WO2022047690A1 - Establishing a network slicing connection - Google Patents

Establishing a network slicing connection Download PDF

Info

Publication number
WO2022047690A1
WO2022047690A1 PCT/CN2020/113189 CN2020113189W WO2022047690A1 WO 2022047690 A1 WO2022047690 A1 WO 2022047690A1 CN 2020113189 W CN2020113189 W CN 2020113189W WO 2022047690 A1 WO2022047690 A1 WO 2022047690A1
Authority
WO
WIPO (PCT)
Prior art keywords
access stratum
network
network slicing
slicing instance
reply
Prior art date
Application number
PCT/CN2020/113189
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/113189 priority Critical patent/WO2022047690A1/en
Publication of WO2022047690A1 publication Critical patent/WO2022047690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • the following relates to wireless communications, including establishing a network slicing connection.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a wireless network may be separated into one or more sub-networks that are configured to support communications of respective types.
  • the different sub-networks may include dedicated network infrastructure (e.g., dedicated servers) and may be referred to as “network slices. ”
  • a UE may connect to one or more network slicing instances based on the one or more communication types that are used by the UE and supported by the one or more network slicing instances.
  • a wireless device may receive, from a wireless network, an indication of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications.
  • the wireless device may transmit a non-access stratum message to the wireless network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data.
  • the wireless device may receive a reply from the wireless network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling.
  • the wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance.
  • a method of wireless communication at a UE may include receiving, from a network, an indication of a set of network slices available for use by the UE, transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating in accordance with the reply.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a network, an indication of a set of network slices available for use by the UE, transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate in accordance with the reply.
  • the apparatus may include means for receiving, from a network, an indication of a set of network slices available for use by the UE, transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating in accordance with the reply.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to receive, from a network, an indication of a set of network slices available for use by the UE, transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate in accordance with the reply.
  • transmitting the non-access stratum message may include operations, features, means, or instructions for transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • the one or more characteristics of the UE includes an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
  • receiving the reply may include operations, features, means, or instructions for receiving a second indication that the UE may be permitted to use the network slicing instance for non-access stratum signaling including user data.
  • receiving the reply may include operations, features, means, or instructions for receiving a second indication that the UE may be prohibited from using the network slicing instance for non-access stratum signaling including user data.
  • the second indication indicates that there may be insufficient network capacity, that the UE may be prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data.
  • communicating in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data.
  • communicating in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection with the network.
  • the network slicing instance supports communications of non-access stratum signaling that includes user data.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for registering with the network, where the indication of the set of network slices available for use by the UE may be received based on the registering.
  • a second non-access stratum message includes the indication of the set of network slices and a third non-access stratum message includes the reply.
  • the UE may be a machine-type UE and a type of the network slicing instance may be a massive machine type.
  • a method of wireless communication at a base station may include transmitting, to a network, an indication of a set of network slices available for use by a UE, receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating with the UE in accordance with the reply.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a network, an indication of a set of network slices available for use by a UE, receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate with the UE in accordance with the reply.
  • the apparatus may include means for transmitting, to a network, an indication of a set of network slices available for use by a UE, receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating with the UE in accordance with the reply.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit, to a network, an indication of a set of network slices available for use by a UE, receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate with the UE in accordance with the reply.
  • receiving the non-access stratum message may include operations, features, means, or instructions for receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • transmitting the reply may include operations, features, means, or instructions for transmitting a second indication that the UE may be permitted to use the network slicing instance for non-access stratum signaling including user data.
  • transmitting the reply may include operations, features, means, or instructions for transmitting a second indication that the UE may be prohibited from using the network slicing instance for non-access stratum signaling including user data.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data, and including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  • determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data may include operations, features, means, or instructions for determining that that there may be insufficient network capacity, that the UE may be prohibited from communicating user data using non-access stratum signaling, or both.
  • communicating with the UE in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data.
  • communicating with the UE in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection for the UE.
  • the network slicing instance supports communications of non-access stratum signaling that includes user data.
  • FIG. 1 illustrates an example of a system for wireless communications that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications subsystem that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communication manager that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communication manager that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • FIGs. 12 and 13 show flowcharts illustrating methods that support establishing a network slicing connection in accordance with aspects of the present disclosure.
  • a wireless device Before communicating user data over a wireless network, a wireless device may register with the wireless network by exchanging non-access stratum (NAS) signaling with the wireless network. The wireless device may also use non-access stratum signaling to establish a connection to an information network (e.g., the Internet) through the wireless network before communicating user data over the wireless network.
  • an information network e.g., the Internet
  • the connection to the information network may be referred to as a “session” and may be used by the wireless device to communicate user data.
  • a wireless communications system may include wireless devices (e.g., machine-type devices) that communicate small amounts of data at a time, use a limited number of services offered by a wireless network, or both.
  • wireless devices e.g., machine-type devices
  • Such wireless devices may use non-access stratum signaling to communicate user data over a wireless network instead of (without) establishing a session for communicating user data.
  • wireless devices may access a portion of a wireless network that is configured to provide a limited set of services used by these limited-functionality devices.
  • the portion of the wireless network may also be referred to as a “network slicing instance” and may include dedicated infrastructure that supports the limited set of services.
  • a wireless device may be unable to establish a connection to a network slicing instance without establishing a session.
  • limited-functionality devices may be prevented from using non-access stratum signaling to communicate user data over a network slicing instance, at least until a session is established with the network slicing instance.
  • the signaling overhead and latency associated with establishing (and, in some examples, communicating using) a session for a network slicing instance may be undesirable.
  • network slicing instances may be configured to support non-access stratum signaling of user data. Also, procedures that enable a wireless device to establish a connection with a network slicing instance that supports non-access stratum signaling of user data without establishing a session for the network slicing instance may be established.
  • a wireless device receives, from a wireless network, an indication of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications. The wireless device may transmit a non-access stratum message to the wireless network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data.
  • the wireless device may receive a reply from the wireless network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling. The wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance.
  • the wireless device may establish a limited data connection with the network slicing instance without establishing a session. Also, the wireless device may communicate user data with the network slicing instance using non-access stratum signaling, avoiding latency and signaling overhead associated with establishing (and, in some examples, communicating using) a session.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described using a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to establishing a network slicing connection.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • a wireless communications system 100 may be configured with communication protocols that enable a UE 115 to use a radio network that includes, for example, base stations, a core network, and the like, to access an information network, such as the Internet.
  • the communication protocols may include a procedure for establishing a radio connection to the radio network (which may be referred to as a registration procedure) and a procedure for establishing a connection to an information network through the radio network (which may be referred to as a session establishment procedure) .
  • the connection to the information network may be referred to as a session.
  • a UE 115 is unable to exchange information (or user data) with an information network until the session establishment procedure is completed.
  • the signaling used to register with the data network and establish the session may occur in a non-access stratum.
  • the UE 115 may exchange information (e.g., user data) with a base station 105 in accordance with radio signaling protocols, which may include RRC, MAC, and PHY layer protocols. And the base station 105 may forward the information to the information network -e.g., through a core network 130.
  • the signaling exchanged between the UE 115 and base station 105 using the session may occur in an access stratum (AS) .
  • AS access stratum
  • a wireless communications system 100 may include UEs 115 that have limited-functionality, such as machine-type UEs 115 (e.g., sensors, actuators, meters, etc. ) .
  • Such UEs 115 may be configured to perform and report the results of discrete tasks, and thus, may generate small packets of data for communication within a data network.
  • the signaling overhead and latency associated with establishing and communicating using a session may be undesirable.
  • the wireless network may support procedures that enable a limited-functionality UE 115 to forego establishing a session and communicate data to a data network using non-access stratum signaling.
  • UEs 115 may utilize few of the services offered by a wireless network in wireless communications system 100. Instead of establishing a connection with a wireless network that supports all or a majority of the services offered by the wireless network (and thus reduces the amount of resources available to other UEs 115) , limited-functionality UE 115 may establish a connection to a portion of the wireless network that supports the limited services used by the limited-functionality UE 115. That is, in some examples, the wireless network may be configured to have multiple sub-networks that support different types, or combinations of different types, of services.
  • a sub-network may include a set of functional servers and serving gateways that support communications of a first type (e.g., machine-type communications) , and a limited-functionality UE 115 may establish a connection that provides access to the sub-network.
  • the different sub-networks may be referred to as “slices” of a network, and a UE 115 may connect to one or more network slicing instances at a time.
  • a UE 115 may register with a wireless network in accordance with a registration procedure.
  • the wireless network may respond to a registration request from the UE 115 with a list of allowed network slice selection assistance information (N-SSAI) .
  • N-SSAI network slice selection assistance information
  • the UE 115 may establish a protocol data unit (PDU) session with the network slicing instance that gives the UE 115 access to a data network associated with the network slicing instance.
  • PDU protocol data unit
  • Establishing the PDU session may involve a non-access stratum signaling exchange between the UE 115, a base station 105, and a core network 130.
  • the UE 115 may exchange information (e.g., user data) with the base station 105 in accordance with radio signaling protocols (e.g., RRC, MAC, and PHY layer protocols) .
  • radio signaling protocols e.g., RRC, MAC, and PHY layer protocols
  • limited-functionality devices may be prevented from using non-access stratum signaling to communicate user data over a network slicing instance, at least until a session is established with the network slicing instance.
  • the signaling overhead and latency associated with establishing (and, in some examples, communicating using) a session for a network slicing instance may be undesirable.
  • network slicing instances may be configured to support non-access stratum signaling of user data. Also, procedures that enable a wireless device to establish a connection with a network slicing instance that supports non-access stratum signaling of user data without establishing a session for the network slicing instance may be established.
  • a wireless device e.g., a machine-type device receives, from a network, an indication (e.g., in non-access stratum signaling) of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications.
  • the wireless device may transmit a non-access stratum message to the network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data.
  • the wireless device may receive a reply from the network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling.
  • the wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance based on the request being rejected.
  • the wireless device may establish a limited data connection with the network slicing instance without establishing a session. Also, the wireless device may communicate data with the network slicing instance using non-access stratum signaling, avoiding latency and signaling overhead associated with establishing and communicating over a session.
  • FIG. 2 illustrates an example of a wireless communications subsystem that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • Wireless communications subsystem 200 may include base station 205 and UE 215, which may be examples of a base station and UE as described with reference to FIG. 1.
