WO2022047359A1 - Protein biomarkers for pancreatic cancer - Google Patents

Protein biomarkers for pancreatic cancer Download PDF

Info

Publication number
WO2022047359A1
WO2022047359A1 PCT/US2021/048374 US2021048374W WO2022047359A1 WO 2022047359 A1 WO2022047359 A1 WO 2022047359A1 US 2021048374 W US2021048374 W US 2021048374W WO 2022047359 A1 WO2022047359 A1 WO 2022047359A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
marker
markers
cancer
expression level
Prior art date
Application number
PCT/US2021/048374
Other languages
French (fr)
Other versions
WO2022047359A8 (en
Inventor
Rangaprasad Sarangarajan
Stephane Gesta
Maria-dorothea NASTKE
Gregory Mark MILLER
Original Assignee
Berg Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berg Llc filed Critical Berg Llc
Publication of WO2022047359A1 publication Critical patent/WO2022047359A1/en
Publication of WO2022047359A8 publication Critical patent/WO2022047359A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • Cancer is presently one of the leading causes of death in developed countries. Although recent research has vastly increased our understanding of many of the molecular mechanisms of tumorigenesis and has provided numerous new avenues for the treatment of cancer, standard treatments for most malignancies remain gross resection, chemotherapy, and radiotherapy. While increasingly successful, each of these treatments still causes numerous undesired side effects. For example, surgery results in pain, traumatic injury to healthy tissue, and scarring. Radiotherapy and chemotherapy cause nausea, immune suppression, gastric ulceration and secondary tumorigenesis. There is a need to identify markers that can indicate outcome of a treatment regimen in order for both clinicians and patients to decide on the best treatment option for patients.
  • the present invention is based, at least in part, on the discovery that the markers GOLPH3, EDH4 and RRAS are differentially regulated in cancer subjects that responded to a drug treatment.
  • the invention is based on the surprising discovery that GOLPH3 is elevated, while EDH4 and RRAS are depressed in samples of cancer patients that responded to a drug treatment.
  • the present invention provides methods for prognosing the response to a drug treatment for a solid tumor cancer in a subject, comprising (a) detecting expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS, and (b) comparing the expression level of the marker in the biological sample with a predetermined threshold value; wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
  • the cancer is pancreatic cancer.
  • the pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC).
  • the expression level is an mRNA expression level.
  • the expression level is a protein expression level.
  • an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will exhibit stable disease in response to the drug treatment.
  • a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will exhibit increased survival relate relative to a subject that is not administered the drug treatment.
  • a second drug is administered.
  • the second drug is gemcitabine.
  • the response to the drug treatment comprises no change or a decrease in tumor size.
  • the response to the drug treatment comprises an increase in overall days of survival.
  • the biological sample comprises a blood sample or a component thereof.
  • the sample comprises a buffy coat sample.
  • the expression level of at least two of the markers, or the expression level of all three of the markers is determined.
  • the expression level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
  • the method further comprises selecting a treatment regimen based on the prediction of the drug treatment in the subject.
  • the treatment regimen comprises further monitoring the subject for progression of cancer.
  • the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
  • the method further comprises obtaining a biological sample from the subject.
  • the subject has been previously diagnosed with a solid tumor cancer.
  • the present invention provides a method for prognosing the response to a drug treatment in a subject, wherein the prognosis is determined concurrently with the diagnosis of a solid tumor cancer in the subject, comprising (a) diagnosing the subject with a solid tumor cancer, (b) detecting the expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS, and (c) comparing the expression level of the marker in the biological sample with a predetermined threshold value, wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
  • the cancer is pancreatic ductal adenocarcinoma (PDAC).
  • PDAC pancreatic ductal adenocarcinoma
  • a second drug is administered.
  • the second drug is gemcitabine.
  • the response to the drug treatment comprises no change or a decrease in tumor size. In some embodiments, the response to the drug treatment comprises an increase in overall days of survival.
  • the biological sample comprises a blood sample or a component thereof.
  • the sample comprises a buffy coat sample.
  • the expression level of at least two of the markers, or the expression level of all three of the markers is determined.
  • the level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
  • the method further comprises selecting a treatment regimen based on the prediction of the drug treatment in the subject.
  • the treatment regimen comprises further monitoring of the subject for progression of cancer.
  • the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
  • the present invention provides a method for identifying an agent that modulates cancer progression, comprising (a) contacting a cell with a test compound, (b) determining the expression and/or activity of a marker in the cell, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS, (c) identifying an agent that modulates the expression and/or activity of the marker in the cell, thereby identifying an agent that modulates cancer.
  • the cell comprises a pancreatic cancer cell.
  • the test compound is a small molecule, an antibody, or a nucleic acid inhibitor.
  • the present invention provides a compound identified by the method for identifying an agent that modulates cancer progression as described.
  • the present invention provides a method of treating a solid tumor cancer in a subject, comprising administering to the subject a modulator of a marker, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS.
  • the modulator increases the marker level or activity. In some embodiments, wherein the modulator decreases the marker level or activity.
  • the drug treatment comprises administration of Coenzyme Q10 to the subject.
  • the Coenzyme Q10 is administered to the subject by intravenous administration.
  • the intravenous administration is continuous intravenous infusion.
  • the present invention provides a kit for detecting a marker in a biological sample from a subject having a solid tumor cancer, comprising one or more reagents for measuring the level of the marker in the biological sample from the subject, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS and a set of instructions for measuring the level of the marker.
  • the reagent is an antibody that binds to the marker or an oligonucleotide that is complementary to the corresponding mRNA of the marker.
  • the marker comprises one or more markers with an increased level when compared to a predetermined threshold value, and/or one or more markers with a decreased level when compared to a predetermined threshold value.
  • the present invention provides a panel for use in a method of prognosing the response to a drug treatment for cancer in a subject, the panel comprising one or more detection reagents, wherein each detection reagent is specific for the detection of a marker, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS.
  • the present invention provides a kit comprising the panel and a set of instructions for obtaining prognosis information based on a level of the marker.
  • the drug treatment comprises administration of Coenzyme Q10 to the subject.
  • the Coenzyme Q10 is administered by intravenous administration, and preferably by continuous infusion.
  • Figures 1A, IB and 1C show overall survival (1A), progression free survival (IB) and time to progression (1C) of patients treated with gemcitabine and intravenous Coenzyme Q10.
  • Figure 2A shows a schematic of sample evaluation from a Phase I human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients with solid tumors.
  • Figure 2B shows a schematic of sample evaluation from a Phase II human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients having pancreatic ductal adenocarcinoma (PDAC).
  • PDAC pancreatic ductal adenocarcinoma
  • Figures 3A and 3B show an analysis of protein biomarkers identified in a Phase I human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients with solid tumors.
  • Figures 4A and 4B show expression of the protein biomarkers GOLPH3, EHD4 and RRAS in PDAC patients. DETAILED DESCRIPTION OF THE INVENTION
  • Some cancer has very low survival rate, such as pancreatic ductal adenocarcinoma (PDAC) with a 5 year survival rate less than 8%.
  • Markers that can indicate outcome of a treatment regimen will better inform clinicians on which treatment options to choose for their patients, as well as inform patients on whether to choose no treatment for a better life quality or commit to a therapy with detrimental side effects to the overall health.
  • the present invention addresses this need for markers by providing the use of biomarkers, i.e. one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, for the identification of subjects having good response and overall survival outcome to a drug treatment, e.g. Coenzym-QlO.
  • the invention at hand is based, at least in part, on the surprising discovery that the one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, are differentially regulated between cohorts of solid tumor cancer patients that responded to treatment with a drug and those that did not, and also differentially regulated between pancreatic ductal adenocarcinoma (PDAC) patients that responded and/or had better overall survival after treatment with and patients that did not respond.
  • PDAC pancreatic ductal adenocarcinoma
  • the invention provides methods for prognosing and/or monitoring (e.g., monitoring of disease progression or treatment) outcome of a drug treatment to a cancer in a subject, e.g. outcome of PDAC after treatment with Coenzyme-QlO.
  • these one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage can serve as useful prognostic biomarkers, serving to inform on the likely development or progression of a solid tumor cancer, e.g. PDAC, in a subject.
  • these one or more markers, e.g. GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage can serve as useful predictive biomarkers for helping to assess the likely response of a solid tumor cancer, e.g. PDAC, to a particular treatment.
  • the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1 %, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.
  • amplification refers to any known in vitro procedure for obtaining multiple copies ("amplicons") of a target nucleic acid sequence or its complement or fragments thereof.
  • In vitro amplification refers to production of an amplified nucleic acid that may contain less than the complete target region sequence or its complement.
  • Known in vitro amplification methods include, e.g., transcription-mediated amplification, replicase- mediated amplification, polymerase chain reaction (PCR) amplification, ligase chain reaction (LCR) amplification and strand-displacement amplification (SDA including multiple stranddisplacement amplification method (MSDA)).
  • Replicase-mediated amplification uses selfreplicating RNA molecules, and a replicase such as Q-P-replicase (e.g., Kramer et al., U.S. Patent No. 4,786,600).
  • PCR amplification is well known and uses DNA polymerase, primers and thermal cycling to synthesize multiple copies of the two complementary strands of DNA or cDNA (e.g., Mullis et al., U.S. Patent Nos. 4,683,195, 4,683,202, and 4,800,159).
  • LCR amplification uses at least four separate oligonucleotides to amplify a target and its complementary strand by using multiple cycles of hybridization, ligation, and denaturation (e.g., EP Pat.
  • SDA is a method in which a primer contains a recognition site for a restriction endonuclease that permits the endonuclease to nick one strand of a hemimodified DNA duplex that includes the target sequence, followed by amplification in a series of primer extension and strand displacement steps (e.g., Walker et al., U.S. Patent. No. 5,422,252).
  • Two other known strand-displacement amplification methods do not require endonuclease nicking (Dattagupta et al., U.S. Patent. No. 6,087,133 and U.S. Patent. No. 6,124,120 (MSDA)).
  • oligonucleotide primer sequences of the present invention may be readily used in any in vitro amplification method based on primer extension by a polymerase, (see generally Kwoh et al., 1990, Am. Biotechnol. Lab. 8:14-25 and (Kwoh et al., 1989, Proc. Natl. Acad. Sci. USA 86, 1173-1177; Lizardi et al., 1988, BioTechnology 6:1197-1202; Malek et al., 1994, Methods Mol. Biol., 28:253-260; and Sambrook et al., 2000, Molecular Cloning— A Laboratory Manual, Third Edition, CSH Laboratories).
  • the oligos are designed to bind to a complementary sequence under selected conditions.
  • the term “antigen” refers to a molecule, e.g., a peptide, polypeptide, protein, fragment, or other biological moiety, which elicits an antibody response in a subject, or is recognized and bound by an antibody.
  • the term "marker” is, in one embodiment, a biological molecule, or a panel of biological molecules, for example, GOLPH3, EHD4 and RRAS, or any combination thereof, whose altered level in a tissue, cell or body fluid as compared to its level in tissue, cell or body fluid from, e.g. a subject with a disease that progressed to a more advanced stage after receiving a treatment, is associated with having good response to a treatment, e.g., decrease in tumor size, no increase in tumor size, increased overall time of survival, increased time to progression.
  • biomarkers include, for example, polypeptides, peptides, polypeptide fragments, proteins, antibodies, hormones, polynucleotides, RNA or RNA fragments, microRNA (miRNAs), lipids, metabolites, or polysaccharides.
  • the marker is detected in a body fluid, e.g., blood.
  • the marker is detected in the buffy coat of blood.
  • the blood or buffy coat sample can be further processed to remove abundant proteins or proteins that are not marker proteins prior to analysis.
  • a marker also includes any one or more pathological or clinical feature or parameter.
  • a marker includes clinical parameters such as, e.g., cancer stage, e.g., stage 0, stage I, stage II, stage III, stage IV, tumor size, age, performance status, or any clinical and/or patient-related health data, for example, data obtained from an Electronic Medical Record (e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, laboratory test results, radiology images, vital signs, personal statistics like weight, and billing information).
  • an Electronic Medical Record e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, laboratory test results, radiology images, vital signs, personal statistics like weight, and billing information.
  • a marker of the present invention is modulated (e.g., increased or decreased level) in a biological sample from a subject or a group of subjects having a first phenotype (e.g., having cancer progression) as compared to a biological sample from a subject or group of subjects having a second phenotype (e.g., not having cancer progression, e.g., a control).
  • a first phenotype e.g., having cancer progression
  • a second phenotype e.g., not having cancer progression, e.g., a control
  • a biomarker may be differentially present at any level, but is generally present at a level that is increased relative to normal or control levels by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more; or is generally present at a level that is decreased relative to normal or control levels by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by
  • a biomarker is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using either Welch's T-test or Wilcoxon's rank-sum Test).
  • a level that is statistically significant e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using either Welch's T-test or Wilcoxon's rank-sum Test.
  • cancer refers to all types of cancer or neoplasm or malignant tumors found in mammals, including, but not limited to: leukemias, lymphomas, melanomas, carcinomas and sarcomas.
  • cancers are cancer of the brain, breast, pancreas, cervix, colon, head and neck, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus and medulloblastoma.
  • cancer refers to cells that have undergone a malignant transformation that makes them pathological to the host organism.
  • Primary cancer cells that is, cells obtained from near the site of malignant transformation
  • a cancer cell includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells.
  • a "clinically detectable" tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as CAT scan, MR imaging, X-ray, ultrasound or palpation, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient.
  • the term "complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine.
  • a first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region.
  • the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
  • control sample refers to any clinically relevant comparative sample, including, for example, a sample from a normal and healthy subject not afflicted with an oncological disease, a sample from a subject inflicted with a solid tumor cancer, e.g. PDAC, a sample from a subject whose cancer has progressed without receiving any treatment, a sample from a subject whose cancer has progressed after treatment, or a sample from a subject from an earlier time point, e.g., prior to treatment, an earlier tumor assessment time point, at an earlier stage of cancer, or prior to onset of cancer.
  • a control sample can be a purified sample, protein, and/or nucleic acid provided with a kit.
  • control samples can be diluted, for example, in a dilution series to allow for quantitative measurement of levels of analytes, e.g., markers, in test samples.
  • a control sample may include a sample derived from one or more subjects.
  • a control sample may also be a sample made at an earlier time point from the subject to be assessed.
  • the control sample could be a sample taken from the subject to be assessed before the onset of PDAC, or at an earlier stage of disease.
  • the control sample may also be a sample from an animal model of a solid-tumor cancer, e.g. PDAC.
  • the level of activity or expression of one or more markers (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more markers) in a control sample consists of a group of measurements that may be determined, e.g., based on any appropriate statistical measurement, such as, for example, measures of central tendency including average, median, or modal values.
  • “different from a control” is preferably statistically significantly different from a control.
  • “changed, altered, increased or decreased as compared to a control” sample or subject is understood as having a level of the analyte or diagnostic, prognostic or therapeutic indicator (e.g., marker) to be detected at a level that is statistically different, e.g., increased or decreased, as compared to a sample from a control subject.
  • the difference between the level of the marker in the subject and that in a corresponding control or reference is statistically significant.
  • Change as compared to control can also include a difference in the rate of change of the level of one or more markers obtained in a series of at least two subject samples obtained over time.
  • Determination of statistical significance is within the ability of those skilled in the art and can include any acceptable means for determining and/or measuring statistical significance, such as, for example, the number of standard deviations from the mean that constitute a positive or negative result, an increase in the detected level of a biomarker in a sample (e.g., a sample from a cancer subject that positively responded to a drug treatment) versus a control sample, wherein the increase is above some threshold value, or a decrease in the detected level of a biomarker in a sample (e.g., a sample from a cancer subject that positively responded to a drug treatment) versus a control or sample, wherein the decrease is below some threshold value.
  • any acceptable means for determining and/or measuring statistical significance such as, for example, the number of standard deviations from the mean that constitute a positive or negative result, an increase in the detected level of a biomarker in a sample (e.g., a sample from a cancer subject that positively responded to a drug treatment) versus a control sample
  • the threshold value can be determined by any suitable means by measuring the biomarker levels in a plurality of tissues or samples known to have good outcome, e.g., subjects with cancer that positively responded to a drug treatment, and comparing those levels to a control sample, e.g., subjects with cancer that did not respond to a drug treatment, and calculating a statistically significant threshold value.
  • control level refers to an accepted or pre-determined level of a marker in a subject sample.
  • a control level can be a range of values. Marker levels can be compared to a single control value, to a range of control values, to the upper level of normal, or to the lower level of normal as appropriate for the assay.
  • the control is a standardized control, such as, for example, a control which is predetermined using an average of the levels of expression of one or more markers from a population of biologically relevant control subjects, e.g. subject whose cancer did not respond to a drug treatment and continued to progressed.
  • the control can be from a subject, or a population of subject, having an abnormal pancreatic state, e.g. acute pancreatitis, chronic pancreatitis, hereditary pancreatitis. It is understood that not all markers will have different levels for each of the abnormal pancreatic states listed. It is understood that a combination of marker levels may be most useful to distinguish between cancer subjects, e.g.
  • marker levels in biological samples can be compared to more than one control sample (e.g., normal, abnormal, from the same subject, from a population control). Marker levels can be used in combination with other signs or symptoms of an abnormal state to provide a prognosis for the subject.
  • a control can also be a sample from a subject at an earlier time point, e.g., a baseline level prior to suspected progression of disease, before the diagnosis of a disease, at an earlier assessment time point during watchful waiting, before the treatment with a specific agent (e.g., chemotherapy, hormone therapy) or intervention (e.g., radiation, surgery).
  • a change in the level of the marker in a subject can be more significant than the absolute level of a marker, e.g., as compared to control.
  • detecting As used herein, “detecting”, “detection”, “determining”, and the like are understood to refer to an assay performed for identification of one or more markers selected from the group consisting of GOLPH3, EHD4, and RRAS.
  • the amount of marker expression or activity detected in the sample can be none or below the level of detection of the assay or method.
  • DNA or "RNA” molecule or sequence (as well as sometimes the term “oligonucleotide”) refers to a molecule comprised generally of the deoxyribonucleotides or ribonucleotides, respectively, that have the following bases: adenine (A), guanine (G), cytosine (C), and thymine (T) in DNA or uracil (U) in RNA, i.e., T is replaced by uracil (U).
  • A adenine
  • G guanine
  • C cytosine
  • T thymine
  • U uracil
  • disorders disorders
  • diseases disorders
  • abnormal state refers to any deviation from the normal structure or function of any part, organ, or system of the body (or any combination thereof).
  • a specific disease is manifested by characteristic symptoms and signs, including biological, chemical, and physical changes, and is often associated with a variety of other factors including, but not limited to, demographic, environmental, employment, genetic, and medically historical factors.
  • An early stage disease state includes a state wherein one or more physical symptoms are not yet detectable. Certain characteristic signs, symptoms, and related factors can be quantitated through a variety of methods to yield important diagnostic information.
  • a sample obtained at an “earlier time point” is a sample that was obtained at a sufficient time in the past such that clinically relevant information could be obtained in the sample from the earlier time point as compared to the later time point.
  • an earlier time point is at least four weeks earlier. In certain embodiments, an earlier time point is at least six weeks earlier. In certain embodiments, an earlier time point is at least two months earlier. In certain embodiments, an earlier time point is at least three months earlier. In certain embodiments, an earlier time point is at least six months earlier. In certain embodiments, an earlier time point is at least nine months earlier. In certain embodiments, an earlier time point is at least one year earlier.
  • Multiple subject samples e.g., 3, 4, 5, 6, 7, or more
  • Appropriate intervals for testing for a particular subject can be determined by one of skill in the art based on ordinary considerations.
  • expression is used herein to mean the process by which a polypeptide is produced from DNA. The process involves the transcription of the gene into mRNA and the translation of this mRNA into a polypeptide. Depending on the context in which used, “expression” may refer to the production of RNA, or protein, or both.
  • fold change ratio refers to a change, e.g., increase or decrease, of the expression or level of a marker, e.g., one or more marker selected from Tables 1-7.
  • the FC ratio is greater than 1, which indicates an upregulation or increase in the expression or level of the marker.
  • the FC ratio is less than 1, indicating a down-regulation or decrease in the expression or level of the marker.
  • FC ratio can also be calculated and expressed as a Log unit.
  • a Log FC or log2(FC) value a Log FC or log2(FC) value greater than 0 is equivalent to an FC ratio greater than 1, indicating an up-regulation or increase in the expression or level of the marker.
  • a Log FC or log2(FC) value less than 0 is equivalent to an FC ratio less than 1, indicating a down-regulation or decrease in the expression or level of the marker.
  • a “higher level of expression”, “higher level”, “increased level,” and the like of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 25% more, at least 50% more, at least 75% more, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten times the expression level of the marker in a control sample and preferably, the average expression level of the marker or markers in several control samples.
  • hybridization refers generally to the hybridization of two single-stranded nucleic acid molecules having complementary base sequences, which under appropriate conditions will form a thermodynamically favored double- stranded structure. Examples of hybridization conditions can be found in the two laboratory manuals referred above (Sambrook et al., 2000, supra and Ausubel et al., 1994, supra, or further in Higgins and Hames (Eds.) "Nucleic acid hybridization, a practical approach” IRL Press Oxford, Washington D.C., (1985)) and are commonly known in the art.
  • a nitrocellulose filter incubated overnight at a temperature representative of the desired stringency condition (60-65°C for high stringency, 50-60°C for moderate stringency and 40- 45°C for low stringency conditions) with a labeled probe in a solution containing high salt (6xSSC or 5xSSPE), 5xDenhardt's solution, 0.5% SDS, and 100 pg/ml denatured carrier DNA (e.g., salmon sperm DNA).
  • a temperature representative of the desired stringency condition 60-65°C for high stringency, 50-60°C for moderate stringency and 40- 45°C for low stringency conditions
  • 6xSSC or 5xSSPE high salt
  • 5xDenhardt's solution 0.5% SDS
  • 100 pg/ml denatured carrier DNA e.g., salmon sperm DNA
  • the non- specifically binding probe can then be washed off the filter by several washes in 0.2xSSC/0.1% SDS at a temperature which is selected in view of the desired stringency: room temperature (low stringency), 42°C (moderate stringency) or 65°C (high stringency).
  • the salt and SDS concentration of the washing solutions may also be adjusted to accommodate for the desired stringency.
  • the selected temperature and salt concentration is based on the melting temperature (Tm) of the DNA hybrid.
  • Tm melting temperature
  • RNA- DNA hybrids can also be formed and detected.
  • the conditions of hybridization and washing can be adapted according to well-known methods by the person of ordinary skill. Stringent conditions will be preferably used (Sambrook et al., 2000, supra).
  • hybridization kits e.g., ExpressHyb® from BD Biosciences Clonetech
  • the length of the probe and the composition of the nucleic acid to be determined constitute further parameters of the hybridization conditions. Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
  • Hybridizing nucleic acid molecules also comprise fragments of the above described molecules.
  • nucleic acid molecules which hybridize with any of the aforementioned nucleic acid molecules also include complementary fragments, derivatives and allelic variants of these molecules.
  • a hybridization complex refers to a complex between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration.
  • a hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., membranes, filters, chips, pins or glass slides to which, e.g., cells have been fixed).
  • a solid support e.g., membranes, filters, chips, pins or glass slides to which, e.g., cells have been fixed.
  • nucleic acid or amino acid sequences refers to two or more sequences or subsequences that are the same, or that have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 60% or 65% identity, preferably, 70-95% identity, more preferably at least 95% identity), when compared and aligned for maximum correspondence over a window of comparison, or over a designated region as measured using a sequence comparison algorithm as known in the art, or by manual alignment and visual inspection. Sequences having, for example, 60% to 95% or greater sequence identity are considered to be substantially identical. Such a definition also applies to the complement of a test sequence.
  • the described identity exists over a region that is at least about 15 to 25 amino acids or nucleotides in length, more preferably, over a region that is about 50 to 100 amino acids or nucleotides in length.
  • Those having skill in the art will know how to determine percent identity between/among sequences using, for example, algorithms such as those based on CLUSTALW computer program (Thompson Nucl. Acids Res. 2 (1994), 4673-4680) or FASTDB (Brutlag Comp. App. Biosci. 6 (1990), 237-245), as known in the art.
  • the FASTDB algorithm typically does not consider internal non-matching deletions or additions in sequences, gaps, in its calculation, this can be corrected manually to avoid an overestimation of the % identity.
  • CLUSTALW does take sequence gaps into account in its identity calculations.
  • the BLASTP program uses as defaults a wordlength (W) of 3, and an expectation (E) of 10.
  • the present invention also relates to nucleic acid molecules the sequence of which is degenerate in comparison with the sequence of an abovedescribed hybridizing molecule. When used in accordance with the present invention the term "being degenerate as a result of the genetic code” means that due to the redundancy of the genetic code different nucleotide sequences code for the same amino acid.
  • the present invention also relates to nucleic acid molecules which comprise one or more mutations or deletions, and to nucleic acid molecules which hybridize to one of the herein described nucleic acid molecules, which show (a) mutation(s) or (a) deletion(s).
  • in vitro refers to an artificial environment and to processes or reactions that occur within an artificial environment.
  • in vitro environments can consist of, but are not limited to, test tubes and cell culture.
  • in vivo refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
  • label refers to a molecular moiety or compound that can be detected or can lead to a detectable signal.
  • a label is joined, directly or indirectly, to a molecule, such as an antibody, a nucleic acid probe or the protein/antigen or nucleic acid to be detected (e.g., an amplified sequence).
  • Direct labeling can occur through bonds or interactions that link the label to the nucleic acid (e.g., covalent bonds or non-covalent interactions), whereas indirect labeling can occur through the use of a "linker” or bridging moiety, such as oligonucleotide(s) or small molecule carbon chains, which is either directly or indirectly labeled.
  • Bridging moieties may amplify a detectable signal.
  • Labels can include any detectable moiety (e.g., a radionuclide, ligand such as biotin or avidin, enzyme or enzyme substrate, reactive group, chromophore such as a dye or colored particle, luminescent compound including a bioluminescent, phosphorescent or chemiluminescent compound, and fluorescent compound).
  • the label on a labeled probe is detectable in a homogeneous assay system, i.e., in a mixture, the bound label exhibits a detectable change compared to an unbound label.
  • level of expression of a gene refers to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, or the level of protein, encoded by the gene in the cell.
  • level of one of more biomarkers means the absolute or relative amount or concentration of the biomarker in the sample.
  • a “lower level of expression” or “lower level” or “decreased level” of a marker refers to an expression level in a test sample that is less than 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 10% of the expression level of the marker in a control sample and preferably, the average expression level of the marker in several control samples.
  • modulation refers to upregulation (i.e., activation or stimulation), downregulation i.e., inhibition or suppression) of a response (e.g., level of a marker), or the two in combination or apart.
  • a “modulator” is a compound or molecule that modulates, and may be, e.g., an agonist, antagonist, activator, stimulator, suppressor, or inhibitor.
  • nucleic acid molecule refers to a polymer of ty nucleotides.
  • Non-limiting examples thereof include DNA (e.g., genomic DNA, cDNA), RNA molecules (e.g., mRNA) and chimeras thereof.
  • the nucleic acid molecule can be obtained by cloning techniques or synthesized.
  • DNA can be double-stranded or single- stranded (coding strand or non-coding strand [antisense]).
  • Conventional ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) are included in the term "nucleic acid” and polynucleotides as are analogs thereof.
  • a nucleic acid backbone may comprise a variety of linkages known in the art, including one or more of sugar-phosphodiester linkages, peptide-nucleic acid bonds (referred to as "peptide nucleic acids” (PNA); Hydig-Hielsen et al., PCT Inti Pub. No. WO 95/32305), phosphorothioate linkages, methylphosphonate linkages or combinations thereof.
  • Sugar moieties of the nucleic acid may be ribose or deoxyribose, or similar compounds having known substitutions, e.g., 2' methoxy substitutions (containing a 2'-O- methylribofuranosyl moiety; see PCT No.
  • Nitrogenous bases may be conventional bases (A, G, C, T, U), known analogs thereof (e.g., inosine or others; see The Biochemistry of the Nucleic Acids 5-36, Adams et al., ed., 11th ed., 1992), or known derivatives of purine or pyrimidine bases (see, Cook, PCT Int'l Pub. No. WO 93/13121) or "abasic" residues in which the backbone includes no nitrogenous base for one or more residues (Arnold et al., U.S. Pat. No. 5,585,481).
  • a nucleic acid may comprise only conventional sugars, bases and linkages, as found in RNA and DNA, or may include both conventional components and substitutions (e.g., conventional bases linked via a methoxy backbone, or a nucleic acid including conventional bases and one or more base analogs).
  • the term “obtaining” is understood herein as manufacturing, purchasing, or otherwise coming into possession of.
  • oligonucleotides or “oligos” define a molecule having two or more nucleotides (ribo or deoxyribonucleotides). The size of the oligo will be dictated by the particular situation and ultimately on the particular use thereof and adapted accordingly by the person of ordinary skill.
  • An oligonucleotide can be synthesized chemically or derived by cloning according to well-known methods. While they are usually in a single- stranded form, they can be in a double-stranded form and even contain a "regulatory region". They can contain natural rare or synthetic nucleotides. They can be designed to enhance a chosen criteria like stability for example. Chimeras of deoxyribonucleotides and ribonucleotides may also be within the scope of the present invention.
  • the term “one or more” or “at least one of’ is understood as each value 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 and any value greater than 20.
  • patient or “subject” can mean either a human or non-human animal, preferably a mammal.
  • subject is meant any animal, including horses, dogs, cats, pigs, goats, rabbits, hamsters, monkeys, guinea pigs, rats, mice, lizards, snakes, sheep, cattle, fish, and birds.
  • a human subject may be referred to as a patient. It should be noted that clinical observations described herein were made with human subjects and, in at least some embodiments, the subjects are human.
  • pancreatic ductal adenocarcinoma or “PDAC” is the type of pancreatic cancer that begins in cells that line the ducts that carry digestive enzymes out of the pancreas and account for about 95% of pancreatic exocrine cancers. PDAC patients generally have poor survival rate, since PDAC are usually diagnosed at the late stages.
