WO2022045923A1 - Pompe trochoïde à étages multiples de fond de puits - Google Patents

Pompe trochoïde à étages multiples de fond de puits Download PDF

Info

Publication number
WO2022045923A1
WO2022045923A1 PCT/RU2021/000028 RU2021000028W WO2022045923A1 WO 2022045923 A1 WO2022045923 A1 WO 2022045923A1 RU 2021000028 W RU2021000028 W RU 2021000028W WO 2022045923 A1 WO2022045923 A1 WO 2022045923A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
rotors
trochoid
pump
connects
Prior art date
Application number
PCT/RU2021/000028
Other languages
English (en)
Russian (ru)
Inventor
Иван Соломонович ПЯТОВ
Сергей Викторович ЛАДАНОВ
Виктор Геннадьевич ТИМОШЕНКО
Владимир Николаевич Ивановский
Алексей Михайлович ДОНЧЕНКО
Владимир Игоревич ФЕДОРЕНКО
Original Assignee
Общество с ограниченной ответственностью "РЕАМ-РТИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "РЕАМ-РТИ" filed Critical Общество с ограниченной ответственностью "РЕАМ-РТИ"
Publication of WO2022045923A1 publication Critical patent/WO2022045923A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the invention relates to petroleum engineering, in particular to multistage submersible pumps for pumping reservoir fluid from wells.
  • Known multi-stage rotary pump contains a housing closed with end caps, and placed inside the housing cavity, at least one shaft mounted on bearings, and rotors rigidly mounted on the shaft, separated by radial partitions fixed on the housing, with the formation of successive compression stages of the working medium, made with working chambers and suction and discharge windows communicated with the inlet and outlet fittings by means of channels, respectively, and the discharge window of each working medium compression stage is connected with the suction window of the adjacent stage, following in the direction of the working medium flow.
  • the rotors of each pump stage are made with internal gearing, the tooth of each of the internal rotors being in full engagement with the external rotor.
  • the outer rotors are displaced in the circumferential direction by an angle equal to 180°.
  • the outer rotor is made with internal teeth
  • the inner rotor, rigidly mounted on the shaft is made with eccentricity relative to the outer rotor and is equipped with external teeth, the number of which is one less than the number of teeth of the outer rotor (according to patent RU55896, IPC F04C 13/00, publ. 27.08 .06).
  • the disadvantage of this pump is that the fluid enters and exits the stages perpendicular to the axis of the pump, which increases the diameter of the pump and limits its use in the well.
  • the closest technical solution is the installation of a gerotor pump, which is used to produce formation fluid from a well.
  • the drive is carried out from the submersible electric motor.
  • the pump contains at least one stage consisting of inner and outer rotors rotating in plain bearings.
  • the inner rotor is mounted on the shaft.
  • the rotors rotate between discs having inlet and outlet holes (according to the patent US20150071795, IPC F04C 23/02, publ. 12.03.15).
  • the technical result achieved by using the invention is to increase the reliability of operation and service life of a multistage trochoid pump due to the applied design solutions.
  • the downhole multistage trochoid pump consists of two or more trochoid stages, including a stator with end-mounted covers with inlet and outlet holes on each, inner and outer rotors installed with internal engagement and the possibility of mutual rotation, and differs in that the inner rotors are mounted on the shaft with fixation in the circumferential direction and without fixation in the axial direction, and the outer rotors are installed with eccentricity in the stators of the steps in the axial plain bearing, in adjacent steps the outer rotors are displaced in the circumferential direction by an angle equal to 180°, the shaft is mounted in bearing supports, the trochoid stages are separated by a guide vane, in which one through hole and two blind holes are made, separated by a partition, the through hole connects the outlet below the installed stage with the inlet above the installed stage, while the stator of the stage has two bypass channels, one of which connects the stage outlet with a blind hole below the installed guide vane, and the other connects the
  • filter elements can be installed in the bypass channels.
  • bypass channel may be connected to the sleeve bearing of the outer rotor.
  • the inner rotor can be mounted on a shaft with radial clearance.
  • the pump may additionally contain upstream devices: an inlet module, a gas separator, a filter module, which can be equipped with filter elements, including those made of a wire-permeable material.
  • the rotors can be made from a ceramic-like material.
  • Fig. 1 borehole multistage trochoid pump, longitudinal section
  • Fig. 3 disassembled design of the trochoid stage
  • Fig. 4 downhole multistage trochoid pump in the well
  • a multistage trochoid pump (Fig. 1) consists of trochoid stages 1, each of which consists of a stator 2, an inner rotor 3, an outer rotor 4.
  • the outer rotor 4 is installed with eccentricity relative to the stator 2 in an axial plain bearing 5.
  • the inner rotor 3 is mounted on shaft 6 without fixation in the axial direction and with fixation in the circumferential direction by means of flats 7.
  • Shaft 6 is installed in bearing supports 8, Trochoid steps 1 are separated by a guide vane 9, connecting through a through hole 10 outlet 11 below the set stage with inlet 12 above the set stage .
  • the stator 2 has two bypass channels 13 and 14 (Fig. 2).
  • the bypass channel 13 connects the blind hole 15 in the guide vane 9 with the inlet of stage 12, and the bypass channel 14 connects the blind hole 16 with the outlet of stage 11 (Fig. 3).
  • the downhole multistage trochoid pump 17 (Fig. 4) is part of the downhole pump installation, which, in addition to the pump 17, consists of a submersible motor 18, hydraulic protection 19, input module
  • the unit is connected to the tubing string (tubing)
  • Submersible motor 19 is powered by cable 22.
  • Input module 20 can be equipped with filter elements 23.
  • Downhole multistage pump operates as follows.
  • the pump 17 as part of the installation descends into the well on the tubing string 21.
  • the cable 23 supplies power to the electric motor 18, which transmits torque to the shaft 6 of the pump 17.
  • the inner rotor 3 rotates together with the shaft 6 and, due to engagement with the outer rotor 4, transmits rotation and on him.
  • the liquid is transferred from the inlet 12 to the outlet 11 of the stage and enters through the through hole 10 of the guide vane 9 to input 12 of the next stage, where the process is repeated.
  • the liquid enters the input 12 of the lower stage of the pump through the input module 20. After passing through all the stages, the liquid enters the tubing string 21 and is pumped to the surface.
  • bypass channels 13 and 14 Due to the presence of bypass channels 13 and 14, the pressures are equalized and, as a result, the axial forces acting on the stage rotors.
  • a filter element (not shown in the figure), which can be installed in the bypass channels, prevents the accumulation of mechanical impurities in the bypass channel.
  • the bypass channel may be connected (not shown in the figure) to the outer rotor plain bearing to provide fluid friction.
  • the use of the input module 20 with the filter element 23 makes it possible to purify the liquid from mechanical impurities, which provides protection against wear of the parts of the trochoid stage and other elements of the pump.
  • the technical solutions proposed in the invention increase the reliability of operation and the resource of a downhole multistage trochoid pump and contribute to the achievement of a technical result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

