • the LBT parameters corresponding to Cat-3 LBT are used.
  • Step 306 the first terminal uses the LBT parameters to perform LBT on the unlicensed spectrum
  • LBT is performed on the unlicensed spectrum by using the LBT parameter corresponding to the Cat-1 LBT.
  • LBT is performed on the unlicensed spectrum by using the LBT parameter corresponding to the Cat-2 LBT.
  • LBT is performed on the unlicensed spectrum using the LBT parameter corresponding to the Cat-3 LBT.
  • Step 308 when the LBT succeeds, the first terminal determines the time domain unit allocation mode of the COT that is successfully occupied by the LBT;
  • the first terminal allocates a time domain unit to each of the multiple terminals in the COT according to the first polling manner.
  • the first polling manner When there are remaining time-domain units in the COT, continue to allocate the remaining time-domain units to all or a part of the multiple terminals in the first polling manner.
  • the order of the second terminal in the first polling manner may be determined by the first terminal itself, which is not limited in this embodiment.
  • the first terminal determines the first polling mode according to the receiving order of the first information of each second terminal; for another example, after the first terminal sorts the terminal identifiers of each second terminal in ascending order, The first polling mode is determined; for another example, the first terminal determines the first polling mode after sorting the distances between each second terminal and itself from near to far.
  • the first terminal is ranked first in the first polling manner.
  • the first time domain unit in the COT will be allocated to the first terminal, that is, the first time slot in the COT will be allocated to the first terminal.
  • Step 310 The first terminal sends the time domain unit allocation method to the second terminal;
  • the first terminal uses the SCI to send, to at least one second terminal, the channel occupation duration after the successful LBT this time. That is, the duration information of COT.
  • the first terminal also uses the SCI or the MACCE to send the time domain unit allocation method to the at least one second terminal, or uses the SCI or the MACCE to send the time domain unit allocation method to the at least one second terminal.
  • the time domain unit allocation method is a time slot allocation method.
  • the time-domain unit allocation method or the time-slot allocation method adopts a semi-permanent scheduling method, which continues to take effect for a period of time after one scheduling until the first number changes.
  • the SCI also carries the COT after the successful LBT.
  • the first terminal in the COT sends an SCI to the second terminal in the first time domain unit, where the SCI carries the time domain unit allocation method. After receiving the SCI, the second terminal acquires the time domain unit allocation mode from the SCI. In an example, the first terminal sends a MAC CE to the second terminal in the first time domain unit in the COT, where the MAC CE carries the time domain unit allocation mode. After receiving the MACCE, the second terminal acquires the time domain unit allocation mode from the MACCE.
  • Step 312 Multiple terminals send data according to the time-domain units allocated in the time-domain unit allocation manner.
  • the COT of 2 milliseconds includes 4 time slots, which are respectively allocated to UE1, UE2, UE3 and UE4.
  • UE1 is the first terminal
  • UE1 sends the time slot allocation method to each other terminal in the first time slot
  • UE2 sends data according to the allocated time slot 2
  • UE3 sends data according to the allocated time slot 3
  • UE4 sends data according to the allocated time slot 4 Send data, as shown in Figure 4.
  • the receivers of the data sent by UE2, UE3 and UE4 are the same or different, which is not limited.
  • a UE For a UE that has no data to send, it can send padding data in the time slot allocated by itself to ensure that the channel is not preempted by other users (Wi-Fi users and D2D users outside other groups who wish to use unlicensed frequency bands).
  • FIG. 5 shows a flowchart of a method for determining an LBT parameter provided by an exemplary embodiment of the present application. The method is applied to the first terminal described in FIG. 1, and the method includes:
  • Step 502 Acquire first information of multiple terminals, where the first information includes a first quantity, a subcarrier interval, and whether the terminal needs to be additionally allocated a time domain unit;
  • a plurality of terminals are terminals that communicate in a group communication manner.
  • the multiple terminals are terminals using D2D communication.
  • the plurality of terminals are terminals that communicate using unlicensed spectrum.
  • a plurality of terminals are terminals that communicate using the shared COT method.
  • the shared COT mode is a communication mode in which the first terminal shares the obtained time domain unit in the COT with the second terminal after the LBT succeeds.
  • the first terminal may be a group head terminal, and the second terminal may be a group member terminal.
  • the time domain unit may be a time slot.
  • the multiple terminals include a first terminal and at least one second terminal.
  • the first terminal and the second terminal are terminals in the same communication group.
  • the plurality of terminals include at least one of a group head terminal and a group member terminal.
  • the multiple terminals include a group head terminal and three group member terminals.
  • the first information includes: the first number, the subcarrier spacing, and whether the terminal needs to additionally allocate time domain units.
  • the first quantity is used to indicate the number of terminals participating in the COT sharing, or the first quantity is used to indicate the number of terminals participating in the COT sharing and having data to be sent.
  • the first number is related to the number of time slots required by multiple terminals in the COT. When the first number is larger, the number of time slots required by multiple terminals in the COT is greater; The number of time slots required in the COT is also smaller.
  • the terminal may be the first terminal or the second terminal.
  • the slot length depends on the subcarrier spacing, and the wider the subcarrier spacing, the shorter the duration of the slot.
  • the number of time slots in each subframe in the NR system depends on the parameter ⁇ , which has five values, namely 0, 1, 2, 3, and 4.
  • T mcot,p is also determined, and the number of time slots in the COT is: T mcot,p / duration of each time slot.
  • the COT occupied after each successful LBT is allocated to one time domain unit, which may not meet the terminal's sending requirements.
  • the terminal needs to allocate an additional time domain unit in addition to the basically allocated time domain unit (for example, one) to meet its own needs.
  • all terminals need additional allocation of time domain units; it is also possible that all terminals do not need additional allocation of time domain units; it is also possible that some terminals need additional allocation of time domain units, and some terminals do not need additional allocation of time domain units .
  • the second terminal may directly send indication information, which is used to indicate whether the second terminal needs to allocate additional time domain units; the second terminal may also send the first terminal
  • the data volume of the data to be sent in the terminal is determined by the first terminal according to the data volume of the data to be sent in the second terminal whether additional time domain units need to be allocated in the second terminal.
  • the first terminal receives the first information sent by the second terminal; or, or, the first terminal receives the first information sent by the network device, and the first information is sent by the second terminal to the network device.
  • the first terminal receives the first information sent by the second terminal on the first carrier, where the first carrier is an unlicensed carrier or a licensed carrier.
  • the first carrier is an unlicensed carrier or a licensed carrier.
  • a second terminal performs LBT on an unlicensed frequency band, and after obtaining a COT when the LBT is successful, the COT is used to send (all or part of the information items) the first information to the first terminal, and the first terminal receives the first information. a message.
  • the embodiment of the present application does not limit how the first terminal determines its own first information. For example, the first terminal determines whether the first terminal needs to additionally allocate a time domain unit according to the size of its own data to be sent.
  • Step 504 Determine the LBT parameter according to the first number, the subcarrier spacing and whether the terminal needs to allocate additional time domain units;
  • each terminal in the COT obtained after successful LBT using the LBT parameters, try to ensure that each terminal can be allocated one time domain unit, and allocate additional time domain units to the terminal with demand. For example, each terminal is assigned a time slot, and an additional one or more time slots are allocated for the terminal that has a demand.
  • the candidate COTs include three types of maximum channel occupation durations: 2 milliseconds corresponding to Cat-1 LBT; 3 milliseconds corresponding to Cat-2 LBT; and 10 milliseconds corresponding to Cat-3 LBT. That is, the three candidate COTs are 2 ms, 3 ms, and 10 ms, respectively.
  • the first terminal selects a second COT from the multiple candidate COTs according to the first quantity, the subcarrier spacing and whether the terminal needs to additionally allocate time domain units; and determines a second LBT parameter corresponding to the second COT;
  • the second COT is greater than or equal to the second product
  • the second product is the product of the third quantity and the slot length
  • the third quantity is the sum of the first quantity and the second quantity
  • the second quantity is the time domain unit that needs to be allocated additionally The number of terminals
  • the slot length is determined according to the subcarrier spacing.
  • the first terminal calculates the time slot length according to the subcarrier interval. Then, according to the first quantity and the second quantity, each terminal occupies one time slot as the basic principle, and the terminal that needs to allocate additional time slots is allocated as much as possible to the additional time slot as the extra principle, and jointly calculate the number of users that can accommodate as many users as possible.
