WO2022045344A1 - Emulsion composition and method for producing same - Google Patents

Emulsion composition and method for producing same Download PDF

Info

Publication number
WO2022045344A1
WO2022045344A1 PCT/JP2021/031831 JP2021031831W WO2022045344A1 WO 2022045344 A1 WO2022045344 A1 WO 2022045344A1 JP 2021031831 W JP2021031831 W JP 2021031831W WO 2022045344 A1 WO2022045344 A1 WO 2022045344A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
emulsion composition
group
rubber
diene rubber
Prior art date
Application number
PCT/JP2021/031831
Other languages
French (fr)
Japanese (ja)
Inventor
哲行 趙
陽介 上原
慶和 上野
徹 浅田
栄一 石田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP21861765.2A priority Critical patent/EP4206233A1/en
Priority to US18/023,555 priority patent/US20230303808A1/en
Priority to JP2022545762A priority patent/JPWO2022045344A1/ja
Priority to CN202180053517.5A priority patent/CN116348499A/en
Publication of WO2022045344A1 publication Critical patent/WO2022045344A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/092Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to an emulsion composition having excellent emulsion stability and a method for producing the same.
  • Liquid rubber is widely used as an adhesive, an adhesive, a cold resistance improving agent for rubbers, a processing oil agent, a reactive plasticizer, and the like.
  • liquid rubber When liquid rubber is used for these purposes, it is generally used as it is, but it may be used after being emulsified. Since the viscosity is low when the molecular weight of the liquid rubber is about several thousand, it can be easily emulsified by using a general emulsifier, but when the molecular weight of the liquid rubber is about tens of thousands, the viscosity is high. Therefore, it becomes difficult to emulsify.
  • Patent Document 1 describes in a method of mixing an organic solvent solution (A) of a polymer and an aqueous medium (B) in the presence of an emulsifier to form an oil-in-water emulsion.
  • Patent Document 2 when emulsifying a liquid cis-1,4-polyisoprene rubber having a molecular weight of 10,000 to 60,000, the cis-1,4-polyisoprene rubber is dissolved in an organic solvent.
  • an emulsification method characterized by using water in a range of 80 parts by mass or less at most with respect to 100 parts by mass of the liquid cis-1,4-polyisoprene rubber.
  • Patent Document 3 proposes an emulsification method using dialkylsulfosuccinate as an emulsifier for liquid polyisoprene having a molecular weight of 10,000 to 60,000, and Patent Document 4 has a molecular weight of 10,000 to 60,000.
  • Non-Patent Document 1 describes, as a method for emulsifying liquid rubber, a method of diluting with an organic solvent, mixing with an emulsifier and water, and then distilling off the organic solvent to emulsify.
  • Patent Document 1 Although the emulsion composition could be obtained by the conventional method, the stability of the emulsion was not sufficient. Further, in particular, the method of Patent Document 1 requires special equipment because it is necessary to stir the composition having a high viscosity at high speed, and it cannot be easily produced. Further, in Non-Patent Document 1, since an organic solvent is used, a step of distilling off the solvent is required, and the manufacturing method is complicated.
  • the subject of the present invention has been made in view of the above problems, and provides an emulsion composition which can be easily produced as compared with a conventional method and has excellent emulsion stability, and a method for producing the same. It is to be.
  • the present inventors have found a very stable emulsion composition in which phase separation is unlikely to occur when a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used.
  • a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used.
  • the emulsion composition can be obtained by a simpler method as compared with the conventional method, and completed the present invention.
  • the present invention provides the following [1] to [7].
  • the hydrogen-binding functional group is a hydroxy group, an epoxy group, an aldehyde group, an acetalized form of an aldehyde group, a carboxy group, a salt of a carboxy group, an esterified form of a carboxy group, an acid anhydride of a carboxy group, or a boronyl.
  • the content of the surfactant in the emulsion composition is 1 to 15 parts by mass with respect to 100 parts by mass in total of the liquid conjugated diene rubber and the diluent.
  • [7] The method for producing an emulsion composition according to any one of [1] to [6], wherein the liquid conjugated diene rubber, the diluent, the surfactant, and water are mixed.
  • a method for producing an emulsion composition which comprises producing an oil droplet emulsion in water and then not removing the diluent.
  • an emulsion composition which can be easily produced as compared with a conventional method and has excellent emulsion stability, and a method for producing the same.
  • the emulsion composition of the present invention is an emulsion composition containing a liquid conjugated diene rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and water.
  • a liquid conjugated diene rubber and a diluent having a vapor pressure of 10 Pa or less at 20 ° C. are used in combination, it is possible to obtain an emulsion composition having excellent stability in which phase separation is unlikely to occur. It is possible. If the vapor pressure of the diluent at 20 ° C. exceeds 10 Pa, the diluent may evaporate during storage and the emulsion particles may collapse.
  • the emulsion composition of the present invention is easy to manufacture because its viscosity does not easily increase during its manufacture, and it is also excellent in handleability. Further, the contamination of the manufacturing equipment can be suppressed, and at the same time, the manufacturing method of diluting with an organic solvent can eliminate the need for the step of removing the diluent, so that the manufacturing efficiency is excellent. Since the emulsion composition of the present invention has a stable emulsion, it can be more uniformly and efficiently adhered to the object to be adhered when it is used as an adhesive, and as a result, the adhesive strength is also improved. ..
  • the liquid conjugated diene-based rubber used in the present invention contains at least a monomer unit derived from the conjugated diene (hereinafter, also referred to as “conjugated diene unit”) in the molecule, and for example, all of the conjugated diene-based rubbers. It is preferable that the monomer unit contains 50 mol% or more of the monomer unit derived from the conjugated diene.
  • the liquid conjugated diene rubber has a melt viscosity of 30 Pa ⁇ s or more and 4,000 Pa ⁇ s or less measured at 38 ° C.
  • the melt viscosity is preferably 35 Pa ⁇ s or more, and more preferably 40 Pa ⁇ s or more, from the viewpoint of improving the adhesiveness. Further, from the viewpoint of improving the stability of the emulsion and improving the handleability, the melt viscosity is preferably 2,500 Pa ⁇ s or less, more preferably 1,500 Pa ⁇ s or less, 1. It is more preferably 000 Pa ⁇ s or less, and even more preferably 500 Pa ⁇ s or less. When the melt viscosity is within the above range, the dispersibility of the emulsion composition is improved and the increase in viscosity is suppressed, so that the handleability can be improved.
  • the melt viscosity of the liquid conjugated diene rubber means the viscosity measured at 38 ° C. using a Brookfield type viscometer (B type viscometer).
  • conjugated diene monomer examples include butadiene, 2-methyl-1,3-butadiene (hereinafter, also referred to as “isoprene”), 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, and 2, -Methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadien, 1,3-cyclohexadiene, 2-methyl-1,3-octadien, 1,3,7-octatriene, ⁇ -farnesene (Hereinafter also referred to as "farnesen”), myrsen, chloroprene and the like can be mentioned.
  • farnesen ⁇ -farnesene
  • the liquid conjugated diene rubber is more preferably containing a monomer unit derived from one or more selected from butadiene, isoprene and farnesene from the viewpoint of adhesiveness when the emulsion composition is used as an adhesive.
  • the liquid conjugated diene rubber used in the present invention may contain a unit derived from a monomer other than the conjugated diene monomer as long as the effect of the present invention is not impaired.
  • monomers include copolymerizable ethylenically unsaturated monomers and aromatic vinyl compounds.
  • the ethylenically unsaturated monomer include olefins such as ethylene, 1-butene, and isobutylene.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, and 4 -Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2 -Vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinyl
  • liquid conjugated diene rubber contains a monomer unit derived from a monomer other than the conjugated diene monomer
  • the content thereof is preferably 30 mol% or less, preferably 10 mol% or less. It is more preferably present, and further preferably 5 mol% or less.
  • the liquid conjugated diene-based rubber used in the present invention is preferably a modified conjugated diene-based rubber having a hydrogen-binding functional group in a part of the conjugated diene-based rubber, and a conjugated diene unit is added to at least a part of the polymer chain.
  • a modified conjugated diene-based rubber containing a hydrogen-binding functional group at the side chain or the end of the polymer chain is more preferable.
  • hydrogen bond means a hydrogen atom (donor) which is bonded to an atom (O, N, S, etc.) having a large electronegativity and is electrically positively polarized, and a lone electron pair. It means a bond-like interaction formed with an electrically negative atom (acceptor).
  • the "hydrogen-bonding functional group” is a functional group capable of functioning as a donor and an acceptor in the hydrogen bond. Specifically, hydroxy group, epoxy group, ether group, mercapto group, carboxy group, carbonyl group, aldehyde group, amino group, imino group, imidazole group, urethane group, amide group, urea group, isocyanate group, nitrile group, Examples thereof include a boronyl group, a silanol group and derivatives thereof. Examples of the derivative of the aldehyde group include its acetalized form. Examples of the derivative of the carboxy group include the salt thereof, the esterified product thereof, the amidated product thereof, and the acid anhydride thereof.
  • Examples of the derivative of the boronyl group include the salt thereof and the esterified product thereof.
  • Examples of the derivative of the silanol group include its esterified product.
  • Examples of the carboxy group include a group derived from a monocarboxylic acid and a group derived from a dicarboxylic acid.
  • One or more selected from an esterified product of a group, an acid anhydride of a carboxy group, a boronyl group, a salt of a boronyl group, an esterified product of a boronyl group, a silanol group, and an esterified product of a silanol group is preferable.
  • the number of hydrogen-bonding functional groups in the modified conjugated diene-based rubber is preferably 0.5 or more on average per molecule from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive. Two or more are more preferable, and three or more are further preferable.
  • the number of hydrogen-bonding functional groups is preferably 80 or less per molecule, preferably 40 or less, from the viewpoint of controlling the viscosity of the modified conjugated diene rubber in an appropriate range and improving the handleability. The number is more preferably less than, more preferably 20 or less, and even more preferably 10 or less.
  • the average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber is calculated from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene based on the following formula. Will be done.
  • the equivalent of the hydrogen-bonding functional group of the modified conjugated diene-based rubber means the mass of the conjugated diene bonded to one hydrogen-bonding functional group and other monomers other than the conjugated diene contained as necessary. do.
  • Average number of hydrogen-bonding functional groups per molecule [(number average molecular weight (Mn)) / (molecular weight of styrene unit) ⁇ (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
  • the method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
  • Examples of the method for obtaining the modified conjugated diene-based rubber include a method obtained by adding a modified compound to a polymerized product of the conjugated diene monomer (hereinafter, also referred to as “production method (1)”), and a conjugated diene polymer. (Hereinafter, also referred to as “manufacturing method (2)”), a method obtained by copolymerizing a conjugated diene monomer and a radically polymerizable compound having a hydrogen-binding functional group (hereinafter, also referred to as “manufacturing method (2)").
  • production method (3) a modified compound capable of reacting with the polymerization active terminal is added to the polymer of the unmodified conjugated diene monomer having a polymerization active end before the polymerization terminator is added.
  • manufacturing method (4) a modified compound capable of reacting with the polymerization active terminal is added to the polymer of the unmodified conjugated diene monomer having a polymerization active end before the polymerization terminator is added.
  • the production method (1) is a method of adding a modified compound to a polymerized conjugated diene monomer, that is, an unmodified conjugated diene-based rubber (hereinafter, also referred to as “unmodified conjugated diene-based rubber”).
  • the unmodified conjugated diene-based rubber can be obtained by polymerizing a conjugated diene and, if necessary, a monomer other than the conjugated diene by, for example, an emulsion polymerization method, a solution polymerization method, or the like.
  • a known or known method can be applied.
  • a Cheegler catalyst e.g., a metallocene catalyst
  • an anionic polymerizable active metal or active metal compound e.g., a polar compound.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentan, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Examples thereof include aromatic hydrocarbons such as toluene and xylene.
  • anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; and lanthanoid-based rare earth metals such as lanthanum and neodym. .. Among these anionic polymerizable active metals, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable. As the anionic polymerizable active metal compound, an organic alkali metal compound is preferable.
  • organic alkali metal compound examples include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stillbenlithium; , 1,4-Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other polyfunctional organic lithium compounds; sodium naphthalene, potassium naphthalene and the like.
  • organic alkali metal compounds an organic lithium compound is preferable, and an organic monolithium compound is more preferable.
  • the amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight, etc. of the target unmodified conjugated diene rubber and modified conjugated diene rubber, but 100 parts by mass of all the monomers containing the conjugated diene. However, it is usually used in an amount of 0.01 to 3 parts by mass.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, or dibenzylamine.
  • Polar compounds are usually used in anionic polymerization to condition the microstructure of the conjugated diene moiety without inactivating the reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether, 2,2-di (2-tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphines. Examples include compounds.
  • the polar compound is usually used in an amount of 0.01 to 1,000 mol with respect to the organic alkali metal compound.
  • the temperature of the solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either a batch type or a continuous type.
  • the polymerization reaction can be stopped by adding a polymerization inhibitor.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the unmodified conjugated diene-based rubber can be isolated by pouring the obtained polymerization reaction solution into a poor solvent such as methanol to precipitate a polymerized product, or by washing the polymerization reaction solution with water, separating and drying.
  • the solution polymerization method is preferable as the method for producing the unmodified conjugated diene-based rubber.
  • emulsification polymerization method a known or known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is carried out by a radical polymerization initiator.
  • the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin salts.
  • the long-chain fatty acid salt include potassium salts and sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • Water is usually used as the dispersion solvent, and a water-soluble organic solvent such as methanol or ethanol may be contained as long as the stability during polymerization is not impaired.
  • a water-soluble organic solvent such as methanol or ethanol
  • examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
  • a chain transfer agent may be used to adjust the molecular weight of the resulting unmodified conjugated diene rubber.
  • chain transfer agent examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, turpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used, etc., but is usually in the range of 0 to 100 ° C, preferably in the range of 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization inhibitor.
  • the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an antiaging agent may be added if necessary.
  • unreacted monomers are removed from the obtained latex as needed, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and if necessary, nitrates, sulfuric acid and the like are used.
  • the polymer is recovered by coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then separating the dispersion solvent. Then, by washing with water, dehydrating, and then drying, an unmodified conjugated diene-based rubber can be obtained.
  • latex and extended oil prepared as an emulsified dispersion may be mixed and recovered as an oil-expanded unmodified conjugated diene-based rubber.
  • the modified compound used in the production method (1) is not particularly limited, but one having a hydrogen-bonding functional group is preferable from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive.
  • the hydrogen-bonding functional group include the same as described above. Among them, from the viewpoint of the strength of hydrogen bonding force, hydroxy group, epoxy group, aldehyde group, acetalized form of aldehyde group, carboxy group, salt of carboxy group, esterified form of carboxy group, acid anhydride of carboxy group.
  • Preferables are a product, a boronyl group, a salt of a boronyl group, an esterified form of a boronyl group, a silanol group, and an esterified form of a silanol group.
  • modified compound examples include unsaturated carboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid; unsaturated such as maleic anhydride, citraconic acid anhydride, 2,3-dimethylmaleic acid anhydride, and itaconic acid anhydride.
  • Saturated carboxylic acid imides such as maleic acid imide, fumaric acid imide, citraconic acid imide, itacone acid imide; vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, mercaptomethylmethyldiethoxysilane, mercaptomethyltriethoxysilane , 2-Mercaptoethyltrimethoxysilane, 2-Mercaptoethyltriethoxysilane, 2-Mercaptoethylmethoxydimethylsilane, 2-Mercaptoethylethoxydimethylsilane, 3-Mercaptopropyltrimethoxysilane, 3-Mercaptopropyltriethoxysilane, 3 -Mercaptpropyldimethoxymethylsilane, 3-mercaptopropyldiethoxymethylsilane, 3-mercaptopropyldimethoxyethylsilane, 3-mercaptopropyldiethoxyethy
  • Silane compounds examples thereof include boronates such as triethyl borate, tripropyl borate, triisopropyl borate and tributyl borate.
  • boronates such as triethyl borate, tripropyl borate, triisopropyl borate and tributyl borate.
  • One of these modified compounds having a hydrogen-bonding functional group may be used alone, or two or more thereof may be used in combination.
  • the amount of the modified compound used is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass, and further preferably 1 to 30 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber.
  • the reaction temperature is usually preferably in the range of 0 to 200 ° C, more preferably in the range of 50 to 200 ° C.
  • a compound having a hydroxyl group such as 2-hydroxyethyl methacrylate or methanol after grafting maleic anhydride on an unmodified conjugated diene rubber obtained by living anionic polymerization, a compound such as water, etc. There is a method of reacting.
  • the amount of the modified compound added to the modified conjugated diene rubber is preferably 0.5 to 40 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. , 1.5 to 20 parts by mass is more preferable.
  • the amount of the modified compound added to the modified conjugated diene rubber can be calculated based on the acid value of the modified compound, and various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy are used. You can also ask for it.
  • the method for adding the modified compound to the unmodified conjugated diene rubber is not particularly limited, and for example, a liquid unmodified conjugated diene rubber, an unsaturated carboxylic acid, an unsaturated carboxylic acid derivative, a boronic acid derivative, and a silane compound are used. Examples thereof include a method of adding one or more modified compounds selected from the above and, if necessary, a radical generator, and heating in the presence or absence of an organic solvent.
  • the radical generator to be used is not particularly limited, and commercially available organic peroxides, azo compounds, hydrogen peroxide and the like can be used.
  • the organic solvent used in the above method generally include a hydrocarbon solvent and a halogenated hydrocarbon solvent. Among these organic solvents, hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
  • an antiaging agent may be added from the viewpoint of suppressing side reactions.
  • the antioxidant commercially available products can be used, for example, butylated hydroxytoluene (BHT), N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine (Nocrack 6C) and the like. Can be mentioned.
  • the amount of the antiaging agent added is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber.
  • the amount of the antiaging agent added is within the above range, side reactions can be suppressed and a modified conjugated diene rubber can be obtained in good yield.
  • Examples of the production method (2) include a method of obtaining an oxidation-conjugated diene-based rubber having a functional group or a bond containing oxygen generated by an oxidation reaction in the molecule by oxidizing the conjugated diene-based rubber as a raw material.
  • Specific examples of the functional group and the bond include a hydroxy group, an aldehyde group, a carbonyl group, a carboxy group, an ether bond and the like.
  • a method for oxidizing the raw material conjugated diene rubber a method of heat treatment at a temperature higher than the oxidation temperature (hereinafter, also referred to as “manufacturing method (2-1)”) and irradiation with light having an absorption wavelength of the raw material conjugated diene rubber are used. Examples thereof include a method of activating with and reacting with oxygen (hereinafter, also referred to as “production method (2-2)”). Above all, a method (manufacturing method (2-1)) obtained by heat-treating the raw material conjugated diene-based rubber at a temperature equal to or higher than the oxidation temperature is preferable.
  • the manufacturing method (2-1) is a method of heat-treating a raw material conjugated diene-based rubber at a temperature equal to or higher than the oxidation temperature.
  • the heat treatment is performed in an atmosphere containing oxygen, preferably in an air atmosphere.
  • the temperature of the heat treatment is not particularly limited as long as it oxidizes the raw material conjugated diene rubber, but is preferably 150 ° C. or higher, preferably 170 ° C. or higher, from the viewpoint of increasing the reaction rate of oxidation and improving productivity. It is more preferable that the temperature is 190 ° C. or higher.
  • the heat treatment time is not particularly limited as long as the raw material conjugated diene rubber does not deteriorate, but is preferably 30 minutes or less, and more preferably 20 minutes or less. Further, the temperature required for the oxidation reaction can be lowered by adding a thermal radical generator to the raw material conjugated diene-based rubber.
  • thermal radical generator examples include peroxides, azo compounds, redox-based initiators and the like. Of these, peroxides are preferable from the viewpoint that the thermal radical generator binds to the conjugated diene rubber and a structure containing oxygen is added to the conjugated diene rubber.
  • peroxide examples include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyoctanoate, t-butyl peroxyneodecanoate, and t-butyl peroxyisobutyrate.
  • azo compound examples include azobisisobutyronitrile (AIBN), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-butanenitrile), and 4,4'-azobis.
  • AIBN azobisisobutyronitrile
  • 2,2'-azobis isobutyronitrile
  • 4,4'-azobis. (4-Pentanoic acid), 1,1'-azobis (cyclohexanecarbonitrile), 2- (t-butylazo) -2-cyanopropane
  • Dichloride 2,2'-azobis (N, N-dimethylene
  • a redox-based initiator may be used as the thermal radical generator.
  • the redox-based initiator include a combination of supersulfate, acidic sodium bisulfite and ferrous sulfate, t-butylhydroperoxide, a combination of acidic sodium bisulfite and ferrous sulfate, and p-.
  • examples thereof include a combination of mentan hydroperoxide, ferrous sulfate, sodium ethylenediamine tetraacetate, and sodium formaldehyde sulfoxylate.
  • the production method (2-2) is a method of activating the raw material conjugated diene-based rubber by irradiating it with light having an absorption wavelength and reacting it with oxygen.
  • the production method (2-2) is carried out in an atmosphere containing oxygen, preferably in an air atmosphere.
  • the wavelength of the light used is not particularly limited as long as it is a wavelength that is absorbed by the raw material conjugated diene rubber and causes a radical reaction, but ultraviolet rays that are strongly absorbed by the raw material conjugated diene rubber are preferable. Further, by adding a photoradical generator to the raw material conjugated diene-based rubber, it is possible to reduce the irradiation amount of light required for the oxidation reaction.
  • Examples of the photoradical generator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexylphenyl ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, xanthone, fluorenone, benzaldehyde, fluorene and anthraquinone.
  • Examples of the production method (3) include a method of random copolymerization, block copolymerization or graft copolymerization of a conjugated diene monomer and a radically polymerizable compound having a hydrogen-bonding functional group by a known method.
  • the radically polymerizable compound having a hydrogen-bonding functional group used in the production method (3) is not particularly limited as long as it is a compound having both a hydrogen-bonding functional group and a reactive multiple bond in the molecule. Specifically, an aldehyde having a reactive multiple bond, an acetalized form of the aldehyde; a monocarboxylic acid having a reactive multiple bond, a salt of the monocarboxylic acid, an esterified product of the monocarboxylic acid, the mono.
  • Acid anhydride of carboxylic acid dicarboxylic acid having reactive multiple bonds, salt of the dicarboxylic acid, esterified product of the dicarboxylic acid, acid anhydride of the dicarboxylic acid; and amine compound having reactive multiple bonds, etc. Can be mentioned.
  • examples of the aldehyde having a reactive carbon-carbon double bond include achlorine, metachlorine, crotonaldehyde, 3-butenal, 2-methyl-2-butenal, and 2-methyl-3.
  • the aldehydes in which the cis-trans isomer is present include both cis and trans isomers. These aldehydes may be used alone or in combination of two or more.
  • the acetalized form of the aldehyde having the reactive carbon-carbon double bond is the acetalized form of the aldehyde, specifically 2-methyl-3-butenal.
  • -Il) -2-methyl-1-propen and the like can be mentioned.
  • the aldehyde having a reactive carbon-carbon triple bond and the acetalized form thereof include propiolaldehyde, 2-butin-1-ar, and 2-pentyne.
  • Examples thereof include aldehydes having a carbon-carbon triple bond such as -1-ar, and acetalized forms of the aldehydes.
  • an aldehyde having a reactive carbon-carbon double bond is preferable, and for example, acrolein, metachlorine, crotonaldehyde, 3-butenyl, 2-methyl-2- Butenal, 2-methyl-3-butenal, 2,2-dimethyl-3-butenal, 3-methyl-2-butenal, 3-methyl-3-butenal, 2-pentenal, 2-methyl-2-pentenal, 3- Pentenal, 3-methyl-4-pentenal, 4-pentenal, 4-methyl-4-pentenal, 2-hexenal, 3-hexenal, 4-hexenal, 5-hexenal, 7-octenal, 2-ethylcrotonaldehyde, 3-
  • One or more selected from (dimethylamino) acrolein and 2,4-pentadienal is preferable. Among them, one or more selected from acrolein, methacrolein, methacrolein,
  • Examples of the monocarboxylic acid having a multiple bond, the salt of the monocarboxylic acid, the esterified product of the monocarboxylic acid, and the acid anhydride of the monocarboxylic acid include (meth) acrylic acid and (meth) acrylic acid.
  • Carboxylic acid having a reactive carbon-carbon triple bond such as methyl propiolate, ethyl propiolate, vinyl propiolate, tetrol acid, methyl tetrolate, ethyl tetrolate, and vinyl tetrolate and esterifieds of the carboxylic acid.
  • (meth) acrylic acid means the generic term of "acrylic acid” and "methacrylic acid”.
  • Examples of the dicarboxylic acid having a multiple bond, the salt of the dicarboxylic acid, the esterified product of the dicarboxylic acid, and the acid anhydride of the dicarboxylic acid include maleic acid, sodium maleic acid salt, potassium maleic acid salt, and maleic acid.
