WO2022045400A1 - Motor driving device, and vehicle having same - Google Patents

Motor driving device, and vehicle having same Download PDF

Info

Publication number
WO2022045400A1
WO2022045400A1 PCT/KR2020/011527 KR2020011527W WO2022045400A1 WO 2022045400 A1 WO2022045400 A1 WO 2022045400A1 KR 2020011527 W KR2020011527 W KR 2020011527W WO 2022045400 A1 WO2022045400 A1 WO 2022045400A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
inverter
motor
phase
switching
Prior art date
Application number
PCT/KR2020/011527
Other languages
French (fr)
Korean (ko)
Inventor
엘로세귀파블로
Original Assignee
엘지마그나 이파워트레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지마그나 이파워트레인 주식회사 filed Critical 엘지마그나 이파워트레인 주식회사
Priority to PCT/KR2020/011527 priority Critical patent/WO2022045400A1/en
Priority to KR1020237008688A priority patent/KR20230052283A/en
Publication of WO2022045400A1 publication Critical patent/WO2022045400A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor driving device and a vehicle having the same, and more particularly, to a motor driving device capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.
  • An electric vehicle powered by electricity, an internal combustion engine and a hybrid vehicle combining these, etc. use a motor and a battery to generate the output.
  • a motor driving device for driving the motor with an AC power is required.
  • a motor drive device is provided with the inverter etc. which are provided with a some switching element.
  • the inverter requires the number of switching elements according to the number of phases when the motor is a polyphase motor.
  • An object of the present invention is to provide a motor driving apparatus capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.
  • Another object of the present invention is to provide a motor driving device capable of reducing the signal processing burden of an inverter controller, and a vehicle having the same.
  • a motor driving apparatus and a vehicle having the same for achieving the above object include a motor and an inverter for outputting AC power to the motor, the motor includes a 6-phase motor, and the inverter includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
  • the inverter the first switching element arranged on the first leg, the second switching element arranged on the second leg, the third switching element arranged on the third leg, the first end is connected to one end of the first switching element 4 switching element, a fifth switching element having one end connected to one end of the second switching element, a sixth switching element having one end connected to one end of the third switching element, a seventh switching element connected to the other end of the fourth switching element, It may include an eighth switching element connected to the other end of the fifth switching element, and a ninth switching element connected to the other end of the sixth switching element.
  • the sixth node between may be connected to the second terminal of the motor.
  • the motor includes a first node between the first switching element and the fourth switching element, and between the neutral point of the motor, a first winding wound and a second node between the second switching element and the fifth switching element, Between the neutral point of the motor, a second winding wound, a third node between the third switching element and the sixth switching element, and between the neutral point of the motor, a third winding wound, a fourth switching element and a seventh switching element a fourth winding wound between the fourth node between the elements and the neutral point of the motor, a fifth node between the fifth switching element and the eighth switching element and a fifth winding wound between the neutral point of the motor; Between the sixth node between the sixth switching element and the ninth switching element and the neutral point of the motor, a sixth winding may be wound.
  • the fourth switching element when the first switching element of the first leg is off, the fourth switching element is on, and the seventh switching element is on, the first phase voltage of the first winding is a low level, and the fourth phase voltage of the fourth winding is It may be a low level.
  • the first switching element of the first leg when the first switching element of the first leg is on, the fourth switching element is off, and the seventh switching element is on, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is It may be a low level.
  • the first switching element of the first leg when the first switching element of the first leg is on, the fourth switching element is on, and the seventh switching element is off, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is may be a high level.
  • the motor driving apparatus and a vehicle having the same, further include an inverter control unit for controlling the inverter, the inverter control unit, based on the input AC voltage, the DC offset, and the reference voltage waveform , a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal, and an exclusive OR based on the first comparison signal from the first comparator and the second comparison signal from the second comparator It may include a logic operator for performing an (exclusive OR) operation, a first inverter for inverting an output signal from the logic operator, and a second inverter for inverting the second comparison signal.
  • the inverter control unit outputs the first comparison signal to the first switching element, the output signal from the first inverter to the fourth switching element, and the output signal from the second inverter to the seventh switching element can be printed on
  • the motor driving apparatus and a vehicle having the same, further include an inverter controller for controlling the inverter, wherein the inverter controller includes a six-phase voltage converter that converts an input voltage of three phases into a voltage of six phases. and a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase.
  • the inverter controller includes a six-phase voltage converter that converts an input voltage of three phases into a voltage of six phases.
  • a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase.
  • the six-phase voltage converter includes a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal based on a 3-phase input voltage, a DC offset, and a reference voltage waveform
  • the phase switching signal output unit includes a logic operator performing an exclusive OR operation based on a first comparison signal from the first comparator and a second comparison signal from the second comparator, and an output from the logic operator It may include a first inverter for inverting the signal, and a second inverter for inverting the second comparison signal.
  • the 9-phase switching signal output unit outputs the first comparison signal to the first switching element, the second switching element, or the third switching element, and outputs the output signal from the first inverter to the fourth switching element or the fifth switching element It is output to the element or the sixth switching element, and the output signal from the second inverter may be output to the seventh switching element, the eighth switching element, or the ninth switching element.
  • the motor driving apparatus and a vehicle having the same, further include an inverter controller for controlling the inverter, and the inverter controller may control the inverter based on 27 pattern signals.
  • a motor driving apparatus and a vehicle having the same include a motor and an inverter outputting AC power to the motor, the motor includes a 6-phase motor, and the inverter is connected in parallel to each other It comprises three legs, each leg comprising three switching elements connected in series. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the inverter the first switching element arranged on the first leg, the second switching element arranged on the second leg, the third switching element arranged on the third leg, the first end is connected to one end of the first switching element 4 switching element, a fifth switching element having one end connected to one end of the second switching element, a sixth switching element having one end connected to one end of the third switching element, a seventh switching element connected to the other end of the fourth switching element, It may include an eighth switching element connected to the other end of the fifth switching element, and a ninth switching element connected to the other end of the sixth switching element. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the sixth node between may be connected to the second terminal of the motor. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the motor includes a first node between the first switching element and the fourth switching element, and between the neutral point of the motor, a first winding wound and a second node between the second switching element and the fifth switching element, Between the neutral point of the motor, a second winding wound, a third node between the third switching element and the sixth switching element, and between the neutral point of the motor, a third winding wound, a fourth switching element and a seventh switching element a fourth winding wound between the fourth node between the elements and the neutral point of the motor, a fifth node between the fifth switching element and the eighth switching element and a fifth winding wound between the neutral point of the motor; Between the sixth node between the sixth switching element and the ninth switching element and the neutral point of the motor, a sixth winding may be wound. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the first switching element of the first leg is off, the fourth switching element is on, and the seventh switching element is on, the first phase voltage of the first winding is a low level, and the fourth phase voltage of the fourth winding is It may be a low level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the first switching element of the first leg when the first switching element of the first leg is on, the fourth switching element is off, and the seventh switching element is on, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is It may be a low level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the first switching element of the first leg is on, the fourth switching element is on, and the seventh switching element is off, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is may be a high level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
  • the motor driving apparatus and a vehicle having the same, further include an inverter control unit for controlling the inverter, the inverter control unit, based on the input AC voltage, the DC offset, and the reference voltage waveform , a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal, and an exclusive OR based on the first comparison signal from the first comparator and the second comparison signal from the second comparator It may include a logic operator for performing an (exclusive OR) operation, a first inverter for inverting an output signal from the logic operator, and a second inverter for inverting the second comparison signal. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • the inverter control unit outputs the first comparison signal to the first switching element, the output signal from the first inverter to the fourth switching element, and the output signal from the second inverter to the seventh switching element can be printed on Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • the motor driving apparatus and a vehicle having the same, further include an inverter controller for controlling the inverter, wherein the inverter controller includes a six-phase voltage converter that converts an input voltage of three phases into a voltage of six phases. and a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • the six-phase voltage converter includes a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal based on a 3-phase input voltage, a DC offset, and a reference voltage waveform
  • the phase switching signal output unit includes a logic operator performing an exclusive OR operation based on a first comparison signal from the first comparator and a second comparison signal from the second comparator, and an output from the logic operator It may include a first inverter for inverting the signal, and a second inverter for inverting the second comparison signal. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • the 9-phase switching signal output unit outputs the first comparison signal to the first switching element, the second switching element, or the third switching element, and outputs the output signal from the first inverter to the fourth switching element or the fifth switching element It is output to the element or the sixth switching element, and the output signal from the second inverter may be output to the seventh switching element, the eighth switching element, or the ninth switching element. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • the motor driving apparatus and a vehicle having the same, further include an inverter controller for controlling the inverter, and the inverter controller may control the inverter based on 27 pattern signals. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
  • FIG. 1 is a schematic diagram illustrating a body of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is an example of a motor driving system according to an embodiment of the present invention.
  • FIG. 3 illustrates an example of an internal block diagram of the motor driving apparatus of FIG. 2 .
  • FIG. 4 is an example of an internal circuit diagram of the motor driving device of FIG. 3 .
  • FIG. 5 is an example of an internal block diagram of the inverter control unit of FIG. 4 .
  • FIG. 6 is an example of an internal circuit diagram of a motor driving apparatus related to the present invention.
  • FIG. 7 is an example of an internal circuit diagram of a motor driving apparatus according to an embodiment of the present invention.
  • FIG. 8 to 11C are diagrams referred to in the description of FIG. 6 or FIG. 7 .
  • module and “part” for the components used in the following description are given simply in consideration of the ease of writing the present specification, and do not impart a particularly important meaning or role by themselves. Accordingly, the terms “module” and “unit” may be used interchangeably.
  • FIG. 1 is a schematic diagram illustrating a body of a vehicle according to an embodiment of the present invention.
  • a vehicle 100 includes a battery 205 for supplying power, a motor driving device 200 receiving power from the battery 205 , and a motor driving device 200 .
  • the motor 250 driven and rotated by the motor 250, the front wheel 150 and the rear wheel 155 rotated by the motor 250, the front wheel suspension 160 and the rear wheel suspension for blocking vibration of the road surface from being transmitted to the vehicle body
  • an inclination angle detection unit 190 for detecting an inclination angle of the vehicle body may be included.
  • a driving gear (not shown) for converting the rotation speed of the motor 250 based on the gear ratio may be additionally provided.
  • the inclination angle detection unit 190 detects an inclination angle of the vehicle body, and the detected inclination angle is input to an electronic control unit 410 to be described later.
  • the inclination angle detection unit 190 may be implemented as a gyro sensor or a horizontal gauge sensor.
  • the inclination angle detection unit 190 is illustrated as being disposed on the battery 205 , but is not limited thereto, and may be disposed on the front wheel 150 , the rear wheel 155 , or both the front wheel 150 and the rear wheel 155 . there is.
  • the battery 205 supplies power to the motor driving device 200 .
  • DC power is supplied to the capacitor C in the motor driving device 200 .
  • the battery 205 may be formed as a set of a plurality of unit cells.
  • the plurality of unit cells may be managed by a battery management system (BMS) to maintain a constant voltage, and may emit a constant voltage by the battery management system.
  • BMS battery management system
  • the battery management system may detect the voltage Vbat of the battery 205 and transmit it to an electronic control unit (not shown) or the inverter control unit 250 in the motor driving device 200, and the battery voltage When (Vbat) falls below the lower limit, the DC power stored in the capacitor C in the motor driving apparatus 200 may be supplied to the battery. Also, when the battery voltage Vbat rises above the upper limit, DC power may be supplied to the capacitor C in the motor driving apparatus 200 .
  • the battery 205 is preferably composed of a rechargeable battery capable of charging and discharging, but is not limited thereto.
  • the motor driving device 200 receives DC power from the battery 205 through the power input cable 120 .
  • the motor driving device 200 converts DC power received from the battery 205 into AC power and supplies it to the motor 250 .
  • the converted AC power is preferably a three-phase AC power.
  • the motor driving device 200 supplies three-phase AC power to the motor 250 through the three-phase output cable 125 provided in the motor driving device 200 .
  • the converted AC power is preferably a 6-phase AC power.
  • the motor driving device 200 may supply 6-phase AC power to the motor 250 through the 6-phase output cable 125 provided in the motor driving device 200 .
  • the motor driving apparatus 200 of FIG. 1 illustrates the three-phase output cable 125 composed of three cables
  • the present invention is not limited thereto, and a corresponding number of cables may be provided according to the number of phases of the polyphase motor. Alternatively, a plurality of cables may be provided in a single cable.
  • the motor 250 includes a stator 130 that is fixed without rotating and a rotor 135 that rotates.
  • the motor 250 is provided with an input cable 140 to receive AC power supplied from the motor driving device 200 .
  • the motor 250 may be, for example, a polyphase motor, and when each phase AC power of variable voltage/frequency variable is applied to the coils of the stator of each phase, the rotational speed of the rotor is variable based on the applied frequency will do
  • the motor 250 may have various forms, such as an induction motor, a blushless DC motor, and a reluctance motor.
  • a driving gear (not shown) may be provided on one side of the motor 250 .
  • the driving gear converts the rotational energy of the motor 250 based on the gear ratio.
  • the rotational energy output from the driving gear is transmitted to the front wheel 150 and/or the rear wheel 155 so that the vehicle 100 moves.
  • the front wheel suspension 160 and the rear wheel suspension 165 support the front wheel 150 and the rear wheel 155 with respect to the vehicle body, respectively.
  • the vertical direction of the front wheel suspension 160 and the rear wheel suspension 165 is supported by a spring or a damping mechanism to prevent vibration of the road surface from contacting the vehicle body.
  • a steering device (not shown) may be further provided on the front wheel 150 .
  • the steering device is a device for controlling the direction of the front wheel 150 in order to drive the vehicle 100 in a direction intended by the driver.
  • the vehicle 100 may further include an electronic controller for controlling electronic devices throughout the vehicle.
  • the electronic control unit (not shown) controls each device to operate, display, and the like.
  • the above-described battery management system may be controlled.
  • the electronic control unit includes an inclination angle detecting unit (not shown) for detecting the inclination angle of the vehicle 100 , a speed detecting unit detecting the speed of the vehicle 100 (not shown), and a brake detecting unit according to the operation of the brake pedal ( (not shown), a driving command value according to various driving modes (driving mode, reverse mode, neutral mode, and parking mode, etc.) can
  • the driving command value may be, for example, a torque command value or a torque command value.
  • the vehicle 100 may be a concept including a pure electric vehicle using a battery and a motor, of course, a hybrid electric vehicle using a battery and a motor while using an engine.
  • the hybrid electric vehicle may further include a switching means for selecting at least one of a battery and an engine, and a transmission.
  • hybrid electric vehicles include a series method for driving a motor by converting mechanical energy output from an engine into electrical energy, a parallel method using mechanical energy output from the engine and electrical energy from a battery at the same time, and a direct method for mixing them. can be divided in a parallel fashion.
  • FIG. 2 is an example of a motor driving system according to an embodiment of the present invention.
  • the motor driving system 10 may include a vehicle 100 and a server 500 .
  • the server 500 may be a server operated by the manufacturer of the motor driving device 200 or the vehicle 100 , or may correspond to a mobile terminal of the driver of the motor driving device 200 or the vehicle 100 .
  • the vehicle 100 may include an input unit 120 , a communication unit 130 , a memory 140 , a control unit 170 , and a motor driving unit 200 .
  • the input unit 120 includes a manipulation button, a key, and the like, and may output an input signal for turning on/off the power of the vehicle 100 , setting an operation, and the like.
  • the communication unit 130 may exchange data with a peripheral device, for example, the server 500 by wire or wirelessly, or wirelessly exchange data with a remote server or the like.
  • a peripheral device for example, the server 500 by wire or wirelessly, or wirelessly exchange data with a remote server or the like.
  • mobile communication such as 4G or 5G, infrared (IR) communication, RF communication, Bluetooth communication, Zigbee communication, WiFi communication, etc. may be performed.
  • the memory 140 of the vehicle 100 may store data necessary for the operation of the vehicle 100 . For example, data about an operation time, an operation mode, and the like when the driving unit 200 is operated may be stored.
  • the memory 140 of the vehicle 100 may store management data including vehicle power consumption information, recommended driving information, current driving information, and management information.
  • the memory 140 of the vehicle 100 may store diagnostic data including vehicle operation information, driving information, and error information.
  • the controller 170 may control each unit in the vehicle 100 .
  • the control unit 170 may control the input unit 120 , the communication unit 130 , the memory 140 , the driving unit 200 , and the like.
  • the motor driving unit 200 may be referred to as a motor driving device as a driving unit to drive the motor 250 .
  • the motor driving apparatus 200 includes a plurality of switching elements, an inverter 420 for outputting AC power to the motor 250 , and an output current io flowing through the motor 250 .
  • the output current detection unit E for detecting It may include an inverter control unit 430 that outputs a switching control signal.
  • the current information (id,iq) and the torque command value (T * ) based on the output current (io) may be transmitted to the external server 500, and the current command value (i * d,i) from the server 500 * q) may be received. Also, based on the current command value received from the communication unit 130 , the inverter control unit 430 may output a switching control signal to the inverter 420 .
  • the communication unit 130 in the motor driving device 200 may transmit current information (id, iq), the torque command value (T * ), and voltage information related to the detected dc terminal voltage (Vdc) to the server 500 . Accordingly, it is possible to drive the maximum torque of the motor 250 under various conditions.
  • FIG. 3 illustrates an example of an internal block diagram of the motor driving apparatus of FIG. 2 .
  • the motor driving device 200 is a driving device for driving the motor 250 and includes a plurality of switching elements Sa to Sc and S'a to S'c. and may include an inverter 420 that outputs AC power to the motor 250 and an inverter control unit 430 that controls the inverter 420, and provides various stored data to the inverter control unit 430 It may include a memory 270 that does.
  • the motor driving apparatus 200 may further include a voltage detecting unit (B) and an output current detecting unit (E) detecting an output current flowing through the motor 250 .
  • the motor 250 may be a three-phase motor driven by the inverter 420 .
  • the inverter control unit 430 may output the switching control signal Sic to the inverter 420 based on the current command value (i * d, i * q) corresponding to the calculated maximum torque. Maximum torque driving of the motor 250 is enabled.
  • the inverter control unit 430 calculates the current information (id,iq) and the torque command value (T * ) in real time, and based on the torque command value (T * ), the current command value (i * d) , i * q) is calculated, and the motor 250 is driven using the current command value (i * d, i * q). Accordingly, the accuracy for high-efficiency driving is improved.
  • the motor driving device 200, the capacitor (C) for storing the dc terminal voltage (Vdc) that is the input terminal of the inverter 420, and the dc terminal voltage detection unit (B) for detecting the dc terminal voltage (Vdc) further may include
  • the inverter control unit 430 calculates the current command value (i * d, i * q) based on the current information (id,iq), the torque command value (T * ), and the detected dc terminal voltage (Vdc), The motor 250 is driven using the current command value (i * d, i * q). Accordingly, the accuracy for high-efficiency driving is improved.
  • FIG. 4 is an example of an internal circuit diagram of the motor driving device of FIG. 3 .
  • the motor driving apparatus 200 includes an inverter 420 , an inverter control unit 430 , an output current detection unit E, a dc terminal voltage detection unit Vdc, and a position detection unit. It may include a sensor 105 .
  • the motor driving device 200 converts electric power and drives the motor, so it may be referred to as a power change device.
  • the dc terminal capacitor C stores power input to the dc terminal (a-b terminals).
  • one element is exemplified as a dc terminal capacitor (C), but a plurality of elements may be provided to ensure element stability.
  • the input power supplied to the dc terminal capacitor C may be power stored in the battery 205 or power level-converted in a converter (not shown).
  • the dc terminal voltage detector B may detect the dc terminal voltage Vdc that is both ends of the dc terminal capacitor C. To this end, the dc terminal voltage detection unit B may include a resistance element, an amplifier, and the like. The detected dc terminal voltage Vdc may be input to the inverter controller 430 as a discrete signal in the form of a pulse.
  • the inverter 420 includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
  • the inverter 420 includes a first switching device S1 disposed on a first leg, a second switching device S2 disposed on a second leg, and a third switching device S3 disposed on a third leg. , a fourth switching element S4 having one end connected to one end n14 of the first switching element S1 , and a fifth switching element S5 having one end connected to one end n25 of the second switching element S2 , a sixth switching element S6 having one end connected to one end n36 of the third switching element S3, a seventh switching element S7 connected to the other end of the fourth switching element S4, and a fifth switching element An eighth switching element S8 connected to the other end of S5 and a ninth switching element S9 connected to the other end of the sixth switching element S6 may be included.
  • a first switching element (S1), a fourth switching element (S4), and a seventh switching element (S7) are disposed on the first leg, and the second switching element (S2) and the fifth switching element (S5) are disposed on the second leg ), an eighth switching element S8 is disposed, and a third switching device S3 , a sixth switching device S6 , and a ninth switching device S9 may be disposed on the third leg.
  • the inverter 420 is provided with a plurality of inverter switching elements (S1 to S9), the DC power supply (Vdc) by the on / off operation of the switching elements (S1 to S9) a six-phase AC power supply of a predetermined frequency ( Va, Vb, Vc, Vd, Ve, Vf) can be converted and output to the 6-phase synchronous motor 250 .
  • the switching elements in the inverter 420 turn on/off the respective switching elements based on the inverter switching control signal Sic from the inverter controller 430 . Accordingly, the six-phase AC power having a predetermined frequency is output to the six-phase synchronous motor 250 .
  • the inverter controller 430 may control the switching operation of the inverter 420 based on the sensorless method.
  • the inverter control unit 430 may receive the output current io detected by the output current detection unit E as an input.
  • the inverter controller 430 may output the inverter switching control signal Sic to each gate terminal of the inverter 420 in order to control the switching operation of the inverter 420 . Accordingly, the inverter switching control signal Sic may be referred to as a gate driving signal.
  • the inverter switching control signal Sic is a pulse width modulation (PWM) switching control signal, and is generated and output based on the output current io detected by the output current detection unit E.
  • PWM pulse width modulation
  • the output current detection unit E detects an output current io flowing between the inverter 420 and the six-phase motor 250 . That is, the current flowing through the motor 250 may be detected.
  • the output current detection unit E may detect all of the output currents ia, ib, ic, id, ie, if of each phase, or may detect the output currents of some phases using six-phase balance.
  • the output current detection unit E may be located between the inverter 420 and the motor 250 , and a current transformer (CT), a shunt resistor, or the like may be used to detect the current.
  • CT current transformer
  • the detected output current io may be applied to the inverter controller 430 as a discrete signal in the form of a pulse, and a switching control signal Sic is generated based on the detected output current io .
  • the six-phase motor 250 includes a stator and a rotor, and each phase AC power supply of a predetermined frequency to the coil of the stator of each phase (a, b, c, d, e, f phase) This is applied, and the rotor rotates.
  • the motor 250 includes, for example, a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and a synchronous relay. It may include a Synchronous Reluctance Motor (Synrm) and the like. Among them, SMPMSM and IPMSM are Permanent Magnet Synchronous Motors (PMSM) to which permanent magnets are applied, and Synrm is characterized by not having permanent magnets.
  • SMPMSM Surface-Mounted Permanent-Magnet Synchronous Motor
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • Synrm Synchronous Reluctance Motor
  • the motor 250 is a six-phase motor, and in particular, a current superimposition variable flux reluctance motor (CSVFM) will be mainly described.
  • CSVFM current superimposition variable flux reluctance motor
  • FIG. 5 is an example of an internal block diagram of the inverter control unit of FIG. 4 .
  • the inverter control unit 430 of FIG. 5 receives the detected output current io from the output current detection unit 320 , and receives the rotor position information of the motor 250 from the position detection sensor 105 . ( ⁇ ) can be received.
  • the position detection sensor 105 may detect the magnetic pole position ⁇ of the rotor of the motor 250 . That is, the position detection sensor 105 may detect the position of the rotor of the motor 250 .
  • the position detection sensor 105 may include an encoder or a resolver.
  • the ⁇ coordinate system is a two-dimensional fixed coordinate system having ⁇ and ⁇ axes as fixed axes as axes.
  • the ⁇ and ⁇ axes are orthogonal to each other, and the ⁇ axis leads from the ⁇ axis by an electrical angle of 90°.
  • the dq coordinate system is a two-dimensional rotational coordinate system with d and q axes as the rotation axes.
  • the axis according to the direction of the magnetic flux created by the permanent magnet is the d-axis, and the axis with an electrical angle of 90 ⁇ from the d-axis is q wet.
  • the inverter control unit 430 includes a speed calculating unit 320 , a shaft converting unit 310 , a torque calculating unit 325 , a current command generating unit 330 , a voltage command generating unit 340 , and an axis converting unit. It may include a unit 350 and a switching control signal output unit 360 .
  • the axis conversion unit 310 in the inverter control unit 430 receives the three-phase output current (ia, ib, ic, id, ie, if) detected by the output current detection unit E, and receives the two-phase current ( i ⁇ ,i ⁇ ).
  • the axis conversion unit 310 may convert the two-phase currents (i ⁇ , i ⁇ ) of the stationary coordinate system into the two-phase currents (id, iq) of the rotational coordinate system.
  • the speed calculating unit 320 in the inverter control unit 430 estimates the rotor position ( . In addition, based on the estimated rotor position (), it is possible to output the calculated speed ().
  • the torque calculator 325 in the inverter controller 430 may calculate the current torque T based on the calculated speed ?
  • the current command generating unit 330 in the inverter control unit 430 generates a current command value (i * d, i * q) based on the calculated current torque T and the torque command value T * .
  • the current command generation unit 330 performs PI control in the PI controller 335 based on the calculated current torque T and the torque command value T * , and the current command value i * d ,i * q) can be created.
  • the value of the d-axis current command value (i * d) may be set to 0.
  • the current command generation unit 330, the current command value (i * d, i * q) may further include a limiter (not shown) for limiting the level so as not to exceed the allowable range.
  • the voltage command generation unit 340 includes the d-axis and q-axis currents (id, iq) that are axis-transformed into the two-phase rotational coordinate system by the axis transformation unit, and the current command value (i * ) from the current command generation unit 330 , etc. d,i * q), d-axis and q-axis voltage command values (V * d, V * q) are generated.
  • the voltage command generation unit 340 performs PI control in the PI controller 344 based on the difference between the q-axis current iq and the q-axis current command value (i * q), and the q-axis current command value (i * q).
  • a voltage setpoint (V * q) can be generated.
  • the voltage command generation unit 340 performs PI control in the PI controller 348 based on the difference between the d-axis current id and the d-axis current command value (i * d), and the d-axis voltage command value (V * d) can be created.
  • the value of the d-axis voltage command value (V * d) may be set to 0 corresponding to the case where the value of the d-axis current command value (i * d) is set to 0.
  • the voltage command generation unit 340, d-axis, q-axis voltage command values (V * d, V * q) may further include a limiter (not shown) for limiting the level so as not to exceed the allowable range. .
  • the generated d-axis and q-axis voltage command values (V * d, V * q) are input to the axis conversion unit 350 .
  • the axis conversion unit 350 receives the position ( ) calculated by the speed calculating unit 320 and the d-axis and q-axis voltage command values (V * d, V * q), and performs the axis conversion.
  • the axis transformation unit 350 performs transformation from a two-phase rotational coordinate system to a two-phase stationary coordinate system.
  • the position ( ) calculated by the speed calculating unit 320 may be used.
  • the axis transformation unit 350 performs transformation from the two-phase stationary coordinate system to the six-phase stationary coordinate system.
  • the shaft conversion unit 350 outputs a six-phase output voltage command value (V * a, V * b, V * c, V * d, V * e, V * f).
  • the switching control signal output unit 360 is a pulse width modulation (PWM) method based on the six-phase output voltage command value (V * a,V * b, V * c, V * d, V * e, V * f) It is possible to generate and output a switching control signal Sic according to
  • the output inverter switching control signal Sic may be converted into a gate driving signal by a gate driver (not shown) and input to the gate of each switching element in the inverter 420 . Accordingly, each of the switching elements S1 to S9 in the inverter 420 performs a switching operation.
  • FIG. 6 is an example of an internal circuit diagram of a motor driving apparatus related to the present invention.
  • the motor driving device 200x related to the present invention may include an inverter 420x having 12 switching elements and a 6-phase motor 2500 .
  • the inverter 420x includes a plurality of inverter switching elements Sa to Sf, S'a to S'f, and by on/off operation of the switching elements Sa to Sf, S'a to S'f
  • the DC power supply (Vdc) may be converted into 6-phase AC power supply (Va, Vb, Vc, Vd, Ve, Vf) of a predetermined frequency, and output to the 6-phase synchronous motor 250 .
  • a diode is connected in antiparallel to each of the switching elements Sa, S'a, Sb, S'b, Sc, S'c, Sd, S'd, Se, S'e, Sf, S'f.
  • the first winding La as the a-phase winding
  • the second winding as the b-phase winding (Lb) is wound, between the node (nc) between the third upper arm switching element (Sc) and the third lower arm switching element (S'c) and the midpoint (nn) of the motor 250, the c-phase winding
  • the third winding Lc is wound, and between the node nd between the fourth upper arm switching element Sd and the fourth lower arm switching element S'd and the midpoint nn of the motor 250, d
  • the fourth winding Ld which is a phase winding, is wound, and between the node ne between the fifth upper-arm switching element Se and the fifth lower-
  • the inverter 420x 12 switching elements are required, and 64 switching patterns are required for switching of the 12 switching elements. Accordingly, the size of the inverter 420x is increased, and the switching pattern of the inverter 420x is significant.
  • the present invention proposes an inverter 420 capable of efficiently driving the six-phase motor 250 . This will be described below with reference to FIG. 7 .
  • FIG. 7 is an example of an internal circuit diagram of a motor driving apparatus according to an embodiment of the present invention.
  • the motor driving apparatus 200 includes a motor 250 and an inverter 420 for outputting AC power to the motor 250, and the motor 250 includes: A six-phase motor 250 is included, and the inverter 420 includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
  • the inverter 420 of FIG. 7 includes nine switching elements, the number of switching is reduced compared to the inverter 420x of FIG. 6 , and consequently, the size of the inverter 420 can be reduced.
  • the switching pattern of the inverter 420 of FIG. 7 has 27 switching patterns for 9 switching elements, but the switching pattern of the inverter 420x of FIG. 6 has 64 switching patterns for 12 switching elements have a pattern.
  • the inverter 420 of FIG. 7 it is possible to reduce the switching pattern and reduce the number of switching.
  • the inverter 420 the first switching device (S1) disposed on the first leg, the second switching device (S2) disposed on the second leg, the third switching device (S3) disposed on the third leg, A fourth switching element (S4) having one end connected to one end (n14) of the first switching element (S1), a fifth switching element (S5) having one end connected to one end (n25) of the second switching element (S2); A sixth switching element S6 having one end connected to one end n36 of the third switching element S3, a seventh switching element S7 connected to the other end of the fourth switching element S4, a fifth switching element ( It may include an eighth switching element S8 connected to the other end of S5 and a ninth switching element S9 connected to the other end of the sixth switching element S6. Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
  • the first node n14 between the first switching element S1 and the fourth switching element S4 and the second node n25 between the second switching element S2 and the fifth switching element S5 and the third node n36 between the third switching element S3 and the sixth switching element S6 is connected to the first terminal of the motor 250, and the fourth switching element S4 and the seventh switching element S4
  • a sixth node n69 between the elements S9 may be connected to a second terminal of the motor 250 . Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
  • the motor 250 between the first node n14 between the first switching element S1 and the fourth switching element S4 and the neutral point nn of the motor 250 , the first winding wound (La) and the second node (n25) between the second switching element (S2) and the fifth switching element (S5), and between the neutral point (nn) of the motor 250, the winding second winding (Lb) And, between the third node (n36) between the third switching element (S3) and the sixth switching element (S6) and the neutral point (nn) of the motor 250, the winding third winding (Lc), Between the fourth node n47 between the fourth switching element S4 and the seventh switching element S7 and the neutral point nn of the motor 250 , the fourth winding Ld wound and the fifth switching element Between the fifth node n58 between ( S5 ) and the eighth switching element S8 and the neutral point nn of the motor 250 , the fifth winding Le and the sixth switching element S6 are wound A sixth winding Lf wound between the
  • the first winding La is an a-phase winding, and an a-phase voltage Va may be applied thereto
  • the second winding Lb is a b-phase winding, and a b-phase voltage Vb may be applied thereto
  • the third winding Lc is a c-phase winding, and a c-phase voltage Vc may be applied thereto
  • the fourth winding Ld is a d-phase winding, and a d-phase voltage Vd may be applied thereto.
  • the fifth winding Le is an e-phase winding, and an e-phase voltage Ve may be applied thereto
  • the sixth winding Lf is an f-phase winding and an f-phase voltage Vf may be applied thereto.
  • the motor driving apparatus 200 may further include an inverter control unit 430 for controlling the inverter 420 , and the inverter control unit 430 is configured to be connected to each of the phase windings La to Lf. , the inverter 420 may be controlled to apply the respective phase voltages Va to Vf.
  • the inverter controller 430 may output a switching control signal for controlling the nine switching elements S1 to S9 . Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
  • FIG. 8 to 11C are diagrams referred to in the description of FIG. 6 or FIG. 7 .
  • FIG. 8 is a diagram illustrating an a-phase voltage waveform Va and a d-phase voltage waveform Vd applied to the motor 250 .
  • the a-phase voltage Va applied to the motor 250 is at a low level
  • the d-phase voltage Vd is at a low level
  • the a-phase voltage Va applied to the motor 250 is a
  • the phase voltage Va is a high level
  • the d-phase voltage Vd is a low level
  • the a-phase voltage Va applied to the motor 250 is a high level
  • the d-phase voltage Vd is high level
  • FIG. 9A is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar1 time point.
  • the first upper-arm switching element Sa of the inverter 420x is off, the first lower-arm switching element S'a is on, the fourth upper-arm switching element Sd is off, the second 4 The lower arm switching element S'd is turned on.
  • the a-phase voltage Va of the low level and the d-phase voltage Vd of the low level are applied to the motor 250 .
  • FIG. 9B is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar2 time point.
  • the first upper-arm switching element Sa of the inverter 420x is on, the first lower-arm switching element S'a is off, the fourth upper-arm switching element Sd is off, the second 4 The lower arm switching element S'd is turned on.
  • a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
  • 9C is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar3 time point.
  • the first upper-arm switching element Sa of the inverter 420x is on, the first lower-arm switching element S'a is off, and the fourth upper-arm switching element Sd is on, the second 4 The lower arm switching element S'd is turned off.
  • a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
  • 10A is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar1 time point.
  • the first switching element S1 of the first leg is turned off, the fourth switching element S4 is turned on, and the seventh switching element S7 is turned on.
  • the a-phase voltage Va of the low level and the d-phase voltage Vd of the low level are applied to the motor 250 .
  • FIG. 10B is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar2 time point.
  • the first switching element S1 of the first leg of the inverter 420 is on, the fourth switching element S4 is off, and the seventh switching element S7 is on.
  • a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
  • FIG. 10C is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar3 time point.
  • the first switching element S1 of the first leg of the inverter 420 is on, the fourth switching element S4 is on, and the seventh switching element S7 is off.
  • a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
  • 11A is a diagram illustrating a switching pattern of the inverter 420x of FIG. 6 .
  • 11B is a diagram illustrating a switching pattern of the inverter 420 of FIG. 7 .
  • the switching pattern of the inverter 420 of FIG. 7 is illustrated as 27 .
  • the inverter 420 of FIG. 7 arranges three switching elements on one leg and includes a total of three legs, so that one leg of the inverter 420x of FIG. Compared to disposing two switching elements and disposing a total of 6 legs, it is possible to reduce the size of the inverter 420 and the number of switching of the inverter 420 .
  • 11C is an example of an internal block diagram of the inverter control unit 430 according to an embodiment of the present invention.
  • the inverter control unit 430 outputs a first comparison signal and a second comparison signal, respectively, based on an input AC voltage Vacr, a DC offset, and a reference voltage waveform vref.
  • an exclusive or OR includes a logic operator 1022 for performing an operation, a first inverter 1024 for inverting the output signal from the logic operator 1022, and a second inverter 1026 for inverting the second comparison signal. can do.
  • the inverter control unit 43 an adder 1011 for adding the three-phase input AC voltage Vacr and the DC offset, and the three-phase input AC voltage Vacr to subtract the DC offset (DCoffset)
  • a subtractor 1012 may be further provided.
  • the first comparator 1014 compares the output of the adder 1011 with the reference voltage waveform vref, which is a sawtooth waveform, and outputs a first comparison signal a.
  • the second comparator 1016 compares the output of the subtractor 1012 with the reference voltage waveform vref, which is a sawtooth waveform, and outputs a second comparison signal d.
  • the logic operator 1022 receives the first comparison signal (a) and the second comparison signal (d), and when the first comparison signal (a) and the second comparison signal (d) are at the same level, a low level (eg, For example, 0) may be output, and if it is a different level, a high level (eg, 1) may be output.
  • a low level eg, For example, 0
  • a high level eg, 1
  • the first inverter 1024 may invert the output signal from the logical operator 1022 .
  • the second inverter 1026 may invert the second comparison signal d.
  • the first comparison signal (a) is output to the first switching element S1 or the second switching element S2 or the third switching element S3 in the inverter 420, and the first inverter (
  • the output signal from 1024 is output to the fourth switching element S4 or the fifth switching element S5 or the sixth switching element S6, and the output signal from the second inverter 1026 is the seventh It may be output to the switching element S7, the eighth switching element S8, or the ninth switching element S9.
  • the inverter control unit 430 according to the embodiment of the present invention, the six-phase voltage converter 1010 for converting the input voltage of three phases to the voltage of six phases, and outputting the 9-phase switching control signal based on the voltage of the six-phase A 9-phase switching signal output unit 1020 may be included. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
  • the six-phase voltage converter 1010, the first comparison signal (a) and the second comparison signal (d) based on the three-phase input voltage, the DC offset, and the reference voltage waveform (vref) It includes a first comparator 1014 and a second comparator 1016 respectively outputting, the 9-phase switching signal output unit 1020, the first comparison signal (a) from the first comparator 1014, the second A logic operator 1022 that performs an exclusive OR operation based on the second comparison signal from the comparator 1016 and a first inverter 1024 that inverts the output signal from the logic operator 1022 ) and a second inverter 1026 for inverting the second comparison signal d. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
  • the 9-phase switching signal output unit 1020 outputs the first comparison signal (a) to the first switching element (S1), the second switching element (S2), or the third switching element (S3),
  • the output signal from the first inverter 1024 is output to the fourth switching element S4, the fifth switching element S5, or the sixth switching element S6, and the output signal from the second inverter 1026 is It may output to the seventh switching element (S7), the eighth switching element (S8), or the ninth switching element (S9). Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
  • the inverter controller 430 may control the inverter 420 based on the 27 pattern signals of FIG. 11B . Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
  • the present invention is applicable to a motor driving device and a vehicle having the same, and particularly, to a motor driving device capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.