  • Suitable LBT priority parameters :
  • the first terminal determines the LBT parameter according to the calculated T mcot,p and the corresponding relationship shown in Table 1.
  • T mcot,p is 2 milliseconds
  • the LBT parameter corresponding to the Cat-1 LBT is used
  • T mcot,p is 3
  • T mcot,p is 10 ms
  • the LBT parameters corresponding to Cat-2 LBT are used
  • T mcot,p is 10 milliseconds
  • the LBT parameters corresponding to Cat-3 LBT are used.
  • Step 506 the first terminal uses the LBT parameters to perform LBT
  • LBT is performed on the unlicensed spectrum using the LBT parameter corresponding to the Cat-1 LBT.
  • LBT is performed on the unlicensed spectrum by using the LBT parameter corresponding to the Cat-2 LBT.
  • LBT is performed on the unlicensed spectrum using the LBT parameter corresponding to the Cat-3 LBT.
  • Step 508 when the LBT succeeds, the first terminal determines the time domain unit allocation mode of the COT that is successfully occupied by the LBT;
  • the first terminal allocates a time domain unit to each of the multiple terminals in the COT according to the first polling manner.
  • the remaining time-domain units are allocated to the first-type terminals in the plurality of terminals according to the second polling mode, and the first-type terminals are terminals that need to be additionally allocated time-domain units; or, in the COT
  • the remaining time-domain units are allocated to the second-type terminals in the plurality of terminals according to the third polling method.
  • the second-type terminals need additional time-domain units and cannot be allocated in the previous COT. Extra to the termination of the time domain unit.
  • the first terminal is ranked first in the first polling manner.
  • the first time domain unit in the COT will be allocated to the first terminal, that is, the first time slot in the COT will be allocated to the first terminal.
  • the first terminal arranges the terminals according to the first polling manner in which each terminal occupies one time slot. If all terminals still have remaining time slots after allocating time slots according to the first polling manner, the first terminal continues to allocate remaining time slots according to the second polling manner for the first type terminals that require additional time slots.
  • the remaining time slots are insufficient, all the terminals of the first type that require additional time slots cannot be satisfied. Record the second-type terminals that cannot be allocated additional time slots by the COT this time. After obtaining the COT next time, in the remaining time slots allocated by the next COT according to the first polling method, the remaining time slots are preferentially allocated to the recorded second-type terminals. time slot.
  • UE1, UE2, UE3, and UE4 all need to allocate additional time slots.
  • the first polling method is UE1, UE2, UE3, and UE4, and the second polling method is UE3, UE4, UE1, and UE2.
  • the COT obtained for the first time includes 6 time slots, and the allocation method of the 6 time slots is UE1, UE2, UE3, UE4, UE3, UE4.
  • UE1 and UE2 are not allocated additional time slots this time;
  • the obtained COT includes 6 time slots, and the allocation modes of the 6 time slots are UE1, UE2, UE3, UE4, UE1, and UE2. That is, in the COT obtained for the second time, additional time slots are preferentially allocated to UE1 and UE2 in the remaining time slots.
  • the order of the second terminal in the first polling manner may be determined by the first terminal itself, which is not limited in this embodiment.
  • the first terminal determines the first polling mode according to the receiving order of the first information of each second terminal; for another example, after the first terminal sorts the terminal identifiers of each second terminal in ascending order, The first polling mode is determined; for another example, the first terminal determines the first polling mode after sorting the distances between each second terminal and itself from near to far.
  • the second polling mode can also be determined by the first terminal itself, which is not limited.
  • Step 510 the first terminal sends the time domain unit allocation method to the second terminal;
  • the first terminal uses the SCI to send to the second terminal the channel occupation duration after the successful LBT this time. That is, the duration information of COT.
  • the first terminal also uses the SCI or the MACCE to send the time domain unit allocation method to the second terminal, or uses the SCI or the MACCE to send the time domain unit allocation method to the second terminal.
  • the time domain unit allocation method is a time slot allocation method.
  • the time domain unit allocation method or the time slot allocation method adopts a semi-permanent scheduling method, which continues to take effect for a period of time after one scheduling until at least one of the first quantity and the second quantity changes.
  • the SCI also carries the COT after the successful LBT.
  • the first time domain unit in the COT of the first terminal sends an SCI to other terminals, where the time domain unit allocation method is carried in the SCI. After receiving the SCI, other terminals obtain the time domain unit allocation mode from the SCI.
  • the first terminal sends a MAC CE to other terminals in the first time domain unit in the COT, where the MAC CE carries the time domain unit allocation mode. After receiving the MACCE, other terminals acquire the time domain unit allocation mode from the MACCE.
  • Step 512 Multiple terminals send data according to the time-domain units allocated in the time-domain unit allocation method.
  • UE2 and UE3 are UEs that need to allocate additional time slots.
  • the COT of 3 milliseconds obtained this time includes 6 time slots, which are respectively allocated to UE1, UE2, UE3, UE4, UE2, and UE3.
  • UE1 is the first terminal, UE1 sends the time slot allocation method to each other terminal in the first time slot, UE2 sends data according to the allocated time slot 2, UE3 sends data according to the allocated time slot 3, and UE4 sends data according to the allocated time slot 4
  • UE2 sends data according to the allocated time slot 5
  • UE3 sends data according to the allocated time slot 6, as shown in FIG. 6 .
  • the method provided in this embodiment by determining the LBT parameter according to the first number, the subcarrier spacing, and whether the terminal needs to allocate additional time domain units, not only ensures that at least one time domain unit is allocated for each terminal of cooperative transmission. It can also ensure that terminals with a large amount of data are allocated to additional time-domain units to meet the transmission requirements of different terminals as much as possible.
  • the first information includes: priority information of data to be sent in the terminal.
  • the first terminal determines the third LBT parameter according to priority information of data to be sent among the multiple terminals (the first terminal and/or the second terminal).
  • the contention window size CW p in the third LBT parameter is negatively correlated with the priority information. That is, the higher the priority information, the smaller the contention window size CW p ; the lower the priority information, the larger the contention window size CW p .
  • the LBT parameter of Cat-1 LBT or Cat-2 LBT is selected.
  • the LBT parameters of Cat-1 LBT or Cat-2 LBT are selected; when there are data to be sent of one or more terminals
  • the LBT parameter of the Cat-2 LBT is selected when the priority is higher than the second priority threshold.
  • the first priority threshold is higher than the second priority threshold.
  • the LBT parameters of Cat-3 LBT or Cat-4 LBT are selected.
  • the LBT parameter determination method in the embodiment of FIG. 3 or the embodiment of FIG. 4 is adopted.
  • the first terminal allocates a time to each terminal in the COT according to the first polling method Domain unit, there may be insufficient time domain unit. At this time, the first terminal records the third type terminal that is not allocated to the time domain unit this time. In the COT obtained next time, the third type terminal is preferentially allocated in the time domain unit.
  • the first information includes: delay information of data to be sent in the terminal.
  • the first terminal determines the third LBT parameter according to the delay information of the data to be sent among the multiple terminals (the first terminal and/or the second terminal).
  • the contention window size CW p in the third LBT parameter has a positive correlation with the delay information. That is, the smaller the allowable delay is, the smaller the contention window size CW p is; the greater the allowable delay is, the greater the contention window size CW p is.
  • the LBT parameters of Cat-1 LBT or Cat-2 LBT are selected.
  • the LBT parameter of Cat-1 LBT or Cat-2 LBT is selected; when there are one or more terminals to be sent.
  • the LBT parameter of Cat-2 LBT is selected.
  • the first delay threshold is lower than the second delay threshold.
  • the LBT parameters of Cat-3 LBT or Cat-4 LBT are selected.
  • the LBT parameter determination method in the embodiment of FIG. 3 or the embodiment of FIG. 4 is adopted.
  • the first terminal allocates a time to each terminal in the COT according to the first polling method Domain unit, there may be insufficient time domain unit. At this time, the first terminal records the third type terminal that is not allocated to the time domain unit this time. In the COT obtained next time, the third type terminal is preferentially allocated in the time domain unit.
  • FIG. 7 shows a block diagram of an apparatus for determining an LBT parameter provided by an exemplary embodiment of the present application.
  • the apparatus may be applied in the first terminal, or implemented as a part of the first terminal.