  • Reactive carbon-carbon double bonds such as methyl, dimethyl maleate, maleic anhydride, itaconic acid, methyl itaconate, dimethyl itaconate, itaconic acid anhydride, hymic acid, methyl hymicate, dimethyl hymic acid, and hymicic acid anhydride
  • examples thereof include a dicarboxylic acid having a dicarboxylic acid, a salt of the dicarboxylic acid, an esterified product of the dicarboxylic acid, and an acid anhydride of the dicarboxylic acid.
  • the monocarboxylic acid having a multiple bond the salt of the monocarboxylic acid, the esterified product of the monocarboxylic acid, the monocarboxylic acid anhydride, the dicarboxylic acid having the multiple bond, the salt of the dicarboxylic acid, the dicarboxylic acid.
  • the esterified product and the acid anhydride of the dicarboxylic acid a compound having a reactive carbon-carbon double bond is preferable, and among them, methyl (meth) acrylate is good because the reactivity at the time of copolymerization is good.
  • examples of the amine compound having a reactive carbon-carbon double bond include allylamine, 3-butenylamine, 4-pentenylamine, 5-hexenylamine, 6-heptenylamine, and 7-octenylamine.
  • Oleylamine, 2-methylallylamine, 4-aminostyrene, 4-vinylbenzylamine, 2-allylglycine, S-allylcysteine, ⁇ -allylalanine, 2-allylaniline, geranylamine, bigabatrin, 4-vinylaniline, and 4-Vinyloxyaniline and the like can be mentioned.
  • at least one selected from allylamine, 3-butenylamine, and 4-pentenylamine is preferable because the reactivity at the time of copolymerization is good.
  • a polymerized product of an unmodified conjugated diene monomer having a polymerization active terminal is reacted with the polymerization active terminal before adding a polymerization terminator. It is a method of adding a modified compound to be obtained.
  • the unmodified conjugated diene-based rubber having a polymerization active terminal can be obtained by, for example, an emulsion polymerization method, a solution polymerization method, or the like, in the same manner as in the above-mentioned production method (1), other than the conjugated diene monomer and, if necessary, the conjugated diene.
  • Examples of the modified compound that can be used in the production method (4) include dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, and the like.
  • Boronic acid esters such as 2,4-tolylene diisocyanate, carbon dioxide, ethylene oxide, succinic anhydride, triethyl borate, tripropyl borate, triisopropyl borate, tributyl borate, boronic acid anhydride groups, phenylboronic acid Boronic acid anhydrides such as anhydrides, modifiers such as 4,4'-bis (diethylamino) benzophenone, N-vinylpyrrolidone, N-methylpyrrolidone, 4-dimethylaminobenzilidenaniline, dimethylimidazolidinone, or JP-A 2011. Other modifiers described in Japanese Publication No. 132298 may be mentioned.
  • the amount of the modified compound used in the production method (4) is preferably in the range of 0.01 to 100 mol equivalent with respect to the organic alkali metal compound, for example, when polymerizing using the organic alkali metal compound.
  • the reaction temperature is usually ⁇ 80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90 ° C.
  • the modified compound is added to introduce a hydrogen-bonding functional group into the unmodified conjugated diene rubber, and then another modified compound capable of reacting with the functional group is added to another hydrogen. Bonding functional groups may be introduced into the polymer.
  • the modified conjugated diene-based rubber contains a unit derived from a monomer other than the conjugated diene monomer and a radically polymerizable compound having a hydrogen-bonding functional group to the extent that the effect of the present invention is not impaired. You may. Examples of other monomers include copolymerizable ethylenically unsaturated monomers and aromatic vinyl compounds, and the specific compounds and contents are the same as described above.
  • the method for producing the modified conjugated diene rubber is not particularly limited, but from the viewpoint of productivity, it is preferably produced by the production method (1), (2) or (3), and the production method (1) or (3). It is more preferable to produce by the production method (1), and it is further preferable to produce by the production method (1).
  • the weight average molecular weight (Mw) of the liquid conjugated diene rubber is preferably 2,000 or more, preferably 5,000 or more, from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive. More preferably, it is more preferably 10,000 or more, further preferably 15,000 or more, further preferably 20,000 or more, and particularly preferably 25,000 or more. .. Further, from the viewpoint of maintaining the adhesive strength for a long period of time, it is more preferably 35,000 or more. From the viewpoint of improving the handleability of the liquid conjugated diene rubber, it is preferably 150,000 or less, more preferably 120,000 or less, further preferably 100,000 or less, and 75,000. The following is even more preferable. Mw and Mn of the liquid conjugated diene rubber are polystyrene-equivalent weight average molecular weight and number average molecular weight obtained from the measurement of gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the molecular weight distribution (Mw / Mn) of the liquid conjugated diene rubber is preferably 1.0 to 5.0, more preferably 1.0 to 3.0, and 1.0 to 2.0. Is even more preferable, and 1.0 to 1.3 is even more preferable. When Mw / Mn is within the above range, the viscosity variation of the liquid conjugated diene rubber is small and the handling is easy.
  • the molecular weight distribution (Mw / Mn) means the ratio of the weight average molecular weight (Mw) / number average molecular weight (Mn) in terms of standard polystyrene obtained by GPC measurement.
  • the glass transition temperature (Tg) of a liquid conjugated diene-based rubber may vary depending on the vinyl content of the conjugated diene unit, the type of the conjugated diene, the content of a unit derived from a monomer other than the conjugated diene, and the like. It is preferably ⁇ 100 to 10 ° C., more preferably ⁇ 100 to ⁇ 10 ° C., and even more preferably ⁇ 100 to ⁇ 20 ° C. When Tg is within the above range, high viscosity can be suppressed and handling becomes easy.
  • the glass transition temperature (Tg) of the liquid conjugated diene rubber means a value measured by differential scanning calorimetry (DSC), and can be specifically measured by the method described in Examples.
  • a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used.
  • the specific diluent is not particularly limited, and examples thereof include oil and low-viscosity liquid rubber.
  • the low-viscosity liquid rubber refers to a rubber having a melt viscosity of less than 30 Pa ⁇ s measured at 38 ° C., and is different from the liquid conjugated diene rubber in terms of melt viscosity.
  • the "diluent having a vapor pressure at 20 ° C. of 10 Pa or less" may be simply referred to as a "diluent".
  • the vapor pressure of the diluent at 20 ° C. exceeds 10 Pa, it becomes difficult to stabilize the emulsion. Further, when the emulsion composition of the present invention is used as an adhesive, coating spots are likely to occur, so that the adhesiveness may decrease. In addition, manufacturing equipment may be contaminated during manufacturing. From these viewpoints, the vapor pressure of the diluent at 20 ° C. is preferably 5.0 Pa or less, more preferably 1.0 Pa or less, and further preferably 1.0 ⁇ 10 -1 Pa or less. It is more preferably 1.0 ⁇ 10 ⁇ 2 Pa or less, and even more preferably 1.0 ⁇ 10 ⁇ 3 Pa or less.
  • the vapor pressure of the diluent at 20 ° C. is 1.0 ⁇ 10-8 Pa or more.
  • the vapor pressure of the diluent having a vapor pressure of less than 103 Pa at 20 ° C. is an optimum curve obtained by applying the Antoine equation to the measured value measured by the gas flow method. The value calculated by.
  • the vapor pressure of a diluent having a vapor pressure of more than 103 Pa at 20 ° C. is a value directly measured by using a static method.
  • non-volatile oil As the diluent, it is preferable to use, for example, non-volatile oil.
  • the oil is not particularly limited as long as it has a vapor pressure of 10 Pa or less at 20 ° C. and is compatible with a liquid conjugated diene-based rubber, and examples thereof include natural oils and synthetic oils.
  • natural oils include mineral oils and vegetable oils.
  • the mineral oil includes paraffin-based mineral oil, aromatic mineral oil, naphthen-based mineral oil, and wax (gas) produced by Fisher Tropusch process, etc., obtained by ordinary refining methods such as solvent refining and hydrogenation refining. Tulique wax), mineral oil produced by isomerizing the wax, and the like.
  • paraffin-based mineral oils examples include the "Diana Process Oil” series manufactured by Idemitsu Kosan Co., Ltd., the “Super Oil” series manufactured by JX Energy Co., Ltd., and the “SUNPAR 150” manufactured by Nippon Sun Oil Co., Ltd.
  • naphthenic mineral oils examples include "SUNTHENE 250J” manufactured by Nippon Sun Oil Co., Ltd.
  • Vegetable oils include, for example, flaxseed oil, camellia oil, macadamia nut oil, corn oil, mink oil, olive oil, avocado oil, southern ka oil, sunflower oil, red flower oil, jojoba oil, sunflower oil, almond oil, rapeseed oil, sesame oil, soybean oil. , Peanut oil, cottonseed oil, coconut oil, palm kernel oil, rice bran oil and the like.
  • Examples of the synthetic oil include hydrocarbon-based synthetic oils, ester-based synthetic oils, ether-based synthetic oils, and the like.
  • hydrocarbon-based synthetic oil examples include ⁇ -olefin oligomers such as polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, and ethylene-propylene copolymer, or hydrides thereof, alkylbenzene, and alkylnaphthalene. ..
  • ester-based synthetic oil examples include triglycerin fatty acid ester, diglycerin fatty acid ester, monoglycerin fatty acid ester, monoalcohol fatty acid ester, and polyhydric alcohol fatty acid ester.
  • the ether-based synthetic oil examples include polyoxyalkylene glycol and polyphenyl ether. Examples of commercially available synthetic oils include "Linearlen” series manufactured by Idemitsu Kosan Co., Ltd., "FGC32", “FGC46” and "FGC68” manufactured by ANDEROL.
  • the oil may be one selected from the above natural oils and synthetic oils, but two or more kinds of natural oils, two or more kinds of synthetic oils, or a mixture of one or more kinds of natural oils and synthetic oils. But it may be.
  • the flash point of the oil used in the present invention is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, further preferably 130 ° C. or higher, and 140 ° C. or higher from the viewpoint of safety. Is even more preferable.
  • the upper limit of the flash point of the oil is not particularly limited, but is preferably 320 ° C. or lower.
  • Low viscosity liquid rubber It is also preferable to use a low-viscosity liquid rubber as the diluent.
  • the low-viscosity liquid rubber is not particularly limited as long as the melt viscosity measured at 38 ° C. is less than 30 Pa ⁇ s and the vapor pressure at 20 ° C. is 10 Pa or less. More specifically, liquid butadiene rubber, liquid isoprene rubber, liquid farnesene rubber and the like can be mentioned, and these may be homopolymers (homopolymers) or copolymers. In particular, since it is diluted, it is preferable to have a low viscosity, a low molecular weight liquid rubber is preferable, and a liquid butadiene rubber and a liquid farnesene rubber are particularly preferable.
  • the weight average molecular weight of the low-viscosity liquid rubber is a liquid butadiene rubber
  • the weight average molecular weight is preferably 500 to 10,000, more preferably 700 to 7,000, and further preferably 800 to 6,000. preferable.
  • the weight average molecular weight is preferably 1,000 to 80,000, preferably 1,000 to 50,000, and 1,000 to 30, It is more preferably 000, and even more preferably 1,000 to 10,000.
  • the weight average molecular weight of the low-viscosity liquid rubber is a polystyrene-equivalent weight average molecular weight obtained from the measurement of gel permeation chromatography (GPC).
  • the diluent is preferably a naphthenic mineral oil or a low-viscosity liquid rubber, preferably a naphthenic mineral oil or a liquid butadiene rubber, from the viewpoint of improving the stability of the emulsion and the adhesiveness of the adhesive using the emulsion composition. Is more preferable.
  • the surfactant used in the present invention is not particularly limited, and examples thereof include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • a nonionic surfactant is preferable from the viewpoint of improving the stability of the emulsion. These may be used alone or in combination of two or more.
  • cationic surfactant examples include alkylammonium acetates, alkyldimethylbenzylammonium salts, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkylpyridinium salts, oxyalkylenealkylamines, polyoxyalkylenealkylamines and the like. .. These cationic surfactants may be used alone or in combination of two or more, if necessary.
  • anionic surfactant examples include carboxylates such as fatty acid soap, higher alcohol sulfate ester salts, higher alkyl polyalkylene glycol ether sulfate ester salts, sulfate ester salts of styrated phenol alkylene oxide adducts, and alkyl phenol alkylene oxide adducts.
  • Sulfate ester salt sulfated oil, sulfated fatty acid ester, sulfated fatty acid, sulfated olefin and other sulfate ester salts, alkylbenzene sulfonate, alkylnaphthalene sulfonate, naphthalene sulfonate, naphthalene sulfonic acid and the like formalin condensation Examples thereof include products, ⁇ -olefin sulfonates, paraffin sulfonates, sulfonates such as sulfosulphonic acid diester salts, higher alcohol phosphate ester salts and the like.
  • anionic surfactants may be used alone or in combination of two or more, if necessary.
  • examples of commercially available anionic surfactants include “Plysurf A210B” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. and "Phosphanol RD-720N” manufactured by Toho Chemical Industry Co., Ltd.
  • nonionic surfactant examples include a higher alcohol alkylene oxide adduct, an alkylphenol alkylene oxide adduct, a styrated phenolalkylene oxide adduct, a fatty acid alkylene oxide adduct, a polyhydric alcohol aliphatic ester alkylene oxide adduct, and a higher alkylamine.
  • examples thereof include polyoxyalkylene type nonionic surfactants such as alkylene oxide adducts and fatty acid amide alkylene oxide adducts, and polyhydric alcohol type nonionic surfactants such as alkyl glycoloxides and sucrose fatty acid esters.
  • nonionic surfactants may be used alone or in combination of two or more, if necessary.
  • Commercially available nonionic surfactants include “Adecator PC-6", “Adecator PC-8”, “Adecator PC-10”, “Adecator TN-100” manufactured by ADEKA Co., Ltd., and manufactured by Toho Chemical Industry Co., Ltd. Examples thereof include polyoxyethylene alkyl ethers (trade names “Pegnol TE-10A”, “Pegnol L-9A”, “Pegnol TH-8”) and the like.
  • the HLB (Hydrophilic-Lipophilic Balance) value of the nonionic surfactant is an index showing the balance between hydrophilicity and lipophilicity, and is expressed by a value from 0 to 20.
  • the value calculated by the following formula (I) based on the Griffin method is used.
  • HLB value 20 ⁇ total formula weight of hydrophilic part / molecular weight (I)
  • the molecular weight and structural units can be detected and measured using mass spectra, the structure can be detected and measured using 1H and 13 C - NMR, and the structure can be identified based on these. It is possible to obtain the HLB value using the formula (I) based on the obtained information.
  • the method for separating the nonionic surfactant from the emulsion composition include a method of fractionating and fractionating by reverse phase liquid chromatography.
  • the content of the liquid conjugated diene rubber in the emulsion composition of the present invention is an emulsion composition from the viewpoint of improving the stability of the emulsion and improving the adhesive strength when the emulsion composition is used as an adhesive. It is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 4% by mass or more, and preferably 50% by mass or less, based on the total amount of the substance. It is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • the content of the liquid conjugated diene rubber in the emulsion composition is within the above range, it is possible to improve the stability of the emulsion and prevent the viscosity of the emulsion composition from becoming extremely high.
  • the content of the diluent in the emulsion composition is preferably 1% by mass or more, more preferably 2% by mass or more, and 4% by mass or more, based on the total amount of the emulsion composition. Is more preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less.
  • the content of the diluent in the emulsion composition is within the above range, it is possible to prevent the viscosity of the emulsion composition from becoming extremely high, and the production efficiency is improved.
  • problems such as phase separation are less likely to occur for a long period of time after production.
  • the content of the surfactant in the emulsion composition is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the total of the liquid conjugated diene rubber and the diluent. It is more preferable that the amount is 4 parts by mass or more. When the content of the surfactant is 1 part by mass or more, the stability of the emulsion can be improved. On the other hand, the amount of the surfactant is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of manufacturing cost.
  • the liquid conjugated diene rubber may be used alone or in combination of two or more.
  • the diluent may be used alone or in combination of two or more.
  • the surfactant may be used alone or in combination of two or more.
  • the emulsion composition of the present invention comprises a liquid conjugated diene rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and other components other than water, as long as the stability of the emulsion is not impaired. May include.
  • the other components include other polymers, acids, basic compounds such as sodium hydroxide, antioxidants, curing agents, dispersants, pigments, dyes, adhesion aids, carbon black and the like.
  • Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and the like. Of these, sodium hydroxide and ammonia are preferable from the viewpoint of stability and adhesiveness, and ammonia is preferably used from the viewpoint of worker safety.
  • the content thereof is preferably 1,000 parts by mass or less, more preferably 100 parts by mass or less, based on 100 parts by mass of the liquid conjugated diene rubber. Yes, more preferably 10 parts by mass or less, still more preferably 1 part by mass or less.
  • the emulsion composition contains a basic compound such as sodium hydroxide in the above range, the stability of the emulsion is further improved.
  • Method for producing emulsion composition In the method for producing an emulsion composition of the present invention, the liquid conjugated diene rubber, the diluent, the surfactant, and water are mixed to produce an oil droplet emulsion in water, and then the diluent is not removed. It is characterized by. According to the production method of the present invention, since a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used, stability is easily compared with the conventional method while suppressing an increase in the viscosity of the emulsion composition. It is possible to obtain an excellent emulsion composition.
  • a solvent removing step is required, but in the method of the present invention, it is possible to produce an emulsion composition without requiring the removing step. be. That is, according to the production method of the present invention, the emulsion composition can be efficiently used for an adhesive or the like without requiring a post-treatment step.
  • "not removing the diluent" means that it is not necessary to provide a step for removing the diluent.
  • the order in which the liquid conjugated diene rubber, the diluent, the surfactant and the water are mixed is as follows: the liquid conjugated diene rubber, the diluent and the surfactant are mixed, and then water is mixed therein. You may.
  • a more preferred mixing order is to mix the liquid conjugated diene rubber and the diluent to prepare a diluent, then mix the diluent with the surfactant, then water and, if necessary, hydroxide.
  • the order is to add basic compounds such as sodium little by little and mix them.
  • the method for producing an emulsion composition adopting these orders is generally called a phase inversion emulsification method, in which an emulsifier is dissolved in an oil phase and water is added to the emulsion composition while stirring to change the continuous phase from the oil phase to the aqueous phase.
  • This is a method of inverting the phase to form an O / W type emulsion.
  • a basic compound such as sodium hydroxide
  • the above-mentioned phase inversion can be slowly promoted by adding the mixture little by little, and the resulting emulsion composition can be obtained. Is finer and the particle size distribution is smaller.
  • a basic compound such as sodium hydroxide is added, completing the addition of the basic compound before the above-mentioned phase inversion is completed improves the storage stability of the obtained emulsion composition. It is preferable in that it can be used.
  • each component is preferably mixed by a mechanical method.
  • the mechanical method include a method using a kneader, a super mixer, and a twin-screw extruder, and these can be used alone or in combination.
  • the surfactant is mixed with the diluted solution, and then water and, if necessary, a basic compound such as sodium hydroxide are added.
  • a basic compound such as sodium hydroxide
  • the emulsion composition When water is added in the method for producing an emulsion composition, the emulsion composition is once so that the contents of the liquid conjugated diene rubber and the diluent are within the above-mentioned suitable ranges.
  • Water may be added in the manufacturing process of.
  • the manufacturing process of the emulsion composition is divided into two or more steps, and in the first manufacturing step, the amount of water added is limited so as to contain the liquid conjugated diene rubber and the diluent in a high concentration. Then, in the subsequent production process of the emulsion composition, a production process of further adding water so as to have the content of the liquid conjugated diene rubber and the diluent suitable for the final product is used.
  • the product quality of the finally obtained emulsion composition can be easily stabilized. Further, when this manufacturing process is adopted, it is not always necessary to perform the first manufacturing process and the second and subsequent manufacturing steps in the same place, and the high-concentration emulsion composition obtained in the first manufacturing step is used as the emulsion composition. After transporting to or near the place where it is actually used, water is added so as to have the content of the liquid conjugated diene rubber and the diluent suitable for the final product in the second and subsequent manufacturing processes of the emulsion composition. Embodiments such as further addition are also preferred. In this case, the high-concentration emulsion composition is preferable from the economical point of view because the transportation cost is relatively small.
  • the viscosity of the diluted solution can be lowered, so that when emulsification is performed by the mechanical method, an excessive load is not applied to the apparatus and the rotation speed is increased to provide sufficient shear.
  • the viscosity of the diluted solution measured at 25 ° C. is preferably 1.0 ⁇ 10 3 Pa ⁇ s or less, and more preferably 5.0 ⁇ 10 2 Pa ⁇ s or less. It is more preferably 0.0 ⁇ 10 2 Pa ⁇ s or less, and most preferably 5.0 ⁇ 10 Pa ⁇ s or less. When the viscosity is within the above range, the viscosity can be sufficiently lowered, so that the production becomes easy.
  • the viscosity of the diluted solution means the viscosity measured at 25 ° C. using a Brookfield type viscometer (B type viscometer) having a composition in which only the conjugated diene rubber and the diluent are mixed.
  • the rotor and rotation speed at the time of measurement are appropriately set so as to be close to full scale.
  • the emulsion composition of the present invention has high emulsion stability as described above, it exhibits excellent adhesiveness when used as an adhesive component of an adhesive, for example.
  • the emulsion composition of the present invention is used as an adhesive component, its use is not particularly limited, and examples thereof include applications for adhering fibers and rubber.
  • the fiber as an adherend is not particularly limited, but a hydrophilic fiber is preferable from the viewpoint of affinity with an adhesive using the emulsion composition.
  • the term "fiber” includes not only single fibers and long fibers but also non-woven fabrics, woven fabrics, knitted fabrics, felts, sponges and the like.
  • the hydrophilic synthetic fiber is composed of a hydrophilic functional group such as a hydroxy group, a carboxy group, a sulfonic acid group, and an amino group, and / or a thermoplastic resin having a hydrophilic bond such as an amide bond.
  • a thermoplastic resin include polyvinyl alcohol-based resin and polyamide-based resin [polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, and polyamide 9C (polyamide composed of nonanediamine and cyclohexanedicarboxylic acid).
  • hydrophilic synthetic fiber one kind may be used alone, or two or more kinds may be used in combination. Further, these hydrophilic synthetic fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
  • hydrophilic natural fiber examples include natural cellulose fibers such as wood pulp such as kraft pulp, cotton pulp, and non-wood pulp such as straw pulp.
  • hydrophilic regenerated fiber examples include regenerated cellulose fibers such as rayon, lyocell, cupra, and polynosic. Each of these natural fibers and regenerated fibers may be used alone or in combination of two or more. Further, these hydrophilic natural fibers and regenerated fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
  • the hydrophilic fiber may have at least a hydrophilic surface.
  • hydrophilic resins constituting the sheath the description of hydrophilic synthetic fibers is cited.
  • the hydrophobic fiber made of a hydrophobic resin include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate, and all-aromatic polyester fibers, and among these, polyester fibers are preferable. ..
  • the hydrophilization treatment is not particularly limited as long as it is a treatment for chemically or physically imparting a hydrophilic functional group to the fiber surface, and for example, the hydrophobic fiber made of the hydrophobic resin is subjected to an isocyanate group, an epoxy group, or a hydroxy. It is carried out by a method of modifying with a compound containing a hydrophilic functional group such as a group, an amino group, an ether group, an aldehyde group, a carbonyl group, a carboxy group and a urethane group or a derivative thereof, or a method of modifying the surface by irradiation with an electron beam. be able to.
  • synthetic fiber and regenerated fiber are preferable from the viewpoint of easy compatibility between the emulsion composition and the fiber, and among them, polyvinyl alcohol fiber and regenerated cellulose fiber made from polyvinyl alcohol resin as a raw material.
  • polyvinyl alcohol fiber and regenerated cellulose fiber made from polyvinyl alcohol resin as a raw material.
  • One or more selected from polyester fibers and polyamide fibers is preferable.
  • the hydrophilized polyester fiber is the most preferable.
  • the method for adhering the emulsion composition to the fiber is not particularly limited, and it is preferably performed by one or more selected from dipping, roll coater, oiling roller, oiling guide, nozzle (spray) coating, brush coating and the like.
  • the amount of the emulsion composition adhered is preferably 0.01 part by mass or more, and 0.1 part by mass or more with respect to 100 parts by mass of the fiber, from the viewpoint of improving the adhesiveness between the fiber and the rubber. It is more preferably 1 part by mass or more, and from the viewpoint of the balance between the production cost and the effect, it is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. It is more preferably 3 parts by mass or less.
  • the emulsion composition of the present invention is attached to the fiber, it is preferably allowed to acclimate at room temperature of about 20 ° C. for about 3 to 10 days. Further, in some cases, the fiber may be heat-treated after being attached to the fiber. The heat treatment is preferably performed at a treatment temperature of 100 to 200 ° C. and a treatment time of 0.1 seconds to 2 minutes. Since the liquid conjugated diene rubber contained in the emulsion composition has a reactive multiple bond, the heat treatment in the presence of oxygen is preferably 200 ° C. or lower, more preferably 175 ° C. or lower. ..
