WO2022047562A1 - Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico - Google Patents

Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico Download PDF

Info

Publication number
WO2022047562A1
WO2022047562A1 PCT/BR2021/050377 BR2021050377W WO2022047562A1 WO 2022047562 A1 WO2022047562 A1 WO 2022047562A1 BR 2021050377 W BR2021050377 W BR 2021050377W WO 2022047562 A1 WO2022047562 A1 WO 2022047562A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
hydrophobic
fruit
composition
gel
Prior art date
Application number
PCT/BR2021/050377
Other languages
English (en)
French (fr)
Inventor
Fernando Henrique LERMEN
Tania Maria COELHO
Nabi Assad FILHO
José Luis Duarte RIBEIRO
Márcia Elisa Soares ECHEVESTE
Original Assignee
Ufrgs - Universidade Federal Do Rio Grande Do Sul
Unespar - Universidade Estadual Do Paraná
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ufrgs - Universidade Federal Do Rio Grande Do Sul, Unespar - Universidade Estadual Do Paraná filed Critical Ufrgs - Universidade Federal Do Rio Grande Do Sul
Publication of WO2022047562A1 publication Critical patent/WO2022047562A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/14Cold water dispersible or pregelatinised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/54Starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • HYDROPHOBIC STARCH POLYMER PROCESS FOR OBTAINING IT, COMPOSITION, PROCESS FOR OBTAINING THE COMPOSITION, COATING METHOD AND USE OF HYDROPHOBIC STARCH POLYMER
  • the present invention deals with the production of a hydrophobic starch biofilm and its pre-gel, in addition to its use for increasing the conservation of foods, more specifically fruits.
  • the invention is located in the fields of Engineering and Chemistry.
  • the causes of fruit losses and waste are several: a. Harvest carried out without due care; B. Inadequate packaging; ç. Inadequate storage: storage must be specific for each type of product; d. Excessive time between buying and selling; and. Poor product quality; f. precarious transport; g. Large territorial dimension; H. Oversupply of food; i. Improper handling of the product in the production chain; and, j. Improper handling of the product by the consumer.
  • the document CN101328285 (Preparation of hydrophobical thermoplastic starch) has a thermoplastic based on hydrophobic modified starch, using the AKD and going through the process of extrusion with a simple screw, allowing the burning of the starch and losing its quality.
  • the document CN101328285 uses the hydroxide in the starch generating beta-carbonyl ester, a substance that makes the starch toxic and presents a development process different from that of the present invention.
  • the starch molecule obtained by the process of document CN101328285 is different from that of the present invention, as it is from corn and not cassava, in addition to the characteristics and amount of use of AKD.
  • the starch developed in document CN101328285 requires temperature control during modification and the one in the present application does not. Additionally, in the process of said document water, caustic soda and alcohol are not used to balance the pH.
  • Document KR101733224 High density material with improved water resistance and durability using fallen leaves of street trees, and producing method thereof developed a high density material with water resistance and durability containing leaf dust, wood flour, starch , calcium, vinegar wood, straw vinegar, lignosulfonate, rosin and AKD in the mixture and subsequent extrusion.
  • the difference of the present invention is that no materials are used that can compromise the application.
  • the document CN-0153446 (High-starch full biodegradable composition and preparation method thereof) refers to a complete biodegradable composition of high starch and a method of preparation thereof, where the biodegradable composition has master batches of thermoplastic starch biodegradable, biodegradable polyester.
  • Document KR0086325 (A preparation method of enzyme-resistant starch using extrusion process) presents a method for producing an enzyme-resistant starch using an extrusion molding process to maximize production yield, this is done by mixing water and addition of other products (citric acid, vitamin C or thermally stable liquefied enzyme), the starch extrusion process is carried out by a twin screw extruder at a temperature of up to 80 °C.
  • the document CN104782904 (Method for preparing special pregelatinized starch for aquatic product feed) developed with a natural starch, a pre-gel, extruding with simple rosea, burning the product, in addition to inserting toxic chemical compositions.
  • the document CN104782984 (Method for preparing aquatic product feed by using pre-gelatinized starch) developed the same process of pre-gelatinized starches using a triple screw extruder and with applications in aquatic products, with colorimetry bias for the developed starch.
  • Murmu and Mishra in the work “Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low temperature storage”, describe a sachet method of moisture elimination to eliminate ethylene and moisture in packaging of modified atmosphere for guava.
  • the enzyme of the aforementioned study differs from the present invention by the enzymatic change from being a starch to a dextrin syrup.
  • R1 and R2 are similar, but vary in that the starch of the present invention is less broken down.
  • the molecular chain of the present starch will not have a fractionation, having a different structure by the size of the starch molecule and in the way the peroxide acts in the modification.
  • the type of modification of the present invention when compared to the enzymatic process, results in a much more hydrophobic starch than that presented by the Cunha document.
  • the present invention solves the problems of the state of the art from the production of a hydrophobic starch biofilm, obtained from cassava starch, and its application in the form of pre-gel in foods.
  • each one has a property
  • the hydrophobic starch preserves the fruit from the weather and does not release water and sugars from the fruit
  • the pre-gel avoids the starch cooking process in the industry, it just needs to be dissolved in a solution of 10 % in water.
  • the present invention presents as an inventive concept the following objects:
  • the present invention presents a hydrophobic starch polymer comprising the structure: wherein R1 and R2 are selected from groups comprising alkyl chains ranging in length from C14 to C16.
  • composition comprising the hydrophobic starch polymer in keto and enol forms.
  • a fourth object there is a process for obtaining the composition that comprises the steps of: a) Preparation of starch by grafting; b) Transesterification of cassava starch; c) Preparation of the pre-gel.
  • the present invention features a coating method, comprising a composition containing the hydrophobic starch polymer of the first object in foods.
  • hydrophobic starch polymer comprising application in the paper industry, footwear, food, in sausages and in the conservation of vegetables, meat and other perishable products and in the production of biofilms.
  • Figure 1 shows a twin screw extruder.
  • Figure 2 shows the extruded starch produced.
  • Figure 3 shows the conditions of post-harvest pears and after 8 weeks.
  • 3a pear only sanitized and post-harvest
  • 3b sanitized pear, post-harvest and with hydrophobic starch layer
  • 3c pear only sanitized after 8 weeks
  • 3d - sanitized pear with hydrophobic starch applied after 8 weeks.
  • Figure 4 shows post-harvest conditions of oranges and after 8 weeks.
  • 4a orange only sanitized and post-harvest
  • 4b orange sanitized, post-harvest and applied with hydrophobic starch biofilm
  • 4c orange only sanitized and after 8 weeks
  • 4d orange sanitized and with hydrophobic starch applied after 8 weeks.
  • Fruit includes edible fruits and pseudo-fruits.
  • Grafting is the method that chemicals are inserted facilitating the modification of starch.
  • a hydrophobic modified starch was produced in the form of a pre-gel, used as a protective layer, which preserves the freshly harvested fruits for longer.
  • a hydrophobic preserves the fruit from the weather and does not release water and sugars from the fruit
  • the pre-gel avoids the starch cooking process in the industry, it just demands that it be dissolved in a solution. of 10% in water.
  • the present invention presents a polymer of hydrophobic starch comprising the structure: wherein R1 is selected from the group comprising a hydrophobic C14 alkyl radical. and, wherein R2 is selected from the group comprising a hydrophobic C16 alkyl radical.
  • a process for obtaining hydrophobic starch polymer comprising the reaction of starch with alkyl ketene dimer or wax, in the presence of NaOH and alcohol.
  • the starch is obtained from native Manihot esculenta cassava or from corn starch.
  • composition comprising the hydrophobic starch polymer in keto and enol forms.
  • the polymer is in pre-gel or solid form.
  • the pre-gel or solid is dissolved to an 8 to 10% solution in water.
  • a fourth object there is a process for obtaining the composition that comprises the steps of: a) Preparation of starch by grafting; b) Transesterification of cassava starch; c) Preparation of the pre-gel.
  • step (a) comprises:
  • step (a) optionally comprises:
  • step (b) comprises:
  • step (a) adding the mixture from step (a) to a solution of 700 to 750 g of AKD (Alkyl Ketene Dimer);
  • the viscosity adjustment is performed in a 5 mm Cup Ford viscometer.
  • step (b) comprises:
  • the post-step product (b) can be used in the development of new products in the paper, footwear or apparel industry.
  • the addition of AKD is done when the starch has a viscosity of 5.5 s and pH 10.
  • step (c) comprises
  • step (b) - extrusion of the hydrophobic starch produced in step (b) in a double or triple screw extruder, to generate a homogeneous product, not stopping the flow and not burning it;
  • the process comprises the additional steps:
  • the size of the granulate can be up to 0.5 mm, otherwise, in the process of mixing the water, it does not gelatinize.
  • the process optionally comprises the additional step of diluting the solid or pre-gel in at least 10% water to produce the biofilm.
  • the process comprises the additional step of applying the biofilm with an application system or apparatus, wherein a sprayer is comprised.
  • the present invention presents a coating method, comprising the application of a composition containing the hydrophobic starch polymer of the first object in food.
  • the present invention presents the use of hydrophobic starch polymer, comprising application in the paper, footwear, food industry, in sausages and in the conservation of vegetables, meat and other perishable products and in the production of biofilms.
  • said perishables deteriorate from the outside in.
  • the application in perishables is understood to be optionally food, optionally fruit.
  • the application comprises being through an application system or device.
  • it has its use in the storage and/or transport of perishables, optionally foods, especially fruits.
  • the fruits are optionally pear and orange.
  • the use of the hydrophobic starch polymer may be in the form of a pre-gel.
  • the present invention presents: [0079] As for the raw material, Brazil is the second largest producer of starch in the world, behind only Thailand, of which 80% are produced in the southern region.
  • the present modification method controls the pH of the solution, and only adds the amount of AKD recommended to be consumed in food, not generating toxicities like the aforementioned methods.
  • the present method uses the already modified starch, not only being pre-gel, but with a modification and regulation of pH and humidity before being taken to the extruder double thread.
  • the main differential is the use of Alkyl Ketene Dimmer (AKD), or Alkyl Ketene Dimer, directly in the starch, with the humidity and pH regulated for better adhesion.
  • ALD Alkyl Ketene Dimmer
  • Alkyl Ketene Dimer directly in the starch, with the humidity and pH regulated for better adhesion.
  • Example 1 Process for obtaining hydrophobic starch biofilm and its pre-gel [0089] The method chosen for the preparation of the hydrophobic modified starch was by grafting.
  • 0 AKD can be replaced by wax at a 20% lower amount.
  • the hydrophobic starch modified in pre-gel was cut into cubes of 1 to 2 cm 3 , optionally 0.5 to 0.8 cm 3 , being taken to an oven for 8 hours at 100°C and ground into granules until it passes through a 50 Tyler mesh sieve.
  • Figure 3 shows the conditions of the fruits during the analysis of the work.
  • Figures 3(a) and 3(b) illustrate the conditions of the post-harvest fruits, in 3(a) the pear was just sanitized and in 3(b) it was sanitized and received a layer of hydrophobic modified starch.
  • Figures 3(c) and 3(d) we can observe the conditions of the fruits after a period of 8 weeks.
  • the Brix degree indicates the sugar content in liquids, these values were calculated using a refractometer.
  • Santos et al. (2005) made with the “Tommy-Atkins” mango there was a great loss of sucrose, due to the loss of excess liquid.
  • Table 2 of the oranges studied here, we verified that these values remained the same in the fruits with the protective biofilm. Once again we see the importance of preserving fruit liquid. And this was made possible by the fact that we used a hydrophobic product.
  • the diameter was evaluated to measure the variation in the size of the fruit.
  • Botrel et al. (2010) had some problems in relation to mass loss, since their skin applied to the pear did not present hydrophobic material.
  • the diameter of the present work remained practically the same in the fruits with the protective film, while in the fruit only sanitized a great difference was noticed.
  • Another effect that can favor the loss of liquid is that under environmental conditions, the relative humidity of the air is lower than inside the fruit, and this facilitates evaporation into the environment.
  • the pH is an indirect measure of the acidity degree of the liquids, and it remained the same in the fruits with the protective biofilm, due to the existing liquid inside the fruit not evaporating due to the hydrophobic effect of the starch, guaranteeing the flavor of the fruit. In the case of only sanitized fruit, it was not possible to calculate, because the fruit did not have enough fluid. Comparing our work with that of Alves et al. (201 1 ), this study aimed to develop biofilms composed of different types of starches (native and modified) and applied to the post-harvest of strawberries, where it was verified that the acidity degree of the strawberries did not change with the presence of cover, but there was a loss of moisture, as the cover was not waterproof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