  • UE 215 may be a machine-type device.
  • Base station 205 and UE 215 may communicate with one another within coverage area 210 over downlink 230 and uplink 245, as similarly described (using one or more of the techniques described) with reference to FIG. 1.
  • a wireless network that supports signaling non-access stratum signaling over a network slicing instance may be configured, and a procedure enabling a wireless device (e.g., a machine-type device) to communicate data using non-access stratum signaling over a network slicing instance (e.g., prior to establishing a session) may be used.
  • a wireless device e.g., a machine-type device
  • base station 205 may transmit N-SSAI message 220 to UE 215.
  • N-SSAI message 220 may include an indication of a set of network slicing instances with which UE 215 is allowed to connect.
  • N-SSAI message may be a non-access stratum message.
  • UE 215 may transmit request message 235 (which may also be referred to as a Network Slicing Connect message) to base station 205.
  • Request message 235 may include an indication of one or more of the set of allowed network slicing instances with which UE 215 is requesting to connect.
  • Request message 235 may be a non-access stratum message.
  • Base station 205 may determine whether to permit UE 215 to establish a connection to the one or more network slicing instances indicated in request message 235 and may transmit a result of the determination in reply message 225.
  • Reply message 225 may include an indication that UE 215 is allowed to connect to at least one of the requested network slicing instances or an indication the UE 215 is not allowed to connect to at least one of the requested network slicing instance, or both. If reply message 225 indicates UE 215 is allowed to connect to a network slicing instance, UE 215 may transmit NAS data 240 to base station 205 using non-access stratum signaling.
  • FIG. 3 illustrates an example of a process flow that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • Process flow 300 may be performed by base station 305 and UE 315, which may be examples of a base station or UE described above with reference to FIGs. 1 and 2.
  • UE 315 may be a machine-type device (e.g., a sensor, actuator, meter, etc. ) .
  • process flow 300 illustrates an exemplary sequence of operations performed to support establishing a network slicing connection.
  • process flow 300 depicts a signaling exchange between a base station and UE that enables the UE to establish a connection to a network slicing instance prior to (or without performing) a session establishment procedure and to communicate data using non-access stratum signaling over the network slicing instance.
  • process flow 300 may be performed earlier or later in the process, omitted, replaced, supplemented, or any combination thereof. Also, additional operations described herein that are not included in process flow 300 may be included.
  • base station 305 and UE 315 may perform a procedure for registering UE 315 with a wireless network.
  • This registration procedure may include the exchange of information about UE 315 (e.g., a UE identifier, a UE subscription, a network slicing request, and the like) and about the wireless network (e.g., services supported by the wireless network, and the like) .
  • base station 305 may transmit network slice selection assistance information to UE 315.
  • base station 305 transmits the network slice selection assistance information after an end of the registration procedure.
  • base station 305 transmits the network slice selection assistance information as part of (e.g., at the end of) the registration procedure.
  • the network slice selection assistance information may indicate a set of network slicing instances with which UE 315 is allowed to connect.
  • UE 315 may identify a network slicing instance for connection.
  • the network slicing instance identified by UE 315 may be associated with (e.g., support) machine-type communications. That is, the network slicing instance may include a sub-network infrastructure that is optimized for machine-type communications.
  • UE 315 may transmit a network slicing connect message to base station 305.
  • UE 315 may transmit the network slicing connect message as part of the registration procedure and/or prior to initiating a session establishment procedure.
  • the network slicing connect message may indicate the network slicing instance identified by UE 315, a type of the network slicing instance (e.g., an mMTC type) , a requested connection duration, one or more characteristics of UE 315, or any combination thereof.
  • the requested connection duration may be used request a connection to the network slicing instance that lasts for minutes, hours, or days.
  • the indicated one or more characteristics may include an identifier of the UE, a type of the UE (e.g., sensor, actuator, etc. ) , a physical size of the UE, and the like.
  • base station 305 may determine whether to allow UE 315 to connect to the requested network slicing instance.
  • Base station 305 may use the information included in the network slicing connect message to determine whether to allow UE 315 to connect to the requested network slicing instance. For example, base station 305 may allow UE 315 to connect to a network slicing instance associated with machine-type communications based on determining that UE 315 is a machine-type device. In another example, base station 305 may allow UE 315 to connect to a network slicing instance associated with machine-type communications based on determining that UE 315 is configured to transmit data packets having a size that is below a threshold.
  • Base station 305 may also use information determined at base station 305 to determine whether to allow UE 315 to connect to the requested network slicing instance. For example, base station 305 may prevent UE 315 from connecting the network slicing instance based on determining that a capacity of communication resources used for non-access stratum signaling is above a threshold.
  • base station 305 may transmit, based on a result of the determination, an accept/reject message to UE 315 in reply to the network slicing connect message.
  • the accept/reject message indicates that UE 315 is permitted to connect (or establish a connection) to the requested network slicing instance. In such cases, UE 315 may establish a connection to the requested network slicing instance without performing a session establishment procedure.
  • the accept/reject message indicates that the request received from UE 315 to establish a connection to the requested network slicing instance is denied. In such cases, the accept/reject message may also include the reason why the request was denied.
  • the reject message includes an indication that there is insufficient network capacity to support communicating data using non-access stratum signaling.
  • the determination of whether there is sufficient network capacity is based on a length of the requested connection duration -e.g., requests to connect to network slicing instances having longer requested connection durations may be more likely to be denied.
  • the reject message includes an indication that UE 315 is prohibited from using the requested network slicing instance for communicating data using non-access stratum signaling -e.g., after determining UE 315 transmits data packets having sizes that exceed a threshold or that a type of UE 315 is incompatible with non-access stratum data signaling.
  • UE 315 may communicate data using non-access stratum signaling with base station 305.
  • the data communicated between base station 305 and UE 315 may be routed to and from an information network (e.g., a factory network) using non-access stratum signaling.
  • base station 305 may forward, using non-access stratum signaling, data received from UE 315 in non-access stratum signaling to function servers that support machine-type communication, and vice versa.
  • UE 315 may determine a reason for the rejection. If the reason indicates that there is insufficient network capacity, UE 315 may retransmit a network slicing connect message at a later time. In some cases, the indication of insufficient network capacity also indicates an interval during which time the network capacity will be insufficient. If the reason indicates that UE 315 is prohibited from communicating data using non-access stratum signaling, UE 315 may perform a session establishment procedure to establish a session that connects UE 315 to the requested network slicing instance.
  • UE 315 may attempt to establish a connection to a network slicing instance that supports communicating data using non-access stratum signaling and without establishing a session by transmitting a second network slicing connect message. In some examples, UE 315 may continue to transmit network slicing connect messages until a request to connect to a network slicing instance is accepted. In other examples, UE 315 may perform a session establishment procedure after a threshold number of rejections are received from base station 305.
  • base station 305 and UE 315 may perform a procedure for establishing a session that establishes a connection to an information network (e.g., a PDN connection or a PDU session) .
  • an information network e.g., a PDN connection or a PDU session
  • UE 315 may establish a session that establishes a connection to a network slicing instance that supports the information network.
  • UE 315 may communicate data within the information network using access stratum signaling techniques.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a transmitter 415, and a communication manager 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 405.
  • the receiver 410 may utilize a single antenna or a plurality of antennas.
  • the transmitter 415 may provide a means for transmitting signals generated by other components of the device 405.
  • the transmitter 415 may be co-located with a receiver 410 in a transceiver module.
  • the transmitter 415 may utilize a single antenna or a plurality of antennas.
  • the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof, may be an example of a means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the circuitry may include a processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or some other programmable logic device.
  • code e.g., as communications management software or firmware
  • the functions of the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or some other programmable logic device.
  • the communication manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both.
  • the communication manager 420 may support wireless communication at a user equipment (UE) in accordance with examples as disclosed herein.
  • the communication manager 420 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE.
  • the communication manager 420 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the communication manager 420 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the communication manager 420 may be configured to provide or support a means for communicating in accordance with the reply.
  • the device 405 may support improved techniques for reducing latency and signaling overhead associated with establishing a session and communicating over an established session.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405 or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communication manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a plurality of antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a plurality of antennas.
  • the device 505, or various components thereof may be an example of means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 520 may include a slice identification component 525, a slice request component 530, a slice connection component 535, a data component 540, or any combination thereof.
  • the communication manager 520 may be an example of aspects of a communication manager 420 as described herein.
  • the communication manager 520, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communication manager 520 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the slice identification component 525 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE.
  • the slice request component 530 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the slice connection component 535 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the data component 540 may be configured to provide or support a means for communicating in accordance with the reply.
  • FIG. 6 shows a block diagram 600 of a communication manager 620 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the communication manager 620 may be an example of aspects of a communication manager 420, a communication manager 520, or both, as described herein.
  • the communication manager 620, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 620 may include a slice identification component 625, a slice request component 630, a slice connection component 635, a data component 640, a registration component 645, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communication manager 620 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the slice identification component 625 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE.
  • the slice request component 630 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the slice connection component 635 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the data component 640 may be configured to provide or support a means for communicating in accordance with the reply.
  • the slice request component 630 may be configured to provide or support a means for transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • the one or more characteristics of the UE include an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
  • the slice connection component 635 may be configured to provide or support a means for receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling including user data.
  • the slice connection component 635 may be configured to provide or support a means for receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling including user data.
  • the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data.
  • the data component 640 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data.
  • the data component 640 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection with the network.
  • the network slicing instance supports communications of non-access stratum signaling that includes user data.
  • the registration component 645 may be configured to provide or support a means for registering with the network, where the indication of the set of network slices available for use by the UE is received based on the registering.
  • a second non-access stratum message includes the indication of the set of network slices and a third non-access stratum message includes the reply.
  • the UE is a machine-type UE and a type of the network slicing instance is a massive machine type.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device , device 505, or a UE 115 as described herein.
  • the device 705 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 710, a I/O controller 715, a transceiver 720, an antenna 725, a memory 730, a code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the I/O controller 715 may manage input and output signals for device 705.
  • the I/O controller 715 may also manage peripherals not integrated into device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the device 705 may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 720 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725.
  • the transceiver 720 may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
  • the memory 730 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 730 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting establishing a network slicing connection) .
  • the communication manager 710 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the communication manager 710 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE.
  • the communication manager 710 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the communication manager 710 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the communication manager 710 may be configured to provide or support a means for communicating in accordance with the reply.