  • the adhesive strength can be improved without reducing the amount of reactive multiple bonds in the liquid conjugated diene rubber, the deterioration of the fibers can be suppressed, and coloring and the like can be suppressed.
  • the quality is also good.
  • the rubber that adheres to the fiber is not particularly limited, and for example, NR (natural rubber), IR (polyisoprene rubber), BR (polybutadiene rubber), SBR (styrene-butadiene rubber), NBR (nitrile rubber), EPM (ethylene-). Propylene copolymer rubber), EPDM (ethylene-propylene-non-conjugated diene copolymer rubber), IIR (butyl rubber), halogenated butyl rubber, CR (chloroprene rubber) and the like can be mentioned. Among these, it is more preferable to use NR, BR, and SBR. One type of these rubbers may be used alone, or two or more types may be used in combination.
  • an emulsion composition is adhered to the fiber, and the emulsion composition is embedded in the unvulcanized rubber component to obtain the rubber component.
  • Production Example 1 Production of Modified Conjugated Diene Rubber (A-1) A sufficiently dried 5 L autoclave is substituted with nitrogen, 1260 g of hexane and 36.3 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is adjusted to 50 ° C. After raising the temperature, 1260 g of butadiene was sequentially added under stirring conditions while controlling the polymerization temperature to be 50 ° C., and the mixture was polymerized for 1 hour. Then, methanol was added to stop the polymerization reaction to obtain a polymer solution.
  • A-1 A sufficiently dried 5 L autoclave is substituted with nitrogen, 1260 g of hexane and 36.3 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is adjusted to 50 ° C. After raising the temperature, 1260 g of butadiene was sequentially added under stirring conditions while controlling the polymerization temperature to be 50 ° C.,
  • Production Example 2 Production of Modified Conjugated Diene Rubber (A-2) 1260 g of hexane and 23.6 g of n-butyllithium (17 mass% hexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set under stirring conditions.
  • a modified conjugated diene rubber (A-2) was produced in the same manner as in Production Example 1 except that 1260 g of butadiene was sequentially added while controlling the temperature to 50 ° C.
  • the measurement method and calculation method for each physical property of the modified conjugated diene-based rubber and the like are as follows. The results are shown in Table 1. ⁇ Measurement method of weight average molecular weight, number average molecular weight and molecular weight distribution> Mw, Mn and Mw / Mn of the modified conjugated diene rubber and the like were determined by GPC (gel permeation chromatography) as standard polystyrene conversion values. The measuring device and conditions are as follows.
  • GPC device GPC device "GPC8020” manufactured by Tosoh Corporation -Separation column: "TSKgelG4000HXL” manufactured by Tosoh Corporation -Detector: "RI-8020” manufactured by Tosoh Corporation -Eluent: Tetrahydrofuran-Eluent flow rate: 1.0 ml / min-Sample concentration: 5 mg / 10 ml -Column temperature: 40 ° C
  • melt viscosity The melt viscosity of the modified conjugated diene rubber or the like at 38 ° C. was measured with a Brookfield type viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
  • DSC differential scanning calorimetry
  • the average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber was calculated from the following formula from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene. ..
  • Average number of hydrogen-bonding functional groups per molecule [(number average molecular weight (Mn)) / (molecular weight of styrene unit) ⁇ (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
  • the method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
  • the acid value of the modified conjugated diene-based rubber is obtained, and the equivalent of hydrogen-bonding functional groups (g / eq) is calculated from the acid value. I went by that.
  • the sample after the denaturation reaction was washed 4 times with methanol (5 mL per 1 g of the sample) to remove impurities such as antioxidants, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours.
  • the mass of the hydrogen-bonding functional group contained in 1 g of the modified conjugated diene rubber is calculated by the following formula, and the mass other than the functional group contained in 1 g of the modified conjugated diene rubber (polymer main chain mass). ) was calculated. Then, the equivalent of the hydrogen-bonding functional group (g / eq) was calculated from the following formula.
  • the vapor pressure of the diluent in Table 2 at 20 ° C. and the HLB value of the surfactant in Table 3 were measured according to the following method.
  • the vapor pressure of toluene at 20 ° C. was directly measured by the static method.
  • Examples 5 to 6 Preparation of emulsion composition> It was carried out except that the composition of each component was as shown in Table 4 and that primary alcohol ethoxylate (trade name "TN-100", manufactured by ADEKA Corporation, HLB: 13.8) was used as a surfactant.
  • An emulsion composition was prepared in the same manner as in Example 1.
  • phase-separated ratio is less than 10% of the total volume, and the stability is excellent.
  • B The phase-separated ratio is 10% or more and less than 50% of the total volume, and the stability is somewhat poor.
  • C The phase-separated ratio is 50% or more of the total volume, and the stability is poor.
  • the obtained fiber cord was immersed in an emulsion containing a modified conjugated diene rubber (A-1) or a modified conjugated diene rubber (A-2), squeezed with a roller, and dried at 140 ° C. for 60 seconds. Then, the reinforcing fiber was produced by winding it up.
  • A-1 modified conjugated diene rubber
  • A-2 modified conjugated diene rubber
  • NR rubber 70 parts by mass SBR rubber: 41.25 parts by mass Filler (carbon black): 45 parts by mass Vulcanizing agent (sulfur powder): 3.5 parts by mass Vulcanization aid (zinc flower, stealic acid): 6 parts by mass Vulcanization accelerator (thiazole type): 1 part by mass
  • twisted cord was treated with the constituent material (D-1) of the surface modification layer.
  • a twisted fiber cord is obtained by multiplying two nylon fibers (total fineness 1400 dtex, single yarn fineness 6.86 dtex), which are polyamide fibers, by 470 times / m of upper twist and 470 times / m of lower twist.
  • the twisted cord was immersed in the constituent material (D-1) of the surface modification layer, and then squeezed with a roller.
  • the obtained fiber cord was dried at 140 ° C. for 60 seconds and further heat-treated at 210 ° C. for 60 seconds to prepare the fiber cord.
  • the obtained fiber cord was immersed in an emulsion containing a modified conjugated diene rubber (A-2), squeezed with a roller, dried at 140 ° C. for 60 seconds, and then wound to prepare a reinforcing fiber. ..
  • A-2 modified conjugated diene rubber
  • an emulsion composition having excellent emulsion stability can be obtained. Further, it can be seen that when the emulsion composition of the present invention is used for adhesion, excellent adhesiveness is exhibited.

Abstract

The preset invention provides: an emulsion composition which is able to be produced by an easy method in comparison to conventional ones, while exhibiting excellent stability of an emulsion; and a method for producing this emulsion composition. An emulsion composition which contains: a conjugated diene rubber in a liquid state; a diluent that has a vapor pressure of 10 Pa or less at 20°C; a surfactant; and water.

Description

エマルション組成物及びその製造方法Emulsion composition and its production method
 本発明は、エマルションの安定性に優れるエマルション組成物、及びその製造方法に関する。 The present invention relates to an emulsion composition having excellent emulsion stability and a method for producing the same.
 液状ゴムは、粘着性付与剤、接着剤、ゴム類の耐寒性改良剤、加工油剤及び反応性可塑剤等として多方面に利用されている。液状ゴムをこれらの用途に利用する場合、一般的には液状ゴムをそのまま利用するが、エマルション化してから利用することもある。液状ゴムの分子量が数千程度である場合は粘度が低いため、一般的な乳化剤を用いることにより容易にエマルション化することが可能であるが、液状ゴムの分子量が数万程度である場合は粘度が高くなるため、エマルション化することが難しくなる。この場合、極めて大きな機械的せん断力をかけることによりエマルション化することも可能であるが、専用の設備が必要になったり製造工程が煩雑になるという問題がある。また、エマルション化することができたとしても安定性が乏しいため、保管中に相分離が生じるという問題もある。 Liquid rubber is widely used as an adhesive, an adhesive, a cold resistance improving agent for rubbers, a processing oil agent, a reactive plasticizer, and the like. When liquid rubber is used for these purposes, it is generally used as it is, but it may be used after being emulsified. Since the viscosity is low when the molecular weight of the liquid rubber is about several thousand, it can be easily emulsified by using a general emulsifier, but when the molecular weight of the liquid rubber is about tens of thousands, the viscosity is high. Therefore, it becomes difficult to emulsify. In this case, it is possible to emulsify by applying an extremely large mechanical shearing force, but there is a problem that dedicated equipment is required and the manufacturing process becomes complicated. Further, even if it can be emulsified, it has poor stability, so that there is a problem that phase separation occurs during storage.
 このような問題を解決する方法として、特許文献1には、重合体の有機溶媒溶液(A)と水性媒体(B)とを乳化剤の存在下で混合して水中油型エマルションを作る方法において、前記(A)及び(B)を特定の容量比で低速度撹拌にて混合して油中水型エマルションを作り、更に高速度撹拌を行うことによって転相させて水中油型エマルションとする方法が提案されている。また特許文献2には、分子量が10,000~60,000である液状シス-1,4-ポリイソプレンゴムのエマルション化に際して、前記シス-1,4-ポリイソプレンゴムを有機溶剤に溶解することなく、且つ前記液状シス-1,4-ポリイソプレンゴム100質量部に対して水を多くとも80質量部以下の範囲で用いることを特徴とする乳化方法が提案されている。
 更に、特許文献3には、分子量が10,000~60,000である液状ポリイソプレンに対して、乳化剤としてジアルキルスルホコハク酸塩を用いる乳化方法が提案されており、特許文献4には、分子量が10,000~60,000である液状ポリイソプレンをエマルション化するに際して、乳化剤としてポリオキシエチレンアルキル(アリル)エーテルフォスフェートを用いるエマルションの製造方法が提案されている。
 更に、非特許文献1には、液状ゴムのエマルション化方法として有機溶剤で稀釈後、乳化剤及び水と混合した後、有機溶剤を留去して乳化する方法が記載されている。
As a method for solving such a problem, Patent Document 1 describes in a method of mixing an organic solvent solution (A) of a polymer and an aqueous medium (B) in the presence of an emulsifier to form an oil-in-water emulsion. A method in which the above (A) and (B) are mixed at a specific volume ratio by low-speed stirring to form a water-in-oil emulsion, and further phase-inverted by high-speed stirring to obtain an oil-in-water emulsion. Proposed. Further, in Patent Document 2, when emulsifying a liquid cis-1,4-polyisoprene rubber having a molecular weight of 10,000 to 60,000, the cis-1,4-polyisoprene rubber is dissolved in an organic solvent. There has been proposed an emulsification method characterized by using water in a range of 80 parts by mass or less at most with respect to 100 parts by mass of the liquid cis-1,4-polyisoprene rubber.
Further, Patent Document 3 proposes an emulsification method using dialkylsulfosuccinate as an emulsifier for liquid polyisoprene having a molecular weight of 10,000 to 60,000, and Patent Document 4 has a molecular weight of 10,000 to 60,000. A method for producing an emulsion using polyoxyethylene alkyl (allyl) ether phosphate as an emulsifier when emulsifying a liquid polyisoprene of 10,000 to 60,000 has been proposed.
Further, Non-Patent Document 1 describes, as a method for emulsifying liquid rubber, a method of diluting with an organic solvent, mixing with an emulsifier and water, and then distilling off the organic solvent to emulsify.
特公昭49-332号公報Special Publication No. 49-332 特開昭54-124043号公報Japanese Unexamined Patent Publication No. 54-124043 特開昭62-141033号公報Japanese Unexamined Patent Publication No. 62-141033 特開昭54-124040号公報Japanese Unexamined Patent Publication No. 54-124040
 従来の方法であってもエマルション組成物を得ることができるものの、エマルションの安定性が十分ではなかった。また、特に特許文献1の方法では粘度が高い組成物を高速で撹拌する必要があることから専用の設備を必要とし、容易に製造することができなかった。また非特許文献1では有機溶剤を使用するため溶剤を留去する工程を必要とし、製造方法が煩雑であった。 Although the emulsion composition could be obtained by the conventional method, the stability of the emulsion was not sufficient. Further, in particular, the method of Patent Document 1 requires special equipment because it is necessary to stir the composition having a high viscosity at high speed, and it cannot be easily produced. Further, in Non-Patent Document 1, since an organic solvent is used, a step of distilling off the solvent is required, and the manufacturing method is complicated.
 本発明の課題は、前記問題を鑑みてなされたものであって、従来の方法と比較して簡単に製造することができ、且つエマルションの安定性に優れるエマルション組成物、及びその製造方法を提供することである。 The subject of the present invention has been made in view of the above problems, and provides an emulsion composition which can be easily produced as compared with a conventional method and has excellent emulsion stability, and a method for producing the same. It is to be.
 本発明者らは、液状の共役ジエン系ゴムのエマルション化について種々検討した結果、20℃における蒸気圧が10Pa以下である希釈剤を用いると、相分離が生じにくい非常に安定なエマルション組成物が得られること、更に、従来の方法と比較して簡便な方法でエマルション組成物が得られることを見出し、本発明を完成させた。 As a result of various studies on emulsification of liquid conjugated diene rubber, the present inventors have found a very stable emulsion composition in which phase separation is unlikely to occur when a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used. We have found that the emulsion composition can be obtained by a simpler method as compared with the conventional method, and completed the present invention.
 すなわち、本発明は下記[1]~[7]を提供するものである。
[1]液状の共役ジエン系ゴム、20℃における蒸気圧が10Pa以下である希釈剤、界面活性剤及び水を含有するエマルション組成物。
[2]前記液状の共役ジエン系ゴムが、ブタジエン、イソプレン、及びβ-ファルネセンから選ばれる1種以上に由来する単量体単位を含む、前記[1]に記載のエマルション組成物。
[3]前記液状の共役ジエン系ゴムが、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムである、前記[1]又は[2]に記載のエマルション組成物。
[4]前記水素結合性官能基が、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、ボロニル基、ボロニル基の塩、ボロニル基のエステル化体、シラノール基、及びシラノール基のエステル化体から選ばれる1種以上である、前記[3]に記載のエマルション組成物。
[5]前記界面活性剤がノニオン界面活性剤である、前記[1]~[4]のいずれかに記載のエマルション組成物。
[6]前記エマルション組成物中の前記界面活性剤の含有量が、前記液状の共役ジエン系ゴム及び前記希釈剤の合計100質量部に対して1~15質量部である、前記[1]~[5]のいずれかに記載のエマルション組成物。
[7]前記[1]~[6]のいずれかに記載のエマルション組成物の製造方法であって、前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤、及び水を混合して水中油滴エマルションを製造した後、前記希釈剤を除去しないことを特徴とする、エマルション組成物の製造方法。
That is, the present invention provides the following [1] to [7].
[1] An emulsion composition containing a liquid conjugated diene-based rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and water.
[2] The emulsion composition according to the above [1], wherein the liquid conjugated diene rubber contains a monomer unit derived from one or more selected from butadiene, isoprene, and β-farnesene.
[3] The emulsion composition according to the above [1] or [2], wherein the liquid conjugated diene rubber is a modified conjugated diene rubber having a hydrogen-bonding functional group as a part of the conjugated diene rubber.
[4] The hydrogen-binding functional group is a hydroxy group, an epoxy group, an aldehyde group, an acetalized form of an aldehyde group, a carboxy group, a salt of a carboxy group, an esterified form of a carboxy group, an acid anhydride of a carboxy group, or a boronyl. The emulsion composition according to the above [3], which is one or more selected from a group, a salt of a boronyl group, an esterified product of a boronyl group, a silanol group, and an esterified product of a silanol group.
[5] The emulsion composition according to any one of [1] to [4] above, wherein the surfactant is a nonionic surfactant.
[6] The content of the surfactant in the emulsion composition is 1 to 15 parts by mass with respect to 100 parts by mass in total of the liquid conjugated diene rubber and the diluent. The emulsion composition according to any one of [5].
[7] The method for producing an emulsion composition according to any one of [1] to [6], wherein the liquid conjugated diene rubber, the diluent, the surfactant, and water are mixed. A method for producing an emulsion composition, which comprises producing an oil droplet emulsion in water and then not removing the diluent.
 本発明によれば、従来の方法と比較して簡単に製造することができ、且つエマルションの安定性に優れるエマルション組成物、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide an emulsion composition which can be easily produced as compared with a conventional method and has excellent emulsion stability, and a method for producing the same.
[エマルション組成物]
 本発明のエマルション組成物は、液状の共役ジエン系ゴム、20℃における蒸気圧が10Pa以下である希釈剤、界面活性剤及び水を含有するエマルション組成物である。
 本発明によれば、液状の共役ジエン系ゴムと20℃における蒸気圧が10Pa以下である希釈剤とを組み合わせて用いているため、相分離が生じにくい安定性に優れるエマルション組成物を得ることが可能である。希釈剤の20℃における蒸気圧が10Paを超えると保管時に希釈剤が蒸発し、エマルション粒子が崩壊する恐れがある。これに対して、希釈剤の20℃における蒸気圧が10Pa以下であると前記エマルション粒子の崩壊を抑制することが可能となる。また、本発明のエマルション組成物は、その製造時に粘度が上昇しにくいため製造が容易であり、取り扱い性にも優れる。更に製造設備の汚染を抑制することができると同時に、有機溶剤を用いて希釈する製造方法に対して、希釈剤の除去工程を不要にすることができるため製造効率に優れる。
 なお、本発明のエマルション組成物はエマルションが安定しているため、これを接着剤として用いた場合により均一に、且つ効率的に接着対象物に付着させることができ、その結果、接着力も向上する。
[Emulsion composition]
The emulsion composition of the present invention is an emulsion composition containing a liquid conjugated diene rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and water.
According to the present invention, since a liquid conjugated diene rubber and a diluent having a vapor pressure of 10 Pa or less at 20 ° C. are used in combination, it is possible to obtain an emulsion composition having excellent stability in which phase separation is unlikely to occur. It is possible. If the vapor pressure of the diluent at 20 ° C. exceeds 10 Pa, the diluent may evaporate during storage and the emulsion particles may collapse. On the other hand, when the vapor pressure of the diluent at 20 ° C. is 10 Pa or less, it is possible to suppress the disintegration of the emulsion particles. In addition, the emulsion composition of the present invention is easy to manufacture because its viscosity does not easily increase during its manufacture, and it is also excellent in handleability. Further, the contamination of the manufacturing equipment can be suppressed, and at the same time, the manufacturing method of diluting with an organic solvent can eliminate the need for the step of removing the diluent, so that the manufacturing efficiency is excellent.
Since the emulsion composition of the present invention has a stable emulsion, it can be more uniformly and efficiently adhered to the object to be adhered when it is used as an adhesive, and as a result, the adhesive strength is also improved. ..
 以下、本発明について詳細に説明する。
<液状の共役ジエン系ゴム>
 本発明において用いる液状の共役ジエン系ゴムは、分子内に少なくとも共役ジエンに由来する単量体単位(以下、「共役ジエン単位」とも称する)を含むものであり、例えば、共役ジエン系ゴムの全単量体単位中に共役ジエンに由来する単量体単位を50モル%以上含有するものが好ましい。
 なお、本明細書において液状の共役ジエン系ゴムは38℃で測定した溶融粘度が30Pa・s以上、4,000Pa・s以下であるものをいう。該溶融粘度は接着性を向上させる観点から、35Pa・s以上であることが好ましく、40Pa・s以上であることがより好ましい。また、エマルションの安定性を向上させる観点、取り扱い性を向上させる観点から、該溶融粘度は2,500Pa・s以下であることが好ましく、1,500Pa・s以下であることがより好ましく、1,000Pa・s以下であることが更に好ましく、500Pa・s以下であることがより更に好ましい。前記溶融粘度が前記範囲内であると、エマルション組成物の分散性が向上すると共に粘度の上昇が抑えられるため取り扱い性を良好にすることができる。
 なお、液状の共役ジエン系ゴムの溶融粘度は、ブルックフィールド型粘度計(B型粘度計)を用いて38℃にて測定した粘度を意味する。
Hereinafter, the present invention will be described in detail.
<Liquid conjugated diene rubber>
The liquid conjugated diene-based rubber used in the present invention contains at least a monomer unit derived from the conjugated diene (hereinafter, also referred to as “conjugated diene unit”) in the molecule, and for example, all of the conjugated diene-based rubbers. It is preferable that the monomer unit contains 50 mol% or more of the monomer unit derived from the conjugated diene.
In the present specification, the liquid conjugated diene rubber has a melt viscosity of 30 Pa · s or more and 4,000 Pa · s or less measured at 38 ° C. The melt viscosity is preferably 35 Pa · s or more, and more preferably 40 Pa · s or more, from the viewpoint of improving the adhesiveness. Further, from the viewpoint of improving the stability of the emulsion and improving the handleability, the melt viscosity is preferably 2,500 Pa · s or less, more preferably 1,500 Pa · s or less, 1. It is more preferably 000 Pa · s or less, and even more preferably 500 Pa · s or less. When the melt viscosity is within the above range, the dispersibility of the emulsion composition is improved and the increase in viscosity is suppressed, so that the handleability can be improved.
The melt viscosity of the liquid conjugated diene rubber means the viscosity measured at 38 ° C. using a Brookfield type viscometer (B type viscometer).
 共役ジエン単量体としては、例えば、ブタジエン、2-メチル-1,3-ブタジエン(以下、「イソプレン」とも称する)、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、β-ファルネセン(以下、「ファルネセン」とも称する)、ミルセン、及びクロロプレン等が挙げられる。これら共役ジエンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 液状の共役ジエン系ゴムは、エマルション組成物を接着剤として用いた場合の接着性の観点から、ブタジエン、イソプレン及びファルネセンから選ばれる1種以上に由来する単量体単位を含むことがより好ましい。
Examples of the conjugated diene monomer include butadiene, 2-methyl-1,3-butadiene (hereinafter, also referred to as “isoprene”), 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, and 2, -Methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadien, 1,3-cyclohexadiene, 2-methyl-1,3-octadien, 1,3,7-octatriene, β-farnesene (Hereinafter also referred to as "farnesen"), myrsen, chloroprene and the like can be mentioned. These conjugated diene may be used alone or in combination of two or more.
The liquid conjugated diene rubber is more preferably containing a monomer unit derived from one or more selected from butadiene, isoprene and farnesene from the viewpoint of adhesiveness when the emulsion composition is used as an adhesive.
 本発明において用いる液状の共役ジエン系ゴムは、本発明の効果を阻害しない範囲で前記共役ジエン単量体以外の他の単量体に由来する単位を含んでいてもよい。他の単量体としては、共重合可能なエチレン性不飽和単量体や芳香族ビニル化合物が挙げられる。
 前記エチレン性不飽和単量体としては、例えば、エチレン、1-ブテン、及びイソブチレン等のオレフィン等が挙げられる。
 前記芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 液状の共役ジエン系ゴムが共役ジエン単量体以外の他の単量体に由来する単量体単位を含有する場合、その含有量は30モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることが更に好ましい。
The liquid conjugated diene rubber used in the present invention may contain a unit derived from a monomer other than the conjugated diene monomer as long as the effect of the present invention is not impaired. Examples of other monomers include copolymerizable ethylenically unsaturated monomers and aromatic vinyl compounds.
Examples of the ethylenically unsaturated monomer include olefins such as ethylene, 1-butene, and isobutylene.
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, and 4 -Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2 -Vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene and the like can be mentioned. These may be used alone or in combination of two or more.
When the liquid conjugated diene rubber contains a monomer unit derived from a monomer other than the conjugated diene monomer, the content thereof is preferably 30 mol% or less, preferably 10 mol% or less. It is more preferably present, and further preferably 5 mol% or less.
 本発明において用いる液状の共役ジエン系ゴムは、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムであることが好ましく、少なくとも一部の重合体鎖に共役ジエン単位を含み、かつ、該重合体鎖の側鎖又は末端に水素結合性官能基を有する変性共役ジエン系ゴムがより好ましい。
 共役ジエン系ゴムが前記変性共役ジエン系ゴムであると、本発明のエマルション組成物を接着剤として用いた場合に、変性共役ジエン系ゴムが被着体と相互作用することによって、接着力を向上させることができる。
The liquid conjugated diene-based rubber used in the present invention is preferably a modified conjugated diene-based rubber having a hydrogen-binding functional group in a part of the conjugated diene-based rubber, and a conjugated diene unit is added to at least a part of the polymer chain. A modified conjugated diene-based rubber containing a hydrogen-binding functional group at the side chain or the end of the polymer chain is more preferable.
When the conjugated diene rubber is the modified conjugated diene rubber, when the emulsion composition of the present invention is used as an adhesive, the modified conjugated diene rubber interacts with the adherend to improve the adhesive force. Can be made to.