A presente invenção apresenta um polímero de amido hidrofóbico, sua forma em pré-gel, seu processo de produção e usos com vistas a aumentar o tempo de vida útil de perecíveis. A presente invenção se situa nos campos da Química e Engenharia.

Description

Relatório Descritivo de Patente de Invenção
POLÍMERO DE AMIDO HIDROFÓBICO, PROCESSO PARA OBTENÇÃO DO MESMO, COMPOSIÇÃO, PROCESSO PARA OBTENÇÃO DA COMPOSIÇÃO, MÉTODO DE REVESTIMENTO E USO DO POLÍMERO DE AMIDO HIDROFÓBICO
Campo da Invenção
[0001] A presente invenção trata da produção de um biofilme de amido hidrofóbico e seu pré-gel, além de uso para o aumento da conservação de alimentos, mais especificamente frutas. A invenção se situa nos campos da Engenharia e Química.
Antecedentes da Invenção
[0002] O elevado teor de umidade faz com que alguns produtos agrícolas, como as frutas, tenham a característica de perecibilidade muito mais acentuada que outros produtos, como os grãos. Durante o armazenamento de frutas, o maior problema enfrentado pelos fruticultores é a rápida diminuição da vida útil das frutas. Depois de colhidas, ocorrem diversas alterações físico/químicas nas frutas levando a baixa qualidade e até a perda total dos produtos. As leis biológicas permanecem as mesmas do período do crescimento (WALTER, 2010). Segundo Coutinho e Cantillano (2007), isto ocorre pelo fato de as frutas continuarem com suas funções ativas do metabolismo vegetal, como respiração e transpiração. Diversas alterações podem ocorrer devido a processos físicos, como a transpiração, ou seja, a perda de água em forma de vapor, e processos químicos, como a respiração e degradação oxidativa de produtos mais complexos presentes na célula em moléculas mais simples.
[0003] Ainda conforme Coutinho e Cantillano (2007), mesmo após a colheita, as frutas continuam respirando e gastando suas reservas energéticas armazenadas, quanto mais se eleva a taxa respiratória mais rápida se dá a degradação. A perecibilidade e o envelhecimento das frutas são proporcionais ao tipo e à intensidade de respiração de cada espécie (SILVA e MELO, 2015). [0004] As frutas são classificadas como climatérios e não climatérios segundo o padrão respiratório. Os climatéricos amadurecem depois de colhidos ganhando cor, textura e doçura superior, a produção de CO2 e 0 consumo de O2 diminuem antes da colheita, durante certo tempo, para logo aumentar rapidamente, até um máximo, e, em seguida, diminuir, provocando a morte da fruta. Já nos não climatéricos, após a sua colheita, ocorrem apenas alterações degradantes, a taxa respiratória da fruta diminui gradativamente, desde a colheita até que a fruta atinja 0 estágio final de senescência (COUTINHO, 2007).
[0005] Para a conservação das frutas pós-colheita, é realizado normalmente 0 processo de sanitização e as mesmas são mantidas sob refrigeração em atmosferas controladas. Na prática, contudo, a manutenção e 0 controle efetivo da temperatura em todas as etapas da cadeia não é uma condição trivial, 0 que é observado mesmo em países ditos desenvolvidos, nos quais as infraestruturas para este fim são consideravelmente superiores às nossas (ASSIS, 2014).
[0006] O WRI - World Resources Institute (2017) levantou que um terço dos alimentos são desperdiçados no mundo, gerando em torno de 1 ,3 bilhões de toneladas de alimentos, ou, quantificando em dados monetários, um trilhão de dólares vão para 0 lixo anualmente.
[0007] De acordo com 0 IBGE - Instituto Brasileiro de Geografia e Estatística (2017), anualmente no Brasil 40% da produção se deteriora antes do consumo (aproximadamente 40 toneladas de alimentos), sendo que desses desperdícios, 46% ocorre no processamento e distribuição.
[0008] As perdas e 0 desperdício de frutas no Brasil representam de 10 a 60% do total produzido no país, acarretando grandes prejuízos financeiros para todos os representantes de sua cadeia produtiva e elevando 0 custo final do produto ao consumidor. No Brasil ocorre 0 desperdício de 26 milhões de toneladas de alimentos por ano. Segundo dados da FAO - Food and Agriculture Organization, este volume seria suficiente para alimentar 35 milhões de pessoas.
[0009] As causas de perdas e desperdícios de frutas são várias: a. Colheita realizada sem devidos cuidados; b. Embalagem inadequada; c. Armazenamento inadequado: o armazenamento deve ser específico para cada tipo de produto; d. Tempo excessivo entre compra e venda; e. Má-qualidade do produto; f. Transporte precário; g. Grande dimensão territorial; h. Excesso de oferta do alimento; i. Manuseio inadequado do produto na cadeia de produção; e, j. Manuseio inadequado do produto pelo consumidor.
[0010] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que tratam sobre o tema:
[0011] O documento CN101328285 (Preparation of hydrophobical thermoplastic starch) dispõe de um termoplástico a base de amido modificado hidrofóbico, utilizando o AKD e passando pelo processo de extrusão com rosca simples, possibilitando a queima do amido e perdendo a qualidade do mesmo. O documento CN101328285 utiliza o hidróxido no amido gerando éster de beta- carbonilo, substância que torna o amido tóxico e apresenta processo de desenvolvimento diferente ao da presente invenção.
[0012] Mais especificamente, a molécula de amido obtida pelo processo do documento CN101328285 é diferente ao da presente invenção, por ser de milho e não de mandioca, além das características e quantidade de uso de AKD. O amido desenvolvido no documento CN101328285 demanda controle de temperatura durante a modificação e o do presente pedido não. Adicionalmente, no processo do dito documento não se utiliza água, soda cáustica e álcool para equilibrar o pH.
[0013] O documento KR101733224 (High density material with improved water resistance and durability using fallen leaves of street trees, and producing method thereof) desenvolveu urn material de alta densidade com resistência à água e durabilidade contendo pó de folha, farinha de madeira, amido, cálcio, vinagre de madeira, vinagre de palha, lignossulfonato, colofónia e AKD na mistura e consequente extrusão. O diferencial do presente invento é que não são utilizados materiais que podem comprometer a aplicação.
[0014] O documento US2002123624 (Products of starch and process for the preparation of the same) apresenta urn amido hidrofobicamente esterificado desenvolvido por um processo enzimático, usando a enzima como catalisador para a reação, onde os radicais R1 e R2 são cadeias alifáticas lineares ou ramificadas, saturadas ou não saturadas com 1 a 22 carbonos. O diferencial deste presente invento é que o amido não passa por modificação enzimática.
[0015] O documento CN-0153446 (High-starch full biodegradable composition and preparation method thereof) refere-se a uma composição biodegradável completa de amido elevado e a um método de preparação da mesma, onde a composição biodegradável possui lotes mestres de amido termoplástico biodegradável, poliéster biodegradável.
[0016] O documento KR0086325 (A preparation method of enzyme-resistant starch using extrusion process) apresenta um método para produzir urn amido resistente a enzimas usando um processo de moldagem por extrusão para maximizar o rendimento de produção, isto se dá pela mistura de água e adição de demais produtos (ácido cítrico, vitamina C ou enzima liquefeita termicamente estável), o processo de extrusão do amido é dado por uma extrusora de rosca dupla a uma temperatura de até 80 °C.