  • the communication manager 710 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 720, the one or more antennas 725, or any combination thereof.
  • the communication manager 710 is illustrated as a separate component, in some examples, one or more functions described with reference to the communication manager 710 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof.
  • the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of establishing a network slicing connection as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a transmitter 815, and a communication manager 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 805.
  • the receiver 810 may utilize a single antenna or a plurality of antennas.
  • the transmitter 815 may provide a means for transmitting signals generated by other components of the device 805.
  • the transmitter 815 may be co-located with a receiver 810 in a transceiver module.
  • the transmitter 815 may utilize a single antenna or a plurality of antennas.
  • the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or various components thereof, may be an example of a means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the circuitry may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or some other programmable logic device.
  • the communication manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both.
  • the communication manager 820 may support wireless communication at a base station in accordance with examples as disclosed herein.
  • the communication manager 820 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) .
  • the communication manager 820 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the communication manager 820 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the communication manager 820 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
  • the device 805 may support improved techniques for reducing latency and signaling overhead associated with establishing a session and communicating over an established session.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805 or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a transmitter 915, and a communication manager 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 905.
  • the receiver 910 may utilize a single antenna or a plurality of antennas.
  • the transmitter 915 may provide a means for transmitting signals generated by other components of the device 905.
  • the transmitter 915 may be co-located with a receiver 910 in a transceiver module.
  • the transmitter 915 may utilize a single antenna or a plurality of antennas.
  • the device 905, or various components thereof may be an example of means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 920 may include a slice identification component 925, a slice request component 930, a slice connection component 935, a data component 940, or any combination thereof.
  • the communication manager 920 may be an example of aspects of a communication manager 820 as described herein.
  • the communication manager 920, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
  • the communication manager 920 may support wireless communication at a base station in accordance with examples as disclosed herein.
  • the slice identification component 925 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE.
  • the slice request component 930 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the slice connection component 935 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the data component 940 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
  • FIG. 10 shows a block diagram 1000 of a communication manager 1020 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the communication manager 1020 may be an example of aspects of a communication manager 820, a communication manager 920, or both, as described herein.
  • the communication manager 1020, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein.
  • the communication manager 1020 may include a slice identification component 1025, a slice request component 1030, a slice connection component 1035, a data component 1040, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communication manager 1020 may support wireless communication at a base station in accordance with examples as disclosed herein.
  • the slice identification component 1025 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE.
  • the slice request component 1030 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the slice connection component 1035 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the data component 1040 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
  • the slice request component 1030 may be configured to provide or support a means for receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • the slice connection component 1035 may be configured to provide or support a means for transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling including user data.
  • the slice connection component 1035 may be configured to provide or support a means for transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling including user data.
  • the slice connection component 1035 may be configured to provide or support a means for determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data. In some examples, the slice connection component 1035 may be configured to provide or support a means for including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  • the slice connection component 1035 may be configured to provide or support a means for determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  • the data component 1040 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data.
  • the data component 1040 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection for the UE.
  • the network slicing instance supports communications of non-access stratum signaling that includes user data.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device , device 905, or a base station 105 as described herein.
  • the device 1105 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1110, a network communication manager 1115, a transceiver 1120, an antenna 1125, a memory 1130, a code 1135, a processor 1140, and an inter-station communication manager 1145.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., bus 1150) .
  • the network communication manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communication manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the device 1105 may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1120 may communicate bi-directionally, via the one or more antennas 1125, wired, or wireless links as described herein.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 1125 for transmission, and to demodulate packets received from the one or more antennas 1125.
  • the transceiver 1120 may be an example of a transmitter 815, a transmitter 915, a receiver 810, a receiver 910, or any combination thereof or component thereof, as described herein.
  • the memory 1130 may include RAM and ROM.
  • the memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed by the processor 1140, cause the device 1105 to perform various functions described herein.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting establishing a network slicing connection) .
  • the inter-station communication manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communication manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communication manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the communication manager 1110 may support wireless communication at a base station in accordance with examples as disclosed herein.
  • the communication manager 1110 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE.
  • the communication manager 1110 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the communication manager 1110 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the communication manager 1110 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
  • the communication manager 1110 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1120, the one or more antennas 1125, or any combination thereof.
  • the communication manager 1110 is illustrated as a separate component, in some examples, one or more functions described with reference to the communication manager 1110 may be supported by or performed by the processor 1140, the memory 1130, the code 1135, or any combination thereof.
  • the code 1135 may include instructions executable by the processor 1140 to cause the device 1105 to perform various aspects of establishing a network slicing connection as described herein, or the processor 1140 and the memory 1130 may be otherwise configured to perform or support such operations.
  • FIG. 12 shows a flowchart illustrating a method 1200 for establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE or its components as described herein.
  • the operations of method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 7.
  • a UE may execute a set of instructions to control the functional elements of the device to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a network, an indication of a set of network slices available for use by the UE.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a slice identification component 625 as described with reference to FIG. 6.
  • the method may include transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a slice request component 630 as described with reference to FIG. 6.
  • the method may include receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a slice connection component 635 as described with reference to FIG. 6.
  • the method may include communicating in accordance with the reply.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a data component 640 as described with reference to FIG. 6.
  • FIG. 13 shows a flowchart illustrating a method 1300 for establishing a network slicing connection in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a base station or its components as described herein.
  • the operations of method 1300 may be performed by a base station 105 as described with reference to FIGs. 1 through 3 and 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the device to perform the described functions. Additionally, or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) .
  • UE user equipment
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a slice identification component 1025 as described with reference to FIG. 10.
  • the method may include receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a slice request component 1030 as described with reference to FIG. 10.
  • the method may include transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a slice connection component 1035 as described with reference to FIG. 10.
  • the method may include communicating with the UE in accordance with the reply.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a data component 1040 as described with reference to FIG. 10.
  • Example 1 A method for wireless communication at a user equipment (UE) , comprising: receiving, from a network, an indication of a set of network slices available for use by the UE; transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices; receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and communicating in accordance with the reply.
  • UE user equipment
  • Example 2 The method of example 1, wherein transmitting the non-access stratum message comprises: transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • Example 3 The method of example 2, wherein the one or more characteristics of the UE comprises an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
  • Example 4 The method of any one of examples 1 through 3, wherein receiving the reply comprises: receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  • Example 5 The method of any one of examples 1 through 3, wherein receiving the reply comprises: receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  • Example 6 The method of example 5, wherein the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data.
  • Example 7 The method of any one of examples 1 through 4, wherein communicating in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  • Example 8 The method of any one of examples 1 through 4, wherein communicating in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
  • Example 9 The method of any one of examples 1 through 8, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
  • Example 10 The method of any one of examples 1 through 9, further comprising: registering with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
  • Example 11 The method of any one of examples 1 through 10, wherein a second non-access stratum message comprises the indication of the set of network slices and a third non-access stratum message comprises the reply.
  • Example 12 The method of any one of examples 1 through 11, wherein the UE is a machine-type UE and a type of the network slicing instance is a massive machine type.
  • Example 13 A method for wireless communication at a base station, comprising: transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) ; receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices; transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and communicating with the UE in accordance with the reply.
  • UE user equipment
  • Example 14 The method of example 13, wherein receiving the non-access stratum message comprises: receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  • Example 15 The method of any one of examples 13 through 14, wherein transmitting the reply comprises: transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  • Example 16 The method of any one of examples 13 through 14, wherein transmitting the reply comprises: transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  • Example 17 The method of example 16, further comprising: determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data; and including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  • Example 18 The method of example 17, wherein determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data comprises: determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  • Example 19 The method of any one of examples 13 through 15, wherein communicating with the UE in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  • Example 20 The method of any one of examples 13 through 15, wherein communicating with the UE in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
  • Example 21 The method of any one of examples 13 through 20, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
  • Example 22 An apparatus for wireless communication at a user equipment (UE) comprising at least one means for performing a method of any one of examples 1 through 12.
  • UE user equipment
  • Example 23 An apparatus for wireless communication at a user equipment (UE) comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any one of examples 1 through 12.
  • UE user equipment
  • Example 24 A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) for wireless communication at a user equipment (UE) the code comprising instructions executable by a processor to perform a method of any one of examples 1 through 12.
  • UE user equipment
  • UE user equipment
  • Example 25 An apparatus for wireless communication at a base station comprising at least one means for performing a method of any one of examples 13 through 21.
  • Example 26 An apparatus for wireless communication at a base station comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any one of examples 13 through 21.
  • Example 27 A non-transitory computer-readable medium storing code for wireless communication at a base station for wireless communication at a base station the code comprising instructions executable by a processor to perform a method of any one of examples 13 through 21.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A wireless device may receive, from a network, an indication of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications. The wireless device may transmit a non-access stratum message to the network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data. The wireless device may receive a reply from the network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling. Otherwise, the wireless device may be prevented from using non-access stratum signaling to communicate data over the network slicing instance.