 なお、本明細書において、「水素結合」とは、電気陰性度の大きな原子(O、N、S等)に結合し、電気的に陽性に分極した水素原子(ドナー)と、孤立電子対を有する電気的に陰性な原子(アクセプター)との間に形成される結合性の相互作用を意味する。 In addition, in this specification, "hydrogen bond" means a hydrogen atom (donor) which is bonded to an atom (O, N, S, etc.) having a large electronegativity and is electrically positively polarized, and a lone electron pair. It means a bond-like interaction formed with an electrically negative atom (acceptor).
 本発明において「水素結合性官能基」とは、前記水素結合においてドナー及びアクセプターとして機能することのできる官能基である。具体的には、ヒドロキシ基、エポキシ基、エーテル基、メルカプト基、カルボキシ基、カルボニル基、アルデヒド基、アミノ基、イミノ基、イミダゾール基、ウレタン基、アミド基、ウレア基、イソシアネート基、ニトリル基、ボロニル基、シラノール基及びこれらの誘導体等が挙げられる。アルデヒド基の誘導体としては、そのアセタール化体が挙げられる。カルボキシ基の誘導体としては、その塩、そのエステル化体、そのアミド化体、その酸無水物が挙げられる。ボロニル基の誘導体としては、その塩、そのエステル化体が挙げられる。シラノール基の誘導体としては、そのエステル化体が挙げられる。また、カルボキシ基としては、モノカルボン酸由来の基、ジカルボン酸由来の基が挙げられる。
 これらの中でも、接着性を向上させる観点、液状の共役ジエン系ゴムの製造容易性の観点から、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、ボロニル基、ボロニル基の塩、ボロニル基のエステル化体、シラノール基、及びシラノール基のエステル化体から選ばれる1種以上が好ましく、ヒドロキシ基、エポキシ基、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、ボロニル基、ボロニル基の塩、及びボロニル基のエステル化体から選ばれる1種以上がより好ましく、カルボキシ基、カルボキシ基のエステル化体、ボロニル基、及びボロニル基のエステル化体から選ばれる1種以上が更に好ましい。
In the present invention, the "hydrogen-bonding functional group" is a functional group capable of functioning as a donor and an acceptor in the hydrogen bond. Specifically, hydroxy group, epoxy group, ether group, mercapto group, carboxy group, carbonyl group, aldehyde group, amino group, imino group, imidazole group, urethane group, amide group, urea group, isocyanate group, nitrile group, Examples thereof include a boronyl group, a silanol group and derivatives thereof. Examples of the derivative of the aldehyde group include its acetalized form. Examples of the derivative of the carboxy group include the salt thereof, the esterified product thereof, the amidated product thereof, and the acid anhydride thereof. Examples of the derivative of the boronyl group include the salt thereof and the esterified product thereof. Examples of the derivative of the silanol group include its esterified product. Examples of the carboxy group include a group derived from a monocarboxylic acid and a group derived from a dicarboxylic acid.
Among these, from the viewpoint of improving the adhesiveness and the ease of producing a liquid conjugated diene rubber, hydroxy group, epoxy group, aldehyde group, esterified body of aldehyde group, carboxy group, salt of carboxy group, carboxy One or more selected from an esterified product of a group, an acid anhydride of a carboxy group, a boronyl group, a salt of a boronyl group, an esterified product of a boronyl group, a silanol group, and an esterified product of a silanol group is preferable. More preferably, one or more selected from an epoxy group, a carboxy group, a salt of a carboxy group, an esterified product of a carboxy group, an acid anhydride of a carboxy group, a boronyl group, a salt of a boronyl group, and an esterified product of a boronyl group. More preferably, one or more selected from a carboxy group, an esterified product of a carboxy group, a boronyl group, and an esterified product of a boronyl group.
 変性共役ジエン系ゴム中の水素結合性官能基数は、エマルション組成物を接着剤として用いた場合の接着性を向上させる観点から、1分子当たりの平均が0.5個以上であることが好ましく、2個以上であることがより好ましく、3個以上であることが更に好ましい。また、前記水素結合性官能基数は、変性共役ジエン系ゴムの粘度を適切な範囲に制御し、取り扱い性を向上させる観点から、1分子当たりの平均が、80個以下であることが好ましく、40個以下であることがより好ましく、20個以下であることがより好ましく、10個以下であることが更に好ましい。 The number of hydrogen-bonding functional groups in the modified conjugated diene-based rubber is preferably 0.5 or more on average per molecule from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive. Two or more are more preferable, and three or more are further preferable. The number of hydrogen-bonding functional groups is preferably 80 or less per molecule, preferably 40 or less, from the viewpoint of controlling the viscosity of the modified conjugated diene rubber in an appropriate range and improving the handleability. The number is more preferably less than, more preferably 20 or less, and even more preferably 10 or less.
 変性共役ジエン系ゴム1分子当たりの平均水素結合性官能基数は、変性共役ジエン系ゴムの水素結合性官能基の当量(g/eq)とスチレン換算の数平均分子量Mnから、下記式に基づき算出される。変性共役ジエン系ゴムの水素結合性官能基の当量は、水素結合性官能基1個当たりに結合している共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。
 1分子当たりの平均水素結合性官能基数=[(数平均分子量(Mn))/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(水素結合性官能基の当量)
 なお、水素結合性官能基の当量の算出方法は、水素結合性官能基の種類により適宜選択することができる。
The average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber is calculated from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene based on the following formula. Will be done. The equivalent of the hydrogen-bonding functional group of the modified conjugated diene-based rubber means the mass of the conjugated diene bonded to one hydrogen-bonding functional group and other monomers other than the conjugated diene contained as necessary. do.
Average number of hydrogen-bonding functional groups per molecule = [(number average molecular weight (Mn)) / (molecular weight of styrene unit) × (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
The method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
 変性共役ジエン系ゴムを得る方法としては、例えば、共役ジエン単量体の重合化物に変性化合物を付加することにより得る方法(以下、「製造方法(1)」とも称する)や、共役ジエン重合体を酸化することにより得る方法(以下、「製造方法(2)」とも称する)、共役ジエン単量体と水素結合性官能基を有するラジカル重合性化合物とを共重合することにより得る方法(以下、「製造方法(3)」とも称する)、重合活性末端を有する未変性の共役ジエン単量体の重合化物に対して重合停止剤を添加する前に該重合活性末端と反応し得る変性化合物を添加する方法(以下、「製造方法(4)」とも称する)が挙げられる。 Examples of the method for obtaining the modified conjugated diene-based rubber include a method obtained by adding a modified compound to a polymerized product of the conjugated diene monomer (hereinafter, also referred to as “production method (1)”), and a conjugated diene polymer. (Hereinafter, also referred to as "manufacturing method (2)"), a method obtained by copolymerizing a conjugated diene monomer and a radically polymerizable compound having a hydrogen-binding functional group (hereinafter, also referred to as "manufacturing method (2)"). Also referred to as "production method (3)"), a modified compound capable of reacting with the polymerization active terminal is added to the polymer of the unmodified conjugated diene monomer having a polymerization active end before the polymerization terminator is added. (Hereinafter, also referred to as “manufacturing method (4)”).
〔変性共役ジエン系ゴムの製造方法(1)〕
 製造方法(1)は、共役ジエン単量体の重合化物、すなわち未変性の共役ジエン系ゴム(以下、「未変性共役ジエン系ゴム」とも称する)に変性化合物を付加する方法である。
 未変性共役ジエン系ゴムは、共役ジエン及び必要に応じて共役ジエン以外の他の単量体を、例えば、乳化重合法、又は溶液重合法等により重合して得ることができる。
[Manufacturing method of modified conjugated diene rubber (1)]
The production method (1) is a method of adding a modified compound to a polymerized conjugated diene monomer, that is, an unmodified conjugated diene-based rubber (hereinafter, also referred to as “unmodified conjugated diene-based rubber”).
The unmodified conjugated diene-based rubber can be obtained by polymerizing a conjugated diene and, if necessary, a monomer other than the conjugated diene by, for example, an emulsion polymerization method, a solution polymerization method, or the like.
 前記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属又は活性金属化合物を使用して、必要に応じて極性化合物の存在下で、所定量の共役ジエンを含む単量体を重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
As the solution polymerization method, a known or known method can be applied. For example, a monomer containing a predetermined amount of conjugated diene in a solvent using a Cheegler catalyst, a metallocene catalyst, an anionic polymerizable active metal or active metal compound, optionally in the presence of a polar compound. To polymerize.
Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentan, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Examples thereof include aromatic hydrocarbons such as toluene and xylene.
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これらアニオン重合可能な活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
Examples of the anion-polymerizable active metal include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; and lanthanoid-based rare earth metals such as lanthanum and neodym. .. Among these anionic polymerizable active metals, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
As the anionic polymerizable active metal compound, an organic alkali metal compound is preferable. Examples of the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stillbenlithium; , 1,4-Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other polyfunctional organic lithium compounds; sodium naphthalene, potassium naphthalene and the like. Among these organic alkali metal compounds, an organic lithium compound is preferable, and an organic monolithium compound is more preferable.
 前記有機アルカリ金属化合物の使用量は、目的とする未変性共役ジエン系ゴム及び変性共役ジエン系ゴムの溶融粘度、分子量等に応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。
 前記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
The amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight, etc. of the target unmodified conjugated diene rubber and modified conjugated diene rubber, but 100 parts by mass of all the monomers containing the conjugated diene. However, it is usually used in an amount of 0.01 to 3 parts by mass.
The organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, or dibenzylamine.
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン部位のミクロ構造を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル、2,2-ジ(2-テトラヒドロフリル)プロパン等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。極性化合物は、有機アルカリ金属化合物に対して、通常0.01~1,000モルの量で使用される。
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、重合化物を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより未変性共役ジエン系ゴムを単離できる。
 未変性共役ジエン系ゴムの製造方法としては、前記方法の中でも、溶液重合法が好ましい。
Polar compounds are usually used in anionic polymerization to condition the microstructure of the conjugated diene moiety without inactivating the reaction. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether, 2,2-di (2-tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphines. Examples include compounds. The polar compound is usually used in an amount of 0.01 to 1,000 mol with respect to the organic alkali metal compound.
The temperature of the solution polymerization is usually in the range of −80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C. The polymerization mode may be either a batch type or a continuous type.
The polymerization reaction can be stopped by adding a polymerization inhibitor. Examples of the polymerization terminator include alcohols such as methanol and isopropanol. The unmodified conjugated diene-based rubber can be isolated by pouring the obtained polymerization reaction solution into a poor solvent such as methanol to precipitate a polymerized product, or by washing the polymerization reaction solution with water, separating and drying.
Among the above methods, the solution polymerization method is preferable as the method for producing the unmodified conjugated diene-based rubber.
 前記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩及びロジン酸塩等が挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩等が挙げられる。
 分散溶媒としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 得られる未変性共役ジエン系ゴムの分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマー等が挙げられる。
As the emulsification polymerization method, a known or known method can be applied. For example, a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is carried out by a radical polymerization initiator.
Examples of the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin salts. Examples of the long-chain fatty acid salt include potassium salts and sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
Water is usually used as the dispersion solvent, and a water-soluble organic solvent such as methanol or ethanol may be contained as long as the stability during polymerization is not impaired.
Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
A chain transfer agent may be used to adjust the molecular weight of the resulting unmodified conjugated diene rubber. Examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, turpinolene, γ-terpinene, α-methylstyrene dimer and the like.
 乳化重合の温度は、使用するラジカル重合開始剤の種類等により適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。 The temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used, etc., but is usually in the range of 0 to 100 ° C, preferably in the range of 0 to 60 ° C. The polymerization mode may be either continuous polymerization or batch polymerization.
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。 The polymerization reaction can be stopped by adding a polymerization inhibitor. Examples of the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、重合化物を凝固させた後、分散溶媒を分離することによって重合化物を回収する。次いで水洗、及び脱水後、乾燥することで、未変性共役ジエン系ゴムが得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した未変性共役ジエン系ゴムとして回収してもよい。 After the polymerization reaction is stopped, an antiaging agent may be added if necessary. After the polymerization reaction is stopped, unreacted monomers are removed from the obtained latex as needed, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and if necessary, nitrates, sulfuric acid and the like are used. The polymer is recovered by coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then separating the dispersion solvent. Then, by washing with water, dehydrating, and then drying, an unmodified conjugated diene-based rubber can be obtained. At the time of solidification, if necessary, latex and extended oil prepared as an emulsified dispersion may be mixed and recovered as an oil-expanded unmodified conjugated diene-based rubber.
(製造方法(1)で用いる変性化合物)
 製造方法(1)で用いる変性化合物に特に制限はないが、エマルション組成物を接着剤として用いた場合の接着性を向上させる観点から、水素結合性官能基を有しているものが好ましい。水素結合性官能基としては、前述と同様のものが挙げられる。それらの中でも、水素結合力の強さの観点から、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、ボロニル基、ボロニル基の塩、ボロニル基のエステル化体、シラノール基、及びシラノール基のエステル化体が好ましい。
(Modified compound used in manufacturing method (1))
The modified compound used in the production method (1) is not particularly limited, but one having a hydrogen-bonding functional group is preferable from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive. Examples of the hydrogen-bonding functional group include the same as described above. Among them, from the viewpoint of the strength of hydrogen bonding force, hydroxy group, epoxy group, aldehyde group, acetalized form of aldehyde group, carboxy group, salt of carboxy group, esterified form of carboxy group, acid anhydride of carboxy group. Preferables are a product, a boronyl group, a salt of a boronyl group, an esterified form of a boronyl group, a silanol group, and an esterified form of a silanol group.
 前記変性化合物としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸等の不飽和カルボン酸;無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;マレイン酸エステル、フマル酸エステル、シトラコン酸エステル、イタコン酸エステル等の不飽和カルボン酸エステル;マレイン酸アミド、フマル酸アミド、シトラコン酸アミド、イタコン酸アミド等の不飽和カルボン酸アミド;マレイン酸イミド、フマル酸イミド、シトラコン酸イミド、イタコン酸イミド等の不飽和カルボン酸イミド;ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメトキシジメチルシラン、2-メルカプトエチルエトキシジメチルシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジメトキシエチルシラン、3-メルカプトプロピルジエトキシエチルシラン、3-メルカプトプロピルメトキシジメチルシラン、3-メルカプトプロピルエトキシジメチルシラン等のシラン化合物;ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリイソプロピル、ホウ酸トリブチル等のボロン酸エステル等が挙げられる。これらの水素結合性官能基を有する変性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the modified compound include unsaturated carboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid; unsaturated such as maleic anhydride, citraconic acid anhydride, 2,3-dimethylmaleic acid anhydride, and itaconic acid anhydride. Carboxylic acid anhydride; unsaturated carboxylic acid ester such as maleic acid ester, fumaric acid ester, citraconic acid ester, itaconic acid ester; unsaturated carboxylic acid amide such as maleic acid amide, fumaric acid amide, citraconic acid amide, itaconic acid amide. Saturated carboxylic acid imides such as maleic acid imide, fumaric acid imide, citraconic acid imide, itacone acid imide; vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, mercaptomethylmethyldiethoxysilane, mercaptomethyltriethoxysilane , 2-Mercaptoethyltrimethoxysilane, 2-Mercaptoethyltriethoxysilane, 2-Mercaptoethylmethoxydimethylsilane, 2-Mercaptoethylethoxydimethylsilane, 3-Mercaptopropyltrimethoxysilane, 3-Mercaptopropyltriethoxysilane, 3 -Mercaptpropyldimethoxymethylsilane, 3-mercaptopropyldiethoxymethylsilane, 3-mercaptopropyldimethoxyethylsilane, 3-mercaptopropyldiethoxyethylsilane, 3-mercaptopropylmethoxydimethylsilane, 3-mercaptopropylethoxydimethylsilane, etc. Silane compounds; examples thereof include boronates such as triethyl borate, tripropyl borate, triisopropyl borate and tributyl borate. One of these modified compounds having a hydrogen-bonding functional group may be used alone, or two or more thereof may be used in combination.
 前記変性化合物の使用量は、未変性共役ジエン系ゴム100質量部に対して、好ましくは0.1~100質量部、より好ましくは0.5~50質量部、更に好ましくは1~30質量部である。
 反応温度は通常0~200℃の範囲が好ましく、50~200℃の範囲がより好ましい。
 また、未変性共役ジエン系ゴムに前記変性化合物をグラフト化し水素結合性官能基を導入した後、更に該官能基と反応し得る変性化合物を添加して別の水素結合性官能基を重合体中に導入してもよい。具体的には、例えば、リビングアニオン重合して得られる未変性共役ジエン系ゴムに対し、無水マレイン酸をグラフト化した後、2-ヒドロキシエチルメタクリレートやメタノール等の水酸基を有する化合物、水等の化合物を反応させる方法が挙げられる。
The amount of the modified compound used is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass, and further preferably 1 to 30 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. Is.
The reaction temperature is usually preferably in the range of 0 to 200 ° C, more preferably in the range of 50 to 200 ° C.
Further, after the modified compound is grafted onto an unmodified conjugated diene rubber to introduce a hydrogen-bonding functional group, a modified compound capable of reacting with the functional group is further added to another hydrogen-bonding functional group in the polymer. May be introduced in. Specifically, for example, a compound having a hydroxyl group such as 2-hydroxyethyl methacrylate or methanol after grafting maleic anhydride on an unmodified conjugated diene rubber obtained by living anionic polymerization, a compound such as water, etc. There is a method of reacting.
 変性共役ジエン系ゴムにおける変性化合物の付加量は、未変性共役ジエン系ゴム100質量部に対して、0.5~40質量部であることが好ましく、1~30質量部であることがより好ましく、1.5~20質量部であることが更に好ましい。なお、変性共役ジエン系ゴム中に付加された変性化合物量は、変性化合物の酸価を基に算出することもでき、また、赤外分光法、核磁気共鳴分光法等の各種分析機器を用いて求めることもできる。 The amount of the modified compound added to the modified conjugated diene rubber is preferably 0.5 to 40 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. , 1.5 to 20 parts by mass is more preferable. The amount of the modified compound added to the modified conjugated diene rubber can be calculated based on the acid value of the modified compound, and various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy are used. You can also ask for it.
 前記変性化合物を未変性共役ジエン系ゴムに付加させる方法は特に限定されず、例えば、液状の未変性共役ジエン系ゴムと、不飽和カルボン酸、不飽和カルボン酸誘導体、ボロン酸誘導体、及びシラン化合物等から選ばれる1種以上の変性化合物と、更に必要に応じてラジカル発生剤を加えて、有機溶媒の存在下又は非存在下に加熱する方法が挙げられる。使用するラジカル発生剤には特に制限はなく、通常市販されている有機過酸化物、アゾ系化合物、過酸化水素等が使用できる。
 前記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。
The method for adding the modified compound to the unmodified conjugated diene rubber is not particularly limited, and for example, a liquid unmodified conjugated diene rubber, an unsaturated carboxylic acid, an unsaturated carboxylic acid derivative, a boronic acid derivative, and a silane compound are used. Examples thereof include a method of adding one or more modified compounds selected from the above and, if necessary, a radical generator, and heating in the presence or absence of an organic solvent. The radical generator to be used is not particularly limited, and commercially available organic peroxides, azo compounds, hydrogen peroxide and the like can be used.
Examples of the organic solvent used in the above method generally include a hydrocarbon solvent and a halogenated hydrocarbon solvent. Among these organic solvents, hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
 更に、前記方法により変性化合物を付加する反応を行う際、副反応を抑制する観点等から、老化防止剤を添加してもよい。該老化防止剤は通常市販されているものが使用でき、例えば、ブチル化ヒドロキシトルエン(BHT)、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)等が挙げられる。 Further, when the reaction for adding the modified compound is carried out by the above method, an antiaging agent may be added from the viewpoint of suppressing side reactions. As the antioxidant, commercially available products can be used, for example, butylated hydroxytoluene (BHT), N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine (Nocrack 6C) and the like. Can be mentioned.
 老化防止剤の添加量は、未変性共役ジエン系ゴム100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。老化防止剤の添加量が前記範囲内であると、副反応を抑制することができ、収率よく変性共役ジエン系ゴムを得ることができる。 The amount of the antiaging agent added is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. When the amount of the antiaging agent added is within the above range, side reactions can be suppressed and a modified conjugated diene rubber can be obtained in good yield.
〔変性共役ジエン系ゴムの製造方法(2)〕
 製造方法(2)としては、原料となる共役ジエン系ゴムを酸化することにより分子内に酸化反応によって生じた酸素を含む官能基や結合を有する酸化共役ジエン系ゴムを得る方法が挙げられる。該官能基や結合としては、具体的には、ヒドロキシ基、アルデヒド基、カルボニル基、カルボキシ基、及びエーテル結合等が挙げられる。
 原料共役ジエン系ゴムを酸化する方法としては、酸化温度以上の温度で熱処理する方法(以下「製造方法(2-1)」とも称する)、原料共役ジエン系ゴムの吸収波長の光を照射することで活性化させて酸素と反応させる方法(以下「製造方法(2-2)」とも称する)等が挙げられる。中でも、原料共役ジエン系ゴムを酸化温度以上の温度で熱処理することで得る方法(製造方法(2-1))が好ましい。
[Manufacturing method of modified conjugated diene rubber (2)]
Examples of the production method (2) include a method of obtaining an oxidation-conjugated diene-based rubber having a functional group or a bond containing oxygen generated by an oxidation reaction in the molecule by oxidizing the conjugated diene-based rubber as a raw material. Specific examples of the functional group and the bond include a hydroxy group, an aldehyde group, a carbonyl group, a carboxy group, an ether bond and the like.
As a method for oxidizing the raw material conjugated diene rubber, a method of heat treatment at a temperature higher than the oxidation temperature (hereinafter, also referred to as "manufacturing method (2-1)") and irradiation with light having an absorption wavelength of the raw material conjugated diene rubber are used. Examples thereof include a method of activating with and reacting with oxygen (hereinafter, also referred to as “production method (2-2)”). Above all, a method (manufacturing method (2-1)) obtained by heat-treating the raw material conjugated diene-based rubber at a temperature equal to or higher than the oxidation temperature is preferable.
〔酸化共役ジエン系ゴムの製造方法(2-1)〕
 製造方法(2-1)は、原料共役ジエン系ゴムを酸化温度以上の温度で熱処理する方法である。該熱処理は、酸素を含む雰囲気下、好ましくは空気雰囲気下で行われる。
 熱処理の温度は、原料共役ジエン系ゴムが酸化する温度であれば特に制限はないが、酸化の反応速度を高め、生産性を向上させる観点から、150℃以上であることが好ましく、170℃以上であることがより好ましく、190℃以上であることが更に好ましい。
 熱処理の時間は、原料共役ジエン系ゴムが劣化しない範囲であれば特に制限はないが、30分以下であることが好ましく、20分以下であることがより好ましい。
 また、原料共役ジエン系ゴムに熱ラジカル発生剤を添加することにより酸化反応に必要な温度を下げることもできる。
[Method for Producing Oxidized Conjugated Diene Rubber (2-1)]
The manufacturing method (2-1) is a method of heat-treating a raw material conjugated diene-based rubber at a temperature equal to or higher than the oxidation temperature. The heat treatment is performed in an atmosphere containing oxygen, preferably in an air atmosphere.
The temperature of the heat treatment is not particularly limited as long as it oxidizes the raw material conjugated diene rubber, but is preferably 150 ° C. or higher, preferably 170 ° C. or higher, from the viewpoint of increasing the reaction rate of oxidation and improving productivity. It is more preferable that the temperature is 190 ° C. or higher.
The heat treatment time is not particularly limited as long as the raw material conjugated diene rubber does not deteriorate, but is preferably 30 minutes or less, and more preferably 20 minutes or less.
Further, the temperature required for the oxidation reaction can be lowered by adding a thermal radical generator to the raw material conjugated diene-based rubber.
 前記熱ラジカル発生剤としては、例えば、過酸化物、アゾ化合物、レドックス系開始剤等が挙げられる。中でも、熱ラジカル発生剤が共役ジエン系ゴムと結合し、共役ジエン系ゴムに酸素を含む構造が付加される観点から、過酸化物が好ましい。
 前記過酸化物としては、例えば、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ペルオキシ酢酸t-ブチル、ペルオキシ安息香酸t-ブチル、ペルオキシオクタン酸t-ブチル、ペルオキシネオデカン酸t-ブチル、ペルオキシイソ酪酸t-ブチル、過酸化ラウロイル、ペルオキシピバル酸t-アミル、ペルオキシピバル酸t-ブチル、過酸化ジクミル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム等が挙げられる。
Examples of the thermal radical generator include peroxides, azo compounds, redox-based initiators and the like. Of these, peroxides are preferable from the viewpoint that the thermal radical generator binds to the conjugated diene rubber and a structure containing oxygen is added to the conjugated diene rubber.
Examples of the peroxide include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyoctanoate, t-butyl peroxyneodecanoate, and t-butyl peroxyisobutyrate. -Butyl, lauroyl peroxide, t-amyl peroxypivalate, t-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate and the like can be mentioned.