[0017] O documento CN104782904 (Method for preparing special pregelatinized starch for aquatic product feed) desenvolveu com urn amido natural, um pré-gel, extrusando com rosea simples, queimando o produto, além da inserção de composições químicas tóxicas. O documento CN104782984 (Method for preparing aquatic product feed by using pre-gelatinized starch) desenvolveu o mesmo processo de amidos pré-gelatinizados por meio de extrusora de rosca tripla e com aplicações em produtos aquáticos, com viés de colorimetria para o amido desenvolvido.
[0018] Os documentos CN103739721 (Pre-gelatinized starch and preparation method thereof) e CN104798989 (Preparation method of special pre-gelatinized starch for feed) desenvolveram amidos pré-gelatinizados pelo processo de cocção e secagem do amido.
[0019] Li et al. em seu trabalho “Postharvest application of wax controls pineapple fruit ripening and improves fruit quality”, descrevem a aplicação de cera para conservação de abacaxi.
[0020] Peter et al., em seu trabalho “An efficient and innovative method to preserve the harvested plums during storage”, descrevem a inclusão de um filme de gelatin-glicerol sobre as ameixas colhidas.
[0021] Abdullah et al., em seu trabalho “Postharvest preservation of citrus fruits (Kinnow) by gamma irradiation and its impact on physicochemical characteristics”, descrevem a conservação de frutas cítricas expostas à irradiação gamma.
[0022] Pereira et al., em seu trabalho “Effect of nanoencapsulation using PLGA on antioxidant and antimicrobialactivities of guabiroba fruit phenolic extract”, descrevem a aplicação de nanoencapsulamento usando PLGA em guabiroba.
[0023] Murmu e Mishra, no trabalho “Selection of the best active modified atmosphere packaging with ethylene and moisture scavengers to maintain quality of guava during low temperature storage”, descrevem um método com saqueta de eliminação de umidade para eliminar etileno e humidade em embalagem de atmosfera modificada para goiaba.
[0024] Guardado-Valdivia et al., no trabalho “Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana)”, pesquisaram sobre o uso de fungicidas para manter a alta qualidade da fruta em graviola e abacate.
[0025] Jiang et al., no trabalho intitulado “Effects of a novel chitosan formulation treatment on quality attributes and storage behavior of harvested litchi fruit”, usaram tratamento Kadozan para conservação de lichia.
[0026] Wang et al., no estudo “comparison of practical methods for postharvest preservation of loquat fruit”, fizeram um trabalho para comparação de métodos práticos para preservação pós-colheita em nêsperas.
[0027] O documento de Cunha, A. G. e Galdini, A., intitulado “ Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates”, tem como objetivo prover uma perspectiva fundamentada no campo técnico de preparação de novos materiais hidrofóbicos baseados em polissacarídeos, através de uma investigação do estado da técnica.
[0028] O enzimático do estudo supracitado diferencia-se do presente invento pela alteração enzimática deixar de ser um amido, e virar um xarope de dextrina. O R1 e R2 são similares, porém variam quanto ao amido do presente invento ser menos quebrado. A cadeia molecular do presente amido não vai ter um fracionamento, tendo uma estrutura diferente pelo tamanho da molécula de amido e na forma como o peróxido atua na modificação. O tipo de modificação do presente invento, quando comparado ao processo enzimático, resulta em um amido muito mais hidrofóbico que o apresentado pelo documento de Cunha.
[0029] Assim, do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção, de forma que a solução aqui proposta possui novidade e atividade inventiva frente ao estado da técnica com relação a obtenção de proteção para retardar o envelhecimento das frutas.
Sumário da Invenção
[0030] Dessa forma, a presente invenção resolve os problemas do estado da técnica a partir da produção de um biofilme de amido hidrofóbico, obtido da fécula da mandioca, e sua aplicação na forma de pré-gel em alimentos. Nessas modificações, cada um tem uma propriedade, o amido hidrofóbico conserva a fruta de intempéries e não libera água e açucares da fruta, já o pré-gel evita o processo de cozimento do amido na indústria, apenas demanda ser dissolvido a uma solução de 10% em água.
[0031] A presente invenção apresenta como conceito inventivo os seguintes objetos:
[0032] Em um primeiro objeto, a presente invenção apresenta um polímero de amido hidrofóbico compreendendo a estrutura:
Figure imgf000009_0001
em que R1 e R2 são selecionados dos grupos que compreendem cadeias alquílicas de comprimentos variando entre C14 e C16.
[0033] Em um segundo objeto, apresenta-se um processo para obtenção de polímero de amido hidrofóbico, compreendendo a reação de amido com dímero de alquil ceteno, na presença de NaOH e álcool.
[0034] Em um terceiro objeto, tem-se uma composição, compreendendo o polímero de amido hidrofóbico nas formas ceto e enol.
[0035] Em um quarto objeto tem-se um processo para obtenção da composição que compreende as etapas de: a) Preparo do amido por enxertamento; b) Transesterificação do amido de mandioca; c) Preparação do pré-gel.
[0036] Como um quinto objeto, a presente invenção apresenta um método de revestimento, compreendendo uma composição contendo o polímero de amido hidrofóbico do primeiro objeto em alimentos.
[0037] Em um sexto objeto tem-se o uso do polímero de amido hidrofóbico, compreendendo aplicação em indústria papeleira, de calçados, alimentícia, em embutidos e na conservação de vegetais, cárneos e outros produtos perecíveis e na produção de biofilmes.
[0038] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e serão descritos detalhadamente a seguir. Breve Descrição das Figuras
[0039] São apresentadas as seguintes figuras:
[0040] A Figura 1 apresenta uma extrusora de rosca dupla.
[0041] A Figura 2 apresenta o amido extrusado produzido.
[0042] A Figura 3 apresenta as condições das peras pós-colheita e das mesmas após 8 semanas. 3a - pera apenas sanitizada e pós-colheita; 3b - pera sanitizada, pós-colheita e com camada de amido hidrofóbico; 3c - pera apenas sanitizada após 8 semanas; e 3d - pera sanitizada e com amido hidrofóbico aplicado após 8 semanas.
[0043] A Figura 4 apresenta condições de laranjas pós-colheita e das mesmas após 8 semanas. 4a - laranja apenas sanitizada e pós-colheita; 4b - laranja sanitizada, pós-colheita e aplicada com biofilme de amido hidrofóbico, 4c - laranja apenas sanitizada e após 8 semanas e 4d - laranja sanitizada e com amido hidrofóbico aplicado, após 8 semanas.
Descrição Detalhada da Invenção
[0044] A fim de estabelecer os termos e definições utilizados no presente pedido, é entendido por:
[0045] Fruta compreendem-se os frutos e pseudofrutos comestíveis.
[0046] Enxertamento é o método que os produtos químicos são inseridos facilitando a modificação do amido.
[0047] Por extrusora entende-se que será de rosca dupla ou tripla para a realização da invenção, a não ser que explicado de outra forma.