  • a “predetermined threshold value” or “threshold value” of a biomarker refers to the level of the biomarker (e.g., the expression level or quantity (e.g., ng/ml) in a biological sample) in a corresponding control sample or group of control samples obtained from, for example, a normal and healthy subject not afflicted with an oncological disease, a subject inflicted with a solid tumor cancer, e.g.
  • PDAC a sample from a subject whose cancer has progressed without receiving any treatment, a subject whose cancer has progressed after treatment, or a subject from an earlier time point, e.g., prior to treatment, an earlier tumor assessment time point, at an earlier stage of cancer, or prior to onset of cancer.
  • the predetermined threshold value may be determined prior to or concurrently with measurement of marker levels in a biological sample.
  • the control sample may be from the same subject at a previous time or from different subjects.
  • a "probe” is meant to include a nucleic acid oligomer or oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, under conditions that promote hybridization, thereby allowing detection of the target sequence or its amplified nucleic acid. Detection may either be direct (z.e., resulting from a probe hybridizing directly to the target or amplified sequence) or indirect (z.e., resulting from a probe hybridizing to an intermediate molecular structure that links the probe to the target or amplified sequence).
  • a probe's "target” generally refers to a sequence within an amplified nucleic acid sequence (z.e., a subset of the amplified sequence) that hybridizes specifically to at least a portion of the probe sequence by standard hydrogen bonding or "base pairing." Sequences that are "sufficiently complementary” allow stable hybridization of a probe sequence to a target sequence, even if the two sequences are not completely complementary.
  • a probe may be labeled or unlabeled.
  • a probe can be produced by molecular cloning of a specific DNA sequence or it can also be synthesized. Numerous primers and probes which can be designed and used in the context of the present invention can be readily determined by a person of ordinary skill in the art to which the present invention pertains.
  • prophylactic or “therapeutic” treatment refers to administration to the subject of one or more agents or interventions to provide the desired clinical effect. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing at least one sign or symptom of the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate, or maintain at least one sign or symptom of the existing unwanted condition or side effects therefrom).
  • the unwanted condition e.g., disease or other unwanted state of the host animal
  • sample or “biological sample” includes a specimen or culture obtained from any source.
  • Biological samples can be obtained from blood (including any blood product, such as whole blood, plasma, serum, buffy coate or specific types of cells of the blood), urine, saliva, seminal fluid, and the like.
  • tissue samples such as biopsy tissues or pathological tissues (e.g., tumor) that have previously been frozen or fixed (e.g., formaline snap frozen, cytological processing, etc.).
  • the phrase "specific binding” or “specifically binding” when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope "A,” the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled "A" and the antibody will reduce the amount of labeled A bound to the antibody.
  • reagents for specific identification of a marker bind to only one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to more than one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to all known isoforms of the marker.
  • stage of cancer or “tumor stage” or “T stage” refers to a qualitative or quantitative assessment of the level of advancement of a cancer or tumor. Criteria used to determine the stage of a cancer or tumor include, but are not limited to, anatomic stage (e.g., the size of the tumor, whether the tumor has spread to other parts of the body and where the cancer has spread), grade (tumor differentiation), and degree of tumor differentiation (see description on staging of pancreatic cancer by the American Cancer Society at https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis- staging/staging.html)
  • anatomic stage e.g., the size of the tumor, whether the tumor has spread to other parts of the body and where the cancer has spread
  • grade tumor differentiation
  • degree of tumor differentiation see description on staging of pancreatic cancer by the American Cancer Society at https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis- staging/staging.html
  • test compound and “candidate compound” refer to any chemical entity, pharmaceutical, drug, and the like that is a candidate for use to treat or prevent a disease, illness, sickness, or disorder of bodily function (e.g., cancer).
  • Test compounds comprise both known and potential therapeutic compounds.
  • a test compound can be determined to be therapeutic by screening using the screening methods of the present invention.
  • test compounds include antisense compounds.
  • therapeutic effect refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance.
  • the term thus means any substance intended for use in the diagnosis, cure,
  • a therapeutic effect can be understood as a decrease in tumor growth, decrease in tumor growth rate, stabilization or decrease in tumor burden, stabilization or reduction in tumor size, stabilization or decrease in tumor malignancy, increase in tumor apoptosis, and/or a decrease in tumor angiogenesis.
  • “therapeutically effective amount” means the amount of a compound that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease, e.g., the amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment, e.g., is sufficient to ameliorate at least one sign or symptom of the disease, e.g., to prevent progression of the disease or condition, e.g., prevent tumor growth, decrease tumor size, induce tumor cell apoptosis, reduce tumor angiogenesis, prevent metastasis.
  • the amount is sufficient to avoid or delay onset of the disease.
  • the “therapeutically effective amount” will vary depending on the compound, its therapeutic index, solubility, the disease and its severity and the age, weight, etc., of the patient to be treated, and the like.
  • certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.
  • Administration of a therapeutically effective amount of a compound may require the administration of more than one dose of the compound.
  • a “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or having a high percentage of identity (e.g., at least 80% identity) with all or a portion of a mature mRNA made by transcription of a marker of the invention and normal post- transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.
  • a polynucleotide e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA
  • a high percentage of identity e.g., at least 80% identity
  • normal post- transcriptional processing e.g. splicing
  • treatment refers to performing an intervention to treat cancer in a subject.
  • treatment options include, but are not limited to, therapy to, e.g., reduce at least one of the growth rate or tumor burden, reduce or maintain the tumor size or the malignancy (e.g., likelihood of metastasis) of the tumor, increase apoptosis in the tumor by one or more of administration of a therapeutic agent, e.g., chemotherapy, hormone therapy, stimulate the immune system to eliminate cancer cells, e.g., immunotherapy; administration of radiation therapy (e.g., pellet implantation, brachytherapy), or surgical resection of the tumor, or any combination thereof appropriate for treatment of the subject based on grade and stage of the tumor and other routine considerations.
  • a therapeutic agent e.g., chemotherapy, hormone therapy
  • radiation therapy e.g., pellet implantation, brachytherapy
  • surgical resection of the tumor or any combination thereof appropriate for treatment of the subject based on grade and stage of the tumor and other routine considerations.
  • Active treatment is distinguished from “watchful waiting” (z.e., not active treatment) in which the subject is monitored, but no interventions are performed.
  • Watchful waiting can include administration of agents that alter effects caused by the recurrence that are not administered to alter the growth or pathology of the recurrence itself.
  • variable in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups.
  • the recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
  • compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
  • Ranges provided herein are understood to be shorthand for all of the values within the range.
  • a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
  • the invention at hand is based, at least in part, on the surprising discovery that the one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, are differentially regulated between cohorts of solid tumor cancer patients that positively responded to treatment with Coenzyme Q10 and those that did not, and also differentially regulated between pancreatic ductal adenocarcinoma (PDAC) patients that positively responded and had better overall survival after treatment with Coenzyme Q10 and patients that did not have good outcome.
  • PDAC pancreatic ductal adenocarcinoma
  • the invention is based on the surprising discovery that markers are either elevated (e.g. GOLPH3) or depressed (e.g. EHD4 and RRAS) in the buffy coat of solid tumor cancer patients, particularly PDAC patients, that responded well to treatment with Coenzyme Q10 in comparison to patients that did not respond to the treatment.
  • the invention provides methods for prognosing and/or monitoring (e.g., monitoring of disease progression or treatment) cancer development or lack thereof in a cancer subject after a drug treatment.
  • the invention also provides methods for treating or for adjusting treatment regimens based on prognostic information relating to the levels of one or more of the markers from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., cancer stage, of a subject having cancer, e.g., PDAC.
  • the invention further provides panels and kits for practicing the methods of the invention.
  • the present invention provides new markers and combinations of markers for use in predicting outcome of treatment with Coenzyme-QlO in a cancer subject. These markers are particularly useful in screening for PDAC subjects that will likely respond positively to Coenzyme Q10.
  • the markers of the invention include, but are not limited one or more markers among GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage.
  • these one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage can serve as useful prognostic biomarkers, serving to inform on the likely development or progression of a solid tumor cancer, e.g. PDAC, in a subject.
  • these one or more markers, e.g. GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage can serve as useful predictive biomarkers for helping to assess the likely response of a solid tumor cancer, e.g. PDAC, to a particular treatment.
  • biomarkers can be used in connection with the methods of the present invention.
  • the term “one or more biomarkers” or “at least one of’ is intended to mean that one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, are assayed, optionally in combination with another PDAC progression marker, and, in various embodiments, more than one other biomarker and in various combinations may be assayed.
  • Methods, kits, and panels provided herein include any combination of e.g., 1, 2, or 3 markers, selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage., optionally in combination with another PDAC progression marker.
  • 1, 2, or 3 markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage., optionally in combination with another PDAC progression marker.
  • the markers of the invention are meant to encompass any measurable characteristic that reflects in a quantitative or qualitative manner the physiological state of an organism, e.g., whether the organism’s PDAC is progressing.
  • the physiological state of an organism is inclusive of any disease or non-disease state, e.g., a subject is having PDAC or a subject is healthy.
  • the markers of the invention include characteristics that can be objectively measured and evaluated as indicators of normal processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention, including, in particular, progression of cancer.
  • markers include, for example, polypeptides, peptides, polypeptide fragments, proteins, antibodies, hormones, polynucleotides, RNA or RNA fragments, microRNA (miRNAs), lipids (e.g. structural lipids or signaling lipids), polysaccharides, and other bodily metabolites that are indicative and/or predictive of the development of an oncological disease.
  • miRNAs microRNA
  • lipids e.g. structural lipids or signaling lipids
  • polysaccharides e.g. structural lipids or signaling lipids
  • the present invention also involves the analysis and consideration of any clinical and/or patient-related health data, for example, data obtained from an Electronic Medical Record (e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, medication and allergies, immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and billing information).
  • an Electronic Medical Record e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, medication and allergies, immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and billing information.
  • the marker e.g. marker of responders to a drug treatment
  • GOLPH3 also known as golgi phosphoprotein 3, GOPP1, GPP34, MIDAS, Vps74
  • the NCBI gene ID for GOLPH3 is 64083 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).
  • GOLPH3 is located on chromosome 5, sequence NC_000005.10 (32124711..32174319).
  • GOLPH3 transcript is listed under accession number NM_004448.4.
  • an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
  • the marker e.g. marker of responders to a drug treatment
  • EHD4 also known as EH domain containing 4, PAST4
  • the NCBI gene ID for EHD4 is 30844 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).
  • EHD4 is located on chromosome 15, sequence NC_000015.10 (41895933..41972557).
  • EHD4 transcript is listed under accession number NM_139265.4.
  • a decrease in the expression level of EHD4 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
  • the marker e.g. marker of responders to a drug treatment
  • RRAS also known as RAS related, or R-RAS
  • RAS RAS related, or R-RAS
  • the NCBI gene ID for RRAS is 6237 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).
  • RRAS is located on chromosome 19, sequence NC_000019.10 (49635292..49640143).
  • RRAS transcript is listed under accession number NM_006270.5 (Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).
  • a decrease in the expression level of RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
  • GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority.
  • the protein markers are not limited to the protein sequences set forth in the GenBank Accession Numbers or sequence listing.
  • the prognostic signature is obtained by (1) detecting the level of expression of at least one of the markers selected from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the expression level of the at least one marker with a predetermined threshold value, and (3) determining if the at least one marker is above or below a certain threshold level. If the at least one marker is above or below the threshold level, then the prognostic signature is predictive or indicative of a cancer subject who will be responsive to a drug treatment, e.g. Coenzyme Q10 treatment.
  • a drug treatment e.g. Coenzyme Q10 treatment.
  • the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least one marker from the group consisting of GOLPH3, EHD4 and RRAS.
  • the prognostic signature is obtained by (1) detecting the expression level of at least two of the markers from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the expression level of the at least two marker with predetermined threshold values, and (3) determining if the expression levels of at least two markers are above or below certain threshold levels. If the at least two markers is above or below the threshold level, then the prognostic signature is predictive or indicative of cancer subject who will be responsive to a drug treatment.
  • the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least two markers from the group consisting of GOLPH3, EHD4 and RRAS.
  • the prognostic signature is obtained by (1) detecting the level of at least three of the markers from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the level of the at least three marker with predetermined threshold values, and (3) determining if the at least two markers are above or below certain threshold levels. If the at least three markers is above or below the threshold level, then the prognostic signature is predictive or indicative of cancer subject who will be responsive to a drug treatment.
  • the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least three markers from the group consisting of GOLPH3, EHD4 and RRAS.
  • drug treatment responder profile or signature may be obtained by detecting at least one of the markers from the group consisting of GOLPH3, EDH4 and RRAS, in combination with at least one other marker, or more preferably, with at least two other markers, or still more preferably, with at least three other markers, or even more preferably with at least four other markers.
  • the markers from the group consisting of GOLPH3, EDH4 and RRAS in certain embodiments may be used in combination with at least five other markers, or at least six other markers, or at least seven other markers, or at least eight other markers, or at least nine other markers, or at least ten other markers, or at least eleven other markers, or at least twelve other markers, or at least thirteen other markers, or at least fourteen other markers, or at least fifteen other markers, or at least sixteen other markers, or at least seventeen other markers, or at least eighteen other markers, or at least nineteen other markers, or at least twenty other markers.
  • markers from the group consisting of GOLPH3, EDH4 and RRAS may be used in combination with a multitude of other markers, including, for example, with between about 20-50 other markers, or between 50-100, or between 100-500, or between 500-1000, or between 1000-10,000 or markers or more.
  • the markers of the invention can include variant sequences. More particularly, certain binding agents/reagents used for detecting certain of the markers of the invention can bind and/or identify variants of these certain markers of the invention.
  • the term "variant" encompasses nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to a sequence disclosed herein. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.
  • Variant sequences generally differ from the specifically identified sequence only by conservative substitutions, deletions or modifications.
  • a "conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
  • amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gin, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.
  • Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide.
  • a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein.
  • the polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support.
  • a polypeptide may be conjugated to an immunoglobulin Fc region.
  • Polypeptide and polynucleotide sequences may be aligned, and percentages of identical amino acids or nucleotides in a specified region may be determined against another polypeptide or polynucleotide sequence, using computer algorithms that are publicly available.
  • the percentage identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage identity.
  • Two exemplary algorithms for aligning and identifying the identity of polynucleotide sequences are the BLASTN and FASTA algorithms.
  • the alignment and identity of polypeptide sequences may be examined using the BLASTP algorithm.
  • BLASTX and FASTX algorithms compare nucleotide query sequences translated in all reading frames against polypeptide sequences.
  • the FASTA and FASTX algorithms are described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444-2448, 1988; and in Pearson, Methods in Enzymol. 183:63-98, 1990.
  • the FASTA software package is available from the University of Virginia, Charlottesville, Va. 22906-9025.
  • the FASTA algorithm set to the default parameters described in the documentation and distributed with the algorithm, may be used in the determination of polynucleotide variants.
  • the BLASTN software is available on the NCBI anonymous FTP server and is available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894.
  • NCBI National Center for Biotechnology Information
  • the use of the BLAST family of algorithms, including BLASTN is described at NCBI's website and in the publication of Altschul, et al., "Gapped BLAST and PSLBLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402, 1997.
  • variant polypeptides are encoded by polynucleotide sequences that hybridize to a disclosed polynucleotide under stringent conditions.
  • Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM.
  • Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C, and most preferably greater than about 37°C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone.
  • stringent conditions is prewashing in a solution of 6XSSC, 0.2% SDS; hybridizing at 65°C, 6XSSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1XSSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2XSSC, 0.1% SDS at 65°C.
  • the invention provides for the use of various combinations and sub-combinations of markers. It is understood that any single marker or combination of the markers provided herein can be used in the invention unless clearly indicated otherwise.
  • the present invention contemplates any suitable means, techniques, and/or procedures for detecting and/or measuring the biomarkers of the invention.
  • the skilled artisan will appreciate that the methodologies employed to measure the biomarkers of the invention will depend at least on the type of biomarker being detected or measured (e.g., lipid or polypeptide biomarker) and the source of the biological sample (e.g., whole blood versus biopsy tissue). Certain biological samples may also require certain specialized treatments prior to measuring the biomarkers of the invention, e.g., the extraction of lipids from a serum in the case of lipid markers being measured.
  • the present invention contemplates any suitable method for detecting polypeptide biomarkers of the invention.
  • the detection method is an immunodetection method involving an antibody that specifically binds to one or more of the proteins from the group consisting of GOLPH3, EDH4 and RRAS.
  • the steps of various useful immunodetection methods have been described in the scientific literature, such as, e.g., Nakamura et al. (1987), which is incorporated herein by reference.
  • the immunobinding methods include obtaining a sample suspected of containing a biomarker protein, peptide or antibody, and contacting the sample with an antibody or protein or peptide in accordance with the present invention, as the case may be, under conditions effective to allow the formation of immunocomplexes.
  • the immunobinding methods include methods for detecting or quantifying the amount of a reactive component in a sample, which methods require the detection or quantitation of any immune complexes formed during the binding process.
  • the biological sample analyzed may be any sample that is suspected of containing one more proteins from the group consisting of GOLPH3, EDH4 and RRAS.
  • the biological sample may be, for example, a pancreatic section or specimen, a homogenized tissue extract, an isolated cell, a cell membrane preparation, separated or purified forms of any of the above protein-containing compositions, or even any biological fluid that comes into contact with pancreatic tissues, including blood or lymphatic fluid.
  • immune complexes primary immune complexes
  • complex formation is a matter of simply adding the composition to the biological sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to, any antigens present.
  • the sample-antibody composition such as a tissue section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non- specific ally bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
  • the detection of immunocomplex formation is well known in the art and may be achieved through the application of numerous approaches. These methods are generally based upon the detection of a label or marker, such as any radioactive, fluorescent, biological or enzymatic tags or labels of standard use in the art.
  • U.S. patents concerning the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, each incorporated herein by reference.
  • a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.
  • the protein employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined.
  • the first added component that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the encoded protein, peptide or corresponding antibody.
  • the second binding ligand may be linked to a detectable label.
  • the second binding ligand is itself often an antibody, which may thus be termed a "secondary" antibody.
  • the primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under conditions effective and for a period of time sufficient to allow the formation of secondary immune complexes.
  • the secondary immune complexes are then generally washed to remove any non- specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
  • Further methods include the detection of primary immune complexes by a two step approach.
  • a second binding ligand such as an antibody, that has binding affinity for the encoded protein, peptide or corresponding antibody is used to form secondary immune complexes, as described above.
  • the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under conditions effective and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes).
  • the third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
  • the immunodetection methods of the present invention have evident utility in the prognosis of response to a drug treatment.
  • a biological or clinical sample suspected of containing either the encoded protein or peptide or corresponding antibody is used.
  • these embodiments also have applications to non-clinical samples, such as in the tittering of antigen or antibody samples, in the selection of hybridomas, and the like.
  • the present invention contemplates the use of ELISAs as a type of immunodetection assay. It is contemplated that the biomarker proteins or peptides of the invention will find utility as immunogens in ELISA assays in prognostic and monitoring response to a drug treatment.
  • Immunoassays in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELIS As) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and Western blotting, dot blotting, FACS analyses, and the like also may be used.
  • antibodies binding to the biomarkers of the invention are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the marker antigen, such as a clinical sample, is added to the wells. After binding and washing to remove non-specific ally bound immune complexes, the bound antigen may be detected. Detection is generally achieved by the addition of a second antibody specific for the target protein, that is linked to a detectable label.
  • ELISA is a simple "sandwich ELISA.” Detection also may be achieved by the addition of a second antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
  • the samples suspected of containing the marker of cancer subjects responsive to a drug treatment are immobilized onto the well surface and then contacted with the anti-biomarker antibodies of the invention. After binding and washing to remove non-specifically bound immune complexes, the bound antigen is detected. Where the initial antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first antibody, with the second antibody being linked to a detectable label.
  • ELIS As have certain features in common, such as coating, incubating or binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described as follows.
  • a plate with either antigen or antibody In coating a plate with either antigen or antibody, one will generally incubate the wells of the plate with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate will then be washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then "coated" with a nonspecific protein that is antigenically neutral with regard to the test antisera. These include bovine serum albumin (BSA), casein and solutions of milk powder.
  • BSA bovine serum albumin
  • the coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
  • the immobilizing surface is contacted with the control human pancreatic, cancer and/or clinical or biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand.
  • under conditions effective to allow immune complex (antigen/antibody) formation means that the conditions preferably include diluting the antigens and antibodies with solutions such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
  • solutions such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween.
  • suitable conditions also mean that the incubation is at a temperature and for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 h, at temperatures preferably on the order of 25 to 27°C, or may be overnight at about 4°C or so.
  • the contacted surface is washed so as to remove non-complexed material.
  • a preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
  • the second or third antibody will have an associated label to allow detection.
  • this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate.
  • a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody for a period of time and under conditions that favor the development of further immune complex formation (e.g., incubation for 2 h at room temperature in a PBS -containing solution such as PBS -Tween).
  • the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea and bromocresol purple. Quantitation is then achieved by measuring the degree of color generation, e.g., using a visible spectra spectrophotometer.
  • the protein biomarkers of the invention can also be measured, quantitated, detected, and otherwise analyzed using protein mass spectrometry methods and instrumentation.
  • Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins.
  • two approaches are typically used for characterizing proteins using mass spectrometry. In the first, intact proteins are ionized and then introduced to a mass analyzer. This approach is referred to as "top-down" strategy of protein analysis.
  • the two primary methods for ionization of whole proteins are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI).
  • proteins are enzymatically digested into smaller peptides using a protease such as trypsin. Subsequently these peptides are introduced into the mass spectrometer and identified by peptide mass fingerprinting or tandem mass spectrometry.
  • this latter approach also called “bottom-up” proteomics uses identification at the peptide level to infer the existence of proteins.
  • the protein biomarkers of the invention can also be measured in complex mixtures of proteins and molecules that co-exist in a biological medium or sample, however, fractionation of the sample may be required and is contemplated herein. It will be appreciated that ionization of complex mixtures of proteins can result in situation where the more abundant proteins have a tendency to “drown” or suppress signals from less abundant proteins in the same sample. In addition, the mass spectrum from a complex mixture can be difficult to interpret because of the overwhelming number of mixture components. Fractionation can be used to first separate any complex mixture of proteins prior to mass spectrometry analysis. Two methods are widely used to fractionate proteins, or their peptide products from an enzymatic digestion. The first method fractionates whole proteins and is called two- dimensional gel electrophoresis.
  • the second method high performance liquid chromatography (LC or HPLC) is used to fractionate peptides after enzymatic digestion. In some situations, it may be desirable to combine both of these techniques. Any other suitable methods known in the art for fractionating protein mixtures are also contemplated herein.
  • Gel spots identified on a 2D Gel are usually attributable to one protein. If the identity of the protein is desired, usually the method of in-gel digestion is applied, where the protein spot of interest is excised, and digested proteolytic ally. The peptide masses resulting from the digestion can be determined by mass spectrometry using peptide mass fingerprinting. If this information does not allow unequivocal identification of the protein, its peptides can be subject to tandem mass spectrometry for de novo sequencing.
  • Characterization of protein mixtures using HPLC/MS may also be referred to in the art as “shotgun proteomics” and MuDPIT (Multi-Dimensional Protein Identification Technology).
  • a peptide mixture that results from digestion of a protein mixture is fractionated by one or two steps of liquid chromatography (LC).
  • the eluent from the chromatography stage can be either directly introduced to the mass spectrometer through electrospray ionization, or laid down on a series of small spots for later mass analysis using MALDI.
  • the protein biomarkers of the present invention can be identified using MS using a variety of techniques, all of which are contemplated herein.
  • Peptide mass fingerprinting uses the masses of proteolytic peptides as input to a search of a database of predicted masses that would arise from digestion of a list of known proteins. If a protein sequence in the reference list gives rise to a significant number of predicted masses that match the experimental values, there is some evidence that this protein was present in the original sample.
  • ESI data- dependent electrospray ionization
  • MS/MS tandem mass spectrometry
  • LC microcapillary liquid chromatography
  • Microcapillary LC-MS/MS has been used successfully for the large-scale identification of individual proteins directly from mixtures without gel electrophoretic separation (Link et al., 1999; Opitek et al., 1997).
  • SILAC stable isotope labeling by amino acids in cell culture
  • ICAT isotope coded affinity tagging
  • iTRAQ isobaric tags for relative and absolute quantitation
  • the peak intensity, or the peak area, from individual molecules is here correlated to the amount of protein in the sample.
  • the individual signal depends on the primary structure of the protein, on the complexity of the sample, and on the settings of the instrument.
  • Other types of "label-free" quantitative mass spectrometry uses the spectral counts (or peptide counts) of digested proteins as a means for determining relative protein amounts.
  • any one or more of the protein markers of the invention can be identified and quantified from a complex biological sample using mass spectroscopy in accordance with the following exemplary method, which is not intended to limit the invention or the use of other mass spectrometry-based methods.
  • a biological sample e.g., a biological sample from a subject having cancer, which comprises a complex mixture of protein (including at least one biomarker of interest) is fragmented and labeled with a stable isotope X.
  • a known amount of an internal standard is added to the biological sample, wherein the internal standard is prepared by fragmenting a standard protein that is identical to the at least one target biomarker of interest, and labeled with a stable isotope Y.
  • This sample obtained is then introduced in an LC-MS/MS device, and multiple reaction monitoring (MRM) analysis is performed using MRM transitions selected for the internal standard to obtain an MRM chromatogram.
  • MRM multiple reaction monitoring
  • the MRM chromatogram is then viewed to identify a target peptide biomarker derived from the biological sample that shows the same retention time as a peptide derived from the internal standard (an internal standard peptide), and quantifying the target protein biomarker in the test sample by comparing the peak area of the internal standard peptide with the peak area of the target peptide biomarker.
  • Any suitable biological sample may be used as a starting point for LC-MS/MS/MRM analysis, including biological samples derived blood, urine, saliva, hair, cells, cell tissues, biopsy materials, and treated products thereof; and protein-containing samples prepared by gene recombination techniques.
  • Step (A) (Fragmentation and Labeling).
  • the target protein biomarker is fragmented to a collection of peptides, which is subsequently labeled with a stable isotope X.
  • a proteolytic enzyme such as trypsin
  • chemical cleavage methods such as a method using cyanogen bromide
  • Digestion by protease is preferable. It is known that a given mole quantity of protein produces the same mole quantity for each tryptic peptide cleavage product if the proteolytic digest is allowed to proceed to completion.
  • determining the mole quantity of tryptic peptide to a given protein allows determination of the mole quantity of the original protein in the sample.
  • Absolute quantification of the target protein can be accomplished by determining the absolute amount of the target protein-derived peptides contained in the protease digestion (collection of peptides). Accordingly, in order to allow the proteolytic digest to proceed to completion, reduction and alkylation treatments are preferably performed before protease digestion with trypsin to reduce and alkylate the disulfide bonds contained in the target protein.
  • the obtained digest (collection of peptides, comprising peptides of the target biomarker in the biological sample) is subjected to labeling with a stable isotope X.
  • stable isotopes X include 1H and 2H for hydrogen atoms, 12C and 13C for carbon atoms, and 14N and 15N for nitrogen atoms. Any isotope can be suitably selected therefrom. Labeling by a stable isotope X can be performed by reacting the digest (collection of peptides) with a reagent containing the stable isotope.
  • reagents that are commercially available include mTRAQ (registered trademark) (produced by Applied Biosystems), which is an amine- specific stable isotope reagent kit.