  • the device includes:
  • Receiving module 720 Obtain first information of multiple terminals, where the multiple terminals include the first terminal and at least one second terminal, and the first terminal and the second terminal are terminals in the same communication group ;
  • a determination module 740 configured to determine the LBT parameter according to the first information.
  • the first information includes at least one of the following:
  • the first number is used to indicate the number of terminals participating in the COT sharing, or the first number is used to indicate the number of terminals participating in the COT sharing and having the data to be sent.
  • the receiving module 720 is configured to receive the first information sent by the second terminal; or the receiving module 720 is configured to receive the first information sent by a network device. information, where the first information is sent by the terminal to the network device.
  • the receiving module 720 is configured to receive the first information sent by the second terminal on a first carrier, where the first carrier is an unlicensed carrier or a licensed carrier.
  • the determining module 740 is configured to determine the LBT parameter according to the first number and the subcarrier spacing.
  • the determining module 740 is configured to select a first COT from a plurality of candidate COTs according to the first quantity and the subcarrier interval; The corresponding first LBT parameter.
  • the first COT is greater than or equal to a first product
  • the first product is a product of the first number and a slot length
  • the slot length is determined according to the sub- Carrier spacing is determined.
  • the determining module 740 is configured to determine the LBT parameter according to the first number, the subcarrier spacing, and information on whether the terminal needs to allocate additional time domain units.
  • the determining module 740 is configured to select from the multiple candidate COTs according to the first number, the subcarrier spacing and whether the terminal needs to allocate additional time domain units second COT; determining a second LBT parameter corresponding to the second COT.
  • the second COT is greater than or equal to a second product
  • the second product is a product of a third number and a slot length
  • the third number is the first number and The sum of the second number, where the second number is the number of terminals that need to be additionally allocated time domain units, and the time slot length is determined according to the subcarrier spacing.
  • the determining module 740 is configured to determine the third LBT parameter according to the priority information of the data to be sent in the terminal;
  • the contention window size in the third LBT parameter is proportional to the delay information.
  • the determining module 740 is configured to determine the fourth LBT parameter according to the delay information of the data to be sent in the terminal;
  • the contention window size in the fourth LBT parameter is proportional to the delay information.
  • the determining module 740 is configured to determine whether the terminal needs to additionally allocate a time domain unit according to the size of the data to be sent in the terminal.
  • the apparatus further includes: a sending module 760;
  • the receiving module 720 configured to perform LBT on the unlicensed spectrum by using the LBT parameter
  • the determining module 740 is configured to determine, when the LBT is successful, the time-domain unit allocation mode of the COT that is successfully occupied by the LBT;
  • the sending module 760 is configured to send the time domain unit allocation manner to the multiple terminals.
  • the determining module 740 is configured to allocate a time domain unit to each of the multiple terminals in the COT according to the first polling manner.
  • the determining module 740 is configured to continue to perform all or part of the multiple terminals according to the first polling manner when there are remaining time domain units in the COT The terminal allocates the remaining time domain units.
  • the determining module 740 is configured to, when there are remaining time domain units in the COT, allocate the first type terminal among the plurality of terminals according to a second polling manner the remaining time domain unit, the first type terminal is a terminal that needs to be additionally allocated a time domain unit; or, when there is a remaining time domain unit in the COT, according to the third polling mode, the terminal is a terminal among the multiple terminals.