 前記アゾ化合物としては、例えば、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-ブタンニトリル)、4,4’-アゾビス(4-ペンタン酸)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2-(t-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス[2-メチル-N-(1,1)-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド、2,2’-アゾビス(2-メチル-N-ヒドロキシエチル)プロピオンアミド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジクロリド、2,2’-アゾビス(N,N-ジメチレンイソブチルアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド)、2,2’-アゾビス(イソブチルアミド)二水和物等が挙げられる。なお、前記熱ラジカル発生剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the azo compound include azobisisobutyronitrile (AIBN), 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-butanenitrile), and 4,4'-azobis. (4-Pentanoic acid), 1,1'-azobis (cyclohexanecarbonitrile), 2- (t-butylazo) -2-cyanopropane, 2,2'-azobis [2-methyl-N- (1,1) -Bis (hydroxymethyl) -2-hydroxyethyl] propionamide, 2,2'-azobis (2-methyl-N-hydroxyethyl) propionamide, 2,2'-azobis (N, N'-dimethyleneisobutyramidin ) Dichloride, 2,2'-azobis (N, N-dimethyleneisobutyryamide), 2,2'-azobis (2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propion Amid), 2,2'-azobis (isobutyry amide) dihydrate and the like. The thermal radical generator may be used alone or in combination of two or more.
 また、前記熱ラジカル発生剤として、レドックス系開始剤を用いてもよい。該レドックス系開始剤としては、例えば、過加硫酸塩と酸性亜硫酸ナトリウムと硫酸第一鉄との組み合わせ物、t-ブチルハイドロパーオキサイドと酸性亜硫酸ナトリウムと硫酸第一鉄との組み合わせ物、p-メンタンハイドロパーオキサイドと硫酸第一鉄とエチレンジアミン四酢酸ナトリウムとナトリウムホルムアルデヒドサルホキシレートとの組み合わせ物等が挙げられる。 Further, a redox-based initiator may be used as the thermal radical generator. Examples of the redox-based initiator include a combination of supersulfate, acidic sodium bisulfite and ferrous sulfate, t-butylhydroperoxide, a combination of acidic sodium bisulfite and ferrous sulfate, and p-. Examples thereof include a combination of mentan hydroperoxide, ferrous sulfate, sodium ethylenediamine tetraacetate, and sodium formaldehyde sulfoxylate.
〔酸化共役ジエン系ゴムの製造方法(2-2)〕
 製造方法(2-2)は、原料共役ジエン系ゴムの吸収波長の光を照射することで活性化させて酸素と反応させる方法である。
 製造方法(2-2)は、酸素を含む雰囲気下、好ましくは空気雰囲気下で行われる。使用する光の波長は原料共役ジエン系ゴムが吸収してラジカル反応を起こす波長であれば特に制限はないが、原料共役ジエン系ゴムが強く吸収する紫外線が好ましい。
 また、原料共役ジエン系ゴムに光ラジカル発生剤を添加することにより酸化反応に必要な光の照射量を下げることもできる。
[Manufacturing method of oxidation-conjugated diene-based rubber (2-2)]
The production method (2-2) is a method of activating the raw material conjugated diene-based rubber by irradiating it with light having an absorption wavelength and reacting it with oxygen.
The production method (2-2) is carried out in an atmosphere containing oxygen, preferably in an air atmosphere. The wavelength of the light used is not particularly limited as long as it is a wavelength that is absorbed by the raw material conjugated diene rubber and causes a radical reaction, but ultraviolet rays that are strongly absorbed by the raw material conjugated diene rubber are preferable.
Further, by adding a photoradical generator to the raw material conjugated diene-based rubber, it is possible to reduce the irradiation amount of light required for the oxidation reaction.
 前記光ラジカル発生剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4,4’-ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド等が挙げられる。なお、前記光ラジカル発生剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the photoradical generator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexylphenyl ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, xanthone, fluorenone, benzaldehyde, fluorene and anthraquinone. Triphenylamine, carbazole, 3-methylacetophenone, 4,4'-dimethoxybenzophenone, benzoinpropyl ether, benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1-one, 2 -Hydroxy-2-methyl-1-phenylpropane-1-one, thioxanthone, diethylthioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1-one, 2-benzyl- 2-Dimethylamino-1- (4-morpholinophenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide , Bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like. The photoradical generator may be used alone or in combination of two or more.
〔変性共役ジエン系ゴムの製造方法(3)〕
 製造方法(3)としては、共役ジエン単量体と水素結合性官能基を有するラジカル重合性化合物とを、公知の方法でランダム共重合、ブロック共重合又はグラフト共重合する方法が挙げられる。
[Method for manufacturing modified conjugated diene rubber (3)]
Examples of the production method (3) include a method of random copolymerization, block copolymerization or graft copolymerization of a conjugated diene monomer and a radically polymerizable compound having a hydrogen-bonding functional group by a known method.
(製造方法(3)で用いる水素結合性官能基を有するラジカル重合性化合物)
 製造方法(3)で用いる水素結合性官能基を有するラジカル重合性化合物は、分子内に水素結合性官能基と反応性多重結合との両方を有する化合物であれば特に制限はない。具体的には、反応性の多重結合を有するアルデヒド、該アルデヒドのアセタール化体;反応性の多重結合を有するモノカルボン酸、該モノカルボン酸の塩、該モノカルボン酸のエステル化体、該モノカルボン酸の酸無水物;反応性の多重結合を有するジカルボン酸、該ジカルボン酸の塩、該ジカルボン酸のエステル化体、該ジカルボン酸の酸無水物;及び反応性の多重結合を有するアミン化合物等が挙げられる。
(Radical polymerizable compound having a hydrogen-bonding functional group used in the production method (3))
The radically polymerizable compound having a hydrogen-bonding functional group used in the production method (3) is not particularly limited as long as it is a compound having both a hydrogen-bonding functional group and a reactive multiple bond in the molecule. Specifically, an aldehyde having a reactive multiple bond, an acetalized form of the aldehyde; a monocarboxylic acid having a reactive multiple bond, a salt of the monocarboxylic acid, an esterified product of the monocarboxylic acid, the mono. Acid anhydride of carboxylic acid; dicarboxylic acid having reactive multiple bonds, salt of the dicarboxylic acid, esterified product of the dicarboxylic acid, acid anhydride of the dicarboxylic acid; and amine compound having reactive multiple bonds, etc. Can be mentioned.
 前記多重結合を有するアルデヒドのうち、反応性炭素-炭素二重結合を有するアルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド、3-ブテナール、2-メチル-2-ブテナール、2-メチル-3-ブテナール、2,2-ジメチル-3-ブテナール、3-メチル-2-ブテナール、3-メチル-3-ブテナール、2-ペンテナール、2-メチル-2-ペンテナール、3-ペンテナール、3-メチル-4-ペンテナール、4-ペンテナール、4-メチル-4-ペンテナール、2-ヘキセナール、3-ヘキセナール、4-ヘキセナール、5-ヘキセナール、7-オクテナール、10-ウンデセナール、2-エチルクロトンアルデヒド、3-(ジメチルアミノ)アクロレイン、ミリストレインアルデヒド、パルミトレインアルデヒド、オレインアルデヒド、エライジンアルデヒド、バクセンアルデヒド、ガドレインアルデヒド、エルカアルデヒド、ネルボンアルデヒド、リノールアルデヒド、シトロネラール、シンナムアルデヒド、及びバニリン等の炭素数3~30のアルケナール、好ましくは炭素数3~25のアルケナール;2,4-ペンタジエナール、2,4-ヘキサジエナール、2,6-ノナジエナール、及びシトラール等の炭素数5~30のアルカジエナール、好ましくは炭素数5~25のアルカジエナール;リノレンアルデヒド、エレオステアリンアルデヒド等の炭素数7~30のアルカトリエナール、好ましくは炭素数7~25のアルカトリエナール;ステアリドンアルデヒド、アラキドンアルデヒド等の炭素数9~30のアルカテトラエナール、好ましくは炭素数9~25のアルカテトラエナール;エイコサペンタエンアルデヒド等の炭素数11~30のアルカペンタエナール、好ましくは炭素数11~25のアルカペンタエナール;等の不飽和アルデヒド等が挙げられる。なお、前記アルデヒドにおいてシス-トランス異性体が存在するものは、シス体及びトランス体の両方を含む。これらのアルデヒドは、1種を単独で用いてもよく、2種以上を併用してもよい。 Among the aldehydes having a multiple bond, examples of the aldehyde having a reactive carbon-carbon double bond include achlorine, metachlorine, crotonaldehyde, 3-butenal, 2-methyl-2-butenal, and 2-methyl-3. -Butenal, 2,2-dimethyl-3-butenal, 3-methyl-2-butenal, 3-methyl-3-butenal, 2-pentenal, 2-methyl-2-pentenal, 3-pentenal, 3-methyl-4 -Pentenal, 4-Pentenal, 4-Methyl-4-Pentenal, 2-Hexenal, 3-Hexenal, 4-Hexenal, 5-Hexenal, 7-Octenal, 10-Undecenal, 2-Ethylcrotonaldehyde, 3- (dimethylamino) ) Alkenals with 3 to 30 carbon atoms such as achlorein, myristolene aldehyde, palmitre aldehyde, olein aldehyde, eridine aldehyde, baxen aldehyde, gadrain aldehyde, elca aldehyde, nervone aldehyde, linole aldehyde, citroneral, cinnam aldehyde, and vanillin, preferably. Is an alkenyl with 3 to 25 carbon atoms; an aldehyde with 5 to 30 carbon atoms such as 2,4-pentadienal, 2,4-hexadienal, 2,6-nonazienal, and citral, preferably 5 carbon atoms. Alkadienal of ~ 25; alkatorienal having 7 to 30 carbon atoms such as linolenealdehyde and eleostearaldehyde, preferably alkathrienal having 7 to 25 carbon atoms; Alkatetraenal having 30 carbon atoms, preferably alkatetraenal having 9 to 25 carbon atoms; alkapentaenal having 11 to 30 carbon atoms such as eikosapentaene aldehyde, preferably alkapentaenal having 11 to 25 carbon atoms; etc. Examples thereof include unsaturated aldehydes. The aldehydes in which the cis-trans isomer is present include both cis and trans isomers. These aldehydes may be used alone or in combination of two or more.
 前記多重結合を有するアルデヒドのアセタール化体のうち、反応性炭素-炭素二重結合を有するアルデヒドのアセタール化体としては、前記アルデヒドのアセタール化体、具体的には2-メチル-3-ブテナールのアセタール化体である3-(1,3-ジオキサラン-2-イル)-3-メチル-1-プロペン、3-メチル-3-ブテナールのアセタール化体である3-(1,3-ジオキサラン-2-イル)-2-メチル-1-プロペン等が挙げられる。 Among the acetalized forms of the aldehyde having the multiple bonds, the acetalized form of the aldehyde having the reactive carbon-carbon double bond is the acetalized form of the aldehyde, specifically 2-methyl-3-butenal. 3- (1,3-dioxalan-2-yl) -3-methyl-1-propene, which is an acetalized form, and 3- (1,3-dioxalan-2), which is an acetalized form of 3-methyl-3-butenal. -Il) -2-methyl-1-propen and the like can be mentioned.
 前記多重結合を有するアルデヒド及び該アルデヒドのアセタール化体のうち、反応性炭素-炭素三重結合を有するアルデヒド及びそのアセタール化体としては、プロピオルアルデヒド、2-ブチン-1-アール、及び2-ペンチン-1-アール等の炭素-炭素三重結合を有するアルデヒド、及び該アルデヒドのアセタール化体等が挙げられる。 Among the aldehyde having a multiple bond and the acetalized form of the aldehyde, the aldehyde having a reactive carbon-carbon triple bond and the acetalized form thereof include propiolaldehyde, 2-butin-1-ar, and 2-pentyne. Examples thereof include aldehydes having a carbon-carbon triple bond such as -1-ar, and acetalized forms of the aldehydes.
 前記多重結合を有するアルデヒド及び該アルデヒドのアセタール化体の中でも、反応性炭素-炭素二重結合を有するアルデヒドが好ましく、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド、3-ブテナール、2-メチル-2-ブテナール、2-メチル-3-ブテナール、2,2-ジメチル-3-ブテナール、3-メチル-2-ブテナール、3-メチル-3-ブテナール、2-ペンテナール、2-メチル-2-ペンテナール、3-ペンテナール、3-メチル-4-ペンテナール、4-ペンテナール、4-メチル-4-ペンテナール、2-ヘキセナール、3-ヘキセナール、4-ヘキセナール、5-ヘキセナール、7-オクテナール、2-エチルクロトンアルデヒド、3-(ジメチルアミノ)アクロレイン、及び2,4-ペンタジエナールから選ばれる1種以上が好ましい。中でも、共重合時の反応性が良好であることから、アクロレイン、メタクロレイン、クロトンアルデヒド、及び3-ブテナールから選ばれる1種以上がより好ましい。 Among the aldehyde having a multiple bond and the acetalized form of the aldehyde, an aldehyde having a reactive carbon-carbon double bond is preferable, and for example, acrolein, metachlorine, crotonaldehyde, 3-butenyl, 2-methyl-2- Butenal, 2-methyl-3-butenal, 2,2-dimethyl-3-butenal, 3-methyl-2-butenal, 3-methyl-3-butenal, 2-pentenal, 2-methyl-2-pentenal, 3- Pentenal, 3-methyl-4-pentenal, 4-pentenal, 4-methyl-4-pentenal, 2-hexenal, 3-hexenal, 4-hexenal, 5-hexenal, 7-octenal, 2-ethylcrotonaldehyde, 3- One or more selected from (dimethylamino) acrolein and 2,4-pentadienal is preferable. Among them, one or more selected from acrolein, methacrolein, crotonaldehyde, and 3-butenal are more preferable because of their good reactivity at the time of copolymerization.
 前記多重結合を有するモノカルボン酸、該モノカルボン酸の塩、該モノカルボン酸のエステル化体、及び該モノカルボン酸の酸無水物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸のナトリウム塩、(メタ)アクリル酸のカリウム塩、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸2-ヒドロキシルエチル、(メタ)アクリル酸2-ヒドロキシルプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシルブチル、(メタ)アクリル酸3-ヒドロキシルブチル、(メタ)アクリル酸4-ヒドロキシルブチル、(メタ)アクリル酸ビニル、2-(トリフルオロメチル)アクリル酸、2-トリフルオロメチルアクリル酸メチル、2-トリフルオロメチルアクリル酸エチル、2-トリフルオロメチルアクリル酸プロピル、2-トリフルオロメチルアクリル酸2-ブチル、2-トリフルオロメチルアクリル酸2-ヒドロキシルエチル、2-トリフルオロメチルアクリル酸ビニル、けい皮酸メチル、けい皮酸ビニル、クロトン酸メチル、クロトン酸ビニル、3-メチル-3-ブテン酸メチル、3-メチル-3-ブテン酸ビニル、4-ペンテン酸メチル、4-ペンテン酸ビニル、2-メチル-4-ペンテン酸メチル、2-メチル-4-ペンテン酸ビニル、5-ヘキセン酸メチル、5-ヘキセン酸ビニル、3,3-ジメチル-4-ペンテン酸メチル、3,3-ジメチル-4-ペンテン酸ビニル、7-オクテン酸メチル、7-オクテン酸ビニル、trans-3-ペンテン酸メチル、trans-3-ペンテン酸ビニル、trans-4-デセン酸メチル、trans-4-デセン酸ビニル、3-メチル-3-ブテン酸エチル、4-ペンテン酸エチル、2-メチル-4-ペンテン酸エチル、5-ヘキセン酸エチル、3,3-ジメチル-4-ペンテン酸エチル、7-オクテン酸エチル、trans-3-ペンテン酸エチル、trans-4-デセン酸エチル、10-ウンデセン酸メチル、10-ウンデセン酸ビニル、(メタ)アクリル酸無水物、2-(トリフルオロメチル)アクリル酸無水物、けい皮酸無水物、クロトン酸無水物、3-メチル-3-ブテン酸無水物、4-ペンテン酸無水物、2-メチル-4-ペンテン酸無水物、5-ヘキセン酸無水物、3,3-ジメチル-4-ペンテン酸無水物、7-オクテン酸無水物、trans-3-ペンテン酸無水物、trans-4-デセン酸無水物、3-メチル-3-ブテン酸無水物、4-ペンテン酸無水物、2-メチル-4-ペンテン酸無水物、及び10-ウンデセン酸無水物等の反応性炭素-炭素二重結合を有するカルボン酸、該カルボン酸の塩、該カルボン酸のエステル化体、及び該カルボン酸の酸無水物;プロピオール酸、プロピオール酸メチル、プロピオール酸エチル、プロピオール酸ビニル、テトロール酸、テトロール酸メチル、テトロール酸エチル、及びテトロール酸ビニル等の反応性炭素-炭素三重結合を有するカルボン酸及び該カルボン酸のエステル化体が挙げられる。
 なお、本明細書において、前記「(メタ)アクリル酸」は、「アクリル酸」と「メタクリル酸」との総称を意味する。
Examples of the monocarboxylic acid having a multiple bond, the salt of the monocarboxylic acid, the esterified product of the monocarboxylic acid, and the acid anhydride of the monocarboxylic acid include (meth) acrylic acid and (meth) acrylic acid. Sodium salt, potassium salt of (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, propyl (meth) acrylate, 2-hydroxylethyl (meth) acrylate , (Meta) 2-hydroxypropyl acrylate, (meth) 3-hydroxypropyl acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 4-hydroxylbutyl (meth) acrylate , (Meta) vinyl acrylate, 2- (trifluoromethyl) acrylate, 2-trifluoromethyl acrylate methyl, 2-trifluoromethyl acrylate ethyl, 2-trifluoromethyl acrylate propyl, 2-trifluoromethyl 2-butyl acrylate, 2-hydroxylethyl 2-trifluoromethyl acrylate, vinyl 2-trifluoromethyl acrylate, methyl silicate, vinyl silicate, methyl crotonate, vinyl crotonate, 3-methyl-3 -Methyl butenoate, 3-Methyl-3-Vinite butenoate, Methyl 4-pentateate, Vinyl 4-Pentate, 2-Methyl-4-Methyl pentate, 2-Methyl-4-Vinite pentate, 5-Hexen Methyl acid, vinyl 5-hexenoate, methyl 3,3-dimethyl-4-pentate, vinyl 3,3-dimethyl-4-pentenate, methyl 7-octenoate, vinyl 7-octene, trans-3-penten Methyl acid, vinyl trans-3-pentenate, methyl trans-4-decenoate, vinyl trans-4-decenoate, ethyl 3-methyl-3-butenoate, ethyl 4-pentenate, 2-methyl-4-pentene Ethyl acid, ethyl 5-hexenoate, ethyl 3,3-dimethyl-4-pentate, ethyl 7-octenoate, ethyl trans-3-pentenate, ethyl trans-4-decenoate, methyl 10-undecenoate, 10 -Vinyl undecenoate, (meth) acrylic acid anhydride, 2- (trifluoromethyl) acrylic acid anhydride, cinnamic acid anhydride, crotonic acid anhydride, 3-methyl-3-butenoic acid anhydride, 4-pentene Acid anhydride, 2-methyl-4-pentenoic acid anhydride, 5-hexenoic acid anhydride, 3,3-dimethyl-4-pentenoic acid anhydride, 7 -Octenic acid anhydride, trans-3-pentenoic acid anhydride, trans-4-decenoic acid anhydride, 3-methyl-3-butenoic acid anhydride, 4-pentenoic acid anhydride, 2-methyl-4-pentenic acid Carboxylic acids with reactive carbon-carbon double bonds such as anhydrides and 10-undecenoic acid anhydrides, salts of the carboxylic acid, esterifieds of the carboxylic acid, and acid anhydrides of the carboxylic acid; propiole acid. , Carboxylic acid having a reactive carbon-carbon triple bond such as methyl propiolate, ethyl propiolate, vinyl propiolate, tetrol acid, methyl tetrolate, ethyl tetrolate, and vinyl tetrolate and esterifieds of the carboxylic acid. Can be mentioned.
In addition, in this specification, the said "(meth) acrylic acid" means the generic term of "acrylic acid" and "methacrylic acid".
 前記多重結合を有するジカルボン酸、該ジカルボン酸の塩、該ジカルボン酸のエステル化体、及び該ジカルボン酸の酸無水物としては、例えば、マレイン酸、マレイン酸ナトリウム塩、マレイン酸カリウム塩、マレイン酸メチル、マレイン酸ジメチル、無水マレイン酸、イタコン酸、イタコン酸メチル、イタコン酸ジメチル、無水イタコン酸、ハイミック酸、ハイミック酸メチル、ハイミック酸ジメチル、及び無水ハイミック酸等の反応性炭素-炭素二重結合を有するジカルボン酸、該ジカルボン酸の塩、該ジカルボン酸のエステル化体、及び該ジカルボン酸の酸無水物が挙げられる。 Examples of the dicarboxylic acid having a multiple bond, the salt of the dicarboxylic acid, the esterified product of the dicarboxylic acid, and the acid anhydride of the dicarboxylic acid include maleic acid, sodium maleic acid salt, potassium maleic acid salt, and maleic acid. Reactive carbon-carbon double bonds such as methyl, dimethyl maleate, maleic anhydride, itaconic acid, methyl itaconate, dimethyl itaconate, itaconic acid anhydride, hymic acid, methyl hymicate, dimethyl hymic acid, and hymicic acid anhydride Examples thereof include a dicarboxylic acid having a dicarboxylic acid, a salt of the dicarboxylic acid, an esterified product of the dicarboxylic acid, and an acid anhydride of the dicarboxylic acid.
 前記多重結合を有するモノカルボン酸、該モノカルボン酸の塩、該モノカルボン酸のエステル化体、該モノカルボン酸無水物、前記多重結合を有するジカルボン酸、該ジカルボン酸の塩、該ジカルボン酸のエステル化体、及び該ジカルボン酸の酸無水物としては、反応性炭素-炭素二重結合を有する化合物が好ましく、中でも、共重合時の反応性が良好であることから、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ビニル、(メタ)アクリル酸無水物、2-(トリフルオロメチル)アクリル酸無水物、けい皮酸無水物、クロトン酸無水物、マレイン酸メチル、マレイン酸ジメチル、無水マレイン酸、イタコン酸メチル、イタコン酸ジメチル、及び無水イタコン酸から選ばれる1種以上がより好ましい。 The monocarboxylic acid having a multiple bond, the salt of the monocarboxylic acid, the esterified product of the monocarboxylic acid, the monocarboxylic acid anhydride, the dicarboxylic acid having the multiple bond, the salt of the dicarboxylic acid, the dicarboxylic acid. As the esterified product and the acid anhydride of the dicarboxylic acid, a compound having a reactive carbon-carbon double bond is preferable, and among them, methyl (meth) acrylate is good because the reactivity at the time of copolymerization is good. , (Meta) ethyl acrylate, (meth) butyl acrylate, (meth) vinyl acrylate, (meth) acrylate anhydride, 2- (trifluoromethyl) acrylate anhydride, silicate anhydride, crotonic acid One or more selected from anhydrate, methyl maleate, dimethyl maleate, maleic anhydride, methyl itaconate, dimethyl itaconate, and itaconic acid anhydride are more preferable.
 前記多重結合を有するアミン化合物のうち、反応性炭素-炭素二重結合を有するアミン化合物としては、例えば、アリルアミン、3-ブテニルアミン、4-ペンテニルアミン、5-ヘキセニルアミン、6-ヘプテニルアミン、7-オクテニルアミン、オレイルアミン、2-メチルアリルアミン、4-アミノスチレン、4-ビニルベンジルアミン、2-アリルグリシン、S-アリルシステイン、α-アリルアラニン、2-アリルアニリン、ゲラニルアミン、ビガバトリン、4-ビニルアニリン、及び4-ビニロキシアニリン等が挙げられる。これらの中でも、共重合時の反応性が良好であることから、アリルアミン、3-ブテニルアミン、及び4-ペンテニルアミンから選ばれる1種以上が好ましい。 Among the amine compounds having a multiple bond, examples of the amine compound having a reactive carbon-carbon double bond include allylamine, 3-butenylamine, 4-pentenylamine, 5-hexenylamine, 6-heptenylamine, and 7-octenylamine. , Oleylamine, 2-methylallylamine, 4-aminostyrene, 4-vinylbenzylamine, 2-allylglycine, S-allylcysteine, α-allylalanine, 2-allylaniline, geranylamine, bigabatrin, 4-vinylaniline, and 4-Vinyloxyaniline and the like can be mentioned. Among these, at least one selected from allylamine, 3-butenylamine, and 4-pentenylamine is preferable because the reactivity at the time of copolymerization is good.