  • mTRAQ is composed of 2 or 3 types of reagents (mTRAQ-light and mTRAQ-heavy; or mTRAQ-DO, mTRAQ-D4, and mTRAQ-D8) that have a constant mass difference therebetween as a result of isotope-labeling, and that are bound to the N-terminus of a peptide or the primary amine of a lysine residue.
  • Step (B) Additional of the Internal Standard.
  • the internal standard used herein is a digest (collection of peptides) obtained by fragmenting a protein (standard protein) consisting of the same amino acid sequence as the target protein (target biomarker) to be measured, and labeling the obtained digest (collection of peptides) with a stable isotope Y.
  • the fragmentation treatment can be performed in the same manner as above for the target protein. Labeling with a stable isotope Y can also be performed in the same manner as above for the target protein.
  • the stable isotope Y used herein must be an isotope that has a mass different from that of the stable isotope X used for labeling the target protein digest.
  • mTRAQ registered trademark
  • mTRAQ-heavy should be used to label a standard protein digest.
  • Step (C) (LC-MS/MS and MRM Analysis).
  • step (C) the sample obtained in step (B) is first placed in an LC-MS/MS device, and then multiple reaction monitoring (MRM) analysis is performed using MRM transitions selected for the internal standard.
  • MRM reaction monitoring
  • LC liquid chromatography
  • the sample (collection of peptides labeled with a stable isotope) obtained in step (B) is separated first by one-dimensional or multi-dimensional high-performance liquid chromatography.
  • Specific examples of such liquid chromatography include cation exchange chromatography, in which separation is conducted by utilizing electric charge difference between peptides; and reversed-phase chromatography, in which separation is conducted by utilizing hydrophobicity difference between peptides. Both of these methods may be used in combination.
  • each of the separated peptides is subjected to tandem mass spectrometry by using a tandem mass spectrometer (MS/MS spectrometer) comprising two mass spectrometers connected in series.
  • MS/MS spectrometer enables the detection of several fmol levels of a target protein.
  • MS/MS analysis enables the analysis of internal sequence information on peptides, thus enabling identification without false positives.
  • MS analyzers may also be used, including magnetic sector mass spectrometers (Sector MS), quadrupole mass spectrometers (QMS), time-of-flight mass spectrometers (TOFMS), and Fourier transform ion cyclotron resonance mass spectrometers (FT-ICRMS), and combinations of these analyzers.
  • Vector MS magnetic sector mass spectrometers
  • QMS quadrupole mass spectrometers
  • TOFMS time-of-flight mass spectrometers
  • FT-ICRMS Fourier transform ion cyclotron resonance mass spectrometers
  • the obtained data are put through a search engine to perform a spectral assignment and to list the peptides experimentally detected for each protein.
  • the detected peptides are preferably grouped for each protein, and preferably at least three fragments having an m/z value larger than that of the precursor ion and at least three fragments with an m/z value of, preferably, 500 or more are selected from each MS/MS spectrum in descending order of signal strength on the spectrum. From these, two or more fragments are selected in descending order of strength, and the average of the strength is defined as the expected sensitivity of the MRR transitions.
  • at least two peptides with the highest sensitivity are selected as standard peptides using the expected sensitivity as an index.
  • Step (D) (Quantification of the Target Protein in the Test Sample).
  • Step (D) comprises identifying, in the MRM chromatogram detected in step (C), a peptide derived from the target protein (a target biomarker of interest) that shows the same retention time as a peptide derived from the internal standard (an internal standard peptide), and quantifying the target protein in the test sample by comparing the peak area of the internal standard peptide with the peak area of the target peptide.
  • the target protein can be quantified by utilizing a calibration curve of the standard protein prepared beforehand.
  • the calibration curve can be prepared by the following method. First, a recombinant protein consisting of an amino acid sequence that is identical to that of the target biomarker protein is digested with a protease such as trypsin, as described above. Subsequently, precursor- fragment transition selection standards (PFTS) of a known concentration are individually labeled with two different types of stable isotopes (i.e., one is labeled with a stable isomer used to label an internal standard peptide (labeled with IS), whereas the other is labeled with a stable isomer used to label a target peptide (labeled with T).
  • PFTS precursor- fragment transition selection standards
  • a plurality of samples are produced by blending a certain amount of the IS-labeled PTFS with various concentrations of the T-labeled PTFS. These samples are placed in the aforementioned LC- MS/MS device to perform MRM analysis.
  • the area ratio of the T-labeled PTFS to the IS- labeled PTFS (T-labeled PTFS/IS-labeled PTFS) on the obtained MRM chromatogram is plotted against the amount of the T-labeled PTFS to prepare a calibration curve.
  • the absolute amount of the target protein contained in the test sample can be calculated by reference to the calibration curve.
  • the invention involves the detection of nucleic acid biomarkers, e.g., the corresponding genes or mRNA of the protein markers of the invention.
  • the prognostic methods of the present invention generally involve the determination of expression levels of a set of genes in a biological sample. Determination of gene expression levels in the practice of the inventive methods may be performed by any suitable method. For example, determination of gene expression levels may be performed by detecting the expression of mRNA expressed from the genes of interest and/or by detecting the expression of a polypeptide encoded by the genes.
  • any suitable method can be used, including, but not limited to, Southern blot analysis, Northern blot analysis, polymerase chain reaction (PCR) (see, for example, U.S. Pat. Nos. 4,683,195; 4,683,202, and 6,040,166; "PCR Protocols: A Guide to Methods and Applications", Innis et al. (Eds), 1990, Academic Press: New York), reverse transcriptase PCR (RT-PCT), anchored PCR, competitive PCR (see, for example, U.S. Pat. No.
  • PCR polymerase chain reaction
  • RT-PCT reverse transcriptase PCR
  • anchored PCR see, for example, U.S. Pat. No.
  • RACE rapid amplification of cDNA ends
  • LCR ligase chain reaction
  • one-sided PCR Ohara et al., Proc. Natl. Acad. Sci., 1989, 86: 5673-5677
  • in situ hybridization Taqman- based assays
  • differential display see, for example, Liang et al., Nucl. Acid.
  • RNA fingerprinting techniques nucleic acid sequence based amplification (NASBA) and other transcription based amplification systems (see, for example, U.S. Pat. Nos. 5,409,818 and 5,554,527), Qbeta Replicase, Strand Displacement Amplification (SDA), Repair Chain Reaction (RCR), nuclease protection assays, subtraction-based methods, Rapid-Scan®, etc.
  • NASBA nucleic acid sequence based amplification
  • SDA Strand Displacement Amplification
  • RCR Repair Chain Reaction
  • nuclease protection assays subtraction-based methods, Rapid-Scan®, etc.
  • gene expression levels of biomarkers of interest may be determined by amplifying complementary DNA (cDNA) or complementary RNA (cRNA) produced from mRNA and analyzing it using a microarray.
  • cDNA complementary DNA
  • cRNA complementary RNA
  • a number of different array configurations and methods of their production are known to those skilled in the art (see, for example, U.S. Pat. Nos.
  • Microarray technology allows for the measurement of the steady-state mRNA level of a large number of genes simultaneously.
  • Microarrays currently in wide use include cDNA arrays and oligonucleotide arrays.
  • Analyses using microarrays are generally based on measurements of the intensity of the signal received from a labeled probe used to detect a cDNA sequence from the sample that hybridizes to a nucleic acid probe immobilized at a known location on the microarray (see, for example, U.S. Pat. Nos. 6,004,755; 6,218,114; 6,218,122; and 6,271,002).
  • Array-based gene expression methods are known in the art and have been described in numerous scientific publications as well as in patents (see, for example, M. Schena et al., Science, 1995, 270: 467-470; M. Schena et al., Proc. Natl. Acad. Sci.
  • Nucleic acid used as a template for amplification can be isolated from cells contained in the biological sample, according to standard methodologies. (Sambrook et al., 1989) The nucleic acid may be genomic DNA or fractionated or whole cell RNA. Where RNA is used, it may be desired to convert the RNA to a complementary cDNA. In one embodiment, the RNA is whole cell RNA and is used directly as the template for amplification.
  • Pairs of primers that selectively hybridize to nucleic acids corresponding to any of the drug treatment responsive biomarker nucleotide sequences identified herein are contacted with the isolated nucleic acid under conditions that permit selective hybridization. Once hybridized, the nucleic acid:primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as "cycles,” are conducted until a sufficient amount of amplification product is produced. Next, the amplification product is detected. In certain applications, the detection may be performed by visual means.
  • the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of incorporated radiolabel or fluorescent label or even via a system using electrical or thermal impulse signals (Affymax technology; Bellus, 1994). Following detection, one may compare the results seen in a given patient with a statistically significant reference group of normal patients and cancer patients. In this way, it is possible to correlate the amount of nucleic acid detected with various clinical states.
  • primer as defined herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process.
  • primers are oligonucleotides from ten to twenty base pairs in length, but longer sequences may be employed.
  • Primers may be provided in double- stranded or single-stranded form, although the single- stranded form is preferred.
  • PCR polymerase chain reaction
  • two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target nucleic acid sequence.
  • An excess of deoxynucleoside triphosphates are added to a reaction mixture along with a DNA polymerase, e.g., Taq polymerase. If the target nucleic acid sequence is present in a sample, the primers will bind to the target nucleic acid and the polymerase will cause the primers to be extended along the target nucleic acid sequence by adding on nucleotides.
  • the extended primers will dissociate from the target nucleic acid to form reaction products, excess primers will bind to the target nucleic acid and to the reaction products and the process is repeated.
  • a reverse transcriptase PCR amplification procedure may be performed in order to quantify the amount of mRNA amplified.
  • Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989.
  • Alternative methods for reverse transcription utilize thermostable DNA polymerases. These methods are described in WO 90/07641 filed Dec. 21, 1990. Polymerase chain reaction methodologies are well known in the art.
  • LCR ligase chain reaction
  • Qbeta Replicase described in PCT Application No. PCT/US87/00880, also may be used as still another amplification method in the present invention.
  • a replicative sequence of RNA which has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase.
  • the polymerase will copy the replicative sequence which may then be detected.
  • An isothermal amplification method in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'-[a-thio]- triphosphates in one strand of a restriction site also may be useful in the amplification of nucleic acids in the present invention. Walker et al. (1992), incorporated herein by reference in its entirety.
  • Strand Displacement Amplification is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, i.e., nick translation.
  • a similar method called Repair Chain Reaction (RCR)
  • RCR Repair Chain Reaction
  • SDA Strand Displacement Amplification
  • RCR Repair Chain Reaction
  • Target specific sequences also may be detected using a cyclic probe reaction (CPR).
  • CPR a probe having 3' and 5' sequences of non-specific DNA and a middle sequence of specific RNA is hybridized to DNA which is present in a sample.
  • the reaction is treated with RNase H, and the products of the probe identified as distinctive products which are released after digestion.
  • the original template is annealed to another cycling probe and the reaction is repeated.
  • modified primers are used in a PCR like, template and enzyme dependent synthesis.
  • the primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme).
  • a capture moiety e.g., biotin
  • a detector moiety e.g., enzyme
  • an excess of labeled probes are added to a sample.
  • the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.
  • nucleic acid amplification procedures include transcription-based amplification systems (TAS), including nucleic acid sequence based amplification (NASBA) and 3SR. Kwoh et al. (1989); Gingeras et al., PCT Application WO 88/10315, incorporated herein by reference in their entirety.
  • TAS transcription-based amplification systems
  • NASBA nucleic acid sequence based amplification
  • Kwoh et al. (1989); Gingeras et al., PCT Application WO 88/10315 incorporated herein by reference in their entirety.
  • the nucleic acids may be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a clinical sample, treatment with lysis buffer and minispin columns for isolation of DNA and RNA or guanidinium chloride extraction of RNA.
  • amplification techniques involve annealing a primer which has target specific sequences.
  • DNA/RNA hybrids are digested with RNase H while double stranded DNA molecules are heat denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target specific primer, followed by polymerization.
  • the double-stranded DNA molecules are then multiply transcribed by a polymerase such as T7 or SP6.
  • a polymerase such as T7 or SP6.
  • the RNA's are reverse transcribed into double stranded DNA, and transcribed once against with a polymerase such as T7 or SP6.
  • the resulting products whether truncated or complete, indicate target specific sequences.
  • ssRNA single-stranded RNA
  • dsDNA double- stranded DNA
  • the ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase).
  • RNA-dependent DNA polymerase reverse transcriptase
  • the RNA is then removed from the resulting DNA:RNA duplex by the action of ribonuclease H(RNase H, an RNase specific for RNA in duplex with either DNA or RNA).
  • the resultant ssDNA is a second template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5' to its homology to the template.
  • This primer is then extended by DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase 1), resulting in a double-stranded DNA (“dsDNA”) molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence.
  • This promoter sequence may be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies may then re-enter the cycle leading to very swift amplification. With proper choice of enzymes, this amplification may be done isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence may be chosen to be in the form of either DNA or RNA.
  • Miller et al., PCT Application WO 89/06700 disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence.
  • This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts.
  • Other amplification methods include "race” and "one-sided PCR.” Frohman (1990) and Ohara et al. (1989), each herein incorporated by reference in their entirety.
  • Oligonucleotide probes or primers of the present invention may be of any suitable length, depending on the particular assay format and the particular needs and targeted sequences employed.
  • the oligonucleotide probes or primers are at least 10 nucleotides in length (preferably, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 . . . ) and they may be adapted to be especially suited for a chosen nucleic acid amplification system and/or hybridization system used. Longer probes and primers are also within the scope of the present invention as well known in the art.
  • Primers having more than 30, more than 40, more than 50 nucleotides and probes having more than 100, more than 200, more than 300, more than 500 more than 800 and more than 1000 nucleotides in length are also covered by the present invention.
  • longer primers have the disadvantage of being more expensive and thus, primers having between 12 and 30 nucleotides in length are usually designed and used in the art.
  • probes ranging from 10 to more than 2000 nucleotides in length can be used in the methods of the present invention.
  • non- specific ally described sizes of probes and primers e.g., 16, 17, 31, 24, 39, 350, 450, 550, 900, 1240 nucleotides, . .
  • the oligonucleotide probes or primers of the present invention specifically hybridize with a marker RNA (or its complementary sequence) or a marker mRNA. More preferably, the marker primers and probes will be chosen to detect a marker RNA which is associated with subjects responsive to a drug treatment.
  • the detection means can utilize a hybridization technique, e.g., where a specific primer or probe is selected to anneal to a target biomarker of interest and thereafter detection of selective hybridization is made.
  • a hybridization technique e.g., where a specific primer or probe is selected to anneal to a target biomarker of interest and thereafter detection of selective hybridization is made.
  • the oligonucleotide probes and primers can be designed by taking into consideration the melting point of hybridization thereof with its targeted sequence (see below and in Sambrook et al., 1989, Molecular Cloning— A Laboratory Manual, 2nd Edition, CSH Laboratories; Ausubel et al., 1994, in Current Protocols in Molecular Biology, John Wiley & Sons Inc., N.Y.).
  • oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least 70% (at least 71%, 72%, 73%, 74%), preferably at least 75% (75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%) and more preferably at least 90% (90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%) identity to a portion of a filamin A or polynucleotide of another biomarker of the invention.
  • Probes and primers of the present invention are those that hybridize under stringent hybridization conditions and those that hybridize to biomarker homologs of the invention under at least moderately stringent conditions.
  • probes and primers of the present invention have complete sequence identity to the biomarkers of the invention (e.g. calbindin 2, gene sequences (e.g., cDNA or mRNA). It should be understood that other probes and primers could be easily designed and used in the present invention based on the biomarkers of the invention disclosed herein by using methods of computer alignment and sequence analysis known in the art (cf. Molecular Cloning: A Laboratory Manual, Third Edition, edited by Cold Spring Harbor Laboratory, 2000).
  • the invention provides methods and compositions that include labels for the highly sensitive detection and quantitation of the markers of the invention.
  • labels may be attached by any known means, including methods that utilize non-specific or specific interactions of label and target. Labels may provide a detectable signal or affect the mobility of the particle in an electric field. In addition, labeling can be accomplished directly or through binding partners.
  • the label comprises a binding partner that binds to the biomarker of interest, where the binding partner is attached to a fluorescent moiety.
  • the compositions and methods of the invention may utilize highly fluorescent moieties, e.g., a moiety capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules.
  • Moieties suitable for the compositions and methods of the invention are described in more detail below.
  • the invention provides a label for detecting a biological molecule comprising a binding partner for the biological molecule that is attached to a fluorescent moiety, wherein the fluorescent moiety is capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules.
  • the moiety comprises a plurality of fluorescent entities, e.g., about 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, or about 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 fluorescent entities. In some embodiments, the moiety comprises about 2 to 4 fluorescent entities.
  • the biological molecule is a protein or a small molecule. In some embodiments, the biological molecule is a protein.
  • the fluorescent entities can be fluorescent dye molecules. In some embodiments, the fluorescent dye molecules comprise at least one substituted indolium ring system in which the substituent on the 3-carbon of the indolium ring contains a chemically reactive group or a conjugated substance.
  • the dye molecules are Alexa Fluor molecules selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the dye molecules are Alexa Fluor molecules selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the dye molecules are Alexa Fluor 647 dye molecules. In some embodiments, the dye molecules comprise a first type and a second type of dye molecules, e.g., two different Alexa Fluor molecules, e.g., where the first type and second type of dye molecules have different emission spectra. The ratio of the number of first type to second type of dye molecule can be, e.g., 4 to 1, 3 to 1, 2 to 1, 1 to 1, 1 to 2, 1 to 3 or 1 to 4. The binding partner can be, e.g., an antibody.
  • the invention provides a label for the detection of a biological marker of the invention, wherein the label comprises a binding partner for the marker and a fluorescent moiety, wherein the fluorescent moiety is capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules.
  • the fluorescent moiety comprises a fluorescent molecule.
  • the fluorescent moiety comprises a plurality of fluorescent molecules, e.g., about 2 to 10, 2 to 8, 2 to 6, 2 to 4, 3 to 10, 3 to 8, or 3 to 6 fluorescent molecules.
  • the label comprises about 2 to 4 fluorescent molecules.
  • the fluorescent dye molecules comprise at least one substituted indolium ring system in which the substituent on the 3-carbon of the indolium ring contains a chemically reactive group or a conjugated substance.
  • the fluorescent molecules are selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 680 or Alexa Fluor 700.
  • the fluorescent molecules are selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the fluorescent molecules are Alexa Fluor 647 molecules.
  • the binding partner comprises an antibody. In some embodiments, the antibody is a monoclonal antibody. In other embodiments, the antibody is a polyclonal antibody.
  • antibody is a broad term and is used in its ordinary sense, including, without limitation, to refer to naturally occurring antibodies as well as non- naturally occurring antibodies, including, for example, single chain antibodies, chimeric, bifunctional and humanized antibodies, as well as antigen -binding fragments thereof.
  • An "antigen-binding fragment” of an antibody refers to the part of the antibody that participates in antigen binding.
  • the antigen binding site is formed by amino acid residues of the N- terminal variable ("V") regions of the heavy (“H”) and light (“L”) chains.
  • epitope or region of the molecule to which the antibody is raised will determine its specificity, e.g., for various forms of the molecule, if present, or for total (e.g., all, or substantially all of the molecule).
  • Monoclonal and polyclonal antibodies to molecules e.g., proteins, and markers also commercially available (R and D Systems, Minneapolis, Minn.; HyTest, HyTest Ltd., Turku Finland; Abeam Inc., Cambridge, Mass., USA, Life Diagnostics, Inc., West Chester, Pa., USA; Fitzgerald Industries International, Inc., Concord, Mass. 01742-3049 USA; BiosPacific, Emeryville, Calif.).
  • the antibody is a polyclonal antibody. In other embodiments, the antibody is a monoclonal antibody.
  • Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art (see, for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988). In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.
  • Monoclonal antibodies may be prepared using hybridoma methods, such as the technique of Kohler and Milstein (Eur. J. Immunol. 6:511-519, 1976), and improvements thereto. These methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity. Monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding antibodies employed in the disclosed methods may be isolated and sequenced using conventional procedures. Recombinant antibodies, antibody fragments, and/or fusions thereof, can be expressed in vitro or in prokaryotic cells (e.g. bacteria) or eukaryotic cells (e.g. yeast, insect or mammalian cells) and further purified as necessary using well known methods.
  • prokaryotic cells e.g. bacteria
  • eukaryotic cells e.g. yeast, insect or mammalian cells
  • monoclonal antibodies may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference.
  • this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified expressed protein, polypeptide or peptide.
  • the immunizing composition is administered in a manner effective to stimulate antibody producing cells.
  • the methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep or frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.
  • the animals are injected with antigen as described above.
  • the antigen may be coupled to carrier molecules such as keyhole limpet hemocyanin if necessary.
  • the antigen would typically be mixed with adjuvant, such as Freund's complete or incomplete adjuvant.
  • Booster injections with the same antigen would occur at approximately two-week intervals.
  • somatic cells with the potential for producing antibodies specifically B lymphocytes (B cells) are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible.
  • a panel of animals will have been immunized and the spleen of the animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe
  • the antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized.
  • Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non- antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).
  • the selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones may then be propagated indefinitely to provide MAbs.
  • the cell lines may be exploited for MAb production in two basic ways.
  • a sample of the hybridoma may be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion.
  • the injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid.
  • the body fluids of the animal such as serum or ascites fluid, may then be tapped to provide MAbs in high concentration.
  • the individual cell lines also may be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they may be readily obtained in high concentrations.
  • MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.
  • Monoclonal antibodies of the present invention also may be obtained by multiplying hybridoma cells in vivo.
  • Cell clones are injected into mammals which are histocompatible with the parent cells, e.g., syngeneic mice, to cause growth of antibody-producing tumors.
  • the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection.
  • fragments of the monoclonal antibody of the invention may be obtained from the monoclonal antibody produced as described above, by methods which include digestion with enzymes such as pepsin or papain and/or cleavage of disulfide bonds by chemical reduction.
  • monoclonal antibody fragments encompassed by the present invention may be synthesized using an automated peptide synthesizer.
  • Antibodies may also be derived from a recombinant antibody library that is based on amino acid sequences that have been designed in silico and encoded by polynucleotides that are synthetically generated. Methods for designing and obtaining in silico-created sequences are known in the art (Knappik et al., J. Mol. Biol. 296:254:57-86, 2000; Krebs et al., J. Immunol. Methods 254:67-84, 2001; U.S. Pat. No. 6,300,064).
  • Digestion of antibodies to produce antigen-binding fragments thereof can be performed using techniques well known in the art.
  • the proteolytic enzyme papain preferentially cleaves IgG molecules to yield several fragments, two of which (the "F(ab)" fragments) each comprise a covalent heterodimer that includes an intact antigenbinding site.
  • the enzyme pepsin is able to cleave IgG molecules to provide several fragments, including the "F(ab')2" fragment, which comprises both antigen-binding sites.
  • "Fv" fragments can be produced by preferential proteolytic cleavage of an IgM, IgG or IgA immunoglobulin molecule, but are more commonly derived using recombinant techniques known in the art.
  • the Fv fragment includes a non-covalent VH::VL heterodimer including an antigen-binding site which retains much of the antigen recognition and binding capabilities of the native antibody molecule (Inbar et al., Proc. Natl. Acad. Sci. USA 69:2659-2662 (1972); Hochman et al., Biochem. 15:2706-2710 (1976); and Ehrlich et al., Biochem. 19:4091-4096 (1980)).
  • Antibody fragments that specifically bind to the protein biomarkers disclosed herein can also be isolated from a library of scFvs using known techniques, such as those described in U.S. Pat. No. 5,885,793.
  • a wide variety of expression systems are available in the art for the production of antibody fragments, including Fab fragments, scFv, VL and VHs.
  • expression systems of both prokaryotic and eukaryotic origin may be used for the large-scale production of antibody fragments.
  • Particularly advantageous are expression systems that permit the secretion of large amounts of antibody fragments into the culture medium.
  • Eukaryotic expression systems for large-scale production of antibody fragments and antibody fusion proteins have been described that are based on mammalian cells, insect cells, plants, transgenic animals, and lower eukaryotes.
  • the cost-effective, large-scale production of antibody fragments can be achieved in yeast fermentation systems. Large-scale fermentation of these organisms is well known in the art and is currently used for bulk production of several recombinant proteins.
  • Antibodies that bind to the protein biomarkers employed in the present methods are, in some cases, available commercially or can be obtained without undue experimentation.
  • the binding partners can comprise a label, e.g., a fluorescent moiety or dye.
  • a label e.g., a fluorescent moiety or dye.
  • any binding partner of the invention e.g., an antibody, can also be labeled with a fluorescent moiety. The fluorescence of the moiety will be sufficient to allow detection in a single molecule detector, such as the single molecule detectors described herein.
  • a “fluorescent moiety,” as that term is used herein, includes one or more fluorescent entities whose total fluorescence is such that the moiety may be detected in the single molecule detectors described herein.
  • a fluorescent moiety may comprise a single entity (e.g., a Quantum Dot or fluorescent molecule) or a plurality of entities (e.g., a plurality of fluorescent molecules). It will be appreciated that when “moiety,” as that term is used herein, refers to a group of fluorescent entities, e.g., a plurality of fluorescent dye molecules, each individual entity may be attached to the binding partner separately or the entities may be attached together, as long as the entities as a group provide sufficient fluorescence to be detected.
  • the fluorescence of the moiety involves a combination of quantum efficiency and lack of photobleaching sufficient that the moiety is detectable above background levels in a single molecule detector, with the consistency necessary for the desired limit of detection, accuracy, and precision of the assay.
  • the fluorescence of the fluorescent moiety is such that it allows detection and/or quantitation of a molecule, e.g., a marker, at a limit of detection of less than about 10, 5, 4, 3, 2, 1, 0.1, 0.01, 0.001, 0.00001, or 0.000001 pg/ml and with a coefficient of variation of less than about 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1% or less, e.g., about 10% or less, in the instruments described herein.
  • the fluorescence of the fluorescent moiety is such that it allows detection and/or quantitation of a molecule, e.g., a marker, at a limit of detection of less than about 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 pg/ml and with a coefficient of variation of less than about 10%, in the instruments described herein.
  • a molecule e.g., a marker
  • LoD includes the lowest concentration at which one can identify a sample as containing a molecule of the substance of interest, e.g., the first non-zero value. It can be defined by the variability of zeros and the slope of the standard curve.
  • the limit of detection of an assay may be determined by running a standard curve, determining the standard curve zero value, and adding 2 standard deviations to that value.
  • a concentration of the substance of interest that produces a signal equal to this value is the "lower limit of detection" concentration.
  • the moiety has properties that are consistent with its use in the assay of choice.
  • the assay is an immunoassay, where the fluorescent moiety is attached to an antibody; the moiety must have properties such that it does not aggregate with other antibodies or proteins, or experiences no more aggregation than is consistent with the required accuracy and precision of the assay.
  • fluorescent moieties that are preferred are fluorescent moieties, e.g., dye molecules that have a combination of 1) high absorption coefficient; 2) high quantum yield; 3) high photostability (low photobleaching); and 4) compatibility with labeling the molecule of interest (e.g., protein) so that it may be analyzed using the analyzers and systems of the invention (e.g., does not cause precipitation of the protein of interest, or precipitation of a protein to which the moiety has been attached).
  • fluorescent moieties e.g., dye molecules that have a combination of 1) high absorption coefficient; 2) high quantum yield; 3) high photostability (low photobleaching); and 4) compatibility with labeling the molecule of interest (e.g., protein) so that it may be analyzed using the analyzers and systems of the invention (e.g., does not cause precipitation of the protein of interest, or precipitation of a protein to which the moiety has been attached).
  • Alexa Fluor dyes Molecular Probes, Eugene, Oreg.
  • the Alexa Fluor dyes are disclosed in U.S. Pat. Nos. 6,977,305; 6,974,874; 6,130,101; and 6,974,305 which are herein incorporated by reference in their entirety.
  • Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 647, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 555, Alexa Fluor 610, Alexa Fluor 680, Alexa Fluor 700, and Alexa Fluor 750.
  • Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 700 and Alexa Fluor 750. Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 555, Alexa Fluor 610, Alexa Fluor 680, Alexa Fluor 700, and Alexa Fluor 750. Some embodiments of the invention utilize the Alexa Fluor 647 molecule, which has an absorption maximum between about 650 and 660 nm and an emission maximum between about 660 and 670 nm. The Alexa Fluor 647 dye is used alone or in combination with other Alexa Fluor dyes.
  • the fluorescent label moiety that is used to detect a biomarker in a sample using the analyzer systems of the invention is a quantum dot.
  • Quantum dots also known as semiconductor nanocrystals or artificial atoms, are semiconductor crystals that contain anywhere between 100 to 1,000 electrons and range from 2-10 nm. Some QDs can be between 10-20 nm in diameter. QDs have high quantum yields, which makes them particularly useful for optical applications.
  • QDs are fluorophores that fluoresce by forming excitons, which are similar to the excited state of traditional fluorophores, but have much longer lifetimes of up to 200 nanoseconds. This property provides QDs with low photobleaching.
  • the energy level of QDs can be controlled by changing the size and shape of the QD, and the depth of the QDs' potential.
  • One optical feature of small excitonic QDs is coloration, which is determined by the size of the dot. The larger the dot, the redder, or more towards the red end of the spectrum the fluorescence. The smaller the dot, the bluer or more towards the blue end it is.
  • the bandgap energy that determines the energy and hence the color of the fluoresced light is inversely proportional to the square of the size of the QD. Larger QDs have more energy levels which are more closely spaced, thus allowing the QD to absorb photons containing less energy, i.e., those closer to the red end of the spectrum.
  • the protein that is detected with the single molecule analyzer system is labeled with a QD.
  • the single molecule analyzer is used to detect a protein labeled with one QD and using a filter to allow for the detection of different proteins at different wavelengths.
  • PDAC pancreatic ductal adenocarcinoma
  • Proteomic markers of response were identified from treatment-naive BC and longitudinal sampling post treatment of 104 patients in an all-comer Phase I human clinical trial evaluating intravenously administered Coenzyme Q10 in patients with solid tumors.
  • the Phase 1 cohort was defined as no change/decrease (responders) or increase (non-responders) in tumor size (CT/MRI readout). Calculated slopes from tumor sizes defined treatmentresponse populations aligned with differentially expressed BC proteins in the Phase 1 cohort were generated.
  • the levels of Phase 1 identified BC proteins were analyzed in Phase 2 PDAC patients who met criteria of adequately treated cohort (ATC- received Coenzyme Q10-IV + gemcitabine for >30 days and had RECIST 1.1 evaluation).
  • Adequately Treated Patients in the combination arm are defined as subjects who:
  • the Interrogative Biology® platform applied to BC samples of a Coenzyme Q10-IV Phase 1 trial has identified two potential biomarkers predictive of response and overall survival in PDAC patients.
  • Candidate biomarkers had independent confirmation of prediction between SD, PD, and OS in a Phase 2 trial.
  • the influence of BC markers in modulating immune response in combination with Coenzyme Q10-IV in PDAC is being investigated.