L'invention concerne des pompes trochoïdes à étages multiples de fond de puits pour pomper un liquide de formation hors du puits. La pompe comprend des étages trochoïdes comprenant un stator et des rotors interne et externe installés de manière à réaliser un couplage interne et une rotation réciproque. Les rotors sont disposés sur un arbre en étant fixés dans la direction circulaire et sans être fixés dans la direction axiale avec une certaine excentricité dans les stators dans un palier à roulement axial. Dans les étages intermédiaires, les rotors sont décalés dans la direction circulaire d'un angle de 180°, et l'arbre est installé sur des paliers à roulement. Les étages sont divisés par un appareil de guidage dans lequel sont formées une ouverture traversante et deux ouvertures borgnes séparées par une cloison. L'ouverture traversante relie la sortie sous l'étage situé en bas à l'entrée de l'étage situé au-dessus. Dans le stator de l'étage sont formés deux canaux de dérivation dont un relie la sortie de l'étage à l'ouverture en dessous de l'appareil installé tandis que l'autre relie l'entrée de l'étage à l'ouverture au-dessus de l'appareil installé. L'invention a pour but d'augmenter la fiabilité de fonctionnement et la durée de vie d'une pompe trochoïde à étages multiples.
PCT/RU2021/000028 2020-08-26 2021-01-25 Pompe trochoïde à étages multiples de fond de puits WO2022045923A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020128432 2020-08-26
RU2020128432A RU2739932C1 (ru) 2020-08-26 2020-08-26 Скважинный многоступенчатый трохоидный насос