Abstract

The present invention relates to a motor driving device, and a vehicle having same. The motor driving device according to an embodiment of the present invention comprises: a motor; and an inverter for outputting alternating-current power to the motor, wherein the motor comprises a six-phase motor, and the inverter comprises three legs connected in parallel to each other, each leg including three switching elements connected in series. Accordingly, the size of the inverter and the number of times the inverter switches can be reduced.

Description

모터 구동장치, 및 이를 구비하는 차량Motor drive device and vehicle having same
본 발명은 모터 구동장치, 및 이를 구비하는 차량에 관한 것으로, 더욱 상세하게는, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있는 모터 구동장치, 및 이를 구비하는 차량에 관한 것이다.The present invention relates to a motor driving device and a vehicle having the same, and more particularly, to a motor driving device capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.
전기를 동력으로 하는 전기 차량이나, 내연기관과 이들을 조합한 하이브리드 차량 등은, 모터 및 배터리 등을 이용하여 그 출력을 발생시키고 있다.BACKGROUND ART An electric vehicle powered by electricity, an internal combustion engine and a hybrid vehicle combining these, etc. use a motor and a battery to generate the output.
한편, 모터 구동을 위해, 교류 전원으로 모터를 구동하는 모터 구동장치가 필요하다.On the other hand, for driving the motor, a motor driving device for driving the motor with an AC power is required.
한편, 모터 구동장치는, 복수의 스위칭 소자를 구비하는 인버터 등을 구비한다. On the other hand, a motor drive device is provided with the inverter etc. which are provided with a some switching element.
한편, 인버터는, 모터가 다상 모터인 경우, 상의 개수에 따라, 스위칭 소자의 개수가 필요하게 된다.On the other hand, the inverter requires the number of switching elements according to the number of phases when the motor is a polyphase motor.
예를 들어, 3상 모터인 경우, 인버터는 3상의 해당되는 3개의 레그와, 하나의 레그에 상측 스위칭 소자와 하측 스위칭 소자가 필요하므로, 총 6개의 스위칭 소자가 필요하다.For example, in the case of a three-phase motor, since the inverter requires three legs corresponding to three phases, and an upper switching element and a lower switching element in one leg, a total of six switching elements are required.
다른 예로, 6상 모터인 경우, 인버터는 6상의 해당되는 6개의 레그와, 하나의 레그에 상측 스위칭 소자와 하측 스위칭 소자가 필요하므로, 총 12개의 스위칭 소자가 필요하다.As another example, in the case of a six-phase motor, since the inverter requires six legs corresponding to six phases, and an upper switching element and a lower switching element in one leg, a total of 12 switching elements are required.
이와 같이, 다상 모터의 상의 개수가 증가할수록, 스위칭 소자가 상당히 증가하게 되므로, 인버터의 크기가 증가되며, 각 상 마다 스위칭을 수행하여야 하므로, 스위칭 횟수가 증가하는 문제가 있다.As described above, as the number of phases of the polyphase motor increases, the number of switching elements increases significantly, so the size of the inverter increases, and since switching must be performed for each phase, there is a problem in that the number of switching increases.
본 발명의 목적은, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 모터 구동장치, 및 이를 구비하는 차량을 제공함에 있다.An object of the present invention is to provide a motor driving apparatus capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.
본 발명의 다른 목적은, 인버터 제어부의 신호 처리 부담을 경감할 수 있는 모터 구동장치, 및 이를 구비하는 차량을 제공함에 있다.Another object of the present invention is to provide a motor driving device capable of reducing the signal processing burden of an inverter controller, and a vehicle having the same.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 모터와, 모터에 교류 전원을 출력하는 인버터를 포함하고, 모터는, 6상 모터를 포함하고, 인버터는, 서로 병렬 접속되는 3개의 레그를 포함하며, 각 레그는, 직렬 접속되는 3개의 스위칭 소자를 포함한다.A motor driving apparatus and a vehicle having the same according to an embodiment of the present invention for achieving the above object include a motor and an inverter for outputting AC power to the motor, the motor includes a 6-phase motor, and the inverter includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
한편, 인버터는, 제1 레그에 배치되는 제1 스위칭 소자, 제2 레그에 배치되는 제2 스위칭 소자, 제3 레그에 배치되는 제3 스위칭 소자, 제1 스위칭 소자의 일단에 일단이 접속되는 제4 스위칭 소자, 제2 스위칭 소자의 일단에 일단이 접속되는 제5 스위칭 소자, 제3 스위칭 소자의 일단에 일단이 접속되는 제6 스위칭 소자, 제4 스위칭 소자의 타단에 접속되는 제7 스위칭 소자, 제5 스위칭 소자의 타단에 접속되는 제8 스위칭 소자, 제6 스위칭 소자의 타단에 접속되는 제9 스위칭 소자를 포함할 수 있다.On the other hand, the inverter, the first switching element arranged on the first leg, the second switching element arranged on the second leg, the third switching element arranged on the third leg, the first end is connected to one end of the first switching element 4 switching element, a fifth switching element having one end connected to one end of the second switching element, a sixth switching element having one end connected to one end of the third switching element, a seventh switching element connected to the other end of the fourth switching element, It may include an eighth switching element connected to the other end of the fifth switching element, and a ninth switching element connected to the other end of the sixth switching element.
한편, 제1 스위칭 소자와 제4 스위칭 소자 사이의 제1 노드와, 제2 스위칭 소자와 제5 스위칭 소자 사이의 제2 노드와, 제3 스위칭 소자와 제6 스위칭 소자 사이의 제3 노드는, 모터의 제1 단자에 접속되며, 제4 스위칭 소자와 제7 스위칭 소자 사이의 제4 노드와, 제5 스위칭 소자와 제8 스위칭 소자 사이의 제5 노드와, 제6 스위칭 소자와 제9 스위칭 소자 사이의 제6 노드는, 모터의 제2 단자에 접속될 수 있다.On the other hand, the first node between the first switching element and the fourth switching element, the second node between the second switching element and the fifth switching element, and the third node between the third switching element and the sixth switching element, connected to the first terminal of the motor, a fourth node between the fourth switching element and the seventh switching element, a fifth node between the fifth switching element and the eighth switching element, and a sixth switching element and a ninth switching element The sixth node between may be connected to the second terminal of the motor.
한편, 모터는, 제1 스위칭 소자와 제4 스위칭 소자 사이의 제1 노드와, 모터의 중성점 사이에, 감기는 제1 권선과, 제2 스위칭 소자와 제5 스위칭 소자 사이의 제2 노드와, 모터의 중성점 사이에, 감기는 제2 권선과, 제3 스위칭 소자와 제6 스위칭 소자 사이의 제3 노드와, 모터의 중성점 사이에, 감기는 제3 권선과, 제4 스위칭 소자와 제7 스위칭 소자 사이의 제4 노드와, 모터의 중성점 사이에, 감기는 제4 권선과, 제5 스위칭 소자와 제8 스위칭 소자 사이의 제5 노드와, 모터의 중성점 사이에, 감기는 제5 권선과, 제6 스위칭 소자와 제9 스위칭 소자 사이의 제6 노드와, 모터의 중성점 사이에, 감기는 제6 권선을 포함할 수 있다.On the other hand, the motor includes a first node between the first switching element and the fourth switching element, and between the neutral point of the motor, a first winding wound and a second node between the second switching element and the fifth switching element, Between the neutral point of the motor, a second winding wound, a third node between the third switching element and the sixth switching element, and between the neutral point of the motor, a third winding wound, a fourth switching element and a seventh switching element a fourth winding wound between the fourth node between the elements and the neutral point of the motor, a fifth node between the fifth switching element and the eighth switching element and a fifth winding wound between the neutral point of the motor; Between the sixth node between the sixth switching element and the ninth switching element and the neutral point of the motor, a sixth winding may be wound.
한편, 제1 레그의 제1 스위칭 소자는 오프, 제4 스위칭 소자는 온, 제7 스위칭 소자는 온인 경우, 제1 권선의 제1 상전압은 로우 레벨이고, 제4 권선의 제4 상전압은 로우 레벨일 수 있다.On the other hand, when the first switching element of the first leg is off, the fourth switching element is on, and the seventh switching element is on, the first phase voltage of the first winding is a low level, and the fourth phase voltage of the fourth winding is It may be a low level.
한편, 제1 레그의 제1 스위칭 소자는 온, 제4 스위칭 소자는 오프, 제7 스위칭 소자는 온인 경우, 제1 권선의 제1 상전압은 하이 레벨이고, 제4 권선의 제4 상전압은 로우 레벨일 수 있다.On the other hand, when the first switching element of the first leg is on, the fourth switching element is off, and the seventh switching element is on, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is It may be a low level.
한편, 제1 레그의 제1 스위칭 소자는 온, 제4 스위칭 소자는 온, 제7 스위칭 소자는 오프인 경우, 제1 권선의 제1 상전압은 하이 레벨이고, 제4 권선의 제4 상전압은 하이 레벨일 수 있다.On the other hand, when the first switching element of the first leg is on, the fourth switching element is on, and the seventh switching element is off, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is may be a high level.
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 입력 교류 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기와, 제1 비교기로부터의 제1 비교 신호와, 제2 비교기로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기와, 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기와, 제2 비교 신호를 반전시키는 제2 반전기를 포함할 수 있다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter control unit for controlling the inverter, the inverter control unit, based on the input AC voltage, the DC offset, and the reference voltage waveform , a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal, and an exclusive OR based on the first comparison signal from the first comparator and the second comparison signal from the second comparator It may include a logic operator for performing an (exclusive OR) operation, a first inverter for inverting an output signal from the logic operator, and a second inverter for inverting the second comparison signal.
한편, 인버터 제어부는, 제1 비교 신호를, 제1 스위칭 소자에 출력하며, 제1 반전기로부터의 출력 신호를 제4 스위칭 소자에 출력하며, 제2 반전기로부터의 출력 신호를 제7 스위칭 소자에 출력할 수 있다.On the other hand, the inverter control unit outputs the first comparison signal to the first switching element, the output signal from the first inverter to the fourth switching element, and the output signal from the second inverter to the seventh switching element can be printed on
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 3상의 입력 전압을 6상의 전압으로 변환하는 6상 전압 변환기와, 6상의 전압에 기초하여 9 상의 스위칭 제어 신호를 출력하는 9상 스위칭 신호 출력부를 포함할 수 있다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter controller for controlling the inverter, wherein the inverter controller includes a six-phase voltage converter that converts an input voltage of three phases into a voltage of six phases. and a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase.
한편, 6상 전압 변환기는, 3상의 입력 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기를 포함하며, 9상 스위칭 신호 출력부는, 제1 비교기로부터의 제1 비교 신호와, 제2 비교기로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기와, 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기와, 제2 비교 신호를 반전시키는 제2 반전기를 포함할 수 있다.Meanwhile, the six-phase voltage converter includes a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal based on a 3-phase input voltage, a DC offset, and a reference voltage waveform, 9 The phase switching signal output unit includes a logic operator performing an exclusive OR operation based on a first comparison signal from the first comparator and a second comparison signal from the second comparator, and an output from the logic operator It may include a first inverter for inverting the signal, and a second inverter for inverting the second comparison signal.
한편, 9상 스위칭 신호 출력부는, 제1 비교 신호를, 제1 스위칭 소자 또는 제2 스위칭 소자 또는 제3 스위칭 소자에 출력하며, 제1 반전기로부터의 출력 신호를 제4 스위칭 소자 또는 제5 스위칭 소자 또는 제6 스위칭 소자에 출력하며, 제2 반전기로부터의 출력 신호를 제7 스위칭 소자 또는 제8 스위칭 소자 또는 제9 스위칭 소자에 출력할 수 있다.On the other hand, the 9-phase switching signal output unit outputs the first comparison signal to the first switching element, the second switching element, or the third switching element, and outputs the output signal from the first inverter to the fourth switching element or the fifth switching element It is output to the element or the sixth switching element, and the output signal from the second inverter may be output to the seventh switching element, the eighth switching element, or the ninth switching element.
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 27개의 패턴 신호에 기초하여, 인버터를 제어할 수 있다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter controller for controlling the inverter, and the inverter controller may control the inverter based on 27 pattern signals.
본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 모터와, 모터에 교류 전원을 출력하는 인버터를 포함하고, 모터는, 6상 모터를 포함하고, 인버터는, 서로 병렬 접속되는 3개의 레그를 포함하며, 각 레그는, 직렬 접속되는 3개의 스위칭 소자를 포함한다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.A motor driving apparatus and a vehicle having the same according to an embodiment of the present invention include a motor and an inverter outputting AC power to the motor, the motor includes a 6-phase motor, and the inverter is connected in parallel to each other It comprises three legs, each leg comprising three switching elements connected in series. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 인버터는, 제1 레그에 배치되는 제1 스위칭 소자, 제2 레그에 배치되는 제2 스위칭 소자, 제3 레그에 배치되는 제3 스위칭 소자, 제1 스위칭 소자의 일단에 일단이 접속되는 제4 스위칭 소자, 제2 스위칭 소자의 일단에 일단이 접속되는 제5 스위칭 소자, 제3 스위칭 소자의 일단에 일단이 접속되는 제6 스위칭 소자, 제4 스위칭 소자의 타단에 접속되는 제7 스위칭 소자, 제5 스위칭 소자의 타단에 접속되는 제8 스위칭 소자, 제6 스위칭 소자의 타단에 접속되는 제9 스위칭 소자를 포함할 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, the inverter, the first switching element arranged on the first leg, the second switching element arranged on the second leg, the third switching element arranged on the third leg, the first end is connected to one end of the first switching element 4 switching element, a fifth switching element having one end connected to one end of the second switching element, a sixth switching element having one end connected to one end of the third switching element, a seventh switching element connected to the other end of the fourth switching element, It may include an eighth switching element connected to the other end of the fifth switching element, and a ninth switching element connected to the other end of the sixth switching element. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 제1 스위칭 소자와 제4 스위칭 소자 사이의 제1 노드와, 제2 스위칭 소자와 제5 스위칭 소자 사이의 제2 노드와, 제3 스위칭 소자와 제6 스위칭 소자 사이의 제3 노드는, 모터의 제1 단자에 접속되며, 제4 스위칭 소자와 제7 스위칭 소자 사이의 제4 노드와, 제5 스위칭 소자와 제8 스위칭 소자 사이의 제5 노드와, 제6 스위칭 소자와 제9 스위칭 소자 사이의 제6 노드는, 모터의 제2 단자에 접속될 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, the first node between the first switching element and the fourth switching element, the second node between the second switching element and the fifth switching element, and the third node between the third switching element and the sixth switching element, connected to the first terminal of the motor, a fourth node between the fourth switching element and the seventh switching element, a fifth node between the fifth switching element and the eighth switching element, and a sixth switching element and a ninth switching element The sixth node between may be connected to the second terminal of the motor. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 모터는, 제1 스위칭 소자와 제4 스위칭 소자 사이의 제1 노드와, 모터의 중성점 사이에, 감기는 제1 권선과, 제2 스위칭 소자와 제5 스위칭 소자 사이의 제2 노드와, 모터의 중성점 사이에, 감기는 제2 권선과, 제3 스위칭 소자와 제6 스위칭 소자 사이의 제3 노드와, 모터의 중성점 사이에, 감기는 제3 권선과, 제4 스위칭 소자와 제7 스위칭 소자 사이의 제4 노드와, 모터의 중성점 사이에, 감기는 제4 권선과, 제5 스위칭 소자와 제8 스위칭 소자 사이의 제5 노드와, 모터의 중성점 사이에, 감기는 제5 권선과, 제6 스위칭 소자와 제9 스위칭 소자 사이의 제6 노드와, 모터의 중성점 사이에, 감기는 제6 권선을 포함할 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, the motor includes a first node between the first switching element and the fourth switching element, and between the neutral point of the motor, a first winding wound and a second node between the second switching element and the fifth switching element, Between the neutral point of the motor, a second winding wound, a third node between the third switching element and the sixth switching element, and between the neutral point of the motor, a third winding wound, a fourth switching element and a seventh switching element a fourth winding wound between the fourth node between the elements and the neutral point of the motor, a fifth node between the fifth switching element and the eighth switching element and a fifth winding wound between the neutral point of the motor; Between the sixth node between the sixth switching element and the ninth switching element and the neutral point of the motor, a sixth winding may be wound. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 제1 레그의 제1 스위칭 소자는 오프, 제4 스위칭 소자는 온, 제7 스위칭 소자는 온인 경우, 제1 권선의 제1 상전압은 로우 레벨이고, 제4 권선의 제4 상전압은 로우 레벨일 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, when the first switching element of the first leg is off, the fourth switching element is on, and the seventh switching element is on, the first phase voltage of the first winding is a low level, and the fourth phase voltage of the fourth winding is It may be a low level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 제1 레그의 제1 스위칭 소자는 온, 제4 스위칭 소자는 오프, 제7 스위칭 소자는 온인 경우, 제1 권선의 제1 상전압은 하이 레벨이고, 제4 권선의 제4 상전압은 로우 레벨일 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, when the first switching element of the first leg is on, the fourth switching element is off, and the seventh switching element is on, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is It may be a low level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 제1 레그의 제1 스위칭 소자는 온, 제4 스위칭 소자는 온, 제7 스위칭 소자는 오프인 경우, 제1 권선의 제1 상전압은 하이 레벨이고, 제4 권선의 제4 상전압은 하이 레벨일 수 있다. 이에 따라, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, when the first switching element of the first leg is on, the fourth switching element is on, and the seventh switching element is off, the first phase voltage of the first winding is a high level, and the fourth phase voltage of the fourth winding is may be a high level. Accordingly, it is possible to reduce the size of the inverter and the number of times the inverter is switched.