Abstract

The disclosure describes the use of the markers GOLPH3, EHD4 and RRAS in methods for prognosing the response to a drug treatment for a solid tumor cancer in a subject, and methods for identifying an agent that modulates cancer progression. Methods of treating a solid tumor cancer in a subject comprising administering to the subject a modulator of GOLPH3, EHD4 or RRAS are also provided.

Description

PROTEIN BIOMARKERS FOR PANCREATIC CANCER
RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 63/072,610 filed on August 31, 2020, the contents of which are incorporated herein in their entirety.
BACKGROUND
Cancer is presently one of the leading causes of death in developed nations. Although recent research has vastly increased our understanding of many of the molecular mechanisms of tumorigenesis and has provided numerous new avenues for the treatment of cancer, standard treatments for most malignancies remain gross resection, chemotherapy, and radiotherapy. While increasingly successful, each of these treatments still causes numerous undesired side effects. For example, surgery results in pain, traumatic injury to healthy tissue, and scarring. Radiotherapy and chemotherapy cause nausea, immune suppression, gastric ulceration and secondary tumorigenesis. There is a need to identify markers that can indicate outcome of a treatment regimen in order for both clinicians and patients to decide on the best treatment option for patients.
SUMMARY OF THE INVENTION
The present invention is based, at least in part, on the discovery that the markers GOLPH3, EDH4 and RRAS are differentially regulated in cancer subjects that responded to a drug treatment. In particular, the invention is based on the surprising discovery that GOLPH3 is elevated, while EDH4 and RRAS are depressed in samples of cancer patients that responded to a drug treatment.
Accordingly, in one aspect, the present invention provides methods for prognosing the response to a drug treatment for a solid tumor cancer in a subject, comprising (a) detecting expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS, and (b) comparing the expression level of the marker in the biological sample with a predetermined threshold value; wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
In some embodiments, the cancer is pancreatic cancer. In some embodiments, the pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC).
In some embodiments, the expression level is an mRNA expression level.
In some embodiments, wherein the expression level is a protein expression level.
In some embodiments, an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will exhibit stable disease in response to the drug treatment.
In some embodiments, a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will exhibit increased survival relate relative to a subject that is not administered the drug treatment.
In some embodiments, a second drug is administered.
In some embodiments, the second drug is gemcitabine.
In some embodiments, the response to the drug treatment comprises no change or a decrease in tumor size.
In some embodiments, the response to the drug treatment comprises an increase in overall days of survival.
In some embodiments, the biological sample comprises a blood sample or a component thereof.
In some embodiments, the sample comprises a buffy coat sample.
In some embodiments, the expression level of at least two of the markers, or the expression level of all three of the markers, is determined. In some embodiments, the expression level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
In some embodiments, the method further comprises selecting a treatment regimen based on the prediction of the drug treatment in the subject.
In some embodiments, the treatment regimen comprises further monitoring the subject for progression of cancer.
In some embodiments, the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
In some embodiments, the method further comprises obtaining a biological sample from the subject.
In some embodiments, the subject has been previously diagnosed with a solid tumor cancer.
In another aspect, the present invention provides a method for prognosing the response to a drug treatment in a subject, wherein the prognosis is determined concurrently with the diagnosis of a solid tumor cancer in the subject, comprising (a) diagnosing the subject with a solid tumor cancer, (b) detecting the expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS, and (c) comparing the expression level of the marker in the biological sample with a predetermined threshold value, wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
In some embodiments, the cancer is pancreatic ductal adenocarcinoma (PDAC). In some embodiments, a second drug is administered. In some embodiments, the second drug is gemcitabine.
In some embodiments, the response to the drug treatment comprises no change or a decrease in tumor size. In some embodiments, the response to the drug treatment comprises an increase in overall days of survival.
In some embodiments, the biological sample comprises a blood sample or a component thereof.
In some embodiments, the sample comprises a buffy coat sample.
In some embodiments, the expression level of at least two of the markers, or the expression level of all three of the markers, is determined.
In some embodiments, the level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
In some embodiments, the method further comprises selecting a treatment regimen based on the prediction of the drug treatment in the subject.
In some embodiments, the treatment regimen comprises further monitoring of the subject for progression of cancer.
In some embodiments, the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
In another aspect, the present invention provides a method for identifying an agent that modulates cancer progression, comprising (a) contacting a cell with a test compound, (b) determining the expression and/or activity of a marker in the cell, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS, (c) identifying an agent that modulates the expression and/or activity of the marker in the cell, thereby identifying an agent that modulates cancer. In some embodiments, the cell comprises a pancreatic cancer cell.
In some embodiments, the test compound is a small molecule, an antibody, or a nucleic acid inhibitor.
In another aspect, the present invention provides a compound identified by the method for identifying an agent that modulates cancer progression as described.
In another aspect, the present invention provides a method of treating a solid tumor cancer in a subject, comprising administering to the subject a modulator of a marker, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS.
In some embodiments, the modulator increases the marker level or activity. In some embodiments, wherein the modulator decreases the marker level or activity.
In some embodiments, the drug treatment comprises administration of Coenzyme Q10 to the subject.
In some embodiments, the Coenzyme Q10 is administered to the subject by intravenous administration.
In some embodiments, the intravenous administration is continuous intravenous infusion.
In another aspect, the present invention provides a kit for detecting a marker in a biological sample from a subject having a solid tumor cancer, comprising one or more reagents for measuring the level of the marker in the biological sample from the subject, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS and a set of instructions for measuring the level of the marker.
In some embodiments, the reagent is an antibody that binds to the marker or an oligonucleotide that is complementary to the corresponding mRNA of the marker.
In some embodiments, the marker comprises one or more markers with an increased level when compared to a predetermined threshold value, and/or one or more markers with a decreased level when compared to a predetermined threshold value. In another aspect, the present invention provides a panel for use in a method of prognosing the response to a drug treatment for cancer in a subject, the panel comprising one or more detection reagents, wherein each detection reagent is specific for the detection of a marker, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS.
In another aspect, the present invention provides a kit comprising the panel and a set of instructions for obtaining prognosis information based on a level of the marker.
In some embodiments of the the kit or panel, the drug treatment comprises administration of Coenzyme Q10 to the subject.
In some embodiments, the Coenzyme Q10 is administered by intravenous administration, and preferably by continuous infusion.
BRIEF DESCRIPTION OF THE FIGURES
Figures 1A, IB and 1C show overall survival (1A), progression free survival (IB) and time to progression (1C) of patients treated with gemcitabine and intravenous Coenzyme Q10.
Figure 2A shows a schematic of sample evaluation from a Phase I human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients with solid tumors. Figure 2B shows a schematic of sample evaluation from a Phase II human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients having pancreatic ductal adenocarcinoma (PDAC).
Figures 3A and 3B show an analysis of protein biomarkers identified in a Phase I human clinical trial evaluating the effects of intravenous Coenzyme Q10 on patients with solid tumors.
Figures 4A and 4B show expression of the protein biomarkers GOLPH3, EHD4 and RRAS in PDAC patients. DETAILED DESCRIPTION OF THE INVENTION
A. OVERVIEW
Some cancer has very low survival rate, such as pancreatic ductal adenocarcinoma (PDAC) with a 5 year survival rate less than 8%. Markers that can indicate outcome of a treatment regimen will better inform clinicians on which treatment options to choose for their patients, as well as inform patients on whether to choose no treatment for a better life quality or commit to a therapy with detrimental side effects to the overall health. The present invention addresses this need for markers by providing the use of biomarkers, i.e. one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, for the identification of subjects having good response and overall survival outcome to a drug treatment, e.g. Coenzym-QlO.
As presently described herein, the invention at hand is based, at least in part, on the surprising discovery that the one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, are differentially regulated between cohorts of solid tumor cancer patients that responded to treatment with a drug and those that did not, and also differentially regulated between pancreatic ductal adenocarcinoma (PDAC) patients that responded and/or had better overall survival after treatment with and patients that did not respond.
Accordingly, the invention provides methods for prognosing and/or monitoring (e.g., monitoring of disease progression or treatment) outcome of a drug treatment to a cancer in a subject, e.g. outcome of PDAC after treatment with Coenzyme-QlO.
In one embodiment, these one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, can serve as useful prognostic biomarkers, serving to inform on the likely development or progression of a solid tumor cancer, e.g. PDAC, in a subject. In still another embodiment, these one or more markers, e.g. GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, can serve as useful predictive biomarkers for helping to assess the likely response of a solid tumor cancer, e.g. PDAC, to a particular treatment. The following is a detailed description of the invention provided to aid those skilled in the art in practicing the present invention. Those of ordinary skill in the art may make modifications and variations in the embodiments described herein without departing from the spirit or scope of the present invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. All publications, patent applications, patents, figures and other references mentioned herein are expressly incorporated by reference in their entirety.
Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and described the methods and/or materials in connection with which the publications are cited.
B. DEFINITIONS
Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references, the entire disclosures of which are incorporated herein by reference, provide one of skill with a general definition of many of the terms (unless defined otherwise herein) used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, the Harper Collins Dictionary of Biology (1991). Generally, the procedures of molecular biology methods described or inherent herein and the like are common methods used in the art. Such standard techniques can be found in reference manuals such as for example Sambrook et al., (2000, Molecular Cloning— A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratories); and Ausubel et al., (1994, Current Protocols in Molecular Biology, John Wiley & Sons, New-York).
The following terms may have meanings ascribed to them below, unless specified otherwise. However, it should be understood that other meanings that are known or understood by those having ordinary skill in the art are also possible, and within the scope of the present invention. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
As used herein, the singular forms "a", "and", and "the" include plural references unless the context clearly dictates otherwise. All technical and scientific terms used herein have the same meaning.
Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1 %, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.
As used herein, the term “amplification" refers to any known in vitro procedure for obtaining multiple copies ("amplicons") of a target nucleic acid sequence or its complement or fragments thereof. In vitro amplification refers to production of an amplified nucleic acid that may contain less than the complete target region sequence or its complement. Known in vitro amplification methods include, e.g., transcription-mediated amplification, replicase- mediated amplification, polymerase chain reaction (PCR) amplification, ligase chain reaction (LCR) amplification and strand-displacement amplification (SDA including multiple stranddisplacement amplification method (MSDA)). Replicase-mediated amplification uses selfreplicating RNA molecules, and a replicase such as Q-P-replicase (e.g., Kramer et al., U.S. Patent No. 4,786,600). PCR amplification is well known and uses DNA polymerase, primers and thermal cycling to synthesize multiple copies of the two complementary strands of DNA or cDNA (e.g., Mullis et al., U.S. Patent Nos. 4,683,195, 4,683,202, and 4,800,159). LCR amplification uses at least four separate oligonucleotides to amplify a target and its complementary strand by using multiple cycles of hybridization, ligation, and denaturation (e.g., EP Pat. App. Pub. No. 0 320 308). SDA is a method in which a primer contains a recognition site for a restriction endonuclease that permits the endonuclease to nick one strand of a hemimodified DNA duplex that includes the target sequence, followed by amplification in a series of primer extension and strand displacement steps (e.g., Walker et al., U.S. Patent. No. 5,422,252). Two other known strand-displacement amplification methods do not require endonuclease nicking (Dattagupta et al., U.S. Patent. No. 6,087,133 and U.S. Patent. No. 6,124,120 (MSDA)). Those skilled in the art will understand that the oligonucleotide primer sequences of the present invention may be readily used in any in vitro amplification method based on primer extension by a polymerase, (see generally Kwoh et al., 1990, Am. Biotechnol. Lab. 8:14-25 and (Kwoh et al., 1989, Proc. Natl. Acad. Sci. USA 86, 1173-1177; Lizardi et al., 1988, BioTechnology 6:1197-1202; Malek et al., 1994, Methods Mol. Biol., 28:253-260; and Sambrook et al., 2000, Molecular Cloning— A Laboratory Manual, Third Edition, CSH Laboratories). As commonly known in the art, the oligos are designed to bind to a complementary sequence under selected conditions.
As used herein, the term “antigen” refers to a molecule, e.g., a peptide, polypeptide, protein, fragment, or other biological moiety, which elicits an antibody response in a subject, or is recognized and bound by an antibody.
As used herein, the term "marker" is, in one embodiment, a biological molecule, or a panel of biological molecules, for example, GOLPH3, EHD4 and RRAS, or any combination thereof, whose altered level in a tissue, cell or body fluid as compared to its level in tissue, cell or body fluid from, e.g. a subject with a disease that progressed to a more advanced stage after receiving a treatment, is associated with having good response to a treatment, e.g., decrease in tumor size, no increase in tumor size, increased overall time of survival, increased time to progression. Examples of biomarkers include, for example, polypeptides, peptides, polypeptide fragments, proteins, antibodies, hormones, polynucleotides, RNA or RNA fragments, microRNA (miRNAs), lipids, metabolites, or polysaccharides. In an embodiment, the marker is detected in a body fluid, e.g., blood. In a preferred embodiment, the marker is detected in the buffy coat of blood. In certain embodiments, the blood or buffy coat sample can be further processed to remove abundant proteins or proteins that are not marker proteins prior to analysis.
The term “marker” as used herein, also includes any one or more pathological or clinical feature or parameter. For example, as described herein, a marker includes clinical parameters such as, e.g., cancer stage, e.g., stage 0, stage I, stage II, stage III, stage IV, tumor size, age, performance status, or any clinical and/or patient-related health data, for example, data obtained from an Electronic Medical Record (e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, laboratory test results, radiology images, vital signs, personal statistics like weight, and billing information).
Preferably, a marker of the present invention is modulated (e.g., increased or decreased level) in a biological sample from a subject or a group of subjects having a first phenotype (e.g., having cancer progression) as compared to a biological sample from a subject or group of subjects having a second phenotype (e.g., not having cancer progression, e.g., a control). A biomarker may be differentially present at any level, but is generally present at a level that is increased relative to normal or control levels by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 100%, by at least 110%, by at least 120%, by at least 130%, by at least 140%, by at least 150%, or more; or is generally present at a level that is decreased relative to normal or control levels by at least 5%, by at least 10%, by at least 15%, by at least 20%, by at least 25%, by at least 30%, by at least 35%, by at least 40%, by at least 45%, by at least 50%, by at least 55%, by at least 60%, by at least 65%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, or by 100% (i.e., absent). A biomarker is preferably differentially present at a level that is statistically significant (e.g., a p-value less than 0.05 and/or a q-value of less than 0.10 as determined using either Welch's T-test or Wilcoxon's rank-sum Test). As such, the difference between the level of a biomarker of the present invention and a corresponding control or reference value can be a statistically significant positive or negative value.
As used herein, "cancer" refers to all types of cancer or neoplasm or malignant tumors found in mammals, including, but not limited to: leukemias, lymphomas, melanomas, carcinomas and sarcomas.
Examples of cancers are cancer of the brain, breast, pancreas, cervix, colon, head and neck, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus and medulloblastoma. As used herein, the terms "cancer," "neoplasm," and "tumor," are used interchangeably and in either the singular or plural form, refer to cells that have undergone a malignant transformation that makes them pathological to the host organism. Primary cancer cells (that is, cells obtained from near the site of malignant transformation) can be readily distinguished from non-cancerous cells by well-established techniques, particularly histological examination. The definition of a cancer cell, as used herein, includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells. When referring to a type of cancer that normally manifests as a solid tumor, a "clinically detectable" tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as CAT scan, MR imaging, X-ray, ultrasound or palpation, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient.
As used herein, the term "complementary" refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
The term “control sample” or “control,” as used herein, refers to any clinically relevant comparative sample, including, for example, a sample from a normal and healthy subject not afflicted with an oncological disease, a sample from a subject inflicted with a solid tumor cancer, e.g. PDAC, a sample from a subject whose cancer has progressed without receiving any treatment, a sample from a subject whose cancer has progressed after treatment, or a sample from a subject from an earlier time point, e.g., prior to treatment, an earlier tumor assessment time point, at an earlier stage of cancer, or prior to onset of cancer. A control sample can be a purified sample, protein, and/or nucleic acid provided with a kit. Such control samples can be diluted, for example, in a dilution series to allow for quantitative measurement of levels of analytes, e.g., markers, in test samples. A control sample may include a sample derived from one or more subjects. A control sample may also be a sample made at an earlier time point from the subject to be assessed. For example, the control sample could be a sample taken from the subject to be assessed before the onset of PDAC, or at an earlier stage of disease. The control sample may also be a sample from an animal model of a solid-tumor cancer, e.g. PDAC. The level of activity or expression of one or more markers (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more markers) in a control sample consists of a group of measurements that may be determined, e.g., based on any appropriate statistical measurement, such as, for example, measures of central tendency including average, median, or modal values. In one embodiment, “different from a control” is preferably statistically significantly different from a control.
As used herein, “changed, altered, increased or decreased as compared to a control” sample or subject is understood as having a level of the analyte or diagnostic, prognostic or therapeutic indicator (e.g., marker) to be detected at a level that is statistically different, e.g., increased or decreased, as compared to a sample from a control subject. In other words, the difference between the level of the marker in the subject and that in a corresponding control or reference is statistically significant. Change as compared to control can also include a difference in the rate of change of the level of one or more markers obtained in a series of at least two subject samples obtained over time. Determination of statistical significance is within the ability of those skilled in the art and can include any acceptable means for determining and/or measuring statistical significance, such as, for example, the number of standard deviations from the mean that constitute a positive or negative result, an increase in the detected level of a biomarker in a sample (e.g., a sample from a cancer subject that positively responded to a drug treatment) versus a control sample, wherein the increase is above some threshold value, or a decrease in the detected level of a biomarker in a sample (e.g., a sample from a cancer subject that positively responded to a drug treatment) versus a control or sample, wherein the decrease is below some threshold value. The threshold value can be determined by any suitable means by measuring the biomarker levels in a plurality of tissues or samples known to have good outcome, e.g., subjects with cancer that positively responded to a drug treatment, and comparing those levels to a control sample, e.g., subjects with cancer that did not respond to a drug treatment, and calculating a statistically significant threshold value. The term “control level” refers to an accepted or pre-determined level of a marker in a subject sample. A control level can be a range of values. Marker levels can be compared to a single control value, to a range of control values, to the upper level of normal, or to the lower level of normal as appropriate for the assay.
In one embodiment, the control is a standardized control, such as, for example, a control which is predetermined using an average of the levels of expression of one or more markers from a population of biologically relevant control subjects, e.g. subject whose cancer did not respond to a drug treatment and continued to progressed. In certain embodiments, the control can be from a subject, or a population of subject, having an abnormal pancreatic state, e.g. acute pancreatitis, chronic pancreatitis, hereditary pancreatitis. It is understood that not all markers will have different levels for each of the abnormal pancreatic states listed. It is understood that a combination of marker levels may be most useful to distinguish between cancer subjects, e.g. PDAC subjects, that will likely respond to a drug treatment (e.g. decreased tumor size, prolonged survival time) from cancer subjects that will not benefit from a drug treatment. Further, marker levels in biological samples can be compared to more than one control sample (e.g., normal, abnormal, from the same subject, from a population control). Marker levels can be used in combination with other signs or symptoms of an abnormal state to provide a prognosis for the subject.
A control can also be a sample from a subject at an earlier time point, e.g., a baseline level prior to suspected progression of disease, before the diagnosis of a disease, at an earlier assessment time point during watchful waiting, before the treatment with a specific agent (e.g., chemotherapy, hormone therapy) or intervention (e.g., radiation, surgery). In certain embodiments, a change in the level of the marker in a subject can be more significant than the absolute level of a marker, e.g., as compared to control.
As used herein, “detecting”, “detection”, “determining”, and the like are understood to refer to an assay performed for identification of one or more markers selected from the group consisting of GOLPH3, EHD4, and RRAS. The amount of marker expression or activity detected in the sample can be none or below the level of detection of the assay or method.
As used herein, the term "DNA" or "RNA" molecule or sequence (as well as sometimes the term "oligonucleotide") refers to a molecule comprised generally of the deoxyribonucleotides or ribonucleotides, respectively, that have the following bases: adenine (A), guanine (G), cytosine (C), and thymine (T) in DNA or uracil (U) in RNA, i.e., T is replaced by uracil (U).
The terms “disorders”, “diseases”, and “abnormal state” are used inclusively and refer to any deviation from the normal structure or function of any part, organ, or system of the body (or any combination thereof). A specific disease is manifested by characteristic symptoms and signs, including biological, chemical, and physical changes, and is often associated with a variety of other factors including, but not limited to, demographic, environmental, employment, genetic, and medically historical factors. An early stage disease state includes a state wherein one or more physical symptoms are not yet detectable. Certain characteristic signs, symptoms, and related factors can be quantitated through a variety of methods to yield important diagnostic information.
As used herein, a sample obtained at an “earlier time point” is a sample that was obtained at a sufficient time in the past such that clinically relevant information could be obtained in the sample from the earlier time point as compared to the later time point. In certain embodiments, an earlier time point is at least four weeks earlier. In certain embodiments, an earlier time point is at least six weeks earlier. In certain embodiments, an earlier time point is at least two months earlier. In certain embodiments, an earlier time point is at least three months earlier. In certain embodiments, an earlier time point is at least six months earlier. In certain embodiments, an earlier time point is at least nine months earlier. In certain embodiments, an earlier time point is at least one year earlier. Multiple subject samples (e.g., 3, 4, 5, 6, 7, or more) can be obtained at regular or irregular intervals over time and analyzed for trends in changes in marker levels. Appropriate intervals for testing for a particular subject can be determined by one of skill in the art based on ordinary considerations.
The term “expression” is used herein to mean the process by which a polypeptide is produced from DNA. The process involves the transcription of the gene into mRNA and the translation of this mRNA into a polypeptide. Depending on the context in which used, “expression” may refer to the production of RNA, or protein, or both.
As used herein, “fold change ratio” or “FC ratio” refers to a change, e.g., increase or decrease, of the expression or level of a marker, e.g., one or more marker selected from Tables 1-7. In some embodiments, the FC ratio is greater than 1, which indicates an upregulation or increase in the expression or level of the marker. In other embodiments, the FC ratio is less than 1, indicating a down-regulation or decrease in the expression or level of the marker. FC ratio can also be calculated and expressed as a Log unit. When the FC ratio is expressed as a Log FC or log2(FC) value, a Log FC or log2(FC) value greater than 0 is equivalent to an FC ratio greater than 1, indicating an up-regulation or increase in the expression or level of the marker. Alternatively, a Log FC or log2(FC) value less than 0 is equivalent to an FC ratio less than 1, indicating a down-regulation or decrease in the expression or level of the marker.
A “higher level of expression”, “higher level”, “increased level,” and the like of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 25% more, at least 50% more, at least 75% more, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten times the expression level of the marker in a control sample and preferably, the average expression level of the marker or markers in several control samples.
As used herein, the term “hybridization,” as in "nucleic acid hybridization," refers generally to the hybridization of two single-stranded nucleic acid molecules having complementary base sequences, which under appropriate conditions will form a thermodynamically favored double- stranded structure. Examples of hybridization conditions can be found in the two laboratory manuals referred above (Sambrook et al., 2000, supra and Ausubel et al., 1994, supra, or further in Higgins and Hames (Eds.) "Nucleic acid hybridization, a practical approach" IRL Press Oxford, Washington D.C., (1985)) and are commonly known in the art. In the case of a hybridization to a nitrocellulose filter (or other such support like nylon), as for example in the well-known Southern blotting procedure, a nitrocellulose filter can be incubated overnight at a temperature representative of the desired stringency condition (60-65°C for high stringency, 50-60°C for moderate stringency and 40- 45°C for low stringency conditions) with a labeled probe in a solution containing high salt (6xSSC or 5xSSPE), 5xDenhardt's solution, 0.5% SDS, and 100 pg/ml denatured carrier DNA (e.g., salmon sperm DNA). The non- specifically binding probe can then be washed off the filter by several washes in 0.2xSSC/0.1% SDS at a temperature which is selected in view of the desired stringency: room temperature (low stringency), 42°C (moderate stringency) or 65°C (high stringency). The salt and SDS concentration of the washing solutions may also be adjusted to accommodate for the desired stringency. The selected temperature and salt concentration is based on the melting temperature (Tm) of the DNA hybrid. Of course, RNA- DNA hybrids can also be formed and detected. In such cases, the conditions of hybridization and washing can be adapted according to well-known methods by the person of ordinary skill. Stringent conditions will be preferably used (Sambrook et al., 2000, supra). Other protocols or commercially available hybridization kits (e.g., ExpressHyb® from BD Biosciences Clonetech) using different annealing and washing solutions can also be used as well known in the art. As is well known, the length of the probe and the composition of the nucleic acid to be determined constitute further parameters of the hybridization conditions. Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility. Hybridizing nucleic acid molecules also comprise fragments of the above described molecules. Furthermore, nucleic acid molecules which hybridize with any of the aforementioned nucleic acid molecules also include complementary fragments, derivatives and allelic variants of these molecules. Additionally, a hybridization complex refers to a complex between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., membranes, filters, chips, pins or glass slides to which, e.g., cells have been fixed).