  • the second-type terminal allocates the remaining time-domain units, and the second-type terminal is a terminal that needs additional allocation of time-domain units and fails to allocate additional time-domain units in the previous COT.
  • the time domain unit allocation method is carried in the SCI or MACCE.
  • FIG. 8 shows a schematic structural diagram of a communication device (network device or terminal) provided by an exemplary embodiment of the present application.
  • the communication device includes a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one section of program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the LBT parameter executed by the first terminal provided by the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种LBT参数的确定方法、装置、设备及存储介质,涉及通信领域,所述方法包括:第一终端获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;根据所述第一信息确定LBT参数。该LBT参数能够在LBT成功时获得满足多个终端的传输需求的COT,不仅提高多个终端在群组通信时的通信效率,也能够尽量避免非授权频谱的通信资源的浪费。

Description

LBT参数的确定方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种先听后说(ListenBeforeTalk,LBT)参数的确定方法、装置、设备及介质。
背景技术
终端到终端(Device to Device,D2D)通信是指一定距离范围内的用户设备直接通信,不需要基站的中转。在非授权频谱使用D2D通信,成为了提高通信系统的吞吐量的解决方案。
在D2D终端接入非授权频段时,需要使用LBT获得信道占用时长(Channel Occupation time,COT),在COT内的时隙中传输数据。当采用群组协作方式时,由某个特定的终端,即组头终端,进行LBT获得COT后,将COT内的各个时隙共享给其它终端使用,各个终端采用固定的时隙分配模式在COT中的一个或多个时隙中完成自己的数据传输。
当采用群组协作方式时,组头终端如何选择LBT参数是亟待解决的技术问题。
发明内容
本申请实施例提供了一种LBT参数的确定方法、装置、设备及存储介质。所述技术方案如下。
根据本申请的一个方面,提供了一种LBT参数的确定方法,应用于第一终端中,所述方法包括:
获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;
根据所述第一信息确定LBT参数。
根据本申请的一个方面,提供了一种LBT参数的确定装置,应用于第一终端中,所述装置包括:
接收模块,用于获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;
确定模块,用于根据所述第一信息确定LBT参数。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的LBT参数的确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的LBT参数的确定方法。
根据本申请的一个方面,提供了一种计算机程序产品,所述计算机程序产品中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的LBT参数的确定方法。
根据本申请的一个方面,提供了一种芯片,所述芯片用于执行以实现如上述方面所述的LBT参数的确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过第一终端获取多个终端的第一信息,第一终端按照多个终端的第一信息来确定LBT参数,能够在LBT成功时获得满足多个终端的传输需求的COT,不仅提高多个终端在群组通信时的通信效率,也能够尽量避免非授权频谱的通信资源的浪费。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的通信系统的架构图;
图2是本申请一个示例性实施例提供的LBT参数的确定方法的流程图;
图3是本申请一个示例性实施例提供的LBT参数的确定方法的流程图;
图4是本申请一个示例性实施例提供的基本时隙分配的示意图;
图5是本申请一个示例性实施例提供的LBT参数的确定方法的流程图;
图6是本申请一个示例性实施例提供的基本时隙分配和额外时隙分配的示意图;
图7是本申请一个示例性实施例提供的LBT参数的确定装置的框图;
图8是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“LBT”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
非授权频谱上的LBT方式
非授权频谱上的LBT方式包括Cat-1LBT、Cat-2LBT、Cat-3LBT和Cat-4LBT,其中:
Cat-1 LBT可以指通信设备在空隙结束后不做信道检测而进行传输;
Cat-2LBT可以指通信设备做单时隙信道检测,具体地,Cat-2LBT可以包括25微秒的单时隙信道检测和16微秒的单时隙信道检测;
Cat-3LBT可以指通信设备的信道检测方式为基于固定竞争窗口大小的随机回退的多时隙信道检测;
Cat-4LBT可以指通信设备的信道检测方式为基于竞争窗口大小调整的随机回退的多时 隙信道检测,具体地,Cat-4LBT根据传输业务的优先级可以包括不同的信道接入优先级,表1为Cat-4LBT下不同信道接入优先级对应的信道接入参数,p取值越小,信道接入优先级越高。
表一为不同信道接入优先级对应的信道接入参数,p取值越小,信道接入优先级越高。
表一
Figure PCTCN2020113606-appb-000001
需要说明的是,在上述表1中,m p是指信道接入优先级p对应的回退时隙个数,CW p是指信道接入优先级p对应的竞争窗口大小,CW min,p是指信道接入优先级p对应的CW p取值的最小值,CW max,p是指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间长度。
其中,对于Cat-3 LBT或Cat-4LBT,T mcot,p取8毫秒还是10毫秒根据是否有其它技术共享信道决定,一般取10毫秒。这一取值的确定方式不在本申请的考虑范围内,后面的叙述中均采用10毫秒来举例说明。
图1示出了本申请一个实施例提供的通信系统的架构示意图。该通信系统可以包括:终端10和网络设备20。
终端10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。在一些情况下,多个终端10之间采用D2D通信方式进行通信。当多个终端10采用群组通信方式时,存在一个终端10为组头终端,其它终端10为组员终端。
网络设备20是一种部署在接入网中用以为终端10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在使用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为网络设备。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,该NR系统可以是支持NR-U的通信系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
图2示出了本申请一个示例性实施例提供的LBT参数的确定方法的流程图。该方法应用于图1所述的第一终端中,该方法包括:
步骤202:获取多个终端的第一信息;
多个终端是采用群组通信方式进行通信的终端。可选地,多个终端是采用D2D通信的终端。多个终端是采用非授权频谱进行通信的终端。多个终端是使用共享COT方式进行通信的终端。共享COT方式是由第一终端在LBT成功后,将获得的COT中的时域单元共享给第二终端的通信方式。可选地,第一终端是组头终端,第二终端是组员终端。该时域单元可以是时隙(slot)。COT的共享方式可以是固定分配方式,也可以是按序分配方式。
示意性的,多个终端包括第一终端和至少一个第二终端。第一终端和第二终端是同一个通信组内的终端。多个终端包括组头终端和组员终端中的至少一种。比如,多个终端包括组头终端和3个组员终端。
由于多个终端之间采用共享COT方式进行通信,第一信息是多个终端在共享COT时的相关信息。或者说,第一信息是多个终端采用群组通信方式时相关的信息。或者说,第一信息是多个终端在共享的COT中需要的时隙数量有关的信息。
在一个示例中,第一信息包括如下信息中的至少之一:
·第一数量
第一数量用于指示参与共享COT的终端的个数,或,第一数量用于指示参与共享COT且存在待发送数据的终端的个数。第一数量与多个终端在COT中需要的时隙数量有关,当第一数量越大时,多个终端在COT中需要的时隙数量越多;当第一数量越小时,多个终端在COT中需要的时隙数量也越少。可选地,第一数量包括第一终端和第二终端的数量。或者,第一数量包括组头终端和组员终端的数量。
·子载波间隔
子载波间隔与时隙长度有关。对于同样长度的COT,不同的子载波间隔下,该COT内所包含的时隙数量不同。
·终端是否需要额外分配时域单元
对于多个终端中的某一个终端,该终端的待发送数据量较多时,需要额外分配时域单元。某一个终端是第一终端,和/或,某一个终端是第二终端。
·终端中待发送数据的优先级信息
对于多个终端中的某一个终端,该终端的待发送数据的优先级信息,用于指示该待发送数据的重要程度。比如在车联网场景下,用于表示事故或求救的数据包具有较高优先级,用于表示即时通信或在线音乐的数据包具有较低优先级。
·终端中待发送数据的时延信息
对于多个终端中的某一个终端,该终端的待发送数据的时延信息,用于指示该待发送数据对传输时延的需求。比如,用于音视频呼叫的数据包对传输时延的需求较高,用于导航地图信息或在线音乐的数据包对传输时延的需求较低。