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 입력 교류 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기와, 제1 비교기로부터의 제1 비교 신호와, 제2 비교기로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기와, 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기와, 제2 비교 신호를 반전시키는 제2 반전기를 포함할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter control unit for controlling the inverter, the inverter control unit, based on the input AC voltage, the DC offset, and the reference voltage waveform , a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal, and an exclusive OR based on the first comparison signal from the first comparator and the second comparison signal from the second comparator It may include a logic operator for performing an (exclusive OR) operation, a first inverter for inverting an output signal from the logic operator, and a second inverter for inverting the second comparison signal. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
한편, 인버터 제어부는, 제1 비교 신호를, 제1 스위칭 소자에 출력하며, 제1 반전기로부터의 출력 신호를 제4 스위칭 소자에 출력하며, 제2 반전기로부터의 출력 신호를 제7 스위칭 소자에 출력할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the inverter control unit outputs the first comparison signal to the first switching element, the output signal from the first inverter to the fourth switching element, and the output signal from the second inverter to the seventh switching element can be printed on Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 3상의 입력 전압을 6상의 전압으로 변환하는 6상 전압 변환기와, 6상의 전압에 기초하여 9 상의 스위칭 제어 신호를 출력하는 9상 스위칭 신호 출력부를 포함할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter controller for controlling the inverter, wherein the inverter controller includes a six-phase voltage converter that converts an input voltage of three phases into a voltage of six phases. and a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
한편, 6상 전압 변환기는, 3상의 입력 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기를 포함하며, 9상 스위칭 신호 출력부는, 제1 비교기로부터의 제1 비교 신호와, 제2 비교기로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기와, 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기와, 제2 비교 신호를 반전시키는 제2 반전기를 포함할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.Meanwhile, the six-phase voltage converter includes a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal based on a 3-phase input voltage, a DC offset, and a reference voltage waveform, 9 The phase switching signal output unit includes a logic operator performing an exclusive OR operation based on a first comparison signal from the first comparator and a second comparison signal from the second comparator, and an output from the logic operator It may include a first inverter for inverting the signal, and a second inverter for inverting the second comparison signal. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
한편, 9상 스위칭 신호 출력부는, 제1 비교 신호를, 제1 스위칭 소자 또는 제2 스위칭 소자 또는 제3 스위칭 소자에 출력하며, 제1 반전기로부터의 출력 신호를 제4 스위칭 소자 또는 제5 스위칭 소자 또는 제6 스위칭 소자에 출력하며, 제2 반전기로부터의 출력 신호를 제7 스위칭 소자 또는 제8 스위칭 소자 또는 제9 스위칭 소자에 출력할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the 9-phase switching signal output unit outputs the first comparison signal to the first switching element, the second switching element, or the third switching element, and outputs the output signal from the first inverter to the fourth switching element or the fifth switching element It is output to the element or the sixth switching element, and the output signal from the second inverter may be output to the seventh switching element, the eighth switching element, or the ninth switching element. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
한편, 본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 인버터를 제어하는 인버터 제어부를 더 포함하고, 인버터 제어부는, 27개의 패턴 신호에 기초하여, 인버터를 제어할 수 있다. 이에 따라, 인버터 제어부의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the motor driving apparatus according to an embodiment of the present invention, and a vehicle having the same, further include an inverter controller for controlling the inverter, and the inverter controller may control the inverter based on 27 pattern signals. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit.
도 1은 본 발명의 일실시예에 따른 차량의 차체를 나타내는 개략적인 도면이다. 1 is a schematic diagram illustrating a body of a vehicle according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 모터 구동 시스템의 일예이다.2 is an example of a motor driving system according to an embodiment of the present invention.
도 3은 도 2의 모터 구동장치의 내부 블록도의 일예를 예시한다. 3 illustrates an example of an internal block diagram of the motor driving apparatus of FIG. 2 .
도 4는 도 3의 모터 구동장치의 내부 회로도의 일예이다.FIG. 4 is an example of an internal circuit diagram of the motor driving device of FIG. 3 .
도 5는 도 4의 인버터 제어부의 내부 블록도의 일예이다.5 is an example of an internal block diagram of the inverter control unit of FIG. 4 .
도 6은 본 발명과 관련된 모터 구동장치의 내부 회로도의 일예이다.6 is an example of an internal circuit diagram of a motor driving apparatus related to the present invention.
도 7은 본 발명의 실시예에 따른 모터 구동장치의 내부 회로도의 일예이다.7 is an example of an internal circuit diagram of a motor driving apparatus according to an embodiment of the present invention.
도 8 내지 도 11c는 도 6 또는 도 7의 설명에 참조되는 도면이다.8 to 11C are diagrams referred to in the description of FIG. 6 or FIG. 7 .
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.The suffixes “module” and “part” for the components used in the following description are given simply in consideration of the ease of writing the present specification, and do not impart a particularly important meaning or role by themselves. Accordingly, the terms “module” and “unit” may be used interchangeably.
도 1은 본 발명의 일실시예에 따른 차량의 차체를 나타내는 개략적인 도면이다. 1 is a schematic diagram illustrating a body of a vehicle according to an embodiment of the present invention.
도면을 참조하면, 본 발명의 일실시예에 따른 차량(100)은, 전원을 공급하는 배터리(205), 배터리(205)로부터 전원을 공급받는 모터 구동장치(200), 모터 구동장치(200)에 의해 구동되어 회전하는 모터(250), 모터(250)에 의해 회전되는 앞바퀴(150) 및 뒷바퀴(155), 노면의 진동이 차체에 전달되는 것을 차단하는 전륜현가장치(160) 및 후륜현가장치(165), 차체의 경사각을 검출하는 경사각 검출부(190)를 포함할 수 있다. 한편, 한편 모터(250)의 회전속도를 기어비에 기초하여, 변환하는 구동기어(미도시)가 추가적으로 구비될 수 있다.Referring to the drawings, a vehicle 100 according to an embodiment of the present invention includes a battery 205 for supplying power, a motor driving device 200 receiving power from the battery 205 , and a motor driving device 200 . The motor 250 driven and rotated by the motor 250, the front wheel 150 and the rear wheel 155 rotated by the motor 250, the front wheel suspension 160 and the rear wheel suspension for blocking vibration of the road surface from being transmitted to the vehicle body A 165, an inclination angle detection unit 190 for detecting an inclination angle of the vehicle body may be included. Meanwhile, a driving gear (not shown) for converting the rotation speed of the motor 250 based on the gear ratio may be additionally provided.
경사각 검출부(190)는, 차체의 경사각을 검출하며, 검출된 경사각은 후술하는 전자 제어부(410)에 입력된다. 경사각 검출부(190)는, 자이로 센서 또는 수평 게이지 센서 등으로 구현될 수 있다. The inclination angle detection unit 190 detects an inclination angle of the vehicle body, and the detected inclination angle is input to an electronic control unit 410 to be described later. The inclination angle detection unit 190 may be implemented as a gyro sensor or a horizontal gauge sensor.
한편, 도면에서는 경사각 검출부(190)가 배터리(205) 상에 배치되는 것으로 도시하나 이에 한정되지 않으며, 앞바퀴(150), 뒷바퀴(155) 또는 앞바퀴(150)와 뒷바퀴(155) 모두에 배치될 수 있다. Meanwhile, in the drawings, the inclination angle detection unit 190 is illustrated as being disposed on the battery 205 , but is not limited thereto, and may be disposed on the front wheel 150 , the rear wheel 155 , or both the front wheel 150 and the rear wheel 155 . there is.
배터리(205)는 모터 구동장치(200)에 전원을 공급한다. 특히, 모터 구동장치(200) 내의 커패시터(C)에 직류 전원을 공급한다.The battery 205 supplies power to the motor driving device 200 . In particular, DC power is supplied to the capacitor C in the motor driving device 200 .
이러한 배터리(205)는, 복수개의 단위셀의 집합으로 형성될 수 있다. 복수개의 단위셀은 일정한 전압을 유지하기 위해 배터리 관리 시스템(Battery Management System, BMS)에 의해 관리될 수 있으며, 배터리 관리 시스템에 의해 일정한 전압을 방출할 수 있다. The battery 205 may be formed as a set of a plurality of unit cells. The plurality of unit cells may be managed by a battery management system (BMS) to maintain a constant voltage, and may emit a constant voltage by the battery management system.
예를 들어, 배터리 관리 시스템은, 배터리(205)의 전압(Vbat)을 검출하고, 이를 전자 제어부(미도시), 또는 모터 구동장치(200) 내의 인버터 제어부(250)에 전달할 수 있으며, 배터리 전압(Vbat)이 하한치 이하로 하강하는 경우, 모터 구동장치(200) 내의 커패시터(C)에 저장된 직류 전원을 배터리로 공급할 수 있다. 또한, 배터리 전압(Vbat)이 상한치 이상으로 상승하는 경우, 모터 구동장치(200) 내의 커패시터(C)에 직류 전원을 공급할 수도 있다.For example, the battery management system may detect the voltage Vbat of the battery 205 and transmit it to an electronic control unit (not shown) or the inverter control unit 250 in the motor driving device 200, and the battery voltage When (Vbat) falls below the lower limit, the DC power stored in the capacitor C in the motor driving apparatus 200 may be supplied to the battery. Also, when the battery voltage Vbat rises above the upper limit, DC power may be supplied to the capacitor C in the motor driving apparatus 200 .
배터리(205)는 충전 및 방전이 가능한 2차 전지로 구성됨이 바람직하나, 이에 한정되는 것은 아니다.The battery 205 is preferably composed of a rechargeable battery capable of charging and discharging, but is not limited thereto.
모터 구동장치(200)는 배터리(205)로부터 전원입력케이블(120)에 의해서 직류전원을 공급받는다. 모터 구동장치(200)는 배터리(205)로부터 받는 직류전원을 교류전원으로 변환하여 모터(250)에 공급한다. The motor driving device 200 receives DC power from the battery 205 through the power input cable 120 . The motor driving device 200 converts DC power received from the battery 205 into AC power and supplies it to the motor 250 .
한편, 모터(250)가 삼상 모터인 경우, 변환되는 교류 전원은 삼상 교류전원이 바람직하다. 모터 구동장치(200)는 모터 구동장치(200)에 구비된 삼상 출력케이블(125)을 통하여 모터(250)에 삼상 교류전원을 공급한다. On the other hand, when the motor 250 is a three-phase motor, the converted AC power is preferably a three-phase AC power. The motor driving device 200 supplies three-phase AC power to the motor 250 through the three-phase output cable 125 provided in the motor driving device 200 .
한편, 모터(250)가 6상 모터인 경우, 변환되는 교류 전원은 6상 교류전원이 바람직하다. 모터 구동장치(200)는 모터 구동장치(200)에 구비된 6상 출력케이블(125)을 통하여 모터(250)에 6상 교류전원을 공급할 수 있다. On the other hand, when the motor 250 is a 6-phase motor, the converted AC power is preferably a 6-phase AC power. The motor driving device 200 may supply 6-phase AC power to the motor 250 through the 6-phase output cable 125 provided in the motor driving device 200 .
도 1의 모터 구동장치(200)는 세 개의 케이블로 구성된 삼상 출력케이블(125)을 도시하였으나, 이에 한정되지 않으며, 다상 모터의 상의 개수에 따라, 해당하는 개수의 케이블이 구비될 수 있다. 또는 단일의 케이블 내에 복수의 케이블이 구비될 수 있다. Although the motor driving apparatus 200 of FIG. 1 illustrates the three-phase output cable 125 composed of three cables, the present invention is not limited thereto, and a corresponding number of cables may be provided according to the number of phases of the polyphase motor. Alternatively, a plurality of cables may be provided in a single cable.
한편, 본 발명의 실시예에 따른 모터 구동장치(200)에 대해서는 도 3 이하에서 후술한다. Meanwhile, the motor driving apparatus 200 according to the embodiment of the present invention will be described later with reference to FIG. 3 .
모터(250)는, 회전하지 않고 고정되는 고정자(130)와, 회전하는 회전자(135)를 포함한다. 모터(250)는 입력케이블(140)이 구비되어 모터 구동장치(200)에서 공급되는 교류 전원을 인가받는다. 모터(250)는, 예를 들어, 다상 모터일 수 있으며, 각상의 고정자의 코일에 전압 가변/주파수 가변의 각상 교류 전원이 인가되는 경우, 인가되는 주파수에 기초하여, 회전자의 회전 속도가 가변하게 된다. The motor 250 includes a stator 130 that is fixed without rotating and a rotor 135 that rotates. The motor 250 is provided with an input cable 140 to receive AC power supplied from the motor driving device 200 . The motor 250 may be, for example, a polyphase motor, and when each phase AC power of variable voltage/frequency variable is applied to the coils of the stator of each phase, the rotational speed of the rotor is variable based on the applied frequency will do
모터(250)는, 유도 모터(induction motor), BLDC 모터(blushless DC motor), 릴럭턴스 모터(reluctance motor) 등 다양한 형태가 가능하다. The motor 250 may have various forms, such as an induction motor, a blushless DC motor, and a reluctance motor.
한편, 모터(250)의 일측에는 구동기어(미도시)가 구비될 수 있다. 구동기어는 모터(250)의 회전에너지를 기어비에 기초하여, 변환시킨다. 구동기어에서 출력되는 회전에너지는 앞바퀴(150) 및/또는 뒷바퀴(155)에 전달되어 차량(100)이 움직이도록 한다.Meanwhile, a driving gear (not shown) may be provided on one side of the motor 250 . The driving gear converts the rotational energy of the motor 250 based on the gear ratio. The rotational energy output from the driving gear is transmitted to the front wheel 150 and/or the rear wheel 155 so that the vehicle 100 moves.
전륜현가장치(160) 및 후륜현가장치(165)는 차체에 대하여 각각 앞바퀴(150) 및 뒷바퀴(155)를 지지한다. 전륜현가장치(160) 및 후륜현가장치(165)의 상하방향은 스프링 또는 감쇠기구에 의해 지지하여, 노면의 진동이 차체에 닿지 않도록 한다.The front wheel suspension 160 and the rear wheel suspension 165 support the front wheel 150 and the rear wheel 155 with respect to the vehicle body, respectively. The vertical direction of the front wheel suspension 160 and the rear wheel suspension 165 is supported by a spring or a damping mechanism to prevent vibration of the road surface from contacting the vehicle body.
앞바퀴(150)에는 조향장치(미도시)가 더 구비될 수 있다. 조향장치는 차량(100)을 운전자가 의도하는 방향으로 주행시키기 위하여 앞바퀴(150)의 방향을 조절하는 장치이다.A steering device (not shown) may be further provided on the front wheel 150 . The steering device is a device for controlling the direction of the front wheel 150 in order to drive the vehicle 100 in a direction intended by the driver.
한편, 도면에서는 도시하지 않았지만, 차량(100)은, 차량 전반의 전자 장치들의 제어를 위한 전자 제어부(Electronic Controller)를 더 포함할 수 있다. 전자 제어부(미도시)는, 각 장치들이 동작, 표시 등을 할 수 있도록 제어한다. 또한, 상술한 배터리 관리 시스템을 제어할 수도 있다. Meanwhile, although not shown in the drawings, the vehicle 100 may further include an electronic controller for controlling electronic devices throughout the vehicle. The electronic control unit (not shown) controls each device to operate, display, and the like. In addition, the above-described battery management system may be controlled.
또한, 전자 제어부(미도시)는, 차량(100)의 경사각 검출하는 경사각 검출부(미도시), 차량(100)의 속도를 검출하는 속도 검출부(미도시), 브레이크 페달의 동작에 따른 브레이크 검출부(미도시), 악셀 페달의 동작에 따른 악셀 검출부(미도시) 등으로부터의 검출 신호에 기초하여, 다양한 운전 모드(주행 모드, 후진 모드, 중립 모드, 및 주차 모드 등)에 따른 운전 지령치를 생성할 수 있다. 이때의 운전 지령치는, 예를 들어, 토크 지령치 또는 토크 지령치일 수 있다. In addition, the electronic control unit (not shown) includes an inclination angle detecting unit (not shown) for detecting the inclination angle of the vehicle 100 , a speed detecting unit detecting the speed of the vehicle 100 (not shown), and a brake detecting unit according to the operation of the brake pedal ( (not shown), a driving command value according to various driving modes (driving mode, reverse mode, neutral mode, and parking mode, etc.) can In this case, the driving command value may be, for example, a torque command value or a torque command value.
한편, 본 발명의 실시예에 따른 차량(100)은, 배터리 및 모터를 이용한 순수 전기 차량은, 물론, 엔진을 사용하면서, 배터리 및 모터를 이용하는 하이브리드 전기 차량을 포함하는 개념일 수 있다. Meanwhile, the vehicle 100 according to the embodiment of the present invention may be a concept including a pure electric vehicle using a battery and a motor, of course, a hybrid electric vehicle using a battery and a motor while using an engine.
이때, 하이브리드 전기 차량은, 배터리와 엔진 중 적어도 어느 하나를 선택 가능한 절환 수단, 및 변속기를 더 구비할 수도 있다. In this case, the hybrid electric vehicle may further include a switching means for selecting at least one of a battery and an engine, and a transmission.
한편, 하이브리드 전기 차량은, 엔진에서 출력되는 기계 에너지를 전기 에너지로 변환하여 모터를 구동하는 직렬 방식과, 엔진에서 출력되는 기계 에너지와 배터리에서의 전기 에너지를 동시에 이용하는 병렬 방식과, 이를 혼합하는 직병렬 방식으로 나뉠 수 있다.On the other hand, hybrid electric vehicles include a series method for driving a motor by converting mechanical energy output from an engine into electrical energy, a parallel method using mechanical energy output from the engine and electrical energy from a battery at the same time, and a direct method for mixing them. can be divided in a parallel fashion.
도 2는 본 발명의 일실시예에 따른 모터 구동 시스템의 일예이다.2 is an example of a motor driving system according to an embodiment of the present invention.
도면을 참조하면, 본 발명의 일실시예 따른 모터 구동 시스템(10)은, 차량(100)과, 서버(500)를 구비할 수 있다.Referring to the drawings, the motor driving system 10 according to an embodiment of the present invention may include a vehicle 100 and a server 500 .
여기서, 서버(500)는, 모터 구동장치(200) 또는 차량(100)의 제조사가 운영하는 서버이거나, 모터 구동장치(200) 또는 차량(100)의 운전자의 이동 단말기 등에 대응할 수 있다.Here, the server 500 may be a server operated by the manufacturer of the motor driving device 200 or the vehicle 100 , or may correspond to a mobile terminal of the driver of the motor driving device 200 or the vehicle 100 .
한편, 차량(100)은, 입력부(120), 통신부(130), 메모리(140), 제어부(170), 모터 구동부(200)를 구비할 수 있다.Meanwhile, the vehicle 100 may include an input unit 120 , a communication unit 130 , a memory 140 , a control unit 170 , and a motor driving unit 200 .