Description

ESTABLISHING A NETWORK SLICING CONNECTION
FIELD OF TECHNOLOGY
The following relates to wireless communications, including establishing a network slicing connection.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A wireless network may be separated into one or more sub-networks that are configured to support communications of respective types. The different sub-networks may include dedicated network infrastructure (e.g., dedicated servers) and may be referred to as “network slices. ” A UE may connect to one or more network slicing instances based on the one or more communication types that are used by the UE and supported by the one or more network slicing instances.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support establishing a network slicing connection. In some examples, a wireless device may receive, from a wireless network, an indication of a set of network  slicing instances the wireless device is allowed to connect to for subsequent communications. The wireless device may transmit a non-access stratum message to the wireless network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data. The wireless device may receive a reply from the wireless network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling. The wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance.
A method of wireless communication at a UE is described. The method may include receiving, from a network, an indication of a set of network slices available for use by the UE, transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating in accordance with the reply.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a network, an indication of a set of network slices available for use by the UE, transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate in accordance with the reply.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for receiving, from a network, an indication of a set of network slices available for use by the UE, transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating in accordance with the reply.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to receive, from a network, an indication of a set of network slices available for use by the UE, transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate in accordance with the reply.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the non-access stratum message may include operations, features, means, or instructions for transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more characteristics of the UE includes an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the reply may include operations, features, means, or instructions for receiving a second indication that the UE may be permitted to use the network slicing instance for non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the reply may include operations, features, means, or instructions for receiving a second indication that the UE may be prohibited from using the network slicing instance for non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second indication indicates that there may be insufficient network capacity, that the UE may be prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection with the network.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the network slicing instance supports communications of non-access stratum signaling that includes user data.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for registering with the network, where the indication of the set of network slices available for use by the UE may be received based on the registering.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a second non-access stratum message includes the indication of the set of network slices and a third non-access stratum message includes the reply.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE may be a machine-type UE and a type of the network slicing instance may be a massive machine type.
A method of wireless communication at a base station is described. The method may include transmitting, to a network, an indication of a set of network slices available for use by a UE, receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating with the UE in accordance with the reply.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a network, an indication of a set of network slices available for use by a UE, receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate with the UE in accordance with the reply.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting, to a network, an indication of a set of network slices available for use by a UE, receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicating with the UE in accordance with the reply.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit, to a network, an indication of a set of network slices available for use by a UE, receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices, transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected, and communicate with the UE in accordance with the reply.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the non-access stratum message may include operations, features, means, or instructions for receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the reply may include operations, features, means, or instructions for transmitting a second indication that the UE may be permitted to use the network slicing instance for non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the reply may include operations, features, means, or instructions for transmitting a second indication that the UE may be prohibited from using the network slicing instance for non-access stratum signaling including user data.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data, and including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data may include operations, features, means, or instructions for determining that that there may be insufficient network capacity, that the UE may be prohibited from communicating user data using non-access stratum signaling, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating with the UE in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating with the UE in accordance with the reply may include operations, features, means, or instructions for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection for the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the network slicing instance supports communications of non-access stratum signaling that includes user data.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications subsystem that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communication manager that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communication manager that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
FIGs. 12 and 13 show flowcharts illustrating methods that support establishing a network slicing connection in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Before communicating user data over a wireless network, a wireless device may register with the wireless network by exchanging non-access stratum (NAS) signaling with the wireless network. The wireless device may also use non-access stratum signaling to establish a connection to an information network (e.g., the Internet) through the wireless  network before communicating user data over the wireless network. In some examples, the connection to the information network may be referred to as a “session” and may be used by the wireless device to communicate user data.
A wireless communications system may include wireless devices (e.g., machine-type devices) that communicate small amounts of data at a time, use a limited number of services offered by a wireless network, or both. To reduce latency and signaling overhead, such wireless devices may use non-access stratum signaling to communicate user data over a wireless network instead of (without) establishing a session for communicating user data. Also, such wireless devices may access a portion of a wireless network that is configured to provide a limited set of services used by these limited-functionality devices. The portion of the wireless network may also be referred to as a “network slicing instance” and may include dedicated infrastructure that supports the limited set of services. However, a wireless device may be unable to establish a connection to a network slicing instance without establishing a session. Thus, limited-functionality devices may be prevented from using non-access stratum signaling to communicate user data over a network slicing instance, at least until a session is established with the network slicing instance. As similarly described above, the signaling overhead and latency associated with establishing (and, in some examples, communicating using) a session for a network slicing instance may be undesirable.
To reduce latency and signaling overhead for certain communications using a network slicing instance, network slicing instances may be configured to support non-access stratum signaling of user data. Also, procedures that enable a wireless device to establish a connection with a network slicing instance that supports non-access stratum signaling of user data without establishing a session for the network slicing instance may be established. In some examples, a wireless device receives, from a wireless network, an indication of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications. The wireless device may transmit a non-access stratum message to the wireless network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data. The wireless device may receive a reply from the wireless network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling. The wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may  be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance.
By transmitting the request to connect to a network slicing instance after receiving the set of allowed network slicing instances, the wireless device may establish a limited data connection with the network slicing instance without establishing a session. Also, the wireless device may communicate user data with the network slicing instance using non-access stratum signaling, avoiding latency and signaling overhead associated with establishing (and, in some examples, communicating using) a session.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described using a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to establishing a network slicing connection.
FIG. 1 illustrates an example of a wireless communications system 100 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations  105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=  1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates  in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission  critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and  multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical (PHY) protocol layer, transport channels may be mapped to physical channels.
wireless communications system 100 may be configured with communication protocols that enable a UE 115 to use a radio network that includes, for example, base stations, a core network, and the like, to access an information network, such as the Internet. The communication protocols may include a procedure for establishing a radio connection to the radio network (which may be referred to as a registration procedure) and a procedure for establishing a connection to an information network through the radio network (which may be referred to as a session establishment procedure) . In some examples, the connection to the information network may be referred to as a session. In some examples, a UE 115 is unable to exchange information (or user data) with an information network until the session establishment procedure is completed. The signaling used to register with the data network and establish the session may occur in a non-access stratum. After the session establishment procedure is completed, the UE 115 may exchange information (e.g., user data) with a base station 105 in accordance with radio signaling protocols, which may include RRC, MAC, and PHY layer protocols. And the base station 105 may forward the information to the information network -e.g., through a core network 130. The signaling exchanged between the UE 115 and base station 105 using the session may occur in an access stratum (AS) .
wireless communications system 100 may include UEs 115 that have limited-functionality, such as machine-type UEs 115 (e.g., sensors, actuators, meters, etc. ) . Such UEs 115 may be configured to perform and report the results of discrete tasks, and thus, may generate small packets of data for communication within a data network. For such UEs 115, the signaling overhead and latency associated with establishing and communicating using a session may be undesirable. Thus, to reduce latency and signaling overhead, the wireless network may support procedures that enable a limited-functionality UE 115 to forego establishing a session and communicate data to a data network using non-access stratum signaling.
Also, such UEs 115 may utilize few of the services offered by a wireless network in wireless communications system 100. Instead of establishing a connection with a wireless network that supports all or a majority of the services offered by the wireless network (and thus reduces the amount of resources available to other UEs 115) , limited-functionality UE 115 may establish a connection to a portion of the wireless network that supports the limited services used by the limited-functionality UE 115. That is, in some examples, the wireless network may be configured to have multiple sub-networks that support different types, or combinations of different types, of services. For example, a sub-network may include a set of functional servers and serving gateways that support communications of a first type (e.g., machine-type communications) , and a limited-functionality UE 115 may establish a connection that provides access to the sub-network. The different sub-networks may be referred to as “slices” of a network, and a UE 115 may connect to one or more network slicing instances at a time.
To establish a connection with a network slicing instance, a UE 115 may register with a wireless network in accordance with a registration procedure. The wireless network may respond to a registration request from the UE 115 with a list of allowed network slice selection assistance information (N-SSAI) . After identifying a set of allowed network slicing instances, the UE 115 may establish a protocol data unit (PDU) session with the network slicing instance that gives the UE 115 access to a data network associated with the network slicing instance. Establishing the PDU session may involve a non-access stratum signaling exchange between the UE 115, a base station 105, and a core network 130. After the PDU session is established, the UE 115 may exchange information (e.g., user data) with the base station 105 in accordance with radio signaling protocols (e.g., RRC, MAC, and PHY layer protocols) .
Thus, limited-functionality devices may be prevented from using non-access stratum signaling to communicate user data over a network slicing instance, at least until a session is established with the network slicing instance. As similarly described above, the signaling overhead and latency associated with establishing (and, in some examples, communicating using) a session for a network slicing instance may be undesirable.
To reduce latency and signaling overhead for certain communications (e.g., machine-type communications) using a network slicing instance, network slicing instances  may be configured to support non-access stratum signaling of user data. Also, procedures that enable a wireless device to establish a connection with a network slicing instance that supports non-access stratum signaling of user data without establishing a session for the network slicing instance may be established. In some examples, a wireless device (e.g., a machine-type device) receives, from a network, an indication (e.g., in non-access stratum signaling) of a set of network slicing instances the wireless device is allowed to connect to for subsequent communications. The wireless device may transmit a non-access stratum message to the network requesting to connect to one or more of the network slicing instances that support non-access stratum signaling of user data. The wireless device may receive a reply from the network indicating whether the request has been allowed or rejected. If the request is allowed, the wireless device may communicate data over the network slicing instance using non-access stratum signaling. The wireless device may also refrain from establishing a session with the network slicing instance. Otherwise, the wireless device may be prevented from communicating data over the network slicing instance, at least not without first establishing a session with the network slicing instance based on the request being rejected.
By transmitting the request to connect to a network slicing instance after receiving the set of allowed network slicing instances, the wireless device may establish a limited data connection with the network slicing instance without establishing a session. Also, the wireless device may communicate data with the network slicing instance using non-access stratum signaling, avoiding latency and signaling overhead associated with establishing and communicating over a session.