〔変性共役ジエン系ゴムの製造方法(4)〕
 製造方法(4)は、重合活性末端を有する未変性の共役ジエン単量体の重合化物(未変性共役ジエン系ゴム)に対して、重合停止剤を添加する前に該重合活性末端と反応し得る変性化合物を添加する方法である。重合活性末端を有する未変性共役ジエン系ゴムは、前記製造方法(1)と同様に、例えば、乳化重合法、又は溶液重合法等により共役ジエン単量体及び必要に応じて共役ジエン以外の他の単量体を重合して得ることができる。
 製造方法(4)において用いることができる変性化合物としては、例えば、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、2,4-トリレンジイソシアネート、二酸化炭素、酸化エチレン、無水コハク酸、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリイソプロピル、ホウ酸トリブチル等のボロン酸エステル、ボロン酸無水物基、フェニルボロン酸無水物等のボロン酸無水物、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、N-ビニルピロリドン、N-メチルピロリドン、4-ジメチルアミノベンジリデンアニリン、ジメチルイミダゾリジノン等の変性剤、又は特開2011-132298号公報に記載のその他の変性剤が挙げられる。
[Method for manufacturing modified conjugated diene rubber (4)]
In the production method (4), a polymerized product of an unmodified conjugated diene monomer having a polymerization active terminal (unmodified conjugated diene-based rubber) is reacted with the polymerization active terminal before adding a polymerization terminator. It is a method of adding a modified compound to be obtained. The unmodified conjugated diene-based rubber having a polymerization active terminal can be obtained by, for example, an emulsion polymerization method, a solution polymerization method, or the like, in the same manner as in the above-mentioned production method (1), other than the conjugated diene monomer and, if necessary, the conjugated diene. It can be obtained by polymerizing the monomer of.
Examples of the modified compound that can be used in the production method (4) include dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, and the like. Boronic acid esters such as 2,4-tolylene diisocyanate, carbon dioxide, ethylene oxide, succinic anhydride, triethyl borate, tripropyl borate, triisopropyl borate, tributyl borate, boronic acid anhydride groups, phenylboronic acid Boronic acid anhydrides such as anhydrides, modifiers such as 4,4'-bis (diethylamino) benzophenone, N-vinylpyrrolidone, N-methylpyrrolidone, 4-dimethylaminobenzilidenaniline, dimethylimidazolidinone, or JP-A 2011. Other modifiers described in Japanese Publication No. 132298 may be mentioned.
 製造方法(4)における前記変性化合物の使用量は、例えば有機アルカリ金属化合物を用いて重合する場合、該有機アルカリ金属化合物に対して、好ましくは0.01~100モル等量の範囲である。反応温度は通常-80~150℃であり、好ましくは0~100℃、より好ましくは10~90℃の範囲である。
 また、重合停止剤を添加する前に前記変性化合物を添加し未変性共役ジエン系ゴムに水素結合性官能基を導入した後、更に該官能基と反応し得る変性化合物を添加して別の水素結合性官能基を重合体中に導入してもよい。
The amount of the modified compound used in the production method (4) is preferably in the range of 0.01 to 100 mol equivalent with respect to the organic alkali metal compound, for example, when polymerizing using the organic alkali metal compound. The reaction temperature is usually −80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90 ° C.
Further, before adding the polymerization terminator, the modified compound is added to introduce a hydrogen-bonding functional group into the unmodified conjugated diene rubber, and then another modified compound capable of reacting with the functional group is added to another hydrogen. Bonding functional groups may be introduced into the polymer.
 変性共役ジエン系ゴムは、本発明の効果を阻害しない程度であれば前記共役ジエン単量体及び水素結合性官能基を有するラジカル重合性化合物以外の他の単量体に由来する単位を含んでいてもよい。他の単量体としては、共重合可能なエチレン性不飽和単量体や芳香族ビニル化合物が挙げられ、具体的な化合物及び含有量は前記と同様である。 The modified conjugated diene-based rubber contains a unit derived from a monomer other than the conjugated diene monomer and a radically polymerizable compound having a hydrogen-bonding functional group to the extent that the effect of the present invention is not impaired. You may. Examples of other monomers include copolymerizable ethylenically unsaturated monomers and aromatic vinyl compounds, and the specific compounds and contents are the same as described above.
 変性共役ジエン系ゴムの製造方法に特に制限はないが、生産性の観点から、製造方法(1)、(2)又は(3)により製造することが好ましく、製造方法(1)又は(3)により製造することがより好ましく、製造方法(1)により製造することが更に好ましい。 The method for producing the modified conjugated diene rubber is not particularly limited, but from the viewpoint of productivity, it is preferably produced by the production method (1), (2) or (3), and the production method (1) or (3). It is more preferable to produce by the production method (1), and it is further preferable to produce by the production method (1).
〔液状の共役ジエン系ゴムの物性〕
 液状の共役ジエン系ゴムの重量平均分子量(Mw)は、エマルション組成物を接着剤として用いた場合の接着性を向上させる観点から、2,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましく、15,000以上であることがより更に好ましく、20,000以上であることがより更に好ましく、25,000以上であることが特に好ましい。また、接着力を長期間維持する観点から、35,000以上であることが更に好ましい。液状の共役ジエン系ゴムの取り扱い性を向上させる観点から、150,000以下であることが好ましく、120,000以下であることがより好ましく、100,000以下であることが更に好ましく、75,000以下であることがより更に好ましい。
 液状の共役ジエン系ゴムのMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量及び数平均分子量である。
[Physical characteristics of liquid conjugated diene rubber]
The weight average molecular weight (Mw) of the liquid conjugated diene rubber is preferably 2,000 or more, preferably 5,000 or more, from the viewpoint of improving the adhesiveness when the emulsion composition is used as an adhesive. More preferably, it is more preferably 10,000 or more, further preferably 15,000 or more, further preferably 20,000 or more, and particularly preferably 25,000 or more. .. Further, from the viewpoint of maintaining the adhesive strength for a long period of time, it is more preferably 35,000 or more. From the viewpoint of improving the handleability of the liquid conjugated diene rubber, it is preferably 150,000 or less, more preferably 120,000 or less, further preferably 100,000 or less, and 75,000. The following is even more preferable.
Mw and Mn of the liquid conjugated diene rubber are polystyrene-equivalent weight average molecular weight and number average molecular weight obtained from the measurement of gel permeation chromatography (GPC).
 液状の共役ジエン系ゴムの分子量分布(Mw/Mn)は、1.0~5.0であることが好ましく、1.0~3.0であることがより好ましく、1.0~2.0であることが更に好ましく、1.0~1.3であることがより更に好ましい。Mw/Mnが前記範囲内であると、液状の共役ジエン系ゴムの粘度のばらつきが小さく、取り扱いが容易である。分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)/数平均分子量(Mn)の比を意味する。 The molecular weight distribution (Mw / Mn) of the liquid conjugated diene rubber is preferably 1.0 to 5.0, more preferably 1.0 to 3.0, and 1.0 to 2.0. Is even more preferable, and 1.0 to 1.3 is even more preferable. When Mw / Mn is within the above range, the viscosity variation of the liquid conjugated diene rubber is small and the handling is easy. The molecular weight distribution (Mw / Mn) means the ratio of the weight average molecular weight (Mw) / number average molecular weight (Mn) in terms of standard polystyrene obtained by GPC measurement.
 液状の共役ジエン系ゴムのガラス転移温度(Tg)は、共役ジエン単位のビニル含量、共役ジエンの種類、共役ジエン以外の他の単量体に由来する単位の含有量等によって変化し得るが、-100~10℃であることが好ましく、-100~-10℃であることがより好ましく、-100~-20℃であることが更に好ましい。Tgが前記範囲内であると、高粘度化が抑制でき取り扱いが容易になる。
 液状の共役ジエン系ゴムのガラス転移温度(Tg)は、示差走査熱量測定(DSC)により測定した値を意味し、具体的には実施例に記載の方法により測定することができる。
The glass transition temperature (Tg) of a liquid conjugated diene-based rubber may vary depending on the vinyl content of the conjugated diene unit, the type of the conjugated diene, the content of a unit derived from a monomer other than the conjugated diene, and the like. It is preferably −100 to 10 ° C., more preferably −100 to −10 ° C., and even more preferably −100 to −20 ° C. When Tg is within the above range, high viscosity can be suppressed and handling becomes easy.
The glass transition temperature (Tg) of the liquid conjugated diene rubber means a value measured by differential scanning calorimetry (DSC), and can be specifically measured by the method described in Examples.
<20℃における蒸気圧が10Pa以下である希釈剤>
 本発明においては、希釈剤として20℃における蒸気圧が10Pa以下であるものを用いる。具体的な希釈剤に特に制限はないが、例えば、オイル、低粘度液状ゴムが挙げられる。
 なお、本発明において低粘度液状ゴムは38℃で測定した溶融粘度が30Pa・s未満のゴムを指し、前記液状の共役ジエン系ゴムとは溶融粘度の点で異なるものである。
 また、本明細書において「20℃における蒸気圧が10Pa以下である希釈剤」を単に「希釈剤」という場合がある。
<Diluent having a vapor pressure of 10 Pa or less at 20 ° C>
In the present invention, a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used. The specific diluent is not particularly limited, and examples thereof include oil and low-viscosity liquid rubber.
In the present invention, the low-viscosity liquid rubber refers to a rubber having a melt viscosity of less than 30 Pa · s measured at 38 ° C., and is different from the liquid conjugated diene rubber in terms of melt viscosity.
Further, in the present specification, the "diluent having a vapor pressure at 20 ° C. of 10 Pa or less" may be simply referred to as a "diluent".
 前記希釈剤の20℃における蒸気圧が10Paを超えると、エマルションを安定化しにくくなる。また、本発明のエマルション組成物を接着剤として用いた場合に塗り斑が生じやすくなるため接着性が低下することがある。更に製造時に製造設備の汚染が生じる可能性がある。これらの観点から、希釈剤の20℃における蒸気圧は、5.0Pa以下であることが好ましく、1.0Pa以下であることがより好ましく、1.0×10-1Pa以下であることが更に好ましく、1.0×10-2Pa以下であることがより更に好ましく、1.0×10-3Pa以下であることがより更に好ましい。また、希釈剤の20℃における蒸気圧は1.0×10-8Pa以上で有ることが好ましい。
 なお、本発明において20℃における蒸気圧が10Pa未満である希釈剤の20℃における蒸気圧は、気体流通法により測定した測定値にアントワン(Antoine)式を適用して得られた最適曲線によって算出した値をいう。
 また、20℃における蒸気圧が10Paを超える希釈剤の20℃における蒸気圧は、静止法を用いて直接測定した値をいう。
When the vapor pressure of the diluent at 20 ° C. exceeds 10 Pa, it becomes difficult to stabilize the emulsion. Further, when the emulsion composition of the present invention is used as an adhesive, coating spots are likely to occur, so that the adhesiveness may decrease. In addition, manufacturing equipment may be contaminated during manufacturing. From these viewpoints, the vapor pressure of the diluent at 20 ° C. is preferably 5.0 Pa or less, more preferably 1.0 Pa or less, and further preferably 1.0 × 10 -1 Pa or less. It is more preferably 1.0 × 10 −2 Pa or less, and even more preferably 1.0 × 10 −3 Pa or less. Further, it is preferable that the vapor pressure of the diluent at 20 ° C. is 1.0 × 10-8 Pa or more.
In the present invention, the vapor pressure of the diluent having a vapor pressure of less than 103 Pa at 20 ° C. is an optimum curve obtained by applying the Antoine equation to the measured value measured by the gas flow method. The value calculated by.
The vapor pressure of a diluent having a vapor pressure of more than 103 Pa at 20 ° C. is a value directly measured by using a static method.
〔オイル〕
 前記希釈剤としては、例えば不揮発性のオイルを用いることが好ましい。前記オイルとしては、20℃における蒸気圧が10Pa以下であって、液状の共役ジエン系ゴムと相溶するものであれば特に限定はされないが、例えば、天然油、及び合成油が挙げられる。天然油としては例えば鉱物油、及び植物油が挙げられる。
 鉱物油としては、溶剤精製、水添精製等の通常の精製法により得られた、パラフィン系鉱物油、芳香族系鉱物油及びナフテン系鉱物油、更にフィッシャートロプシュプロセス等により製造されたワックス(ガストゥリキッドワックス)、ワックスを異性化することによって製造された鉱物油等が挙げられる。
 パラフィン系鉱物油の市販品としては、出光興産株式会社製の「ダイアナプロセスオイル」シリーズ、JXエネルギー株式会社製の「スーパーオイル」シリーズ、日本サン石油株式会社製の「SUNPAR150」等が挙げられる。
 また、ナフテン系鉱物油の市販品としては、日本サン石油株式会社製の「SUNTHENE250J」等が挙げられる。
〔oil〕
As the diluent, it is preferable to use, for example, non-volatile oil. The oil is not particularly limited as long as it has a vapor pressure of 10 Pa or less at 20 ° C. and is compatible with a liquid conjugated diene-based rubber, and examples thereof include natural oils and synthetic oils. Examples of natural oils include mineral oils and vegetable oils.
The mineral oil includes paraffin-based mineral oil, aromatic mineral oil, naphthen-based mineral oil, and wax (gas) produced by Fisher Tropusch process, etc., obtained by ordinary refining methods such as solvent refining and hydrogenation refining. Tulique wax), mineral oil produced by isomerizing the wax, and the like.
Examples of commercially available paraffin-based mineral oils include the "Diana Process Oil" series manufactured by Idemitsu Kosan Co., Ltd., the "Super Oil" series manufactured by JX Energy Co., Ltd., and the "SUNPAR 150" manufactured by Nippon Sun Oil Co., Ltd.
Examples of commercially available naphthenic mineral oils include "SUNTHENE 250J" manufactured by Nippon Sun Oil Co., Ltd.
 植物油としては例えば、亜麻仁油、ツバキ油、マカダミアナッツ油、トウモロコシ油、ミンク油、オリーブ油、アボカド油、サザンカ油、ヒマシ油、紅花油、ホホバ油、ヒマワリ油、アーモンド油、菜種油、ゴマ油、大豆油、ピーナッツ油、綿実油、ココヤシ油、パーム核油、米ぬか油等が挙げられる。
 合成油としては、炭化水素系合成油、エステル系合成油、エーテル系合成油等が挙げられる。炭化水素系合成油としては、ポリブテン、ポリイソブチレン、1-オクテンオリゴマー、1-デセンオリゴマー、及びエチレン-プロピレン共重合体等のα-オレフィンオリゴマー又はその水素化物、アルキルベンゼン、及びアルキルナフタレン等が挙げられる。エステル系合成油としては、トリグリセリン脂肪エステル、ジグリセリン脂肪酸エステル、モノグリセリン脂肪酸エステル、モノアルコール脂肪酸エステル、多価アルコール脂肪酸エステル等が挙げられる。エーテル系合成油としては、ポリオキシアルキレングリコール、及びポリフェニルエーテル等が挙げられる。合成油の市販品としては、出光興産株式会社製の「リニアレン」シリーズ、ANDEROL製、「FGC32」、「FGC46」、「FGC68」等が挙げられる。
Vegetable oils include, for example, flaxseed oil, camellia oil, macadamia nut oil, corn oil, mink oil, olive oil, avocado oil, southern ka oil, sunflower oil, red flower oil, jojoba oil, sunflower oil, almond oil, rapeseed oil, sesame oil, soybean oil. , Peanut oil, cottonseed oil, coconut oil, palm kernel oil, rice bran oil and the like.
Examples of the synthetic oil include hydrocarbon-based synthetic oils, ester-based synthetic oils, ether-based synthetic oils, and the like. Examples of the hydrocarbon-based synthetic oil include α-olefin oligomers such as polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, and ethylene-propylene copolymer, or hydrides thereof, alkylbenzene, and alkylnaphthalene. .. Examples of the ester-based synthetic oil include triglycerin fatty acid ester, diglycerin fatty acid ester, monoglycerin fatty acid ester, monoalcohol fatty acid ester, and polyhydric alcohol fatty acid ester. Examples of the ether-based synthetic oil include polyoxyalkylene glycol and polyphenyl ether. Examples of commercially available synthetic oils include "Linearlen" series manufactured by Idemitsu Kosan Co., Ltd., "FGC32", "FGC46" and "FGC68" manufactured by ANDEROL.
 オイルは、前記天然油及び合成油から選ばれる1種を用いたものでも、天然油の2種以上、合成油の2種以上、又は天然油及び合成油のそれぞれの1種以上を混合したものでもよい。 The oil may be one selected from the above natural oils and synthetic oils, but two or more kinds of natural oils, two or more kinds of synthetic oils, or a mixture of one or more kinds of natural oils and synthetic oils. But it may be.
 本発明において用いるオイルの引火点は、安全性の観点から70℃以上であることが好ましく、100℃以上であることがより好ましく、130℃以上であることが更に好ましく、140℃以上であることがより更に好ましい。オイルの引火点の上限値に特に制限はないが、320℃以下であることが好ましい。 The flash point of the oil used in the present invention is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, further preferably 130 ° C. or higher, and 140 ° C. or higher from the viewpoint of safety. Is even more preferable. The upper limit of the flash point of the oil is not particularly limited, but is preferably 320 ° C. or lower.
〔低粘度液状ゴム〕
 希釈剤としては、低粘度液状ゴムを用いることも好ましい。低粘度液状ゴムとしては、38℃で測定した溶融粘度が30Pa・s未満であって、20℃における蒸気圧が10Pa以下であるものであれば、特に制限はない。より具体的には、液状ブタジエンゴム、液状イソプレンゴム、液状ファルネセンゴム等が挙げられ、これらは、ホモポリマー(単独重合体)でも、共重合体でもよい。特に希釈するため、低粘度である方が好ましく、低分子量液状ゴムが好ましく、特に液状ブタジエンゴム、液状ファルネセンゴムが好ましい。
[Low viscosity liquid rubber]
It is also preferable to use a low-viscosity liquid rubber as the diluent. The low-viscosity liquid rubber is not particularly limited as long as the melt viscosity measured at 38 ° C. is less than 30 Pa · s and the vapor pressure at 20 ° C. is 10 Pa or less. More specifically, liquid butadiene rubber, liquid isoprene rubber, liquid farnesene rubber and the like can be mentioned, and these may be homopolymers (homopolymers) or copolymers. In particular, since it is diluted, it is preferable to have a low viscosity, a low molecular weight liquid rubber is preferable, and a liquid butadiene rubber and a liquid farnesene rubber are particularly preferable.
 低粘度液状ゴムが液状ブタジエンゴムである場合の重量平均分子量は、500~10,000であることが好ましく、700~7,000であることがより好ましく、800~6,000であることが更に好ましい。一方、低粘度液状ゴムが液状ファルネセンゴムである場合の重量平均分子量は、1,000~80,000であることが好ましく、1,000~50,000であることが好ましく、1,000~30,000であることがより好ましく、1,000~10,000であることが更に好ましい。
 低粘度液状ゴムの重量平均分子量がそれぞれ前記範囲内であると、エマルションの安定性がより一層向上すると共に、エマルション組成物の取り扱い性も向上する。
 なお、低粘度液状ゴムの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。
When the low-viscosity liquid rubber is a liquid butadiene rubber, the weight average molecular weight is preferably 500 to 10,000, more preferably 700 to 7,000, and further preferably 800 to 6,000. preferable. On the other hand, when the low-viscosity liquid rubber is a liquid farnesene rubber, the weight average molecular weight is preferably 1,000 to 80,000, preferably 1,000 to 50,000, and 1,000 to 30, It is more preferably 000, and even more preferably 1,000 to 10,000.
When the weight average molecular weight of the low-viscosity liquid rubber is within the above range, the stability of the emulsion is further improved and the handleability of the emulsion composition is also improved.
The weight average molecular weight of the low-viscosity liquid rubber is a polystyrene-equivalent weight average molecular weight obtained from the measurement of gel permeation chromatography (GPC).
 本発明において前記希釈剤は、エマルションの安定性、エマルション組成物を用いた接着剤の接着性を向上させる観点から、ナフテン系鉱物油、低粘度液状ゴムが好ましく、ナフテン系鉱物油、液状ブタジエンゴムがより好ましい。 In the present invention, the diluent is preferably a naphthenic mineral oil or a low-viscosity liquid rubber, preferably a naphthenic mineral oil or a liquid butadiene rubber, from the viewpoint of improving the stability of the emulsion and the adhesiveness of the adhesive using the emulsion composition. Is more preferable.
<界面活性剤>
 本発明において用いる界面活性剤は特に限定されず、カチオン界面活性剤、アニオン界面活性剤、ノニオン界面活性剤、両性界面活性剤が挙げられる。これらの中でも、エマルションの安定性を向上させる観点から、ノニオン界面活性剤が好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
<Surfactant>
The surfactant used in the present invention is not particularly limited, and examples thereof include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant. Among these, a nonionic surfactant is preferable from the viewpoint of improving the stability of the emulsion. These may be used alone or in combination of two or more.
 カチオン界面活性剤としては、例えば、アルキルアンモニウム酢酸塩類、アルキルジメチルベンジルアンモニウム塩類、アルキルトリメチルアンモニウム塩類、ジアルキルジメチルアンモニウム塩類、アルキルピリジニウム塩類、オキシアルキレンアルキルアミン類、ポリオキシアルキレンアルキルアミン類等が挙げられる。これらのカチオン界面活性剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。 Examples of the cationic surfactant include alkylammonium acetates, alkyldimethylbenzylammonium salts, alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkylpyridinium salts, oxyalkylenealkylamines, polyoxyalkylenealkylamines and the like. .. These cationic surfactants may be used alone or in combination of two or more, if necessary.
 アニオン界面活性剤としては、例えば、脂肪酸石鹸等のカルボン酸塩、高級アルコール硫酸エステル塩、高級アルキルポリアルキレングリコールエーテル硫酸エステル塩、スチレン化フェノールアルキレンオキサイド付加物の硫酸エステル塩、アルキルフェノールアルキレンオキサイド付加物の硫酸エステル塩、硫酸化油、硫酸化脂肪酸エステル、硫酸化脂肪酸、硫酸化オレフィン等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、ナフタレンスルホン酸等のホルマリン縮合物、α-オレフィンスルホン酸塩、パラフィンスルホン酸塩、スルホ琥珀酸ジエステル塩等のスルホン酸塩、高級アルコールリン酸エステル塩等を挙げることができる。これらのアニオン界面活性剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。
 アニオン界面活性剤の市販品としては、第一工業製薬株式会社製の「プライサーフA210B」、東邦化学工業株式会社製の「フォスファノールRD-720N」等が挙げられる。
Examples of the anionic surfactant include carboxylates such as fatty acid soap, higher alcohol sulfate ester salts, higher alkyl polyalkylene glycol ether sulfate ester salts, sulfate ester salts of styrated phenol alkylene oxide adducts, and alkyl phenol alkylene oxide adducts. Sulfate ester salt, sulfated oil, sulfated fatty acid ester, sulfated fatty acid, sulfated olefin and other sulfate ester salts, alkylbenzene sulfonate, alkylnaphthalene sulfonate, naphthalene sulfonate, naphthalene sulfonic acid and the like formalin condensation Examples thereof include products, α-olefin sulfonates, paraffin sulfonates, sulfonates such as sulfosulphonic acid diester salts, higher alcohol phosphate ester salts and the like. These anionic surfactants may be used alone or in combination of two or more, if necessary.
Examples of commercially available anionic surfactants include "Plysurf A210B" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. and "Phosphanol RD-720N" manufactured by Toho Chemical Industry Co., Ltd.
 ノニオン界面活性剤としては、例えば、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、スチレン化フェノールアルキレンオキサイド付加物、脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪族エステルアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物等のポリオキシアルキレン型非イオン界面活性剤や、アルキルグリコキシド、ショ糖脂肪酸エステル等の多価アルコール型非イオン界面活性剤を挙げることができる。これらのノニオン界面活性剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。
 ノニオン界面活性剤の市販品としては、株式会社ADEKA製の「アデカトールPC-6」、「アデカトールPC-8」、「アデカトールPC-10」、「アデカトールTN-100」、東邦化学工業株式会社製のポリオキシエチレンアルキルエーテル(商品名「ペグノールTE-10A」、「ペグノールL-9A」、「ペグノールTH-8」)等が挙げられる。
Examples of the nonionic surfactant include a higher alcohol alkylene oxide adduct, an alkylphenol alkylene oxide adduct, a styrated phenolalkylene oxide adduct, a fatty acid alkylene oxide adduct, a polyhydric alcohol aliphatic ester alkylene oxide adduct, and a higher alkylamine. Examples thereof include polyoxyalkylene type nonionic surfactants such as alkylene oxide adducts and fatty acid amide alkylene oxide adducts, and polyhydric alcohol type nonionic surfactants such as alkyl glycoloxides and sucrose fatty acid esters. These nonionic surfactants may be used alone or in combination of two or more, if necessary.
Commercially available nonionic surfactants include "Adecator PC-6", "Adecator PC-8", "Adecator PC-10", "Adecator TN-100" manufactured by ADEKA Co., Ltd., and manufactured by Toho Chemical Industry Co., Ltd. Examples thereof include polyoxyethylene alkyl ethers (trade names “Pegnol TE-10A”, “Pegnol L-9A”, “Pegnol TH-8”) and the like.