[0048] Com o intuito de encontrar soluções para aumentar a durabilidade das frutas, foi produzido um amido modificado hidrofóbico em forma de pré-gel, usado como camada protetora, que conserva as frutas recém-colhidas por mais tempo. Nessas modificações, cada uma tem uma propriedade, o hidrofóbico conserva a fruta de intempéries e não libera água e açucares da fruta, já o pré- gel evita o processo de cozimento do amido na indústria, apenas demanda que o mesmo seja dissolvido em uma solução de 10% em água.
[0049] Em um primeiro objeto, a presente invenção apresenta um polímero de amido hidrofóbico compreendendo a estrutura:
Figure imgf000011_0001
em que R1 é selecionado do grupo que compreende um radical alquila hidrofóbico C14. e, em que R2 é selecionado do grupo que compreende um radical alquila hidrofóbico C16.
[0050] Em um segundo objeto, apresenta-se um processo para obtenção de polímero de amido hidrofóbico, compreendendo a reação de amido com dímero de alquil ceteno ou cera, na presença de NaOH e álcool.
[0051] Em uma realização, o amido é obtido de mandioca nativa Manihot esculenta ou a partir de amido de milho.
[0052] Em um terceiro objeto, tem-se uma composição compreendendo o polímero de amido hidrofóbico nas formas ceto e enol.
[0053] Em uma realização, o polímero está na forma de pré-gel ou sólida.
[0054] Em uma realização, o pré-gel ou sólido é dissolvido a uma solução de 8 a 10% em água.
[0055] Em um quarto objeto tem-se um processo para obtenção da composição que compreende as etapas de: a) Preparo do amido por enxertamento; b) Transesterificação do amido de mandioca; c) Preparação do pré-gel.
[0056] Em uma realização do processo a etapa (a) compreende:
- pesar de 7 a 7,5 kg de amido;
- adição de solução compreendendo 10 a 13 mL de NaOH em cristais;
- ajustar o pH em 10 a 12; - adição de 14 a 16 gramas de peroxido de hidrogênio;
- adição de 490 a 550 mL de água;
- adição de 30 a 35 mL de álcool etílico;
- misturar todos os ingredientes num misturador por 25-30 min;
- ajustar o pH até a medição do pH entre 10-12;
- ajustar a viscosidade da solução entre 5 a 8 s.
[0057] Em uma realização do processo a etapa (a) compreende opcionalmente:
- pesar 7 kg de amido de mandioca nativo ou amido de milho;
- adição de solução compreendendo 2% de NaOH em cristais (10g)
- ajusta pH em 10 a 12;
- adição de 14-16 g de peroxido de hidrogênio;
- adição de água 490 ml - 98% da solução com NaOH
- adição de 30 ml de álcool etílico
- misturar todos os ingredientes num misturador por 25-30 min
- medição do pH igual a 10;
- ajustar a viscosidade da solução igual a 5 a 8 s.
[0058] Em uma realização do processo a etapa (b) compreende:
- acrescentar a mistura da etapa (a) solução de 700 a 750 g de AKD (Dímero de alquil ceteno);
- adição de 30 a 35 mL de álcool etílico;
- misturar por 25-30 min;
- ajustar o pH na faixa de 10 a 12;
- ajustar a viscosidade da solução na faixa de 5 a 8 s.
[0059] Em uma realização do processo, o ajuste da viscosidade é realizado em viscosímetro tipo Cup Ford 5 mm.
[0060] Em uma realização do processo a etapa (b) compreende:
- acrescentar a mistura da etapa (a) solução de 700g de AKD (Dímero de alquil ceteno);
- adição de 30 ml de álcool etílico;
- misturar por 25 a 30 min; - ajustar o pH igual a 10;
- ajustar a viscosidade da solução na faixa de 5,5 s.
[0061] Em uma realização, o produto pós-etapa (b) pode ser usado no desenvolvimento de novos produtos na indústria papeleira, calçadista ou de vestuário.
[0062] Em uma realização a adição de AKD é feita quando o amido estiver com 5,5 s de viscosidade e pH 10.
[0063] Em uma realização, a mistura da etapa (a) utilizou-se de 2 cv e a mistura da etapa (b) utilizou-se de 25 cv.
[0064] Em uma realização do processo a etapa (c) compreende
- umidade do amido em uma variação de 10 a 15% base úmida (b.u.);
- extrusão do amido hidrofóbico produzido na etapa (b) em extrusora de rosca dupla ou tripla, para gerar um produto homogêneo, não parando o fluxo e não queimando o mesmo;
[0065] Em uma realização, o processo compreende as etapas adicionais:
- corte do amido extrusado em cubos de 1 a 2 cm3, opcionalmente de 0,5- 0,8 cm3;
- secagem do amido extrusado em estufa por 8 a 10 h a 100 a 110 °C
- moagem do amido em moinho em granulado até que passe em uma peneira 50 Tyler mesh.
[0066] O tamanho do granulado pode ser de até 0,5 mm, pois, de outro modo, no processo da mistura da água o mesmo não gelatiniza.
[0067] Em uma realização, o processo compreende opcionalmente a etapa adicional de diluir o sólido ou pré-gel em no mínimo 10% de água para produzir o biofilme.
[0068] Em uma realização, o processo compreende a etapa adicional de aplicar o biofilme com um sistema ou aparelho de aplicação, em que é compreendido um pulverizador.
[0069] Como um quinto objeto, a presente invenção apresenta um método de revestimento, compreendendo a aplicação de uma composição contendo o polímero de amido hidrofóbico do primeiro objeto em alimentos.
[0070] Como um sexto objeto, a presente invenção apresenta o uso do polímero de amido hidrofóbico, compreendendo aplicação em indústria papeleira, de calçados, alimentícia, em embutidos e na conservação de vegetais, cárneos e outros produtos perecíveis e na produção de biofilmes.
[0071 ] Em uma realização, os ditos perecíveis se deterioram de fora para dentro. [0072] Em uma realização compreende-se pela aplicação em perecíveis ser opcionalmente alimentos, opcionalmente frutas.
[0073] Em uma realização de uso, a aplicação compreende ser através de sistema ou aparelho de aplicação.
[0074] Em uma realização, tem-se seu uso no armazenamento e/ou transporte de perecíveis, opcionalmente alimentos, em especial frutas.
[0075] Em uma realização, as frutas são opcionalmente pera e laranja.
[0076] Em uma realização, o uso do polímero de amido hidrofóbico pode ser na forma de pré-gel.
[0077] Em uma realização de uso em forma de gel, envolve a adição de 10% de água ao granulado obtido pelo processo descrito no segundo objeto.
[0078] Com relação às vantagens da invenção, a presente invenção apresenta: [0079] Quanto à matéria prima, o Brasil é o segundo maior produtor de amido do mundo, atrás apenas da Tailândia, desses, 80% são produzidos na região sul.
[0080] Uma vantagem em relação ao processo, é que pela modificação pré- gelatinizada, o amido não demanda um processo de cozimento na indústria, apenas deve ser misturado em uma solução de 10% em água.
[0081] Em relação à característica hidrofóbica, esta protege a fruta de intempéries e da eliminação de açucares e líquidos internos da fruta, dobrando o tempo de prateleira do alimento.
[0082] Ainda, na produtividade, com o amido natural cozido, uma tonelada é capaz de proteger 2 milhões de frutas, já com o amido modificado, como não demanda de processo de cozimento, este aumenta para 5,5 milhões de frutas, sendo estas frutas com a circunferência similar a laranja.
[0083] Comparando com outros métodos de modificação hidrofóbicos de amido já existentes, o presente método de modificação controla o pH da solução, e adiciona apenas a quantidade de AKD recomendada para ser consumida em alimentos, não gerando toxicidades como os métodos supracitados.
[0084] Além disso, comparando com outras invenções já existentes de pré- gelatinização, o presente método usa o amido já modificado, não sendo apenas pré-gel, e sim com uma modificação e regulagem de pH e umidade antes de ser levado a extrusora de rosca dupla.
