WO2022045540A1 - Composition for improving muscle strength, alleviating muscle atrophy, or alleviating aging-induced sarcopenia by using ishige okamurae extract or compound isolated therefrom - Google Patents

Composition for improving muscle strength, alleviating muscle atrophy, or alleviating aging-induced sarcopenia by using ishige okamurae extract or compound isolated therefrom Download PDF

Info

Publication number
WO2022045540A1
WO2022045540A1 PCT/KR2021/007279 KR2021007279W WO2022045540A1 WO 2022045540 A1 WO2022045540 A1 WO 2022045540A1 KR 2021007279 W KR2021007279 W KR 2021007279W WO 2022045540 A1 WO2022045540 A1 WO 2022045540A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
extract
composition
dphc
confirmed
Prior art date
Application number
PCT/KR2021/007279
Other languages
French (fr)
Korean (ko)
Inventor
전유진
류보미
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200109571A external-priority patent/KR102270028B1/en
Priority claimed from KR1020210054835A external-priority patent/KR102317113B1/en
Priority claimed from KR1020210054834A external-priority patent/KR102296975B1/en
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Publication of WO2022045540A1 publication Critical patent/WO2022045540A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • A61K31/09Ethers or acetals having an ether linkage to aromatic ring nuclear carbon having two or more such linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/03Phaeophycota or phaeophyta (brown algae), e.g. Fucus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Definitions

  • the present invention relates to a composition for improving muscle strength, improving muscle atrophy, or improving sarcopenia due to aging using an Ishige okamurae extract or a compound isolated therefrom.
  • the skeletal muscle is the largest tissue in our body, accounting for about 40-50% of the body weight of a normal person, and is responsible for essential functions such as movement, respiration, and heartbeat (Int J Biochem Cell Biol 37:1985-1996, 2005). ; Pharmacol Rev 61:373-393, 2009; Calcif Tissue Int 96:183-195, 2015).
  • the amount of muscle that is important for human activity starts to decrease by 1 to 2% each year after the age of 50, and by the age of 80, the amount of muscle decreases significantly to about half of the maximum muscle mass, and many elderly people suffer from sarcopenia (sarcopenia).
  • muscle mass of the human body is normally maintained by balancing protein synthesis and degradation, but when protein degradation increases or synthesis decreases, muscle atrophy occurs.
  • muscle atrophy is commonly observed in chronic wasting diseases such as cancer, diabetes, uremia, chronic lung disease, heart failure, and AIDS, but also occurs in acute diseases such as sepsis, surgery, trauma, and burns (Int J Biochem Cell Biol 37:2156-68, 2005).
  • the occurrence of muscle atrophy is related to the increase in the expression of proteins such as Atrogin-1 and Murf-1, which promote the breakdown of myofibrillar proteins, and the inhibition of the PI3K-Akt-mTOR signaling pathway involved in the synthesis of muscle-related proteins. It has been reported ( Am J Physiol Cell Physiol 287:C834-843, 2004). Specifically, the ubiquitin-proteasome system that decomposes muscle proteins including myosin is activated in muscle atrophy to restore muscle.
  • the present invention is a shellfish extract, isophloroglucin A (Ishophloroglucin A) and diphlorethohydroxycarmalol (DPHC) isolated therefrom to improve muscle strength or muscle atrophy, sarcopenia due to aging start
  • Shell extract and DPHC improve muscle loss or sarcopenia caused by aging in animal models of aging-related sarcopenia, and promote the expression of muscle protein synthesis-related factors Akt and PI3K and muscle growth-related factors TRPV4 and A1R. It was confirmed that it inhibited the expression of Sirt1, a muscle protein synthesis inhibitor, or MuRF1, Atrogin1, a muscle protein degradation-related factor.
  • the present invention uses shellfish extract, isophloroglucin A, a compound of Formula 1, or DPHC, a compound of Formula 2, as an active ingredient. It can be identified as a composition for improving muscle strength or a composition for improving muscle atrophy, including, in another aspect, a shellfish extract, a compound of the ⁇ Formula 1>, isophloroglucin A (Ishophloroglucin A), or a compound of the ⁇ Formula 2> It can be identified as a composition for improving sarcopenia due to aging comprising phosphorus DPHC as an active ingredient.
  • shell extract refers to a stem, leaf, fruit, flower, root, underground part, above-ground part, or a mixture thereof, which is an extraction target, water, a lower alcohol having 1 to 4 carbon atoms (methanol, ethanol, butanol, etc.), Methylene chloride, ethylene, acetone, hexane, ether, chloroform, ethyl acetate, butyl acetate, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,3-butylene glycol, propylene glycol or these
  • An extract obtained by leaching using a mixed solvent, an extract obtained using a supercritical extraction solvent such as carbon dioxide or pentane, or a fraction obtained by fractionating the extract, and the extraction method considers the polarity of the active material, the degree of extraction, and the degree of preservation Therefore, any method such as chilling, reflux, heating, ultrasonic radiation, and supercritical extraction can be applied.
  • the fractionated extract the fraction obtained by suspending the extract in a specific solvent and mixing and standing still with a solvent having a different polarity, and adsorbing the crude extract to a column filled with silica gel, etc. It is meant to include the fraction obtained as a mobile phase.
  • the meaning of the extract includes a concentrated liquid extract or solid extract from which the extraction solvent has been removed by methods such as freeze drying, vacuum drying, hot air drying, spray drying, and the like.
  • it refers to an extract obtained by using water, ethanol, or a mixed solvent thereof as an extraction solvent, and more preferably an extract obtained by using a mixed solvent of water and ethanol as an extraction solvent.
  • active ingredient refers to a component that alone exhibits the desired activity or can exhibit activity together with a carrier that has no activity by itself.
  • improving muscle strength is meant to include muscle strength enhancement, muscle increase and/or muscle reduction inhibition.
  • improving muscular atrophy is meant to include prevention, treatment, and alleviation of symptoms of muscular atrophy caused by aging, nutritional deficiency, reduced activity, cancer, diabetes, and the like.
  • improvement of sarcopenia due to aging means recovery of muscle strength loss due to aging or recovery of muscle loss due to aging.
  • the composition of the present invention may contain the active ingredient in any amount (effective amount) as long as it can exhibit the intended muscle strength improvement activity, muscular atrophy improvement activity, aging-induced sarcopenia improvement activity, etc. depending on the specific use, formulation, product form, etc. However, a typical effective amount will be determined within the range of 0.001% to 15% by weight based on the total weight of the composition.
  • the term "effective amount” refers to when the composition of the present invention is administered to a mammal, preferably a human subject to the application, during the administration period as suggested by a medical professional, etc. It refers to the amount of the active ingredient included in the composition of the present invention that can exhibit the intended medical and pharmacological effects, such as effects. Such an effective amount can be determined empirically within the ordinary ability of one of ordinary skill in the art.
  • composition of this invention can be grasped
  • the food composition of the present invention can be prepared in any form, for example, beverages such as tea, juice, carbonated drinks, and ion drinks, processed oils such as milk and yogurt, gums, rice cakes, Korean sweets, bread, confectionery, noodles, etc. Foods, tablets, capsules, pills, granules, liquids, powders, flakes, pastes, syrups, gels, jellies, and health functional food preparations such as bars can be manufactured.
  • beverages such as tea, juice, carbonated drinks, and ion drinks
  • processed oils such as milk and yogurt, gums, rice cakes, Korean sweets, bread, confectionery, noodles, etc.
  • Foods, tablets, capsules, pills, granules, liquids, powders, flakes, pastes, syrups, gels, jellies, and health functional food preparations such as bars can be manufactured.
  • the food composition of the present invention may have any product classification in terms of legal and functional classification as long as it conforms to the enforcement laws at the time of manufacture and distribution.
  • it is a health functional food according to Korea's "Health Functional Food Act”, or confectionery, beans, tea, and beverages according to each food type in the Food Ordinance of Korea “Food Sanitation Act” (Ministry of Food and Drug Safety Notification “Food Standards and Specifications”) , special purpose food, and the like.
  • the food composition of the present invention may contain food additives in addition to the active ingredients thereof.
  • Food additives can be generally understood as substances that are added and mixed or infiltrated into food in manufacturing, processing, or preserving food.
  • Food additives with guaranteed safety are limited in terms of ingredients or functions in the Food Additives Ordinance in accordance with the laws of each country that regulates the manufacture and distribution of food (“Food Sanitation Act” in Korea).
  • Food Additives Code Food Additive Standards and Specifications” announced by the Ministry of Food and Drug Safety
  • food additives are classified into chemically synthetic products, natural additives, and mixed preparations in terms of ingredients. It is divided into agents, preservatives, emulsifiers, acidulants, thickeners, etc.
  • the sweetener is used to impart appropriate sweetness to food, and both natural and synthetic ones may be used in the composition of the present invention.
  • a natural sweetener is used.
  • sugar sweeteners such as corn syrup solids, honey, sucrose, fructose, lactose, and maltose.
  • Flavoring agents may be used to improve taste or aroma, and both natural and synthetic ones may be used. Preferably, it is a case where a natural thing is used. In the case of using a natural product, the purpose of nutritional enhancement in addition to flavor may be concurrently used.
  • the natural flavoring agent may be obtained from apples, lemons, tangerines, grapes, strawberries, peaches, or the like, or obtained from green tea leaves, honeysuckle, bamboo leaves, cinnamon, chrysanthemum leaves, jasmine, and the like. In addition, those obtained from ginseng (red ginseng), bamboo shoots, aloe vera, and ginkgo can be used.
  • the natural flavoring agent may be a liquid concentrate or a solid extract.
  • a synthetic flavoring agent may be used, and the synthetic flavoring agent may be an ester, an alcohol, an aldehyde, a terpene, or the like.
  • sodium calcium sorbate, sodium sorbate, potassium sorbate, calcium benzoate, sodium benzoate, potassium benzoate, EDTA (ethylenediaminetetraacetic acid), etc. can be used, and as an emulsifier, acacia gum, carboxymethylcellulose, xanthan gum, Pectin, etc. are mentioned, and acidulant, malic acid, fumaric acid, adipic acid, phosphoric acid, gluconic acid, tartaric acid, ascorbic acid, acetic acid, phosphoric acid, etc. can be used as an acidulant.
  • the acidulant may be added so that the food composition has an appropriate acidity for the purpose of inhibiting the growth of microorganisms in addition to the purpose of enhancing the taste.
  • a thickening agent As a thickening agent, a suspending agent, a settling agent, a gel former, a bulking agent, etc. can be used.
  • the food composition of the present invention may contain, in addition to the food additives described above, physiologically active substances or minerals known in the art for the purpose of supplementing and reinforcing functionality and nutrition and guaranteed stability as food additives.
  • physiologically active substances include catechins contained in green tea and the like, vitamins such as vitamin B1, vitamin C, vitamin E, and vitamin B12, tocopherol, dibenzoylthiamine, and the like.
  • Minerals include calcium preparations such as calcium citrate, magnesium stearate
  • Magnesium preparations, such as iron preparations, such as iron citrate, chromium chloride, potassium iodide, selenium, germanium, vanadium, zinc, etc. are mentioned.
  • the food additives as described above may be included in an appropriate amount to achieve the purpose of the addition according to the product type.
  • composition of the present invention may be regarded as a pharmaceutical composition in another specific embodiment.
  • the pharmaceutical composition of the present invention may be prepared as an oral dosage form or a parenteral dosage form according to the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier in addition to the active ingredient.
  • the route of administration may be any suitable route including topical route, oral route, intravenous route, intramuscular route, and direct absorption through mucosal tissue, and two or more routes may be used in combination.
  • An example of the combination of two or more routes is a case in which two or more formulations of drugs according to the route of administration are combined. For example, one drug is first administered by an intravenous route and the other drug is secondarily administered by a local route.
  • Pharmaceutically acceptable carriers are well known in the art depending on the route of administration or formulation, and specifically, reference may be made to the pharmacopoeia of each country including the "Korea Pharmacopoeia”.
  • suitable carriers include sugars such as lactose, glucose, sucrose, dextrose, sorbitol, mannitol, and xylitol, starches such as corn starch, potato starch, wheat starch, cellulose, methylcellulose, ethylcellulose, sodium carboxymethylcellulose, Cellulose such as hydroxypropylmethylcellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate, mineral oil, malt, gelatin, talc, polyol, vegetable oil, ethanol, glycerol and the like.
  • suitable carriers include sugars such as lactose, glucose, sucrose, dextrose, sorbitol, mannitol, and xylitol, starches such as corn starch, potato starch, wheat starch, cellulose, methylcellulose, ethylcellulose, sodium carboxymethylcellulose, Cellulose such as hydroxypropylmethylcellulose, polyvinylpyr
  • an appropriate binder, lubricant, disintegrant, colorant, diluent, etc. may be included as needed.
  • Suitable binders include starch, magnesium aluminum silicate, starch paste, gelatin, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone, glucose, corn sweetener, sodium alginate, polyethylene glycol, wax, and the like, and lubricants include sodium oleate.
  • the diluent include lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, and the like.
  • the pharmaceutical composition of the present invention When the pharmaceutical composition of the present invention is prepared for parenteral use, it may be formulated in the form of injections, transdermal administrations, nasal inhalants and suppositories together with suitable carriers according to methods known in the art.
  • suitable carriers for aqueous isotonic solution or suspension
  • PBS phosphate buffered saline
  • isotonic solution such as 5% dextrose
  • formulated for transdermal administration When formulated for transdermal administration, it can be formulated in the form of an ointment, a cream, a lotion, a gel, an external solution, a pasta agent, a liniment agent, an air roll, and the like.
  • a suitable propellant such as dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, and the like.
  • tween 61 polyethylene glycols, cacao fat, laurin fat, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearate, sorbitan fatty acid esters, and the like can be used.
  • a preferred dosage of the pharmaceutical composition of the present invention is in the range of 0.001 mg/kg to 10 g/kg per day, preferably 0.001 mg/kg to 1 g, depending on the patient's condition, weight, sex, age, severity of the patient, and the route of administration. It can be in the range /kg. Administration may be performed once or divided into several times a day. These dosages should not be construed as limiting the scope of the invention in any respect.
  • a composition for improving muscle strength or muscle atrophy and improving sarcopenia due to aging using the shellfish extract, isophloroglucin A and difluoroetohydroxycarmarol isolated therefrom can provide
  • composition of the present invention may be commercialized as food (especially health functional food) or medicine.
  • 1 is a result showing the effect of shellfish extract, etc. on body weight and muscle weight in a muscle atrophy model.
  • 3 is a result showing the effect of a plaque extract and the like on the grip strength in the muscle atrophy model.
  • FIG. 5 is a result showing the effect of shellfish extract and the like on the mRNA expression of factors related to protein synthesis and degradation in gastrocnemius muscle in a muscle atrophy model.
  • FIG. 6 is a result showing the effect of extracts of shellfish, etc. on the mRNA expression of factors related to the promotion and inhibition of muscle growth of gastrocnemius in a muscle atrophy model.
  • FIG. 9 is a result showing the effect of shellfish extract and the like on the mRNA expression of factors related to promoting and inhibiting muscle growth of soleus muscle in a muscle atrophy model.
  • 11 is a result showing the effect of shellfish extract and DPHC on body weight, lean mass (muscle weight), etc. in a muscle atrophy model.
  • 13 is a result showing the effect of shellfish extract and DPHC on grip strength and endurance in a muscle atrophy model.
  • 15 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation in gastrocnemius muscle in a muscle atrophy model.
  • 16 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promoting and inhibiting muscle growth in gastrocnemius in a muscle atrophy model.
  • 17 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor in gastrocnemius in a muscle atrophy model.
  • 18 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in gastrocnemius in a muscle atrophy model.
  • 19 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of soleus muscle in a muscle atrophy model.
  • 20 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation of soleus muscle in a muscle atrophy model.
  • 21 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promoting and inhibiting muscle growth of soleus muscle in a muscle atrophy model.
  • 22 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor of soleus muscle in a muscle atrophy model.
  • 23 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in soleus muscle in a muscle atrophy model.
  • 25 is a result showing the effect of a plaque extract and DPHC on leg muscles in a sarcopenia aging model.
  • 26 is a result showing the effect of shellfish extract and DPHC on grip strength and endurance in the aging model of sarcopenia.
  • 27 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of gastrocnemius in an aging model of sarcopenia.
  • 29 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to the promotion and inhibition of muscle growth in gastrocnemius in an aging model of sarcopenia.
  • FIG. 30 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor in gastrocnemius in an aging model of sarcopenia.
  • 31 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in gastrocnemius in a sarcopenia aging model.
  • 32 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of soleus muscle in an aging model of sarcopenia.
  • 33 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation of soleus muscle in a sarcopenia aging model.
  • 34 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promotion and inhibition of muscle growth in soleus muscle in a sarcopenia aging model.
  • 35 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor of soleus muscle in a sarcopenia aging model.
  • 36 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in soleus muscle in a sarcopenia aging model.
  • Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did.
  • IPA was prepared by separating it according to the method described in the Examples of Korean Patent Registration No. 10-1964080.
  • Group 1 (Saline administration group): Group administered saline once/day for 39 days
  • Group 2 (Saline/Dexamethaone administration group): Administer saline once/day for 39 days, and subcutaneously dexamethaone (1mg/kg/day) for the last 10 days (29th to 38th). injection group.
  • Groups 3 to 5 (groups administered with shellfish extract 50, 100, and 200 mg/Kg/day): shellfish extract (50, 100, 200 mg/Kg/day) was administered once/day for 39 days, and the last 10 The group subcutaneously injected dexamethaone (1mg/kg/day) for daily (29th to 38th).
  • IPA 3.5 mg/Kg/day group
  • IPA 3.5 mg/Kg/day was administered once/day for 39 days, and dexamethaone (1 mg/kg/day) for the last 10 days (29th to 38th) ) subcutaneously.
  • IPA is a Hexadecaphlorethol (HdP) compound isolated from plaque with Ishophloroglucin A (refer to Korean Patent No. 10-1964080)
  • Group 7 oxymetholone 50 mg/Kg/day administration group: As a comparative drug, oxymetholone (50 mg/Kg/day), an oral muscle-increasing steroid, was administered once/day for 39 days, and the last The group subcutaneously injected with dexamethaone (1mg/kg/day) for 10 days (29th to 38th)
  • the gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
  • RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScriptTM 1st strand cDNA Synthesis Kit.
  • a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
  • gastrocnemius muscle which is a fast muscle for agility, and the soleus muscle, a slow muscle for endurance.
  • a significant decrease in gastrocnemius muscle was observed in the group induced by dexamethasone, and this decrease was significantly improved in the group administered with cncnfanf, IPA, and the comparative drug oxymetholone (Fig. 4). ).
  • the weight and thickness of gastrocnemius muscle in the group administered with 100 and 200 mg/Kg/day shellfish extract improved to a level similar to that of the group administered with the comparative drug oxymetholone.
  • the mRNA expression of the gastrocnemius muscle growth promoting factor increased and the mRNA expression of the inhibitory factor decreased (FIG. 6). Accordingly, it was confirmed that the decreased gastrocnemius muscle growth promotion and inhibition inhibition in the muscle atrophy model could be improved by the administration of shellfish extract and IPA.
  • Lactate dehydrogenase an evaluation index of blood energy metabolism, decreased in the muscle atrophy model, but a significant increase was confirmed in the group administered with shellfish extract and IPA ( FIG. 10 ).
  • LDH is used as an indicator of histological damage analysis and fitness evaluation of muscles according to exercise intensity, exercise duration, and recovery from fatigue, suggesting that muscle atrophy due to muscle atrophy can be suppressed by shellfish extract and IPA.
  • Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did
  • DPHC Diphlorethohydroxycarmalol, Cas No 138529-04-1
  • Group 1 (Saline administration group): Group administered saline once/day for 39 days
  • Group 2 (Saline/Dexamethaone administration group): Administer saline once/day for 39 days, and subcutaneously dexamethaone (1mg/kg/day) for the last 10 days (29th to 38th). injection group.
  • Groups 3 to 5 (groups administered with shellfish extract 50, 100, and 200 mg/Kg/day): shellfish extract (50, 100, 200 mg/Kg/day) was administered once/day for 39 days, and the last 10 The group subcutaneously injected dexamethaone (1mg/kg/day) for daily (29th to 38th).
  • DPHC 2.5 mg/Kg/day administration group
  • DPHC 2.5 mg/Kg/day
  • dexamethaone 1 mg/kg/day
  • Group 7 (Decanoate 5 mg/Kg/day administration group): As a control drug, Decanoate (5 mg/Kg/day), an oral muscle-increasing steroid, was administered once/day for 39 days, and the last The group subcutaneously injected dexamethaone (1mg/kg/day) for 10 days (29th to 38th)
  • a weight corresponding to the weight of each animal was attached to the tail, and the time required to climb the ladder to the end was measured. Each was measured three times and recorded, and the average value was evaluated.
  • the gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
  • RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScriptTM 1st strand cDNA Synthesis Kit.
  • a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
  • gastrocnemius is a muscle that is used to produce a strong force, that is, a grip force.
  • Significant improvement in the weight and thickness of gastrocnemius muscle reduced by dexamethasone was confirmed in all groups administered with the sample and control drug (FIG. 14).
  • Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did
  • DPHC Diphlorethohydroxycarmalol, Cas No 138529-04-1
  • 14-month-old B6 mice (mid to late 50s, female) were divided into 4 groups as follows to measure grip strength and endurance, and each group's weight, muscle, leg muscle, gastrocnemius muscle, soleus muscle weight, muscle synthesis or decomposition, etc. were measured. An experiment was performed to measure the mRNA expression level of the factor.
  • Group 1 The group in which saline was administered once/day for 28 days.
  • Group 2 (shell extract 100 mg/Kg/day administration group): Group administered shellfish extract (100 mg/Kg/day) once/day for 28 days.
  • Group 3 (DPHC) 2.5 mg/Kg/day administration group): The group administered DPHC (2.5 mg/Kg/day) once/day for 28 days.
  • Group 4 (Decanoate 5 mg/Kg/day administration group): As a control drug, an oral muscle increasing steroid, Decanoate (5 mg/Kg/day), was administered once/day for 28 days.
  • a weight corresponding to the weight of each animal was attached to the tail, and the time required to climb the ladder to the end was measured. Each was measured three times and recorded, and the average value was evaluated.
  • the gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
  • RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScriptTM 1st strand cDNA Synthesis Kit.
  • a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
  • LHD lactate dehydrogenase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed in the present invention is a composition for improving muscle strength or alleviating muscle atrophy by using, in experiments on animal with muscle atrophy, modelsan Ishige okamurae extract or Ishophloroglucin A for alleviating hypotonia or muscle atrophy, promoting the expression of muscle protein synthesis-related factors Akt and PI3K or muscle growth-related factors TRPV4 and A1R, and inhibiting the expression of muscle protein synthesis inhibiting factors Myostatin and Sirt1 or muscle protein degradation-related factors MuRF1 and Atrogin1.