 ノニオン界面活性剤のHLB(Hydrophilic-LipophilicBalance)値は、親水性-親油性のバランスを示す指標であり、0から20までの値で表現される。本発明においては、グリフィン法に基づき下記式(I)により算出した値を用いる。
   HLB値=20×親水部の式量の総和/分子量   (I)
The HLB (Hydrophilic-Lipophilic Balance) value of the nonionic surfactant is an index showing the balance between hydrophilicity and lipophilicity, and is expressed by a value from 0 to 20. In the present invention, the value calculated by the following formula (I) based on the Griffin method is used.
HLB value = 20 × total formula weight of hydrophilic part / molecular weight (I)
 ノニオン界面活性剤の同定はマススペクトルを用いて分子量及び構成単位を検出測定し、H及び13C-NMRを用いて構造を検出測定し、これらに基づき構造を同定することができるため、同定した情報を元に式(I)を用いてHLB値を求めることが可能である。なお、エマルション組成物中からノニオン界面活性剤を分離する方法としては例えば、逆相液体クロマトグラフィーにより分画し、分取する方法が挙げられる。 For identification of nonionic surfactants, the molecular weight and structural units can be detected and measured using mass spectra, the structure can be detected and measured using 1H and 13 C - NMR, and the structure can be identified based on these. It is possible to obtain the HLB value using the formula (I) based on the obtained information. Examples of the method for separating the nonionic surfactant from the emulsion composition include a method of fractionating and fractionating by reverse phase liquid chromatography.
<エマルション組成物の組成>
 本発明のエマルション組成物中の液状の共役ジエン系ゴムの含有量は、エマルションの安定性を向上させる観点、及びエマルション組成物を接着剤として用いた場合の接着力を向上させる観点から、エマルション組成物全量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、そして、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。エマルション組成物中の液状の共役ジエン系ゴムの含有量が前記範囲内であると、エマルションの安定性を向上させつつ、エマルション組成物の粘度が極端に高くなることを防ぐことができる。
<Composition of emulsion composition>
The content of the liquid conjugated diene rubber in the emulsion composition of the present invention is an emulsion composition from the viewpoint of improving the stability of the emulsion and improving the adhesive strength when the emulsion composition is used as an adhesive. It is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 4% by mass or more, and preferably 50% by mass or less, based on the total amount of the substance. It is more preferably 30% by mass or less, and further preferably 20% by mass or less. When the content of the liquid conjugated diene rubber in the emulsion composition is within the above range, it is possible to improve the stability of the emulsion and prevent the viscosity of the emulsion composition from becoming extremely high.
 前記エマルション組成物中の前記希釈剤の含有量は、エマルション組成物全量に対して、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることが更に好ましく、そして、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。エマルション組成物中の前記希釈剤の含有量が前記範囲内であると、エマルション組成物の粘度が極端に高くなることを防ぐことができ、製造効率が向上する。また、エマルションの安定性が向上するため、製造後、長期にわたって相分離等の不具合が生じにくくなる。 The content of the diluent in the emulsion composition is preferably 1% by mass or more, more preferably 2% by mass or more, and 4% by mass or more, based on the total amount of the emulsion composition. Is more preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less. When the content of the diluent in the emulsion composition is within the above range, it is possible to prevent the viscosity of the emulsion composition from becoming extremely high, and the production efficiency is improved. In addition, since the stability of the emulsion is improved, problems such as phase separation are less likely to occur for a long period of time after production.
 前記エマルション組成物中の前記界面活性剤の含有量は、前記液状の共役ジエン系ゴム及び前記希釈剤の合計100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、4質量部以上であることが更に好ましい。前記界面活性剤の含有量が1質量部以上であると、エマルションの安定性を向上させることができる。一方、界面活性剤の量は、製造コストの観点から15質量部以下とすることが好ましく、10質量部以下とすることがより好ましい。 The content of the surfactant in the emulsion composition is preferably 1 part by mass or more, preferably 3 parts by mass or more, based on 100 parts by mass of the total of the liquid conjugated diene rubber and the diluent. It is more preferable that the amount is 4 parts by mass or more. When the content of the surfactant is 1 part by mass or more, the stability of the emulsion can be improved. On the other hand, the amount of the surfactant is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, from the viewpoint of manufacturing cost.
 前記液状の共役ジエン系ゴムは、1種を単独で用いてもよく、2種以上を併用してもよい。また、前記希釈剤は、1種を単独で用いてもよく、2種以上を併用してもよい。更に、前記界面活性剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 The liquid conjugated diene rubber may be used alone or in combination of two or more. In addition, the diluent may be used alone or in combination of two or more. Further, the surfactant may be used alone or in combination of two or more.
 更に本発明のエマルション組成物は、エマルションの安定性を阻害しない範囲内で、液状の共役ジエン系ゴム、20℃における蒸気圧が10Pa以下である希釈剤、界面活性剤及び水以外の他の成分を含んでもよい。
 前記他の成分としては、他のポリマー、酸、水酸化ナトリウム等の塩基性化合物、酸化防止剤、硬化剤、分散剤、顔料、染料、接着助剤、カーボンブラック等が挙げられる。
Further, the emulsion composition of the present invention comprises a liquid conjugated diene rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and other components other than water, as long as the stability of the emulsion is not impaired. May include.
Examples of the other components include other polymers, acids, basic compounds such as sodium hydroxide, antioxidants, curing agents, dispersants, pigments, dyes, adhesion aids, carbon black and the like.
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、及びアンモニア等が挙げられる。この中でも、安定性及び接着性の観点からは、水酸化ナトリウム及びアンモニアが好ましく、作業者の安全性の観点からは、アンモニアを用いることが好ましい。 Examples of the basic compound include sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and the like. Of these, sodium hydroxide and ammonia are preferable from the viewpoint of stability and adhesiveness, and ammonia is preferably used from the viewpoint of worker safety.
 前記エマルション組成物が他の成分を含有する場合、その含有量は、液状の共役ジエン系ゴム100質量部に対して、好ましくは1,000質量部以下であり、より好ましくは100質量部以下であり、更に好ましくは10質量部以下であり、より更に好ましくは1質量部以下である。例えば、エマルション組成物が水酸化ナトリウム等の塩基性化合物を前記範囲で含有するとエマルションの安定性がより一層向上する。 When the emulsion composition contains other components, the content thereof is preferably 1,000 parts by mass or less, more preferably 100 parts by mass or less, based on 100 parts by mass of the liquid conjugated diene rubber. Yes, more preferably 10 parts by mass or less, still more preferably 1 part by mass or less. For example, when the emulsion composition contains a basic compound such as sodium hydroxide in the above range, the stability of the emulsion is further improved.
[エマルション組成物の製造方法]
 本発明のエマルション組成物の製造方法は、前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤、及び水を混合して水中油滴エマルションを製造した後、前記希釈剤を除去しないことを特徴とするものである。
 本発明の製造方法によれば、20℃における蒸気圧が10Pa以下である希釈剤を用いているため、エマルション組成物の粘度の上昇を抑えつつ、従来の方法と比較して容易に、安定性に優れるエマルション組成物を得ることが可能である。
 また、従来の揮発性が高い溶媒を使用する方法においては溶媒の除去工程が必要であったが、本発明の方法では当該除去工程を必要とすることなくエマルション組成物を製造することが可能である。つまり本発明の製造方法によれば、後処理工程を必要とせずに効率的にエマルション組成物を接着剤等の用途に利用することができる。
 なお、本発明の製造方法において「希釈剤を除去しない」とは希釈剤を除去するための工程を設ける必要がないことを意味する。
[Method for producing emulsion composition]
In the method for producing an emulsion composition of the present invention, the liquid conjugated diene rubber, the diluent, the surfactant, and water are mixed to produce an oil droplet emulsion in water, and then the diluent is not removed. It is characterized by.
According to the production method of the present invention, since a diluent having a vapor pressure of 10 Pa or less at 20 ° C. is used, stability is easily compared with the conventional method while suppressing an increase in the viscosity of the emulsion composition. It is possible to obtain an excellent emulsion composition.
Further, in the conventional method using a highly volatile solvent, a solvent removing step is required, but in the method of the present invention, it is possible to produce an emulsion composition without requiring the removing step. be. That is, according to the production method of the present invention, the emulsion composition can be efficiently used for an adhesive or the like without requiring a post-treatment step.
In the production method of the present invention, "not removing the diluent" means that it is not necessary to provide a step for removing the diluent.
 前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤及び水を混合する順番は、前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤を混合した後、これに水を混合してもよい。より好ましい混合する順番は、前記液状の共役ジエン系ゴム及び前記希釈剤を混合して希釈液を調製した後、前記希釈液に前記界面活性剤を混合し、次いで水と必要に応じて水酸化ナトリウム等の塩基性化合物を少量ずつ添加しながら混合していく順番である。これら順番を採用したエマルション組成物の製造方法は一般に転相乳化法と呼ばれており、乳化剤を油相中に溶解し、撹拌しながらこれに水を添加して連続相を油相から水相へ相反転させてO/W型エマルションを生成させる方法である。水と必要に応じて水酸化ナトリウム等の塩基性化合物を混合する際は、少量ずつ添加しながら混合することで、上述の相反転を緩やかに進めることができ、その結果、得られるエマルション組成物がより細かく、かつ、粒径分布が小さいものとなる。また、水酸化ナトリウム等の塩基性化合物を添加する場合は、上述の相反転が完了する前に、前記塩基性化合物の添加を完了することが、得られるエマルション組成物の保存安定性をより良好にできる点で好ましい。 The order in which the liquid conjugated diene rubber, the diluent, the surfactant and the water are mixed is as follows: the liquid conjugated diene rubber, the diluent and the surfactant are mixed, and then water is mixed therein. You may. A more preferred mixing order is to mix the liquid conjugated diene rubber and the diluent to prepare a diluent, then mix the diluent with the surfactant, then water and, if necessary, hydroxide. The order is to add basic compounds such as sodium little by little and mix them. The method for producing an emulsion composition adopting these orders is generally called a phase inversion emulsification method, in which an emulsifier is dissolved in an oil phase and water is added to the emulsion composition while stirring to change the continuous phase from the oil phase to the aqueous phase. This is a method of inverting the phase to form an O / W type emulsion. When water and, if necessary, a basic compound such as sodium hydroxide are mixed, the above-mentioned phase inversion can be slowly promoted by adding the mixture little by little, and the resulting emulsion composition can be obtained. Is finer and the particle size distribution is smaller. Further, when a basic compound such as sodium hydroxide is added, completing the addition of the basic compound before the above-mentioned phase inversion is completed improves the storage stability of the obtained emulsion composition. It is preferable in that it can be used.
 前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤を混合した後、これに水を混合する順番で各成分を混合する場合、機械的方法により行うことが好ましい。前記機械的方法としてはニーダー、スーパーミキサー、二軸押出機を用いる方法が挙げられ、これらを単独又は組み合わせて使用できる。上記装置を用いることにより、強力なせん断を与えることで細かい粒径のエマルション組成物を得ることができる。 When the liquid conjugated diene rubber, the diluent, and the surfactant are mixed, and then water is mixed with the liquid, each component is preferably mixed by a mechanical method. Examples of the mechanical method include a method using a kneader, a super mixer, and a twin-screw extruder, and these can be used alone or in combination. By using the above apparatus, an emulsion composition having a fine particle size can be obtained by applying strong shearing.
 前記液状の共役ジエン系ゴム及び前記希釈剤を混合して希釈液を調製した後、前記希釈液に前記界面活性剤を混合し、次いで水と必要に応じて水酸化ナトリウム等の塩基性化合物を少量ずつ添加しながら混合していく順番を採用した場合、以下に示す方法で各ステップの混合を行うことが好ましい。すなわち、前記液状の共役ジエン系ゴム及び前記希釈剤を混合して希釈液を調製するステップ、及び得られた希釈液に前記界面活性剤を混合するステップでは、ニーダー、スーパーミキサー、二軸押出機を用いて混合することが好ましい。これらの装置を用いることで、高い生産性で均一に混合された混合液を比較的簡便に得ることができる。
 続いて水と必要に応じて水酸化ナトリウム等の塩基性化合物を少量ずつ混合していくステップでは、ホモジナイザー、ホモミキサー、ディスパーミキサー、コロイドミル、ニーダー、プラネタリーミキサー、スーパーミキサー、高圧ホモジナイザー、二軸押出機、超音波乳化機等を用いて混合する方法が好ましい混合方法として挙げられ、これらを単独または組み合わせて使用できる。上記装置を用いることにより、強力なせん断を与えることで細かい粒径のエマルション組成物を得ることができる。
After preparing the diluted solution by mixing the liquid conjugated diene rubber and the diluent, the surfactant is mixed with the diluted solution, and then water and, if necessary, a basic compound such as sodium hydroxide are added. When the order of mixing while adding in small amounts is adopted, it is preferable to mix each step by the method shown below. That is, in the step of mixing the liquid conjugated diene rubber and the diluent to prepare a diluent, and the step of mixing the obtained diluent with the surfactant, a kneader, a super mixer, and a twin-screw extruder are used. It is preferable to mix using. By using these devices, it is possible to obtain a uniformly mixed liquid with high productivity relatively easily.
Then, in the step of mixing water and a basic compound such as sodium hydroxide little by little, a homogenizer, a homomixer, a disper mixer, a colloid mill, a kneader, a planetary mixer, a super mixer, a high-pressure homogenizer, and two A method of mixing using a shaft extruder, an ultrasonic emulsifier, or the like is mentioned as a preferable mixing method, and these can be used alone or in combination. By using the above apparatus, an emulsion composition having a fine particle size can be obtained by applying strong shearing.
 前記エマルション組成物の製造方法において水を添加する際、エマルション組成物中の前記液状の共役ジエン系ゴム及び前記希釈剤の含有量が上述の好適な範囲になるように、一回のエマルション組成物の製造工程で水を添加しても良い。より好ましい実施態様では、エマルション組成物の製造工程を二以上の複数回に分け、最初の製造工程では前記液状の共役ジエン系ゴム及び前記希釈剤を高濃度に含むように水の添加量を制限し、続く二回目以降のエマルション組成物の製造工程において、最終製品として適切な前記液状の共役ジエン系ゴム及び前記希釈剤の含有量となるように水をさらに添加する製造工程が用いられる。このような製造工程を採用することで、最終的に得られるエマルション組成物の製品品質が安定しやすくなる。またこの製造工程を採用する場合、最初の製造工程と二回目以降の製造工程を同じ場所で行う必要は必ずしもなく、最初の製造工程で得られた高濃度のエマルション組成物を、エマルション組成物を実際に利用する場所又はその近くに輸送した後、二回目以降のエマルション組成物の製造工程において、最終製品として適切な前記液状の共役ジエン系ゴム及び前記希釈剤の含有量となるように水をさらに添加するような実施形態も好ましい。この場合、高濃度のエマルション組成物の方が相対的に輸送コストが小さくなるため、経済的な観点からも好ましい。 When water is added in the method for producing an emulsion composition, the emulsion composition is once so that the contents of the liquid conjugated diene rubber and the diluent are within the above-mentioned suitable ranges. Water may be added in the manufacturing process of. In a more preferred embodiment, the manufacturing process of the emulsion composition is divided into two or more steps, and in the first manufacturing step, the amount of water added is limited so as to contain the liquid conjugated diene rubber and the diluent in a high concentration. Then, in the subsequent production process of the emulsion composition, a production process of further adding water so as to have the content of the liquid conjugated diene rubber and the diluent suitable for the final product is used. By adopting such a manufacturing process, the product quality of the finally obtained emulsion composition can be easily stabilized. Further, when this manufacturing process is adopted, it is not always necessary to perform the first manufacturing process and the second and subsequent manufacturing steps in the same place, and the high-concentration emulsion composition obtained in the first manufacturing step is used as the emulsion composition. After transporting to or near the place where it is actually used, water is added so as to have the content of the liquid conjugated diene rubber and the diluent suitable for the final product in the second and subsequent manufacturing processes of the emulsion composition. Embodiments such as further addition are also preferred. In this case, the high-concentration emulsion composition is preferable from the economical point of view because the transportation cost is relatively small.
 本発明の製造方法であれば、前記希釈液の粘度を低くすることができるため前記機械的方法により乳化を行う際に、装置に過大な負荷がかからず回転速度を上げて十分なせん断を与えることができる。以上の観点から、希釈液の25℃で測定した粘度は、1.0×10Pa・s以下であることが好ましく、5.0×10Pa・s以下であることがより好ましく、1.0×10Pa・s以下であることが更に好ましく、5.0×10Pa・s以下であることが最も好ましい。前記粘度が前記範囲内であると、粘度を十分に低くすることができるため製造が容易になる。
 なお、希釈液の粘度とは、前記共役ジエン系ゴム及び前記希釈剤のみを混合した組成物のブルックフィールド型粘度計(B型粘度計)を用いて25℃にて測定した粘度を意味する。測定を行う際のローター及び回転数は、フルスケールに近くなるように適宜設定する。
According to the production method of the present invention, the viscosity of the diluted solution can be lowered, so that when emulsification is performed by the mechanical method, an excessive load is not applied to the apparatus and the rotation speed is increased to provide sufficient shear. Can be given. From the above viewpoint, the viscosity of the diluted solution measured at 25 ° C. is preferably 1.0 × 10 3 Pa · s or less, and more preferably 5.0 × 10 2 Pa · s or less. It is more preferably 0.0 × 10 2 Pa · s or less, and most preferably 5.0 × 10 Pa · s or less. When the viscosity is within the above range, the viscosity can be sufficiently lowered, so that the production becomes easy.
The viscosity of the diluted solution means the viscosity measured at 25 ° C. using a Brookfield type viscometer (B type viscometer) having a composition in which only the conjugated diene rubber and the diluent are mixed. The rotor and rotation speed at the time of measurement are appropriately set so as to be close to full scale.
<エマルション組成物の用途>
 本発明のエマルション組成物は前述のとおりエマルションの安定性が高いため、例えば接着剤の接着成分として用いた場合に優れた接着性を示す。本発明のエマルション組成物を接着成分として用いる場合、その用途に特に制限はないが、例えば繊維とゴムとを接着する用途が挙げられる。
<Use of emulsion composition>
Since the emulsion composition of the present invention has high emulsion stability as described above, it exhibits excellent adhesiveness when used as an adhesive component of an adhesive, for example. When the emulsion composition of the present invention is used as an adhesive component, its use is not particularly limited, and examples thereof include applications for adhering fibers and rubber.
〔繊維〕
 被着体としての繊維に特に制限はないが、前記エマルション組成物を用いた接着剤との親和性の観点から、親水性繊維が好ましい。なお、本発明において「繊維」とは、単繊維や長繊維だけでなく、不織布、織物、編物、フェルト及びスポンジ等の形態を含むものとする。
〔fiber〕
The fiber as an adherend is not particularly limited, but a hydrophilic fiber is preferable from the viewpoint of affinity with an adhesive using the emulsion composition. In the present invention, the term "fiber" includes not only single fibers and long fibers but also non-woven fabrics, woven fabrics, knitted fabrics, felts, sponges and the like.
 親水性の合成繊維としては、ヒドロキシ基、カルボキシ基、スルホン酸基、及びアミノ基のような親水性官能基、及び/又は、アミド結合のような親水性結合を有する熱可塑性樹脂で構成される合成繊維を挙げることができる。
 このような熱可塑性樹脂の具体例は、ポリビニルアルコール系樹脂、ポリアミド系樹脂〔ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド9C(ノナンジアミンとシクロヘキサンジカルボン酸からなるポリアミド)等の脂肪族ポリアミド;ポリアミド9T(ノナンジアミンとテレフタル酸からなるポリアミド)等の芳香族ジカルボン酸と脂肪族ジアミンとから合成される半芳香族ポリアミド;ポリパラフェニレンテレフタルアミド等の芳香族ジカルボン酸と芳香族ジアミンとから合成される全芳香族ポリアミド等〕、ポリアクリルアミド系樹脂等が挙げられる。
 これらの中でも、ポリビニルアルコール系樹脂、及びポリアミド系樹脂が好ましい。親水性の合成繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。また、これらの親水性の合成繊維は、親水性をより高めるべく、後述する親水化処理を更に施してもよい。
The hydrophilic synthetic fiber is composed of a hydrophilic functional group such as a hydroxy group, a carboxy group, a sulfonic acid group, and an amino group, and / or a thermoplastic resin having a hydrophilic bond such as an amide bond. Synthetic fibers can be mentioned.
Specific examples of such a thermoplastic resin include polyvinyl alcohol-based resin and polyamide-based resin [polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, and polyamide 9C (polyamide composed of nonanediamine and cyclohexanedicarboxylic acid). And other aliphatic polyamides; semi-aromatic polyamides synthesized from aromatic dicarboxylic acids such as polyamide 9T (polyamide composed of nonanediamine and terephthalic acid) and aliphatic diamines; aromatic dicarboxylic acids and aromatics such as polyparaphenylene terephthalamide. Total aromatic polyamides synthesized from group diamines, etc.], polyacrylamide-based resins, etc. may be mentioned.
Among these, polyvinyl alcohol-based resins and polyamide-based resins are preferable. As the hydrophilic synthetic fiber, one kind may be used alone, or two or more kinds may be used in combination. Further, these hydrophilic synthetic fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
 親水性の天然繊維としては、クラフトパルプ等の木材パルプや木綿パルプ、ワラパルプ等の非木材パルプ等の天然セルロース繊維が挙げられる。
 親水性の再生繊維としては、レーヨン、リヨセル、キュプラ、及びポリノジック等の再生セルロース系繊維が挙げられる。
 これらの天然繊維及び再生繊維は、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。また、これらの親水性の天然繊維及び再生繊維は、親水性をより高めるべく、後述する親水化処理を更に施してもよい。
Examples of the hydrophilic natural fiber include natural cellulose fibers such as wood pulp such as kraft pulp, cotton pulp, and non-wood pulp such as straw pulp.
Examples of the hydrophilic regenerated fiber include regenerated cellulose fibers such as rayon, lyocell, cupra, and polynosic.
Each of these natural fibers and regenerated fibers may be used alone or in combination of two or more. Further, these hydrophilic natural fibers and regenerated fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
 親水性繊維は、少なくとも表面が親水性を有していればよく、例えば、疎水性繊維の表面を親水化処理した繊維や、疎水性樹脂を芯部とし、鞘部を親水性樹脂とした芯鞘型複合繊維等であってもよい。鞘部を構成する親水性樹脂の例については、親水性の合成繊維についての記述が引用される。疎水性樹脂からなる疎水性繊維としては、例えば、ポリエチレン及びポリプロピレン等のポリオレフィン系繊維、ポリエチレンテレフタレート等のポリエステル系繊維、及び全芳香族ポリエステル系繊維等が挙げられ、これらの中でもポリエステル系繊維が好ましい。 The hydrophilic fiber may have at least a hydrophilic surface. For example, a fiber having a hydrophilic treatment on the surface of the hydrophobic fiber or a core having a hydrophobic resin as a core and a sheath having a hydrophilic resin as a core. It may be a sheath type composite fiber or the like. For examples of hydrophilic resins constituting the sheath, the description of hydrophilic synthetic fibers is cited. Examples of the hydrophobic fiber made of a hydrophobic resin include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate, and all-aromatic polyester fibers, and among these, polyester fibers are preferable. ..
 親水化処理は、化学的又は物理的に繊維表面に親水性官能基を付与する処理であれば特に限定はされないが、例えば、前記疎水性樹脂からなる疎水性繊維をイソシアネート基、エポキシ基、ヒドロキシ基、アミノ基、エーテル基、アルデヒド基、カルボニル基、カルボキシ基及びウレタン基等の親水性官能基を含む化合物又はその誘導体により修飾する方法や、電子線照射により表面を改質する方法等で行うことができる。 The hydrophilization treatment is not particularly limited as long as it is a treatment for chemically or physically imparting a hydrophilic functional group to the fiber surface, and for example, the hydrophobic fiber made of the hydrophobic resin is subjected to an isocyanate group, an epoxy group, or a hydroxy. It is carried out by a method of modifying with a compound containing a hydrophilic functional group such as a group, an amino group, an ether group, an aldehyde group, a carbonyl group, a carboxy group and a urethane group or a derivative thereof, or a method of modifying the surface by irradiation with an electron beam. be able to.
 本発明に用いられる繊維としては、エマルション組成物と繊維とのなじみやすさの観点から、合成繊維及び再生繊維が好ましく、中でもポリビニルアルコール系樹脂を原料とするポリビニルアルコール系繊維、再生セルロース系繊維、ポリエステル系繊維、及びポリアミド系繊維から選ばれる1種以上が好ましい。その中でも親水化処理したポリエステル系繊維が最も好ましい。 As the fiber used in the present invention, synthetic fiber and regenerated fiber are preferable from the viewpoint of easy compatibility between the emulsion composition and the fiber, and among them, polyvinyl alcohol fiber and regenerated cellulose fiber made from polyvinyl alcohol resin as a raw material. One or more selected from polyester fibers and polyamide fibers is preferable. Among them, the hydrophilized polyester fiber is the most preferable.