[0085] Ainda, no processo de produção do biofilme, o principal diferencial é o uso do Alkyl Ketene Dimmer (AKD), ou Dímero de Alquil Ceteno, diretamente no amido, com a umidade e pH regulados para uma melhor aderência.
[0086] O mesmo ocorreu no processo de pré-gelatinização do amido, ao ser inserido na extrusora de rosca dupla, o mesmo estava a uma umidade de 10- 15% b.u. Com isso, o amido modificado, ao ser extrusado, se solidificou e facilmente se dissolveu em água, dando aspecto de recém-cozido.
[0087] Concluímos que a proteção da fruta, utilizando a mistura de amido modificado hidrofóbico em forma de pré-gel, foi muito eficaz para evitar o processo de degradação em peras e laranjas, considerando que as frutas que receberam a proteção apresentaram excelentes condições de consumo por aproximadamente 34 dias a mais do que as frutas que foram somente sanitizadas, um tempo muito superior do que o encontrado na literatura pesquisada.
Exemplos
[0088] Os exemplos aqui mostrados têm o intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo sem limitar, o escopo da mesma.
Exemplo 1 - Processo de obtenção do biofilme de amido hidrofóbico e seu pré- gel [0089] O método escolhido para o preparo do amido modificado hidrofóbico foi o por enxertamento.
[0090] Para o preparo, inicialmente pesou-se 7 kg de amido de mandioca (Manihot esculentá) nativo, que foi colocado em uma misturadora, e adicionou- se uma solução contendo 140 g de Soda Cáustica (NaOH) em cristais, 140 ml de água (H2O) e 800ml de álcool etílico (CH3CH2OH). Em seguida foi ligado 0 misturador, e após 30 minutos mediu-se 0 pH do amido, sendo de 9,4.
[0091] A seguir, acrescentou-se à mistura, uma solução de 700 ml de AKD (Dímero de Alquil Ceteno) e 700 ml de álcool etílico, sendo ligado 0 misturador por mais 30 minutos. Por fim, mediu-se 0 pH do amido novamente, resultando em 8,2.
[0092] Com base nas reações desse processo, a estrutura molecular foi desenvolvida representando 0 amido hidrofóbico. A reação de transesterificação do amido de mandioca com AKD líquido em meio alcoólico apresenta os compostos.
Figure imgf000016_0001
[0093] Adicionalmente, 0 AKD pode ser substituído por cera a uma quantidade 20% menor.
[0094] Como apresentado na reação, houve uma transesterificação do amido, na qual 0 enol permitiu que 0 amido absorvesse a AKD. Os compostos reagem desenvolvendo um equilíbrio de tautomerismo ceto-enólico, para alcançar 0 produto final, como mostrado no esquema.
[0095] O amido hidrofóbico formado foi, então, levado a uma extrusora de rosca dupla para a modificação pré-gel. As Figuras 1 e 2 mostram respectivamente 0 processo de extrusão e 0 amido modificado extrusado.
[0096] Após a extrusão em rosca dupla, 0 amido hidrofóbico modificado em forma de pré-gel, foi cortado em cubos de 1 a 2 cm3, opcionalmente de 0,5 a 0,8 cm3, sendo levado a uma estufa por 8 horas a 100°C e moído em granulado até que passe em uma peneira de 50 Tyler mesh.
[0097] Ao desenvolver o amido, avaliou-se a qualidade hidrofóbica do mesmo com teste de floculação e cinética de hidratação, na qual o amido hidrofóbico apresentou bons resultados, demonstrando a característica hidrofóbica.
Exemplo 2 - Aplicação da tecnologia
[0098] A principal aplicação da tecnologia é para a conservação de frutas. Na sequência serão apresentados alguns casos de aplicações do amido modificado hidrofóbico em forma de pré-gel em frutas.
2.1 - Pera
[0099] A Figura 3 mostra as condições das frutas no decorrer da análise do trabalho. As Figuras 3(a) e 3(b) ilustram as condições das frutas pós-colheita, em 3(a) a pera foi apenas sanitizada e em 3(b) foi sanitizada e recebeu uma camada de amido modificado hidrofóbico. Nas Figuras 3(c) e 3(d) podemos observar as condições das frutas após período de 8 semanas.
[0100] É possível, através de observação, concluir que a fruta sanitizada da Figura 3(c), passadas 8 semanas, apresentou aparência externa não aceitável pelo consumidor e, internamente, a fruta se mostrou degradada, não apresentando a mínima condição de consumo. Situação contrária ao da fruta 3(d), contendo o biofilme protetor, que após as 8 semanas apresentou uma cor marrom devido a degradação da clorofila e no seu interior o aspecto permaneceu o mesmo de uma fruta Pós-Colheita.
[0101] Isso é a primeira comprovação de que o biofilme de amido modificado foi eficiente na preservação da pera. A caracterização das demais propriedades das frutas estão dispostas na Tabela 1 que mostra valores de densidade, grau Brix, diâmetro, massa e pH. Tabela 1 - Valores médios e o Desvio Padrão dos resultados de densidade, grau Brix, perda de umidade, massa e pH das frutas somente sanitizadas e das sanitizadas e cobertas com o biofilme protetor. (Experimento realizado em triplicata)
Figure imgf000018_0001
Valores médios obtidos de 3 amostras aleatórias.
[0102] Comparando-se os valores da densidade das frutas pós-colheita com as frutas após 8 semanas de armazenamento, vê-se que na fruta contendo a camada de amido os valores foram pouco alterados, enquanto na fruta sem camada protetora foram alterados significativamente. Atribuímos esse fenômeno ao fato de que o líquido existente na fruta protegida não ter sido perdido, graças ao amido modificado. Já na fruta sem o biofilme protetor uma parte do líquido evaporou para o ambiente.
[0103] Comparando o produto deste trabalho com outros da literatura, onde usaram o amido como biofilme protetor, concluímos que os nossos resultados de densidade foram melhores, pois ao usarmos o amido modificado hidrofóbico a fruta não perdeu seu líquido tão rapidamente.
[0104] O grau Brix foi medido com um Refratômetro que indica o teor de açúcar nos líquidos. Foi feita sua avaliação neste trabalho e comparado com estudos da Embrapa (2009), feito em melões, onde eles concluíram grande perda de sacarose, devido à perda de líquido em excesso. Os resultados apresentados neste trabalho mostraram-se mais satisfatórios, mostrando assim que nosso produto foi eficaz quando aplicado em peras. Ao observarmos os valores do grau Brix na Tabela 1 , comparando as frutas pós-colheita e após 8 semanas, observamos que as alterações nesses valores são insignificantes para a qualidade das frutas. Novamente vemos a importância de se preservar o líquido das frutas. E isso foi possível pelo fato de usarmos um produto hidrofóbico, enquanto que na fruta sem biofilme observamos uma diminuição acentuada no teor de sacarose.
[0105] As medidas do diâmetro das frutas foram realizadas com um paquímetro, com o objetivo de analisar a variação do tamanho da fruta. O diâmetro das frutas protegidas com o biofilme hidrofóbico no presente trabalho permaneceu praticamente inalterado após 8 semanas, como pode ser observado na Tabela 1 , em que vemos uma diferença de apenas 0,44%. Já nas frutas somente sanitizadas a perda percentual chegou a 4,2%, isto significa que uma fruta, quando protegida, pode levar aproximadamente 50 dias para perder o mesmo percentual de água que uma fruta não protegida perde em apenas 5 dias. Outro efeito que pode favorecer a perda de líquido é que, em condições ambientais, a umidade relativa do ar, a taxa de respiração, a transpiração e a temperatura da fruta, são menores do que no interior das frutas, e isso facilita a evaporação para o ambiente.