Description

패 추출물 또는 그로부터 분리된 화합물을 이용한 근력 개선, 근위축 개선 또는 노화로 인한 근감소증 개선용 조성물Composition for improving muscle strength, improving muscle atrophy, or improving sarcopenia due to aging using a shellfish extract or a compound isolated therefrom
본 발명은 패(Ishige okamurae) 추출물 또는 그로부터 분리된 화합물을 이용한 근력 개선, 근위축 개선 또는 노화로 인한 근감소증 개선용 조성물에 관한 것이다.The present invention relates to a composition for improving muscle strength, improving muscle atrophy, or improving sarcopenia due to aging using an Ishige okamurae extract or a compound isolated therefrom.
근육(skeletal muscle)은 정상인의 체중의 약 40~50% 차지하는 우리 몸에서 가장 큰 조직이며, 운동과 호흡, 심장박동 등과 같은 필수적인 기능을 담당한다(Int J Biochem Cell Biol 37:1985-1996, 2005; Pharmacol Rev 61:373-393, 2009; Calcif Tissue Int 96:183-195, 2015). 이처럼 인체의 활동에 중요한 근육의 양은 사람의 경우, 50세 이상이 되면 해마다 1~2%씩 줄어들기 시작하여 80세가 되면 최대 근육량의 약 절반 정도로 그 양이 크게 감소하여 많은 노인들이 근육감소증(sarcopenia) 또는 근위축증(muscle atrophy)을 겪게 되고, 이에 따른 신체기능의 감소, 장애 및 낙상 등으로 인한 삶의 질의 저하가 빈번히 일어나고 있다(Korean J Food and Nutr 4:133-139, 1991; J Nutr 127:990S-991S, 1997; Curr Aging Sci 1:182-191, 2008) 특히 세계적으로 평균수명이 늘고 노인의 비율이 급증함에 따라 근위축은 중요한 노령질환으로 인식되고 있는 상황이다(Curr Opin Clin Nutr Metab Care 13:1-7, 2010).The skeletal muscle is the largest tissue in our body, accounting for about 40-50% of the body weight of a normal person, and is responsible for essential functions such as movement, respiration, and heartbeat (Int J Biochem Cell Biol 37:1985-1996, 2005). ; Pharmacol Rev 61:373-393, 2009; Calcif Tissue Int 96:183-195, 2015). In the case of humans, the amount of muscle that is important for human activity starts to decrease by 1 to 2% each year after the age of 50, and by the age of 80, the amount of muscle decreases significantly to about half of the maximum muscle mass, and many elderly people suffer from sarcopenia (sarcopenia). ) or muscle atrophy, resulting in a decrease in physical function, disability, and deterioration of quality of life due to falls (Korean J Food and Nutr 4:133-139, 1991; J Nutr 127: 990S-991S, 1997; Curr Aging Sci 1:182-191, 2008) In particular, as the life expectancy increases and the proportion of the elderly increases rapidly, muscular atrophy is recognized as an important aging disease (Curr Opin Clin Nutr Metab Care). 13:1-7, 2010).
인체의 근육량은 정상적으로 단백질의 합성과 분해가 균형을 이루어 일정하게 유지되지만 단백질의 분해가 증가하거나 합성이 감소하는 상황이 발생하면 근위축이 일어나게된다. 근위축은 노화, 영양 결핍, 활동 저하 외에도 암, 당뇨, 요독증, 만성폐질환, 심부전 그리고 AIDS 등과 같은 만성 소모성 질환에서 흔히 관찰되지만 패혈증이나 수술, 외상, 화상같은 급성 질환에서도 나타난다(Int J Biochem Cell Biol 37:2156-68, 2005).The muscle mass of the human body is normally maintained by balancing protein synthesis and degradation, but when protein degradation increases or synthesis decreases, muscle atrophy occurs. In addition to aging, nutritional deficiencies, and decreased activity, muscle atrophy is commonly observed in chronic wasting diseases such as cancer, diabetes, uremia, chronic lung disease, heart failure, and AIDS, but also occurs in acute diseases such as sepsis, surgery, trauma, and burns (Int J Biochem Cell Biol 37:2156-68, 2005).
근위축의 발생은 근섬유 단백질(myofibrillar protein)들의 분해를 촉진하는 Atrogin-1 및 Murf-1과 같은 단백질 발현의 증가와 근육 관련 단백질 합성에 관여하는 PI3K-Akt-mTOR 신호전달 경로의 억제가 관련된 것으로 보고되었다(Am J Physiol Cell Physiol 287:C834-843, 2004) 구체적으로 근위축 현상에서 마이오신(myosin)을 비롯한 근육 단백질들을 분해하는 유비퀴틴-프로테아좀(ubiquitin-proteasome) 시스템이 활성화 되어 근육을 구성하는 단백질들의 분해가 가속화 되고, 한편으로는 근육 관련 단백질 합성에 관여하는 PI3K-Akt-mTOR 신호전달 경로의 활성이 낮아지면서 근육 단백질 합성의 억제가 함께 일어나는 것으로 확인되었다(Proc Natl Acad Sci USA 98:14440-14445, 2001; J Biol Chem 280: 2737-2744, 2005). 따라서 근위축을 효과적으로 저해하기 위해서는 단백질 분해경로에 관련되는 신호전달 경로를 억제할 뿐 아니라, 근육의 양의 증가와 근육세포의 활성에 필수적인 단백질의 생합성에 관련된 신호전달 경로들을 상승조절(up-regulation)하는 것이 필요하다고 할 수 있다. The occurrence of muscle atrophy is related to the increase in the expression of proteins such as Atrogin-1 and Murf-1, which promote the breakdown of myofibrillar proteins, and the inhibition of the PI3K-Akt-mTOR signaling pathway involved in the synthesis of muscle-related proteins. It has been reported ( Am J Physiol Cell Physiol 287:C834-843, 2004). Specifically, the ubiquitin-proteasome system that decomposes muscle proteins including myosin is activated in muscle atrophy to restore muscle. It was confirmed that the decomposition of the constituent proteins was accelerated and, on the other hand, the activity of the PI3K-Akt-mTOR signaling pathway involved in muscle-related protein synthesis was lowered, resulting in inhibition of muscle protein synthesis ( Proc Natl Acad Sci USA 98). :14440-14445, 2001; J Biol Chem 280: 2737-2744, 2005). Therefore, in order to effectively inhibit muscle atrophy, not only suppress the signaling pathway related to the protein degradation pathway, but also up-regulate signaling pathways related to the biosynthesis of proteins essential for the increase of muscle mass and the activity of muscle cells. ) may be necessary.
본 발명은 패 추출물, 이로부터 분리한 아이소플로로글루신 A(Ishophloroglucin A)와 디플로르에토하이드록시카르마롤(Diphlorethohydroxycarmalol, DPHC)의 근력 개선 또는 근위축 개선, 노화로 인한 근감소증 개선 활성을 개시한다.The present invention is a shellfish extract, isophloroglucin A (Ishophloroglucin A) and diphlorethohydroxycarmalol (DPHC) isolated therefrom to improve muscle strength or muscle atrophy, sarcopenia due to aging start
본 발명의 목적은 패 추출물, 이로부터 분리한 아이소플로로글루신 A와 디플로르에토하이드록시카르마롤을 이용한 근력 개선 또는 근위축 개선, 노화로 인한 근감소증 개선용 조성물을 제공하는 데 있다.It is an object of the present invention to provide a composition for improving muscle strength or muscle atrophy, and improving sarcopenia due to aging using a shellfish extract, isophloroglucin A and difluoroetohydroxycarmarol isolated therefrom.
본 발명의 다른 목적이나 구체적인 목적은 이하에서 제시될 것이다.Other objects or specific objects of the present invention will be set forth below.
본 발명자들은 아래의 실시예 및 실험예에서 확인되는 바와 같이, 패 추출물 또는 패 추출물에 분리한 아래 화학식 1의 IPA(Ishophloroglucin A, Hexadecaphlorethol)(한국 등록특허 제10-1964080호 참조, 본 특허 문헌은 본 명세서의 일부로 간주됨) 및 아래 화학식 2의 DPHC(Diphlorethohydroxycarmalol, Cas No 138529-[0001] 04-1)가 근위축 모델 동물실험에서 덱사메타손에 의한 근력 저하나 근위축을 개선시키고 근육 단백질의 합성 관련 인자인 Akt, PI3K나 근육 성장 관련 인자인 TRPV4, A1R의 발현을 촉진시키며, 또한 근육 단백질 합성 저해 인자인 Myostatin, Sirt1나 근육 단백질 분해 관련 인자의 MuRF1, Atrogin1의 발현을 억제시킴을 확인하였고, 더불어 패 추출물과 DPHC는 노화로 인한 근감소증 동물모델에서도 노화에 의한 근력 저하나 근감소증을 개선시키고 근육 단백질의 합성 관련 인자인 Akt, PI3K나 근육 성장 관련 인자인 TRPV4, A1R의 발현을 촉진시키며, 또한 근육 단백질 합성 저해 인자인 Sirt1나 근육 단백질 분해 관련 인자의 MuRF1, Atrogin1의 발현을 억제시킴을 확인하였다.As confirmed in the Examples and Experimental Examples below, the present inventors have isolated IPA (Ishophloroglucin A, Hexadecaphlorethol) of Formula 1 below (see Korean Patent No. 10-1964080, this patent document Considered a part of the present specification) and DPHC (Diphlorethohydroxycarmalol, Cas No 138529-[0001] 04-1) of Formula 2 below improve muscle weakness or muscle atrophy caused by dexamethasone in animal atrophy model animal experiments and are related to the synthesis of muscle proteins It was confirmed that it promotes the expression of Akt, PI3K, muscle growth-related factors, TRPV4, and A1R, and also inhibits the expression of Myostatin and Sirt1, muscle protein synthesis inhibitors, or MuRF1, Atrogin1, muscle protein degradation-related factors. Shell extract and DPHC improve muscle loss or sarcopenia caused by aging in animal models of aging-related sarcopenia, and promote the expression of muscle protein synthesis-related factors Akt and PI3K and muscle growth-related factors TRPV4 and A1R. It was confirmed that it inhibited the expression of Sirt1, a muscle protein synthesis inhibitor, or MuRF1, Atrogin1, a muscle protein degradation-related factor.
<화학식 1><Formula 1>
Figure PCTKR2021007279-appb-I000001
Figure PCTKR2021007279-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2021007279-appb-I000002
Figure PCTKR2021007279-appb-I000002
전술한 바를 고려할 때, 본 발명은 일 측면에 있어서, 패 추출물, 상기 <화학식 1>의 화합물인 아이소플로로글루신 A(Ishophloroglucin A) 또는 상기 <화학식 2>의 화합물인 DPHC를을 유효성분으로 포함하는 근력 개선용 조성물 또는 근위축 개선용 조성물로 파악할 수 있고, 다른 측면에 있어서는 패 추출물, 상기 <화학식 1>의 화합물인 아이소플로로글루신 A(Ishophloroglucin A) 또는 상기 <화학식 2>의 화합물인 DPHC를을 유효성분으로 포함하는 노화로 인한 근감소증 개선용 조성물로 파악할 수 있다.Considering the above, in one aspect, the present invention uses shellfish extract, isophloroglucin A, a compound of Formula 1, or DPHC, a compound of Formula 2, as an active ingredient. It can be identified as a composition for improving muscle strength or a composition for improving muscle atrophy, including, in another aspect, a shellfish extract, a compound of the <Formula 1>, isophloroglucin A (Ishophloroglucin A), or a compound of the <Formula 2> It can be identified as a composition for improving sarcopenia due to aging comprising phosphorus DPHC as an active ingredient.
본 명세서에서, "패 추출물"이란 추출 대상인 꽃참싸리의 줄기, 잎, 열매, 꽃, 뿌리, 지하부, 지상부 또는 이들의 혼합물을 물, 탄소수 1 내지 4의 저급 알콜(메탄올, 에탄올, 부탄올 등), 메틸렌클로라이드, 에틸렌, 아세톤, 헥산, 에테르, 클로로포름, 에틸아세테이트, 부틸아세테이트, N,N-디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 1,3-부틸렌글리콜, 프로필렌글리콜 또는 이들의 혼합 용매를 사용하여 침출하여 얻어진 추출물, 이산화탄소, 펜탄 등 초임계 추출 용매를 사용하여 얻어진 추출물 또는 그 추출물을 분획하여 얻어진 분획물을 의미하며, 추출 방법은 활성물질의 극성, 추출 정도, 보존 정도를 고려하여 냉침, 환류, 가온, 초음파 방사, 초임계 추출 등 임의의 방법을 적용할 수 있다. 분획된 추출물의 경우 추출물을 특정 용매에 현탁시킨 후 극성이 다른 용매와 혼합·정치시켜 얻은 분획물, 상기 조추출물을 실리카겔 등이 충진된 칼럼에 흡착시킨 후 소수성 용매, 친수성 용매 또는 이들의 혼합 용매를 이동상으로 하여 얻은 분획물을 포함하는 의미이다. 또한 상기 추출물의 의미에는 동결건조, 진공건조, 열풍건조, 분무건조 등의 방식으로 추출 용매가 제거된 농축된 액상의 추출물 또는 고형상의 추출물이 포함된다. 바람직하게는 추출용매로서 물, 에탄올 또는 이들의 혼합 용매를 사용하여 얻어진 추출물, 더 바람직하게는 추출용매로서 물과 에탄올의 혼합 용매를 사용하여 얻어진 추출물을 의미한다.As used herein, the term "shell extract" refers to a stem, leaf, fruit, flower, root, underground part, above-ground part, or a mixture thereof, which is an extraction target, water, a lower alcohol having 1 to 4 carbon atoms (methanol, ethanol, butanol, etc.), Methylene chloride, ethylene, acetone, hexane, ether, chloroform, ethyl acetate, butyl acetate, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,3-butylene glycol, propylene glycol or these An extract obtained by leaching using a mixed solvent, an extract obtained using a supercritical extraction solvent such as carbon dioxide or pentane, or a fraction obtained by fractionating the extract, and the extraction method considers the polarity of the active material, the degree of extraction, and the degree of preservation Therefore, any method such as chilling, reflux, heating, ultrasonic radiation, and supercritical extraction can be applied. In the case of the fractionated extract, the fraction obtained by suspending the extract in a specific solvent and mixing and standing still with a solvent having a different polarity, and adsorbing the crude extract to a column filled with silica gel, etc. It is meant to include the fraction obtained as a mobile phase. In addition, the meaning of the extract includes a concentrated liquid extract or solid extract from which the extraction solvent has been removed by methods such as freeze drying, vacuum drying, hot air drying, spray drying, and the like. Preferably, it refers to an extract obtained by using water, ethanol, or a mixed solvent thereof as an extraction solvent, and more preferably an extract obtained by using a mixed solvent of water and ethanol as an extraction solvent.
또 본 명세서에서 "유효성분"이란 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.In addition, as used herein, the term "active ingredient" refers to a component that alone exhibits the desired activity or can exhibit activity together with a carrier that has no activity by itself.
또 본 명세서에서, "근력 개선"은 근력 강화, 근육 증가 및/또는 근육 감소 억제를 포함하는 의미이다.Also in the present specification, "improving muscle strength" is meant to include muscle strength enhancement, muscle increase and/or muscle reduction inhibition.
또 본 명세서에서, "근위축증 개선"은 노화, 영양 결핍, 활동 저하, 암, 당뇨 등의 질환 등이 원인이 되어 발생하는 근위축증의 예방, 치료, 증상의 경감을 포함하는 의미이다.In addition, as used herein, "improving muscular atrophy" is meant to include prevention, treatment, and alleviation of symptoms of muscular atrophy caused by aging, nutritional deficiency, reduced activity, cancer, diabetes, and the like.
또 본 명세서에서, "노화로 인한 근감소증 개선"은 노화로 인한 근력 감소 회복이나 노화로 인한 근육의 감소의 회복을 의미한다.Also, in the present specification, "improvement of sarcopenia due to aging" means recovery of muscle strength loss due to aging or recovery of muscle loss due to aging.
본 발명의 조성물은 그 유효성분을 구체적 용도, 제형, 제품 형태 등에 따라 의도하는 근력 개선 활성이나 근위축증 개선 활성, 노화로 인한 근감소증 개선 활성 등을 나타낼 수 있는 한 임의의 양(유효량)으로 포함할 수 있는데, 통상적인 유효량은 조성물 전체 중량을 기준으로 할 때 0.001 중량 % 내지 15 중량 % 범위 내에서 결정될 것이다. 여기서 "유효량"이란 그 적용 대상인 포유동물 바람직하게는 사람에게 의료 전문가 등의 제언에 의한 투여 기간 동안 본 발명의 조성물이 투여될 때, 근력 개선 효과나 근위축증 질환의 개선 효과, 노화로 인한 근감소증 개선 효과 등 의도한 의료적·약리학적 효과를 나타낼 수 있는, 본 발명의 조성물에 포함되는 유효성분의 양을 말한다. 이러한 유효량은 당업자의 통상의 능력 범위 내에서 실험적으로 결정될 수 있다.The composition of the present invention may contain the active ingredient in any amount (effective amount) as long as it can exhibit the intended muscle strength improvement activity, muscular atrophy improvement activity, aging-induced sarcopenia improvement activity, etc. depending on the specific use, formulation, product form, etc. However, a typical effective amount will be determined within the range of 0.001% to 15% by weight based on the total weight of the composition. As used herein, the term "effective amount" refers to when the composition of the present invention is administered to a mammal, preferably a human subject to the application, during the administration period as suggested by a medical professional, etc. It refers to the amount of the active ingredient included in the composition of the present invention that can exhibit the intended medical and pharmacological effects, such as effects. Such an effective amount can be determined empirically within the ordinary ability of one of ordinary skill in the art.
본 발명의 조성물은 구체적인 양태에 있어서, 식품 조성물로서 파악할 수 있다. In a specific aspect, the composition of this invention can be grasped|ascertained as a food composition.
본 발명의 식품 조성물은 어떠한 형태로도 제조될 수 있으며, 예컨대 차, 쥬스, 탄산음료, 이온음료 등의 음료류, 우유, 요구르트 등의 가공 유류, 껌류, 떡, 한과, 빵, 과자, 면 등의 식품류, 정제, 캡슐, 환, 과립, 액상, 분말, 편상, 페이스트상, 시럽, 겔, 젤리, 바 등의 건강기능식품 제제류 등으로 제조될 수 있다. The food composition of the present invention can be prepared in any form, for example, beverages such as tea, juice, carbonated drinks, and ion drinks, processed oils such as milk and yogurt, gums, rice cakes, Korean sweets, bread, confectionery, noodles, etc. Foods, tablets, capsules, pills, granules, liquids, powders, flakes, pastes, syrups, gels, jellies, and health functional food preparations such as bars can be manufactured.
또 본 발명의 식품 조성물은 법률상·기능상의 구분에 있어서 제조·유통 시점의 시행 법규에 부합하는 한 임의의 제품 구분을 띨 수 있다. 예컨대 한국 「건강기능식품에관한법률」에 따른 건강기능식품이거나, 한국 「식품위생법」의 식품공전(식약처 고시 「식품의 기준 및 규격」)상 각 식품유형에 따른 과자류, 두류, 다류, 음료류, 특수용도식품 등일 수 있다.In addition, the food composition of the present invention may have any product classification in terms of legal and functional classification as long as it conforms to the enforcement laws at the time of manufacture and distribution. For example, it is a health functional food according to Korea's "Health Functional Food Act", or confectionery, beans, tea, and beverages according to each food type in the Food Ordinance of Korea "Food Sanitation Act" (Ministry of Food and Drug Safety Notification "Food Standards and Specifications") , special purpose food, and the like.
본 발명의 식품 조성물에는 그 유효성분 이외에 식품첨가물이 포함될 수 있다. 식품첨가물은 일반적으로 식품을 제조, 가공 또는 보존함에 있어 식품에 첨가되어 혼합되거나 침윤되는 물질로서 이해될 수 있는데, 식품과 함께 매일 그리고 장기간 섭취되므로 그 안전성이 보장되어야 한다. 식품의 제조·유통을 규율하는 각국 법률(한국에서는 「식품위생법」임)에 따른 식품첨가물공전에는 안전성이 보장된 식품첨가물이 성분 면에서 또는 기능 면에서 한정적으로 규정되어 있다. 한국 식품첨가물공전(식약처 고시 「식품첨가물 기준 및 규격」)에서는 식품첨가물이 성분 면에서 화학적 합성품, 천연 첨가물 및 혼합 제제류로 구분되어 규정되어 있는데, 이러한 식품첨가물은 기능 면에 있어서는 감미제, 풍미제, 보존제, 유화제, 산미료, 점증제 등으로 구분된다. The food composition of the present invention may contain food additives in addition to the active ingredients thereof. Food additives can be generally understood as substances that are added and mixed or infiltrated into food in manufacturing, processing, or preserving food. Food additives with guaranteed safety are limited in terms of ingredients or functions in the Food Additives Ordinance in accordance with the laws of each country that regulates the manufacture and distribution of food (“Food Sanitation Act” in Korea). In the Korean Food Additives Code (“Food Additive Standards and Specifications” announced by the Ministry of Food and Drug Safety), food additives are classified into chemically synthetic products, natural additives, and mixed preparations in terms of ingredients. It is divided into agents, preservatives, emulsifiers, acidulants, thickeners, etc.
감미제는 식품에 적당한 단맛을 부여하기 위하여 사용되는 것으로, 천연의 것이거나 합성된 것 모두 본 발명의 조성물에 사용할 수 있다. 바람직하게는 천연 감미제를 사용하는 경우인데, 천연 감미제로서는 옥수수 시럽 고형물, 꿀, 수크로오스, 프룩토오스, 락토오스, 말토오스 등의 당 감미제를 들 수 있다. The sweetener is used to impart appropriate sweetness to food, and both natural and synthetic ones may be used in the composition of the present invention. Preferably, a natural sweetener is used. Examples of the natural sweetener include sugar sweeteners such as corn syrup solids, honey, sucrose, fructose, lactose, and maltose.
풍미제는 맛이나 향을 좋게 하기 위하여 사용될 수 있는데, 천연의 것과 합성된 것 모두 사용될 수 있다. 바람직하게는 천연의 것을 사용하는 경우이다. 천연의 것을 사용할 경우에 풍미 이외에 영양 강화의 목적도 병행할 수 있다. 천연 풍미제로서는 사과, 레몬, 감귤, 포도, 딸기, 복숭아 등에서 얻어진 것이거나 녹차잎, 둥굴레, 댓잎, 계피, 국화 잎, 자스민 등에서 얻어진 것일 수 있다. 또 인삼(홍삼), 죽순, 알로에 베라, 은행 등에서 얻어진 것을 사용할 수 있다. 천연 풍미제는 액상의 농축액이나 고형상의 추출물일 수 있다. 경우에 따라서 합성 풍미제가 사용될 수 있는데, 합성 풍미제는 에스테르, 알콜, 알데하이드, 테르펜 등이 이용될 수 있다. Flavoring agents may be used to improve taste or aroma, and both natural and synthetic ones may be used. Preferably, it is a case where a natural thing is used. In the case of using a natural product, the purpose of nutritional enhancement in addition to flavor may be concurrently used. The natural flavoring agent may be obtained from apples, lemons, tangerines, grapes, strawberries, peaches, or the like, or obtained from green tea leaves, honeysuckle, bamboo leaves, cinnamon, chrysanthemum leaves, jasmine, and the like. In addition, those obtained from ginseng (red ginseng), bamboo shoots, aloe vera, and ginkgo can be used. The natural flavoring agent may be a liquid concentrate or a solid extract. Optionally, a synthetic flavoring agent may be used, and the synthetic flavoring agent may be an ester, an alcohol, an aldehyde, a terpene, or the like.