FIG. 2 illustrates an example of a wireless communications subsystem that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
Wireless communications subsystem 200 may include base station 205 and UE 215, which may be examples of a base station and UE as described with reference to FIG. 1. UE 215 may be a machine-type device. Base station 205 and UE 215 may communicate with one another within coverage area 210 over downlink 230 and uplink 245, as similarly described (using one or more of the techniques described) with reference to FIG. 1.
To reduce latency and signaling overhead, a wireless network that supports signaling non-access stratum signaling over a network slicing instance may be configured,  and a procedure enabling a wireless device (e.g., a machine-type device) to communicate data using non-access stratum signaling over a network slicing instance (e.g., prior to establishing a session) may be used.
In some examples, after or as part of a registration procedure, base station 205 may transmit N-SSAI message 220 to UE 215. N-SSAI message 220 may include an indication of a set of network slicing instances with which UE 215 is allowed to connect. N-SSAI message may be a non-access stratum message. After receiving N-SSAI message 220, UE 215 may transmit request message 235 (which may also be referred to as a Network Slicing Connect message) to base station 205. Request message 235 may include an indication of one or more of the set of allowed network slicing instances with which UE 215 is requesting to connect. Request message 235 may be a non-access stratum message. Base station 205 may determine whether to permit UE 215 to establish a connection to the one or more network slicing instances indicated in request message 235 and may transmit a result of the determination in reply message 225. Reply message 225 may include an indication that UE 215 is allowed to connect to at least one of the requested network slicing instances or an indication the UE 215 is not allowed to connect to at least one of the requested network slicing instance, or both. If reply message 225 indicates UE 215 is allowed to connect to a network slicing instance, UE 215 may transmit NAS data 240 to base station 205 using non-access stratum signaling.
FIG. 3 illustrates an example of a process flow that supports establishing a network slicing connection in accordance with aspects of the present disclosure.
Process flow 300 may be performed by base station 305 and UE 315, which may be examples of a base station or UE described above with reference to FIGs. 1 and 2. UE 315 may be a machine-type device (e.g., a sensor, actuator, meter, etc. ) .
In some examples, process flow 300 illustrates an exemplary sequence of operations performed to support establishing a network slicing connection. For example, process flow 300 depicts a signaling exchange between a base station and UE that enables the UE to establish a connection to a network slicing instance prior to (or without performing) a session establishment procedure and to communicate data using non-access stratum signaling over the network slicing instance.
One skilled in the art would understand that one or more of the operations described in process flow 300 may be performed earlier or later in the process, omitted, replaced, supplemented, or any combination thereof. Also, additional operations described herein that are not included in process flow 300 may be included.
At block 320, base station 305 and UE 315 may perform a procedure for registering UE 315 with a wireless network. This registration procedure may include the exchange of information about UE 315 (e.g., a UE identifier, a UE subscription, a network slicing request, and the like) and about the wireless network (e.g., services supported by the wireless network, and the like) .
At arrow 325, base station 305 may transmit network slice selection assistance information to UE 315. In some examples, base station 305 transmits the network slice selection assistance information after an end of the registration procedure. In other examples, base station 305 transmits the network slice selection assistance information as part of (e.g., at the end of) the registration procedure. The network slice selection assistance information may indicate a set of network slicing instances with which UE 315 is allowed to connect.
At block 330, UE 315 may identify a network slicing instance for connection. The network slicing instance identified by UE 315 may be associated with (e.g., support) machine-type communications. That is, the network slicing instance may include a sub-network infrastructure that is optimized for machine-type communications.
At arrow 335, UE 315 may transmit a network slicing connect message to base station 305. In some examples, UE 315 may transmit the network slicing connect message as part of the registration procedure and/or prior to initiating a session establishment procedure. The network slicing connect message may indicate the network slicing instance identified by UE 315, a type of the network slicing instance (e.g., an mMTC type) , a requested connection duration, one or more characteristics of UE 315, or any combination thereof. The requested connection duration may be used request a connection to the network slicing instance that lasts for minutes, hours, or days. The indicated one or more characteristics may include an identifier of the UE, a type of the UE (e.g., sensor, actuator, etc. ) , a physical size of the UE, and the like.
At block 340, base station 305 may determine whether to allow UE 315 to connect to the requested network slicing instance. Base station 305 may use the information included  in the network slicing connect message to determine whether to allow UE 315 to connect to the requested network slicing instance. For example, base station 305 may allow UE 315 to connect to a network slicing instance associated with machine-type communications based on determining that UE 315 is a machine-type device. In another example, base station 305 may allow UE 315 to connect to a network slicing instance associated with machine-type communications based on determining that UE 315 is configured to transmit data packets having a size that is below a threshold. Base station 305 may also use information determined at base station 305 to determine whether to allow UE 315 to connect to the requested network slicing instance. For example, base station 305 may prevent UE 315 from connecting the network slicing instance based on determining that a capacity of communication resources used for non-access stratum signaling is above a threshold.
At arrow 345, base station 305 may transmit, based on a result of the determination, an accept/reject message to UE 315 in reply to the network slicing connect message. In some examples, the accept/reject message indicates that UE 315 is permitted to connect (or establish a connection) to the requested network slicing instance. In such cases, UE 315 may establish a connection to the requested network slicing instance without performing a session establishment procedure. In other examples, the accept/reject message indicates that the request received from UE 315 to establish a connection to the requested network slicing instance is denied. In such cases, the accept/reject message may also include the reason why the request was denied. In some examples, the reject message includes an indication that there is insufficient network capacity to support communicating data using non-access stratum signaling. In some examples, the determination of whether there is sufficient network capacity is based on a length of the requested connection duration -e.g., requests to connect to network slicing instances having longer requested connection durations may be more likely to be denied. In some examples, the reject message includes an indication that UE 315 is prohibited from using the requested network slicing instance for communicating data using non-access stratum signaling -e.g., after determining UE 315 transmits data packets having sizes that exceed a threshold or that a type of UE 315 is incompatible with non-access stratum data signaling.
At arrow 350, after receiving an indication that the request to connect to the network slicing instance was accepted, UE 315 may communicate data using non-access stratum signaling with base station 305. The data communicated between base station 305  and UE 315 may be routed to and from an information network (e.g., a factory network) using non-access stratum signaling. For example, base station 305 may forward, using non-access stratum signaling, data received from UE 315 in non-access stratum signaling to function servers that support machine-type communication, and vice versa.
At block 355, after receiving an indication that the request to connect to the network slicing instance was rejected, UE 315 may determine a reason for the rejection. If the reason indicates that there is insufficient network capacity, UE 315 may retransmit a network slicing connect message at a later time. In some cases, the indication of insufficient network capacity also indicates an interval during which time the network capacity will be insufficient. If the reason indicates that UE 315 is prohibited from communicating data using non-access stratum signaling, UE 315 may perform a session establishment procedure to establish a session that connects UE 315 to the requested network slicing instance.
At arrow 360, UE 315 may attempt to establish a connection to a network slicing instance that supports communicating data using non-access stratum signaling and without establishing a session by transmitting a second network slicing connect message. In some examples, UE 315 may continue to transmit network slicing connect messages until a request to connect to a network slicing instance is accepted. In other examples, UE 315 may perform a session establishment procedure after a threshold number of rejections are received from base station 305.
At block 365, base station 305 and UE 315 may perform a procedure for establishing a session that establishes a connection to an information network (e.g., a PDN connection or a PDU session) . As part of the session establishment procedure, UE 315 may establish a session that establishes a connection to a network slicing instance that supports the information network. After establishing the session, UE 315 may communicate data within the information network using access stratum signaling techniques.
FIG. 4 shows a block diagram 400 of a device 405 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a transmitter 415, and a communication manager 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 405. The receiver 410 may utilize a single antenna or a plurality of antennas.
The transmitter 415 may provide a means for transmitting signals generated by other components of the device 405. In some examples, the transmitter 415 may be co-located with a receiver 410 in a transceiver module. The transmitter 415 may utilize a single antenna or a plurality of antennas.
The communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof, may be an example of a means for performing various aspects of establishing a network slicing connection as described herein.
In some examples, the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be implemented in hardware (e.g., in communications management circuitry) . The circuitry may include a processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
Additionally or alternatively, in some examples, the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communication manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or some other programmable logic device.
In some examples, the communication manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both.
The communication manager 420 may support wireless communication at a user equipment (UE) in accordance with examples as disclosed herein. For example, the communication manager 420 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE. The communication manager 420 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The communication manager 420 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The communication manager 420 may be configured to provide or support a means for communicating in accordance with the reply.
By including or configuring the communication manager 420 in accordance with examples as described herein, the device 405 may support improved techniques for reducing latency and signaling overhead associated with establishing a session and communicating over an established session.
FIG. 5 shows a block diagram 500 of a device 505 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405 or a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communication manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a plurality of antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a plurality of antennas.
The device 505, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein. For example, the communication manager 520 may include a slice identification component 525, a slice request component 530, a slice connection component 535, a data component 540, or any combination thereof. The communication manager 520 may be an example of aspects of a communication manager 420 as described herein. In some examples, the communication manager 520, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
The communication manager 520 may support wireless communication at a UE in accordance with examples as disclosed herein. The slice identification component 525 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE. The slice request component 530 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The slice connection component 535 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The data component 540 may be configured to provide or support a means for communicating in accordance with the reply.
FIG. 6 shows a block diagram 600 of a communication manager 620 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The communication manager 620 may be an example of aspects of a communication manager 420, a communication manager 520, or both, as described herein. The communication manager 620, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein. For example, the communication manager 620 may include a slice identification component 625, a slice request component 630, a slice connection component 635, a data component 640, a registration component 645, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communication manager 620 may support wireless communication at a UE in accordance with examples as disclosed herein. The slice identification component 625 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE. The slice request component 630 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The slice connection component 635 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The data component 640 may be configured to provide or support a means for communicating in accordance with the reply.
In some examples, to transmit the non-access stratum message, the slice request component 630 may be configured to provide or support a means for transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
In some examples, the one or more characteristics of the UE include an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
In some examples, to receive the reply, the slice connection component 635 may be configured to provide or support a means for receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling including user data.
In some examples, to receive the reply, the slice connection component 635 may be configured to provide or support a means for receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling including user data.
In some examples, the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data.
In some examples, to communicate in accordance with the reply, the data component 640 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data.
In some examples, to communicate in accordance with the reply, the data component 640 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection with the network.
In some examples, the network slicing instance supports communications of non-access stratum signaling that includes user data.
In some examples, the registration component 645 may be configured to provide or support a means for registering with the network, where the indication of the set of network slices available for use by the UE is received based on the registering.
In some examples, a second non-access stratum message includes the indication of the set of network slices and a third non-access stratum message includes the reply.
In some examples, the UE is a machine-type UE and a type of the network slicing instance is a massive machine type.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device , device 505, or a UE 115 as described herein. The device 705 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 710, a I/O controller 715, a transceiver 720, an antenna 725, a memory 730, a code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., bus 745) .
The I/O controller 715 may manage input and output signals for device 705. The I/O controller 715 may also manage peripherals not integrated into device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral.  In some cases, the I/O controller 715 may utilize an operating system such as
Figure PCTCN2020113189-appb-000001