[0106] Com a perda de água temos a consequente perda de massa, claramente observado na Tabela 1. Quando analisamos a fruta protegida com o amido hidrofóbico, observamos que após 8 semanas a perda de água foi de aproximadamente 0,8%, enquanto a fruta não protegida perdeu mais de 15% no mesmo período. Prates & Ascheri (2011 ) teve problemas em relação à perda de massa, quando relata seus estudos com uma cápsula protetora feita de uma matéria prima não impermeável.
[0107] O pH foi verificado utilizando um pHmetro, onde pH é o grau de acidez dos líquidos. No nosso trabalho obtivemos uma mudança considerada pequena de pH, nas peras protegidas com o biofilme protetor. Isso se dá, devido ao líquido existente no interior da fruta realizar uma baixa fermentação pelo efeito da hidrofobia, garantindo assim o sabor da fruta. Já na fruta apenas sanitizada houve aumento no grau de acidez. Entretanto, no trabalho de Queiroz & Morais (2010) na produção de uma capa protetora de um minimilho, eles perceberam que o grau de acidez do minimilho não foi alterado com a presença da capa, porém houve uma perda de umidade, pois a capa não era impermeável.
[0108] Com a análise da Tabela 1 , pode-se observar a seguinte variação:
• Densidade: A fruta sanitizada teve uma queda de 12,76%, já a fruta com capa protetora 5,31 %;
• Grau Brix: A fruta sanitizada teve uma queda de 24,11 %, já a fruta com capa protetora 2,84%;
• Diâmetro: A fruta sanitizada teve uma queda de 4,24%, já a fruta com capa protetora 0,43%;
• Massa: A fruta sanitizada teve uma queda de 15,41 %, já a fruta com capa protetora 0,80%; e,
• pH: A fruta sanitizada teve uma queda de 43,06%, já a fruta com capa Protetora 24,82%.
2.2 - Laranja
[0109] A caracterização das laranjas foi realizada via as metodologias auxiliares já citadas no exemplo anterior 2.1. A Figura 4 apresenta fotos que evidenciam as condições das frutas no decorrer das análises do trabalho. As Figuras 4(a) e 4(b) mostram as condições das frutas Pós-Colheita. Na Figura 4(a) a laranja foi apenas sanitizada.
[0110] Na Figura 4(b) além de sanitizada, a laranja recebeu a camada de amido modificado hidrofóbico. As Figuras 4(c) e 4(d) são fotos destas frutas após 8 semanas.
[0111] É possível, através de observação, concluir que a fruta sanitizada da Figura 4(c), após passarem-se 8 semanas, não teve condição de consumo, situação contrária à da fruta 4(d), contendo o biofilme protetor, que após as 8 semanas apenas amadureceu. Isso é a primeira comprovação de que o biofilme de amido modificado auxiliou na conservação externa da fruta, mostrando sua eficácia na preservação da fruta. A caracterização das demais propriedades das frutas estão dispostas na Tabela 2 que mostra valores de densidade, grau Brix, diâmetro, massa e pH.
Tabela 2 - Valores médios e Desvio Padrão da Densidade, grau Brix, perda de umidade, massa e pH das frutas somente sanitizadas e das sanitizadas e cobertas com o biofilme protetor. (Experimento realizado em triplicata)
Figure imgf000021_0001
Não foi possível encontrar devido ã fruta com oito semanas sem capa estar totalmente deteriorada e não apresentar líquido. [0112] Comparando-se os valores da densidade das frutas Pós-Colheita com as frutas após oito semanas de observação, observamos que, na fruta contendo a camada de amido, os valores permaneceram constantes, enquanto que, na fruta sem camada protetora, não foi possível realizar os cálculos devido à fruta não apresentar fluido algum. Atribuímos esse fenômeno ao fato de que a fruta protegida não ter tido evaporação do líquido, devido a hidrofobia. Já na fruta sem o biofilme protetor o líquido foi todo evaporado para o ambiente.
[0113] Comparando o produto realizado neste trabalho com outros que também usaram de biofilme protetor (citados no exemplo anterior), conclui-se que os resultados fornecidos de densidade foram mais satisfatórios, pois ao usar o amido modificado hidrofóbico a fruta não perdeu seu líquido tão rapidamente.
[0114] O grau Brix indica o teor de açúcar nos líquidos, estes valores foram calculados através de um refratômetro. Nos estudos de Santos et al. (2005) feitos com a Manga “Tommy-Atkins”, verificou-se grande perda de sacarose, devido à perda de líquido em excesso. Ao observarmos os valores do grau Brix na Tabela 2, das laranjas aqui estudadas, verificamos que estes valores permaneceram os mesmos nas frutas com o biofilme protetor. Novamente vemos a importância de se preservar o líquido das frutas. E isso foi possível pelo fato de usarmos um produto hidrofóbico.
[0115] O diâmetro foi avaliado para medir a variação do tamanho da fruta. Botrel et al. (2010) obteve alguns problemas em relação à perda de massa, pois sua película aplicada à pera não apresentava material hidrofóbico. O diâmetro do presente trabalho permaneceu praticamente o mesmo nas frutas com a película protetora, já na fruta apenas sanitizada foi notada uma grande diferença. Outro efeito que pode favorecer a perda de líquido é que em condições ambientais, a umidade relativa do ar é menor do que no interior das frutas, e isso facilita a evaporação para o ambiente.
[0116] Com a perda de água temos a consequente perda de massa, conforme apresentado na Tabela 2, cujos valores foram obtidos por uma balança de precisão. Quando comparamos as frutas protegidas com o amido hidrofóbico vemos que a perda foi mínima no período estudado. Lemos (2006), no intuito de realizar a conservação pós-colheita dos frutos de pimentão “Magali R”, teve problemas em relação à perda de massa, quando relata seus estudos com uma película protetora feita a base de uma matéria prima impermeável.
[0117] O pH é uma medida indireta do grau de acidez dos líquidos, e permaneceu o mesmo nas frutas com o biofilme protetor, devido ao líquido existente no interior da fruta não evaporar pelo efeito da hidrofobia do amido, garantindo o sabor da fruta. Já na fruta apenas sanitizada, não foi possível calcular, pois a fruta não apresentava fluido suficiente. Comparando o nosso trabalho com o de Alves et al. (201 1 ), este teve como objetivo desenvolver biofilmes compostos a base de diferentes tipos de amidos (nativos e modificados) e aplicaram na pós-colheita de morangos, onde foi verificado que o grau de acidez dos morangos não foi alterado com a presença da capa, porém houve uma perda de umidade, pois a capa não era impermeável.
[0118] Com a análise da Tabela 2, pode-se analisar a seguinte variação:
• Densidade: A fruta sanitizada teve uma queda de 100%*, já a fruta com capa protetora 5,31 %;
• Grau Brix: A fruta sanitizada teve uma queda de 100%*, já a fruta com capa protetora 8,44%;
• Diâmetro: A fruta sanitizada teve uma queda de 39,66%, já a fruta com capa protetora 0,43%;
• Massa: A fruta sanitizada teve uma queda de 79,97%, já a fruta com capa protetora 2,82%; e,
• pH: A fruta sanitizada teve uma queda de 100%*, já a fruta com capa protetora teve um crescimento de 15,42%.
[0119] Os versados na arte valorizarão os conhecimentos aqui apresentados e poderão reproduzir a invenção nas modalidades apresentadas e em outras variantes e alternativas, abrangidas pelo escopo das reivindicações a seguir.