보존제로서는 소듐 소르브산칼슘, 소르브산나트륨, 소르브산칼륨, 벤조산칼슘, 벤조산나트륨, 벤조산칼륨, EDTA(에틸렌디아민테트라아세트산) 등이 사용될 수 있고, 또 유화제로서는 아카시아검, 카르복시메틸셀룰로스, 잔탄검, 펙틴 등을 들 수 있으며, 산미료로서는 연산, 말산, 푸마르산, 아디프산, 인산, 글루콘산, 타르타르산, 아스코르브산, 아세트산, 인산 등이 사용될 수 있다. 산미료는 맛을 증진시키는 목적 이외에 미생물의 증식을 억제할 목적으로 식품 조성물이 적정 산도로 되도록 첨가될 수 있다.As a preservative, sodium calcium sorbate, sodium sorbate, potassium sorbate, calcium benzoate, sodium benzoate, potassium benzoate, EDTA (ethylenediaminetetraacetic acid), etc. can be used, and as an emulsifier, acacia gum, carboxymethylcellulose, xanthan gum, Pectin, etc. are mentioned, and acidulant, malic acid, fumaric acid, adipic acid, phosphoric acid, gluconic acid, tartaric acid, ascorbic acid, acetic acid, phosphoric acid, etc. can be used as an acidulant. The acidulant may be added so that the food composition has an appropriate acidity for the purpose of inhibiting the growth of microorganisms in addition to the purpose of enhancing the taste.
점증제로서는 현탁화 구현제, 침강제, 겔 형성제, 팽화제 등이 사용될 수 있다.As a thickening agent, a suspending agent, a settling agent, a gel former, a bulking agent, etc. can be used.
본 발명의 식품 조성물은 전술한 바의 식품첨가물 이외에, 기능성과 영양성을 보충, 보강할 목적으로 당업계에 공지되고 식품첨가물로서 안정성이 보장된 생리활성 물질이나 미네랄류를 포함할 수 있다.The food composition of the present invention may contain, in addition to the food additives described above, physiologically active substances or minerals known in the art for the purpose of supplementing and reinforcing functionality and nutrition and guaranteed stability as food additives.
그러한 생리활성 물질로서는 녹차 등에 포함된 카테킨류, 비타민 B1, 비타민 C, 비타민 E, 비타민 B12 등의 비타민류, 토코페롤, 디벤조일티아민 등을 들 수 있으며, 미네랄류로서는 구연산 칼슘 등의 칼슘 제제, 스테아린산마그네슘 등의 마그네슘 제제, 구연산철 등의 철 제제, 염화 크롬, 요오드칼륨, 셀레늄, 게르마늄, 바나듐, 아연 등을 들 수 있다. Examples of such physiologically active substances include catechins contained in green tea and the like, vitamins such as vitamin B1, vitamin C, vitamin E, and vitamin B12, tocopherol, dibenzoylthiamine, and the like. Minerals include calcium preparations such as calcium citrate, magnesium stearate Magnesium preparations, such as iron preparations, such as iron citrate, chromium chloride, potassium iodide, selenium, germanium, vanadium, zinc, etc. are mentioned.
본 발명의 식품 조성물에는 전술한 바의 식품첨가물이 제품 유형에 따라 그 첨가 목적을 달성할 수 있는 적량으로 포함될 수 있다.In the food composition of the present invention, the food additives as described above may be included in an appropriate amount to achieve the purpose of the addition according to the product type.
본 발명의 식품 조성물에 포함될 수 있는 기타의 식품첨가물과 관련하여서는 각국 식품공전이나 식품첨가물 공전을 참조할 수 있다.In relation to other food additives that may be included in the food composition of the present invention, reference may be made to the Food Ordinance of each country or the Food Additives Code.
본 발명의 조성물은 다른 구체적인 양태에 있어서는 약제학적 조성물로 파악될 수 있다.The composition of the present invention may be regarded as a pharmaceutical composition in another specific embodiment.
본 발명의 약제학적 조성물은 유효성분 이외에 약제학적으로 허용되는 담체를 포함하여 당업계에 공지된 통상의 방법으로 투여 경로에 따라 경구용 제형 또는 비경구용 제형으로 제조될 수 있다. 여기서 투여 경로는 국소 경로, 경구 경로, 정맥 내 경로, 근육 내 경로, 및 점막 조직을 통한 직접 흡수를 포함하는 임의의 적절한 경로일 수 있으며, 두 가지 이상의 경로를 조합하여 사용할 수도 있다. 두 가지 이상 경로의 조합의 예는 투여 경로에 따른 두 가지 이상의 제형의 약물이 조합된 경우로서 예컨대 1차로 어느 한 약물은 정맥 내 경로로 투여하고 2차로 다른 약물은 국소 경로로 투여하는 경우이다. The pharmaceutical composition of the present invention may be prepared as an oral dosage form or a parenteral dosage form according to the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier in addition to the active ingredient. Here, the route of administration may be any suitable route including topical route, oral route, intravenous route, intramuscular route, and direct absorption through mucosal tissue, and two or more routes may be used in combination. An example of the combination of two or more routes is a case in which two or more formulations of drugs according to the route of administration are combined. For example, one drug is first administered by an intravenous route and the other drug is secondarily administered by a local route.
약학적으로 허용되는 담체는 투여 경로나 제형에 따라 당업계에 주지되어 있으며, 구체적으로는 "대한민국약전"을 포함한 각국의 약전을 참조할 수 있다. Pharmaceutically acceptable carriers are well known in the art depending on the route of administration or formulation, and specifically, reference may be made to the pharmacopoeia of each country including the "Korea Pharmacopoeia".
본 발명의 약제학적 조성물이 경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 분말, 과립, 정제, 환제, 당의정제, 캡슐제, 액제, 겔제, 시럽제, 현탁액, 웨이퍼 등의 제형으로 제조될 수 있다. 이때 적합한 담체의 예로서는 락토스, 글루코스, 슈크로스, 덱스트로스, 솔비톨, 만니톨, 자일리톨 등의 당류, 옥수수 전분, 감자 전분, 밀 전분 등의 전분류, 셀룰로오스, 메틸셀룰로오스, 에틸셀룰로오스, 나트륨 카르복시메틸셀룰로오스, 하이드록시프로필메틸셀룰로오스 등의 셀룰로오스류, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 마그네슘 스테아레이트, 광물유, 맥아, 젤라틴, 탈크, 폴리올, 식물성유, 에탄올, 글리세롤 등을 들 수 있다. 제제화할 경우 필요에 따라적절한 결합제, 윤활제, 붕해제, 착색제, 희석제 등을 포함시킬 수 있다. 적절한 결합제로서는 전분, 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 메틸셀룰로스, 소듐 카복시메틸셀룰로스, 폴리비닐피롤리돈, 글루코스, 옥수수 감미제, 소듐 알지네이트, 폴리에틸렌 글리콜, 왁스 등을 들 수 있고, 윤활제로서는 올레산나트륨, 스테아르산나트륨, 스테아르산마그네슘, 벤조산나트륨, 초산나트륨, 염화나트륨, 실리카, 탈쿰, 스테아르산, 그것의 마그네슘염과 칼슘염, 폴리데틸렌글리콜 등을 들 수 있으며, 붕해제로서는 전분, 메틸 셀룰로스, 아가(agar), 벤토나이트, 잔탄검, 전분, 알긴산 또는 그것의 소듐 염 등을 들 수 있다. 또 희석제로서는 락토즈, 덱스트로즈, 수크로즈, 만니톨, 소비톨, 셀룰로스, 글라이신 등을 들 수 있다. When the pharmaceutical composition of the present invention is prepared as an oral dosage form, powder, granules, tablets, pills, dragees, capsules, liquids, gels, syrups, suspensions, wafers according to methods known in the art together with a suitable carrier It can be prepared in a formulation such as Examples of suitable carriers include sugars such as lactose, glucose, sucrose, dextrose, sorbitol, mannitol, and xylitol, starches such as corn starch, potato starch, wheat starch, cellulose, methylcellulose, ethylcellulose, sodium carboxymethylcellulose, Cellulose such as hydroxypropylmethylcellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, magnesium stearate, mineral oil, malt, gelatin, talc, polyol, vegetable oil, ethanol, glycerol and the like. In the case of formulation, an appropriate binder, lubricant, disintegrant, colorant, diluent, etc. may be included as needed. Suitable binders include starch, magnesium aluminum silicate, starch paste, gelatin, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone, glucose, corn sweetener, sodium alginate, polyethylene glycol, wax, and the like, and lubricants include sodium oleate. , sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, silica, talcum, stearic acid, its magnesium salt and calcium salt, polyethylene glycol, etc., and as a disintegrant, starch, methyl cellulose, agar, bentonite, xanthan gum, starch, alginic acid or its sodium salt and the like. Examples of the diluent include lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, and the like.
본 발명의 약제학적 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사제로 제제화할 경우 적합한 담체로서는 수성 등장 용액 또는 현탁액을 사용할 수 있으며, 구체적으로는 트리에탄올 아민이 함유된 PBS(phosphate buffered saline)나 주사용 멸균수, 5% 덱스트로스 같은 등장 용액 등을 사용할 수 있다. 경피 투여제로 제제화할 경우 연고제, 크림제, 로션제, 겔제, 외용액제, 파스타제, 리니멘트제, 에어롤제 등의 형태로 제제화할 수 있다. 비강 흡입제의 경우 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 등의 적합한 추진제를 사용하여 에어로졸 스프레이 형태로 제제화할 수 있으며, 좌제로 제제화할 경우 그 담체로는 위텝솔(witepsol), 트윈(tween) 61, 폴리에틸렌글리콜류, 카카오지, 라우린지, 폴리옥시에틸렌 소르비탄 지방산 에스테르류, 폴리옥시에틸렌 스테아레이트류, 소르비탄 지방산 에스테르류 등을 사용할 수 있다.When the pharmaceutical composition of the present invention is prepared for parenteral use, it may be formulated in the form of injections, transdermal administrations, nasal inhalants and suppositories together with suitable carriers according to methods known in the art. When formulated as an injection, an aqueous isotonic solution or suspension may be used as a suitable carrier, and specifically, PBS (phosphate buffered saline) containing triethanolamine, sterile water for injection, or isotonic solution such as 5% dextrose may be used. . When formulated for transdermal administration, it can be formulated in the form of an ointment, a cream, a lotion, a gel, an external solution, a pasta agent, a liniment agent, an air roll, and the like. In the case of nasal inhalants, it can be formulated in the form of an aerosol spray using a suitable propellant such as dichlorofluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, and the like. witepsol), tween 61, polyethylene glycols, cacao fat, laurin fat, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene stearate, sorbitan fatty acid esters, and the like can be used.
약제학적 조성물의 구체적인 제제화와 관련하여서는 당업계에 공지되어 있으며, 예컨대 문헌[Remington's Pharmaceutical Sciences(19th ed., 1995)] 등을 참조할 수 있다. 상기 문헌은 본 명세서의 일부로서 간주 된다.Specific formulations of pharmaceutical compositions are known in the art, and reference may be made to, for example, Remington's Pharmaceutical Sciences (19th ed., 1995). This document is considered a part of this specification.
본 발명의 약제학적 조성물의 바람직한 투여량은 환자의 상태, 체중, 성별, 연령, 환자의 중증도, 투여 경로에 따라 1일 0.001mg/kg ~ 10g/kg 범위, 바람직하게는 0.001mg/kg ~ 1g/kg 범위일 수 있다. 투여는 1일 1회 또는 수회로 나누어 이루어질 수 있다. 이러한 투여량은 어떠한 측면으로든 본 발명의 범위를 제한하는 것으로 해석되어서는 아니 된다. A preferred dosage of the pharmaceutical composition of the present invention is in the range of 0.001 mg/kg to 10 g/kg per day, preferably 0.001 mg/kg to 1 g, depending on the patient's condition, weight, sex, age, severity of the patient, and the route of administration. It can be in the range /kg. Administration may be performed once or divided into several times a day. These dosages should not be construed as limiting the scope of the invention in any respect.
전술한 바와 같이, 본 발명에 따르면 패 추출물, 이로부터 분리한 아이소플로로글루신 A와 디플로르에토하이드록시카르마롤을 이용한 근력 개선 또는 근위축 개선, 노화로 인한 근감소증 개선용 조성물을을 제공할 수 있다.As described above, according to the present invention, a composition for improving muscle strength or muscle atrophy and improving sarcopenia due to aging using the shellfish extract, isophloroglucin A and difluoroetohydroxycarmarol isolated therefrom can provide
본 발명의 조성물은 식품(특히 건강기능식품) 또는 약품으로 제품화될 수 있다.The composition of the present invention may be commercialized as food (especially health functional food) or medicine.
도 1은 근위축모델에서 패 추출물 등이 몸무게, 근육 무게에 미치는 영향을 나타낸 결과이다.1 is a result showing the effect of shellfish extract, etc. on body weight and muscle weight in a muscle atrophy model.
도 2는 근위축모델에서 패 추출물 등이 다리 무게에 미치는 영향을 나타낸 결과이다.2 is a result showing the effect of a plaque extract and the like on the leg weight in the muscle atrophy model.
도 3은 근위축모델에서 패 추출물 등이 악력에 미치는 영향을 나타낸 결과이다.3 is a result showing the effect of a plaque extract and the like on the grip strength in the muscle atrophy model.
도 4는 근위축모델에서 패 추출물 등이 비복근의 중량과 두께에 미치는 영향을 나타낸 결과이다.4 is a result showing the effect of shell extract and the like on the weight and thickness of gastrocnemius in the muscle atrophy model.
도 5는 근위축모델에서 패 추출물 등이 비복근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.5 is a result showing the effect of shellfish extract and the like on the mRNA expression of factors related to protein synthesis and degradation in gastrocnemius muscle in a muscle atrophy model.
도 6은 근위축모델에서 패 추출물 등이 비복근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.6 is a result showing the effect of extracts of shellfish, etc. on the mRNA expression of factors related to the promotion and inhibition of muscle growth of gastrocnemius in a muscle atrophy model.
도 7은 근위축모델에서 패 추출물 등이 가자미근의 중량과 두께에 미치는 영향을 나타낸 결과이다.7 is a result showing the effect of shellfish extract and the like on the weight and thickness of soleus muscle in a muscle atrophy model.
도 8은 근위축모델에서 패 추출물 등이 가자미근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.8 is a result showing the effect of shellfish extract on the mRNA expression of factors related to protein synthesis and degradation of soleus muscle in a muscle atrophy model.
도 9은 근위축모델에서 패 추출물 등이 가자미근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.9 is a result showing the effect of shellfish extract and the like on the mRNA expression of factors related to promoting and inhibiting muscle growth of soleus muscle in a muscle atrophy model.
도 10은 근위축모델에서 패 추출물 등이 LDH(Lactate dehydrogenase) 생성 정도에 미치는 영향을 나타낸 결과이다.10 is a result showing the effect of shellfish extract and the like on the level of LDH (Lactate dehydrogenase) production in the muscle atrophy model.
도 11은 근위축 모델에서 패 추출물 및 DPHC이 몸무게, 제지방 무게(근육 무게) 등에 미치는 영향을 나타낸 결과이다.11 is a result showing the effect of shellfish extract and DPHC on body weight, lean mass (muscle weight), etc. in a muscle atrophy model.
도 12는 근위축 모델에서 패 추출물 및 DPHC이 다리 근육에 미치는 영향을 나타낸 결과이다.12 is a result showing the effect of plaque extract and DPHC on leg muscles in a muscle atrophy model.
도 13은 근위축 모델에서 패 추출물 및 DPHC이 악력과 지구력에 미치는 영향을 나타낸 결과이다.13 is a result showing the effect of shellfish extract and DPHC on grip strength and endurance in a muscle atrophy model.
도 14는 근위축 모델에서 패 추출물 및 DPHC이 비복근의 중량과 두께에 미치는 영향을 나타낸 결과이다.14 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of gastrocnemius in a muscle atrophy model.
도 15는 근위축 모델에서 패 추출물 및 DPHC이 비복근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.15 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation in gastrocnemius muscle in a muscle atrophy model.
도 16은 근위축 모델에서 패 추출물 및 DPHC이 비복근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.16 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promoting and inhibiting muscle growth in gastrocnemius in a muscle atrophy model.
도 17은 근위축 모델에서 패 추출물 및 DPHC이 비복근의 근육 약화 유도 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.17 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor in gastrocnemius in a muscle atrophy model.
도 18은 근위축 모델에서 패 추출물 및 DPHC이 비복근의 염증 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.18 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in gastrocnemius in a muscle atrophy model.
도 19는 근위축 모델에서 패 추출물 및 DPHC이 가자미근의 중량과 두께에 미치는 영향을 나타낸 결과이다.19 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of soleus muscle in a muscle atrophy model.
도 20은 근위축 모델에서 패 추출물 및 DPHC이 가자미근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.20 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation of soleus muscle in a muscle atrophy model.
도 21은 근위축 모델에서 패 추출물 및 DPHC이 가자미근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.21 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promoting and inhibiting muscle growth of soleus muscle in a muscle atrophy model.
도 22는 근위축 모델에서 패 추출물 및 DPHC이 가자미근의 근육 약화 유도 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.22 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor of soleus muscle in a muscle atrophy model.
도 23은 근위축 모델에서 패 추출물 및 DPHC이 가자미근의 염증 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.23 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in soleus muscle in a muscle atrophy model.
도 24는 근감소증 노화 모델에서 패 추출물 및 DPHC이 몸무게, 제지방 무게(근육 무게) 등에 미치는 영향을 나타낸 결과이다.24 is a result showing the effect of shellfish extract and DPHC on body weight, lean mass (muscle weight), etc. in a sarcopenia aging model.
도 25는 근감소증 노화 모델에서 패 추출물 및 DPHC이 다리 근육에 미치는 영향을 나타낸 결과이다.25 is a result showing the effect of a plaque extract and DPHC on leg muscles in a sarcopenia aging model.
도 26은 근감소증 노화 모델에서 패 추출물 및 DPHC이 악력과 지구력에 미치는 영향을 나타낸 결과이다.26 is a result showing the effect of shellfish extract and DPHC on grip strength and endurance in the aging model of sarcopenia.
도 27은 근감소증 노화 모델에서 패 추출물 및 DPHC이 비복근의 중량과 두께에 미치는 영향을 나타낸 결과이다.27 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of gastrocnemius in an aging model of sarcopenia.
도 28은 근감소증 노화 모델에서 패 추출물 및 DPHC이 비복근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.28 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation in gastrocnemius muscle in an aging model of sarcopenia.
도 29은 근감소증 노화 모델에서 패 추출물 및 DPHC이 비복근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.29 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to the promotion and inhibition of muscle growth in gastrocnemius in an aging model of sarcopenia.
도 30은 근감소증 노화 모델에서 패 추출물 및 DPHC이 비복근의 근육 약화 유도 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.30 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor in gastrocnemius in an aging model of sarcopenia.
도 31은 근감소증 노화 모델에서 패 추출물 및 DPHC이 비복근의 염증 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.31 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in gastrocnemius in a sarcopenia aging model.
도 32는 근감소증 노화 모델에서 패 추출물 및 DPHC이 가자미근의 중량과 두께에 미치는 영향을 나타낸 결과이다.32 is a result showing the effect of shellfish extract and DPHC on the weight and thickness of soleus muscle in an aging model of sarcopenia.
도 33은 근감소증 노화 모델에서 패 추출물 및 DPHC이 가자미근의 단백질 합성과 분해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.33 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to protein synthesis and degradation of soleus muscle in a sarcopenia aging model.
도 34는 근감소증 노화 모델에서 패 추출물 및 DPHC이 가자미근의 근육 성장 촉진과 저해 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.34 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of factors related to promotion and inhibition of muscle growth in soleus muscle in a sarcopenia aging model.
도 35는 근감소증 노화 모델에서 패 추출물 및 DPHC이 가자미근의 근육 약화 유도 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.35 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of muscle weakness inducing factor of soleus muscle in a sarcopenia aging model.