Figure PCTCN2020113189-appb-000002
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor. In some cases, a user may interact with device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
In some cases, the device 705 may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 720 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725. The transceiver 720, or the transceiver 720 and one or more antennas 725, may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
The memory 730 may include random-access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 730 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or  any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting establishing a network slicing connection) .
The communication manager 710 may support wireless communication at a UE in accordance with examples as disclosed herein. For example, the communication manager 710 may be configured to provide or support a means for receiving, from a network, an indication of a set of network slices available for use by the UE. The communication manager 710 may be configured to provide or support a means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The communication manager 710 may be configured to provide or support a means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The communication manager 710 may be configured to provide or support a means for communicating in accordance with the reply.
In some examples, the communication manager 710 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 720, the one or more antennas 725, or any combination thereof. Although the communication manager 710 is illustrated as a separate component, in some examples, one or more functions described with reference to the communication manager 710 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof. For example, the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of establishing a network slicing connection as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
FIG. 8 shows a block diagram 800 of a device 805 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a base station 105 as described herein. The device 805 may include a receiver 810, a transmitter 815, and a communication manager 820. The device  805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 805. The receiver 810 may utilize a single antenna or a plurality of antennas.
The transmitter 815 may provide a means for transmitting signals generated by other components of the device 805. In some examples, the transmitter 815 may be co-located with a receiver 810 in a transceiver module. The transmitter 815 may utilize a single antenna or a plurality of antennas.
The communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or various components thereof, may be an example of a means for performing various aspects of establishing a network slicing connection as described herein.
In some examples, the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof, may be implemented in hardware (e.g., in communications management circuitry) . The circuitry may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
Additionally or alternatively, in some examples, the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof, may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communication manager 820, the receiver 810, the transmitter 815, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or some other programmable logic device.
In some examples, the communication manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 810, the transmitter 815, or both.
The communication manager 820 may support wireless communication at a base station in accordance with examples as disclosed herein. For example, the communication manager 820 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) . The communication manager 820 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The communication manager 820 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The communication manager 820 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
By including or configuring the communication manager 820 in accordance with examples as described herein, the device 805 may support improved techniques for reducing latency and signaling overhead associated with establishing a session and communicating over an established session.
FIG. 9 shows a block diagram 900 of a device 905 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805 or a base station 105 as described herein. The device 905 may include a receiver 910, a transmitter 915, and a communication manager 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may provide a means for receiving information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, information related to establishing a network slicing connection) . Information may be passed on to other components of the device 905. The receiver 910 may utilize a single antenna or a plurality of antennas.
The transmitter 915 may provide a means for transmitting signals generated by other components of the device 905. In some examples, the transmitter 915 may be co-located with a receiver 910 in a transceiver module. The transmitter 915 may utilize a single antenna or a plurality of antennas.
The device 905, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein. For example, the communication manager 920 may include a slice identification component 925, a slice request component 930, a slice connection component 935, a data component 940, or any combination thereof. The communication manager 920 may be an example of aspects of a communication manager 820 as described herein. In some examples, the communication manager 920, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
The communication manager 920 may support wireless communication at a base station in accordance with examples as disclosed herein. The slice identification component 925 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE. The slice request component 930 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The slice connection component 935 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The data component 940 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
FIG. 10 shows a block diagram 1000 of a communication manager 1020 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The communication manager 1020 may be an example of aspects of a communication manager 820, a communication manager 920, or both, as described herein. The communication manager 1020, or various components thereof, may be an example of means for performing various aspects of establishing a network slicing connection as described herein. For example, the communication manager 1020 may include a slice identification component 1025, a slice request component 1030, a slice connection component 1035, a data component 1040, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communication manager 1020 may support wireless communication at a base station in accordance with examples as disclosed herein. The slice identification component 1025 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE. The slice request component 1030 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The slice connection component 1035 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The data component 1040 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
In some examples, to receive the non-access stratum message, the slice request component 1030 may be configured to provide or support a means for receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
In some examples, to transmit the reply, the slice connection component 1035 may be configured to provide or support a means for transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling including user data.
In some examples, to transmit the reply, the slice connection component 1035 may be configured to provide or support a means for transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling including user data.
In some examples, the slice connection component 1035 may be configured to provide or support a means for determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data. In some examples, the slice connection component 1035 may be configured to provide or support a means for including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
In some examples, to determine the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling including user data, the slice connection component 1035 may be configured to provide or support a means for determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
In some examples, to communicate with the UE in accordance with the reply, the data component 1040 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data.
In some examples, to communicate with the UE in accordance with the reply, the data component 1040 may be configured to provide or support a means for communicating, using the network slicing instance, non-access stratum signaling including user data in an absence of a protocol data unit connection for the UE.
In some examples, the network slicing instance supports communications of non-access stratum signaling that includes user data.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports establishing a network slicing connection in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device , device 905, or a base station 105 as described herein. The device 1105 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1110, a network communication manager 1115, a transceiver 1120, an antenna 1125, a memory 1130, a code 1135, a processor 1140, and an inter-station communication manager 1145. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., bus 1150) .
The network communication manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communication manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
In some cases, the device 1105 may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 1120 may communicate bi-directionally, via the one or more antennas 1125, wired, or wireless links as described herein. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 1125 for transmission, and to demodulate packets received from the one or more antennas 1125. The transceiver 1120, or the transceiver 1120 and one or more antennas 1125, may be an example of a transmitter 815, a transmitter 915, a receiver 810, a receiver 910, or any combination thereof or component thereof, as described herein.
The memory 1130 may include RAM and ROM. The memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed by the processor 1140, cause the device 1105 to perform various functions described herein. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting establishing a network slicing connection) .
The inter-station communication manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communication manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communication manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The communication manager 1110 may support wireless communication at a base station in accordance with examples as disclosed herein. For example, the communication manager 1110 may be configured to provide or support a means for transmitting, to a network, an indication of a set of network slices available for use by a UE. The communication manager 1110 may be configured to provide or support a means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The communication manager 1110 may be configured to provide or support a means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The communication manager 1110 may be configured to provide or support a means for communicating with the UE in accordance with the reply.
In some examples, the communication manager 1110 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1120, the one or more antennas 1125, or any combination thereof. Although the communication manager 1110 is illustrated as a separate component, in some examples, one or more functions described with reference to the communication manager 1110 may be supported by or performed by the processor 1140, the memory 1130, the code 1135, or any combination thereof. For example, the code 1135 may include instructions executable by the processor 1140 to cause the device 1105 to perform various aspects of establishing a network slicing connection as described herein, or the processor 1140 and the memory 1130 may be otherwise configured to perform or support such operations.
FIG. 12 shows a flowchart illustrating a method 1200 for establishing a network slicing connection in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE or its components as described herein. For example, the operations of method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the device to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include receiving, from a network, an indication of a set of network slices available for use by the UE. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a slice identification component 625 as described with reference to FIG. 6.
At 1210, the method may include transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a slice request component 630 as described with reference to FIG. 6.
At 1215, the method may include receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a slice connection component 635 as described with reference to FIG. 6.
At 1220, the method may include communicating in accordance with the reply. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a data component 640 as described with reference to FIG. 6.
FIG. 13 shows a flowchart illustrating a method 1300 for establishing a network slicing connection in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a base station or its components as described herein. For example, the operations of method 1300 may be performed by a base station 105 as  described with reference to FIGs. 1 through 3 and 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the device to perform the described functions. Additionally, or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
At 1305, the method may include transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) . The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a slice identification component 1025 as described with reference to FIG. 10.
At 1310, the method may include receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a slice request component 1030 as described with reference to FIG. 10.
At 1315, the method may include transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a slice connection component 1035 as described with reference to FIG. 10.
At 1320, the method may include communicating with the UE in accordance with the reply. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a data component 1040 as described with reference to FIG. 10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
The following provides an overview of examples of the present invention:
Example 1: A method for wireless communication at a user equipment (UE) , comprising: receiving, from a network, an indication of a set of network slices available for  use by the UE; transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices; receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and communicating in accordance with the reply.
Example 2: The method of example 1, wherein transmitting the non-access stratum message comprises: transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
Example 3: The method of example 2, wherein the one or more characteristics of the UE comprises an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
Example 4: The method of any one of examples 1 through 3, wherein receiving the reply comprises: receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
Example 5: The method of any one of examples 1 through 3, wherein receiving the reply comprises: receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
Example 6: The method of example 5, wherein the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data.
Example 7: The method of any one of examples 1 through 4, wherein communicating in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data.
Example 8: The method of any one of examples 1 through 4, wherein communicating in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
Example 9: The method of any one of examples 1 through 8, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
Example 10: The method of any one of examples 1 through 9, further comprising: registering with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
Example 11: The method of any one of examples 1 through 10, wherein a second non-access stratum message comprises the indication of the set of network slices and a third non-access stratum message comprises the reply.
Example 12: The method of any one of examples 1 through 11, wherein the UE is a machine-type UE and a type of the network slicing instance is a massive machine type.
Example 13: A method for wireless communication at a base station, comprising: transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) ; receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices; transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and communicating with the UE in accordance with the reply.
Example 14: The method of example 13, wherein receiving the non-access stratum message comprises: receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
Example 15: The method of any one of examples 13 through 14, wherein transmitting the reply comprises: transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