As used herein, the term "identical" or "percent identity" in the context of two or more nucleic acid or amino acid sequences, refers to two or more sequences or subsequences that are the same, or that have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 60% or 65% identity, preferably, 70-95% identity, more preferably at least 95% identity), when compared and aligned for maximum correspondence over a window of comparison, or over a designated region as measured using a sequence comparison algorithm as known in the art, or by manual alignment and visual inspection. Sequences having, for example, 60% to 95% or greater sequence identity are considered to be substantially identical. Such a definition also applies to the complement of a test sequence. Preferably the described identity exists over a region that is at least about 15 to 25 amino acids or nucleotides in length, more preferably, over a region that is about 50 to 100 amino acids or nucleotides in length. Those having skill in the art will know how to determine percent identity between/among sequences using, for example, algorithms such as those based on CLUSTALW computer program (Thompson Nucl. Acids Res. 2 (1994), 4673-4680) or FASTDB (Brutlag Comp. App. Biosci. 6 (1990), 237-245), as known in the art. Although the FASTDB algorithm typically does not consider internal non-matching deletions or additions in sequences,
Figure imgf000019_0001
gaps, in its calculation, this can be corrected manually to avoid an overestimation of the % identity. CLUSTALW, however, does take sequence gaps into account in its identity calculations. Also available to those having skill in this art are the BLAST and BLAST 2.0 algorithms (Altschul Nucl. Acids Res. 25 (1977), 3389-3402). The BLASTN program for nucleic acid sequences uses as defaults a word length (W) of 11, an expectation (E) of 10, M=5, N=4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, and an expectation (E) of 10. The BLOSUM62 scoring matrix (Henikoff Proc. Natl. Acad. Sci., USA, 89, (1989), 10915) uses alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands. Moreover, the present invention also relates to nucleic acid molecules the sequence of which is degenerate in comparison with the sequence of an abovedescribed hybridizing molecule. When used in accordance with the present invention the term "being degenerate as a result of the genetic code" means that due to the redundancy of the genetic code different nucleotide sequences code for the same amino acid. The present invention also relates to nucleic acid molecules which comprise one or more mutations or deletions, and to nucleic acid molecules which hybridize to one of the herein described nucleic acid molecules, which show (a) mutation(s) or (a) deletion(s).
The term “including” is used herein to mean, and is used interchangeably with, the phrase “including but not limited to.”
As used herein, the term "in vitro" refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments can consist of, but are not limited to, test tubes and cell culture. The term "in vivo" refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
As used herein, a "label" refers to a molecular moiety or compound that can be detected or can lead to a detectable signal. A label is joined, directly or indirectly, to a molecule, such as an antibody, a nucleic acid probe or the protein/antigen or nucleic acid to be detected (e.g., an amplified sequence). Direct labeling can occur through bonds or interactions that link the label to the nucleic acid (e.g., covalent bonds or non-covalent interactions), whereas indirect labeling can occur through the use of a "linker" or bridging moiety, such as oligonucleotide(s) or small molecule carbon chains, which is either directly or indirectly labeled. Bridging moieties may amplify a detectable signal. Labels can include any detectable moiety (e.g., a radionuclide, ligand such as biotin or avidin, enzyme or enzyme substrate, reactive group, chromophore such as a dye or colored particle, luminescent compound including a bioluminescent, phosphorescent or chemiluminescent compound, and fluorescent compound). Preferably, the label on a labeled probe is detectable in a homogeneous assay system, i.e., in a mixture, the bound label exhibits a detectable change compared to an unbound label.
The terms “level of expression of a gene”, “gene expression level”, “level of a marker”, and the like refer to the level of mRNA, as well as pre-mRNA nascent transcript(s), transcript processing intermediates, mature mRNA(s) and degradation products, or the level of protein, encoded by the gene in the cell. The “level” of one of more biomarkers means the absolute or relative amount or concentration of the biomarker in the sample.
A “lower level of expression” or “lower level” or “decreased level” of a marker refers to an expression level in a test sample that is less than 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, or 10% of the expression level of the marker in a control sample and preferably, the average expression level of the marker in several control samples.
The term “modulation” refers to upregulation (i.e., activation or stimulation), downregulation i.e., inhibition or suppression) of a response (e.g., level of a marker), or the two in combination or apart. A “modulator” is a compound or molecule that modulates, and may be, e.g., an agonist, antagonist, activator, stimulator, suppressor, or inhibitor.
As used herein, "nucleic acid molecule" or "polynucleotides", refers to a polymer of ty nucleotides. Non-limiting examples thereof include DNA (e.g., genomic DNA, cDNA), RNA molecules (e.g., mRNA) and chimeras thereof. The nucleic acid molecule can be obtained by cloning techniques or synthesized. DNA can be double-stranded or single- stranded (coding strand or non-coding strand [antisense]). Conventional ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) are included in the term "nucleic acid" and polynucleotides as are analogs thereof. A nucleic acid backbone may comprise a variety of linkages known in the art, including one or more of sugar-phosphodiester linkages, peptide-nucleic acid bonds (referred to as "peptide nucleic acids" (PNA); Hydig-Hielsen et al., PCT Inti Pub. No. WO 95/32305), phosphorothioate linkages, methylphosphonate linkages or combinations thereof. Sugar moieties of the nucleic acid may be ribose or deoxyribose, or similar compounds having known substitutions, e.g., 2' methoxy substitutions (containing a 2'-O- methylribofuranosyl moiety; see PCT No. WO 98/02582) and/or 2' halide substitutions. Nitrogenous bases may be conventional bases (A, G, C, T, U), known analogs thereof (e.g., inosine or others; see The Biochemistry of the Nucleic Acids 5-36, Adams et al., ed., 11th ed., 1992), or known derivatives of purine or pyrimidine bases (see, Cook, PCT Int'l Pub. No. WO 93/13121) or "abasic" residues in which the backbone includes no nitrogenous base for one or more residues (Arnold et al., U.S. Pat. No. 5,585,481). A nucleic acid may comprise only conventional sugars, bases and linkages, as found in RNA and DNA, or may include both conventional components and substitutions (e.g., conventional bases linked via a methoxy backbone, or a nucleic acid including conventional bases and one or more base analogs). An "isolated nucleic acid molecule", as is generally understood and used herein, refers to a polymer of nucleotides, and includes, but should not limited to DNA and RNA. The "isolated" nucleic acid molecule is purified from its natural in vivo state, obtained by cloning or chemically synthesized.
As used herein, the term “obtaining” is understood herein as manufacturing, purchasing, or otherwise coming into possession of.
As used herein, "oligonucleotides" or "oligos" define a molecule having two or more nucleotides (ribo or deoxyribonucleotides). The size of the oligo will be dictated by the particular situation and ultimately on the particular use thereof and adapted accordingly by the person of ordinary skill. An oligonucleotide can be synthesized chemically or derived by cloning according to well-known methods. While they are usually in a single- stranded form, they can be in a double-stranded form and even contain a "regulatory region". They can contain natural rare or synthetic nucleotides. They can be designed to enhance a chosen criteria like stability for example. Chimeras of deoxyribonucleotides and ribonucleotides may also be within the scope of the present invention.
As used herein, the term “one or more” or “at least one of’ is understood as each value 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 and any value greater than 20.
The term “or” is used inclusively herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.
As used herein, “patient” or “subject” can mean either a human or non-human animal, preferably a mammal. By “subject” is meant any animal, including horses, dogs, cats, pigs, goats, rabbits, hamsters, monkeys, guinea pigs, rats, mice, lizards, snakes, sheep, cattle, fish, and birds. A human subject may be referred to as a patient. It should be noted that clinical observations described herein were made with human subjects and, in at least some embodiments, the subjects are human.
As used herein, “pancreatic ductal adenocarcinoma” or “PDAC” is the type of pancreatic cancer that begins in cells that line the ducts that carry digestive enzymes out of the pancreas and account for about 95% of pancreatic exocrine cancers. PDAC patients generally have poor survival rate, since PDAC are usually diagnosed at the late stages.
As used herein, a “predetermined threshold value” or “threshold value” of a biomarker refers to the level of the biomarker (e.g., the expression level or quantity (e.g., ng/ml) in a biological sample) in a corresponding control sample or group of control samples obtained from, for example, a normal and healthy subject not afflicted with an oncological disease, a subject inflicted with a solid tumor cancer, e.g. PDAC, a sample from a subject whose cancer has progressed without receiving any treatment, a subject whose cancer has progressed after treatment, or a subject from an earlier time point, e.g., prior to treatment, an earlier tumor assessment time point, at an earlier stage of cancer, or prior to onset of cancer. The predetermined threshold value may be determined prior to or concurrently with measurement of marker levels in a biological sample. The control sample may be from the same subject at a previous time or from different subjects. As used herein, a "probe" is meant to include a nucleic acid oligomer or oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, under conditions that promote hybridization, thereby allowing detection of the target sequence or its amplified nucleic acid. Detection may either be direct (z.e., resulting from a probe hybridizing directly to the target or amplified sequence) or indirect (z.e., resulting from a probe hybridizing to an intermediate molecular structure that links the probe to the target or amplified sequence). A probe's "target" generally refers to a sequence within an amplified nucleic acid sequence (z.e., a subset of the amplified sequence) that hybridizes specifically to at least a portion of the probe sequence by standard hydrogen bonding or "base pairing." Sequences that are "sufficiently complementary" allow stable hybridization of a probe sequence to a target sequence, even if the two sequences are not completely complementary. A probe may be labeled or unlabeled. A probe can be produced by molecular cloning of a specific DNA sequence or it can also be synthesized. Numerous primers and probes which can be designed and used in the context of the present invention can be readily determined by a person of ordinary skill in the art to which the present invention pertains.
As used herein, “prophylactic” or “therapeutic” treatment refers to administration to the subject of one or more agents or interventions to provide the desired clinical effect. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing at least one sign or symptom of the unwanted condition, whereas if administered after manifestation of the unwanted condition, the treatment is therapeutic (i.e., it is intended to diminish, ameliorate, or maintain at least one sign or symptom of the existing unwanted condition or side effects therefrom).
As used herein, “sample” or “biological sample” includes a specimen or culture obtained from any source. Biological samples can be obtained from blood (including any blood product, such as whole blood, plasma, serum, buffy coate or specific types of cells of the blood), urine, saliva, seminal fluid, and the like. Biological samples also include tissue samples, such as biopsy tissues or pathological tissues (e.g., tumor) that have previously been frozen or fixed (e.g., formaline snap frozen, cytological processing, etc.).
As use herein, the phrase "specific binding" or "specifically binding" when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope "A," the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled "A" and the antibody will reduce the amount of labeled A bound to the antibody.
The phrase “specific identification” is understood as detection of a marker of interest with sufficiently low background of the assay and cross-reactivity of the reagents used such that the detection method is diagnostically and/or prognostically useful. In certain embodiments, reagents for specific identification of a marker bind to only one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to more than one isoform of the marker. In certain embodiments, reagents for specific identification of a marker bind to all known isoforms of the marker.
The term “such as” is used herein to mean, and is used interchangeably, with the phrase “such as but not limited to.”
As used herein, the term "stage of cancer" or “tumor stage” or “T stage” refers to a qualitative or quantitative assessment of the level of advancement of a cancer or tumor. Criteria used to determine the stage of a cancer or tumor include, but are not limited to, anatomic stage (e.g., the size of the tumor, whether the tumor has spread to other parts of the body and where the cancer has spread), grade (tumor differentiation), and degree of tumor differentiation (see description on staging of pancreatic cancer by the American Cancer Society at https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis- staging/staging.html)
The terms "test compound" and "candidate compound" refer to any chemical entity, pharmaceutical, drug, and the like that is a candidate for use to treat or prevent a disease, illness, sickness, or disorder of bodily function (e.g., cancer). Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. In some embodiments of the present invention, test compounds include antisense compounds.
The term “therapeutic effect” refers to a local or systemic effect in animals, particularly mammals, and more particularly humans caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure,
ZJ mitigation, treatment, or prevention of disease, or in the enhancement of desirable physical or mental development and conditions in an animal or human. A therapeutic effect can be understood as a decrease in tumor growth, decrease in tumor growth rate, stabilization or decrease in tumor burden, stabilization or reduction in tumor size, stabilization or decrease in tumor malignancy, increase in tumor apoptosis, and/or a decrease in tumor angiogenesis.
As used herein, “therapeutically effective amount” means the amount of a compound that, when administered to a patient for treating a disease, is sufficient to effect such treatment for the disease, e.g., the amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment, e.g., is sufficient to ameliorate at least one sign or symptom of the disease, e.g., to prevent progression of the disease or condition, e.g., prevent tumor growth, decrease tumor size, induce tumor cell apoptosis, reduce tumor angiogenesis, prevent metastasis. When administered for preventing a disease, the amount is sufficient to avoid or delay onset of the disease. The “therapeutically effective amount” will vary depending on the compound, its therapeutic index, solubility, the disease and its severity and the age, weight, etc., of the patient to be treated, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment. Administration of a therapeutically effective amount of a compound may require the administration of more than one dose of the compound.
A "transcribed polynucleotide" or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or having a high percentage of identity (e.g., at least 80% identity) with all or a portion of a mature mRNA made by transcription of a marker of the invention and normal post- transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.
As used herein, “treatment,” particularly “active treatment,” refers to performing an intervention to treat cancer in a subject. Depending on the stage and type of cancer, treatment options include, but are not limited to, therapy to, e.g., reduce at least one of the growth rate or tumor burden, reduce or maintain the tumor size or the malignancy (e.g., likelihood of metastasis) of the tumor, increase apoptosis in the tumor by one or more of administration of a therapeutic agent, e.g., chemotherapy, hormone therapy, stimulate the immune system to eliminate cancer cells, e.g., immunotherapy; administration of radiation therapy (e.g., pellet implantation, brachytherapy), or surgical resection of the tumor, or any combination thereof appropriate for treatment of the subject based on grade and stage of the tumor and other routine considerations. Active treatment is distinguished from “watchful waiting” (z.e., not active treatment) in which the subject is monitored, but no interventions are performed. Watchful waiting can include administration of agents that alter effects caused by the recurrence that are not administered to alter the growth or pathology of the recurrence itself.
The recitation of a listing of chemical group(s) in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
Reference will now be made in detail to exemplary embodiments of the invention. While the invention will be described in conjunction with the exemplary embodiments, it will be understood that it is not intended to limit the invention to those embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
C. BIOMARKERS OF THE INVENTION
The invention at hand is based, at least in part, on the surprising discovery that the one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, are differentially regulated between cohorts of solid tumor cancer patients that positively responded to treatment with Coenzyme Q10 and those that did not, and also differentially regulated between pancreatic ductal adenocarcinoma (PDAC) patients that positively responded and had better overall survival after treatment with Coenzyme Q10 and patients that did not have good outcome. In particular, the invention is based on the surprising discovery that markers are either elevated (e.g. GOLPH3) or depressed (e.g. EHD4 and RRAS) in the buffy coat of solid tumor cancer patients, particularly PDAC patients, that responded well to treatment with Coenzyme Q10 in comparison to patients that did not respond to the treatment.
Accordingly, the invention provides methods for prognosing and/or monitoring (e.g., monitoring of disease progression or treatment) cancer development or lack thereof in a cancer subject after a drug treatment.
The invention also provides methods for treating or for adjusting treatment regimens based on prognostic information relating to the levels of one or more of the markers from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., cancer stage, of a subject having cancer, e.g., PDAC. The invention further provides panels and kits for practicing the methods of the invention.
The present invention provides new markers and combinations of markers for use in predicting outcome of treatment with Coenzyme-QlO in a cancer subject. These markers are particularly useful in screening for PDAC subjects that will likely respond positively to Coenzyme Q10.
The markers of the invention include, but are not limited one or more markers among GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage.
In one embodiment, these one or more markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, can serve as useful prognostic biomarkers, serving to inform on the likely development or progression of a solid tumor cancer, e.g. PDAC, in a subject. In still another embodiment, these one or more markers, e.g. GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, can serve as useful predictive biomarkers for helping to assess the likely response of a solid tumor cancer, e.g. PDAC, to a particular treatment.
In some embodiments of the present invention, other biomarkers can be used in connection with the methods of the present invention. As used herein, the term “one or more biomarkers” or “at least one of’ is intended to mean that one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) markers selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage, are assayed, optionally in combination with another PDAC progression marker, and, in various embodiments, more than one other biomarker and in various combinations may be assayed.
Methods, kits, and panels provided herein include any combination of e.g., 1, 2, or 3 markers, selected from the group consisting of GOLPH3, EHD4 and RRAS, or any combination thereof, alone or in combination with one or more pathological or clinical features, e.g., tumor stage., optionally in combination with another PDAC progression marker.
The markers of the invention are meant to encompass any measurable characteristic that reflects in a quantitative or qualitative manner the physiological state of an organism, e.g., whether the organism’s PDAC is progressing. The physiological state of an organism is inclusive of any disease or non-disease state, e.g., a subject is having PDAC or a subject is healthy. Said another way, the markers of the invention include characteristics that can be objectively measured and evaluated as indicators of normal processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention, including, in particular, progression of cancer. Examples of markers include, for example, polypeptides, peptides, polypeptide fragments, proteins, antibodies, hormones, polynucleotides, RNA or RNA fragments, microRNA (miRNAs), lipids (e.g. structural lipids or signaling lipids), polysaccharides, and other bodily metabolites that are indicative and/or predictive of the development of an oncological disease.
In other embodiments, the present invention also involves the analysis and consideration of any clinical and/or patient-related health data, for example, data obtained from an Electronic Medical Record (e.g., collection of electronic health information about individual patients or populations relating to various types of data, such as, demographics, medical history, medication and allergies, immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and billing information).
In certain embodiments, the marker, e.g. marker of responders to a drug treatment, is GOLPH3 (also known as golgi phosphoprotein 3, GOPP1, GPP34, MIDAS, Vps74), which is used herein to refer to both the gene and the protein, in both processed and unprocessed forms, unless clearly indicated otherwise by context. The NCBI gene ID for GOLPH3 is 64083 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). GOLPH3 is located on chromosome 5, sequence NC_000005.10 (32124711..32174319). GOLPH3 transcript is listed under accession number NM_004448.4.
In certain embodiments, an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
In certain embodiments, the marker, e.g. marker of responders to a drug treatment, is EHD4 (also known as EH domain containing 4, PAST4), which is used herein to refer to both the gene and the protein, in both processed and unprocessed forms, unless clearly indicated otherwise by context. The NCBI gene ID for EHD4 is 30844 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). EHD4 is located on chromosome 15, sequence NC_000015.10 (41895933..41972557). EHD4 transcript is listed under accession number NM_139265.4.
In certain embodiments, a decrease in the expression level of EHD4 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
In certain embodiments, the marker, e.g. marker of responders to a drug treatment, is RRAS (also known as RAS related, or R-RAS), which is used herein to refer to both the gene and the protein, in both processed and unprocessed forms, unless clearly indicated otherwise by context. The NCBI gene ID for RRAS is 6237 and detailed information can be found at the NCBI website (incorporated herein by reference in the version available on the filing date of the application to which this application claims priority). RRAS is located on chromosome 19, sequence NC_000019.10 (49635292..49640143). RRAS transcript is listed under accession number NM_006270.5 (Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority).
In certain embodiments, a decrease in the expression level of RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
Each GenBank number is incorporated herein by reference in the version available on the filing date of the application to which this application claims priority. The protein markers are not limited to the protein sequences set forth in the GenBank Accession Numbers or sequence listing.
In certain embodiments, the prognostic signature is obtained by (1) detecting the level of expression of at least one of the markers selected from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the expression level of the at least one marker with a predetermined threshold value, and (3) determining if the at least one marker is above or below a certain threshold level. If the at least one marker is above or below the threshold level, then the prognostic signature is predictive or indicative of a cancer subject who will be responsive to a drug treatment, e.g. Coenzyme Q10 treatment. In certain embodiments, the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least one marker from the group consisting of GOLPH3, EHD4 and RRAS.
In certain embodiments, the prognostic signature is obtained by (1) detecting the expression level of at least two of the markers from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the expression level of the at least two marker with predetermined threshold values, and (3) determining if the expression levels of at least two markers are above or below certain threshold levels. If the at least two markers is above or below the threshold level, then the prognostic signature is predictive or indicative of cancer subject who will be responsive to a drug treatment. In certain embodiments, the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least two markers from the group consisting of GOLPH3, EHD4 and RRAS.
In certain embodiments, the prognostic signature is obtained by (1) detecting the level of at least three of the markers from the group consisting of GOLPH3, EHD4 and RRAS in a biological sample, (2) comparing the level of the at least three marker with predetermined threshold values, and (3) determining if the at least two markers are above or below certain threshold levels. If the at least three markers is above or below the threshold level, then the prognostic signature is predictive or indicative of cancer subject who will be responsive to a drug treatment. In certain embodiments, the prognostic signature can be determined based on an algorithm or computer program that predicts whether the biological sample is from a subject with who will be responsive to a drug treatment based on the level of the at least three markers from the group consisting of GOLPH3, EHD4 and RRAS.
Moreover, drug treatment responder profile or signature may be obtained by detecting at least one of the markers from the group consisting of GOLPH3, EDH4 and RRAS, in combination with at least one other marker, or more preferably, with at least two other markers, or still more preferably, with at least three other markers, or even more preferably with at least four other markers. Still further, the markers from the group consisting of GOLPH3, EDH4 and RRAS in certain embodiments, may be used in combination with at least five other markers, or at least six other markers, or at least seven other markers, or at least eight other markers, or at least nine other markers, or at least ten other markers, or at least eleven other markers, or at least twelve other markers, or at least thirteen other markers, or at least fourteen other markers, or at least fifteen other markers, or at least sixteen other markers, or at least seventeen other markers, or at least eighteen other markers, or at least nineteen other markers, or at least twenty other markers. Further still, the markers from the group consisting of GOLPH3, EDH4 and RRAS may be used in combination with a multitude of other markers, including, for example, with between about 20-50 other markers, or between 50-100, or between 100-500, or between 500-1000, or between 1000-10,000 or markers or more.
In certain embodiments, the markers of the invention can include variant sequences. More particularly, certain binding agents/reagents used for detecting certain of the markers of the invention can bind and/or identify variants of these certain markers of the invention. As used herein, the term "variant" encompasses nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to a sequence disclosed herein. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.
Variant sequences generally differ from the specifically identified sequence only by conservative substitutions, deletions or modifications. As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gin, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.
Polypeptide and polynucleotide sequences may be aligned, and percentages of identical amino acids or nucleotides in a specified region may be determined against another polypeptide or polynucleotide sequence, using computer algorithms that are publicly available. The percentage identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage identity.
Two exemplary algorithms for aligning and identifying the identity of polynucleotide sequences are the BLASTN and FASTA algorithms. The alignment and identity of polypeptide sequences may be examined using the BLASTP algorithm. BLASTX and FASTX algorithms compare nucleotide query sequences translated in all reading frames against polypeptide sequences. The FASTA and FASTX algorithms are described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444-2448, 1988; and in Pearson, Methods in Enzymol. 183:63-98, 1990. The FASTA software package is available from the University of Virginia, Charlottesville, Va. 22906-9025. The FASTA algorithm, set to the default parameters described in the documentation and distributed with the algorithm, may be used in the determination of polynucleotide variants. The readme files for FASTA and FASTX Version 2. Ox that are distributed with the algorithms describe the use of the algorithms and describe the default parameters.
The BLASTN software is available on the NCBI anonymous FTP server and is available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894. The BLASTN algorithm Version 2.0.6 [Sep. 10, 1998] and Version 2.0.11 [Jan. 20, 2000] set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, is described at NCBI's website and in the publication of Altschul, et al., "Gapped BLAST and PSLBLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402, 1997.