도 36은 근감소증 노화 모델에서 패 추출물 및 DPHC이 가자미근의 염증 관련 인자의 mRNA 발현에 미치는 영향을 나타낸 결과이다.36 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of inflammation-related factors in soleus muscle in a sarcopenia aging model.
도 37은 근감소증 노화 모델에서 패 추출물 및 DPHC이 근감소증 바이오마커인 LDH(Lactate dehydrogenase)의 mRNA 발현에 미치는 영향을 나타낸 결과이다.37 is a result showing the effect of shellfish extract and DPHC on the mRNA expression of LDH (Lactate dehydrogenase), a biomarker of sarcopenia in the aging model of sarcopenia.
이하 본 발명을 실시예를 참조하여 설명한다. 그러나 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to Examples. However, the scope of the present invention is not limited to these examples.
<실시예 1> 패 추출물 및 IPA(Ishophloroglucin A)의 근력 개선 또는 근위축 개선 활성<Example 1> Strength improvement or muscle atrophy improvement activity of shellfish extract and IPA (Ishophloroglucin A)
1. 재료1. Material
제주도 서귀포시 성산읍에서 채집한 패(ishige okamurae, IO)를 제염 및 건조하고, 여기에 10배 중량의 50% 에탄올(주정)을 가하여 24시간 실온에서 추출한 후 여과하고 추출용매를 제거하여 패 추출물을 제조하였다. Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did.
또 IPA를 한국 등록특허 제10-1964080호의 실시예에 기재된 방법에 따라 분리하여 준비하였다.In addition, IPA was prepared by separating it according to the method described in the Examples of Korean Patent Registration No. 10-1964080.
2. 실험 방법2. Experimental method
2.1 실험군의 설정2.1 Setting up the experimental group
7주령의 ICR 마우스 입고하여 1주일 간 순치한 후 아래와 같이 7그룹으로 나누어서 악력을 측정하고 각 그룹의 몸무게, 근육, 다리 근육, 비복근, 가자미근의 무게, 비복근과 자자미근 합성이나 성장 또는 분해나 성정 저해 관련 인자의 mRNA 발현 정도를 측정하는 실험을 수행 하였다. After wearing 7-week-old ICR mice and acclimatizing them for 1 week, divide them into 7 groups as follows and measure their grip strength, and measure the weight of each group, muscles, leg muscles, gastrocnemius, soleus muscle, gastrocnemius and soleus muscle synthesis, growth, or decomposition or growth. An experiment was performed to measure the mRNA expression level of inhibitory factors.
① 제1 그룹(Saline 투여군): 살린(saline) 을 39일간 1회/1일 투여시킨 그룹 ① Group 1 (Saline administration group): Group administered saline once/day for 39 days
② 제2그룹(Saline/Dexamethaone 투여군): 살린(saline)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹.② Group 2 (Saline/Dexamethaone administration group): Administer saline once/day for 39 days, and subcutaneously dexamethaone (1mg/kg/day) for the last 10 days (29th to 38th). injection group.
③ 제3 내지 제5 그룹(패 추출물 50, 100, 200 mg/Kg/day 투여군): 패 추출물 (50, 100, 200 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹.Groups 3 to 5 (groups administered with shellfish extract 50, 100, and 200 mg/Kg/day): shellfish extract (50, 100, 200 mg/Kg/day) was administered once/day for 39 days, and the last 10 The group subcutaneously injected dexamethaone (1mg/kg/day) for daily (29th to 38th).
④ 제6그룹(IPA 3.5 mg/Kg/day 투여군): IPA (3.5 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹. IPA는 Ishophloroglucin A로 패에서 분리한 Hexadecaphlorethol(HdP) 화합물임(한국 등록특허 제10-1964080호 참조)④ Group 6 (IPA) 3.5 mg/Kg/day group): IPA (3.5 mg/Kg/day) was administered once/day for 39 days, and dexamethaone (1 mg/kg/day) for the last 10 days (29th to 38th) ) subcutaneously. IPA is a Hexadecaphlorethol (HdP) compound isolated from plaque with Ishophloroglucin A (refer to Korean Patent No. 10-1964080)
⑤ 제7그룹(oxymetholone 50 mg/Kg/day 투여군): 비교약물로서 경구용 근육 증가 스테로이드제인 옥시메톨론(oxymetholone) (50 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹⑤ Group 7 (oxymetholone 50 mg/Kg/day administration group): As a comparative drug, oxymetholone (50 mg/Kg/day), an oral muscle-increasing steroid, was administered once/day for 39 days, and the last The group subcutaneously injected with dexamethaone (1mg/kg/day) for 10 days (29th to 38th)
2.2 몸무게 및 근육 무게의 측정2.2 Determination of body weight and muscle weight
38일의 시험을 수행한 후, 활용된 동물의 몸무게를 재고, 희생시켜 총 근육을 채취하여 그 무게를 재었다.After conducting the test for 38 days, the animals used were weighed, sacrificed, and total muscle was collected and weighed.
2.3 악력의 측정2.3 Measurement of grip strength
Grip strength meter를 이용하여 앞다리의 측정은 동물이 발가락으로 bar를 잡게 하여 확실히 잡은 것을 확인한 후, 동물의 꼬리 기시부위를 잡고 몸체를 수평으로 유지하여 일정속도(초당 2.5 cm)로 당겨 bar를 놓는 시점의 gauge에 표시된 수치를 기록하였다. 후지의 측정은 동물의 배부 부위를 잡고 꼬리방향으로 당겨 위와 같은 방법으로 실시한다. 뒷다리와 앞다리를 각각 3회씩 측정하여 기록하고 평균치를 평가하였다.For the measurement of the forelimbs using a grip strength meter, after confirming that the animal has grasped the bar with its toes, hold the tail base of the animal and keep the body horizontal and pull at a constant speed (2.5 cm per second) to release the bar The values indicated on the gauge were recorded. The measurement of the hindlimb is carried out in the same way as above by holding the animal's dorsal area and pulling it toward the tail. Each of the hind and forelimbs was measured and recorded three times, and the average value was evaluated.
2.4 비복근과 가자미근의 중량과 두께의 측정2.4 Measurement of weight and thickness of gastrocnemius and soleus muscles
희생된 동물의 다리 근육 중 비복근과 가자미근을 채취하여 그 무게를 재고 가장 두꺼운 두께의 지름을 여러번 재어 평균치를 활용하였다. The gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
2.5 비복근과 가자미근의 단백질 합성 인자 등의 mRNA 발현 정도 측정2.5 Measurement of mRNA expression levels of gastrocnemius and soleus muscle protein synthesis factors
막대사발을 이용하여 잘게 부순 근육조직에 트라이졸(Trizole) 1.0ml을 첨가하고, 실온에서 10분간 방치한 후, 0.2ml의 크로로포름을 첨가하고 15초 동안 강하게 볼텍싱하여 완전히 용해(Lysis)시켰다. 이를 실온에서 10분간 방치한 다음, 14,000 x g, 4도씨에서 15분간 원심분리하였다. 상층액을 새로운 튜브에 옮긴 다음, 0.5ml 아이소프로필 알코올을 첨가하고 실온에서 10분간 방치한 후, 14,000 x g, 4도씨에서 10분간 원심분리하였다. 상층액을 제거 후, 1.0ml의 75% 알코올로 펠렛을 세척한 후 DEPC 처리된 멸균 증류수 30㎕을 넣어 펠렛을 녹인 뒤 이후의 시험에서 사용하였다.After adding 1.0ml of Trizole to the muscle tissue crushed using a stick, and leaving it for 10 minutes at room temperature, 0.2ml of chloroform is added and vortexed vigorously for 15 seconds to completely dissolve (Lysis) made it This was left at room temperature for 10 minutes, and then centrifuged at 14,000 x g, 4°C for 15 minutes. The supernatant was transferred to a new tube, 0.5 ml isopropyl alcohol was added, and left at room temperature for 10 minutes, followed by centrifugation at 14,000 x g, 4°C for 10 minutes. After removing the supernatant, after washing the pellet with 1.0ml of 75% alcohol, 30 μl of DEPC-treated sterile distilled water was added to dissolve the pellet, and then used in subsequent tests.
분리한 각각의 RNA를 주형으로 PrimeScript™ 1st strand cDNA Synthesis Kit 을 이용하여 제조사의 지침에 따라 cDNA를 합성하였다. 상기 cDNA를 주형으로 하여 실시간 중합효소연쇄반응을 다음과 같이 수행하였다. 올리고뉴클레오티드와 SYBR Green I 이 포함하여 95℃에서 30초간 변성과정, 58 ℃에서 30초간 어닐링 과정, 72℃에서 30초간 신장 과정의 조건으로 실시간 중합효소연쇄반응 수행하였다.Each isolated RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScript™ 1st strand cDNA Synthesis Kit. Using the cDNA as a template, a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
3. 실험 결과3. Experimental results
3.1. 근위축모델에서 패 추출물 및 IPA가 근육 무게 및 다리 근육 두께에 미치는 영향3.1. Effect of plaque extract and IPA on muscle weight and leg muscle thickness in muscle atrophy model
패 추출물, IPA를 투여한 그룹과, 근위축을 유도하는 덱사메타손만 10일간 처리한 그룹과 비교하여 몸무게와 근육의 무게 변화를 확인하였다. 그 결과, 근위축을 유도한 모델에서 유의적으로 감소한 몸무게 및 근육 무게가 시료를 투여한 그룹과 비교약물로서 옥시메톨론을 투여한 그룹에서 유의적으로 증가됨에 따라(p<0.01), 패 추출물, IPA, 비교약물인 옥시메톨론에 의해 덱사메타손에 의한 근위축이 억제됨을 확인하였다(도 1). Changes in body weight and muscle weight were confirmed compared to the group treated with shellfish extract and IPA, and the group treated with only dexamethasone, which induces muscle atrophy, for 10 days. As a result, as the significantly decreased body weight and muscle weight in the model inducing muscle atrophy increased significantly in the group administered with the sample and the group administered with oxymetholone as a comparative drug (p<0.01), shellfish extract It was confirmed that muscle atrophy caused by dexamethasone was inhibited by , IPA, and the comparative drug, oxymetholone (FIG. 1).
이러한 변화는 다리 근육의 두께 변화에서도 관찰되었다. 덱사메타손에 의해 감소된 다리 근육 두께는 패 추출물, IPA, 비교약물인 옥시메톨론을 투여한 그룹에서 유의적인 개선 효과가 확인되었다(도 2).This change was also observed in the thickness change of the leg muscles. In the leg muscle thickness reduced by dexamethasone, a significant improvement effect was confirmed in the group administered with shellfish extract, IPA, and the comparative drug oxymetholone (FIG. 2).
3.2. 근위축모델에서 패 추출물 및 IPA가 악력에 미치는 영향3.2. Effect of plaque extract and IPA on grip strength in a muscle atrophy model
패 추출물, IPA 투여 그룹에서의 유의적인 외형적 근육 변화와 더불어 근력에도 영향을 미치는지 확인하기 위하여 악력을 확인한 결과, 근위축에 의해 저하된 악력이 시료와 대조군에서 유의적으로 증가됨을 확인하였다(도 3). 이에 패 추출물 또는 IPA 투여로 근위축에 의한 악력저하를 유의적으로 억제시켜 악력의 손실을 막을 수 있음을 확인하였다. As a result of checking the grip strength to check whether it affects muscle strength as well as significant external muscle changes in the shell extract and IPA groups, it was confirmed that the grip strength decreased by muscle atrophy was significantly increased in the sample and the control group (Fig. 3). Accordingly, it was confirmed that the loss of grip strength could be prevented by significantly inhibiting the decrease in grip strength due to muscle atrophy by administering shellfish extract or IPA.
3.3. 근위축모델에서 패 추출물 및 IPA가 비복근과 가자미근에 미치는 영향 3.3. Effect of shellfish extract and IPA on gastrocnemius and soleus muscle in muscle atrophy model
근위축모델에서 순발력을 위한 속근인 비복근과 지구력을 위한 지근인 가자미근의 변화를 확인하였다. 덱사메타손에 의해 근위축이 유도된 그룹에서는 비복근(gastrocnemius muscle)의 유의적인 감소가 관찰되었고, 이러한 감소는 패 cncnfanf 및 IPA, 비교약물인 옥시메톨론 투여 그룹에서 유의적인 개선효능이 관찰되었다(도 4). 특히 100과 200 mg/Kg/day의 패 추출물을 투여한 그룹의 비복근의 중량 및 두께가 비교약물인 옥시메톨론을 투여한 그룹과 유사한 수준으로 개선되었다.In the muscle atrophy model, changes were confirmed in the gastrocnemius muscle, which is a fast muscle for agility, and the soleus muscle, a slow muscle for endurance. A significant decrease in gastrocnemius muscle was observed in the group induced by dexamethasone, and this decrease was significantly improved in the group administered with cncnfanf, IPA, and the comparative drug oxymetholone (Fig. 4). ). In particular, the weight and thickness of gastrocnemius muscle in the group administered with 100 and 200 mg/Kg/day shellfish extract improved to a level similar to that of the group administered with the comparative drug oxymetholone.
또한, 근위축모델에서 비복근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현 수준과 분해 관련 인자인 MuRF1, Atrogin1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, IPA를 투여한 그룹에서 유의적으로 비복근 단백질 합성 인자의 mRNA의 발현이 증가하고, 분해 관련 인자의 mRNA의 발현이 감소함을 확인하였다(도 5). 이에 따라, 근위축모델에서 저하된 비복근 단백질 합성 촉진과 분해 억제가 패 추출물, IPA 투여에 의해 개선될 수 있음을 확인하였다.In addition, in the muscle atrophy model, the effect on the mRNA expression levels of Akt and PI3K, which are factors related to protein synthesis in gastrocnemius muscle, and the mRNA expression levels of MuRF1 and Atrogin1, which are factors related to degradation, was confirmed in the group administered with shellfish extract and IPA. As a result, it was confirmed that the mRNA expression of the gastrocnemius protein synthesizing factor increased and the mRNA expression of the degradation-related factor was decreased (FIG. 5). Accordingly, it was confirmed that the decreased gastrocnemius protein synthesis promotion and degradation inhibition in the muscle atrophy model could be improved by the administration of shellfish extract and IPA.
또한, 근위축모델에서 비복근의 근육 성장 촉진 관련 인자인 TRPV4, A1R의 mRNA 발현 수준과 저해 관련 인자인 Myostatin, Sirt1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, IPA를 투여한 그룹에서 유의적으로 비복근 근육 성장 촉진 관련 인자의 mRNA의 발현이 증가하고, 저해 관련 인자의 mRNA의 발현이 감소함 확인하였다(도 6). 이에 따라, 근위축모델에서 저하된 비복근 근육 성장 촉진과 저해 억제가 패 추출물, IPA 투여에 의해 개선될 수 있음을 확인하였다. Also, in the muscle atrophy model, the effect on the mRNA expression level of TRPV4 and A1R, which are factors related to the promotion of muscle growth in gastrocnemius muscle, and the mRNA expression level of Myostatin and Sirt1, which are factors related to inhibition, was confirmed in the group treated with shellfish extract and IPA. As a result, it was confirmed that the mRNA expression of the gastrocnemius muscle growth promoting factor increased and the mRNA expression of the inhibitory factor decreased (FIG. 6). Accordingly, it was confirmed that the decreased gastrocnemius muscle growth promotion and inhibition inhibition in the muscle atrophy model could be improved by the administration of shellfish extract and IPA.
이와 같이 패 추출물, IPA 투여로 근위축에 의한 비복근 및 가자미근의 유의적인 개선을 확인하였다.As such, it was confirmed that the gastrocnemius and soleus muscles were significantly improved by the administration of shellfish extract and IPA.
그리고 지근인 가자미근에서도 패 추출물, IPA의 투여에 의해 중량과 두께의 유의적인 변화가 관찰되었다. 100과 200 mg/Kg/day의 패 추출물 투여 그룹에서 덱사메타손에 의한 가자미근의 저하가 유의적으로 억제됨을 확인하였다(도 7). 또한, IPA를 투여한 그룹에서는 가자미근의 중량 및 두께가 비교약물인 옥시메톨론을 투여한 그룹과 유사한 수준으로 보호할 수 있음이 관찰되었다(도 7). 이러한 결과는 덱사메타손에 의한 비복근의 저하를 패 추출물 또는 IPA가 억제시킬 수 있음을 시사한다.Also, significant changes in weight and thickness were observed in the soleus muscle, which is a slow muscle, by the administration of shellfish extract and IPA. It was confirmed that the decrease in soleus muscle due to dexamethasone was significantly inhibited in the shell extract administered groups at 100 and 200 mg/Kg/day (FIG. 7). In addition, it was observed that in the group administered with IPA, the weight and thickness of the soleus muscle could be protected at a level similar to that of the group administered with the comparative drug oxymetholone (FIG. 7). These results suggest that shellfish extract or IPA can inhibit the decrease in gastrocnemius caused by dexamethasone.
또한, 근위축모델에서 가자미근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현 수준과 분해 관련 인자인 MuRF1, Atrogin1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, IPA를 투여한 그룹에서 유의적인 가자미근 단백질 합성 관련 인자의 mRNA 발현이 증가하고 분해 관련 인자의 mRNA의 발현이 감소함을 확인하였다(도 8). 이에 따라, 근위축모델에서 저하된 가자미근 단백질 합성 촉진과 분해 억제가 패 추출물, IPA 투여에 의해 개선될 수 있음을 확인하였다.In addition, in the muscle atrophy model, the effect on the mRNA expression levels of Akt and PI3K, protein synthesis-related factors of soleus muscle, and the mRNA expression levels of MuRF1 and Atrogin1, which are degradation-related factors, was confirmed in the group administered with shellfish extract and IPA. It was confirmed that the mRNA expression of the factor related to the protein synthesis of the soleus muscle increased and the mRNA expression of the factor related to the degradation was decreased (FIG. 8). Accordingly, it was confirmed that the promotion of protein synthesis and degradation inhibition of soleus muscle protein, which was decreased in the muscle atrophy model, could be improved by the administration of shellfish extract and IPA.
또한, 근위축모델에서 가자미근의 근육 성장 촉진 인자인 TRPV4, A1R의 mRNA 발현 수준과 저해 관련 인자인 Myostatin, Sirt1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, IPA를 투여한 그룹에서 유의적인 가자미근 근육 성장 촉진 인자의 mRNA 발현이 증가하고 저해 관련 인자의 mRNA 발현이 감소함을 확인하였다(도 9). 이에 따라, 근위축모델에서 저하된 가자미근 근육 성장 촉진과 저해 억제가 패 추출물, IPA 투여에 의해 개선될 수 있음을 확인하였다. 이에 패 추출물, IPA에 의해 지구력에 영향을 미치는 지근인 가자미근의 유의적인 개선능이 확인되었다.In addition, in the muscle atrophy model, the effect on the mRNA expression levels of TRPV4 and A1R, which are factors that promote muscle growth in the soleus muscle, and the mRNA expression levels of Myostatin, Sirt1, which are inhibitory factors, was confirmed in the group administered with shellfish extract and IPA. It was confirmed that the mRNA expression of the soleus muscle growth promoting factor increased and the mRNA expression of the inhibitory factor decreased ( FIG. 9 ). Accordingly, it was confirmed that the promotion and inhibition of soleus muscle growth, which was decreased in the muscle atrophy model, could be improved by the administration of shellfish extract and IPA. Accordingly, the significant improvement ability of soleus muscle, the slow muscle that affects endurance, was confirmed by the shellfish extract and IPA.
3.4. 근위축모델에서 패 추출물 및 IPA가 근력 개선 바이오마커에 미치는 영향3.4. Effect of shellfish extract and IPA on muscle strength improvement biomarkers in muscle atrophy model
혈액내 에너지 대사과정 평가지표인 LDH(Lactate dehydrogenase)가 근위축모델에서 감소한데 비해 패 추출물, IPA를 투여한 그룹에서 유의적인 증가능이 확인되었다(도 10). LDH는 운동 강도, 운동 지속 시간, 피로 회복 등에 따른 근육의 조직학적 손상 분석 및 체력 평가 지표로 사용되는 것으로 패 추출물, IPA에 의해 근위축에 의한 근력감소가 억제될수 있음을 시사한다.Lactate dehydrogenase (LDH), an evaluation index of blood energy metabolism, decreased in the muscle atrophy model, but a significant increase was confirmed in the group administered with shellfish extract and IPA ( FIG. 10 ). LDH is used as an indicator of histological damage analysis and fitness evaluation of muscles according to exercise intensity, exercise duration, and recovery from fatigue, suggesting that muscle atrophy due to muscle atrophy can be suppressed by shellfish extract and IPA.
<실시예 2> 패 추출물 및 DPHC의 준비의 근력 개선 또는 근위축 개선 활성<Example 2> Strength improvement or muscle atrophy improvement activity of the preparation of shellfish extract and DPHC
1. 재료 1. Material
제주도 서귀포시 성산읍에서 채집한 패(ishige okamurae, IO)를 제염 및 건조하고, 여기에 10배 중량의 50% 에탄올(주정)을 가하여 24시간 실온에서 추출한 후 여과하고 추출용매를 제거하여 패 추출물을 제조하였다. Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did
또 DPHC(Diphlorethohydroxycarmalol, Cas No 138529-04-1)는 본 발명자들이 패(ishige okamurae, IO)에서 분리·동정하여 자체 보관하고 있던 것을 실험에 사용하였다. In addition, DPHC (Diphlorethohydroxycarmalol, Cas No 138529-04-1) was isolated and identified from the plaques ( ishige okamurae , IO) by the present inventors and stored by the present inventors.
2. 실험 방법2. Experimental method
2.1 근위축 모델과 그 실험군 설정2.1 Muscle atrophy model and its experimental group setting
7주령의 ICR 마우스 입고하여 1주일 간 순치한 후 아래와 같이 7그룹으로 나누어서 악력과 지구력을 측정하고 각 그룹의 몸무게, 근육, 다리 근육, 비복근, 가자미근의 무게, 근육 합성이나 분해 등 관련 인자의 mRNA 발현 정도를 측정하는 실험을 수행 하였다. After wearing 7-week-old ICR mice and acclimatizing them for 1 week, divide them into 7 groups as shown below to measure grip strength and endurance, and mRNA of related factors such as body weight, muscle, leg muscle, gastrocnemius, soleus muscle, and muscle synthesis or degradation of each group An experiment to measure the degree of expression was performed.