·终端中待发送数据的数据量大小
待发送数据的数据量大小,与该终端是否需要额外分配时域单元有关。
第一终端接收第二终端发送的第一信息;或,或,第一终端接收网络设备发送的第一信息,第一信息是由第二终端发送给网络设备的。
示意性的,第一终端在第一载波上接收第二终端发送的第一信息,第一载波是非授权载波或授权载波。比如,某个第二终端在非授权频段上进行LBT,在LBT成功时获得一个COT后,使用该COT向第一终端发送第一信息(的全部或部分信息项),第一终端接收该第一信 息。
需要说明的是,第一数量可以由第一终端根据第二终端的数量自行确定,比如存在三个第二终端向第一终端发送了第一信息,则第一终端确定第一数量为4=3+1(自身)。
步骤204:根据第一信息确定LBT参数。
第一终端根据第一信息确定LBT参数。
示意性的,LBT参数包括但不限于:Cat-1LBT对应的LBT参数、Cat-2LBT对应的LBT参数、Cat-3LBT对应的LBT参数和Cat-4LBT对应的LBT参数,如上表一所示。
示意性的,LBT参数包括但不限于:p、m p、CW p、CW min,p、CW max,p、T mcot,p中的至少一种。m p是指信道接入优先级p对应的回退时隙个数,CW p是指信道接入优先级p对应的竞争窗口大小,CW min,p是指信道接入优先级p对应的CW p取值的最小值,CW max,p是指信道接入优先级p对应的CW p取值的最大值,T mcot,p是指信道接入优先级p对应的信道最大占用时间。
第一终端根据确定的LBT参数进行LBT,将LBT成功后获得的COT中的时域单元共享给第二终端,多个终端使用共享的COT中的时域单元进行数据传输。
综上所述,本实施例提供的方法,通过第一终端获取多个终端在共享COT时的相关信息,组头终端按照第一信息来确定LBT参数,能够在LBT成功时获得满足多个终端的传输需求的COT,不仅提高多个终端在群组通信时的通信效率,也能够尽量避免非授权频谱的通信资源的浪费。
图3示出了本申请一个示例性实施例提供的LBT参数的确定方法的流程图。该方法应用于图1所述的第一终端中,该方法包括:
步骤302:第一终端获取多个终端的第一信息,第一信息包括第一数量和子载波间隔;
多个终端是采用群组通信方式进行通信的终端。可选地,多个终端是采用D2D通信的终端。多个终端是采用非授权频谱进行通信的终端。多个终端是使用共享COT方式进行通信的终端。共享COT方式是由第一终端在LBT成功后,将获得的COT中的时域单元共享给第二终端的通信方式。第一终端可以是组头终端,第二终端可以是组员终端。该时域单元可以是时隙。
示意性的,多个终端包括第一终端和至少一个第二终端。第一终端和第二终端是同一个通信组内的终端。多个终端包括组头终端和组员终端中的至少一种。比如,多个终端包括组头终端和3个组员终端。
在本实施例中,第一信息包括:第一数量和子载波间隔。
·第一数量
第一数量用于指示参与共享COT的终端的个数,或,第一数量用于指示参与共享COT且存在待发送数据的终端的个数。第一数量与多个终端在COT中需要的时隙数量有关,当第一数量越大时,多个终端在COT中需要的时隙数量越多;当第一数量越小时,多个终端在COT中需要的时隙数量也越少。可选地,第一数量包括第一终端和第二终端的数量。或者,第一数量包括组头终端和组员终端的数量。
·子载波间隔
在NR系统中,时隙长度取决于子载波间隔,子载波间隔越宽,时隙的持续时间就越短。NR系统中每个子帧到底有多少个时隙取决于参数μ,其取值有5个,即0,1,2,3,4。如表 二所示:
表二
μ的取值 子载波间隔 每个子帧中的时隙数量 每个时隙的时长(ms)
0 15 1 1
1 30 2 0.5
2 60 4 0.25
3 120 8 0.125
4 240 16 0.0625
在子载波间隔确定后,T mcot,p也被确定,则该COT内的时隙个数为:T mcot,p/每个时隙的时长。
示意性的,第一终端在第一载波上接收第二终端发送的第一信息,第一载波是非授权载波或授权载波。比如,某个第二终端在非授权频段上进行LBT,在LBT成功时获得一个COT后,使用该COT向第一终端发送第一信息(的全部或部分信息项),第一终端接收该第一信息。
需要说明的是,第一数量可以由第一终端根据第二终端的数量自行确定,比如存在三个第二终端向第一终端发送了第一信息,则第一终端确定第一数量为4=3+1(自身)。其中,本申请实施例对第一终端如何确定自身的第一信息不加以限定。
步骤304:第一终端根据第一数量和子载波间隔,确定LBT参数;
在本实施例中,采用该LBT参数进行LBT成功后得到的COT中,尽量保证多个终端中的每个终端均能分配到一个时域单元。多个终端包括第一终端和第二终端。比如,每个终端都分配到一个时隙。
参考表一,假设候选COT包括三种最大信道占用时长:Cat-1 LBT对应的2毫秒;Cat-2LBT对应的3毫秒;Cat-3 LBT对应的10毫秒。也即,三个候选COT分别为2毫秒、3毫秒和10毫秒。
第一终端根据第一数量和子载波间隔,在多个候选COT中选择出第一COT,确定与第一COT对应的第一LBT参数。示意性的,第一COT大于或等于第一乘积,第一乘积是第一数量和时隙长度的乘积,时隙长度是根据子载波间隔确定的。
示意性的,第一终端根据子载波间隔计算时隙长度。然后根据第一数量,以每个终端占用一个时隙为基本原则,计算出尽可能容纳所有终端的合适的LBT优先级参数:
假设第一终端根据子载波间隔计算出的时隙长度为τ,第一数量为N,则需要的最大信道占用时长T mcot,p为:
Figure PCTCN2020113606-appb-000002
第一终端根据计算出的T mcot,p以及根据表一示出的对应关系来确定LBT参数,T mcot,p为2毫秒时,采用Cat-1 LBT对应的LBT参数;T mcot,p为3毫秒时,采用Cat-2 LBT对应的LBT参数;T mcot,p为10毫秒时,采用Cat-3 LBT对应的LBT参数。
步骤306:第一终端采用LBT参数对非授权频谱进行LBT;
当第一终端选择出的第一COT为2毫秒时,采用Cat-1 LBT对应的LBT参数对非授权 频谱进行LBT。当第一终端选择出的第一COT为3毫秒时,采用Cat-2 LBT对应的LBT参数对非授权频谱进行LBT。当第一终端选择出的第一COT为10毫秒时,采用Cat-3 LBT对应的LBT参数对非授权频谱进行LBT。
步骤308:第一终端在LBT成功时,确定LBT占用成功的COT的时域单元分配方式;
示意性的,第一终端按照第一轮询方式在COT中,为多个终端中的每个终端分配一个时域单元。在COT中存在剩余时域单元时,继续按照第一轮询方式为多个终端中的全部或一部分终端分配剩余时域单元。
第二终端在第一轮询方式中的顺序,可以由第一终端自行确定,本实施例对此不加以限定。比如,第一终端根据每个第二终端的第一信息的接收顺序,确定第一轮询方式;又比如,第一终端按照每个第二终端的终端标识由小到大的顺序排序后,确定第一轮询方式;又比如,第一终端按照每个第二终端与自身之间的距离由近到远进行排序后,确定第一轮询方式。
示意性的,第一终端在第一轮询方式中排序在第一位。这时,COT中的第一个时域单元将分配给第一终端,即COT中的第一个时隙将分配给第一终端。
步骤310:第一终端向第二终端发送时域单元分配方式;
第一终端采用SCI向至少一个第二终端发送本次LBT成功后的信道占用时长。也即,COT的时长信息。
第一终端还采用SCI或MACCE向至少一个第二终端发送时域单元分配方式,或,采用SCI或MACCE向至少一个第二终端发送时域单元分配方式。示意性的,该时域单元分配方式是时隙分配方式。
示意性的,时域单元分配方式或时隙分配方式采用半永久性调度方式,在一次调度后持续生效一段时间,直至第一数量发生变化。
示意性的,SCI中还携带有本次LBT成功后的COT。
在一个示例中,第一终端在COT中的第一个时域单元向第二终端发送SCI,该SCI中携带有时域单元分配方式。第二终端在接收到该SCI后,从该SCI获取时域单元分配方式。在一个示例中,第一终端在COT中的第一个时域单元向第二终端发送MACCE,该MACCE中携带有时域单元分配方式。第二终端在接收到该MACCE后,从该MACCE获取时域单元分配方式。
步骤312:多个终端按照时域单元分配方式中分配的时域单元发送数据。
比如,2毫秒的COT中包括4个时隙,分别分配至UE1、UE2、UE3和UE4。UE1是第一终端,UE1在第一个时隙向各个其它终端发送时隙分配方式,UE2按照分配的时隙2发送数据,UE3按照分配的时隙3发送数据,UE4按照分配的时隙4发送数据,如图4所示。UE2、UE3和UE4各自发送的数据的接收方相同或不同,对此不加以限定。
对于没有待发送数据的UE,可以在自身分配到的时隙中发送填充数据,以保证信道不被其他用户(Wi-Fi用户及其它组外的希望使用非授权频段的D2D用户)抢占。
综上所述,本实施例提供的方法,通过根据第一数量和子载波间隔来确定LBT参数,能够保证为群组协作通信的每个终端分配到至少一个时域单元,从而保证每个终端的基本传输需求。
图5示出了本申请一个示例性实施例提供的LBT参数的确定方法的流程图。该方法应用于图1所述的第一终端中,该方法包括:
步骤502:获取多个终端的第一信息,第一信息包括第一数量、子载波间隔和终端是否需要额外分配时域单元;
多个终端是采用群组通信方式进行通信的终端。可选地,多个终端是采用D2D通信的终端。多个终端是采用非授权频谱进行通信的终端。多个终端是使用共享COT方式进行通信的终端。共享COT方式是由第一终端在LBT成功后,将获得的COT中的时域单元共享给第二终端的通信方式。第一终端可以是组头终端,第二终端可以是组员终端。该时域单元可以是时隙。
示意性的,多个终端包括第一终端和至少一个第二终端。第一终端和第二终端是同一个通信组内的终端。多个终端包括组头终端和组员终端中的至少一种。比如,多个终端包括组头终端和3个组员终端。
在本实施例中,第一信息包括:第一数量、子载波间隔和终端是否需要额外分配时域单元。
·第一数量
第一数量用于指示参与共享COT的终端的个数,或,第一数量用于指示参与共享COT且存在待发送数据的终端的个数。第一数量与多个终端在COT中需要的时隙数量有关,当第一数量越大时,多个终端在COT中需要的时隙数量越多;当第一数量越小时,多个终端在COT中需要的时隙数量也越少。终端可以是第一终端,也可以是第二终端。
·子载波间隔
在NR系统中,时隙长度取决于子载波间隔,子载波间隔越宽,时隙的持续时间就越短。NR系统中每个子帧到底有多少个时隙取决于参数μ,其取值有5个,即0,1,2,3,4。在子载波间隔确定后,T mcot,p也被确定,则该COT内的时隙个数为:T mcot,p/每个时隙的时长。
·终端是否需要额外分配时域单元
在某一个终端的待发送数据较多时,在每次LBT成功后占用的COT分配到1个时域单元可能无法满足终端的发送需求。此时,终端需要在基本分配到的时域单元(比如1个)之外,还需要额外分配时域单元,以满足自身的需求。