In an alternative embodiment, variant polypeptides are encoded by polynucleotide sequences that hybridize to a disclosed polynucleotide under stringent conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C, and most preferably greater than about 37°C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. An example of "stringent conditions" is prewashing in a solution of 6XSSC, 0.2% SDS; hybridizing at 65°C, 6XSSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1XSSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2XSSC, 0.1% SDS at 65°C.
The invention provides for the use of various combinations and sub-combinations of markers. It is understood that any single marker or combination of the markers provided herein can be used in the invention unless clearly indicated otherwise.
D. DETECTION AND/OR MEASUREMENT OF BIOMARKERS
The present invention contemplates any suitable means, techniques, and/or procedures for detecting and/or measuring the biomarkers of the invention. The skilled artisan will appreciate that the methodologies employed to measure the biomarkers of the invention will depend at least on the type of biomarker being detected or measured (e.g., lipid or polypeptide biomarker) and the source of the biological sample (e.g., whole blood versus biopsy tissue). Certain biological samples may also require certain specialized treatments prior to measuring the biomarkers of the invention, e.g., the extraction of lipids from a serum in the case of lipid markers being measured.
1. DETECTION OF PROTEIN MARKERS
The present invention contemplates any suitable method for detecting polypeptide biomarkers of the invention. In certain embodiments, the detection method is an immunodetection method involving an antibody that specifically binds to one or more of the proteins from the group consisting of GOLPH3, EDH4 and RRAS. The steps of various useful immunodetection methods have been described in the scientific literature, such as, e.g., Nakamura et al. (1987), which is incorporated herein by reference.
In general, the immunobinding methods include obtaining a sample suspected of containing a biomarker protein, peptide or antibody, and contacting the sample with an antibody or protein or peptide in accordance with the present invention, as the case may be, under conditions effective to allow the formation of immunocomplexes. The immunobinding methods include methods for detecting or quantifying the amount of a reactive component in a sample, which methods require the detection or quantitation of any immune complexes formed during the binding process. Here, one would obtain a sample suspected of containing a pancreatic specific protein, peptide or a corresponding antibody, and contact the sample with an antibody or encoded protein or peptide, as the case may be, and then detect or quantify the amount of immune complexes formed under the specific conditions.
In terms of biomarker detection, the biological sample analyzed may be any sample that is suspected of containing one more proteins from the group consisting of GOLPH3, EDH4 and RRAS. The biological sample may be, for example, a pancreatic section or specimen, a homogenized tissue extract, an isolated cell, a cell membrane preparation, separated or purified forms of any of the above protein-containing compositions, or even any biological fluid that comes into contact with pancreatic tissues, including blood or lymphatic fluid.
Contacting the chosen biological sample with the protein under conditions effective and for a period of time sufficient to allow the formation of immune complexes (primary immune complexes). Generally, complex formation is a matter of simply adding the composition to the biological sample and incubating the mixture for a period of time long enough for the antibodies to form immune complexes with, i.e., to bind to, any antigens present. After this time, the sample-antibody composition, such as a tissue section, ELISA plate, dot blot or Western blot, will generally be washed to remove any non- specific ally bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
In general, the detection of immunocomplex formation is well known in the art and may be achieved through the application of numerous approaches. These methods are generally based upon the detection of a label or marker, such as any radioactive, fluorescent, biological or enzymatic tags or labels of standard use in the art. U.S. patents concerning the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, each incorporated herein by reference. Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art. The protein employed in the detection may itself be linked to a detectable label, wherein one would then simply detect this label, thereby allowing the amount of the primary immune complexes in the composition to be determined.
Alternatively, the first added component that becomes bound within the primary immune complexes may be detected by means of a second binding ligand that has binding affinity for the encoded protein, peptide or corresponding antibody. In these cases, the second binding ligand may be linked to a detectable label. The second binding ligand is itself often an antibody, which may thus be termed a "secondary" antibody. The primary immune complexes are contacted with the labeled, secondary binding ligand, or antibody, under conditions effective and for a period of time sufficient to allow the formation of secondary immune complexes. The secondary immune complexes are then generally washed to remove any non- specifically bound labeled secondary antibodies or ligands, and the remaining label in the secondary immune complexes is then detected.
Further methods include the detection of primary immune complexes by a two step approach. A second binding ligand, such as an antibody, that has binding affinity for the encoded protein, peptide or corresponding antibody is used to form secondary immune complexes, as described above. After washing, the secondary immune complexes are contacted with a third binding ligand or antibody that has binding affinity for the second antibody, again under conditions effective and for a period of time sufficient to allow the formation of immune complexes (tertiary immune complexes). The third ligand or antibody is linked to a detectable label, allowing detection of the tertiary immune complexes thus formed. This system may provide for signal amplification if this is desired.
The immunodetection methods of the present invention have evident utility in the prognosis of response to a drug treatment. Here, a biological or clinical sample suspected of containing either the encoded protein or peptide or corresponding antibody is used. However, these embodiments also have applications to non-clinical samples, such as in the tittering of antigen or antibody samples, in the selection of hybridomas, and the like.
The present invention, in particular, contemplates the use of ELISAs as a type of immunodetection assay. It is contemplated that the biomarker proteins or peptides of the invention will find utility as immunogens in ELISA assays in prognostic and monitoring response to a drug treatment. Immunoassays, in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELIS As) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and Western blotting, dot blotting, FACS analyses, and the like also may be used.
In one exemplary ELISA, antibodies binding to the biomarkers of the invention are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a test composition suspected of containing the marker antigen, such as a clinical sample, is added to the wells. After binding and washing to remove non- specific ally bound immune complexes, the bound antigen may be detected. Detection is generally achieved by the addition of a second antibody specific for the target protein, that is linked to a detectable label. This type of ELISA is a simple "sandwich ELISA." Detection also may be achieved by the addition of a second antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.
In another exemplary ELISA, the samples suspected of containing the marker of cancer subjects responsive to a drug treatment are immobilized onto the well surface and then contacted with the anti-biomarker antibodies of the invention. After binding and washing to remove non-specifically bound immune complexes, the bound antigen is detected. Where the initial antibodies are linked to a detectable label, the immune complexes may be detected directly. Again, the immune complexes may be detected using a second antibody that has binding affinity for the first antibody, with the second antibody being linked to a detectable label.
Irrespective of the format employed, ELIS As have certain features in common, such as coating, incubating or binding, washing to remove non-specifically bound species, and detecting the bound immune complexes. These are described as follows.
In coating a plate with either antigen or antibody, one will generally incubate the wells of the plate with a solution of the antigen or antibody, either overnight or for a specified period of hours. The wells of the plate will then be washed to remove incompletely adsorbed material. Any remaining available surfaces of the wells are then "coated" with a nonspecific protein that is antigenically neutral with regard to the test antisera. These include bovine serum albumin (BSA), casein and solutions of milk powder. The coating allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific binding of antisera onto the surface.
In ELIS As, it is probably more customary to use a secondary or tertiary detection means rather than a direct procedure. Thus, after binding of a protein or antibody to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the control human pancreatic, cancer and/or clinical or biological sample to be tested under conditions effective to allow immune complex (antigen/antibody) formation. Detection of the immune complex then requires a labeled secondary binding ligand or antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand.
The phrase "under conditions effective to allow immune complex (antigen/antibody) formation" means that the conditions preferably include diluting the antigens and antibodies with solutions such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween. These added agents also tend to assist in the reduction of nonspecific background.
The "suitable" conditions also mean that the incubation is at a temperature and for a period of time sufficient to allow effective binding. Incubation steps are typically from about 1 to 2 to 4 h, at temperatures preferably on the order of 25 to 27°C, or may be overnight at about 4°C or so.
Following all incubation steps in an ELISA, the contacted surface is washed so as to remove non-complexed material. A preferred washing procedure includes washing with a solution such as PBS/Tween, or borate buffer. Following the formation of specific immune complexes between the test sample and the originally bound material, and subsequent washing, the occurrence of even minute amounts of immune complexes may be determined.
To provide a detecting means, the second or third antibody will have an associated label to allow detection. Preferably, this will be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact and incubate the first or second immune complex with a urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase-conjugated antibody for a period of time and under conditions that favor the development of further immune complex formation (e.g., incubation for 2 h at room temperature in a PBS -containing solution such as PBS -Tween).
After incubation with the labeled antibody, and subsequent to washing to remove unbound material, the amount of label is quantified, e.g., by incubation with a chromogenic substrate such as urea and bromocresol purple. Quantitation is then achieved by measuring the degree of color generation, e.g., using a visible spectra spectrophotometer.
The protein biomarkers of the invention can also be measured, quantitated, detected, and otherwise analyzed using protein mass spectrometry methods and instrumentation. Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins. Although not intending to be limiting, two approaches are typically used for characterizing proteins using mass spectrometry. In the first, intact proteins are ionized and then introduced to a mass analyzer. This approach is referred to as "top-down" strategy of protein analysis. The two primary methods for ionization of whole proteins are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). In the second approach, proteins are enzymatically digested into smaller peptides using a protease such as trypsin. Subsequently these peptides are introduced into the mass spectrometer and identified by peptide mass fingerprinting or tandem mass spectrometry. Hence, this latter approach (also called "bottom-up" proteomics) uses identification at the peptide level to infer the existence of proteins.
Whole protein mass analysis of the biomarkers of the invention can be conducted using time-of-flight (TOF) MS, or Fourier transform ion cyclotron resonance (FT-ICR). These two types of instruments are useful because of their wide mass range, and in the case of FT-ICR, its high mass accuracy. The most widely used instruments for peptide mass analysis are the MAEDI time-of-flight instruments as they permit the acquisition of peptide mass fingerprints (PMFs) at high pace (1 PMF can be analyzed in approx. 10 sec). Multiple stage quadrupole-time-of-flight and the quadrupole ion trap also find use in this application.
The protein biomarkers of the invention can also be measured in complex mixtures of proteins and molecules that co-exist in a biological medium or sample, however, fractionation of the sample may be required and is contemplated herein. It will be appreciated that ionization of complex mixtures of proteins can result in situation where the more abundant proteins have a tendency to “drown” or suppress signals from less abundant proteins in the same sample. In addition, the mass spectrum from a complex mixture can be difficult to interpret because of the overwhelming number of mixture components. Fractionation can be used to first separate any complex mixture of proteins prior to mass spectrometry analysis. Two methods are widely used to fractionate proteins, or their peptide products from an enzymatic digestion. The first method fractionates whole proteins and is called two- dimensional gel electrophoresis. The second method, high performance liquid chromatography (LC or HPLC) is used to fractionate peptides after enzymatic digestion. In some situations, it may be desirable to combine both of these techniques. Any other suitable methods known in the art for fractionating protein mixtures are also contemplated herein.
Gel spots identified on a 2D Gel are usually attributable to one protein. If the identity of the protein is desired, usually the method of in-gel digestion is applied, where the protein spot of interest is excised, and digested proteolytic ally. The peptide masses resulting from the digestion can be determined by mass spectrometry using peptide mass fingerprinting. If this information does not allow unequivocal identification of the protein, its peptides can be subject to tandem mass spectrometry for de novo sequencing.
Characterization of protein mixtures using HPLC/MS may also be referred to in the art as “shotgun proteomics” and MuDPIT (Multi-Dimensional Protein Identification Technology). A peptide mixture that results from digestion of a protein mixture is fractionated by one or two steps of liquid chromatography (LC). The eluent from the chromatography stage can be either directly introduced to the mass spectrometer through electrospray ionization, or laid down on a series of small spots for later mass analysis using MALDI.
The protein biomarkers of the present invention can be identified using MS using a variety of techniques, all of which are contemplated herein. Peptide mass fingerprinting uses the masses of proteolytic peptides as input to a search of a database of predicted masses that would arise from digestion of a list of known proteins. If a protein sequence in the reference list gives rise to a significant number of predicted masses that match the experimental values, there is some evidence that this protein was present in the original sample. It will be further appreciated that the development of methods and instrumentation for automated, data- dependent electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in conjunction with microcapillary liquid chromatography (LC) and database searching has significantly increased the sensitivity and speed of the identification of gel-separated proteins. Microcapillary LC-MS/MS has been used successfully for the large-scale identification of individual proteins directly from mixtures without gel electrophoretic separation (Link et al., 1999; Opitek et al., 1997).
Several recent methods allow for the quantitation of proteins by mass spectrometry. For example, stable (e.g., non-radioactive) heavier isotopes of carbon (13C) or nitrogen (15N) can be incorporated into one sample while the other one can be labeled with corresponding light isotopes (e.g. 12C and 14N). The two samples are mixed before the analysis. Peptides derived from the different samples can be distinguished due to their mass difference. The ratio of their peak intensities corresponds to the relative abundance ratio of the peptides (and proteins). The most popular methods for isotope labeling are SILAC (stable isotope labeling by amino acids in cell culture), trypsin-catalyzed 180 labeling, ICAT (isotope coded affinity tagging), iTRAQ (isobaric tags for relative and absolute quantitation). “Semi-quantitative” mass spectrometry can be performed without labeling of samples.
Typically, this is done with MALDI analysis (in linear mode). The peak intensity, or the peak area, from individual molecules (typically proteins) is here correlated to the amount of protein in the sample. However, the individual signal depends on the primary structure of the protein, on the complexity of the sample, and on the settings of the instrument. Other types of "label-free" quantitative mass spectrometry, uses the spectral counts (or peptide counts) of digested proteins as a means for determining relative protein amounts.
In one embodiment, any one or more of the protein markers of the invention can be identified and quantified from a complex biological sample using mass spectroscopy in accordance with the following exemplary method, which is not intended to limit the invention or the use of other mass spectrometry-based methods.
In the first step of this embodiment, (A) a biological sample, e.g., a biological sample from a subject having cancer, which comprises a complex mixture of protein (including at least one biomarker of interest) is fragmented and labeled with a stable isotope X. (B) Next, a known amount of an internal standard is added to the biological sample, wherein the internal standard is prepared by fragmenting a standard protein that is identical to the at least one target biomarker of interest, and labeled with a stable isotope Y. (C) This sample obtained is then introduced in an LC-MS/MS device, and multiple reaction monitoring (MRM) analysis is performed using MRM transitions selected for the internal standard to obtain an MRM chromatogram. (D) The MRM chromatogram is then viewed to identify a target peptide biomarker derived from the biological sample that shows the same retention time as a peptide derived from the internal standard (an internal standard peptide), and quantifying the target protein biomarker in the test sample by comparing the peak area of the internal standard peptide with the peak area of the target peptide biomarker.
Any suitable biological sample may be used as a starting point for LC-MS/MS/MRM analysis, including biological samples derived blood, urine, saliva, hair, cells, cell tissues, biopsy materials, and treated products thereof; and protein-containing samples prepared by gene recombination techniques.
Each of the above steps (A) to (D) is described further below.
Step (A) (Fragmentation and Labeling). In step (A), the target protein biomarker is fragmented to a collection of peptides, which is subsequently labeled with a stable isotope X. To fragment the target protein, for example, methods of digesting the target protein with a proteolytic enzyme (protease) such as trypsin, and chemical cleavage methods, such as a method using cyanogen bromide, can be used. Digestion by protease is preferable. It is known that a given mole quantity of protein produces the same mole quantity for each tryptic peptide cleavage product if the proteolytic digest is allowed to proceed to completion. Thus, determining the mole quantity of tryptic peptide to a given protein allows determination of the mole quantity of the original protein in the sample. Absolute quantification of the target protein can be accomplished by determining the absolute amount of the target protein-derived peptides contained in the protease digestion (collection of peptides). Accordingly, in order to allow the proteolytic digest to proceed to completion, reduction and alkylation treatments are preferably performed before protease digestion with trypsin to reduce and alkylate the disulfide bonds contained in the target protein.
Subsequently, the obtained digest (collection of peptides, comprising peptides of the target biomarker in the biological sample) is subjected to labeling with a stable isotope X. Examples of stable isotopes X include 1H and 2H for hydrogen atoms, 12C and 13C for carbon atoms, and 14N and 15N for nitrogen atoms. Any isotope can be suitably selected therefrom. Labeling by a stable isotope X can be performed by reacting the digest (collection of peptides) with a reagent containing the stable isotope. Preferable examples of such reagents that are commercially available include mTRAQ (registered trademark) (produced by Applied Biosystems), which is an amine- specific stable isotope reagent kit. mTRAQ is composed of 2 or 3 types of reagents (mTRAQ-light and mTRAQ-heavy; or mTRAQ-DO, mTRAQ-D4, and mTRAQ-D8) that have a constant mass difference therebetween as a result of isotope-labeling, and that are bound to the N-terminus of a peptide or the primary amine of a lysine residue.
Step (B) (Addition of the Internal Standard). In step (B), a known amount of an internal standard is added to the sample obtained in step (A). The internal standard used herein is a digest (collection of peptides) obtained by fragmenting a protein (standard protein) consisting of the same amino acid sequence as the target protein (target biomarker) to be measured, and labeling the obtained digest (collection of peptides) with a stable isotope Y. The fragmentation treatment can be performed in the same manner as above for the target protein. Labeling with a stable isotope Y can also be performed in the same manner as above for the target protein. However, the stable isotope Y used herein must be an isotope that has a mass different from that of the stable isotope X used for labeling the target protein digest. For example, in the case of using the aforementioned mTRAQ (registered trademark) (produced by Applied Biosystems), when mTRAQ-light is used to label a target protein digest, mTRAQ-heavy should be used to label a standard protein digest.
Step (C) (LC-MS/MS and MRM Analysis). In step (C), the sample obtained in step (B) is first placed in an LC-MS/MS device, and then multiple reaction monitoring (MRM) analysis is performed using MRM transitions selected for the internal standard. By LC (liquid chromatography) using the LC-MS/MS device, the sample (collection of peptides labeled with a stable isotope) obtained in step (B) is separated first by one-dimensional or multi-dimensional high-performance liquid chromatography. Specific examples of such liquid chromatography include cation exchange chromatography, in which separation is conducted by utilizing electric charge difference between peptides; and reversed-phase chromatography, in which separation is conducted by utilizing hydrophobicity difference between peptides. Both of these methods may be used in combination.
Subsequently, each of the separated peptides is subjected to tandem mass spectrometry by using a tandem mass spectrometer (MS/MS spectrometer) comprising two mass spectrometers connected in series. The use of such a mass spectrometer enables the detection of several fmol levels of a target protein. Furthermore, MS/MS analysis enables the analysis of internal sequence information on peptides, thus enabling identification without false positives. Other types of MS analyzers may also be used, including magnetic sector mass spectrometers (Sector MS), quadrupole mass spectrometers (QMS), time-of-flight mass spectrometers (TOFMS), and Fourier transform ion cyclotron resonance mass spectrometers (FT-ICRMS), and combinations of these analyzers.
Subsequently, the obtained data are put through a search engine to perform a spectral assignment and to list the peptides experimentally detected for each protein. The detected peptides are preferably grouped for each protein, and preferably at least three fragments having an m/z value larger than that of the precursor ion and at least three fragments with an m/z value of, preferably, 500 or more are selected from each MS/MS spectrum in descending order of signal strength on the spectrum. From these, two or more fragments are selected in descending order of strength, and the average of the strength is defined as the expected sensitivity of the MRR transitions. When a plurality of peptides is detected from one protein, at least two peptides with the highest sensitivity are selected as standard peptides using the expected sensitivity as an index.
Step (D) (Quantification of the Target Protein in the Test Sample). Step (D) comprises identifying, in the MRM chromatogram detected in step (C), a peptide derived from the target protein (a target biomarker of interest) that shows the same retention time as a peptide derived from the internal standard (an internal standard peptide), and quantifying the target protein in the test sample by comparing the peak area of the internal standard peptide with the peak area of the target peptide. The target protein can be quantified by utilizing a calibration curve of the standard protein prepared beforehand.
The calibration curve can be prepared by the following method. First, a recombinant protein consisting of an amino acid sequence that is identical to that of the target biomarker protein is digested with a protease such as trypsin, as described above. Subsequently, precursor- fragment transition selection standards (PFTS) of a known concentration are individually labeled with two different types of stable isotopes (i.e., one is labeled with a stable isomer used to label an internal standard peptide (labeled with IS), whereas the other is labeled with a stable isomer used to label a target peptide (labeled with T). A plurality of samples are produced by blending a certain amount of the IS-labeled PTFS with various concentrations of the T-labeled PTFS. These samples are placed in the aforementioned LC- MS/MS device to perform MRM analysis. The area ratio of the T-labeled PTFS to the IS- labeled PTFS (T-labeled PTFS/IS-labeled PTFS) on the obtained MRM chromatogram is plotted against the amount of the T-labeled PTFS to prepare a calibration curve. The absolute amount of the target protein contained in the test sample can be calculated by reference to the calibration curve.
2. DETECTION OF NUCLEIC ACIDS CORRESPONDING TO PROTEIN MARKERS
In certain embodiments, the invention involves the detection of nucleic acid biomarkers, e.g., the corresponding genes or mRNA of the protein markers of the invention.
In various embodiments, the prognostic methods of the present invention generally involve the determination of expression levels of a set of genes in a biological sample. Determination of gene expression levels in the practice of the inventive methods may be performed by any suitable method. For example, determination of gene expression levels may be performed by detecting the expression of mRNA expressed from the genes of interest and/or by detecting the expression of a polypeptide encoded by the genes.
For detecting nucleic acids encoding biomarkers of the invention, any suitable method can be used, including, but not limited to, Southern blot analysis, Northern blot analysis, polymerase chain reaction (PCR) (see, for example, U.S. Pat. Nos. 4,683,195; 4,683,202, and 6,040,166; "PCR Protocols: A Guide to Methods and Applications", Innis et al. (Eds), 1990, Academic Press: New York), reverse transcriptase PCR (RT-PCT), anchored PCR, competitive PCR (see, for example, U.S. Pat. No. 5,747,251), rapid amplification of cDNA ends (RACE) (see, for example, "Gene Cloning and Analysis: Current Innovations, 1997, pp. 99-115); ligase chain reaction (LCR) (see, for example, EP 01 320 308), one-sided PCR (Ohara et al., Proc. Natl. Acad. Sci., 1989, 86: 5673-5677), in situ hybridization, Taqman- based assays (Holland et al., Proc. Natl. Acad. Sci., 1991, 88: 7276-7280), differential display (see, for example, Liang et al., Nucl. Acid. Res., 1993, 21: 3269-3275) and other RNA fingerprinting techniques, nucleic acid sequence based amplification (NASBA) and other transcription based amplification systems (see, for example, U.S. Pat. Nos. 5,409,818 and 5,554,527), Qbeta Replicase, Strand Displacement Amplification (SDA), Repair Chain Reaction (RCR), nuclease protection assays, subtraction-based methods, Rapid-Scan®, etc.
In other embodiments, gene expression levels of biomarkers of interest may be determined by amplifying complementary DNA (cDNA) or complementary RNA (cRNA) produced from mRNA and analyzing it using a microarray. A number of different array configurations and methods of their production are known to those skilled in the art (see, for example, U.S. Pat. Nos. 5,445,934; 5,532,128; 5,556,752; 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,472,672; 5,527,681; 5,529,756; 5,545,531; 5,554,501; 5,561,071; 5,571,639; 5,593,839; 5,599,695; 5,624,711; 5,658,734; and 5,700,637). Microarray technology allows for the measurement of the steady-state mRNA level of a large number of genes simultaneously. Microarrays currently in wide use include cDNA arrays and oligonucleotide arrays. Analyses using microarrays are generally based on measurements of the intensity of the signal received from a labeled probe used to detect a cDNA sequence from the sample that hybridizes to a nucleic acid probe immobilized at a known location on the microarray (see, for example, U.S. Pat. Nos. 6,004,755; 6,218,114; 6,218,122; and 6,271,002). Array-based gene expression methods are known in the art and have been described in numerous scientific publications as well as in patents (see, for example, M. Schena et al., Science, 1995, 270: 467-470; M. Schena et al., Proc. Natl. Acad. Sci. USA 1996, 93: 10614-10619; J. J. Chen et al., Genomics, 1998, 51: 313-324; U.S. Pat. Nos. 5,143,854; 5,445,934; 5,807,522; 5,837,832; 6,040,138; 6,045,996; 6,284,460; and 6,607,885).
Nucleic acid used as a template for amplification can be isolated from cells contained in the biological sample, according to standard methodologies. (Sambrook et al., 1989) The nucleic acid may be genomic DNA or fractionated or whole cell RNA. Where RNA is used, it may be desired to convert the RNA to a complementary cDNA. In one embodiment, the RNA is whole cell RNA and is used directly as the template for amplification.
Pairs of primers that selectively hybridize to nucleic acids corresponding to any of the drug treatment responsive biomarker nucleotide sequences identified herein are contacted with the isolated nucleic acid under conditions that permit selective hybridization. Once hybridized, the nucleic acid:primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as "cycles," are conducted until a sufficient amount of amplification product is produced. Next, the amplification product is detected. In certain applications, the detection may be performed by visual means. Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of incorporated radiolabel or fluorescent label or even via a system using electrical or thermal impulse signals (Affymax technology; Bellus, 1994). Following detection, one may compare the results seen in a given patient with a statistically significant reference group of normal patients and cancer patients. In this way, it is possible to correlate the amount of nucleic acid detected with various clinical states.
The term primer, as defined herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Typically, primers are oligonucleotides from ten to twenty base pairs in length, but longer sequences may be employed. Primers may be provided in double- stranded or single-stranded form, although the single- stranded form is preferred.