① 제1 그룹(Saline 투여군): 살린(saline) 을 39일간 1회/1일 투여시킨 그룹 ① Group 1 (Saline administration group): Group administered saline once/day for 39 days
② 제2그룹(Saline/Dexamethaone 투여군): 살린(saline)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹.② Group 2 (Saline/Dexamethaone administration group): Administer saline once/day for 39 days, and subcutaneously dexamethaone (1mg/kg/day) for the last 10 days (29th to 38th). injection group.
③ 제3 내지 제5 그룹(패 추출물 50, 100, 200 mg/Kg/day 투여군): 패 추출물 (50, 100, 200 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹.Groups 3 to 5 (groups administered with shellfish extract 50, 100, and 200 mg/Kg/day): shellfish extract (50, 100, 200 mg/Kg/day) was administered once/day for 39 days, and the last 10 The group subcutaneously injected dexamethaone (1mg/kg/day) for daily (29th to 38th).
④ 제6그룹(DPHC 2.5 mg/Kg/day 투여군): DPHC (2.5 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹. ④ Group 6 (DPHC) 2.5 mg/Kg/day administration group): DPHC (2.5 mg/Kg/day) was administered once/day for 39 days, and dexamethaone (1 mg/kg/day) for the last 10 days (29th to 38th) ) subcutaneously.
⑤ 제7그룹(Decanoate 5 mg/Kg/day 투여군): 대조 약물로서 경구용 근육 증가 스테로이드제인 데카노에이트(Decanoate) (5 mg/Kg/day)을 39일간 1회/1일 투여시키고, 마지막 10일간(29일부터 38일까지) 덱사메타손(Dexamethaone) (1mg/kg/day)을 피하주사한 그룹⑤ Group 7 (Decanoate 5 mg/Kg/day administration group): As a control drug, Decanoate (5 mg/Kg/day), an oral muscle-increasing steroid, was administered once/day for 39 days, and the last The group subcutaneously injected dexamethaone (1mg/kg/day) for 10 days (29th to 38th)
2.2 몸무게 및 근육 무게의 측정2.2 Determination of body weight and muscle weight
38일의 시험을 수행한 후, 활용된 동물의 몸무게를 재고, 희생시켜 총 근육을 채취하여 그 무게를 재었다. After conducting the test for 38 days, the animals used were weighed, sacrificed, and total muscle was collected and weighed.
2.3 악력의 측정2.3 Measurement of grip strength
Grip strength meter를 이용하여 앞다리의 측정은 동물이 발가락으로 bar를 잡게 하여 확실히 잡은 것을 확인한 후, 동물의 꼬리 기시부위를 잡고 몸체를 수평으로 유지하여 일정속도(초당 2.5 cm)로 당겨 bar를 놓는 시점의 gauge에 표시된 수치를 기록하였다. 후지(後肢)의 측정은 동물의 배부 부위를 잡고 꼬리방향으로 당겨 위와 같은 방법으로 실시하였다. 뒷다리와 앞다리를 각각 3회씩 측정하여 기록하고 평균치를 평가하였다.For the measurement of the forelimbs using a grip strength meter, after confirming that the animal has grasped the bar with its toes, hold the tail base of the animal and keep the body horizontal and pull at a constant speed (2.5 cm per second) to release the bar The values indicated on the gauge were recorded. The hind limbs were measured in the same way as above by grabbing the animal's belly and pulling it toward the tail. Each of the hind and forelimbs was measured and recorded three times, and the average value was evaluated.
2.4 지구력 측정(Ladder climbing)2.4 Ladder climbing
각 동물의 몸무게에 해당하는 추를 꼬리에 달아 사다리를 타서 끝까지 올라가는데 소요되는 시간을 측정하였다. 각각 3회씩 측정하여 기록하고 평균치를 평가하였다.A weight corresponding to the weight of each animal was attached to the tail, and the time required to climb the ladder to the end was measured. Each was measured three times and recorded, and the average value was evaluated.
2.5 비복근과 가자미근의 중량과 두께의 측정2.5 Measurement of weight and thickness of gastrocnemius and soleus muscles
희생된 동물의 다리 근육 중 비복근과 가자미근을 채취하여 그 무게를 재고 가장 두꺼운 두께의 지름을 여러번 재어 평균치를 활용하였다. The gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
2.6 mRNA 발현 정도 측정2.6 Measurement of mRNA Expression Level
막대사발을 이용하여 잘게 부순 근육조직에 트라이졸(Trizole) 1.0ml을 첨가하고, 실온에서 10분간 방치한 후, 0.2ml의 크로로포름을 첨가하고 15초 동안 강하게 볼텍싱하여 완전히 용해(Lysis)시켰다. 이를 실온에서 10분간 방치한 다음, 14,000 x g, 4도씨에서 15분간 원심분리하였다. 상층액을 새로운 튜브에 옮긴 다음, 0.5ml 아이소프로필 알코올을 첨가하고 실온에서 10분간 방치한 후, 14,000 x g, 4도씨에서 10분간 원심분리하였다. 상층액을 제거 후, 1.0ml의 75% 알코올로 펠렛을 세척한 후 DEPC 처리된 멸균 증류수 30㎕을 넣어 펠렛을 녹인 뒤 이후의 시험에서 사용하였다.After adding 1.0ml of Trizole to the muscle tissue crushed using a stick, and leaving it for 10 minutes at room temperature, 0.2ml of chloroform is added and vortexed vigorously for 15 seconds to completely dissolve (Lysis) made it This was left at room temperature for 10 minutes, and then centrifuged at 14,000 x g, 4°C for 15 minutes. The supernatant was transferred to a new tube, 0.5ml isopropyl alcohol was added thereto, and left at room temperature for 10 minutes, followed by centrifugation at 14,000 x g, 4°C for 10 minutes. After removing the supernatant, after washing the pellet with 1.0ml of 75% alcohol, 30 μl of DEPC-treated sterile distilled water was added to dissolve the pellet, and then used in subsequent tests.
분리한 각각의 RNA를 주형으로 PrimeScript™ 1st strand cDNA Synthesis Kit 을 이용하여 제조사의 지침에 따라 cDNA를 합성하였다. 상기 cDNA를 주형으로 하여 실시간 중합효소연쇄반응을 다음과 같이 수행하였다. 올리고뉴클레오티드와 SYBR Green I 이 포함하여 95℃에서 30초간 변성 과정, 58 ℃에서 30초간 어닐링 과정, 72℃에서 30초간 신장 과정의 조건으로 실시간 중합효소연쇄반응 수행하였다.Each isolated RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScript™ 1st strand cDNA Synthesis Kit. Using the cDNA as a template, a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
2.7 통계처리2.7 Statistical processing
그룹간 유의성 검증에는 크루스칼-왈리스 테스트(Kruskal-Wallis test)와 만-휘트니 유 포스트-혹 테스트(Mann-Whitney U post-hoc test)를 이용하였으며, SPSS version 22 소프트웨어(IBM Corporation, Armonk, NY, USA)를 이용하여 유의성을 산출하였다($$ p<0.01, $ p<0.05).The Kruskal-Wallis test and Mann-Whitney U post-hoc test were used to verify the significance between groups, and SPSS version 22 software (IBM Corporation, Armonk, NY, USA) was used to calculate significance ($$ p<0.01, $ p<0.05).
3. 실험 결과3. Experimental results
3.1 근위축 모델에서 패 추출물 및 DPHC가 근육 무게 및 다리 근육 두께에 미치는 영향3.1 Effect of Plaque Extract and DPHC on Muscle Weight and Leg Muscle Thickness in Muscle Atrophy Model
패 추출물, DPHC를 투여한 그룹과, 근위축을 유도하는 덱사메타손만 10일간 처리한 그룹과 비교하여 몸무게, 지방 무게(Fat mass)와 제지방 무게(Lean mass)의 무게변화를 확인하였다. 그 결과 몸무게와 지방 무게(Fat mass)에서는 그룹간의 변화가 관찰되지 않았으나, 근위축 그룹(dexamethasone 투여군)에서의 제지방 무게가 유의적으로 감소함에 따라 근위축 모델의 근손실을 확인할 수 있었으며, 이러한 근 손실은 패 추출물, 대조 약물의 투여군에서 억제되는 결과를 보였다(도 11). Weight changes in body weight, fat mass, and lean mass were confirmed compared to the group treated with shellfish extract, DPHC, and the group treated with only dexamethasone, which induces muscle atrophy, for 10 days. As a result, no change was observed between the groups in body weight and fat mass, but as the lean mass in the muscle atrophy group (dexamethasone administered group) decreased significantly, the muscle loss in the muscle atrophy model was confirmed. Muscle loss was inhibited in the group administered with the shellfish extract and control drug (FIG. 11).
이러한 변화는 다리 근육의 두께 변화에서도 관찰되었다. 덱사메타손에 의해 감소된 다리 근육 두께는 패 추출물, DPHC, 대조 약물을 투여한 그룹에서 유의적인 개선 효과가 있었다(도 12).This change was also observed in the thickness change of the leg muscles. In the leg muscle thickness reduced by dexamethasone, there was a significant improvement effect in the group administered with the plaque extract, DPHC, and control drug (FIG. 12).
3.2 근위축 모델에서 패 추출물 및 DPHC가 악력과 지구력에 미치는 영향3.2 Effect of plaque extract and DPHC on grip strength and endurance in muscular atrophy model
패 추출물, DPHC 투여 그룹에서의 유의적인 외형적 근육 변화와 더불어 근력에도 영향을 미치는지 확인하기 위하여 악력과 지구력을 확인한 결과, 근위축에 의해 저하된 악력(grip strength)과 지구력(ladder climbing)이 시료인 패 추출물, DPHC투여군과 대조 약물 투여군에서 유의적으로 증가됨을 확인하였다(도 13). 이에 따라 패 추출물 또는 DPHC 투여로 근위축에 의한 악력과 지구력의 저하를 유의적으로 억제시켜 근력의 손실을 막을 수 있음을 확인하였다. As a result of checking grip strength and endurance to check whether muscle strength was affected as well as significant external muscle changes in the shellfish extract and DPHC group, grip strength and ladder climbing decreased by muscle atrophy were It was confirmed that the phosphorus shell extract, the DPHC administration group and the control drug administration group significantly increased (FIG. 13). Accordingly, it was confirmed that the loss of muscle strength could be prevented by significantly inhibiting the decrease in grip strength and endurance due to muscle atrophy by administering shellfish extract or DPHC.
3.3 근위축 모델에서 패 추출물 및 DPHC가 비복근에 미치는 영향 3.3 Effect of plaque extract and DPHC on gastrocnemius in a muscle atrophy model
근위축 모델에서 시료인 패 추출물, DPHC 투여에 의한 근력 손실의 회복은 비복근의 무게와 두께 변화에서도 관찰되었다. 비복근은 강한 힘 즉, 악력을 낼때 사용하는 근육이다. 덱사메타손(Dexamethasone)에 의해 감소된 비복근의 무게 및 두께가 시료 및 대조 약물을 투여한 모든 그룹에서 유의적인 개선 효과가 확인되었다(도 14).In the muscle atrophy model, recovery of muscle strength loss by administration of shell extract and DPHC samples was also observed in changes in the weight and thickness of gastrocnemius muscle. The gastrocnemius is a muscle that is used to produce a strong force, that is, a grip force. Significant improvement in the weight and thickness of gastrocnemius muscle reduced by dexamethasone was confirmed in all groups administered with the sample and control drug (FIG. 14).
또한, 근위축 모델에서 비복근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현 수준과 분해 관련 인자인 MuRF1, Atrogin1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, DPHC를 투여한 그룹에서 유의적으로 비복근 단백질 합성 인자의 mRNA의 발현이 증가하고, 분해 관련 인자의 mRNA의 발현이 감소함을 확인하였다(도 15). 이에 따라, 근위축 모델에서 저하된 비복근 단백질 합성 촉진과 분해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다.In addition, in the muscle atrophy model, the effect on the mRNA expression levels of Akt and PI3K, which are protein synthesis-related factors of gastrocnemius muscle, and the mRNA expression levels of MuRF1 and Atrogin1, which are degradation-related factors, was confirmed in the group administered with shellfish extract and DPHC. As a result, it was confirmed that the mRNA expression of the gastrocnemius protein synthesizing factor increased and the mRNA expression of the degradation-related factor was decreased (FIG. 15). Accordingly, it was confirmed that the decreased gastrocnemius protein synthesis promotion and degradation inhibition in the muscle atrophy model could be improved by the administration of shellfish extract and DPHC.
또한, 근위축 모델에서 비복근의 근육 성장 촉진 관련 인자인 TRPV4, A1R의 mRNA 발현 수준과 저해 관련 인자인 Sirt1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, DPHC를 투여한 그룹에서 유의적으로 비복근 근육 성장 촉진 관련 인자의 mRNA의 발현이 증가하고, 저해 관련 인자의 mRNA의 발현이 감소함 확인하였다(도 16). 이에 따라, 근위축 모델에서 저하된 비복근 근육 성장 촉진과 저해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다. In addition, in the muscle atrophy model, the effect on the mRNA expression level of TRPV4 and A1R, which are factors related to the promotion of muscle growth in gastrocnemius muscle, and the mRNA expression level of Sirt1, which is a factor related to inhibition, was confirmed. It was confirmed that the mRNA expression of the gastrocnemius muscle growth promotion-related factor increased and the mRNA expression of the inhibition-related factor decreased ( FIG. 16 ). Accordingly, it was confirmed that the decreased gastrocnemius muscle growth promotion and inhibition inhibition in the muscle atrophy model could be improved by the administration of shellfish extract and DPHC.
그리고, 근위축 모델에서 비복근의 근육섬유 성장과 분화의 negative 인자로서 근육의 약화를 유도하는 Myostatin, TGF-β, iNOS의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 관련 mRNA의 발현을 유의적으로 감소시킴을 확인하였다(도 17). 이에 따라, 패 추출물 및 DPHC 투여에 의해 근위축 모델의 비복근에서 과도하게 분비되는 근섬유 약화 유도인자들을 억제하여 불필요한 근손실을 억제할 수 있음을 확인하였다.And, as a negative factor for muscle fiber growth and differentiation of gastrocnemius in the muscle atrophy model, the effect on the mRNA expression levels of Myostatin, TGF-β, and iNOS, which induce muscle weakness, was confirmed in the group administered with shellfish extract and DPHC. It was confirmed that the expression of the relevant mRNA was significantly reduced (FIG. 17). Accordingly, it was confirmed that unnecessary muscle loss could be suppressed by suppressing the muscle fiber weakening inducers excessively secreted from the gastrocnemius muscle of the muscle atrophy model by administration of the shellfish extract and DPHC.
또한 근위축 모델에서 비복근의 염증 관련 인자들의 변화에 대해 관찰하였다. 근위축 모델에서 과도하게 증가된 비복근의 염증 관련 인자인 IL-1β와 TNF-α의 mRNA의 발현이 패 추출물 및 DPHC를 투여한 그룹에서 유의적으로 감소되는 것을 확인하였다(도 18). In addition, changes in inflammation-related factors of gastrocnemius were observed in the muscle atrophy model. It was confirmed that the mRNA expression of IL-1β and TNF-α, which are inflammation-related factors of gastrocnemius, which were excessively increased in the muscle atrophy model, were significantly decreased in the group administered with the shellfish extract and DPHC ( FIG. 18 ).
이상과 같이 패 추출물 및 DPHC에 의해 악력에 영향을 미치는 속근인 비복근의 유의적인 개선을 유도함에 따라 근력 개선이 가능할 것으로 확인되었다. As described above, it was confirmed that muscle strength could be improved by inducing significant improvement in gastrocnemius, a fast muscle that affects grip strength by shellfish extract and DPHC.
3.4 근위축 모델에서 패 추출물 및 DPHC가 가자미근에 미치는 영향3.4 Effect of plaque extract and DPHC on soleus muscle in a muscle atrophy model
지근인 가자미근에서도 패 추출물 및 DPHC의 투여에 의해 중량과 두께의 유의적인 변화가 관찰되었다. 가자미근의 몸의 균형 및 지구력을 요할때 사용하는 근육이다. 덱타메타손에 의해 감소된 가자미근의 두께는 시료 및 대조 약물을 투여한 모든 그룹에서 유의적인 개선 효과가 확인되었다(도 19). 이러한 결과는 덱사메타손에 의한 가자미근의 저하를 패 추출물 또는 DPHC가 억제시킬 수 있음을 시사한다.Significant changes in weight and thickness were also observed in the soleus muscle, which is a slow muscle, by the administration of shellfish extract and DPHC. The soleus muscle is used when the body needs balance and endurance. A significant improvement in the thickness of the soleus muscle reduced by dexamethasone was confirmed in all groups to which the sample and control drug were administered (FIG. 19). These results suggest that dexamethasone-induced degradation of soleus muscle can be inhibited by shellfish extract or DPHC.
또한, 근위축 모델에서 가자미근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현과 분해 관련 MuRF1, Atrogin1의 mRNA 발현에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 유의적인 가자미근 단백질 합성 관련 인자의 mRNA 발현은 증가하고 분해 관련 인자의 mRNA 발현은 감소함이 확인되었다(도 20). 이에 따라, 근위축 모델에서 저하된 가자미근 단백질 합성 촉진과 분해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다.In addition, in the muscle atrophy model, the effect on the mRNA expression of Akt and PI3K, which are factors related to protein synthesis in the soleus muscle, and the mRNA expression of MuRF1 and Atrogin1 related to degradation, was confirmed. It was confirmed that the mRNA expression of the factor increased and the mRNA expression of the degradation-related factor decreased ( FIG. 20 ). Accordingly, it was confirmed that the decreased protein synthesis promotion and degradation inhibition of soleus muscle in the muscle atrophy model could be improved by the administration of shellfish extract and DPHC.
근위축 모델에서 가자미근의 근육 성장 촉진 관련 인자인 TRPV4, A1R의 mRNA 발현과 저해 관련 인자인 Sirt1의 mRNA 발현에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 유의적인 가자미근 근육 성장 촉진 관련 인자의 mRNA 발현이 촉진되고, 저해 관련 인자의 mRNA 발현이 억제됨이 확인되었다(도 21). 이에 따라, 근위축 모델에서 저하된 가자미근 근육 성장과 저해능이 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다. As a result of confirming the effect on the mRNA expression of TRPV4 and A1R, which are factors related to promoting muscle growth in the soleus muscle in the muscle atrophy model, and the mRNA expression of Sirt1, an inhibitor related to the inhibitory factor, the group administered with the plaque extract and DPHC showed a significant association with the promotion of soleus muscle growth. It was confirmed that the mRNA expression of the factor was promoted and the mRNA expression of the inhibition-related factor was suppressed (FIG. 21). Accordingly, it was confirmed that the decreased soleus muscle growth and inhibitory ability in the muscle atrophy model could be improved by the administration of shellfish extract and DPHC.
그리고, 근위축 모델에서 가자미근의 근육 섬유 성장과 분화의 negative 인자로서 근육의 약화를 유도하는 Myostatin, TGF-β, iNOS의 mRNA에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 관련 인자의 mRNA의 발현이 유의적으로 감소됨을 확인하였다(도 22). 이에 따라, 패 추출물 및 DPHC 투여에 의해 근위축 모델의 비복근에서 과도하게 분비되는 근섬유 약화 유도 인자들을 억제하여 불필요한 근손실을 억제할 수 있음을 확인하였다.And, as a negative factor for muscle fiber growth and differentiation of soleus muscle in the muscle atrophy model, the effect on the mRNA of Myostatin, TGF-β, and iNOS, which induce muscle weakness, was confirmed. It was confirmed that the expression of mRNA was significantly reduced (FIG. 22). Accordingly, it was confirmed that unnecessary muscle loss could be suppressed by suppressing the muscle fiber weakness inducing factors excessively secreted from the gastrocnemius muscle of the muscle atrophy model by administration of the shellfish extract and DPHC.
또한 근위축 모델에서 가자미근의 염증 관련 인자들의 변화에 대해 관찰하였다. 근위축 모델에서 과도하게 증가된 가자미근의 염증 관련 인자인 IL-1β와 TNF-α의 mRNA의 발현이 패 추출물 및 DPHC를 투여한 그룹에서 유의적으로 감소되는 것을 확인하였다(도 23). 이에 패 추출물 및 DPHC에 의해 악력에 영향을 미치는 지근인 가자미근의 유의적인 개선을 유도함에 따라 근력 개선이 가능할 것으로 확인되었다. In addition, changes in inflammation-related factors of the soleus muscle were observed in the muscle atrophy model. It was confirmed that the mRNA expression of IL-1β and TNF-α, which are inflammation-related factors of soleus muscle, which were excessively increased in the muscle atrophy model, were significantly decreased in the group administered with the shellfish extract and DPHC ( FIG. 23 ). Accordingly, it was confirmed that muscle strength could be improved by inducing significant improvement in the soleus muscle, which is the slow muscle that affects grip strength, by using shellfish extract and DPHC.
<실시예 3> 패 추출물 및 DPHC의 노화에 의한 근감소증 개선 활성<Example 3> Aging-induced sarcopenia improvement activity of shellfish extract and DPHC
1. 재료 1. Material
제주도 서귀포시 성산읍에서 채집한 패(ishige okamurae, IO)를 제염 및 건조하고, 여기에 10배 중량의 50% 에탄올(주정)을 가하여 24시간 실온에서 추출한 후 여과하고 추출용매를 제거하여 패 추출물을 제조하였다. Shellfish ( ishige okamurae , IO) collected in Seongsan-eup, Seogwipo-si, Jeju-do was decontaminated and dried, and 50% ethanol (alcohol) by weight of 10 times was added thereto, extracted at room temperature for 24 hours, filtered, and the extraction solvent was removed to prepare shellfish extract. did
또 DPHC(Diphlorethohydroxycarmalol, Cas No 138529-04-1)는 본 발명자들이 패(ishige okamurae, IO)에서 분리·동정하여 자체 보관하고 있던 것을 실험에 사용하였다.In addition, DPHC (Diphlorethohydroxycarmalol, Cas No 138529-04-1) was isolated and identified from the plaques ( ishige okamurae , IO) by the present inventors and stored by the present inventors.