在多个终端中,可能全部终端均需要额外分配时域单元;也可能全部终端均不需要额外分配时域单元;也可能一部分终端需要额外分配时域单元,一部分终端不需要额外分配时域单元。
在第二终端向第一终端发送第一信息时,第二终端可以直接发送指示信息,该指示信息用于指示第二终端是否需要额外分配时域单元;第二终端也可以向第一终端发送终端中待发送数据的数据量大小,由第一终端根据该第二终端中待发送数据的数据量大小,确定该第二终端中是否需要额外分配时域单元。
第一终端接收第二终端发送的第一信息;或,或,第一终端接收网络设备发送的第一信息,第一信息是由第二终端发送给网络设备的。
示意性的,第一终端在第一载波上接收第二终端发送的第一信息,第一载波是非授权载波或授权载波。比如,某个第二终端在非授权频段上进行LBT,在LBT成功时获得一个COT后,使用该COT向第一终端发送第一信息(的全部或部分信息项),第一终端接收该第一信息。
需要说明的是,第一数量可以由第一终端根据第二终端的数量自行确定,比如存在三个第二终端向第一终端发送了第一信息,则第一终端确定第一数量为4=3+1(自身)。其中,本 申请实施例对第一终端如何确定自身的第一信息不加以限定。比如,第一终端根据自身的待发送数据的数据量大小,确定第一终端是否需要额外分配时域单元。
步骤504:根据第一数量、子载波间隔和终端是否需要额外分配时域单元,确定LBT参数;
在本实施例中,采用该LBT参数进行LBT成功后得到的COT中,尽量保证每个终端均能分配到一个时域单元,以及为存在需求的终端分配额外的时域单元。比如,每个终端都分配到一个时隙,为存在需求的终端分配额外的一个或多个时隙。
参考表一,假设候选COT包括三种三种最大信道占用时长:Cat-1 LBT对应的2毫秒;Cat-2 LBT对应的3毫秒;Cat-3 LBT对应的10毫秒。也即,三个候选COT分别为2毫秒、3毫秒和10毫秒。
第一终端根据第一数量、子载波间隔和终端是否需要额外分配时域单元,在多个候选COT中选择出第二COT;确定与第二COT对应的第二LBT参数;
其中,第二COT大于或等于第二乘积,第二乘积是第三数量和时隙长度的乘积,第三数量是第一数量和第二数量的和,第二数量是需要额外分配时域单元的终端数量,时隙长度是根据子载波间隔确定的。
示意性的,第一终端根据子载波间隔计算时隙长度。然后根据第一数量和第二数量,以每个终端占用一个时隙为基本原则,需要分配额外时隙的终端尽可能分配额外到时隙为额外原则,共同计算出尽可能容纳所有用户数的合适的LBT优先级参数:
假设第一终端根据子载波间隔计算出的时隙长度为τ,代表参与协作的终端数量的第一数量为N,代表需要额外分配时域单元的终端数量的第二数量为N extra,则需要的最大信道占用时长T mcot,p为:
Figure PCTCN2020113606-appb-000003
第一终端根据计算出的T mcot,p以及根据表一示出的对应关系来确定LBT参数,T mcot,p为2毫秒时,采用Cat-1 LBT对应的LBT参数;T mcot,p为3毫秒时,采用Cat-2 LBT对应的LBT参数;T mcot,p为10毫秒时,采用Cat-3 LBT对应的LBT参数。
步骤506:第一终端采用LBT参数进行LBT;
当第一终端选择出的第一COT为2毫秒时,采用Cat-1 LBT对应的LBT参数对非授权频谱进行LBT。当第一终端选择出的第一COT为3毫秒时,采用Cat-2 LBT对应的LBT参数对非授权频谱进行LBT。当第一终端选择出的第一COT为10毫秒时,采用Cat-3 LBT对应的LBT参数对非授权频谱进行LBT。
步骤508:第一终端在LBT成功时,确定LBT占用成功的COT的时域单元分配方式;
示意性的,第一终端按照第一轮询方式在COT中,为多个终端中的每个终端分配一个时域单元。在COT中存在剩余时域单元时,按照第二轮询方式为多个终端中的第一类型终端分配剩余时域单元,第一类型终端是需要额外分配时域单元的终端;或,在COT中存在剩余时域单元时,按照第三轮询方式为多个终端中的第二类型终端分配剩余时域单元,第二类型终端是需要额外分配时域单元且在上一个COT中未能分配额外到时域单元的终端。
示意性的,第一终端在第一轮询方式中排序在第一位。这时,COT中的第一个时域单元 将分配给第一终端,即COT中的第一个时隙将分配给第一终端。第一终端按照每个终端占用一个时隙的第一轮询方式安排终端。如果所有终端按照第一轮询方式分配时隙后仍然有剩余时隙,则第一终端继续为要求额外时隙的第一类型终端按照第二轮询方式分配剩余时隙。
如果剩余时隙不足,不能满足所有要求额外时隙的第一类型终端。记录此次COT未能分配到额外时隙的第二类型终端,在下一次获得COT后,下一次COT按照第一轮询方式分配后的剩余时隙中,优先向记录的第二类型终端分配剩余时隙。
比如,UE1、UE2、UE3、UE4均需要分配额外时隙,第一轮询方式为UE1、UE2、UE3、UE4,第二轮询方式为UE3、UE4、UE1、UE2。第一次获得的COT中包括6个时隙,则6个时隙分配方式为UE1、UE2、UE3、UE4、UE3、UE4,UE1和UE2在本次未分配到额外时隙;在第二次获得的COT中包括6个时隙,则6个时隙分配方式为UE1、UE2、UE3、UE4、UE1、UE2。也即在第二次获得的COT中,在剩余时隙中优先为UE1和UE2分配额外时隙。
第二终端在第一轮询方式中的顺序,可以由第一终端自行确定,本实施例对此不加以限定。比如,第一终端根据每个第二终端的第一信息的接收顺序,确定第一轮询方式;又比如,第一终端按照每个第二终端的终端标识由小到大的顺序排序后,确定第一轮询方式;又比如,第一终端按照每个第二终端与自身之间的距离由近到远进行排序后,确定第一轮询方式。
同理,第二轮询方式也可以由第一终端自行确定,对此不加以限定。
步骤510:第一终端向第二终端发送时域单元分配方式;
第一终端采用SCI向第二终端发送本次LBT成功后的信道占用时长。也即,COT的时长信息。
第一终端还采用SCI或MACCE向第二终端发送时域单元分配方式,或,采用SCI或MACCE向第二终端发送时域单元分配方式。示意性的,该时域单元分配方式是时隙分配方式。
示意性的,时域单元分配方式或时隙分配方式采用半永久性调度方式,在一次调度后持续生效一段时间,直至第一数量和第二数量中的至少一种发生变化。
示意性的,SCI中还携带有本次LBT成功后的COT。
在一个示例中,第一终端在COT中的第一个时域单元向其它终端发送SCI,该SCI中携带有时域单元分配方式。其它终端在接收到该SCI后,从该SCI获取时域单元分配方式。在一个示例中,第一终端在COT中的第一个时域单元向其它终端发送MACCE,该MACCE中携带有时域单元分配方式。其它终端在接收到该MACCE后,从该MACCE获取时域单元分配方式。
步骤512:多个终端按照时域单元分配方式中分配的时域单元发送数据。
比如,UE2和UE3是需要分配额外时隙的UE,本次获得的3毫秒的COT中包括6个时隙,分别分配至UE1、UE2、UE3、UE4、UE2、UE3。UE1是第一终端,UE1在第一个时隙向各个其它终端发送时隙分配方式,UE2按照分配的时隙2发送数据,UE3按照分配的时隙3发送数据,UE4按照分配的时隙4发送数据,UE2按照分配的时隙5发送数据,UE3按照分配的时隙6发送数据,如图6所示。
综上所述,本实施例提供的方法,通过根据第一数量、子载波间隔和终端是否需要额外分配时域单元来确定LBT参数,不仅能够保证为协作传输的每个终端分配到至少一个时域单元,还能够保证数据量较大的终端分配到额外时域单元,尽可能满足不同终端的传输需求。
在基于图2或图3或图5的可选实施例中,第一信息包括:终端中待发送数据的优先级信息。第一终端根据多个终端(第一终端和/或第二终端)中待发送数据的优先级信息,确定第三LBT参数。第三LBT参数中的竞争窗口大小CW p与优先级信息呈负相关关系。也即,优先级信息越高,竞争窗口大小CW p越小;优先级信息越低,竞争窗口大小CW p越大。
在一种可能的设计中,当存在一个或多个终端的待发送数据的优先级高于优先级阈值时,选择Cat-1 LBT或Cat-2 LBT的LBT参数。或者,当存在一个或多个终端的待发送数据的优先级高于第一优先级阈值时,选择Cat-1 LBT或Cat-2 LBT的LBT参数;当存在一个或多个终端的待发送数据的优先级高于第二优先级阈值时,选择Cat-2 LBT的LBT参数。其中,第一优先级阈值高于第二优先级阈值。
在一种可能的设计中,当全部终端的待发送数据的优先级低于优先级阈值时,选择Cat-3 LBT或Cat-4 LBT的LBT参数。
在一种可能的设计中,当全部终端的待发送数据的优先级低于优先级阈值时,采用图3实施例或图4实施例中的LBT参数确定方法。
在本实施例中,若选择Cat-1 LBT或Cat-2 LBT的LBT参数,而参与共享COT的终端数量较多时,第一终端按照第一轮询方式在COT中为每个终端分配一个时域单元,可能会出现时域单元不足的情况,此时,第一终端记录本次未分配到时域单元的第三类型终端,在下一次获得的COT中,优先为第三类型终端分配时域单元。
在基于图2或图3或图5的可选实施例中,第一信息包括:终端中待发送数据的时延信息。第一终端根据多个终端(第一终端和/或第二终端)中待发送数据的时延信息,确定第三LBT参数。第三LBT参数中的竞争窗口大小CW p与时延信息呈正相关关系。也即,允许的时延越小,竞争窗口大小CW p越小;允许的时延越大,竞争窗口大小CW p越大。
在一种可能的设计中,当存在一个或多个终端的待发送数据允许的时延低于时延阈值时,选择Cat-1 LBT或Cat-2 LBT的LBT参数。或者,当存在一个或多个终端的待发送数据允许的时延低于第一时延阈值时,选择Cat-1 LBT或Cat-2 LBT的LBT参数;当存在一个或多个终端的待发送数据允许的时延低于第二时延阈值时,选择Cat-2 LBT的LBT参数。其中,第一时延阈值低于第二时延阈值。
在一种可能的设计中,当全部终端的待发送数据允许的时延高于时延阈值时,选择Cat-3 LBT或Cat-4 LBT的LBT参数。
在一种可能的设计中,当全部终端的待发送数据允许的时延高于时延阈值时,采用图3实施例或图4实施例中的LBT参数确定方法。
在本实施例中,若选择Cat-1 LBT或Cat-2 LBT的LBT参数,而参与共享COT的终端数量较多时,第一终端按照第一轮询方式在COT中为每个终端分配一个时域单元,可能会出现时域单元不足的情况,此时,第一终端记录本次未分配到时域单元的第三类型终端,在下一次获得的COT中,优先为第三类型终端分配时域单元。
图7示出了本申请一个示例性实施例提供的LBT参数的确定装置的框图。该装置可以应用第一终端中,或者实现成为第一终端中的一部分。所述装置包括:
接收模块720,获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;
确定模块740,用于根据所述第一信息确定LBT参数。