입력부(120)는, 조작 버튼, 키 등을 구비하며, 차량(100)의 전원 온/오프, 동작 설정 등을 위한 입력 신호를 출력할 수 있다.The input unit 120 includes a manipulation button, a key, and the like, and may output an input signal for turning on/off the power of the vehicle 100 , setting an operation, and the like.
통신부(130)는, 주변 기기, 예를 들어, 서버(500)와, 유선 또는 무선으로 데이터를 교환하거나, 원격지의 서버 등과, 무선으로 데이터를 교환할 수 있다. 예를 들어, 4G 또는 5G 등의 이동 통신, 적외선(IR) 통신, RF 통신, 블루투스 통신, 지그비 통신, WiFi 통신 등을 수행할 수 있다.The communication unit 130 may exchange data with a peripheral device, for example, the server 500 by wire or wirelessly, or wirelessly exchange data with a remote server or the like. For example, mobile communication such as 4G or 5G, infrared (IR) communication, RF communication, Bluetooth communication, Zigbee communication, WiFi communication, etc. may be performed.
한편, 차량(100)의 메모리(140)는, 차량(100)의 동작에 필요한 데이터를 저장할 수 있다. 예를 들어, 구동부(200)의 동작시의 동작 시간, 동작 모드 등에 대한 데이터를 저장할 수 있다.Meanwhile, the memory 140 of the vehicle 100 may store data necessary for the operation of the vehicle 100 . For example, data about an operation time, an operation mode, and the like when the driving unit 200 is operated may be stored.
또한, 차량(100)의 메모리(140)는, 차량의 소비 전력 정보, 추천 운전 정보, 현재 운전 정보, 관리 정보를 포함하는 관리 데이터를 저장할 수 있다. Also, the memory 140 of the vehicle 100 may store management data including vehicle power consumption information, recommended driving information, current driving information, and management information.
또한, 차량(100)의 메모리(140)는, 차량의 동작 정보, 운전 정보, 에러 정보를 포함하는 진단 데이터를 저장할 수 있다. Also, the memory 140 of the vehicle 100 may store diagnostic data including vehicle operation information, driving information, and error information.
제어부(170)는, 차량(100) 내의 각 유닛을 제어할 수 있다. 예를 들어, 제어부(170)는, 입력부(120), 통신부(130), 메모리(140), 구동부(200) 등을 제어할 수 있다.The controller 170 may control each unit in the vehicle 100 . For example, the control unit 170 may control the input unit 120 , the communication unit 130 , the memory 140 , the driving unit 200 , and the like.
모터 구동부(200)는, 모터(250)를 구동하기 위해, 구동부로서, 모터 구동장치라 명명될 수도 있다.The motor driving unit 200 may be referred to as a motor driving device as a driving unit to drive the motor 250 .
본 발명의 실시예에 따른 모터 구동장치(200)는, 복수의 스위칭 소자를 구비하고, 모터(250)에 교류 전원을 출력하는 인버터(420)와, 모터(250)에 흐르는 출력 전류(io)를 검출하는 출력 전류 검출부(E)와, 출력 전류 검출부(E)에서 검출되는 출력 전류(io)에 기초한 전류 정보(id,iq)와 토크 지령치(T*)에 기초하여, 인버터(420)에 스위칭 제어 신호를 출력하는 인버터 제어부(430)를 포함할 수 있다. The motor driving apparatus 200 according to the embodiment of the present invention includes a plurality of switching elements, an inverter 420 for outputting AC power to the motor 250 , and an output current io flowing through the motor 250 . Based on the output current detection unit E for detecting It may include an inverter control unit 430 that outputs a switching control signal.
한편, 출력 전류(io)에 기초한 전류 정보(id,iq)와 토크 지령치(T*)는, 외부의 서버(500)로 전송될 수 있으며, 서버(500)로부터 전류 지령치(i*d,i*q)를 수신할 수도 있다. 그리고, 통신부(130)로부터 수신되는 전류 지령치에 기초하여, 인버터 제어부(430)는, 인버터(420)에 스위칭 제어 신호를 출력할 수도 있다.On the other hand, the current information (id,iq) and the torque command value (T * ) based on the output current (io) may be transmitted to the external server 500, and the current command value (i * d,i) from the server 500 * q) may be received. Also, based on the current command value received from the communication unit 130 , the inverter control unit 430 may output a switching control signal to the inverter 420 .
이에 따라, 서버(500)에서 실시간으로 연산된 최대 토크에 대응하는 전류 지령치에 기초하여 모터(250)를 구동할 수 있게 된다. 따라서, 모터(250)의 최대 토크 구동이 가능하게 된다.Accordingly, it is possible to drive the motor 250 based on the current command value corresponding to the maximum torque calculated in real time by the server 500 . Accordingly, the maximum torque driving of the motor 250 is possible.
한편, 본 발명의 실시예에 따른 모터 구동장치(200) 내의 통신부(130)는, 전류 정보(id,iq), 토크 지령치(T*), 및 검출된 dc단 전압(Vdc)에 관한 전압 정보를 서버(500)로 전송할 수 있다. 이에 따라, 다양한 조건 하의 모터(250)의 최대 토크 구동이 가능하게 된다.On the other hand, the communication unit 130 in the motor driving device 200 according to the embodiment of the present invention, current information (id, iq), the torque command value (T * ), and voltage information related to the detected dc terminal voltage (Vdc) may be transmitted to the server 500 . Accordingly, it is possible to drive the maximum torque of the motor 250 under various conditions.
한편, 모터 구동장치(200)의 상세한 동작에 대해서는, 도 3을 참조하여 기술한다.Meanwhile, a detailed operation of the motor driving device 200 will be described with reference to FIG. 3 .
도 3은 도 2의 모터 구동장치의 내부 블록도의 일예를 예시한다. 3 illustrates an example of an internal block diagram of the motor driving apparatus of FIG. 2 .
도면을 참조하면, 본 발명의 실시예에 따른 모터 구동장치(200)는, 모터(250)를 구동하기 위한 구동장치로서, 복수의 스위칭 소자(Sa~Sc,S'a~S'c)를 구비하고, 모터(250)에 교류 전원을 출력하는 인버터(420)와, 인버터(420)를 제어하는 인버터 제어부(430)를 포함할 수 있다, 또한, 인버터 제어부(430)에 각종 저장된 데이터를 제공하는 메모리(270)를 포함할 수 있다.Referring to the drawings, the motor driving device 200 according to the embodiment of the present invention is a driving device for driving the motor 250 and includes a plurality of switching elements Sa to Sc and S'a to S'c. and may include an inverter 420 that outputs AC power to the motor 250 and an inverter control unit 430 that controls the inverter 420, and provides various stored data to the inverter control unit 430 It may include a memory 270 that does.
한편, 본 발명의 실시예에 따른 모터 구동장치(200)는, 인버터(420)의 입력 단인 dc단 전압(Vdc)을 저장하는 커패시터(C)와, dc단 전압(Vdc)을 검출하는 dc단 전압 검출부(B), 모터(250)에 흐르는 출력 전류를 검출하는 출력 전류 검출부(E)를 더 구비할 수 있다.On the other hand, the motor driving apparatus 200 according to the embodiment of the present invention, the capacitor C for storing the dc terminal voltage (Vdc) that is the input terminal of the inverter 420, and the dc terminal for detecting the dc terminal voltage (Vdc) It may further include a voltage detecting unit (B) and an output current detecting unit (E) detecting an output current flowing through the motor 250 .
본 발명의 실시예에 따른, 모터(250)는, 인버터(420)에 의해 구동되는 3상 모터일 수 있다.According to an embodiment of the present invention, the motor 250 may be a three-phase motor driven by the inverter 420 .
한편, 인버터 제어부(430)는, 연산된 최대 토크에 대응하는 전류 지령치(i*d,i*q)에 기초하여, 인버터(420)에 스위칭 제어 신호(Sic)를 출력할 수 있다.따라서, 모터(250)의 최대 토크 구동이 가능하게 된다.Meanwhile, the inverter control unit 430 may output the switching control signal Sic to the inverter 420 based on the current command value (i * d, i * q) corresponding to the calculated maximum torque. Maximum torque driving of the motor 250 is enabled.
본 발명의 실시예에 따른 인버터 제어부(430)는, 실시간으로 전류 정보(id,iq)와 토크 지령치(T*)를 연산하고, 토크 지령치(T*)에 기초하여, 전류 지령치(i*d,i*q)를 연산하고, 전류 지령치(i*d,i*q)를 이용하여, 모터(250)를 구동한다. 이에 따라 고효율 구동을 위한 정확성이 향상되게 된다. The inverter control unit 430 according to an embodiment of the present invention calculates the current information (id,iq) and the torque command value (T * ) in real time, and based on the torque command value (T * ), the current command value (i * d) , i * q) is calculated, and the motor 250 is driven using the current command value (i * d, i * q). Accordingly, the accuracy for high-efficiency driving is improved.
한편, 모터 구동장치(200)는, 인버터(420)의 입력 단인 dc단 전압(Vdc)을 저장하는 커패시터(C)와, dc단 전압(Vdc)을 검출하는 dc단 전압 검출부(B)를 더 포함할 수 있다.On the other hand, the motor driving device 200, the capacitor (C) for storing the dc terminal voltage (Vdc) that is the input terminal of the inverter 420, and the dc terminal voltage detection unit (B) for detecting the dc terminal voltage (Vdc) further may include
인버터 제어부(430)는, 전류 정보(id,iq), 토크 지령치(T*), 및 검출된 dc단 전압(Vdc)에 기초하여, 전류 지령치(i*d,i*q)를 연산하고, 전류 지령치(i*d,i*q)를 이용하여, 모터(250)를 구동한다. 이에 따라 고효율 구동을 위한 정확성이 향상되게 된다. The inverter control unit 430 calculates the current command value (i * d, i * q) based on the current information (id,iq), the torque command value (T * ), and the detected dc terminal voltage (Vdc), The motor 250 is driven using the current command value (i * d, i * q). Accordingly, the accuracy for high-efficiency driving is improved.
도 4는 도 3의 모터 구동장치의 내부 회로도의 일예이다.FIG. 4 is an example of an internal circuit diagram of the motor driving device of FIG. 3 .
도면을 참조하여 설명하면, 본 발명의 실시예에 따른 모터 구동장치(200)는, 인버터(420), 인버터 제어부(430), 출력전류 검출부(E), dc단 전압 검출부(Vdc), 위치 검출 센서(105)를 포함할 수 있다.Referring to the drawings, the motor driving apparatus 200 according to an embodiment of the present invention includes an inverter 420 , an inverter control unit 430 , an output current detection unit E, a dc terminal voltage detection unit Vdc, and a position detection unit. It may include a sensor 105 .
한편, 모터 구동장치(200)는, 전력을 변환하여, 모터를 구동하므로, 전력변화장치라 명명할 수도 있다.Meanwhile, the motor driving device 200 converts electric power and drives the motor, so it may be referred to as a power change device.
dc단 커패시터(C)는, dc단(a-b단)에 입력되는 전원을 저장한다. 도면에서는, dc단 커패시터(C)로 하나의 소자를 예시하나, 복수개가 구비되어, 소자 안정성을 확보할 수도 있다. The dc terminal capacitor C stores power input to the dc terminal (a-b terminals). In the drawing, one element is exemplified as a dc terminal capacitor (C), but a plurality of elements may be provided to ensure element stability.
한편, dc단 커패시터(C)에 공급되는 입력 전원은, 배터리(205)에 저장된 전원 또는 컨버터(미도시)에서 레벨 변환된 전원일 수 있다.Meanwhile, the input power supplied to the dc terminal capacitor C may be power stored in the battery 205 or power level-converted in a converter (not shown).
한편, dc단 커패시터(C) 양단은, 직류 전원이 저장되므로, 이를 dc 단 또는 dc 링크단이라 명명할 수도 있다. On the other hand, since DC power is stored at both ends of the dc terminal capacitor C, this may be referred to as a dc terminal or a dc link terminal.
dc 단 전압 검출부(B)는 dc단 커패시터(C)의 양단인 dc 단 전압(Vdc)을 검출할 수 있다. 이를 위하여, dc 단 전압 검출부(B)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 dc 단 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 입력될 수 있다.The dc terminal voltage detector B may detect the dc terminal voltage Vdc that is both ends of the dc terminal capacitor C. To this end, the dc terminal voltage detection unit B may include a resistance element, an amplifier, and the like. The detected dc terminal voltage Vdc may be input to the inverter controller 430 as a discrete signal in the form of a pulse.
인버터(420)는, 서로 병렬 접속되는 3개의 레그를 포함하며, 각 레그는, 직렬 접속되는 3개의 스위칭 소자를 포함한다.The inverter 420 includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
구체적으로, 인버터(420)는, 제1 레그에 배치되는 제1 스위칭 소자(S1), 제2 레그에 배치되는 제2 스위칭 소자(S2), 제3 레그에 배치되는 제3 스위칭 소자(S3), 제1 스위칭 소자(S1)의 일단(n14)에 일단이 접속되는 제4 스위칭 소자(S4), 제2 스위칭 소자(S2)의 일단(n25)에 일단이 접속되는 제5 스위칭 소자(S5), 제3 스위칭 소자(S3)의 일단(n36)에 일단이 접속되는 제6 스위칭 소자(S6), 제4 스위칭 소자(S4)의 타단에 접속되는 제7 스위칭 소자(S7), 제5 스위칭 소자(S5)의 타단에 접속되는 제8 스위칭 소자(S8), 제6 스위칭 소자(S6)의 타단에 접속되는 제9 스위칭 소자(S9)를 포함할 수 있다.Specifically, the inverter 420 includes a first switching device S1 disposed on a first leg, a second switching device S2 disposed on a second leg, and a third switching device S3 disposed on a third leg. , a fourth switching element S4 having one end connected to one end n14 of the first switching element S1 , and a fifth switching element S5 having one end connected to one end n25 of the second switching element S2 , a sixth switching element S6 having one end connected to one end n36 of the third switching element S3, a seventh switching element S7 connected to the other end of the fourth switching element S4, and a fifth switching element An eighth switching element S8 connected to the other end of S5 and a ninth switching element S9 connected to the other end of the sixth switching element S6 may be included.
제1 레그에는, 제1 스위칭 소자(S1), 제4 스위칭 소자(S4), 제7 스위칭 소자(S7)가 배치되며, 제2 레그에는 제2 스위칭 소자(S2), 제5 스위칭 소자(S5), 제8 스위칭 소자(S8)가 배치되며, 제3 레그에는 제3 스위칭 소자(S3), 제6 스위칭 소자(S6), 제9 스위칭 소자(S9)가 배치될 수 있다.A first switching element (S1), a fourth switching element (S4), and a seventh switching element (S7) are disposed on the first leg, and the second switching element (S2) and the fifth switching element (S5) are disposed on the second leg ), an eighth switching element S8 is disposed, and a third switching device S3 , a sixth switching device S6 , and a ninth switching device S9 may be disposed on the third leg.
한편, 인버터(420)는, 복수개의 인버터 스위칭 소자(S1~S9)를 구비하고, 스위칭 소자(S1~S9)의 온/오프 동작에 의해 직류 전원(Vdc)을 소정 주파수의 6상 교류 전원(Va,Vb,Vc,Vd,Ve,Vf)으로 변환하여, 6상 동기 모터(250)에 출력할 수 있다. On the other hand, the inverter 420 is provided with a plurality of inverter switching elements (S1 to S9), the DC power supply (Vdc) by the on / off operation of the switching elements (S1 to S9) a six-phase AC power supply of a predetermined frequency ( Va, Vb, Vc, Vd, Ve, Vf) can be converted and output to the 6-phase synchronous motor 250 .
인버터(420) 내의 스위칭 소자들은 인버터 제어부(430)로부터의 인버터 스위칭 제어신호(Sic)에 기초하여 각 스위칭 소자들의 온/오프 동작을 하게 된다. 이에 의해, 소정 주파수를 갖는 6상 교류 전원이 6상 동기 모터(250)에 출력되게 된다. The switching elements in the inverter 420 turn on/off the respective switching elements based on the inverter switching control signal Sic from the inverter controller 430 . Accordingly, the six-phase AC power having a predetermined frequency is output to the six-phase synchronous motor 250 .
인버터 제어부(430)는, 센서리스 방식을 기반으로, 인버터(420)의 스위칭 동작을 제어할 수 있다. The inverter controller 430 may control the switching operation of the inverter 420 based on the sensorless method.
이를 위해, 인버터 제어부(430)는, 출력전류 검출부(E)에서 검출되는 출력전류(io)를 입력받을 수 있다.To this end, the inverter control unit 430 may receive the output current io detected by the output current detection unit E as an input.
인버터 제어부(430)는, 인버터(420)의 스위칭 동작을 제어하기 위해, 인버터 스위칭 제어신호(Sic)를 인버터(420)의 각 게이트 단자에 출력할 수 있다. 이에 따라, 인버터 스위칭 제어신호(Sic)는, 게이트 구동 신호라 명명할 수도 있다.The inverter controller 430 may output the inverter switching control signal Sic to each gate terminal of the inverter 420 in order to control the switching operation of the inverter 420 . Accordingly, the inverter switching control signal Sic may be referred to as a gate driving signal.
한편, 인버터 스위칭 제어신호(Sic)는 펄스폭 변조 방식(PWM)의 스위칭 제어신호로서, 출력전류 검출부(E)에서 검출되는 출력 전류(io)를 기초로 생성되어 출력된다. Meanwhile, the inverter switching control signal Sic is a pulse width modulation (PWM) switching control signal, and is generated and output based on the output current io detected by the output current detection unit E. FIG.
출력전류 검출부(E)는, 인버터(420)와 6상 모터(250) 사이에 흐르는 출력전류(io)를 검출한다. 즉, 모터(250)에 흐르는 전류를 검출할 수 있다. The output current detection unit E detects an output current io flowing between the inverter 420 and the six-phase motor 250 . That is, the current flowing through the motor 250 may be detected.
출력전류 검출부(E)는 각 상의 출력 전류(ia,ib,ic,id,ie,if)를 모두 검출할 수 있으며, 또는 6상 평형을 이용하여 일부 상의 출력 전류를 검출할 수도 있다.The output current detection unit E may detect all of the output currents ia, ib, ic, id, ie, if of each phase, or may detect the output currents of some phases using six-phase balance.
출력전류 검출부(E)는 인버터(420)와 모터(250) 사이에 위치할 수 있으며, 전류 검출을 위해, CT(current trnasformer), 션트 저항 등이 사용될 수 있다. The output current detection unit E may be located between the inverter 420 and the motor 250 , and a current transformer (CT), a shunt resistor, or the like may be used to detect the current.
검출된 출력전류(io)는, 펄스 형태의 이산 신호(discrete signal)로서, 인버터 제어부(430)에 인가될 수 있으며, 검출된 출력전류(io)에 기초하여 스위칭 제어신호(Sic)가 생성된다. The detected output current io may be applied to the inverter controller 430 as a discrete signal in the form of a pulse, and a switching control signal Sic is generated based on the detected output current io .
한편, 6상 모터(250)는, 고정자(stator)와 회전자(rotar)를 구비하며, 각상(a, b, c, d, e, f 상)의 고정자의 코일에 소정 주파수의 각상 교류 전원이 인가되어, 회전자가 회전을 하게 된다. On the other hand, the six-phase motor 250 includes a stator and a rotor, and each phase AC power supply of a predetermined frequency to the coil of the stator of each phase (a, b, c, d, e, f phase) This is applied, and the rotor rotates.
이러한 모터(250)는, 예를 들어, 표면 부착형 영구자석 동기전동기(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기전동기(Interior Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 전동기(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다. 이 중 SMPMSM과 IPMSM은 영구자석을 적용한 동기 전동기(Permanent Magnet Synchronous Motor; PMSM)이며, Synrm은 영구자석이 없는 것이 특징이다.The motor 250 includes, for example, a Surface-Mounted Permanent-Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and a synchronous relay. It may include a Synchronous Reluctance Motor (Synrm) and the like. Among them, SMPMSM and IPMSM are Permanent Magnet Synchronous Motors (PMSM) to which permanent magnets are applied, and Synrm is characterized by not having permanent magnets.
한편, 본 발명에서는 모터(250)가, 6상 모터이며, 특히, 현재 중첩 가변 플럭스 릴럭턴스 모터(Current superimposition variable flux reluctance motor; CSVFM)를 중심으로 기술한다.Meanwhile, in the present invention, the motor 250 is a six-phase motor, and in particular, a current superimposition variable flux reluctance motor (CSVFM) will be mainly described.
도 5는 도 4의 인버터 제어부의 내부 블록도의 일예이다.5 is an example of an internal block diagram of the inverter control unit of FIG. 4 .
도면을 참조하면, 도 5의 인버터 제어부(430)는, 출력 전류 검출부(320)로부터, 검출되는 출력 전류(io)를 입력받고, 위치 검출 센서(105)로부터 모터(250)의 회전자 위치 정보(θ)를 수신할 수 있다.Referring to the drawings, the inverter control unit 430 of FIG. 5 receives the detected output current io from the output current detection unit 320 , and receives the rotor position information of the motor 250 from the position detection sensor 105 . (θ) can be received.