2. 실험 방법2. Experimental method
2.1 근감소증 노화 모델과 그 실험군 설정2.1 Sarcopenia aging model and its experimental group setting
14개월 된 B6 마우스 (사람 나이로 50세 중후반, female)를 아래와 같이 4 그룹으로 나누어서 악력과 지구력을 측정하고 각 그룹의 몸무게, 근육, 다리 근육, 비복근, 가자미근의 무게, 근육 합성이나 분해 등 관련 인자의 mRNA 발현 정도를 측정하는 실험을 수행 하였다. 14-month-old B6 mice (mid to late 50s, female) were divided into 4 groups as follows to measure grip strength and endurance, and each group's weight, muscle, leg muscle, gastrocnemius muscle, soleus muscle weight, muscle synthesis or decomposition, etc. were measured. An experiment was performed to measure the mRNA expression level of the factor.
① 제1 그룹(Saline 투여군): 살린(saline) 을 28일간 1회/1일 투여시킨 그룹. ① Group 1 (Saline administration group): The group in which saline was administered once/day for 28 days.
② 제2그룹(패 추출물 100 mg/Kg/day 투여군): 패 추출물 (100 mg/Kg/day)을 28일간 1회/1일 투여한 그룹.② Group 2 (shell extract 100 mg/Kg/day administration group): Group administered shellfish extract (100 mg/Kg/day) once/day for 28 days.
③ 제3그룹(DPHC 2.5 mg/Kg/day 투여군): DPHC (2.5 mg/Kg/day)을 28일간 1회/1일 투여한 그룹. ③ Group 3 (DPHC) 2.5 mg/Kg/day administration group): The group administered DPHC (2.5 mg/Kg/day) once/day for 28 days.
④ 제4그룹(Decanoate 5 mg/Kg/day 투여군): 대조 약물로서 경구용 근육 증가 스테로이드제인 데카노에이트(Decanoate) (5 mg/Kg/day)을 28일간 1회/1일 투여한 그룹.④ Group 4 (Decanoate 5 mg/Kg/day administration group): As a control drug, an oral muscle increasing steroid, Decanoate (5 mg/Kg/day), was administered once/day for 28 days.
2.2 몸무게 및 근육 무게의 측정2.2 Determination of body weight and muscle weight
28일의 시험을 수행한 후, 활용된 동물의 몸무게를 재고, 희생시켜 총 근육을 채취하여 그 무게를 재었다. After performing the 28-day test, the utilized animals were weighed, sacrificed, and total muscle was collected and weighed.
2.3 악력의 측정2.3 Measurement of grip strength
Grip strength meter를 이용하여 앞다리의 측정은 동물이 발가락으로 bar를 잡게 하여 확실히 잡은 것을 확인한 후, 동물의 꼬리 기시부위를 잡고 몸체를 수평으로 유지하여 일정속도(초당 2.5 cm)로 당겨 bar를 놓는 시점의 gauge에 표시된 수치를 기록하였다. 후지(後肢)의 측정은 동물의 배부 부위를 잡고 꼬리방향으로 당겨 위와 같은 방법으로 실시하였다. 뒷다리와 앞다리를 각각 3회씩 측정하여 기록하고 평균치를 평가하였다.For the measurement of the forelimbs using a grip strength meter, after confirming that the animal has grasped the bar with its toes, hold the tail base of the animal and keep the body horizontal and pull at a constant speed (2.5 cm per second) to release the bar The values indicated on the gauge were recorded. The hind limbs were measured in the same way as above by grabbing the animal's belly and pulling it toward the tail. Each of the hind and forelimbs was measured and recorded three times, and the average value was evaluated.
2.4 지구력 측정(Ladder climbing)2.4 Ladder climbing
각 동물의 몸무게에 해당하는 추를 꼬리에 달아 사다리를 타서 끝까지 올라가는데 소요되는 시간을 측정하였다. 각각 3회씩 측정하여 기록하고 평균치를 평가하였다.A weight corresponding to the weight of each animal was attached to the tail, and the time required to climb the ladder to the end was measured. Each was measured three times and recorded, and the average value was evaluated.
2.5 비복근과 가자미근의 중량과 두께의 측정2.5 Measurement of weight and thickness of gastrocnemius and soleus muscles
희생된 동물의 다리 근육 중 비복근과 가자미근을 채취하여 그 무게를 재고 가장 두꺼운 두께의 지름을 여러번 재어 평균치를 활용하였다. The gastrocnemius and soleus muscles among the leg muscles of the sacrificed animals were collected, weighed, and the diameter of the thickest thickness was measured several times, and the average value was used.
2.6 mRNA 발현 정도 측정2.6 Measurement of mRNA Expression Level
막대사발을 이용하여 잘게 부순 근육조직에 트라이졸(Trizole) 1.0ml을 첨가하고, 실온에서 10분간 방치한 후, 0.2ml의 크로로포름을 첨가하고 15초 동안 강하게 볼텍싱하여 완전히 용해(Lysis)시켰다. 이를 실온에서 10분간 방치한 다음, 14,000 xg, 4℃에서 15분간 원심분리하였다. 상층액을 새로운 튜브에 옮긴 다음, 0.5ml 아이소프로필 알코올을 첨가하고 실온에서 10분간 방치한 후, 14,000 x g, 4℃에서 10분간 원심분리하였다. 상층액을 제거 후, 1.0ml의 75% 알코올로 펠렛을 세척한 후 DEPC 처리된 멸균 증류수 30㎕을 넣어 펠렛을 녹인 뒤 이후의 시험에서 사용하였다.After adding 1.0ml of Trizole to the muscle tissue crushed using a stick, and leaving it for 10 minutes at room temperature, 0.2ml of chloroform is added and vortexed vigorously for 15 seconds to completely dissolve (Lysis) made it This was left at room temperature for 10 minutes, and then centrifuged at 14,000 x g, 4°C for 15 minutes. The supernatant was transferred to a new tube, 0.5ml isopropyl alcohol was added, and left at room temperature for 10 minutes, followed by centrifugation at 14,000 x g, 4°C for 10 minutes. After removing the supernatant, after washing the pellet with 1.0 ml of 75% alcohol, 30 μl of DEPC-treated sterile distilled water was added to dissolve the pellet, and then used in subsequent tests.
분리한 각각의 RNA를 주형으로 PrimeScript™ 1st strand cDNA Synthesis Kit 을 이용하여 제조사의 지침에 따라 cDNA를 합성하였다. 상기 cDNA를 주형으로 하여 실시간 중합효소연쇄반응을 다음과 같이 수행하였다. 올리고뉴클레오티드와 SYBR Green I 이 포함하여 95℃에서 30초간 변성 과정, 58 ℃에서 30초간 어닐링 과정, 72℃에서 30초간 신장 과정의 조건으로 실시간 중합효소연쇄반응 수행하였다.Each isolated RNA was used as a template to synthesize cDNA according to the manufacturer's instructions using PrimeScript™ 1st strand cDNA Synthesis Kit. Using the cDNA as a template, a real-time polymerase chain reaction was performed as follows. Including oligonucleotide and SYBR Green I, real-time polymerase chain reaction was performed under the conditions of denaturation at 95°C for 30 seconds, annealing at 58°C for 30 seconds, and elongation at 72°C for 30 seconds.
2.7 통계처리2.7 Statistical processing
그룹간 유의성 검증에는 크루스칼-왈리스 테스트(Kruskal-Wallis test)와 만-휘트니 유 포스트-혹 테스트(Mann-Whitney U post-hoc test)를 이용하였으며, SPSS version 22 소프트웨어(IBM Corporation, Armonk, NY, USA)를 이용하여 유의성을 산출하였다($$ p<0.01, $ p<0.05).The Kruskal-Wallis test and Mann-Whitney U post-hoc test were used to verify the significance between groups, and SPSS version 22 software (IBM Corporation, Armonk, NY, USA) was used to calculate significance ($$ p<0.01, $ p<0.05).
3. 실험 결과3. Experimental results
3.1 근감소증 노화 모델에서 패 추출물 및 DPHC가 근육 무게 및 다리 근육 두께에 미치는 영향3.1 Effect of Plaque Extract and DPHC on Muscle Weight and Leg Muscle Thickness in Sarcopenia Aging Model
근감소증 노화 모델에서 패 추출물, DPHC 투여에 따른 몸무게, 지방 무게(Fat mass)와 제지방 무게(Lean mass)의 무게 변화를 확인하였다. 그 결과 각 그룹간의 몸무게의 변화는 유의적이지 않았다. 다만, 시료를 투여한 그룹에서 지방 무게가 다소 감소하고 제지방무게가 증가하는 경향을 보였으나 유의적인 결과는 아닌 것으로 나타났다(도 24).In the sarcopenia aging model Weight changes in body weight, fat mass and lean mass according to shell extract and DPHC administration were confirmed. As a result, the change in body weight between each group was not significant. However, in the group to which the sample was administered, the fat weight slightly decreased and the lean mass increased, but the results were not significant (FIG. 24).
그러나 다리 근육의 두께는 패 추출물, DPHC 및 대조 약물 투여 그룹에서 개선 효과를 보였다(도 25).But The thickness of the leg muscles showed an improvement effect in the group administered with the plaque extract, DPHC, and control drug (FIG. 25).
3.2 근감소증 노화 모델에서 패 추출물 및 DPHC가 악력과 지구력에 미치는 영향3.2 Effect of plaque extract and DPHC on grip strength and endurance in sarcopenia aging model
패 추출물, DPHC 투여로 인해 노화로 인한 외형적 근육 변화와 더불어 근력 감소에도 영향을 미치는지 확인하기 위하여 악력과 지구력을 확인한 결과, 노화에 의해 저하된 악력 (grip strength)과 지구력 (ladder climbing)이 시료와 대조 약물 투여 그룹에서 유의적으로 증가됨을 확인하였다(도 26). 이에 따라 이에 따라 패 추출물 또는 DPHC 투여로 노화로 의한 악력과 지구력의 저하를 유의적으로 억제시켜 근력의 손실을 막을 수 있음을 확인하였다. As a result of checking grip strength and endurance to check whether the administration of shellfish extract and DPHC affects muscle strength reduction as well as external muscle changes due to aging, the grip strength and ladder climbing decreased by aging were and it was confirmed that it was significantly increased in the control drug administration group (FIG. 26). Accordingly, it was confirmed that the decrease in grip strength and endurance due to aging could be significantly suppressed by administration of shellfish extract or DPHC, thereby preventing the loss of muscle strength.
3.3 근감소증 노화 모델에서 패 추출물 및 DPHC가 비복근에 미치는 영향 3.3 Effect of plaque extract and DPHC on gastrocnemius in a sarcopenia aging model
근감소증 노화 모델에서 시료인 패 추출물, DPHC 투여에 의한 근력 손실의 회복은 비복근의 무게와 두께 변화에서도 관찰되었다. 비복근은 강한 힘 즉, 악력을 낼때 사용하는 근육이다. 노화에 의해 감소된 비복근의 무게 및 두께가 시료 및 대조 약물을 투여한 모든 그룹에서 유의적인 개선 효과가 확인되었다(도 27).In the aging model of sarcopenia, recovery of muscle strength loss by administration of shell extract and DPHC, which are samples, was also observed in changes in the weight and thickness of gastrocnemius muscle. The gastrocnemius is a muscle that is used to produce a strong force, that is, a grip force. A significant improvement in the weight and thickness of the gastrocnemius muscle reduced by aging was confirmed in all groups administered with the sample and control drug (FIG. 27).
또한, 근감소증 노화 모델에서 비복근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현 수준과 분해 관련 인자인 MuRF1, Atrogin1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, DPHC를 투여한 그룹에서 유의적으로 비복근 단백질 합성 인자의 mRNA의 발현이 증가하고, 분해 관련 인자의 mRNA의 발현이 감소함을 확인하였다(도 28). 이에 따라, 노화에 의해 저하된 비복근 단백질 합성 촉진과 분해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다.In addition, in the sarcopenia aging model, the effect on the mRNA expression level of Akt and PI3K, protein synthesis-related factors of gastrocnemius muscle, and the mRNA expression level of MuRF1 and Atrogin1, which are degradation-related factors, was confirmed in the group administered with shellfish extract and DPHC. It was confirmed that the mRNA expression of the gastrocnemius protein synthesizing factor was increased and the mRNA expression of the degradation-related factor was decreased (FIG. 28). Accordingly, it was confirmed that the stimulation of gastrocnemius protein synthesis and inhibition of degradation caused by aging could be improved by administration of shellfish extract and DPHC.
또한, 근감소증 노화 모델에서 비복근의 근육 성장 촉진 관련 인자인 TRPV4, A1R의 mRNA 발현 수준과 저해 관련 인자인 Sirt1의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물, DPHC를 투여한 그룹에서 유의적으로 비복근 근육 성장 촉진 관련 인자의 mRNA의 발현이 증가하고, 저해 관련 인자의 mRNA의 발현이 감소함 확인하였다(도 29). 이에 따라, 노화에 의해 저하된 비복근 근육 성장 촉진과 저해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다. In addition, as a result of confirming the effect on the mRNA expression level of TRPV4 and A1R, which are factors related to promoting muscle growth in gastrocnemius, and the mRNA expression level of Sirt1, an inhibitory factor, in the sarcopenia aging model, it was significant in the group administered with shellfish extract and DPHC. As a result, it was confirmed that the mRNA expression of the gastrocnemius muscle growth promoting factor increased and the mRNA expression of the inhibitory factor mRNA expression decreased (FIG. 29). Accordingly, it was confirmed that the stimulation and inhibition of gastrocnemius muscle growth decreased by aging could be improved by administration of shellfish extract and DPHC.
그리고, 근감소증 노화 모델에서 비복근의 근육섬유 성장과 분화의 negative 인자로서 근육의 약화를 유도하는 Myostatin, TGF-β, GPX4, iNOS의 mRNA 발현 수준에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 관련 mRNA의 발현을 유의적으로 감소시킴을 확인하였다(도 30). 이에 따라, 패 추출물 및 DPHC 투여에 의해 노화로 인해서 비복근에서 과도하게 분비되는 근섬유 약화 유도인자들을 억제하여 불필요한 근손실을 억제할 수 있음을 확인하였다.And, as a negative factor for muscle fiber growth and differentiation of gastrocnemius in an aging model of sarcopenia, the effect on the mRNA expression levels of Myostatin, TGF-β, GPX4, and iNOS, which induce muscle weakness, was confirmed. It was confirmed that the expression of related mRNA was significantly reduced in one group (FIG. 30). Accordingly, it was confirmed that unnecessary muscle loss could be suppressed by suppressing the muscle fiber weakening inducers excessively secreted from the gastrocnemius muscle due to aging by the administration of shellfish extract and DPHC.
또한, 근감소증 노화 모델에서 비복근의 염증 관련 인자들의 변화에 대해 관찰하였다. 근감소증 노화 모델에서 과도하게 증가된 비복근의 염증 관련 인자인 IL-1β와 TNF-α의 mRNA의 발현이 패 추출물 및 DPHC를 투여한 그룹에서 유의적으로 감소되는 것을 확인하였다(도 31). In addition, changes in inflammation-related factors of gastrocnemius were observed in the sarcopenia aging model. It was confirmed that the mRNA expression of IL-1β and TNF-α, which are inflammation-related factors of gastrocnemius, which were excessively increased in the sarcopenia aging model, were significantly decreased in the group administered with the shellfish extract and DPHC ( FIG. 31 ).
이상과 같이 근감소증 노화 모델에서 패 추출물 및 DPHC에 의해 비복근의 유의적인 개선을 유도함에 따라 노화에 의한 근감소증의 개선이 가능할 것으로 확인되었다. As described above, it was confirmed that the improvement of sarcopenia caused by aging was possible as significant improvement of gastrocnemius was induced by shellfish extract and DPHC in the aging model of sarcopenia.
3.4 근감소증 노화 모델에서 패 추출물 및 DPHC가 가자미근에 미치는 영향3.4 Effect of plaque extract and DPHC on soleus muscle in a sarcopenia aging model
근감소증 노화 모델에서 지근인 가자미근에 있어서도 패 추출물 및 DPHC의 투여에 의해 중량과 두께의 유의적인 변화가 관찰되었다. 가자미근의 몸의 균형 및 지구력을 요할때 사용하는 근육이다. 노화에 의해 감소된 가자미근의 두께는 시료 및 대조 약물을 투여한 모든 그룹에서 유의적인 개선 효과가 확인되었다(도 32). 이러한 결과는 노화에 의한 가자미근의 저하를 패 추출물 또는 DPHC가 억제시킬 수 있음을 시사한다.In the sarcopenia aging model, significant changes in weight and thickness were also observed in the soleus muscle, which is a slow muscle, by administration of shellfish extract and DPHC. The soleus muscle is used when the body needs balance and endurance. Significant improvement in the thickness of the soleus muscle reduced by aging was confirmed in all groups to which the sample and control drug were administered (FIG. 32). These results suggest that the decline of soleus muscle due to aging can be inhibited by shellfish extract or DPHC.
또한, 근감소증 노화 모델에서 가자미근의 단백질 합성 관련 인자인 Akt, PI3K의 mRNA 발현과 분해 관련 MuRF1, Atrogin1의 mRNA 발현에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 유의적인 가자미근 단백질 합성 관련 인자의 mRNA 발현은 증가하고 분해 관련 인자의 mRNA 발현은 감소함이 확인되었다(도 33). 이에 따라, 노화에 의해 저하된 가자미근 단백질 합성 촉진과 분해 억제가 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다.In addition, as a result of confirming the effect on the mRNA expression of Akt and PI3K, which are factors related to protein synthesis of soleus muscle, and the mRNA expression of degradation-related MuRF1 and Atrogin1 in the aging model of sarcopenia, significant protein synthesis of soleus muscle in the group administered with the shellfish extract and DPHC It was confirmed that the mRNA expression of the related factor increased and the mRNA expression of the degradation related factor decreased ( FIG. 33 ). Accordingly, it was confirmed that the promotion of protein synthesis and inhibition of degradation of the soleus muscle reduced by aging could be improved by administration of shellfish extract and DPHC.
또한, 근감소증 노화 모델에서 가자미근의 근육 성장 촉진 관련 인자인 TRPV4, A1R의 mRNA 발현과 저해 관련 인자인 Sirt1의 mRNA 발현에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 유의적인 가자미근 근육 성장 촉진 관련 인자의 mRNA 발현이 촉진되고, 저해 관련 인자의 mRNA 발현이 억제됨이 확인되었다(도 34). 이에 따라, 노화에 의해 저하된 가자미근 근육 성장과 저해능이 패 추출물, DPHC 투여에 의해 개선될 수 있음을 확인하였다. In addition, as a result of confirming the effect on the mRNA expression of TRPV4 and A1R, which are factors related to promoting muscle growth in the soleus muscle, and the mRNA expression of Sirt1, a factor related to inhibition, in the sarcopenia aging model, there was a significant difference in the group administered with the plaque extract and DPHC. It was confirmed that mRNA expression of growth-promoting factors was promoted, and mRNA expression of inhibitory factors was suppressed (FIG. 34). Accordingly, it was confirmed that the growth and inhibition of soleus muscle muscle growth and inhibitory ability decreased by aging could be improved by administration of shellfish extract and DPHC.
그리고, 근감소증 노화 모델에서 가자미근의 근육 섬유 성장과 분화의 negative 인자로서 근육의 약화를 유도하는 Myostatin, TGF-β, GPX4, iNOS의 mRNA에 미치는 영향을 확인한 결과, 패 추출물 및 DPHC를 투여한 그룹에서 관련 인자의 mRNA의 발현이 유의적으로 감소됨을 확인하였다(도 35). 이에 따라, 패 추출물 및 DPHC 투여에 의해 노화로 인해서 비복근에서 과도하게 분비되는 근섬유 약화 유도 인자들을 억제하여 불필요한 근손실을 억제할 수 있음을 확인하였다.And, as a negative factor for muscle fiber growth and differentiation of soleus muscle in the aging model of sarcopenia, the effect on the mRNA of Myostatin, TGF-β, GPX4, and iNOS, which induce muscle weakness, was confirmed. As a result, the group administered with shellfish extract and DPHC. It was confirmed that the mRNA expression of the related factor was significantly reduced (FIG. 35). Accordingly, it was confirmed that unnecessary muscle loss could be suppressed by inhibiting the muscle fiber weakness inducers excessively secreted from the gastrocnemius muscle due to aging by the administration of shellfish extract and DPHC.
또한 근감소증 노화 모델에서 가자미근의 염증 관련 인자들의 변화에 대해 관찰하였다. 노화에 의해 과도하게 증가된 가자미근의 염증 관련 인자인 IL-1β와 TNF-α의 mRNA의 발현이 패 추출물 및 DPHC를 투여한 그룹에서 유의적으로 감소되는 것을 확인하였다(도 36). In addition, changes in inflammation-related factors of soleus muscle were observed in the sarcopenia aging model. It was confirmed that the mRNA expression of IL-1β and TNF-α, which are inflammation-related factors of soleus muscle, which were excessively increased by aging, were significantly decreased in the group administered with the shellfish extract and DPHC ( FIG. 36 ).
이상과 같이 패 추출물 및 DPHC에 의해 악력에 영향을 미치는 지근인 가자미근의 유의적인 개선을 유도함에 따라 노화에 의한 근감소증의 개선이 가능할 것으로 확인되었다. As described above, it was confirmed that the improvement of sarcopenia caused by aging was possible by inducing significant improvement in the soleus muscle, which is the slow muscle that affects the grip strength, by the shellfish extract and DPHC.
3.5. 근감소증 노화 모델에서 패 추출물 및 DPHC가 근감소증 바이오마커에 미치는 영향 3.5. Effect of plaque extract and DPHC on sarcopenia biomarkers in sarcopenia aging model
혈액내 근력 및 근소모 바이오마커인 LHD(Lactate dehydrogenase)의 mRNA 발현 정도를 확인한 결과, 근감소증 노화 모델에서 근력의 평가 지표인 LHD가 패 추출물 및 DPHC에 의해 유의적으로 증가한 것이 관찰되었다(도 37). As a result of confirming the mRNA expression level of LHD (Lactate dehydrogenase), a biomarker for muscle strength and muscle wasting in the blood, it was observed that LHD, an evaluation index of muscle strength, was significantly increased by shellfish extract and DPHC in the sarcopenia aging model (FIG. 37) ).