A number of template dependent processes are available to amplify the nucleic acid sequences present in a given template sample. One of the best known amplification methods is the polymerase chain reaction (referred to as PCR) which is described in detail in U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,800,159, and in Innis et al., 1990, each of which is incorporated herein by reference in its entirety.
In PCR, two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target nucleic acid sequence. An excess of deoxynucleoside triphosphates are added to a reaction mixture along with a DNA polymerase, e.g., Taq polymerase. If the target nucleic acid sequence is present in a sample, the primers will bind to the target nucleic acid and the polymerase will cause the primers to be extended along the target nucleic acid sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target nucleic acid to form reaction products, excess primers will bind to the target nucleic acid and to the reaction products and the process is repeated.
A reverse transcriptase PCR amplification procedure may be performed in order to quantify the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989. Alternative methods for reverse transcription utilize thermostable DNA polymerases. These methods are described in WO 90/07641 filed Dec. 21, 1990. Polymerase chain reaction methodologies are well known in the art.
Another method for amplification is the ligase chain reaction ("LCR"), disclosed in European Application No. 320 308, incorporated herein by reference in its entirely. In LCR, two complementary probe pairs are prepared, and in the presence of the target sequence, each pair will bind to opposite complementary strands of the target such that they abut. In the presence of a ligase, the two probe pairs will link to form a single unit. By temperature cycling, as in PCR, bound ligated units dissociate from the target and then serve as "target sequences" for ligation of excess probe pairs. U.S. Pat. No. 4,883,750 describes a method similar to LCR for binding probe pairs to a target sequence.
Qbeta Replicase, described in PCT Application No. PCT/US87/00880, also may be used as still another amplification method in the present invention. In this method, a replicative sequence of RNA which has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase. The polymerase will copy the replicative sequence which may then be detected.
An isothermal amplification method, in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'-[a-thio]- triphosphates in one strand of a restriction site also may be useful in the amplification of nucleic acids in the present invention. Walker et al. (1992), incorporated herein by reference in its entirety.
Strand Displacement Amplification (SDA) is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, i.e., nick translation. A similar method, called Repair Chain Reaction (RCR), involves annealing several probes throughout a region targeted for amplification, followed by a repair reaction in which only two of the four bases are present. The other two bases may be added as biotinylated derivatives for easy detection. A similar approach is used in SDA. Target specific sequences also may be detected using a cyclic probe reaction (CPR). In CPR, a probe having 3' and 5' sequences of non-specific DNA and a middle sequence of specific RNA is hybridized to DNA which is present in a sample. Upon hybridization, the reaction is treated with RNase H, and the products of the probe identified as distinctive products which are released after digestion. The original template is annealed to another cycling probe and the reaction is repeated.
Still other amplification methods described in GB Application No. 2 202 328, and in PCT Application No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety, may be used in accordance with the present invention. In the former application, "modified" primers are used in a PCR like, template and enzyme dependent synthesis. The primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme). In the latter application, an excess of labeled probes are added to a sample. In the presence of the target sequence, the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.
Other contemplated nucleic acid amplification procedures include transcription-based amplification systems (TAS), including nucleic acid sequence based amplification (NASBA) and 3SR. Kwoh et al. (1989); Gingeras et al., PCT Application WO 88/10315, incorporated herein by reference in their entirety. In NASBA, the nucleic acids may be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a clinical sample, treatment with lysis buffer and minispin columns for isolation of DNA and RNA or guanidinium chloride extraction of RNA. These amplification techniques involve annealing a primer which has target specific sequences. Following polymerization, DNA/RNA hybrids are digested with RNase H while double stranded DNA molecules are heat denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target specific primer, followed by polymerization. The double-stranded DNA molecules are then multiply transcribed by a polymerase such as T7 or SP6. In an isothermal cyclic reaction, the RNA's are reverse transcribed into double stranded DNA, and transcribed once against with a polymerase such as T7 or SP6. The resulting products, whether truncated or complete, indicate target specific sequences.
Davey et al., European Application No. 329 822 (incorporated herein by reference in its entirely) disclose a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double- stranded DNA (dsDNA), which may be used in accordance with the present invention. The ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase). The RNA is then removed from the resulting DNA:RNA duplex by the action of ribonuclease H(RNase H, an RNase specific for RNA in duplex with either DNA or RNA). The resultant ssDNA is a second template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5' to its homology to the template. This primer is then extended by DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase 1), resulting in a double-stranded DNA ("dsDNA") molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence. This promoter sequence may be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies may then re-enter the cycle leading to very swift amplification. With proper choice of enzymes, this amplification may be done isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence may be chosen to be in the form of either DNA or RNA.
Miller et al., PCT Application WO 89/06700 (incorporated herein by reference in its entirety) disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts. Other amplification methods include "race" and "one-sided PCR." Frohman (1990) and Ohara et al. (1989), each herein incorporated by reference in their entirety.
Methods based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting "di-oligonucleotide", thereby amplifying the di-oligonucleotide, also may be used in the amplification step of the present invention. Wu et al. (1989), incorporated herein by reference in its entirety.
Oligonucleotide probes or primers of the present invention may be of any suitable length, depending on the particular assay format and the particular needs and targeted sequences employed. In a preferred embodiment, the oligonucleotide probes or primers are at least 10 nucleotides in length (preferably, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 . . . ) and they may be adapted to be especially suited for a chosen nucleic acid amplification system and/or hybridization system used. Longer probes and primers are also within the scope of the present invention as well known in the art. Primers having more than 30, more than 40, more than 50 nucleotides and probes having more than 100, more than 200, more than 300, more than 500 more than 800 and more than 1000 nucleotides in length are also covered by the present invention. Of course, longer primers have the disadvantage of being more expensive and thus, primers having between 12 and 30 nucleotides in length are usually designed and used in the art. As well known in the art, probes ranging from 10 to more than 2000 nucleotides in length can be used in the methods of the present invention. As for the % of identity described above, non- specific ally described sizes of probes and primers (e.g., 16, 17, 31, 24, 39, 350, 450, 550, 900, 1240 nucleotides, . . . ) are also within the scope of the present invention. In one embodiment, the oligonucleotide probes or primers of the present invention specifically hybridize with a marker RNA (or its complementary sequence) or a marker mRNA. More preferably, the marker primers and probes will be chosen to detect a marker RNA which is associated with subjects responsive to a drug treatment.
In other embodiments, the detection means can utilize a hybridization technique, e.g., where a specific primer or probe is selected to anneal to a target biomarker of interest and thereafter detection of selective hybridization is made. As commonly known in the art, the oligonucleotide probes and primers can be designed by taking into consideration the melting point of hybridization thereof with its targeted sequence (see below and in Sambrook et al., 1989, Molecular Cloning— A Laboratory Manual, 2nd Edition, CSH Laboratories; Ausubel et al., 1994, in Current Protocols in Molecular Biology, John Wiley & Sons Inc., N.Y.).
To enable hybridization to occur under the assay conditions of the present invention, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least 70% (at least 71%, 72%, 73%, 74%), preferably at least 75% (75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%) and more preferably at least 90% (90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%) identity to a portion of a filamin A or polynucleotide of another biomarker of the invention. Probes and primers of the present invention are those that hybridize under stringent hybridization conditions and those that hybridize to biomarker homologs of the invention under at least moderately stringent conditions. In certain embodiments probes and primers of the present invention have complete sequence identity to the biomarkers of the invention (e.g. calbindin 2, gene sequences (e.g., cDNA or mRNA). It should be understood that other probes and primers could be easily designed and used in the present invention based on the biomarkers of the invention disclosed herein by using methods of computer alignment and sequence analysis known in the art (cf. Molecular Cloning: A Laboratory Manual, Third Edition, edited by Cold Spring Harbor Laboratory, 2000).
3. ANTIBODIES AND LABELS
In some embodiments, the invention provides methods and compositions that include labels for the highly sensitive detection and quantitation of the markers of the invention. One skilled in the art will recognize that many strategies can be used for labeling target molecules to enable their detection or discrimination in a mixture of particles. The labels may be attached by any known means, including methods that utilize non-specific or specific interactions of label and target. Labels may provide a detectable signal or affect the mobility of the particle in an electric field. In addition, labeling can be accomplished directly or through binding partners.
In some embodiments, the label comprises a binding partner that binds to the biomarker of interest, where the binding partner is attached to a fluorescent moiety. The compositions and methods of the invention may utilize highly fluorescent moieties, e.g., a moiety capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules. Moieties suitable for the compositions and methods of the invention are described in more detail below.
In some embodiments, the invention provides a label for detecting a biological molecule comprising a binding partner for the biological molecule that is attached to a fluorescent moiety, wherein the fluorescent moiety is capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules. In some embodiments, the moiety comprises a plurality of fluorescent entities, e.g., about 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, or about 3 to 5, 3 to 6, 3 to 7, 3 to 8, 3 to 9, or 3 to 10 fluorescent entities. In some embodiments, the moiety comprises about 2 to 4 fluorescent entities. In some embodiments, the biological molecule is a protein or a small molecule. In some embodiments, the biological molecule is a protein. The fluorescent entities can be fluorescent dye molecules. In some embodiments, the fluorescent dye molecules comprise at least one substituted indolium ring system in which the substituent on the 3-carbon of the indolium ring contains a chemically reactive group or a conjugated substance. In some embodiments, the dye molecules are Alexa Fluor molecules selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the dye molecules are Alexa Fluor molecules selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the dye molecules are Alexa Fluor 647 dye molecules. In some embodiments, the dye molecules comprise a first type and a second type of dye molecules, e.g., two different Alexa Fluor molecules, e.g., where the first type and second type of dye molecules have different emission spectra. The ratio of the number of first type to second type of dye molecule can be, e.g., 4 to 1, 3 to 1, 2 to 1, 1 to 1, 1 to 2, 1 to 3 or 1 to 4. The binding partner can be, e.g., an antibody.
In some embodiments, the invention provides a label for the detection of a biological marker of the invention, wherein the label comprises a binding partner for the marker and a fluorescent moiety, wherein the fluorescent moiety is capable of emitting at least about 200 photons when simulated by a laser emitting light at the excitation wavelength of the moiety, wherein the laser is focused on a spot not less than about 5 microns in diameter that contains the moiety, and wherein the total energy directed at the spot by the laser is no more than about 3 microJoules. In some embodiments, the fluorescent moiety comprises a fluorescent molecule. In some embodiments, the fluorescent moiety comprises a plurality of fluorescent molecules, e.g., about 2 to 10, 2 to 8, 2 to 6, 2 to 4, 3 to 10, 3 to 8, or 3 to 6 fluorescent molecules. In some embodiments, the label comprises about 2 to 4 fluorescent molecules. In some embodiments, the fluorescent dye molecules comprise at least one substituted indolium ring system in which the substituent on the 3-carbon of the indolium ring contains a chemically reactive group or a conjugated substance. In some embodiments, the fluorescent molecules are selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the fluorescent molecules are selected from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 680 or Alexa Fluor 700. In some embodiments, the fluorescent molecules are Alexa Fluor 647 molecules. In some embodiments, the binding partner comprises an antibody. In some embodiments, the antibody is a monoclonal antibody. In other embodiments, the antibody is a polyclonal antibody.
The term "antibody," as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to naturally occurring antibodies as well as non- naturally occurring antibodies, including, for example, single chain antibodies, chimeric, bifunctional and humanized antibodies, as well as antigen -binding fragments thereof. An "antigen-binding fragment" of an antibody refers to the part of the antibody that participates in antigen binding. The antigen binding site is formed by amino acid residues of the N- terminal variable ("V") regions of the heavy ("H") and light ("L") chains. It will be appreciated that the choice of epitope or region of the molecule to which the antibody is raised will determine its specificity, e.g., for various forms of the molecule, if present, or for total (e.g., all, or substantially all of the molecule).
Methods for producing antibodies are well-established. One skilled in the art will recognize that many procedures are available for the production of antibodies, for example, as described in Antibodies, A Laboratory Manual, Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988), Cold Spring Harbor, N.Y. One skilled in the art will also appreciate that binding fragments or Fab fragments which mimic antibodies can also be prepared from genetic information by various procedures (Antibody Engineering: A Practical Approach (Borrebaeck, C., ed.), 1995, Oxford University Press, Oxford; J. Immunol. 149, 3914-3920 (1992)). Monoclonal and polyclonal antibodies to molecules, e.g., proteins, and markers also commercially available (R and D Systems, Minneapolis, Minn.; HyTest, HyTest Ltd., Turku Finland; Abeam Inc., Cambridge, Mass., USA, Life Diagnostics, Inc., West Chester, Pa., USA; Fitzgerald Industries International, Inc., Concord, Mass. 01742-3049 USA; BiosPacific, Emeryville, Calif.).
In some embodiments, the antibody is a polyclonal antibody. In other embodiments, the antibody is a monoclonal antibody.
Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art (see, for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988). In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.
Monoclonal antibodies may be prepared using hybridoma methods, such as the technique of Kohler and Milstein (Eur. J. Immunol. 6:511-519, 1976), and improvements thereto. These methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity. Monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding antibodies employed in the disclosed methods may be isolated and sequenced using conventional procedures. Recombinant antibodies, antibody fragments, and/or fusions thereof, can be expressed in vitro or in prokaryotic cells (e.g. bacteria) or eukaryotic cells (e.g. yeast, insect or mammalian cells) and further purified as necessary using well known methods.
More particularly, monoclonal antibodies (MAbs) may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified expressed protein, polypeptide or peptide. The immunizing composition is administered in a manner effective to stimulate antibody producing cells. The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep or frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.
The animals are injected with antigen as described above. The antigen may be coupled to carrier molecules such as keyhole limpet hemocyanin if necessary. The antigen would typically be mixed with adjuvant, such as Freund's complete or incomplete adjuvant. Booster injections with the same antigen would occur at approximately two-week intervals. Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of the animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe.
The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non- antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones may then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridoma may be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, may then be tapped to provide MAbs in high concentration. The individual cell lines also may be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they may be readily obtained in high concentrations. MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.
Large amounts of the monoclonal antibodies of the present invention also may be obtained by multiplying hybridoma cells in vivo. Cell clones are injected into mammals which are histocompatible with the parent cells, e.g., syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection.
In accordance with the present invention, fragments of the monoclonal antibody of the invention may be obtained from the monoclonal antibody produced as described above, by methods which include digestion with enzymes such as pepsin or papain and/or cleavage of disulfide bonds by chemical reduction. Alternatively, monoclonal antibody fragments encompassed by the present invention may be synthesized using an automated peptide synthesizer.
Antibodies may also be derived from a recombinant antibody library that is based on amino acid sequences that have been designed in silico and encoded by polynucleotides that are synthetically generated. Methods for designing and obtaining in silico-created sequences are known in the art (Knappik et al., J. Mol. Biol. 296:254:57-86, 2000; Krebs et al., J. Immunol. Methods 254:67-84, 2001; U.S. Pat. No. 6,300,064).
Digestion of antibodies to produce antigen-binding fragments thereof can be performed using techniques well known in the art. For example, the proteolytic enzyme papain preferentially cleaves IgG molecules to yield several fragments, two of which (the "F(ab)" fragments) each comprise a covalent heterodimer that includes an intact antigenbinding site. The enzyme pepsin is able to cleave IgG molecules to provide several fragments, including the "F(ab')2" fragment, which comprises both antigen-binding sites. "Fv" fragments can be produced by preferential proteolytic cleavage of an IgM, IgG or IgA immunoglobulin molecule, but are more commonly derived using recombinant techniques known in the art. The Fv fragment includes a non-covalent VH::VL heterodimer including an antigen-binding site which retains much of the antigen recognition and binding capabilities of the native antibody molecule (Inbar et al., Proc. Natl. Acad. Sci. USA 69:2659-2662 (1972); Hochman et al., Biochem. 15:2706-2710 (1976); and Ehrlich et al., Biochem. 19:4091-4096 (1980)).
Antibody fragments that specifically bind to the protein biomarkers disclosed herein can also be isolated from a library of scFvs using known techniques, such as those described in U.S. Pat. No. 5,885,793.
A wide variety of expression systems are available in the art for the production of antibody fragments, including Fab fragments, scFv, VL and VHs. For example, expression systems of both prokaryotic and eukaryotic origin may be used for the large-scale production of antibody fragments. Particularly advantageous are expression systems that permit the secretion of large amounts of antibody fragments into the culture medium. Eukaryotic expression systems for large-scale production of antibody fragments and antibody fusion proteins have been described that are based on mammalian cells, insect cells, plants, transgenic animals, and lower eukaryotes. For example, the cost-effective, large-scale production of antibody fragments can be achieved in yeast fermentation systems. Large-scale fermentation of these organisms is well known in the art and is currently used for bulk production of several recombinant proteins.
Antibodies that bind to the protein biomarkers employed in the present methods are, in some cases, available commercially or can be obtained without undue experimentation.
In still other embodiments, particularly where oligonucleotides are used as binding partners to detect and hybridize to mRNA biomarkers or other nucleic acid based biomarkers, the binding partners (e.g., oligonucleotides) can comprise a label, e.g., a fluorescent moiety or dye. In addition, any binding partner of the invention, e.g., an antibody, can also be labeled with a fluorescent moiety. The fluorescence of the moiety will be sufficient to allow detection in a single molecule detector, such as the single molecule detectors described herein. A "fluorescent moiety," as that term is used herein, includes one or more fluorescent entities whose total fluorescence is such that the moiety may be detected in the single molecule detectors described herein. Thus, a fluorescent moiety may comprise a single entity (e.g., a Quantum Dot or fluorescent molecule) or a plurality of entities (e.g., a plurality of fluorescent molecules). It will be appreciated that when "moiety," as that term is used herein, refers to a group of fluorescent entities, e.g., a plurality of fluorescent dye molecules, each individual entity may be attached to the binding partner separately or the entities may be attached together, as long as the entities as a group provide sufficient fluorescence to be detected.
Typically, the fluorescence of the moiety involves a combination of quantum efficiency and lack of photobleaching sufficient that the moiety is detectable above background levels in a single molecule detector, with the consistency necessary for the desired limit of detection, accuracy, and precision of the assay. For example, in some embodiments, the fluorescence of the fluorescent moiety is such that it allows detection and/or quantitation of a molecule, e.g., a marker, at a limit of detection of less than about 10, 5, 4, 3, 2, 1, 0.1, 0.01, 0.001, 0.00001, or 0.000001 pg/ml and with a coefficient of variation of less than about 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1% or less, e.g., about 10% or less, in the instruments described herein. In some embodiments, the fluorescence of the fluorescent moiety is such that it allows detection and/or quantitation of a molecule, e.g., a marker, at a limit of detection of less than about 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 pg/ml and with a coefficient of variation of less than about 10%, in the instruments described herein. "Limit of detection," or LoD, as those terms are used herein, includes the lowest concentration at which one can identify a sample as containing a molecule of the substance of interest, e.g., the first non-zero value. It can be defined by the variability of zeros and the slope of the standard curve. For example, the limit of detection of an assay may be determined by running a standard curve, determining the standard curve zero value, and adding 2 standard deviations to that value. A concentration of the substance of interest that produces a signal equal to this value is the "lower limit of detection" concentration.
Furthermore, the moiety has properties that are consistent with its use in the assay of choice. In some embodiments, the assay is an immunoassay, where the fluorescent moiety is attached to an antibody; the moiety must have properties such that it does not aggregate with other antibodies or proteins, or experiences no more aggregation than is consistent with the required accuracy and precision of the assay. In some embodiments, fluorescent moieties that are preferred are fluorescent moieties, e.g., dye molecules that have a combination of 1) high absorption coefficient; 2) high quantum yield; 3) high photostability (low photobleaching); and 4) compatibility with labeling the molecule of interest (e.g., protein) so that it may be analyzed using the analyzers and systems of the invention (e.g., does not cause precipitation of the protein of interest, or precipitation of a protein to which the moiety has been attached).
Any suitable fluorescent moiety may be used. Examples include, but are not limited to, Alexa Fluor dyes (Molecular Probes, Eugene, Oreg.). The Alexa Fluor dyes are disclosed in U.S. Pat. Nos. 6,977,305; 6,974,874; 6,130,101; and 6,974,305 which are herein incorporated by reference in their entirety. Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 647, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 555, Alexa Fluor 610, Alexa Fluor 680, Alexa Fluor 700, and Alexa Fluor 750. Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 647, Alexa Fluor 700 and Alexa Fluor 750. Some embodiments of the invention utilize a dye chosen from the group consisting of Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 555, Alexa Fluor 610, Alexa Fluor 680, Alexa Fluor 700, and Alexa Fluor 750. Some embodiments of the invention utilize the Alexa Fluor 647 molecule, which has an absorption maximum between about 650 and 660 nm and an emission maximum between about 660 and 670 nm. The Alexa Fluor 647 dye is used alone or in combination with other Alexa Fluor dyes.
In some embodiments, the fluorescent label moiety that is used to detect a biomarker in a sample using the analyzer systems of the invention is a quantum dot. Quantum dots (QDs), also known as semiconductor nanocrystals or artificial atoms, are semiconductor crystals that contain anywhere between 100 to 1,000 electrons and range from 2-10 nm. Some QDs can be between 10-20 nm in diameter. QDs have high quantum yields, which makes them particularly useful for optical applications. QDs are fluorophores that fluoresce by forming excitons, which are similar to the excited state of traditional fluorophores, but have much longer lifetimes of up to 200 nanoseconds. This property provides QDs with low photobleaching. The energy level of QDs can be controlled by changing the size and shape of the QD, and the depth of the QDs' potential. One optical feature of small excitonic QDs is coloration, which is determined by the size of the dot. The larger the dot, the redder, or more towards the red end of the spectrum the fluorescence. The smaller the dot, the bluer or more towards the blue end it is. The bandgap energy that determines the energy and hence the color of the fluoresced light is inversely proportional to the square of the size of the QD. Larger QDs have more energy levels which are more closely spaced, thus allowing the QD to absorb photons containing less energy, i.e., those closer to the red end of the spectrum. Because the emission frequency of a dot is dependent on the bandgap, it is possible to control the output wavelength of a dot with extreme precision. In some embodiments the protein that is detected with the single molecule analyzer system is labeled with a QD. In some embodiments, the single molecule analyzer is used to detect a protein labeled with one QD and using a filter to allow for the detection of different proteins at different wavelengths.
EXAMPLES
Example 1:
Data driven discovery of surrogate markers of clinical endpoints has the potential utility to improve outcome for therapeutic development in pancreatic ductal adenocarcinoma (PDAC). An Interrogative Biology® platform was employed to discover markers from Buffy Coat (BC) of a Phase 1 human clinical trial evaluating the effects of intravenously administered Coenzyme Q10 in patients with solid tumors. The utility of these markers to predict Overall Survival (OS) was evaluated in PDAC patients in a Phase II trial.
Methods
Proteomic markers of response were identified from treatment-naive BC and longitudinal sampling post treatment of 104 patients in an all-comer Phase I human clinical trial evaluating intravenously administered Coenzyme Q10 in patients with solid tumors. The Phase 1 cohort was defined as no change/decrease (responders) or increase (non-responders) in tumor size (CT/MRI readout). Calculated slopes from tumor sizes defined treatmentresponse populations aligned with differentially expressed BC proteins in the Phase 1 cohort were generated. To identify markers predictive of response and OS, the levels of Phase 1 identified BC proteins were analyzed in Phase 2 PDAC patients who met criteria of adequately treated cohort (ATC- received Coenzyme Q10-IV + gemcitabine for >30 days and had RECIST 1.1 evaluation).
Results Of the 35 PDAC Phase 2 patients, initial data demonstrate 18 met ATC criteria. To date, half of the ATC population (n = 9/18, 50%) had the best overall response rate of stable disease (SD) and 8/18 (44%) had SD at the end of Cycle 2. Of the proteins differentially expressed in BC in Phi cohort with increasing or decreasing tumor size, two were differentially expressed in Ph2 patients between responders (SD) and non-responders (PD). Moreover, two proteins predictive of OS, defined as <2 or >2 treatment cycles, were identified, one overlapping in SD and OS.
Adequately Treated Patients in the combination arm are defined as subjects who:
1) were randomized to and received combination therapy (at least one dose each of gemcitabine and Coenzyme Q10-IV);
2) had a RECIST evaluation; and
3) (Days Treated Cycle 1 + Days Treated Cycle 2) is greater than or equal to 50% of Expected (Days Treated Cycles 1 & 2) [a minimum of (36 + 24 = 60 expected days), therefore subjects must have at least 30 days on treatment with Coenzyme Q10-IV.
Table 1. Patient Demographics (Adequately Treated Population).
Figure imgf000061_0001
Table 2. Clinical Response (Adequately Treated Population).
Figure imgf000062_0001
Conclusion
The Interrogative Biology® platform applied to BC samples of a Coenzyme Q10-IV Phase 1 trial has identified two potential biomarkers predictive of response and overall survival in PDAC patients. Candidate biomarkers had independent confirmation of prediction between SD, PD, and OS in a Phase 2 trial. The influence of BC markers in modulating immune response in combination with Coenzyme Q10-IV in PDAC is being investigated.