위치 검출 센서(105)는, 모터(250)의 회전자의 자극 위치(θ)를 검출할 수 있다. 즉, 위치 검출 센서(105)는, 모터(250)의 회전자의 위치를 검출할 수 있다.The position detection sensor 105 may detect the magnetic pole position θ of the rotor of the motor 250 . That is, the position detection sensor 105 may detect the position of the rotor of the motor 250 .
이를 위해, 위치 검출 센서(105)는, 인코더(encoder)나 리졸버(resolver) 등을 포함할 수 있다. To this end, the position detection sensor 105 may include an encoder or a resolver.
다음의 설명에서 사용 좌표계와 좌표축에 대해 여기에서 정의한다. The coordinate system and coordinate axes used in the following description are defined here.
αβ 좌표계는, 고정축인 α와 β 축을 축으로 하는 이차원 고정 좌표계이다. α 및 β 축은 서로 직교하며, β 축은 α 축으로부터 전기각 90˚ 만큼 앞선다. The αβ coordinate system is a two-dimensional fixed coordinate system having α and β axes as fixed axes as axes. The α and β axes are orthogonal to each other, and the β axis leads from the α axis by an electrical angle of 90°.
dq 좌표계는 회전축인 d와 q축 축으로 하는 이차원 회전 좌표계이다. 모터(250)의 영구 자석이 만드는 자속의 회전 속도와 같은 속도로 회전하는 회전 좌표계에서 영구 자석이 만드는 자속의 방향에 따른 축이 d축이며, d축에서 전기각 90˚ 위상이 앞선 축이 q축이다. The dq coordinate system is a two-dimensional rotational coordinate system with d and q axes as the rotation axes. In the rotational coordinate system that rotates at the same speed as the rotational speed of the magnetic flux created by the permanent magnet of the motor 250, the axis according to the direction of the magnetic flux created by the permanent magnet is the d-axis, and the axis with an electrical angle of 90˚ from the d-axis is q wet.
도 5를 참조하면, 인버터 제어부(430)는, 속도 연산부(320), 축변환부(310), 토크 연산부(325), 전류 지령 생성부(330), 전압 지령 생성부(340), 축변환부(350), 및 스위칭 제어신호 출력부(360)를 포함할 수 있다. Referring to FIG. 5 , the inverter control unit 430 includes a speed calculating unit 320 , a shaft converting unit 310 , a torque calculating unit 325 , a current command generating unit 330 , a voltage command generating unit 340 , and an axis converting unit. It may include a unit 350 and a switching control signal output unit 360 .
인버터 제어부(430) 내의 축변환부(310)는, 출력 전류 검출부(E)에서 검출된 삼상 출력 전류(ia,ib,ic,id,ie,if)를 입력받아, 정지좌표계의 2상 전류(iα,iβ)로 변환한다.The axis conversion unit 310 in the inverter control unit 430 receives the three-phase output current (ia, ib, ic, id, ie, if) detected by the output current detection unit E, and receives the two-phase current ( iα,iβ).
한편, 축변환부(310)는, 정지좌표계의 2상 전류(iα,iβ)를 회전좌표계의 2상 전류(id,iq)로 변환할 수 있다. Meanwhile, the axis conversion unit 310 may convert the two-phase currents (iα, iβ) of the stationary coordinate system into the two-phase currents (id, iq) of the rotational coordinate system.
인버터 제어부(430) 내의 속도 연산부(320)는, 축변환부(310)에서 변환된 정지좌표계의 2상 전류(iα,iβ)에 기초하여, 모터(250)의 회전자 위치()를 추정한다. 또한, 추정된 회전자 위치()에 기초하여, 연산된 속도()를 출력할 수 있다.The speed calculating unit 320 in the inverter control unit 430 estimates the rotor position ( . In addition, based on the estimated rotor position (), it is possible to output the calculated speed ().
인버터 제어부(430) 내의 토크 연산부(325)는, 연산된 속도()에 기초하여, 현재의 토크(T)를 연산할 수 있다The torque calculator 325 in the inverter controller 430 may calculate the current torque T based on the calculated speed ?
인버터 제어부(430) 내의 전류 지령 생성부(330)는, 연산된 현재 토크(T)와, 토크 지령치(T*)에 기초하여, 전류 지령치(i*d,i*q)를 생성한다. The current command generating unit 330 in the inverter control unit 430 generates a current command value (i * d, i * q) based on the calculated current torque T and the torque command value T * .
예를 들어, 전류 지령 생성부(330)는, 연산된 현재 토크(T)와, 토크 지령치(T*)에 기초하여, PI 제어기(335)에서 PI 제어를 수행하며, 전류 지령치(i*d,i*q)를 생성할 수 있다. 한편, d축 전류 지령치(i*d)의 값은 0으로 설정될 수도 있다. For example, the current command generation unit 330 performs PI control in the PI controller 335 based on the calculated current torque T and the torque command value T * , and the current command value i * d ,i * q) can be created. On the other hand, the value of the d-axis current command value (i * d) may be set to 0.
한편, 전류 지령 생성부(330)는, 전류 지령치(i*d,i*q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.On the other hand, the current command generation unit 330, the current command value (i * d, i * q) may further include a limiter (not shown) for limiting the level so as not to exceed the allowable range.
다음, 전압 지령 생성부(340)는, 축변환부에서 2상 회전 좌표계로 축변환된 d축, q축 전류(id,iq)와, 전류 지령 생성부(330) 등에서의 전류 지령치(i*d,i*q)에 기초하여, d축, q축 전압 지령치(V*d,V*q)를 생성한다. Next, the voltage command generation unit 340 includes the d-axis and q-axis currents (id, iq) that are axis-transformed into the two-phase rotational coordinate system by the axis transformation unit, and the current command value (i * ) from the current command generation unit 330 , etc. d,i * q), d-axis and q-axis voltage command values (V * d, V * q) are generated.
예를 들어, 전압 지령 생성부(340)는, q축 전류(iq)와, q축 전류 지령치(i*q)의 차이에 기초하여, PI 제어기(344)에서 PI 제어를 수행하며, q축 전압 지령치(V*q)를 생성할 수 있다. 또한, 전압 지령 생성부(340)는, d축 전류(id)와, d축 전류 지령치(i*d)의 차이에 기초하여, PI 제어기(348)에서 PI 제어를 수행하며, d축 전압 지령치(V*d)를 생성할 수 있다. 한편, d축 전압 지령치(V*d)의 값은, d축 전류 지령치(i*d)의 값은 0으로 설정되는 경우에 대응하여, 0으로 설정될 수도 있다. For example, the voltage command generation unit 340 performs PI control in the PI controller 344 based on the difference between the q-axis current iq and the q-axis current command value (i * q), and the q-axis current command value (i * q). A voltage setpoint (V * q) can be generated. In addition, the voltage command generation unit 340 performs PI control in the PI controller 348 based on the difference between the d-axis current id and the d-axis current command value (i * d), and the d-axis voltage command value (V * d) can be created. On the other hand, the value of the d-axis voltage command value (V * d) may be set to 0 corresponding to the case where the value of the d-axis current command value (i * d) is set to 0.
한편, 전압 지령 생성부(340)는, d 축, q축 전압 지령치(V*d,V*q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.On the other hand, the voltage command generation unit 340, d-axis, q-axis voltage command values (V * d, V * q) may further include a limiter (not shown) for limiting the level so as not to exceed the allowable range. .
한편, 생성된 d축, q축 전압 지령치(V*d,V*q)는, 축변환부(350)에 입력된다.On the other hand, the generated d-axis and q-axis voltage command values (V * d, V * q) are input to the axis conversion unit 350 .
축변환부(350)는, 속도 연산부(320)에서 연산된 위치()와, d축, q축 전압 지령치(V*d,V*q)를 입력받아, 축변환을 수행한다.The axis conversion unit 350 receives the position ( ) calculated by the speed calculating unit 320 and the d-axis and q-axis voltage command values (V * d, V * q), and performs the axis conversion.
먼저, 축변환부(350)는, 2상 회전 좌표계에서 2상 정지 좌표계로 변환을 수행한다. 이때, 속도 연산부(320)에서 연산된 위치()가 사용될 수 있다.First, the axis transformation unit 350 performs transformation from a two-phase rotational coordinate system to a two-phase stationary coordinate system. In this case, the position ( ) calculated by the speed calculating unit 320 may be used.
그리고, 축변환부(350)는, 2상 정지 좌표계에서 6상 정지 좌표계로 변환을 수행한다. 이러한 변환을 통해, 축변환부(350)는, 6상 출력 전압 지령치(V*a,V*b,V*c,V*d,V*e,V*f)를 출력하게 된다.Then, the axis transformation unit 350 performs transformation from the two-phase stationary coordinate system to the six-phase stationary coordinate system. Through this conversion, the shaft conversion unit 350 outputs a six-phase output voltage command value (V * a, V * b, V * c, V * d, V * e, V * f).
스위칭 제어 신호 출력부(360)는, 6상 출력 전압 지령치(V*a,V*b,V*c,V*d,V*e,V*f)에 기초하여 펄스폭 변조(PWM) 방식에 따른 스위칭 제어 신호(Sic)를 생성하여 출력할 수 있다. The switching control signal output unit 360 is a pulse width modulation (PWM) method based on the six-phase output voltage command value (V * a,V * b, V * c, V * d, V * e, V * f) It is possible to generate and output a switching control signal Sic according to
출력되는 인버터 스위칭 제어 신호(Sic)는, 게이트 구동부(미도시)에서 게이트 구동 신호로 변환되어, 인버터(420) 내의 각 스위칭 소자의 게이트에 입력될 수 있다. 이에 의해, 인버터(420) 내의 각 스위칭 소자들(S1~S9)이 스위칭 동작을 하게 된다.The output inverter switching control signal Sic may be converted into a gate driving signal by a gate driver (not shown) and input to the gate of each switching element in the inverter 420 . Accordingly, each of the switching elements S1 to S9 in the inverter 420 performs a switching operation.
도 6은 본 발명과 관련된 모터 구동장치의 내부 회로도의 일예이다.6 is an example of an internal circuit diagram of a motor driving apparatus related to the present invention.
도면을 참조하면, 본 발명과 관련된 모터 구동장치(200x)는, 12개의 스위칭 소자를 구비하는 인버터(420x)와, 6상 모터(2500를 구비할 수 있다.Referring to the drawings, the motor driving device 200x related to the present invention may include an inverter 420x having 12 switching elements and a 6-phase motor 2500 .
인버터(420x)는, 복수개의 인버터 스위칭 소자(Sa~Sf,S'a~S'f)를 구비하고, 스위칭 소자(Sa~Sf,S'a~S'f)의 온/오프 동작에 의해 직류 전원(Vdc)을 소정 주파수의 6상 교류 전원(Va,Vb,Vc,Vd,Ve,Vf)으로 변환하여, 6상 동기 모터(250)에 출력할 수 있다. The inverter 420x includes a plurality of inverter switching elements Sa to Sf, S'a to S'f, and by on/off operation of the switching elements Sa to Sf, S'a to S'f The DC power supply (Vdc) may be converted into 6-phase AC power supply (Va, Vb, Vc, Vd, Ve, Vf) of a predetermined frequency, and output to the 6-phase synchronous motor 250 .
인버터(420x)는, 각각 서로 직렬 연결되는 상암 스위칭 소자(Sa,Sb,Sc,Sd,Se,Sf) 및 하암 스위칭 소자(S'a,S'b,S'c,S'd,S'e,S'f)가 한 쌍이 되며, 총 6 쌍의 상, 하암 스위칭 소자가 서로 병렬(Sa&S'a,Sb&S'b,Sc&S'c,Sd&S'd,Se&S'e,Sf&S'f)로 연결된다. 각 스위칭 소자(Sa,S'a,Sb,S'b,Sc,S'c,Sd,S'd,Se,S'e,Sf,S'f)에는 다이오드가 역병렬로 연결된다. Inverter 420x, upper-arm switching elements (Sa, Sb, Sc, Sd, Se, Sf) and lower-arm switching elements (S'a, S'b, S'c, S'd, S') connected in series with each other, respectively e,S'f) becomes a pair, and a total of 6 pairs of upper and lower arm switching elements are connected in parallel (Sa&S'a, Sb&S'b, Sc&S'c, Sd&S'd, Se&S'e, Sf&S'f). do. A diode is connected in antiparallel to each of the switching elements Sa, S'a, Sb, S'b, Sc, S'c, Sd, S'd, Se, S'e, Sf, S'f.
제1 상암 스위칭 소자(Sa)와 제1 하암 스위칭 소자(S'a)의 사이인 노드(na)와 모터(250)의 중섬점(nn) 사이에, a 상 권선인 제1 권선(La)이 감기고, 제2 상암 스위칭 소자(Sb)와 제2 하암 스위칭 소자(S'b)의 사이인 노드(nb)와 모터(250)의 중섬점(nn) 사이에, b 상 권선인 제2 권선(Lb)이 감기고, 제3 상암 스위칭 소자(Sc)와 제3 하암 스위칭 소자(S'c)의 사이인 노드(nc)와 모터(250)의 중섬점(nn) 사이에, c 상 권선인 제3 권선(Lc)이 감기고, 제4 상암 스위칭 소자(Sd)와 제4 하암 스위칭 소자(S'd)의 사이인 노드(nd)와 모터(250)의 중섬점(nn) 사이에, d 상 권선인 제4 권선(Ld)이 감기고, 제5 상암 스위칭 소자(Se)와 제5 하암 스위칭 소자(S'e)의 사이인 노드(ne)와 모터(250)의 중섬점(nn) 사이에, e 상 권선인 제5 권선(Le)이 감기고, 제6 상암 스위칭 소자(Sf)와 제6 하암 스위칭 소자(S'f)의 사이인 노드(nf)와 모터(250)의 중섬점(nn) 사이에, f 상 권선인 제6 권선(Lf)이 감긴다.Between the node na between the first upper-arm switching element Sa and the first lower-arm switching element S'a and the central island nn of the motor 250, the first winding La as the a-phase winding This winding, between the node nb between the second upper-arm switching element Sb and the second lower-arm switching element S'b and the midpoint nn of the motor 250, the second winding as the b-phase winding (Lb) is wound, between the node (nc) between the third upper arm switching element (Sc) and the third lower arm switching element (S'c) and the midpoint (nn) of the motor 250, the c-phase winding The third winding Lc is wound, and between the node nd between the fourth upper arm switching element Sd and the fourth lower arm switching element S'd and the midpoint nn of the motor 250, d The fourth winding Ld, which is a phase winding, is wound, and between the node ne between the fifth upper-arm switching element Se and the fifth lower-arm switching element S'e and the mid-point nn of the motor 250 In, the fifth winding Le, which is the e-phase winding, is wound, and the node nf between the sixth upper-arm switching element Sf and the sixth lower-arm switching element S'f and the middle point of the motor 250 ( nn), the sixth winding Lf, which is an f-phase winding, is wound.
이러한 인버터(420x)에 의하면, 12개의 스위칭 소자가 필요하며, 12개의 스위칭 소자의 스위칭을 위해, 64개의 스위칭 패턴이 필요하게 된다. 따라서, 인버터(420x)의 크기가 증가되며, 인버터(420x)의 스위칭 패턴이 상당하다는 단점이 있다. According to the inverter 420x, 12 switching elements are required, and 64 switching patterns are required for switching of the 12 switching elements. Accordingly, the size of the inverter 420x is increased, and the switching pattern of the inverter 420x is significant.
이를 위해, 본 발명에서는, 6상 모터(250)를 효율적으로 구동할 수 있는 인버터(420)를 제안한다. 이에 대해서는 도 7 이하를 참조하여 기술한다.To this end, the present invention proposes an inverter 420 capable of efficiently driving the six-phase motor 250 . This will be described below with reference to FIG. 7 .
도 7은 본 발명의 실시예에 따른 모터 구동장치의 내부 회로도의 일예이다.7 is an example of an internal circuit diagram of a motor driving apparatus according to an embodiment of the present invention.
도면을 참조하면, 본 발명의 실시예에 따른 모터 구동장치(200)는, 모터(250)와, 모터(250)에 교류 전원을 출력하는 인버터(420)를 포함하고, 모터(250)는, 6상 모터(250)를 포함하고, 인버터(420)는, 서로 병렬 접속되는 3개의 레그를 포함하며, 각 레그는, 직렬 접속되는 3개의 스위칭 소자를 포함한다. Referring to the drawings, the motor driving apparatus 200 according to an embodiment of the present invention includes a motor 250 and an inverter 420 for outputting AC power to the motor 250, and the motor 250 includes: A six-phase motor 250 is included, and the inverter 420 includes three legs connected in parallel to each other, and each leg includes three switching elements connected in series.
도 7의 인버터(420)는, 9개의 스위칭 소자를 포함하므로, 도 6의 인버터(420x)와 비교하면, 스위칭 개수가 적어지며, 결국, 인버터(420)의 크기를 저감할 수 있게 된다.Since the inverter 420 of FIG. 7 includes nine switching elements, the number of switching is reduced compared to the inverter 420x of FIG. 6 , and consequently, the size of the inverter 420 can be reduced.
한편, 도 7의 인버터(420)의 스위칭 패턴은, 9개의 스위칭 소자에 대해, 27개의 스위칭 패턴을 가지나, 도 6의 인버터(420x)의 스위칭 패턴은, 12개의 스위칭 소자에 대해, 64개의 스위칭 패턴을 가지게 된다. 결국, 도 7의 인버터(420)에 따르면, 스위칭 패턴의 저감 및 스위칭 횟수의 저감을 도모할 수 있게 된다.On the other hand, the switching pattern of the inverter 420 of FIG. 7 has 27 switching patterns for 9 switching elements, but the switching pattern of the inverter 420x of FIG. 6 has 64 switching patterns for 12 switching elements have a pattern. As a result, according to the inverter 420 of FIG. 7 , it is possible to reduce the switching pattern and reduce the number of switching.
한편, 인버터(420)는, 제1 레그에 배치되는 제1 스위칭 소자(S1), 제2 레그에 배치되는 제2 스위칭 소자(S2), 제3 레그에 배치되는 제3 스위칭 소자(S3), 제1 스위칭 소자(S1)의 일단(n14)에 일단이 접속되는 제4 스위칭 소자(S4), 제2 스위칭 소자(S2)의 일단(n25)에 일단이 접속되는 제5 스위칭 소자(S5), 제3 스위칭 소자(S3)의 일단(n36)에 일단이 접속되는 제6 스위칭 소자(S6), 제4 스위칭 소자(S4)의 타단에 접속되는 제7 스위칭 소자(S7), 제5 스위칭 소자(S5)의 타단에 접속되는 제8 스위칭 소자(S8), 제6 스위칭 소자(S6)의 타단에 접속되는 제9 스위칭 소자(S9)를 포함할 수 있다. 이에 따라, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, the inverter 420, the first switching device (S1) disposed on the first leg, the second switching device (S2) disposed on the second leg, the third switching device (S3) disposed on the third leg, A fourth switching element (S4) having one end connected to one end (n14) of the first switching element (S1), a fifth switching element (S5) having one end connected to one end (n25) of the second switching element (S2); A sixth switching element S6 having one end connected to one end n36 of the third switching element S3, a seventh switching element S7 connected to the other end of the fourth switching element S4, a fifth switching element ( It may include an eighth switching element S8 connected to the other end of S5 and a ninth switching element S9 connected to the other end of the sixth switching element S6. Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
한편, 제1 스위칭 소자(S1)와 제4 스위칭 소자(S4) 사이의 제1 노드(n14)와, 제2 스위칭 소자(S2)와 제5 스위칭 소자(S5) 사이의 제2 노드(n25)와, 제3 스위칭 소자(S3)와 제6 스위칭 소자(S6) 사이의 제3 노드(n36)는, 모터(250)의 제1 단자에 접속되며, 제4 스위칭 소자(S4)와 제7 스위칭 소자(S7) 사이의 제4 노드(n47)와, 제5 스위칭 소자(S5)와 제8 스위칭 소자(S8) 사이의 제5 노드(n58)와, 제6 스위칭 소자(S6)와 제9 스위칭 소자(S9) 사이의 제6 노드(n69)는, 모터(250)의 제2 단자에 접속될 수 있다. 이에 따라, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.On the other hand, the first node n14 between the first switching element S1 and the fourth switching element S4 and the second node n25 between the second switching element S2 and the fifth switching element S5 and the third node n36 between the third switching element S3 and the sixth switching element S6 is connected to the first terminal of the motor 250, and the fourth switching element S4 and the seventh switching element S4 The fourth node n47 between the elements S7, the fifth node n58 between the fifth switching element S5 and the eighth switching element S8, and the sixth switching element S6 and the ninth switching element A sixth node n69 between the elements S9 may be connected to a second terminal of the motor 250 . Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