Claims (12)

  1. 패 추출물, 아이소플로로글루신 A(Ishophloroglucin A) 또는 디플로르에토하이드록시카르마롤(Diphlorethohydroxycarmalol)을 유효성분을 포함하는 근력 개선용 조성물.A composition for improving muscle strength comprising shellfish extract, isophloroglucin A (Ishophloroglucin A) or diphlorethohydroxycarmalol as an active ingredient.
  2. 제1항에 있어서,According to claim 1,
    상기 추출물은 물, 에탄올 또는 이들의 혼합 용매로 추출하여 얻은 추출물인 것을 특징으로 하는 조성물.The extract is a composition, characterized in that the extract obtained by extraction with water, ethanol, or a mixed solvent thereof.
  3. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 조성물은 약제학적 조성물인 것을 특징으로 하는조성물.The composition is a pharmaceutical composition, characterized in that the composition.
  4. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 조성물은 식품 조성물인 것을 특징으로 하는조성물.The composition is a food composition, characterized in that the composition.
  5. 패 추출물, 아이소플로로글루신 A(Ishophloroglucin A) 또는 디플로르에토하이드록시카르마롤(Diphlorethohydroxycarmalol)을 유효성분을 포함하는 근위축증 개선용 조성물.A composition for improving muscular atrophy comprising a shellfish extract, isophloroglucin A (Ishophloroglucin A) or diphlorethohydroxycarmalol as an active ingredient.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 추출물은 물, 에탄올 또는 이들의 혼합 용매로 추출하여 얻은 추출물인 것을 특징으로 하는 조성물.The extract is a composition, characterized in that the extract obtained by extraction with water, ethanol, or a mixed solvent thereof.
  7. 제5항 또는 제6항에 있어서,7. The method according to claim 5 or 6,
    상기 조성물은 약제학적 조성물인 것을 특징으로 하는조성물.The composition is a pharmaceutical composition, characterized in that the composition.
  8. 제5항 또는 제6항에 있어서,7. The method according to claim 5 or 6,
    상기 조성물은 식품 조성물인 것을 특징으로 하는조성물.The composition is a food composition, characterized in that the composition.
  9. 패 추출물 또는 디플로르에토하이드록시카르마롤(Diphlorethohydroxycarmalol)을 유효성분을 포함하는 노화로 인한 근감소증 개선용 조성물.A composition for improving sarcopenia due to aging comprising shellfish extract or diphlorethohydroxycarmalol as an active ingredient.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 추출물은 물, 에탄올 또는 이들의 혼합 용매로 추출하여 얻은 추출물인 것을 특징으로 하는 조성물.The extract is a composition, characterized in that the extract obtained by extraction with water, ethanol, or a mixed solvent thereof.
  11. 제9항 또는 제10항에 있어서,11. The method of claim 9 or 10,
    상기 조성물은 약제학적 조성물인 것을 특징으로 하는조성물.The composition is a pharmaceutical composition, characterized in that the composition.
  12. 제9항 또는 제10항에 있어서,11. The method of claim 9 or 10,
    상기 조성물은 식품 조성물인 것을 특징으로 하는조성물.The composition is a food composition, characterized in that the composition.
PCT/KR2021/007279 2020-08-28 2021-06-10 Composition for improving muscle strength, alleviating muscle atrophy, or alleviating aging-induced sarcopenia by using ishige okamurae extract or compound isolated therefrom WO2022045540A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020200109571A KR102270028B1 (en) 2020-08-28 2020-08-28 Compostion for Improving Muscle Strength or Muscular Atrophy Using an Extract of Ishige okamurae or Ishophloroglucin A
KR10-2020-0109571 2020-08-28
KR1020210054835A KR102317113B1 (en) 2021-04-28 2021-04-28 Compostion for Improving Muscle Strength or Muscular Atrophy Using an Extract of Ishige okamurae or Diphlorethohydroxycarmalol
KR10-2021-0054834 2021-04-28
KR1020210054834A KR102296975B1 (en) 2021-04-28 2021-04-28 Compostion for Improving Sarcopenia Using an Extract of Ishige okamurae or Diphlorethohydroxycarmalol
KR10-2021-0054835 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022045540A1 true WO2022045540A1 (en) 2022-03-03