Claims

1. A method for prognosing the response to a drug treatment for a solid tumor cancer in a subject, comprising:
(a) detecting expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS; and
(b) comparing the expression level of the marker in the biological sample with a predetermined threshold value; wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
2. The method of claim 1, wherein the cancer is pancreatic cancer.
3. The method of claim 2, wherein the pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC).
4. The method of claim 1, wherein the expression level is an mRNA expression level.
5. The method of claim 1, wherein the expression level is a protein expression level.
6. The method of claim 1, wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will exhibit stable disease in response to the drug treatment.
7. The method of claim 1, wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will exhibit increased survival relative to a subject that is not administered the drug treatment.
8. The method of any one of the preceding claims, wherein a second drug is administered.
62
9. The method of claim 8, wherein the second drug is gemcitabine.
10. The method of any one of claims 1-9, wherein the response to the drug treatment comprises no change or a decrease in tumor size.
11. The method of any one of claims 1-9, wherein the response to the drug treatment comprises an increase in overall days of survival.
12. The method of any one of the preceding claims, wherein the biological sample comprises a blood sample or a component thereof.
13. The method of claim 12, wherein the sample comprises a buffy coat sample.
14. The method of any one of the preceding claims, wherein the expression level of at least two of the markers, or the expression level of all three of the markers, is determined.
15. The method of any one of the preceding claims, wherein the expression level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
16. The method of any one of the preceding claims, further comprising selecting a treatment regimen based on the prediction of the drug treatment in the subject.
17. The method of claim 16, wherein the treatment regimen comprises further monitoring the subject for progression of cancer.
18. The method of claim 16, wherein the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
19. The method of claim 1, further comprising obtaining a biological sample from the subject.
20. The method of any one of the preceding claims, wherein the subject has been previously diagnosed with a solid tumor cancer.
63
21. A method for prognosing the response to a drug treatment in a subject, wherein the prognosis is determined concurrently with the diagnosis of a solid tumor cancer in the subject, comprising:
(a) diagnosing the subject with a solid tumor cancer;
(b) detecting the expression level of one or more markers in a biological sample from the subject, wherein the one or more markers is selected from the group consisting of GOLPH3, EHD4 and RRAS; and
(c) comparing the expression level of the marker in the biological sample with a predetermined threshold value; wherein an increase in the expression level of GOLPH3 relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment, and/or wherein a decrease in the expression level of EHD4 or RRAS relative to the predetermined threshold value indicates that the subject will be responsive to the drug treatment.
22. The method of claim 21, wherein the cancer is pancreatic cancer.
23. The method of claim 22, wherein the pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC).
24. The method of claim 21, wherein a second drug is administered.
25. The method of claim 24, wherein the second drug is gemcitabine.
26. The method of any one of claims 21-25, wherein the response to the drug treatment comprises no change or a decrease in tumor size.
27. The method of any one of claims 21-25, wherein the response to the drug treatment comprises an increase in overall days of survival.
28. The method of any one of claims 21-27, wherein the biological sample comprises a blood sample or a component thereof.
29. The method of claim 28, wherein the sample comprises a buffy coat sample.
64
30. The method of any one of claims 21-29, wherein the expression level of at least two of the markers, or the expression level of all three of the markers, is determined.
31. The method of any one of claims 21-30, wherein the expression level of the marker is detected by one or more of HPLC/UV-Vis spectroscopy, enzymatic analysis, mass spectrometry, NMR, immunoassay, ELISA, chromatography, or any combination thereof, or by determining the level of its corresponding mRNA in the biological sample.
32. The method of any one of claims 21-31, further comprising selecting a treatment regimen based on the prediction of the drug treatment in the subject.
33. The method of claim 32, wherein the treatment regimen comprises further monitoring of the subject for progression of cancer.
34. The method of claim 32, wherein the treatment regimen is selected from the group consisting of (a) radiation therapy, (b) chemotherapy, (c) surgery, (d) hormone therapy, (e) antibody therapy, (f) immunotherapy, (g) cytokine therapy, (h) growth factor therapy, (i) watchful waiting, and (i) any combination of (a)-(i).
35. A method for identifying an agent that modulates cancer progression, comprising:
(a) contacting a cell with a test compound,
(b) determining the expression and/or activity of a marker in the cell, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS;
(c) identifying an agent that modulates the expression and/or activity of the marker in the cell, thereby identifying an agent that modulates cancer.
36. The method of claim 35, wherein the cell is a pancreatic cancer cell.
37. The method of claim 35, wherein the test compound is a small molecule, an antibody, or a nucleic acid inhibitor.
38. A compound identified by the method of claim 35.
39. A method of treating a solid tumor cancer in a subject, comprising administering to the subject a modulator of a marker, wherein the marker is selected from GOLPH3, EHD4 and RRAS. oz>
40. The method of claim 39, wherein the modulator increases the marker level or activity.
41. The method of claim 39, wherein the modulator decreases the marker level or activity.
42. The method of any one of claims 1 to 37 and 39 to 41, wherein the drug treatment comprises administration of Coenzyme Q10 to the subject.
43. The method of claim 42, wherein the Coenzyme Q10 is administered to the subject by intravenous administration.
44. The method of claim 43, wherein the intravenous administration is continuous intravenous infusion.
45. A kit for detecting a marker in a biological sample from a subject having a solid tumor cancer, comprising one or more reagents for measuring the level of the marker in the biological sample from the subject, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS and a set of instructions for measuring the level of the marker.
46. The kit of claim 45, wherein the reagent is an antibody that binds to the marker or an oligonucleotide that is complementary to the corresponding mRNA of the marker.
47. The kit of claim 45, wherein the marker comprises one or more markers with an increased level when compared to a predetermined threshold value, and/or one or more markers with a decreased level when compared to a predetermined threshold value.
48. A panel for use in a method of prognosing the response to a drug treatment for cancer in a subject, the panel comprising one or more detection reagents, wherein each detection reagent is specific for the detection of a marker, wherein the marker comprises one or more markers selected from GOLPH3, EHD4 and RRAS.
49. A kit comprising the panel of claim 48 and a set of instructions for obtaining prognosis information based on an expression level of the marker.
50. The kit or panel of any one of claims 45-49, wherein the drug treatment comprises administration of Coenzyme Q10 to the subject.
66
51. The kit or panel of claim 50, wherein the Coenzyme Q10 is administered by intravenous administration, and preferably by continuous infusion.
PCT/US2021/048374 2020-08-31 2021-08-31 Protein biomarkers for pancreatic cancer WO2022047359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063072610P 2020-08-31 2020-08-31
US63/072,610 2020-08-31

Publications (2)

Publication Number Publication Date
WO2022047359A1 true WO2022047359A1 (en) 2022-03-03
WO2022047359A8 WO2022047359A8 (en) 2022-04-21

Family

ID=78086871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/048374 WO2022047359A1 (en) 2020-08-31 2021-08-31 Protein biomarkers for pancreatic cancer

Country Status (1)

Country Link
WO (1) WO2022047359A1 (en)

Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817837A (en) 1971-05-14 1974-06-18 Syva Corp Enzyme amplification assay
US3850752A (en) 1970-11-10 1974-11-26 Akzona Inc Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically
US3939350A (en) 1974-04-29 1976-02-17 Board Of Trustees Of The Leland Stanford Junior University Fluorescent immunoassay employing total reflection for activation
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4277437A (en) 1978-04-05 1981-07-07 Syva Company Kit for carrying out chemically induced fluorescence immunoassay
US4366241A (en) 1980-08-07 1982-12-28 Syva Company Concentrating zone method in heterogeneous immunoassays
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
GB2202328A (en) 1987-03-11 1988-09-21 Orion Yhtymae Oy An improved method for assaying of nucleic acids, a reagent combination and a kit therefore
US4786600A (en) 1984-05-25 1988-11-22 The Trustees Of Columbia University In The City Of New York Autocatalytic replication of recombinant RNA
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0320308A2 (en) 1987-12-11 1989-06-14 Abbott Laboratories Method for detecting a target nucleic acid sequence
WO1989006700A1 (en) 1988-01-21 1989-07-27 Genentech, Inc. Amplification and detection of nucleic acid sequences
EP0329822A2 (en) 1988-02-24 1989-08-30 Cangene Corporation Nucleic acid amplification process
US4883750A (en) 1984-12-13 1989-11-28 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
WO1990007641A1 (en) 1988-12-28 1990-07-12 Sundstrand Corporation Segmented seal plate for a turbine engine
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
WO1993013121A1 (en) 1991-12-24 1993-07-08 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5242974A (en) 1991-11-22 1993-09-07 Affymax Technologies N.V. Polymer reversal on solid surfaces
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5422252A (en) 1993-06-04 1995-06-06 Becton, Dickinson And Company Simultaneous amplification of multiple targets
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5429807A (en) 1993-10-28 1995-07-04 Beckman Instruments, Inc. Method and apparatus for creating biopolymer arrays on a solid support surface
US5436327A (en) 1988-09-21 1995-07-25 Isis Innovation Limited Support-bound oligonucleotides
WO1995032305A1 (en) 1994-05-19 1995-11-30 Dako A/S Pna probes for detection of neisseria gonorrhoeae and chlamydia trachomatis
US5472672A (en) 1993-10-22 1995-12-05 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for polymer synthesis using arrays
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5532128A (en) 1991-11-19 1996-07-02 Houston Advanced Research Center Multi-site detection apparatus
US5545531A (en) 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5554501A (en) 1992-10-29 1996-09-10 Beckman Instruments, Inc. Biopolymer synthesis using surface activated biaxially oriented polypropylene
US5554527A (en) 1989-11-24 1996-09-10 Behringwerke Aktiengesellschaft Agent for the storage and suspension of cells, especially erythrocytes
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5561071A (en) 1989-07-24 1996-10-01 Hollenberg; Cornelis P. DNA and DNA technology for the construction of networks to be used in chip construction and chip production (DNA-chips)
US5571639A (en) 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US5599695A (en) 1995-02-27 1997-02-04 Affymetrix, Inc. Printing molecular library arrays using deprotection agents solely in the vapor phase
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US5658734A (en) 1995-10-17 1997-08-19 International Business Machines Corporation Process for synthesizing chemical compounds
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
WO1998002582A2 (en) 1996-07-16 1998-01-22 Gen-Probe Incorporated Methods for detecting and amplifying nucleic acid sequences using modified oligonucleotides having increased target specific t¿m?
US5747251A (en) 1992-10-08 1998-05-05 The Regents Of The University Of California Polymerase chain reaction assays to determine the presence and concentration of a target nucleic acid in a sample
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6004755A (en) 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6040166A (en) 1985-03-28 2000-03-21 Roche Molecular Systems, Inc. Kits for amplifying and detecting nucleic acid sequences, including a probe
US6045996A (en) 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
US6087133A (en) 1994-03-16 2000-07-11 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
US6124120A (en) 1997-10-08 2000-09-26 Yale University Multiple displacement amplification
US6130101A (en) 1997-09-23 2000-10-10 Molecular Probes, Inc. Sulfonated xanthene derivatives
US6218114B1 (en) 1998-03-27 2001-04-17 Academia Sinica Methods for detecting differentially expressed genes
US6218122B1 (en) 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6271002B1 (en) 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
US6284460B1 (en) 1993-06-25 2001-09-04 Affymetrix Inc. Hybridization and sequencing of nucleic acids using base pair mismatches
US6300064B1 (en) 1995-08-18 2001-10-09 Morphosys Ag Protein/(poly)peptide libraries
US6607885B1 (en) 1999-10-15 2003-08-19 E. I. Du Pont De Nemours And Company Method for high-density microarray medicated gene expression profiling
US6974305B2 (en) 2002-09-26 2005-12-13 Garrett Iii Norman H Roto-dynamic fluidic systems
US6974874B2 (en) 2002-10-31 2005-12-13 Bayer Materialscience Llc Reduction of monomer content and stabilization of polyaziridines
US6977305B2 (en) 2000-09-29 2005-12-20 Molecular Probes, Inc. Modified carbocyanine dyes and their conjugates
US20110262464A1 (en) * 2008-10-03 2011-10-27 Danafarber Cancer Institute, Inc. Compositions, Kits, and Methods for the Diagnosis, Prognosis, and Monitoring of Cancer Using GOLPH3
US8700880B2 (en) 2008-10-10 2014-04-15 Apple Inc. Dynamic trampoline and structured code generation in a signed code environment
WO2014150671A1 (en) * 2013-03-15 2014-09-25 The Broad Institute, Inc. Methods of identifying responses to map kinase inhibition therapy
US8901025B2 (en) 2010-03-24 2014-12-02 IFP Energies Nouvelles Catalyst regeneration zone divided into sectors for regenerative catalytic units

Patent Citations (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850752A (en) 1970-11-10 1974-11-26 Akzona Inc Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically
US3817837A (en) 1971-05-14 1974-06-18 Syva Corp Enzyme amplification assay
US3939350A (en) 1974-04-29 1976-02-17 Board Of Trustees Of The Leland Stanford Junior University Fluorescent immunoassay employing total reflection for activation
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4196265A (en) 1977-06-15 1980-04-01 The Wistar Institute Method of producing antibodies
US4277437A (en) 1978-04-05 1981-07-07 Syva Company Kit for carrying out chemically induced fluorescence immunoassay
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4366241A (en) 1980-08-07 1982-12-28 Syva Company Concentrating zone method in heterogeneous immunoassays
US4366241B1 (en) 1980-08-07 1988-10-18
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4786600A (en) 1984-05-25 1988-11-22 The Trustees Of Columbia University In The City Of New York Autocatalytic replication of recombinant RNA
US4883750A (en) 1984-12-13 1989-11-28 Applied Biosystems, Inc. Detection of specific sequences in nucleic acids
US6040166A (en) 1985-03-28 2000-03-21 Roche Molecular Systems, Inc. Kits for amplifying and detecting nucleic acid sequences, including a probe
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683202B1 (en) 1985-03-28 1990-11-27 Cetus Corp
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (en) 1986-01-30 1990-11-27 Cetus Corp
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
GB2202328A (en) 1987-03-11 1988-09-21 Orion Yhtymae Oy An improved method for assaying of nucleic acids, a reagent combination and a kit therefore
WO1988010315A1 (en) 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
EP0320308A2 (en) 1987-12-11 1989-06-14 Abbott Laboratories Method for detecting a target nucleic acid sequence
WO1989006700A1 (en) 1988-01-21 1989-07-27 Genentech, Inc. Amplification and detection of nucleic acid sequences
US5409818A (en) 1988-02-24 1995-04-25 Cangene Corporation Nucleic acid amplification process
EP0329822A2 (en) 1988-02-24 1989-08-30 Cangene Corporation Nucleic acid amplification process
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US5436327A (en) 1988-09-21 1995-07-25 Isis Innovation Limited Support-bound oligonucleotides
WO1990007641A1 (en) 1988-12-28 1990-07-12 Sundstrand Corporation Segmented seal plate for a turbine engine
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5405783A (en) 1989-06-07 1995-04-11 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of an array of polymers
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5445934A (en) 1989-06-07 1995-08-29 Affymax Technologies N.V. Array of oligonucleotides on a solid substrate
US5561071A (en) 1989-07-24 1996-10-01 Hollenberg; Cornelis P. DNA and DNA technology for the construction of networks to be used in chip construction and chip production (DNA-chips)
US5554527A (en) 1989-11-24 1996-09-10 Behringwerke Aktiengesellschaft Agent for the storage and suspension of cells, especially erythrocytes
US5532128A (en) 1991-11-19 1996-07-02 Houston Advanced Research Center Multi-site detection apparatus
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
US5242974A (en) 1991-11-22 1993-09-07 Affymax Technologies N.V. Polymer reversal on solid surfaces
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993013121A1 (en) 1991-12-24 1993-07-08 Isis Pharmaceuticals, Inc. Gapped 2' modified oligonucleotides
US5412087A (en) 1992-04-24 1995-05-02 Affymax Technologies N.V. Spatially-addressable immobilization of oligonucleotides and other biological polymers on surfaces
US5747251A (en) 1992-10-08 1998-05-05 The Regents Of The University Of California Polymerase chain reaction assays to determine the presence and concentration of a target nucleic acid in a sample
US5554501A (en) 1992-10-29 1996-09-10 Beckman Instruments, Inc. Biopolymer synthesis using surface activated biaxially oriented polypropylene
US5422252A (en) 1993-06-04 1995-06-06 Becton, Dickinson And Company Simultaneous amplification of multiple targets
US6284460B1 (en) 1993-06-25 2001-09-04 Affymetrix Inc. Hybridization and sequencing of nucleic acids using base pair mismatches
US5837832A (en) 1993-06-25 1998-11-17 Affymetrix, Inc. Arrays of nucleic acid probes on biological chips
US5529756A (en) 1993-10-22 1996-06-25 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for polymer synthesis using arrays
US5472672A (en) 1993-10-22 1995-12-05 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for polymer synthesis using arrays
US6045996A (en) 1993-10-26 2000-04-04 Affymetrix, Inc. Hybridization assays on oligonucleotide arrays
US5429807A (en) 1993-10-28 1995-07-04 Beckman Instruments, Inc. Method and apparatus for creating biopolymer arrays on a solid support surface
US6087133A (en) 1994-03-16 2000-07-11 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
WO1995032305A1 (en) 1994-05-19 1995-11-30 Dako A/S Pna probes for detection of neisseria gonorrhoeae and chlamydia trachomatis
US5571639A (en) 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5593839A (en) 1994-05-24 1997-01-14 Affymetrix, Inc. Computer-aided engineering system for design of sequence arrays and lithographic masks
US5807522A (en) 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5599695A (en) 1995-02-27 1997-02-04 Affymetrix, Inc. Printing molecular library arrays using deprotection agents solely in the vapor phase
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US5545531A (en) 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US6300064B1 (en) 1995-08-18 2001-10-09 Morphosys Ag Protein/(poly)peptide libraries
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US5658734A (en) 1995-10-17 1997-08-19 International Business Machines Corporation Process for synthesizing chemical compounds
WO1998002582A2 (en) 1996-07-16 1998-01-22 Gen-Probe Incorporated Methods for detecting and amplifying nucleic acid sequences using modified oligonucleotides having increased target specific t¿m?
US6130101A (en) 1997-09-23 2000-10-10 Molecular Probes, Inc. Sulfonated xanthene derivatives
US6124120A (en) 1997-10-08 2000-09-26 Yale University Multiple displacement amplification
US6218114B1 (en) 1998-03-27 2001-04-17 Academia Sinica Methods for detecting differentially expressed genes
US6004755A (en) 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US6218122B1 (en) 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6271002B1 (en) 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
US6607885B1 (en) 1999-10-15 2003-08-19 E. I. Du Pont De Nemours And Company Method for high-density microarray medicated gene expression profiling
US6977305B2 (en) 2000-09-29 2005-12-20 Molecular Probes, Inc. Modified carbocyanine dyes and their conjugates
US6974305B2 (en) 2002-09-26 2005-12-13 Garrett Iii Norman H Roto-dynamic fluidic systems
US6974874B2 (en) 2002-10-31 2005-12-13 Bayer Materialscience Llc Reduction of monomer content and stabilization of polyaziridines
US20110262464A1 (en) * 2008-10-03 2011-10-27 Danafarber Cancer Institute, Inc. Compositions, Kits, and Methods for the Diagnosis, Prognosis, and Monitoring of Cancer Using GOLPH3
US8700880B2 (en) 2008-10-10 2014-04-15 Apple Inc. Dynamic trampoline and structured code generation in a signed code environment
US8901025B2 (en) 2010-03-24 2014-12-02 IFP Energies Nouvelles Catalyst regeneration zone divided into sectors for regenerative catalytic units
WO2014150671A1 (en) * 2013-03-15 2014-09-25 The Broad Institute, Inc. Methods of identifying responses to map kinase inhibition therapy

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Antibody Engineering: A Practical Approach", 1995, OXFORD UNIVERSITY PRESS
"Nucleic acid hybridization, a practical approach", 1985, IRL PRESS OXFORD
"PCR Protocols: A Guide to Methods and Applications", 1990, ACADEMIC PRESS
ALTSCHUL ET AL.: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402, XP002905950, DOI: 10.1093/nar/25.17.3389
ALTSCHUL, NUCL. ACIDS RES., vol. 25, 1977, pages 3389 - 3402
BRUTLAG, COMP. APP. BIOSCI., vol. 6, 1990, pages 237 - 245
DAMANAKIS A I ET AL: "Molekulare Prädiktoren für den Krankheitsverlauf und die individualisierte Therapie beim Pankreaskarzinom", DER CHIRURG: ZEITSCHRIFT FUER ALLE GEBIETE DER OPERATIVEN MEDIZIN, SPRINGER VERLAG, BERLIN, DE, vol. 91, no. 8, 13 May 2020 (2020-05-13), pages 642 - 649, XP037209768, ISSN: 0009-4722, [retrieved on 20200513], DOI: 10.1007/S00104-020-01172-0 *
EHRLICH ET AL., BIOCHEM., vol. 19, 1980, pages 4091 - 4096
GENE CLONING AND ANALYSIS: CURRENT INNOVATIONS, 1997, pages 99 - 115
HALEMARHAM, THE HARPER COLLINS DICTIONARY OF BIOLOGY, 1991
HARLOWLANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
HENIKOFF, PROC. NATL. ACAD. SCI., USA, vol. 89, 1989, pages 10915
HOCHMAN ET AL., BIOCHEM., vol. 15, 1976, pages 2706 - 2710
HOLLAND ET AL., PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 7276 - 7280
INBAR ET AL., PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2659 - 2662
J. IMMUNOL., vol. 149, 1992, pages 3914 - 3920
J. J. CHEN ET AL., GENOMICS, vol. 51, 1998, pages 313 - 324
KNAPPIK ET AL., J. MOL. BIOL., vol. 296, no. 254, 2000, pages 57 - 86
KOHLERMILSTEIN, EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KREBS ET AL., J. IMMUNOL. METHODS, vol. 254, 2001, pages 67 - 84
KWOH ET AL., AM. BIOTECHNOL. LAB., vol. 8, 1990, pages 14 - 25
KWOH ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 1173 - 1177
LIANG ET AL., NUCL. ACID. RES., vol. 21, 1993, pages 3269 - 3275
LIZARDI ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1197 - 1202
LUAN-JING ZHANG ET AL: "Overexpression of GOLPH3 is associated with poor prognosis and clinical progression in pancreatic ductal adenocarcinoma", BMC CANCER, BIOMED CENTRAL, LONDON, GB, vol. 14, no. 1, 7 August 2014 (2014-08-07), pages 571, XP021191740, ISSN: 1471-2407, DOI: 10.1186/1471-2407-14-571 *
M. SCHENA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 10614 - 10619
M. SCHENA ET AL., SCIENCE, vol. 270, 1995, pages 467 - 470
MALEK ET AL., METHODS MOL. BIOL., vol. 28, 1994, pages 253 - 260
OHARA ET AL., PROC. NATL. ACAD. SCI., vol. 86, 1989, pages 5673 - 5677
PEARSON, METHODS IN ENZYMOL., vol. 183, 1990, pages 63 - 98
PEARSONLIPMAN, PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 - 2448
SAMBROOK ET AL.: "Molecular Cloning--A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORIES
SHIMADA YOKO ET AL: "An Oncogenic ALK Fusion and an RRAS Mutation in KRAS Mutation-Negative Pancreatic Ductal Adenocarcinoma", THE ONCOLOGIST, vol. 22, no. 2, 1 February 2017 (2017-02-01), pages 158 - 164, XP055869568, ISSN: 1083-7159, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330701/pdf/onco12016.pdf> DOI: 10.1634/theoncologist.2016-0194 *
SINGLETON ET AL., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY, 1994
TAN MING ET AL: "Gene Expression Network Analysis of Precursor Lesions in Familial Pancreatic Cancer", JOURNAL OF PANCREATIC CANCER, vol. 6, no. 1, 1 August 2020 (2020-08-01), pages 73 - 84, XP055869571, Retrieved from the Internet <URL:https://www.liebertpub.com/doi/pdf/10.1089/pancan.2020.0007> DOI: 10.1089/pancan.2020.0007 *
THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY, 1988
THOMPSON, NUCL. ACIDS RES., vol. 2, 1994, pages 4673 - 4680

Also Published As

Publication number Publication date
WO2022047359A8 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US20200333344A1 (en) Use of markers including filamin a in the diagnosis and treatment of prostate cancer
US20220107322A1 (en) Lipid, protein, and metabolite markers for the diagnosis and treatment of prostate cancer
US20170039328A1 (en) Molecular profiling for cancer
US20120004130A1 (en) Autoimmune disease biomarkers
US20230194536A1 (en) Markers for the diagnosis and treatment of non-alcoholic steatohepatitis (nash) and advance liver fibrosis
EP2956555A2 (en) Methods for predicting risk of interstitial pneumonia
US20200292548A1 (en) Markers for the diagnosis of biochemical recurrence in prostate cancer
US20200018758A1 (en) Methods for differentiating benign prostatic hyperplasia from prostate cancer
WO2022047359A1 (en) Protein biomarkers for pancreatic cancer
US20210080466A1 (en) Markers for the diagnosis of prostate cancer
US20200190589A1 (en) Use of markers in the diagnosis and treatment of lupus
US20230059578A1 (en) Protein markers for estrogen receptor (er)-positive-like and estrogen receptor (er)-negative-like breast cancer
EP4320440A1 (en) Protein markers for estrogen receptor (er)-positive luminal a(la)-like and luminal b1 (lb1)-like breast cancer
US20230357851A1 (en) Frataxin-sensitive markers for monitoring frataxin-replacement therapy
EP4320443A1 (en) Protein markers for the prognosis of breast cancer progression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21790272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21790272

Country of ref document: EP

Kind code of ref document: A1