Example 16: The method of any one of examples 13 through 14, wherein transmitting the reply comprises: transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
Example 17: The method of example 16, further comprising: determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access  stratum signaling comprising user data; and including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
Example 18: The method of example 17, wherein determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data comprises: determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
Example 19: The method of any one of examples 13 through 15, wherein communicating with the UE in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data.
Example 20: The method of any one of examples 13 through 15, wherein communicating with the UE in accordance with the reply comprises: communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
Example 21: The method of any one of examples 13 through 20, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
Example 22: An apparatus for wireless communication at a user equipment (UE) comprising at least one means for performing a method of any one of examples 1 through 12.
Example 23: An apparatus for wireless communication at a user equipment (UE) comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any one of examples 1 through 12.
Example 24: A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) for wireless communication at a user equipment (UE) the code comprising instructions executable by a processor to perform a method of any one of examples 1 through 12.
Example 25: An apparatus for wireless communication at a base station comprising at least one means for performing a method of any one of examples 13 through 21.
Example 26: An apparatus for wireless communication at a base station comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any one of examples 13 through 21.
Example 27: A non-transitory computer-readable medium storing code for wireless communication at a base station for wireless communication at a base station the code comprising instructions executable by a processor to perform a method of any one of examples 13 through 21.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or  AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (68)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, from a network, an indication of a set of network slices available for use by the UE;
    transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicating in accordance with the reply.
  2. The method of claim 1, wherein transmitting the non-access stratum message comprises:
    transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  3. The method of claim 2, wherein the one or more characteristics of the UE comprises an identifier of the UE, a type of the UE, a location of the UE, a size of the UE, or any combination thereof.
  4. The method of claim 1, wherein receiving the reply comprises:
    receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  5. The method of claim 1, wherein receiving the reply comprises:
    receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  6. The method of claim 5, wherein the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from  using the network slicing instance for communicating non-access stratum signaling comprising user data.
  7. The method of claim 1, wherein communicating in accordance with the reply comprises:
    communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  8. The method of claim 1, wherein communicating in accordance with the reply comprises:
    communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
  9. The method of claim 1, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
  10. The method of claim 1, further comprising:
    registering with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
  11. The method of claim 1, wherein a second non-access stratum message comprises the indication of the set of network slices and a third non-access stratum message comprises the reply.
  12. The method of claim 1, wherein the UE is a machine-type UE and a type of the network slicing instance is a massive machine type.
  13. A method for wireless communication at a base station, comprising:
    transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) ;
    receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicating with the UE in accordance with the reply.
  14. The method of claim 13, wherein receiving the non-access stratum message comprises:
    receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  15. The method of claim 13, wherein transmitting the reply comprises:
    transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  16. The method of claim 13, wherein transmitting the reply comprises:
    transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  17. The method of claim 16, further comprising:
    determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data; and
    including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  18. The method of claim 17, wherein determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data comprises:
    determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  19. The method of claim 13, wherein communicating with the UE in accordance with the reply comprises:
    communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  20. The method of claim 13, wherein communicating with the UE in accordance with the reply comprises:
    communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
  21. The method of claim 13, wherein the network slicing instance supports communications of non-access stratum signaling that comprises user data.
  22. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, from a network, an indication of a set of network slices available for use by the UE;
    means for transmitting a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    means for receiving, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    means for communicating in accordance with the reply.
  23. The apparatus of claim 22, wherein the means for transmitting the non-access stratum message comprises:
    means for transmitting, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  24. The apparatus of claim 22, wherein the means for receiving the reply comprises:
    means for receiving a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  25. The apparatus of claim 22, wherein the means for receiving the reply comprises:
    means for receiving a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  26. The apparatus of claim 22, wherein the means for communicating in accordance with the reply comprises:
    means for communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  27. The apparatus of claim 22, wherein the means for communicating in accordance with the reply comprises:
    means for communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
  28. The apparatus of claim 22, further comprising:
    means for registering with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
  29. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a network, an indication of a set of network slices available for use by the UE;
    transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicate in accordance with the reply.
  30. The apparatus of claim 29, wherein the instructions to transmit the non-access stratum message are executable by the processor to cause the apparatus to:
    transmit, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  31. The apparatus of claim 29, wherein the instructions to receive the reply are executable by the processor to cause the apparatus to:
    receive a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  32. The apparatus of claim 29, wherein the instructions to receive the reply are executable by the processor to cause the apparatus to:
    receive a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  33. The apparatus of claim 29, wherein the instructions to communicate in accordance with the reply are executable by the processor to cause the apparatus to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data.
  34. The apparatus of claim 29, wherein the instructions to communicate in accordance with the reply are executable by the processor to cause the apparatus to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
  35. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    register with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
  36. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a network, an indication of a set of network slices available for use by the UE;
    transmit a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    receive, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicate in accordance with the reply.
  37. The non-transitory computer-readable medium of claim 36, wherein the instructions to transmit the non-access stratum message are executable by the processor to:
    transmit, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  38. The non-transitory computer-readable medium of claim 36, wherein the instructions to receive the reply are executable by the processor to:
    receive a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  39. The non-transitory computer-readable medium of claim 36, wherein the instructions to receive the reply are executable by the processor to:
    receive a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  40. The non-transitory computer-readable medium of claim 39, wherein the second indication indicates that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both as a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data.
  41. The non-transitory computer-readable medium of claim 36, wherein the instructions to communicate in accordance with the reply are executable by the processor to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data.
  42. The non-transitory computer-readable medium of claim 36, wherein the instructions to communicate in accordance with the reply are executable by the processor to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection with the network.
  43. The non-transitory computer-readable medium of claim 36, wherein the instructions are further executable by the processor to:
    register with the network, wherein the indication of the set of network slices available for use by the UE is received based at least in part on the registering.
  44. An apparatus for wireless communication at a base station, comprising:
    means for transmitting, to a network, an indication of a set of network slices available for use by a user equipment (UE) ;
    means for receiving a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    means for transmitting, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    means for communicating with the UE in accordance with the reply.
  45. The apparatus of claim 44, wherein the means for receiving the non-access stratum message comprises:
    means for receiving, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  46. The apparatus of claim 44, wherein the means for transmitting the reply comprises:
    means for transmitting a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  47. The apparatus of claim 44, wherein the means for transmitting the reply comprises:
    means for transmitting a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  48. The apparatus of claim 47, further comprising:
    means for determining a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data; and
    means for including, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  49. The apparatus of claim 48, wherein the means for determining the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data comprises:
    means for determining that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  50. The apparatus of claim 44, wherein the means for communicating with the UE in accordance with the reply comprises:
    means for communicating, using the network slicing instance, non-access stratum signaling comprising user data.
  51. The apparatus of claim 44, wherein the means for communicating with the UE in accordance with the reply comprises:
    means for communicating, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
  52. An apparatus for wireless communication at a base station, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a network, an indication of a set of network slices available for use by a user equipment (UE) ;
    receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicate with the UE in accordance with the reply.
  53. The apparatus of claim 52, wherein the instructions to receive the non-access stratum message are executable by the processor to cause the apparatus to:
    receive, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  54. The apparatus of claim 52, wherein the instructions to transmit the reply are executable by the processor to cause the apparatus to:
    transmit a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  55. The apparatus of claim 52, wherein the instructions to transmit the reply are executable by the processor to cause the apparatus to:
    transmit a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  56. The apparatus of claim 55, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data; and
    include, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  57. The apparatus of claim 56, wherein the instructions to determine the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data are executable by the processor to cause the apparatus to:
    determine that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  58. The apparatus of claim 52, wherein the instructions to communicate with the UE in accordance with the reply are executable by the processor to cause the apparatus to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data.
  59. The apparatus of claim 52, wherein the instructions to communicate with the UE in accordance with the reply are executable by the processor to cause the apparatus to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
  60. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit, to a network, an indication of a set of network slices available for use by a user equipment (UE) ;
    receive a non-access stratum message requesting a connection with a network slicing instance from the set of network slices;
    transmit, in response to the non-access stratum message, a reply indicating that the connection with the network slicing instance is either allowed or rejected; and
    communicate with the UE in accordance with the reply.
  61. The non-transitory computer-readable medium of claim 60, wherein the instructions to receive the non-access stratum message are executable by the processor to:
    receive, as part of the non-access stratum message, a network slicing instance type, a network slicing instance identifier, a requested connection duration, one or more characteristics of the UE, or any combination thereof.
  62. The non-transitory computer-readable medium of claim 60, wherein the instructions to transmit the reply are executable by the processor to:
    transmit a second indication that the UE is permitted to use the network slicing instance for non-access stratum signaling comprising user data.
  63. The non-transitory computer-readable medium of claim 60, wherein the instructions to transmit the reply are executable by the processor to:
    transmit a second indication that the UE is prohibited from using the network slicing instance for non-access stratum signaling comprising user data.
  64. The non-transitory computer-readable medium of claim 63, wherein the instructions are further executable by the processor to:
    determine a reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data; and
    include, in the reply, the reason for prohibiting the UE from using the network slicing instance.
  65. The non-transitory computer-readable medium of claim 64, wherein the instructions to determine the reason for prohibiting the UE from using the network slicing instance for communicating non-access stratum signaling comprising user data are executable by the processor to:
    determine that that there is insufficient network capacity, that the UE is prohibited from communicating user data using non-access stratum signaling, or both.
  66. The non-transitory computer-readable medium of claim 60, wherein the instructions to communicate with the UE in accordance with the reply are executable by the processor to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data.
  67. The non-transitory computer-readable medium of claim 60, wherein the instructions to communicate with the UE in accordance with the reply are executable by the processor to:
    communicate, using the network slicing instance, non-access stratum signaling comprising user data in an absence of a protocol data unit connection for the UE.
  68. The non-transitory computer-readable medium of claim 60, wherein
    the network slicing instance supports communications of non-access stratum signaling that comprises user data.
PCT/CN2020/113189 2020-09-03 2020-09-03 Establishing a network slicing connection WO2022047690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113189 WO2022047690A1 (en) 2020-09-03 2020-09-03 Establishing a network slicing connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113189 WO2022047690A1 (en) 2020-09-03 2020-09-03 Establishing a network slicing connection