Family

ID=80353452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007279 WO2022045540A1 (en) 2020-08-28 2021-06-10 Composition for improving muscle strength, alleviating muscle atrophy, or alleviating aging-induced sarcopenia by using ishige okamurae extract or compound isolated therefrom

Country Status (1)

Country Link
WO (1) WO2022045540A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100039104A (en) * 2008-10-07 2010-04-15 부경대학교 산학협력단 An anti-oxidant active composition containing compounds from ishige okamurae
KR101964080B1 (en) * 2018-06-04 2019-04-01 제주대학교 산학협력단 Composition for Improvement of Exercise Performance Using Novel Compound hexadecaphlorethol Isolated from Ishige okamurae
KR20190081753A (en) * 2017-12-29 2019-07-09 인천대학교 산학협력단 Pharmaceutical composition comprising ishige okamurae extracts for prevention and treatment of neurodegenerative disorders as an active ingredient
KR102054597B1 (en) * 2018-11-14 2019-12-10 제주대학교 산학협력단 Composition for Improvement of Exercise Performance Using an Extract of Ishige okamurae

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100039104A (en) * 2008-10-07 2010-04-15 부경대학교 산학협력단 An anti-oxidant active composition containing compounds from ishige okamurae
KR20190081753A (en) * 2017-12-29 2019-07-09 인천대학교 산학협력단 Pharmaceutical composition comprising ishige okamurae extracts for prevention and treatment of neurodegenerative disorders as an active ingredient
KR101964080B1 (en) * 2018-06-04 2019-04-01 제주대학교 산학협력단 Composition for Improvement of Exercise Performance Using Novel Compound hexadecaphlorethol Isolated from Ishige okamurae
KR102054597B1 (en) * 2018-11-14 2019-12-10 제주대학교 산학협력단 Composition for Improvement of Exercise Performance Using an Extract of Ishige okamurae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI MIN HEE, OW JIN RONG, YANG NAI-DI, TANEJA RESHMA: "Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies", OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, HINDAWI PUBLISHING CORPORATION, US, vol. 2016, 1 January 2016 (2016-01-01), US , pages 1 - 13, XP055902432, ISSN: 1942-0900, DOI: 10.1155/2016/6842568 *

Similar Documents

Publication Publication Date Title
KR102270028B1 (en) Compostion for Improving Muscle Strength or Muscular Atrophy Using an Extract of Ishige okamurae or Ishophloroglucin A
WO2014171781A1 (en) Composition for preventing or treating hangover
WO2010087565A2 (en) Novel use of piperine
WO2018004252A1 (en) Composition for promoting hair growth or inhibiting hair loss using rosmarinus officinalis (rosemary) leaf extract
WO2014058160A1 (en) Composition comprising myricetin as active ingredient for enhancing exercise performance or fatigue recovery
WO2015002391A1 (en) Composition having a function for alleviating premenstrual syndrome and menstrual pain
WO2013147419A1 (en) A composition comprising the compound isolated from chrysanthemum indicum for treating or preventing cerebrovascular system involved anxiety and the use thereof
WO2017171491A1 (en) Pharmaceutical composition comprising stem cell extract for prevention or treatment of inflammatory disease
WO2010087577A2 (en) Use of thymus capitatus extract, satureja hortensis extract, or carvacrol for treating metabolic diseases
WO2019098699A1 (en) Composition for preventing or treating neurodegenerative diseases, containing diterpene-based compound
WO2020218720A1 (en) Composition for preventing or treating muscular disorders or improving muscular functions, containing leonurus japonicus extract or leonurine
WO2015111832A1 (en) Composition for preventing or treating prostate-related diseases, containing poncirus trifoliate extract
WO2019231150A1 (en) Composition comprising aster sphathulifolius maxim extract for preventing, improving, or treating muscular diseases or for improving muscular functions
WO2022045540A1 (en) Composition for improving muscle strength, alleviating muscle atrophy, or alleviating aging-induced sarcopenia by using ishige okamurae extract or compound isolated therefrom
KR102317113B1 (en) Compostion for Improving Muscle Strength or Muscular Atrophy Using an Extract of Ishige okamurae or Diphlorethohydroxycarmalol
WO2010123221A9 (en) Composition for preventing and improving the symptoms of menopause, containing glyceollins as an active ingredient
EP3062807A1 (en) Compositions comprising a viola herba extract, or an extract of viola herba, persicae semen, cinnamomi ramulus, and glycyrrhiza spp. for the prevention or treatment of lipid-related cardiovascular diseases and obesity
WO2017043935A1 (en) Composition for preventing or treating muscle weakness related diseases comprising sobrerol
WO2013012117A1 (en) Pharmaceutical compositions for preventing or treating inflammatory diseases, comprising phytosterol compound
WO2017082478A1 (en) Pharmaceutical composition for preventing or treating osteoporosis comprising soybean germinated embryo extract
WO2015167240A1 (en) Composition containing scutellaria alpina extract
WO2021235637A1 (en) Composition for prevention, alleviation, or treatment of respiratory disease
EP3310799A1 (en) A novel compound (ks 513) isolated from pseudolysimachion rotundum var. subintegrum, the composition comprising the same as an active ingredient for preventing or treating allergy disease, inflammatory disease, asthma or chronic obstructive pulmonary disease and the use thereof
KR102296975B1 (en) Compostion for Improving Sarcopenia Using an Extract of Ishige okamurae or Diphlorethohydroxycarmalol
WO2020189911A1 (en) Composition including noranhydroicaritin, for preventing or treating cardiovascular metabolic diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861841

Country of ref document: EP

Kind code of ref document: A1