Publications (1)

Publication Number Publication Date
WO2022045923A1 true WO2022045923A1 (fr) 2022-03-03

Family

ID=74106547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/000028 WO2022045923A1 (fr) 2020-08-26 2021-01-25 Pompe trochoïde à étages multiples de fond de puits

Country Status (2)

Country Link
RU (1) RU2739932C1 (fr)
WO (1) WO2022045923A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128798A1 (fr) * 2021-12-29 2023-07-06 Алексей Михайлович ОРЁЛ Pompe à rotor (variantes)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203811A (ja) * 2008-02-26 2009-09-10 Toyota Industries Corp 可変容量型ギヤポンプ
US20150071795A1 (en) * 2013-09-12 2015-03-12 Intevep, S.A. Fluid displacement system using gerotor pump
US20160024898A1 (en) * 2003-02-21 2016-01-28 Raymond C. Davis Oil Well Pump Apparatus
US20160273535A1 (en) * 2015-03-16 2016-09-22 Saudi Arabian Oil Company Equal-walled gerotor pump for wellbore applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU55896U1 (ru) * 2006-04-19 2006-08-27 Иван Соломонович Пятов Многоступенчатый роторный насос (варианты)
RU2341688C1 (ru) * 2007-07-06 2008-12-20 Федеральное государственное унитарное предприятие "25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей-ГосНИИ по химмотологии)" Насосная установка с насосом объемного вида

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160024898A1 (en) * 2003-02-21 2016-01-28 Raymond C. Davis Oil Well Pump Apparatus
JP2009203811A (ja) * 2008-02-26 2009-09-10 Toyota Industries Corp 可変容量型ギヤポンプ
US20150071795A1 (en) * 2013-09-12 2015-03-12 Intevep, S.A. Fluid displacement system using gerotor pump
US20160273535A1 (en) * 2015-03-16 2016-09-22 Saudi Arabian Oil Company Equal-walled gerotor pump for wellbore applications

Also Published As

Publication number Publication date
RU2739932C1 (ru) 2020-12-29

Similar Documents

Publication Publication Date Title
CA2709090C (fr) Compresseur de gaz et pompe electriques immerges
US20150071795A1 (en) Fluid displacement system using gerotor pump
CA2425843C (fr) Entree de separateur de gaz pour pompes a rotor helicoidal excentre
US6413065B1 (en) Modular downhole multiphase pump
US20090151928A1 (en) Electrical submersible pump and gas compressor
US5605193A (en) Downhole gas compressor
CA2989475C (fr) Methode de pompage d'un fluide de trou de forage
US20080031760A1 (en) Gerotor pump
RU2477367C1 (ru) Способ одновременно-раздельной эксплуатации и закачки двух пластов одной скважиной и устройство для его осуществления
RU2739932C1 (ru) Скважинный многоступенчатый трохоидный насос
GB2278402A (en) Helical gear fluid machine.
RU2244164C1 (ru) Многоступенчатый погружной осевой насос
CN2821225Y (zh) 一种转子泵
CA2600060C (fr) Pompe a moteur pour le pompage de fluides
EA044468B1 (ru) Скважинный многоступенчатый трохоидный насос
RU2775052C1 (ru) Многоступенчатый трохоидный насос и ступень насоса
CN109538301B (zh) 圆柱形对称容积式机器
RU2471076C2 (ru) Винтовая гидромашина
WO2022255275A1 (fr) Compresseur à vis
EA043954B1 (ru) Многоступенчатый трохоидный насос и ступень насоса
CA2282231C (fr) Pompe modulaire multiphase de fond
KR20090095377A (ko) 스크롤 압축기
RU2721994C1 (ru) Буровой насос Иоаннесяна
US20070196229A1 (en) Gear pump for pumping abrasive well fluid
RU2744877C2 (ru) Скважинный насосный агрегат с погружным многоступенчатым насосом роторно-поршневого типа на базе гидравлической машины рыля

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862173

Country of ref document: EP

Kind code of ref document: A1