Publications (1)

Publication Number Publication Date
WO2022047690A1 true WO2022047690A1 (en) 2022-03-10

Family

ID=80492319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113189 WO2022047690A1 (en) 2020-09-03 2020-09-03 Establishing a network slicing connection

Country Status (1)

Country Link
WO (1) WO2022047690A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190029065A1 (en) * 2017-06-17 2019-01-24 Lg Electronics Inc. Registration method of user terminal in wireless communication system and apparatus therefor
WO2019074347A1 (en) * 2017-10-13 2019-04-18 Samsung Electronics Co., Ltd. User equipment (ue) and core network for managing network slice congestion in wireless communication system
US20200015158A1 (en) * 2017-03-20 2020-01-09 Zte Corporation Network slicing serving function
CN110876174A (en) * 2018-08-31 2020-03-10 华为技术有限公司 Network slice selection method, equipment and system
WO2020050138A1 (en) * 2018-09-03 2020-03-12 日本電気株式会社 Core network device, access network device, communication terminal, communication system, and communication method
WO2020117796A1 (en) * 2018-12-05 2020-06-11 Intel Corporation Congestion control across different public land mobile networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200015158A1 (en) * 2017-03-20 2020-01-09 Zte Corporation Network slicing serving function
US20190029065A1 (en) * 2017-06-17 2019-01-24 Lg Electronics Inc. Registration method of user terminal in wireless communication system and apparatus therefor
WO2019074347A1 (en) * 2017-10-13 2019-04-18 Samsung Electronics Co., Ltd. User equipment (ue) and core network for managing network slice congestion in wireless communication system
CN110876174A (en) * 2018-08-31 2020-03-10 华为技术有限公司 Network slice selection method, equipment and system
WO2020050138A1 (en) * 2018-09-03 2020-03-12 日本電気株式会社 Core network device, access network device, communication terminal, communication system, and communication method
WO2020117796A1 (en) * 2018-12-05 2020-06-11 Intel Corporation Congestion control across different public land mobile networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Slice assistance Information over RRC with TP", 3GPP DRAFT; R2-1803463 SLICE ASSISTANCE INFORMATION OVER RRC WITH TP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20180226 - 20180302, 16 February 2018 (2018-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051400532 *

Similar Documents

Publication Publication Date Title
US20230224926A1 (en) Techniques for sidelink communications using a sidelink resource pool configured for a different radio access technology
US11838961B2 (en) Sidelink groupcast configuration to support feedback control
US11729841B2 (en) Truncated identification indicators
US11743866B2 (en) Resource selection methods for unaligned feedback transmissions for sidelink carrier aggregation
WO2022197411A1 (en) Slot and subslot-based sidelink communication
US11570809B2 (en) Compact downlink control information for a two-step random access channel procedure
WO2021151378A1 (en) Cross-carrier scheduling techniques for wireless communications systems
US20230018140A1 (en) Service-based paging techniques
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US11728945B2 (en) Uplink reference signal bundling techniques in wireless communications
US11968635B2 (en) Differentiation of terrestrial and non-terrestrial cells
US20230247511A1 (en) Cell selection techniques for dual-connectivity operation
WO2022047690A1 (en) Establishing a network slicing connection
US11765620B2 (en) Integrated access and backhaul node techniques for unlicensed operations
US11770861B2 (en) Two-step random access procedure for a backhaul node
WO2021232420A1 (en) Disabling dual connectivity at a multi-subscriber identity module user equipment
US11917664B2 (en) Techniques for counting a scheduling request periodicity
US11563517B2 (en) Managing broadcast channels based on bandwidth
US20220417997A1 (en) Random-access occasion selection for reduced-capability user equipment
US20230224970A1 (en) Random access channel occasions and resources for interference mitigation
US20240147502A1 (en) Superposition transmission techniques in sidelink communications
WO2021253283A1 (en) Service recovery techniques for wireless communications systems
WO2022266997A1 (en) Random-access occasion selection for reduced-capability user equipment
WO2021203375A1 (en) Connectivity with non-standalone cells
US20230180310A1 (en) Techniques for accelerating data recovery from out of service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951937

Country of ref document: EP

Kind code of ref document: A1