Claims

Reivindicações
1 . Polímero de amido hidrofóbico caracterizado por ter a estrutura:
Figure imgf000024_0001
em que R1 é selecionado do grupo que compreende um radical hidrofóbico de alquila C14 e, em que R2 é selecionado do grupo que compreende um radical hidrofóbico de alquila C16.
2. Processo para obtenção de polímero de amido hidrofóbico, conforme definido na reivindicação 1 , caracterizado por compreender a reação de amido com dímero de alquil ceteno ou cera, na presença de NaOH e álcool.
3. Processo, de acordo com a reivindicação 2, caracterizado pelo amido ser proveniente de mandioca nativa Manihot esculenta ou do amido de milho.
4. Composição, caracterizada por compreender o polímero de amido hidrofóbico, conforme definido na reivindicação 1 , nas formas ceto e enol.
5. Composição, de acordo com a reivindicação 4, caracterizada pelo polímero estar na forma de pré-gel ou sólida.
6. Composição, de acordo com a reivindicação 5, caracterizada pelo pré- gel ou sólido ser dissolvido a uma solução de 8% a 10% em água.
7. Processo para obtenção da composição, conforme definida em qualquer uma das reivindicações 4 a 6, caracterizado por compreender as etapas de: a) Preparo do amido por enxertamento; b) Transesterificação do amido de mandioca; c) Preparação do pré-gel.
8. Processo, de acordo com a reivindicação 7, caracterizado pela etapa (a) compreender:
- pesar de 7 kg a 7,5 kg de amido;
- adição de solução compreendendo 10 mL a 13 mL de NaOH em cristais;
- ajustar o pH em 10 a 12;
- adição de 14 g a 16 g de peroxido de hidrogênio;
- adição de 490 mL a 550 mL de água;
- adição de 30 mL a 35 mL de álcool etílico;
- misturar todos os ingredientes num misturador por 25 min a 30 min;
- medição do pH entre 10 a 12;
- ajustar a viscosidade da solução entre 5 a 8 s.
9. Processo, de acordo com a reivindicação 7, caracterizado pela etapa
(b) compreender:
- acrescentar a mistura da etapa (a) solução 700 g a 750 g de dímero de alquil ceteno;
- adição de 30 mL a 35 mL de álcool etílico;
- misturar por 25 min a 30 min;
- medição do pH entre 10 a 12;
- viscosidade da solução entre 5 a 8 s.
10. Processo, de acordo com a reivindicação 9, caracterizado pela adição de dímero de alquil ceteno ser feita quando o amido estiver com 5,5 s de viscosidade e pH 10.
1 1 . Processo, de acordo com a reivindicação 7, caracterizado pela etapa
(c) compreender:
- umidade do amido em uma variação de 10% a 15% base úmida; e
- extrusão do amido hidrofóbico produzido na etapa (b) em extrusora de rosca dupla ou tripla.
12. Processo, de acordo com a reivindicação 1 1 , caracterizado por compreender as etapas adicionais:
- corte do amido extrusado em cubos de 1 cm3 a 2 cm3, opcionalmente de 0,5 cm3 a 0,8 cm3; - secagem do amido extrusado em estufa por 8 h a 10 h a 100°C a 1 10 °C; e
- moagem do amido em moinho em granulado até passar por uma peneira 50 Tyler mesh.
13. Processo, de acordo com a reivindicação 1 1 ou 12, caracterizado por opcionalmente compreender a etapa adicional de diluir o sólido ou pré-gel em no mínimo 10% de água para produzir o biofilme.
14. Método de revestimento, caracterizado por compreender a aplicação da composição, conforme definida em qualquer uma das reivindicações 4 a 6, em alimentos.
15. Uso do polímero de amido hidrofóbico, conforme definido na reivindicação 1 , caracterizado por compreender aplicação em indústria papeleira, de calçados, alimentícia, em embutidos e na conservação de vegetais, cárneos e outros produtos perecíveis e na produção de biofilmes.
PCT/BR2021/050377 2020-09-02 2021-09-02 Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico WO2022047562A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102020017972-1 2020-09-02
BR102020017972-1A BR102020017972A2 (pt) 2020-09-02 2020-09-02 Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico

Publications (1)

Publication Number Publication Date
WO2022047562A1 true WO2022047562A1 (pt) 2022-03-10

Family

ID=80492312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050377 WO2022047562A1 (pt) 2020-09-02 2021-09-02 Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico

Country Status (2)

Country Link
BR (1) BR102020017972A2 (pt)
WO (1) WO2022047562A1 (pt)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9710428A (pt) * 1996-04-09 1999-08-17 Khashoggi E Ind M-todos para fabrica-Æo de folhas moldadas possuindo um alto conteÚdo de goma
BR9708615A (pt) * 1996-04-09 2000-01-18 Khashoggi E Ind Composições rendo elevado teor de amido não gelatinizado e folhas moldadas das mesmas.
CA2396982A1 (en) * 2000-01-11 2001-07-19 Apack Ag Fur Biologische Verpackungen Composition for producing biologically degradable shaped bodies and method for producing such a composition
BR0016960B1 (pt) * 2000-01-11 2012-09-04 composições de amido termoplástico que incorporam um componente de enchimento particulado, método de fabricação de dita composição, assim como artigo de manufatura.
US8268391B2 (en) * 2009-03-13 2012-09-18 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
US8435354B2 (en) * 2005-10-11 2013-05-07 The Procter & Gamble Company Water stable compositions and articles comprising starch and methods of making the same
CN109749108A (zh) * 2019-02-28 2019-05-14 华南理工大学 一种可食木薯淀粉复合包装膜及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9710428A (pt) * 1996-04-09 1999-08-17 Khashoggi E Ind M-todos para fabrica-Æo de folhas moldadas possuindo um alto conteÚdo de goma
BR9708615A (pt) * 1996-04-09 2000-01-18 Khashoggi E Ind Composições rendo elevado teor de amido não gelatinizado e folhas moldadas das mesmas.
CA2396982A1 (en) * 2000-01-11 2001-07-19 Apack Ag Fur Biologische Verpackungen Composition for producing biologically degradable shaped bodies and method for producing such a composition
BR0016960B1 (pt) * 2000-01-11 2012-09-04 composições de amido termoplástico que incorporam um componente de enchimento particulado, método de fabricação de dita composição, assim como artigo de manufatura.
US8435354B2 (en) * 2005-10-11 2013-05-07 The Procter & Gamble Company Water stable compositions and articles comprising starch and methods of making the same
US8268391B2 (en) * 2009-03-13 2012-09-18 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
CN109749108A (zh) * 2019-02-28 2019-05-14 华南理工大学 一种可食木薯淀粉复合包装膜及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OLIVIA V. LOPE Z ET AL.: "Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization", MATERIALS SCIENCE AND ENGINEERING: C, vol. 32, no. 7, 2012, pages 1931 - 1940, XP028503982, ISSN: 0928-4931, Retrieved from the Internet <URL:https://www.seieneedireet.com/seience/artiGle/pii/SQ928493112QQ255X> DOI: https://doi.org/i0.1016/j.msec.2012.05.035 *
P.D. MBOUGUENG ET AL.: "Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches", JOURNAL OF FOOD ENGINEERING, vol. 108, no. 2, 2012, pages 320 - 326, XP028306805, ISSN: 0260-8774, Retrieved from the Internet <URL:rhttps:/7www.sciencedireet.com/science/article/pii/S0260877411004328> DOI: https://doi.org/10-1016/i.jfoodeng.2011.08.006 *
WANG XINTIAN, WANG HONGWEI, SONG JIANING, ZHANG YANGYANG, ZHANG HUA: "Understanding the structural characteristics, pasting and rheological behaviours of pregelatinised cassava starch", INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD., GB, vol. 53, no. 9, 1 September 2018 (2018-09-01), GB , pages 2173 - 2180, XP055911760, ISSN: 0950-5423, DOI: 10.1111/ijfs.13805 *

Also Published As

Publication number Publication date
BR102020017972A2 (pt) 2022-03-15

Similar Documents

Publication Publication Date Title
Dai et al. Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears
Han et al. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage
Li et al. Toughening and its association with the postharvest quality of king oyster mushroom (Pleurotus eryngii) stored at low temperature
Abebe et al. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits
Lin et al. Effect of chitosan coating on respiratory behavior and quality of stored litchi under ambient temperature
Ali et al. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit
Paulsen et al. Ready-to-eat cherry tomatoes: Passive modified atmosphere packaging conditions for shelf life extension
Olveira-Bouzas et al. Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature
Ramana Rao et al. Composite coating of alginate-olive oil enriched with antioxidants enhances postharvest quality and shelf life of Ber fruit (Ziziphus mauritiana Lamk. Var. Gola)
Suriati et al. Ecogel incorporated with nano-additives to increase shelf-life of fresh-cut mango
Nandane et al. Effect of composite edible coating on physicochemical properties of tomatoes stored at ambient conditions
Cid-López et al. The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage
Hadadinejad et al. Effect of storage temperature and packaging material on shelf life of thornless blackberry
Cipolatti et al. Application of protein-phenolic based coating on tomatoes (Lycopersicum esculentum)
Rasool et al. Formulation and characterization of natural almond gum as an edible coating source for enhancing the shelf life of fresh cut pineapple slices
Sun et al. Effect of pectin coatings containing trans-cinnamaldehyde on the postharvest quality of rambutan
Devi et al. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review
WO2022047562A1 (pt) Polímero de amido hidrofóbico, processo para obtenção do mesmo, composição, processo para obtenção da composição, método de revestimento e uso do polímero de amido hidrofóbico
Ahmed et al. The role of chitosan to prolonged the fresh fruit quality during storage of grapefruit cv. ray ruby
Gidado et al. Delaying the Ripening of Banana Fruit and Increased Storage Shelf-Life Using Hydrophobic Deep Eutectic Oil (Menthol–Thymol)-In-Water Nanoemulsion Coating
Wibowo et al. Application of Starch-based Edible Coating on Tomato and Its Effect during Storage
Bahri et al. Effects of coating methods and storage periods on some qualitative characteristics of carrot during ambient storage
Maqbool et al. Exploring the new applications of gum arabic obtained from acacia species to preserve fresh fruits and vegetables
Azali et al. Effects of temperature and polyethylene plastic packaging on physicochemical changes and antioxidant properties of tomato during storage
Rosman et al. Fungal Growth Physicochemical Properties Inhibition by Novel Zinc Oxide/Glutinous Tapioca Starch Composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863135

Country of ref document: EP

Kind code of ref document: A1