在本申请的一个可选实现中,所述第一信息包括如下至少之一:
第一数量;
子载波间隔;
所述终端是否需要额外分配时域单元;
所述终端中待发送数据的优先级信息;
所述终端中所述待发送数据的时延信息;
所述终端中所述待发送数据的数据量大小;
其中,所述第一数量用于指示参与共享COT的终端的个数,或,所述第一数量用于指示参与共享COT且存在所述待发送数据的终端的个数。
在本申请的一个可选实现中,所述接收模块720,用于接收所述第二终端发送的所述第一信息;或,所述接收模块720,用于接收网络设备发送的所述第一信息,所述第一信息是由所述终端发送给所述网络设备的。
在本申请的一个可选实现中,所述接收模块720,用于在第一载波上接收所述第二终端发送的所述第一信息,所述第一载波是非授权载波或授权载波。
在本申请的一个可选实现中,所述确定模块740,用于根据所述第一数量和所述子载波间隔,确定所述LBT参数。
在本申请的一个可选实现中,所述确定模块740,用于根据所述第一数量和所述子载波间隔,在多个候选COT中选择出第一COT;确定与所述第一COT对应的第一LBT参数。
在本申请的一个可选实现中,所述第一COT大于或等于第一乘积,所述第一乘积是所述第一数量和时隙长度的乘积,所述时隙长度是根据所述子载波间隔确定的。
在本申请的一个可选实现中,所述确定模块740,用于根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元的信息,确定所述LBT参数。
在本申请的一个可选实现中,所述确定模块740,用于根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元,在多个候选COT中选择出第二COT;确定与所述第二COT对应的第二LBT参数。
在本申请的一个可选实现中,所述第二COT大于或等于第二乘积,所述第二乘积是第三数量和时隙长度的乘积,所述第三数量是所述第一数量和第二数量的和,所述第二数量是需要额外分配时域单元的终端数量,所述时隙长度是根据所述子载波间隔确定的。
在本申请的一个可选实现中,所述确定模块740,用于根据所述终端中待发送数据的优先级信息,确定第三LBT参数;
其中,所述第三LBT参数中的竞争窗口大小与所述时延信息呈正比例关系。
在本申请的一个可选实现中,所述确定模块740,用于根据所述终端中所述待发送数据的时延信息,确定第四LBT参数;
其中,所述第四LBT参数中的竞争窗口大小与所述时延信息呈正比例关系。
在本申请的一个可选实现中,所述确定模块740,用于根据所述终端中所述待发送数据的数据量大小,确定所述终端是否需要额外分配时域单元。
在本申请的一个可选实现中,所述装置还包括:发送模块760;
所述接收模块720,用于采用所述LBT参数对非授权频谱进行LBT;
所述确定模块740,用于在所述LBT成功时,确定所述LBT占用成功的COT的时域单 元分配方式;
所述发送模块760,用于向所述多个终端发送所述时域单元分配方式。
在本申请的一个可选实现中,所述确定模块740,用于按照第一轮询方式在所述COT中,为所述多个终端中的每个终端分配一个时域单元。
在本申请的一个可选实现中,所述确定模块740,用于在所述COT中存在剩余时域单元时,继续按照所述第一轮询方式为所述多个终端中的全部或一部分终端分配所述剩余时域单元。
在本申请的一个可选实现中,所述确定模块740,用于在所述COT中存在剩余时域单元时,按照第二轮询方式为所述多个终端中的第一类型终端分配所述剩余时域单元,所述第一类型终端是需要额外分配时域单元的终端;或,在所述COT中存在剩余时域单元时,按照第三轮询方式为所述多个终端中的第二类型终端分配所述剩余时域单元,所述第二类型终端是需要额外分配时域单元且在上一个COT中未能分配额外到时域单元的终端。
在本申请的一个可选实现中,所述时域单元分配方式携带在SCI或MACCE中。
图8示出了本申请一个示例性实施例提供的通信设备(网络设备或终端)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由第一终端执行的LBT参数的确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请实施例的可选实施例,并不用以限制本申请,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。

Claims (38)

  1. 一种先听后说LBT参数的确定方法,其特征在于,应用于第一终端中,所述方法包括:
    获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;
    根据所述第一信息确定LBT参数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括如下至少之一:
    第一数量;
    子载波间隔;
    所述终端是否需要额外分配时域单元;
    所述终端中待发送数据的优先级信息;
    所述终端中所述待发送数据的时延信息;
    所述终端中所述待发送数据的数据量大小;
    其中,所述第一数量用于指示参与共享COT的终端的个数,或,所述第一数量用于指示参与共享COT且存在所述待发送数据的终端的个数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取多个终端的第一信息,包括:
    接收所述第二终端发送的所述第一信息;
    或,
    接收网络设备发送的所述第一信息。
  4. 根据权利要求3所述的方法,其特征在于,所述接收所述第二终端发送的所述第一信息,包括:
    在第一载波上接收所述第二终端发送的所述第一信息,所述第一载波是非授权载波或授权载波。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信息确定LBT参数,包括:
    根据所述第一数量和所述子载波间隔,确定所述LBT参数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一数量和所述子载波间隔,确定所述LBT参数,包括:
    根据所述第一数量和所述子载波间隔,在多个候选COT中选择出第一COT;
    确定与所述第一COT对应的第一LBT参数。
  7. 根据权利要求6所述的方法,其特征在于,所述第一COT大于或等于第一乘积,所述第一乘积是所述第一数量和时隙长度的乘积,所述时隙长度是根据所述子载波间隔确定的。
  8. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信息确定LBT参数,包括:
    根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元的信息,确定所述LBT参数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元的信息,确定所述LBT参数,包括:
    根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元,在多个候选COT中选择出第二COT;
    确定与所述第二COT对应的第二LBT参数。
  10. 根据权利要求9所述的方法,其特征在于,所述第二COT大于或等于第二乘积,所述第二乘积是第三数量和时隙长度的乘积,所述第三数量是所述第一数量和第二数量的和,所述第二数量是需要额外分配时域单元的终端数量,所述时隙长度是根据所述子载波间隔确定的。
  11. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信息确定LBT参数,包括:
    根据所述终端中待发送数据的优先级信息,确定第三LBT参数;
    其中,所述第三LBT参数中的竞争窗口大小与所述优先级信息呈负相关关系。
  12. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信息确定LBT参数,包括:
    根据所述终端中所述待发送数据的时延信息,确定第四LBT参数;
    其中,所述第四LBT参数中的竞争窗口大小与所述时延信息呈正相关关系。
  13. 根据权利要求2至12任一所述的方法,其特征在于,所述方法还包括:
    根据所述终端中所述待发送数据的数据量大小,确定所述终端是否需要额外分配时域单元。
  14. 根据权利要求1至12任一所述的方法,其特征在于,所述方法还包括:
    采用所述LBT参数进行LBT;
    在所述LBT成功时,确定所述LBT占用成功的COT的时域单元分配方式;
    向所述至少一个第二终端发送所述时域单元分配方式。
  15. 根据权利要求14所述的方法,其特征在于,所述在所述LBT成功时,确定所述LBT占用到的COT的时域单元分配方式,包括:
    按照第一轮询方式在所述COT中,为所述多个终端中的每个终端分配一个时域单元。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述COT中存在剩余时域单元时,继续按照所述第一轮询方式为所述多个终端中的全部或一部分终端分配所述剩余时域单元。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述COT中存在剩余时域单元时,按照第二轮询方式为所述多个终端中的第一类型终端分配所述剩余时域单元,所述第一类型终端是需要额外分配时域单元的终端;
    或,
    在所述COT中存在剩余时域单元时,按照第三轮询方式为所述多个终端中的第二类型终端分配所述剩余时域单元,所述第二类型终端是需要额外分配时域单元且在上一个COT中未能分配额外到时域单元的终端。
  18. 根据权利要求14所述的方法,其特征在于,所述时域单元分配方式携带在侧行控制信息SCI或媒体接入控制控制单元MACCE中。
  19. 一种LBT参数的确定装置,其特征在于,应用于第一终端中,所述装置包括:
    接收模块,用于获取多个终端的第一信息,所述多个终端包括所述第一终端和至少一个第二终端,所述第一终端和所述第二终端是同一个通信组内的终端;
    确定模块,用于根据所述第一信息确定LBT参数。
  20. 根据权利要求19所述的装置,其特征在于,所述第一信息包括如下至少之一:
    第一数量;
    子载波间隔;
    所述终端是否需要额外分配时域单元;
    所述终端中待发送数据的优先级信息;
    所述终端中所述待发送数据的时延信息;
    所述终端中所述待发送数据的数据量大小;
    其中,所述第一数量用于指示参与共享COT的终端的个数,或,所述第一数量用于指示参与共享COT且存在所述待发送数据的终端的个数。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述接收模块,用于接收所述第二终端发送的所述第一信息;