한편, 모터(250)는, 제1 스위칭 소자(S1)와 제4 스위칭 소자(S4) 사이의 제1 노드(n14)와, 모터(250)의 중성점(nn) 사이에, 감기는 제1 권선(La)과, 제2 스위칭 소자(S2)와 제5 스위칭 소자(S5) 사이의 제2 노드(n25)와, 모터(250)의 중성점(nn) 사이에, 감기는 제2 권선(Lb)과, 제3 스위칭 소자(S3)와 제6 스위칭 소자(S6) 사이의 제3 노드(n36)와, 모터(250)의 중성점(nn) 사이에, 감기는 제3 권선(Lc)과, 제4 스위칭 소자(S4)와 제7 스위칭 소자(S7) 사이의 제4 노드(n47)와, 모터(250)의 중성점(nn) 사이에, 감기는 제4 권선(Ld)과, 제5 스위칭 소자(S5)와 제8 스위칭 소자(S8) 사이의 제5 노드(n58)와, 모터(250)의 중성점(nn) 사이에, 감기는 제5 권선(Le)과, 제6 스위칭 소자(S6)와 제9 스위칭 소자(S9) 사이의 제6 노드(n69)와, 모터(250)의 중성점(nn) 사이에, 감기는 제6 권선(Lf)을 포함할 수 있다. Meanwhile, in the motor 250 , between the first node n14 between the first switching element S1 and the fourth switching element S4 and the neutral point nn of the motor 250 , the first winding wound (La) and the second node (n25) between the second switching element (S2) and the fifth switching element (S5), and between the neutral point (nn) of the motor 250, the winding second winding (Lb) And, between the third node (n36) between the third switching element (S3) and the sixth switching element (S6) and the neutral point (nn) of the motor 250, the winding third winding (Lc), Between the fourth node n47 between the fourth switching element S4 and the seventh switching element S7 and the neutral point nn of the motor 250 , the fourth winding Ld wound and the fifth switching element Between the fifth node n58 between ( S5 ) and the eighth switching element S8 and the neutral point nn of the motor 250 , the fifth winding Le and the sixth switching element S6 are wound A sixth winding Lf wound between the sixth node n69 between the and the ninth switching element S9 and the neutral point nn of the motor 250 may be included.
제1 권선(La)은, a 상 권선으로서, a 상 전압(Va)이 인가될 수 있으며, 제2 권선(Lb)은, b 상 권선으로서, b 상 전압(Vb)이 인가될 수 있으며, 제3 권선(Lc)은, c 상 권선으로서, c 상 전압(Vc)이 인가될 수 있으며, 제4 권선(Ld)은, d 상 권선으로서, d 상 전압(Vd)이 인가될 수 있으며, 제5 권선(Le)은, e 상 권선으로서, e 상 전압(Ve)이 인가될 수 있으며, 제6 권선(Lf)은, f 상 권선으로서, f 상 전압(Vf)이 인가될 수 있다.The first winding La is an a-phase winding, and an a-phase voltage Va may be applied thereto, and the second winding Lb is a b-phase winding, and a b-phase voltage Vb may be applied thereto. The third winding Lc is a c-phase winding, and a c-phase voltage Vc may be applied thereto, and the fourth winding Ld is a d-phase winding, and a d-phase voltage Vd may be applied thereto. The fifth winding Le is an e-phase winding, and an e-phase voltage Ve may be applied thereto, and the sixth winding Lf is an f-phase winding and an f-phase voltage Vf may be applied thereto.
본 발명의 실시예에 따른 모터 구동장치(200)는, 인버터(420)를 제어하는 인버터 제어부(430)를 더 포함할 수 있으며, 인버터 제어부(430)는, 각 상 권선(La~Lf)에, 각 상 전압(Va~Vf)을 인가하도록 인버터(420)를 제어할 수 있다.The motor driving apparatus 200 according to the embodiment of the present invention may further include an inverter control unit 430 for controlling the inverter 420 , and the inverter control unit 430 is configured to be connected to each of the phase windings La to Lf. , the inverter 420 may be controlled to apply the respective phase voltages Va to Vf.
특히, 인버터 제어부(430)는, 9개의 스위칭 소자(S1~S9)의 제어를 위한, 스위칭 제어 신호를 출력할 수 있다. 이에 따라, 인버터 제어부(430)의 신호 처리 부담을 경감할 수 있게 된다.In particular, the inverter controller 430 may output a switching control signal for controlling the nine switching elements S1 to S9 . Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
도 8 내지 도 11c는 도 6 또는 도 7의 설명에 참조되는 도면이다. 8 to 11C are diagrams referred to in the description of FIG. 6 or FIG. 7 .
먼저, 도 8은 모터(250)에 인가되는 a 상 전압 파형(Va)과 d 상 전압 파형(Vd)을 예시하는 도면이다.First, FIG. 8 is a diagram illustrating an a-phase voltage waveform Va and a d-phase voltage waveform Vd applied to the motor 250 .
도면을 참조하면, Ar1 시점에, 모터(250)에 인가되는 a 상 전압(Va)은 로우 레벨이고, d 상 전압(Vd)은 로우 레벨이며, Ar2 시점에, 모터(250)에 인가되는 a 상 전압(Va)은 하이 레벨이고, d 상 전압(Vd)은 로우 레벨이며, Ar3 시점에, 모터(250)에 인가되는 a 상 전압(Va)은 하이 레벨이고, d 상 전압(Vd)은 하이 레벨이다.Referring to the drawing, at Ar1, the a-phase voltage Va applied to the motor 250 is at a low level, the d-phase voltage Vd is at a low level, and at Ar2, the a-phase voltage Va applied to the motor 250 is a The phase voltage Va is a high level, the d-phase voltage Vd is a low level, at a time Ar3, the a-phase voltage Va applied to the motor 250 is a high level, and the d-phase voltage Vd is high level
도 9a는, Ar1 시점에 대응하는 도 6의 인버터(420x)의 스위칭 동작을 예시하는 도면이다.FIG. 9A is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar1 time point.
도면을 참조하면, Ar1 시점에, 인버터(420x)의 제1 상암 스위칭 소자(Sa)는 오프, 제1 하암 스위칭 소자(S'a)는 온, 제4 상암 스위칭 소자(Sd)는 오프, 제4 하암 스위칭 소자(S'd)는 온 된다. Referring to the drawing, at the time Ar1, the first upper-arm switching element Sa of the inverter 420x is off, the first lower-arm switching element S'a is on, the fourth upper-arm switching element Sd is off, the second 4 The lower arm switching element S'd is turned on.
이에 따라, 로우 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, the a-phase voltage Va of the low level and the d-phase voltage Vd of the low level are applied to the motor 250 .
도 9b는, Ar2 시점에 대응하는 도 6의 인버터(420x)의 스위칭 동작을 예시하는 도면이다.FIG. 9B is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar2 time point.
도면을 참조하면, Ar2 시점에, 인버터(420x)의 제1 상암 스위칭 소자(Sa)는 온, 제1 하암 스위칭 소자(S'a)는 오프, 제4 상암 스위칭 소자(Sd)는 오프, 제4 하암 스위칭 소자(S'd)는 온 된다. Referring to the drawing, at Ar2 time, the first upper-arm switching element Sa of the inverter 420x is on, the first lower-arm switching element S'a is off, the fourth upper-arm switching element Sd is off, the second 4 The lower arm switching element S'd is turned on.
이에 따라, 하이 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
도 9c는, Ar3 시점에 대응하는 도 6의 인버터(420x)의 스위칭 동작을 예시하는 도면이다.9C is a diagram illustrating a switching operation of the inverter 420x of FIG. 6 corresponding to the Ar3 time point.
도면을 참조하면, Ar3 시점에, 인버터(420x)의 제1 상암 스위칭 소자(Sa)는 온, 제1 하암 스위칭 소자(S'a)는 오프, 제4 상암 스위칭 소자(Sd)는 온, 제4 하암 스위칭 소자(S'd)는 오프 된다. Referring to the drawing, at Ar3 time, the first upper-arm switching element Sa of the inverter 420x is on, the first lower-arm switching element S'a is off, and the fourth upper-arm switching element Sd is on, the second 4 The lower arm switching element S'd is turned off.
이에 따라, 하이 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
도 10a는, Ar1 시점에 대응하는 도 7의 인버터(420)의 스위칭 동작을 예시하는 도면이다.10A is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar1 time point.
도면을 참조하면, Ar1 시점에, 제1 레그의 제1 스위칭 소자(S1)는 오프, 제4 스위칭 소자(S4)는 온, 제7 스위칭 소자(S7)는 온 된다.Referring to the drawings, at a time Ar1 , the first switching element S1 of the first leg is turned off, the fourth switching element S4 is turned on, and the seventh switching element S7 is turned on.
이에 따라, 로우 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, the a-phase voltage Va of the low level and the d-phase voltage Vd of the low level are applied to the motor 250 .
한편, 도 9a와 비교하여, 제1 레그의 스위칭 소자들만 턴 온, 오프되게 된다. 이에 따라, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.Meanwhile, as compared with FIG. 9A, only the switching elements of the first leg are turned on and off. Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
도 10b는, Ar2 시점에 대응하는 도 7의 인버터(420)의 스위칭 동작을 예시하는 도면이다.FIG. 10B is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar2 time point.
도면을 참조하면, Ar2 시점에, 인버터(420)의 제1 레그의 제1 스위칭 소자(S1)는 온, 제4 스위칭 소자(S4)는 오프, 제7 스위칭 소자(S7)는 온 된다. Referring to the drawing, at a time Ar2, the first switching element S1 of the first leg of the inverter 420 is on, the fourth switching element S4 is off, and the seventh switching element S7 is on.
이에 따라, 하이 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
한편, 도 9b와 비교하여, 제1 레그의 스위칭 소자들만 턴 온, 오프되게 된다. 이에 따라, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.Meanwhile, as compared with FIG. 9B, only the switching elements of the first leg are turned on and off. Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
도 10c는, Ar3 시점에 대응하는 도 7의 인버터(420)의 스위칭 동작을 예시하는 도면이다.FIG. 10C is a diagram illustrating a switching operation of the inverter 420 of FIG. 7 corresponding to the Ar3 time point.
도면을 참조하면, Ar3 시점에, 인버터(420)의 제1 레그의 제1 스위칭 소자(S1)는 온, 제4 스위칭 소자(S4)는 온, 제7 스위칭 소자(S7)는 오프 된다. Referring to the drawing, at a time Ar3, the first switching element S1 of the first leg of the inverter 420 is on, the fourth switching element S4 is on, and the seventh switching element S7 is off.
이에 따라, 하이 레벨의 a 상 전압(Va)과 로우 레벨의 d 상 전압(Vd)이, 모터(250)에 인가된다.Accordingly, a high-level a-phase voltage Va and a low-level d-phase voltage Vd are applied to the motor 250 .
한편, 도 9c와 비교하여, 제1 레그의 스위칭 소자들만 턴 온, 오프되게 된다. 이에 따라, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.Meanwhile, as compared with FIG. 9C, only the switching elements of the first leg are turned on and off. Accordingly, the size of the inverter 420 and the number of times the inverter 420 is switched can be reduced.
도 11a는 도 6의 인버터(420x)의 스위칭 패턴을 예시하는 도면이다.11A is a diagram illustrating a switching pattern of the inverter 420x of FIG. 6 .
도면을 참조하면, 도 6의 인버터(420x)의 스위칭 패턴은, 64개로 예시된다.Referring to the drawings, 64 switching patterns of the inverter 420x of FIG. 6 are exemplified.
도 11b는 도 7의 인버터(420)의 스위칭 패턴을 예시하는 도면이다.11B is a diagram illustrating a switching pattern of the inverter 420 of FIG. 7 .
도면을 참조하면, 도 7의 인버터(420)의 스위칭 패턴은, 27로 예시된다.Referring to the drawings, the switching pattern of the inverter 420 of FIG. 7 is illustrated as 27 .
도 11a와 도 11b를 비교하면, 도 7의 인버터(420)는, 하나의 레그에 3개의 스위칭 소자들을 배치하고, 총 3개의 레그를 구비함으로써, 도 6의 인버터(420x)의 하나의 레그에 2개의 스위칭 소자들을 배치하고, 총 6개의 레그를 배치하는 것에 비해, 인버터(420)의 크기 및 인버터(420)의 스위칭 횟수를 저감할 수 있게 된다.11A and 11B, the inverter 420 of FIG. 7 arranges three switching elements on one leg and includes a total of three legs, so that one leg of the inverter 420x of FIG. Compared to disposing two switching elements and disposing a total of 6 legs, it is possible to reduce the size of the inverter 420 and the number of switching of the inverter 420 .
도 11c는 본 발명의 실시예에 따른 인버터 제어부(430)의 내부 블록도의 일예이다.11C is an example of an internal block diagram of the inverter control unit 430 according to an embodiment of the present invention.
도면을 참조하면, 인버터 제어부(430)는, 입력 교류 전압(Vacr)과, 직류 오프셋(DCoffset)과, 기준 전압 파형(vref)에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기(1014)와 제2 비교기(1016)와, 제1 비교기(1014)로부터의 제1 비교 신호와, 제2 비교기(1016)로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기(1022)와, 논리 연산기(1022)로부터의 출력 신호를 반전시키는 제1 반전기(1024)와, 제2 비교 신호를 반전시키는 제2 반전기(1026)를 포함할 수 있다. Referring to the drawing, the inverter control unit 430 outputs a first comparison signal and a second comparison signal, respectively, based on an input AC voltage Vacr, a DC offset, and a reference voltage waveform vref. Based on the first comparator 1014 and the second comparator 1016 , the first comparison signal from the first comparator 1014 and the second comparison signal from the second comparator 1016 , an exclusive or OR) includes a logic operator 1022 for performing an operation, a first inverter 1024 for inverting the output signal from the logic operator 1022, and a second inverter 1026 for inverting the second comparison signal. can do.
한편, 인버터 제어부(43)는, 삼상의 입력 교류 전압(Vacr)과, 직류 오프셋(DCoffset)을 가산하는 가산기(1011)와, 삼상의 입력 교류 전압(Vacr)에서 직류 오프셋(DCoffset)을 차감하는 감산기(1012)를 더 구비할 수 있다.On the other hand, the inverter control unit 43, an adder 1011 for adding the three-phase input AC voltage Vacr and the DC offset, and the three-phase input AC voltage Vacr to subtract the DC offset (DCoffset) A subtractor 1012 may be further provided.
제1 비교기(1014)는, 가산기(1011)의 출력과, 톱니 파형인 기준 전압 파형(vref)을 비교하고, 제1 비교 신호(a)를 출력한다.The first comparator 1014 compares the output of the adder 1011 with the reference voltage waveform vref, which is a sawtooth waveform, and outputs a first comparison signal a.
제2 비교기(1016)는, 감산기(1012)의 출력과, 톱니 파형인 기준 전압 파형(vref)을 비교하고, 제2 비교 신호(d)를 출력한다.The second comparator 1016 compares the output of the subtractor 1012 with the reference voltage waveform vref, which is a sawtooth waveform, and outputs a second comparison signal d.
논리 연산기(1022)는, 제1 비교 신호(a)와 제2 비교 신호(d)를 입력받으며, 제1 비교 신호(a)와 제2 비교 신호(d)가 동일한 레벨이면, 로우 레벨(예를 들어, 0)을 출력하고, 다른 레벨이면, 하이 레벨(예를 들어, 1)을 출력할 수 있다.The logic operator 1022 receives the first comparison signal (a) and the second comparison signal (d), and when the first comparison signal (a) and the second comparison signal (d) are at the same level, a low level (eg, For example, 0) may be output, and if it is a different level, a high level (eg, 1) may be output.
그리고, 제1 반전기(1024)는, 논리 연산기(1022)로부터의 출력 신호를 반전시킬 수 있다.In addition, the first inverter 1024 may invert the output signal from the logical operator 1022 .
한편, 제2 반전기(1026)는, 제2 비교 신호(d)를 반전시킬 수 있다.Meanwhile, the second inverter 1026 may invert the second comparison signal d.
이에 따라, 제1 비교 신호(a)는, 인버터(420) 내의, 제1 스위칭 소자(S1) 또는 제2 스위칭 소자(S2) 또는 제3 스위칭 소자(S3)로 출력되며, 제1 반전기(1024)로부터의 출력 신호는, 제4 스위칭 소자(S4) 또는 제5 스위칭 소자(S5) 또는 제6 스위칭 소자(S6)로 출력되며, 제2 반전기(1026)로부터의 출력 신호는, 제7 스위칭 소자(S7) 또는 제8 스위칭 소자(S8) 또는 제9 스위칭 소자(S9)로 출력될 수 있다.Accordingly, the first comparison signal (a) is output to the first switching element S1 or the second switching element S2 or the third switching element S3 in the inverter 420, and the first inverter ( The output signal from 1024 is output to the fourth switching element S4 or the fifth switching element S5 or the sixth switching element S6, and the output signal from the second inverter 1026 is the seventh It may be output to the switching element S7, the eighth switching element S8, or the ninth switching element S9.
한편, 본 발명의 실시예에 따른 인버터 제어부(430)는, 3상의 입력 전압을 6상의 전압으로 변환하는 6상 전압 변환기(1010)와, 6상의 전압에 기초하여 9 상의 스위칭 제어 신호를 출력하는 9상 스위칭 신호 출력부(1020)를 포함할 수 있다. 이에 따라, 인버터 제어부(430)의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the inverter control unit 430 according to the embodiment of the present invention, the six-phase voltage converter 1010 for converting the input voltage of three phases to the voltage of six phases, and outputting the 9-phase switching control signal based on the voltage of the six-phase A 9-phase switching signal output unit 1020 may be included. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
한편, 6상 전압 변환기(1010)는, 3상의 입력 전압과, 직류 오프셋(DCoffset)과, 기준 전압 파형(vref)에 기초하여, 제1 비교 신호(a)와 제2 비교 신호(d)를 각각 출력하는 제1 비교기(1014)와 제2 비교기(1016)를 포함하며, 9상 스위칭 신호 출력부(1020)는, 제1 비교기(1014)로부터의 제1 비교 신호(a)와, 제2 비교기(1016)로부터의 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기(1022)와, 논리 연산기(1022)로부터의 출력 신호를 반전시키는 제1 반전기(1024)와, 제2 비교 신호(d)를 반전시키는 제2 반전기(1026)를 포함할 수 있다. 이에 따라, 인버터 제어부(430)의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the six-phase voltage converter 1010, the first comparison signal (a) and the second comparison signal (d) based on the three-phase input voltage, the DC offset, and the reference voltage waveform (vref) It includes a first comparator 1014 and a second comparator 1016 respectively outputting, the 9-phase switching signal output unit 1020, the first comparison signal (a) from the first comparator 1014, the second A logic operator 1022 that performs an exclusive OR operation based on the second comparison signal from the comparator 1016 and a first inverter 1024 that inverts the output signal from the logic operator 1022 ) and a second inverter 1026 for inverting the second comparison signal d. Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
한편, 9상 스위칭 신호 출력부(1020)는, 제1 비교 신호(a)를, 제1 스위칭 소자(S1) 또는 제2 스위칭 소자(S2) 또는 제3 스위칭 소자(S3)에 출력하며, 제1 반전기(1024)로부터의 출력 신호를 제4 스위칭 소자(S4) 또는 제5 스위칭 소자(S5) 또는 제6 스위칭 소자(S6)에 출력하며, 제2 반전기(1026)로부터의 출력 신호를 제7 스위칭 소자(S7) 또는 제8 스위칭 소자(S8) 또는 제9 스위칭 소자(S9)에 출력할 수 있다. 이에 따라, 인버터 제어부(430)의 신호 처리 부담을 경감할 수 있게 된다.On the other hand, the 9-phase switching signal output unit 1020 outputs the first comparison signal (a) to the first switching element (S1), the second switching element (S2), or the third switching element (S3), The output signal from the first inverter 1024 is output to the fourth switching element S4, the fifth switching element S5, or the sixth switching element S6, and the output signal from the second inverter 1026 is It may output to the seventh switching element (S7), the eighth switching element (S8), or the ninth switching element (S9). Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
한편, 본 발명의 실시예에 따른 인버터 제어부(430)는, 도 11b의 27개의 패턴 신호에 기초하여, 인버터(420)를 제어할 수 있다. 이에 따라, 인버터 제어부(430)의 신호 처리 부담을 경감할 수 있게 된다.Meanwhile, the inverter controller 430 according to an embodiment of the present invention may control the inverter 420 based on the 27 pattern signals of FIG. 11B . Accordingly, it is possible to reduce the signal processing burden of the inverter control unit 430 .
본 발명의 실시예에 따른 모터 구동장치, 및 이를 구비하는 차량은, 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In the motor driving device according to the embodiment of the present invention, and the vehicle having the same, the configuration and method of the embodiments described above are not limitedly applicable, but the embodiments are each so that various modifications can be made. All or some of the embodiments may be selectively combined and configured.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims In addition, various modifications are possible by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.
본 발명은 모터 구동장치, 및 이를 구비하는 차량에 적용 가능하며, 특히, 인버터의 크기 및 인버터의 스위칭 횟수를 저감할 수 있는 모터 구동장치, 및 이를 구비하는 차량에 적용 가능하다.INDUSTRIAL APPLICABILITY The present invention is applicable to a motor driving device and a vehicle having the same, and particularly, to a motor driving device capable of reducing the size of an inverter and the number of switching of the inverter, and a vehicle having the same.

Claims (14)

  1. 모터;motor;
    상기 모터에 교류 전원을 출력하는 인버터;를 포함하고,Including; inverter for outputting AC power to the motor;
    상기 모터는, 6상 모터를 포함하고,The motor includes a 6-phase motor,
    상기 인버터는,The inverter is
    서로 병렬 접속되는 3개의 레그를 포함하며,It includes three legs connected in parallel with each other,
    각 레그는, 직렬 접속되는 3개의 스위칭 소자를 포함하는 것을 특징으로 하는 모터 구동장치.Each leg comprises three switching elements connected in series.
  2. 제1항에 있어서, According to claim 1,
    상기 인버터는,The inverter is
    제1 레그에 배치되는 제1 스위칭 소자, 제2 레그에 배치되는 제2 스위칭 소자, 제3 레그에 배치되는 제3 스위칭 소자, 상기 제1 스위칭 소자의 일단에 일단이 접속되는 제4 스위칭 소자, 상기 제2 스위칭 소자의 일단에 일단이 접속되는 제5 스위칭 소자, 제3 스위칭 소자의 일단에 일단이 접속되는 제6 스위칭 소자, 제4 스위칭 소자의 타단에 접속되는 제7 스위칭 소자, 제5 스위칭 소자의 타단에 접속되는 제8 스위칭 소자, 제6 스위칭 소자의 타단에 접속되는 제9 스위칭 소자를 포함하는 것을 특징으로 하는 모터 구동장치.A first switching element disposed on the first leg, a second switching element disposed on the second leg, a third switching element disposed on the third leg, a fourth switching element having one end connected to one end of the first switching element; A fifth switching element having one end connected to one end of the second switching element, a sixth switching element having one end connected to one end of the third switching element, a seventh switching element connected to the other end of the fourth switching element, a fifth switching element A motor driving apparatus comprising: an eighth switching element connected to the other end of the element; and a ninth switching element connected to the other end of the sixth switching element.
  3. 제2항에 있어서, 3. The method of claim 2,
    상기 제1 스위칭 소자와 상기 제4 스위칭 소자 사이의 제1 노드와, 상기 제2 스위칭 소자와 상기 제5 스위칭 소자 사이의 제2 노드와, 상기 제3 스위칭 소자와 상기 제6 스위칭 소자 사이의 제3 노드는, 상기 모터의 제1 단자에 접속되며,a first node between the first switching element and the fourth switching element, a second node between the second switching element and the fifth switching element, and a second node between the third switching element and the sixth switching element 3 node is connected to the first terminal of the motor,
    상기 제4 스위칭 소자와 상기 제7 스위칭 소자 사이의 제4 노드와, 상기 제5 스위칭 소자와 상기 제8 스위칭 소자 사이의 제5 노드와, 상기 제6 스위칭 소자와 상기 제9 스위칭 소자 사이의 제6 노드는, 상기 모터의 제2 단자에 접속되는 것을 특징으로 하는 모터 구동장치.a fourth node between the fourth switching element and the seventh switching element, a fifth node between the fifth switching element and the eighth switching element, and a fourth node between the sixth switching element and the ninth switching element 6 nodes are connected to the second terminal of the motor.
  4. 제2항에 있어서, 3. The method of claim 2,
    상기 모터는,The motor is
    상기 제1 스위칭 소자와 상기 제4 스위칭 소자 사이의 제1 노드와, 상기 모터의 중성점 사이에, 감기는 제1 권선;a first winding wound between a first node between the first switching element and the fourth switching element and a neutral point of the motor;
    상기 제2 스위칭 소자와 상기 제5 스위칭 소자 사이의 제2 노드와, 상기 모터의 중성점 사이에, 감기는 제2 권선;a second winding wound between the second node between the second switching element and the fifth switching element and the neutral point of the motor;
    상기 제3 스위칭 소자와 상기 제6 스위칭 소자 사이의 제3 노드와, 상기 모터의 중성점 사이에, 감기는 제3 권선;a third winding wound between the third node between the third switching element and the sixth switching element and the neutral point of the motor;
    상기 제4 스위칭 소자와 상기 제7 스위칭 소자 사이의 제4 노드와, 상기 모터의 중성점 사이에, 감기는 제4 권선;a fourth winding wound between the fourth node between the fourth switching element and the seventh switching element and the neutral point of the motor;
    상기 제5 스위칭 소자와 상기 제8 스위칭 소자 사이의 제5 노드와, 상기 모터의 중성점 사이에, 감기는 제5 권선;a fifth winding wound between a fifth node between the fifth switching element and the eighth switching element and a neutral point of the motor;
    상기 제6 스위칭 소자와 상기 제9 스위칭 소자 사이의 제6 노드와, 상기 모터의 중성점 사이에, 감기는 제6 권선;을 포함하는 것을 특징으로 하는 모터 구동장치.and a sixth winding wound between the sixth node between the sixth switching element and the ninth switching element and the neutral point of the motor.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 제1 레그의 상기 제1 스위칭 소자는 오프, 상기 제4 스위칭 소자는 온, 상기 제7 스위칭 소자는 온인 경우, 상기 제1 권선의 제1 상전압은 로우 레벨이고, 상기 제4 권선의 제4 상전압은 로우 레벨인 것을 특징으로 하는 모터 구동장치.When the first switching element of the first leg is off, the fourth switching element is on, and the seventh switching element is on, the first phase voltage of the first winding is at a low level, and the first phase voltage of the fourth winding is on. A motor driving device, characterized in that the four-phase voltage is at a low level.
  6. 제4항에 있어서, 5. The method of claim 4,
    상기 제1 레그의 상기 제1 스위칭 소자는 온, 상기 제4 스위칭 소자는 오프, 상기 제7 스위칭 소자는 온인 경우, 상기 제1 권선의 제1 상전압은 하이 레벨이고, 상기 제4 권선의 제4 상전압은 로우 레벨인 것을 특징으로 하는 모터 구동장치.When the first switching element of the first leg is on, the fourth switching element is off, and the seventh switching element is on, the first phase voltage of the first winding is at a high level, and the first phase voltage of the fourth winding is on. A motor driving device, characterized in that the four-phase voltage is at a low level.
  7. 제4항에 있어서, 5. The method of claim 4,
    상기 제1 레그의 상기 제1 스위칭 소자는 온, 상기 제4 스위칭 소자는 온, 상기 제7 스위칭 소자는 오프인 경우, 상기 제1 권선의 제1 상전압은 하이 레벨이고, 상기 제4 권선의 제4 상전압은 하이 레벨인 것을 특징으로 하는 모터 구동장치.When the first switching element of the first leg is on, the fourth switching element is on, and the seventh switching element is off, the first phase voltage of the first winding is at a high level, The fourth phase voltage is a motor driving device, characterized in that the high level.
  8. 제2항에 있어서, 3. The method of claim 2,
    상기 인버터를 제어하는 인버터 제어부;를 더 포함하고,Further comprising; an inverter control unit for controlling the inverter;
    상기 인버터 제어부는,The inverter control unit,
    입력 교류 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기;a first comparator and a second comparator respectively outputting a first comparison signal and a second comparison signal based on the input AC voltage, the DC offset, and the reference voltage waveform;
    상기 제1 비교기로부터의 상기 제1 비교 신호와, 상기 제2 비교기로부터의 상기 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기;a logic operator configured to perform an exclusive OR operation based on the first comparison signal from the first comparator and the second comparison signal from the second comparator;
    상기 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기;a first inverter for inverting the output signal from the logic operator;
    상기 제2 비교 신호를 반전시키는 제2 반전기;를 포함하는 것을 특징으로 하는 모터 구동장치.and a second inverter for inverting the second comparison signal.
  9. 제8항에 있어서, 9. The method of claim 8,
    상기 인버터 제어부는,The inverter control unit,
    상기 제1 비교 신호를, 상기 제1 스위칭 소자에 출력하며,outputting the first comparison signal to the first switching element,
    상기 제1 반전기로부터의 출력 신호를 상기 제4 스위칭 소자에 출력하며,outputting the output signal from the first inverter to the fourth switching element,
    상기 제2 반전기로부터의 출력 신호를 상기 제7 스위칭 소자에 출력하는 것을 특징으로 하는 모터 구동장치.and outputting an output signal from the second inverter to the seventh switching element.
  10. 제2항에 있어서, 3. The method of claim 2,
    상기 인버터를 제어하는 인버터 제어부;를 더 포함하고,Further comprising; an inverter control unit for controlling the inverter;
    상기 인버터 제어부는,The inverter control unit,
    3상의 입력 전압을 6상의 전압으로 변환하는 6상 전압 변환기;a six-phase voltage converter that converts an input voltage of three phases to a voltage of six phases;
    상기 6상의 전압에 기초하여 9 상의 스위칭 제어 신호를 출력하는 9상 스위칭 신호 출력부;를 포함하는 것을 특징으로 하는 모터 구동장치.and a 9-phase switching signal output unit for outputting a 9-phase switching control signal based on the voltage of the 6-phase.
  11. 제10항에 있어서, 11. The method of claim 10,
    상기 6상 전압 변환기는,The six-phase voltage converter,
    상기 3상의 입력 전압과, 직류 오프셋과, 기준 전압 파형에 기초하여, 제1 비교 신호와 제2 비교 신호를 각각 출력하는 제1 비교기와 제2 비교기를 포함하며,a first comparator and a second comparator each outputting a first comparison signal and a second comparison signal based on the three-phase input voltage, a DC offset, and a reference voltage waveform;
    상기 9상 스위칭 신호 출력부는,The 9-phase switching signal output unit,
    상기 제1 비교기로부터의 상기 제1 비교 신호와, 상기 제2 비교기로부터의 상기 제2 비교신호에 기초하여 익스클루시브 오아(exclusive OR) 연산을 수행하는 논리 연산기;a logic operator configured to perform an exclusive OR operation based on the first comparison signal from the first comparator and the second comparison signal from the second comparator;
    상기 논리 연산기로부터의 출력 신호를 반전시키는 제1 반전기;a first inverter for inverting the output signal from the logic operator;
    상기 제2 비교 신호를 반전시키는 제2 반전기;를 포함하는 것을 특징으로 하는 모터 구동장치.and a second inverter for inverting the second comparison signal.
  12. 제11항에 있어서, 12. The method of claim 11,
    상기 9상 스위칭 신호 출력부는,The 9-phase switching signal output unit,
    상기 제1 비교 신호를, 상기 제1 스위칭 소자 또는 상기 제2 스위칭 소자 또는 상기 제3 스위칭 소자에 출력하며,outputting the first comparison signal to the first switching element or the second switching element or the third switching element;
    상기 제1 반전기로부터의 출력 신호를 상기 제4 스위칭 소자 또는 상기 제5 스위칭 소자 또는 상기 제6 스위칭 소자에 출력하며,outputting an output signal from the first inverter to the fourth switching element or the fifth switching element or the sixth switching element;
    상기 제2 반전기로부터의 출력 신호를 상기 제7 스위칭 소자 또는 상기 제8 스위칭 소자 또는 상기 제9 스위칭 소자에 출력하는 것을 특징으로 하는 모터 구동장치.and outputting an output signal from the second inverter to the seventh switching element, the eighth switching element, or the ninth switching element.
  13. 제2항에 있어서, 3. The method of claim 2,
    상기 인버터를 제어하는 인버터 제어부;를 더 포함하고,Further comprising; an inverter control unit for controlling the inverter;
    상기 인버터 제어부는,The inverter control unit,
    27개의 패턴 신호에 기초하여, 상기 인버터를 제어하는 것을 특징으로 하는 모터 구동장치.A motor driving device, characterized in that the inverter is controlled based on 27 pattern signals.
  14. 제1항 내지 제13항 중 어느 한 항의 모터 구동장치를 구비하는 것을 특징으로 하는 차량.A vehicle comprising the motor driving device according to any one of claims 1 to 13.
PCT/KR2020/011527 2020-08-28 2020-08-28 Motor driving device, and vehicle having same WO2022045400A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2020/011527 WO2022045400A1 (en) 2020-08-28 2020-08-28 Motor driving device, and vehicle having same
KR1020237008688A KR20230052283A (en) 2020-08-28 2020-08-28 Motor driving device, and vehicle having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/011527 WO2022045400A1 (en) 2020-08-28 2020-08-28 Motor driving device, and vehicle having same