    或,
    所述接收模块,用于接收网络设备发送的所述第一信息。
  22. 根据权利要求21所述的装置,其特征在于,
    所述接收模块,用于在第一载波上接收所述第二终端发送的所述第一信息,所述第一载波是非授权载波或授权载波。
  23. 根据权利要求20所述的装置,其特征在于,所述确定模块,用于根据所述第一数量和所述子载波间隔,确定所述LBT参数。
  24. 根据权利要求23所述的装置,其特征在于,所述确定模块,用于根据所述第一数量和所述子载波间隔,在多个候选COT中选择出第一COT;确定与所述第一COT对应的第一LBT参数。
  25. 根据权利要求24所述的装置,其特征在于,所述第一COT大于或等于第一乘积,所述第一乘积是所述第一数量和时隙长度的乘积,所述时隙长度是根据所述子载波间隔确定的。
  26. 根据权利要求20所述的装置,其特征在于,所述确定模块,用于根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元的信息,确定所述LBT参数。
  27. 根据权利要求26所述的装置,其特征在于,所述确定模块,用于根据所述第一数量、所述子载波间隔和所述终端是否需要额外分配时域单元,在多个候选COT中选择出第二COT;确定与所述第二COT对应的第二LBT参数。
  28. 根据权利要求27所述的装置,其特征在于,所述第二COT大于或等于第二乘积,所述第二乘积是第三数量和时隙长度的乘积,所述第三数量是所述第一数量和第二数量的和,所述第二数量是需要额外分配时域单元的终端数量,所述时隙长度是根据所述子载波间隔确定的。
  29. 根据权利要求20所述的装置,其特征在于,所述确定模块,用于根据所述终端中待发送数据的优先级信息,确定第三LBT参数;
    其中,所述第三LBT参数中的竞争窗口大小与所述时延信息呈正比例关系。
  30. 根据权利要求20所述的装置,其特征在于,所述确定模块,用于根据所述终端中所述待发送数据的时延信息,确定第四LBT参数;
    其中,所述第四LBT参数中的竞争窗口大小与所述时延信息呈正比例关系。
  31. 根据权利要求20至30任一所述的装置,其特征在于,所述确定模块,用于根据所述终端中所述待发送数据的数据量大小,确定所述终端是否需要额外分配时域单元。
  32. 根据权利要求19至30任一所述的装置,其特征在于,所述装置还包括:发送模块;
    所述接收模块,用于采用所述LBT参数进行LBT;
    所述确定模块,用于在所述LBT成功时,确定所述LBT占用成功的COT的时域单元分配方式;
    所述发送模块,用于向所述至少一个第二终端发送所述时域单元分配方式。
  33. 根据权利要求32所述的装置,其特征在于,所述确定模块,用于按照第一轮询方式在所述COT中,为所述多个终端中的每个终端分配一个时域单元。
  34. 根据权利要求33所述的装置,其特征在于,所述确定模块,用于在所述COT中存在剩余时域单元时,继续按照所述第一轮询方式为所述多个终端中的全部或一部分终端分配所述剩余时域单元。
  35. 根据权利要求33所述的装置,其特征在于,所述确定模块,用于在所述COT中存在剩余时域单元时,按照第二轮询方式为所述多个终端中的第一类型终端分配所述剩余时域单元,所述第一类型终端是需要额外分配时域单元的终端;或,在所述COT中存在剩余时域单元时,按照第三轮询方式为所述多个终端中的第二类型终端分配所述剩余时域单元,所述第二类型终端是需要额外分配时域单元且在上一个COT中未能分配额外到时域单元的终端。
  36. 根据权利要求32所述的装置,其特征在于,所述时域单元分配方式携带在侧行控制信息SCI或媒体接入控制控制单元MACCE中。
  37. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至18中任一所述的LBT参数的确定方法。
  38. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至18中任一所述的LBT参数的确定方法。
PCT/CN2020/113606 2020-09-04 2020-09-04 Lbt参数的确定方法、装置、设备及介质 WO2022047750A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102874.1A CN115804203A (zh) 2020-09-04 2020-09-04 Lbt参数的确定方法、装置、设备及介质
PCT/CN2020/113606 WO2022047750A1 (zh) 2020-09-04 2020-09-04 Lbt参数的确定方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113606 WO2022047750A1 (zh) 2020-09-04 2020-09-04 Lbt参数的确定方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022047750A1 true WO2022047750A1 (zh) 2022-03-10

Family

ID=80492457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113606 WO2022047750A1 (zh) 2020-09-04 2020-09-04 Lbt参数的确定方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115804203A (zh)
WO (1) WO2022047750A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135461A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 数据传输方法及装置
US20190313454A1 (en) * 2018-04-05 2019-10-10 Apple Inc. Listen-Before-Talk Procedure with Priority and Interference Addition Awareness
WO2020133340A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种数据传输方法和通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135461A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 数据传输方法及装置
US20190313454A1 (en) * 2018-04-05 2019-10-10 Apple Inc. Listen-Before-Talk Procedure with Priority and Interference Addition Awareness
WO2020133340A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种数据传输方法和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Transmission with configured grant in NR unlicensed band", 3GPP DRAFT; R1-1903931, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699364 *

Also Published As

Publication number Publication date
CN115804203A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
EP3634058A1 (en) Data transmission method and apparatus
US11589384B2 (en) Data transmission method, terminal device, and network device
CN111615192B (zh) 传输数据的方法和通信装置
CN110999509B (zh) 与调度的ue共存时控制自主ul传输
EP3937519B1 (en) Communication method and apparatus
WO2017036272A1 (zh) 一种资源选择方法及装置
CN110087328B (zh) 资源复用的方法和装置
US11882078B2 (en) Method, device and apparatus for determining channel detection mechanism, and storage medium
CN104202749A (zh) 无线资源确定、获取方法及装置
CN109121098B (zh) 一种分配信道的方法及系统
KR101948872B1 (ko) 비면허 대역에서 lte와 wlan의 공존을 위한 채널 선택 및 프레임 스케줄링 동시 최적화 방법
JP2022553584A (ja) チャネルアクセス指示方法及び装置
KR20170028786A (ko) 무선 통신 시스템에서 데이터를 전송하는 방법 및 장치
CN110832934B (zh) Ue在具有子集限制的宽带宽上随机接入的系统及方法
CN107548070B (zh) 数据传输方法、装置及系统
CN114514788A (zh) 资源配置方法及设备
KR102049047B1 (ko) 단말간 직접 통신 네트워크에서 데이터를 송수신하는 방법
WO2022047750A1 (zh) Lbt参数的确定方法、装置、设备及介质
CN111742599A (zh) 无线通信方法、用户设备和网络设备
US20230299814A1 (en) Base station, communication method, and communication program
CN106455000B (zh) 实现上行接入的方法及其装置
WO2024032418A1 (zh) 一种通信方法及装置
WO2024098346A1 (zh) Sl通信方法、装置、设备及存储介质
CN116326094A (zh) 资源调度的确定方法、装置及存储介质
CN115103453A (zh) 终端的接入方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951994

Country of ref document: EP

Kind code of ref document: A1