Publications (1)

Publication Number Publication Date
WO2022045400A1 true WO2022045400A1 (en) 2022-03-03

Family

ID=80355400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011527 WO2022045400A1 (en) 2020-08-28 2020-08-28 Motor driving device, and vehicle having same

Country Status (2)

Country Link
KR (1) KR20230052283A (en)
WO (1) WO2022045400A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086095A1 (en) * 2010-12-24 2012-06-28 Three Eye Co., Ltd. Motor-driving apparatus for driving three-phase motor of variable speed type
JP2015077003A (en) * 2013-10-09 2015-04-20 株式会社安川電機 Current type inverter device
CN105939129A (en) * 2016-07-27 2016-09-14 佛山科学技术学院 Interleaving control method for nine-switch converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086095A1 (en) * 2010-12-24 2012-06-28 Three Eye Co., Ltd. Motor-driving apparatus for driving three-phase motor of variable speed type
JP2015077003A (en) * 2013-10-09 2015-04-20 株式会社安川電機 Current type inverter device
CN105939129A (en) * 2016-07-27 2016-09-14 佛山科学技术学院 Interleaving control method for nine-switch converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIAB MOHAMED S.; ELSEROUGI AHMED A.; ABDEL-KHALIK AYMAN S.; MASSOUD AHMED M.; AHMED SHEHAB: "A Nine-Switch-Converter-Based Integrated Motor Drive and Battery Charger System for EVs Using Symmetrical Six-Phase Machines", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ., USA, vol. 63, no. 9, 1 September 2016 (2016-09-01), USA , pages 5326 - 5335, XP011619193, ISSN: 0278-0046, DOI: 10.1109/TIE.2016.2555295 *
SALEM AHMED S.; HAMDY RAGI A.; ABDEL-KHALIK AYMAN S.; EL-ARABAWY IBRAHIM F.; HAMAD MOSTAFA S.: "Performance of nine-switch inverter-fed asymmetrical six-phase induction machine under machine and converter faults", 2016 EIGHTEENTH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), IEEE, 27 December 2016 (2016-12-27), pages 711 - 716, XP033055294, DOI: 10.1109/MEPCON.2016.7836971 *

Also Published As

Publication number Publication date
KR20230052283A (en) 2023-04-19

Similar Documents

Publication Publication Date Title
JP5616409B2 (en) Control device for permanent magnet synchronous motor for preventing irreversible demagnetization of permanent magnet and control system provided with such control device
WO2016111508A1 (en) Apparatus for driving motor and method for controlling same
US7944160B2 (en) Redundant DC bus discharge for an electric motor system
WO2017043750A1 (en) Inverter device for microgrid, and method for controlling same
WO2015122655A1 (en) Power system and motor driving apparatus included in power system
WO2022045400A1 (en) Motor driving device, and vehicle having same
WO2019059648A1 (en) Motor control apparatus
WO2013165100A1 (en) Double wound rotor type motor with constant alternating current or direct current power supply input and control method thereof
WO2012161547A2 (en) Apparatus for controlling rotor current in a wound-rotor type induction motor
WO2018199581A1 (en) Laundry treatment device
WO2019013491A1 (en) Motor driving apparatus
EP3475476A1 (en) Washing machine
WO2017204425A1 (en) Permanent magnet electrical equipment having non-uniform magnetic pole length
WO2023243751A1 (en) Motor driving device, and vehicle having same
WO2020256181A1 (en) Power conversion device, and vehicle having same
WO2021107226A1 (en) Film capacitor, power converting device, and vehicle including the same
WO2013111968A1 (en) Method for current control pulse width modulation of multiphase full bridge voltage source inverter
WO2020105838A1 (en) Inverter control device
WO2018021727A1 (en) Washing machine
WO2018226025A1 (en) Motor driving apparatus
WO2013073721A1 (en) Bldc motor and controller for an electric vehicle, and method for controlling same
WO2021251536A1 (en) Two-phase motor assembly
WO2021145666A1 (en) Power converting device, and vehicle including the same
WO2023068491A1 (en) Washing machine and washing machine control method
WO2020009526A1 (en) Laundry machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237008688

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951632

Country of ref document: EP

Kind code of ref document: A1