〔エマルション組成物を繊維へ付着させる方法〕
 エマルション組成物を繊維へ付着させる方法に特に制限はなく、浸漬、ロールコーター、オイリングローラー、オイリングガイド、ノズル(スプレー)塗布、及び刷毛塗り等から選ばれる1種以上により行うことが好ましい。
[Method of adhering emulsion composition to fibers]
The method for adhering the emulsion composition to the fiber is not particularly limited, and it is preferably performed by one or more selected from dipping, roll coater, oiling roller, oiling guide, nozzle (spray) coating, brush coating and the like.
 前記エマルション組成物の付着量は、繊維とゴムとの接着性を向上させる観点から、繊維100質量部に対して、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、そして、製造コストと効果とのバランスの観点から、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが更に好ましい。 The amount of the emulsion composition adhered is preferably 0.01 part by mass or more, and 0.1 part by mass or more with respect to 100 parts by mass of the fiber, from the viewpoint of improving the adhesiveness between the fiber and the rubber. It is more preferably 1 part by mass or more, and from the viewpoint of the balance between the production cost and the effect, it is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. It is more preferably 3 parts by mass or less.
 本発明のエマルション組成物を繊維に付着させた後、20℃程度の室温で3日~10日程度なじませることが好ましい。また、場合によっては繊維に付着させた後、該繊維に熱処理を行ってもよい。
 前記熱処理は、好ましくは100~200℃の処理温度で0.1秒~2分の処理時間で行うことが好ましい。前記エマルション組成物に含まれる液状の共役ジエン系ゴムは反応性多重結合を有しているため、酸素存在下での熱処理は200℃以下であることが好ましく、175℃以下であることがより好ましい。熱処理の温度が前記範囲内であると、液状の共役ジエン系ゴム中の反応性多重結合量が減少することなく、接着力を向上させることができ、更に繊維の劣化も抑制し、着色等の品質も良好となる。
After the emulsion composition of the present invention is attached to the fiber, it is preferably allowed to acclimate at room temperature of about 20 ° C. for about 3 to 10 days. Further, in some cases, the fiber may be heat-treated after being attached to the fiber.
The heat treatment is preferably performed at a treatment temperature of 100 to 200 ° C. and a treatment time of 0.1 seconds to 2 minutes. Since the liquid conjugated diene rubber contained in the emulsion composition has a reactive multiple bond, the heat treatment in the presence of oxygen is preferably 200 ° C. or lower, more preferably 175 ° C. or lower. .. When the temperature of the heat treatment is within the above range, the adhesive strength can be improved without reducing the amount of reactive multiple bonds in the liquid conjugated diene rubber, the deterioration of the fibers can be suppressed, and coloring and the like can be suppressed. The quality is also good.
〔ゴム〕
 繊維と接着するゴムに特に制限はなく、例えば、NR(天然ゴム)、IR(ポリイソプレンゴム)、BR(ポリブタジエンゴム)、SBR(スチレン-ブタジエンゴム)、NBR(ニトリルゴム)、EPM(エチレン-プロピレン共重合体ゴム)、EPDM(エチレン-プロピレン-非共役ジエン共重合体ゴム)、IIR(ブチルゴム)、ハロゲン化ブチルゴム、CR(クロロプレンゴム)等が挙げられる。これらの中でも、NR、BR、SBRを用いることがより好ましい。これらのゴムは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Rubber]
The rubber that adheres to the fiber is not particularly limited, and for example, NR (natural rubber), IR (polyisoprene rubber), BR (polybutadiene rubber), SBR (styrene-butadiene rubber), NBR (nitrile rubber), EPM (ethylene-). Propylene copolymer rubber), EPDM (ethylene-propylene-non-conjugated diene copolymer rubber), IIR (butyl rubber), halogenated butyl rubber, CR (chloroprene rubber) and the like can be mentioned. Among these, it is more preferable to use NR, BR, and SBR. One type of these rubbers may be used alone, or two or more types may be used in combination.
 前記繊維と前記ゴムとを接着し、ゴム成形体を製造する方法としては、例えば、前記繊維に対してエマルション組成物を付着させ、これを未加硫の前記ゴム成分に埋設し、該ゴム成分を加硫処理することにより、繊維とゴムとが前記エマルション組成物を介して接着された成形体を得ることができる。 As a method of adhering the fiber and the rubber to produce a rubber molded body, for example, an emulsion composition is adhered to the fiber, and the emulsion composition is embedded in the unvulcanized rubber component to obtain the rubber component. By vulcanizing the above, it is possible to obtain a molded product in which fibers and rubber are bonded via the emulsion composition.
 以下、実施例等により本発明を更に具体的に説明するが、本発明はかかる実施例等により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited to such Examples and the like.
<液状の共役ジエン系ゴムの製造>
製造例1:変性共役ジエン系ゴム(A-1)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1260g及びn-ブチルリチウム(17質量%ヘキサン溶液)36.3gを仕込み、50℃に昇温した後、撹拌条件下、重合温度が50℃となるように制御しながら、ブタジエン1260gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ポリブタジエン(A’-1)を得た。
 続いて、窒素置換を行った容量1Lのオートクレーブ中に、得られた未変性液状ポリブタジエン(A’-1)500gを仕込み、無水マレイン酸25gとN-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(商品名「ノクラック6C」、大内新興化学工業株式会社製)0.5gを添加し、170℃で24時間反応させて、無水マレイン酸変性液状ポリブタジエンを得た。得られた無水マレイン酸変性液状ポリブタジエン525gに対し、メタノールを8.5g添加し、80℃で6時間反応させて、マレイン酸モノメチル変性液状ポリブタジエン(A-1)を得た。
<Manufacturing of liquid conjugated diene rubber>
Production Example 1: Production of Modified Conjugated Diene Rubber (A-1) A sufficiently dried 5 L autoclave is substituted with nitrogen, 1260 g of hexane and 36.3 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is adjusted to 50 ° C. After raising the temperature, 1260 g of butadiene was sequentially added under stirring conditions while controlling the polymerization temperature to be 50 ° C., and the mixture was polymerized for 1 hour. Then, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain unmodified liquid polybutadiene (A'-1).
Subsequently, 500 g of the obtained unmodified liquid polybutadiene (A'-1) was charged into a nitrogen-substituted autoclave having a capacity of 1 L, and 25 g of maleic anhydride and N-phenyl-N'-(1,3-dimethyl) were charged. 0.5 g of butyl) -p-phenylenediamine (trade name "Nocrack 6C", manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) was added and reacted at 170 ° C. for 24 hours to obtain maleic anhydride-modified liquid polybutadiene. 8.5 g of methanol was added to 525 g of the obtained maleic anhydride-modified liquid polybutadiene and reacted at 80 ° C. for 6 hours to obtain monomethyl maleic acid-modified liquid polybutadiene (A-1).
製造例2:変性共役ジエン系ゴム(A-2)の製造
 ヘキサンを1260g及びn-ブチルリチウム(17質量%ヘキサン溶液)23.6g仕込み、50℃に昇温した後、撹拌条件下、重合温度50℃となるように制御しながら、ブタジエン1260gを逐次添加したこと以外は製造例1と同様に変性共役ジエン系ゴム(A-2)を製造した。
Production Example 2: Production of Modified Conjugated Diene Rubber (A-2) 1260 g of hexane and 23.6 g of n-butyllithium (17 mass% hexane solution) are charged, the temperature is raised to 50 ° C., and then the polymerization temperature is set under stirring conditions. A modified conjugated diene rubber (A-2) was produced in the same manner as in Production Example 1 except that 1260 g of butadiene was sequentially added while controlling the temperature to 50 ° C.
<低粘度液状ゴムの製造>
製造例3:低粘度液状ブタジエンゴム(B-1)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1260g及びn-ブチルリチウム(17質量%ヘキサン溶液)166gを仕込み、50℃に昇温した後、撹拌条件下、重合温度が50℃となるように制御しながら、ブタジエン1260gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、低粘度液状ブタジエンゴム(B-1)を得た。
<Manufacturing of low-viscosity liquid rubber>
Production Example 3: Production of low-viscosity liquid butadiene rubber (B-1) A sufficiently dried 5 L autoclave is substituted with nitrogen, 1260 g of hexane and 166 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is raised to 50 ° C. Then, under stirring conditions, 1260 g of butadiene was sequentially added while controlling the polymerization temperature to be 50 ° C., and the mixture was polymerized for 1 hour. Then, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water. After the stirring was completed and it was confirmed that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum-dried at 70 ° C. for 24 hours to obtain a low-viscosity liquid butadiene rubber (B-1).
 なお、変性共役ジエン系ゴム等の各物性の測定方法及び算出方法は以下のとおりである。結果を表1に示す。
<重量平均分子量、数平均分子量及び分子量分布の測定方法>
 変性共役ジエン系ゴム等のMw、Mn及びMw/Mnは、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算値として求めた。測定装置及び条件は、以下のとおりである。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
The measurement method and calculation method for each physical property of the modified conjugated diene-based rubber and the like are as follows. The results are shown in Table 1.
<Measurement method of weight average molecular weight, number average molecular weight and molecular weight distribution>
Mw, Mn and Mw / Mn of the modified conjugated diene rubber and the like were determined by GPC (gel permeation chromatography) as standard polystyrene conversion values. The measuring device and conditions are as follows.
-Device: GPC device "GPC8020" manufactured by Tosoh Corporation
-Separation column: "TSKgelG4000HXL" manufactured by Tosoh Corporation
-Detector: "RI-8020" manufactured by Tosoh Corporation
-Eluent: Tetrahydrofuran-Eluent flow rate: 1.0 ml / min-Sample concentration: 5 mg / 10 ml
-Column temperature: 40 ° C
<溶融粘度の測定方法>
 変性共役ジエン系ゴム等の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
<Measurement method of melt viscosity>
The melt viscosity of the modified conjugated diene rubber or the like at 38 ° C. was measured with a Brookfield type viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
<ガラス転移温度の測定方法>
 変性共役ジエン系ゴム10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
<Measurement method of glass transition temperature>
10 mg of the modified conjugated diene rubber was collected in an aluminum pan, and the thermogram was measured under the conditions of a heating rate of 10 ° C./min by differential scanning calorimetry (DSC), and the peak top value of DDSC was defined as the glass transition temperature.
<1分子当たりの平均水素結合性官能基数>
 変性共役ジエン系ゴム1分子当たりの平均水素結合性官能基数は、変性共役ジエン系ゴムの水素結合性官能基の当量(g/eq)とスチレン換算の数平均分子量Mnから、下記式より算出した。
 1分子当たりの平均水素結合性官能基数=[(数平均分子量(Mn))/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(水素結合性官能基の当量)
 なお、水素結合性官能基の当量の算出方法は、水素結合性官能基の種類により適宜選択することができる。
<Average number of hydrogen-bonding functional groups per molecule>
The average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber was calculated from the following formula from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene. ..
Average number of hydrogen-bonding functional groups per molecule = [(number average molecular weight (Mn)) / (molecular weight of styrene unit) × (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
The method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
 変性共役ジエン系ゴムの1分子当たりの平均水素結合性官能基数の算出は、変性共役ジエン系ゴムの酸価を求め、該酸価から水素結合性官能基の当量(g/eq)を算出することにより行った。
 変性反応後の試料をメタノールで4回洗浄(試料1gに対して5mL)して酸化防止剤等の不純物を除去した後、試料を80℃で12時間、減圧乾燥した。変性反応後の試料3gにトルエン180mL、エタノール20mLを加え溶解した後、0.1N水酸化カリウムのエタノール溶液で中和滴定し、下記式より酸価を求めた。
 酸価(mgKOH/g)=(A-B)×F×5.611/S
 A:中和に要した0.1N水酸化カリウムのエタノール溶液滴下量(mL)
 B:試料を含まないブランクでの0.1N水酸化カリウムのエタノール溶液滴下量(mL)
 F:0.1N水酸化カリウムのエタノール溶液の力価
 S:秤量した試料の質量(g)
To calculate the average number of hydrogen-bonding functional groups per molecule of the modified conjugated diene-based rubber, the acid value of the modified conjugated diene-based rubber is obtained, and the equivalent of hydrogen-bonding functional groups (g / eq) is calculated from the acid value. I went by that.
The sample after the denaturation reaction was washed 4 times with methanol (5 mL per 1 g of the sample) to remove impurities such as antioxidants, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours. 180 mL of toluene and 20 mL of ethanol were added to 3 g of the sample after the denaturation reaction to dissolve it, and then neutralized and titrated with an ethanol solution of 0.1N potassium hydroxide, and the acid value was determined from the following formula.
Acid value (mgKOH / g) = (AB) x F x 5.611 / S
A: Amount of 0.1N potassium hydroxide added to the ethanol solution required for neutralization (mL)
B: Amount (mL) of 0.1N potassium hydroxide in ethanol solution in a blank containing no sample.
F: Potency of 0.1N potassium hydroxide in ethanol solution S: Mass of weighed sample (g)
 酸価から、下記式により変性共役ジエン系ゴム1g当たりに含まれる水素結合性官能基の質量を算出し、更に変性共役ジエン系ゴム1g当たりに含まれる官能基以外の質量(重合体主鎖質量)を算出した。そして、以下の式より水素結合性官能基の当量(g/eq)を算出した。
 〔1g当たり水素結合性官能基質量〕=〔酸価〕/〔56.11〕×〔水素結合性官能基分子量〕/1000
 〔1g当たり重合体主鎖質量〕=1-〔1g当たり水素結合性官能基質量〕
 〔水素結合性官能基の当量〕=〔1g当たり重合体主鎖質量〕/(〔1g当たり水素結合性官能基質量〕/〔水素結合性官能基分子量〕)
From the acid value, the mass of the hydrogen-bonding functional group contained in 1 g of the modified conjugated diene rubber is calculated by the following formula, and the mass other than the functional group contained in 1 g of the modified conjugated diene rubber (polymer main chain mass). ) Was calculated. Then, the equivalent of the hydrogen-bonding functional group (g / eq) was calculated from the following formula.
[Hydrogen-bonding functional group mass per gram] = [Acid value] / [56.11] × [Hydrogen-bonding functional group molecular weight] / 1000
[Polymer main chain mass per 1 g] = 1- [Hydrogen bond functional group mass per 1 g]
[Equivalent amount of hydrogen-bonding functional group] = [mass of polymer main chain per 1 g] / ([mass of hydrogen-bonding functional group per 1 g] / [molecular weight of hydrogen-bonding functional group])
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例で用いた各成分は、表2及び表3に記載のとおりである。
Figure JPOXMLDOC01-appb-T000002
The components used in Examples and Comparative Examples are as shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2の20℃における希釈剤の蒸気圧、及び表3の界面活性剤のHLB値は、下記方法にしたがって測定した。
〔20℃における希釈剤の蒸気圧〕
 合成油、鉱物油の20℃における蒸気圧は、気体流通法により測定した測定値に基づき、アントワン(Antoine)式:log10P=A-(B/(T+C))の定数A、定数B、定数Cを算出した上で算出した。
 トルエンの20℃における蒸気圧は、静止法によって直接測定した。
The vapor pressure of the diluent in Table 2 at 20 ° C. and the HLB value of the surfactant in Table 3 were measured according to the following method.
[Vapor pressure of diluent at 20 ° C]
The vapor pressures of synthetic oils and mineral oils at 20 ° C. are constants A, B, and C of Antoine equation: log10P = A- (B / (T + C)) based on the measured values measured by the gas flow method. Was calculated and then calculated.
The vapor pressure of toluene at 20 ° C. was directly measured by the static method.
〔界面活性剤のHLB値〕
 ノニオン界面活性剤の同定はマススペクトルを用いて分子量及び構成単位を検出測定し、H及び13C-NMRを用いて構造を検出測定し、これらに基づき構造を同定した。同定した情報を元にグリフィン法に基づき、下記式(I)を用いてHLB値を求めた。
  HLB=20×親水部の式量の総和/分子量    (I)
[HLB value of surfactant]
To identify the nonionic surfactant, the molecular weight and structural units were detected and measured using mass spectra, the structure was detected and measured using 1H and 13 C - NMR, and the structure was identified based on these. Based on the identified information, the HLB value was obtained using the following formula (I) based on the Griffin method.
HLB = 20 × total formula weight of hydrophilic part / molecular weight (I)
<実施例1;エマルションの調製>
 液状の共役ジエン系ゴムとして変性共役ジエン系ゴム(A-1)と、20℃における蒸気圧が10Pa以下である希釈剤(オイル)としてナフテン系オイル(商品名「SUNTHENE250J」日本サン石油株式会社製、20℃における蒸気圧:1.0×10-1Pa)とを表4の割合で混合し、50℃に加温した状態で24時間撹拌して変性共役ジエン系ゴム(A-1)の油剤稀釈液を300g調製した。
 次に前記油剤稀釈液に界面活性剤としてポリオキシエチレンアルキルエーテル(商品名「TE-10A」、東邦化学工業株式会社製、HLB値:14.1)18g、50質量%水酸化ナトリウム水溶液を0.6g加えて10分間撹拌した。続いて、撹拌しながら水210gを少しずつ添加し、60分間撹拌することで、変性共役ジエン系ゴム(A-1)のエマルション組成物(E-1)を得た。
<Example 1; Preparation of emulsion>
Modified conjugated diene rubber (A-1) as a liquid conjugated diene rubber and naphthenic oil (trade name "SUNTHENE 250J" manufactured by Nippon Sun Oil Co., Ltd.) as a diluent (oil) having a vapor pressure of 10 Pa or less at 20 ° C. , Vapor pressure at 20 ° C .: 1.0 × 10 -1 Pa) at the ratio shown in Table 4 and stirred for 24 hours while warmed to 50 ° C. for the modified conjugated diene rubber (A-1). 300 g of oil diene solution was prepared.
Next, 18 g of polyoxyethylene alkyl ether (trade name "TE-10A", manufactured by Toho Chemical Industry Co., Ltd., HLB value: 14.1) and 50% by mass sodium hydroxide aqueous solution were added to the oil dilute solution as a surfactant. .6 g was added and the mixture was stirred for 10 minutes. Subsequently, 210 g of water was added little by little with stirring, and the mixture was stirred for 60 minutes to obtain an emulsion composition (E-1) of the modified conjugated diene rubber (A-1).
<実施例2~4、7~8、比較例1~3;エマルション組成物の調製>
 各成分の配合を表4のとおりとしたこと以外は実施例1と同様の方法でエマルション組成物を調製した。
<Examples 2 to 4, 7 to 8, Comparative Examples 1 to 3; Preparation of emulsion composition>
An emulsion composition was prepared by the same method as in Example 1 except that the composition of each component was as shown in Table 4.
<実施例5~6;エマルション組成物の調製>
 各成分の配合を表4のとおりとしたこと、界面活性剤として第1級アルコールエトキシレート(商品名「TN-100」、株式会社ADEKA製、HLB:13.8)を用いたこと以外は実施例1と同様の方法でエマルション組成物を調製した。
<Examples 5 to 6; Preparation of emulsion composition>
It was carried out except that the composition of each component was as shown in Table 4 and that primary alcohol ethoxylate (trade name "TN-100", manufactured by ADEKA Corporation, HLB: 13.8) was used as a surfactant. An emulsion composition was prepared in the same manner as in Example 1.
[評価]
<製造容易性(希釈時の粘度)>
 実施例及び比較例において、液状の共役ジエン系ゴムと希釈剤とを混合した直後の希釈液の粘度を回転式B型粘度計(回転数100rpm)で測定した。なお、測定は室温(25℃)で行った。粘度が低いほど製造が容易であることを示す。
 なお、本発明において「製造容易性」とは安定性に優れるエマルション組成物を容易に製造できることを意味し、具体的には、液状の共役ジエン系ゴムと希釈剤とを混ぜた際に粘度が過度に高くならずに取り扱い性及び製造容易性に優れることを意味する。
[evaluation]
<Easy to manufacture (viscosity at the time of dilution)>
In Examples and Comparative Examples, the viscosity of the diluted solution immediately after mixing the liquid conjugated diene rubber and the diluent was measured with a rotary B-type viscometer (rotational speed 100 rpm). The measurement was performed at room temperature (25 ° C.). The lower the viscosity, the easier it is to manufacture.
In the present invention, "easy to manufacture" means that an emulsion composition having excellent stability can be easily manufactured. Specifically, when a liquid conjugated diene rubber and a diluent are mixed, the viscosity becomes high. It means that it is excellent in handleability and ease of manufacture without being excessively high.
<エマルション組成物の安定性>
 実施例及び比較例のエマルション組成物を調製後、サンプル瓶に入れ、室温(25℃)で1日静置した。サンプル瓶の中のエマルション組成物を目視により観察し、エマルション組成物全容積のうち、相分離している容積を下記基準で評価した。結果を表4に示す。
<Stability of emulsion composition>
After preparing the emulsion compositions of Examples and Comparative Examples, they were placed in a sample bottle and allowed to stand at room temperature (25 ° C.) for 1 day. The emulsion composition in the sample bottle was visually observed, and the phase-separated volume of the total volume of the emulsion composition was evaluated according to the following criteria. The results are shown in Table 4.
〔基準〕
 A:相分離した比率が全容積の10%未満であり、安定性に優れる。
 B:相分離した比率が全容積の10%以上50%未満であり、安定性がやや乏しい。
 C:相分離した比率が全容積の50%以上であり、安定性が乏しい。
〔standard〕
A: The phase-separated ratio is less than 10% of the total volume, and the stability is excellent.
B: The phase-separated ratio is 10% or more and less than 50% of the total volume, and the stability is somewhat poor.
C: The phase-separated ratio is 50% or more of the total volume, and the stability is poor.
<対ポリエステル系繊維接着性>
 対ポリエステル系繊維接着性については、下記手順にしたがって補強繊維を作製し、次いで評価用供試体を作製した。なお、対ポリエステル系繊維接着性の評価は、表4の配合において液状の共役ジエン系ゴム、希釈剤、界面活性剤、及び水酸化ナトリウムの配合量の和が全体(エマルション組成物)の10質量%となる実施例1,3、5及び比較例1,2についてのみ行った。結果を表4に示す。
(1)補強繊維の製造
〔表面改質層の構成材料(表面改質剤)〕
 まず、以下の各成分を混合することにより、表面改質層の構成材料(C-1)を調製した。
・ブロックドイソシアネート化合物: 2.29質量部
・エポキシ化合物        :  0.8質量部
・水              :96.91質量部
<Adhesion to polyester fibers>
Regarding the adhesiveness to polyester fibers, reinforcing fibers were prepared according to the following procedure, and then an evaluation specimen was prepared. In the evaluation of the adhesiveness to the polyester fiber, the sum of the amounts of the liquid conjugated diene rubber, the diluent, the surfactant, and the sodium hydroxide in the formulation shown in Table 4 is 10% by mass of the whole (emulsion composition). Only for Examples 1, 3 and 5 and Comparative Examples 1 and 2, which are%. The results are shown in Table 4.
(1) Manufacture of reinforcing fibers [Constituent material of surface modification layer (surface modifier)]
First, the constituent material (C-1) of the surface modification layer was prepared by mixing the following components.
-Blocked isocyanate compound: 2.29 parts by mass-Epoxy compound: 0.8 parts by mass-Water: 96.91 parts by mass
 C-1に用いた化合物の詳細は以下のとおりである。
・ブロックドイソシアネート化合物
  メイカネートDM-3031 CONC(明成化学工業株式会社製、純分54質量%)
・エポキシ化合物
  デナコールEX-614B(ナガセケムテック株式会社製、純分100質量%)
The details of the compound used for C-1 are as follows.
-Blocked isocyanate compound Meicanate DM-3031 CONC (manufactured by Meisei Chemical Works, Ltd., pure content 54% by mass)
-Epoxy compound Denacol EX-614B (manufactured by Nagase Chemtech Co., Ltd., pure content 100% by mass)
〔撚り合わせコードの処理方法〕
 次に、下記撚り合わせコードを前記表面改質層の構成材料(C-1)で処理をした。具体的には、ポリエステル系繊維であるPET繊維(総繊度1100dtex、単糸繊度6.10dtex)2本を、上撚470回/m、下撚470回/mを掛けたものを作製し撚り合わせ繊維コードを作製した。次いで、前記撚り合わせコードを表面改質層の構成材料(C-1)中に浸漬した後、ローラーで搾液した。得られた繊維コードを140℃で60秒間乾燥処理し、更に240℃で60秒間熱処理して作製した。
[Handling method of twisted cord]
Next, the following twisted cord was treated with the constituent material (C-1) of the surface modification layer. Specifically, two PET fibers (total fineness 1100 dtex, single yarn fineness 6.10 dtex), which are polyester fibers, are twisted together by multiplying them by 470 times / m of upper twist and 470 times / m of lower twist. A fiber cord was made. Next, the twisted cord was immersed in the constituent material (C-1) of the surface modification layer, and then squeezed with a roller. The obtained fiber cord was dried at 140 ° C. for 60 seconds and further heat-treated at 240 ° C. for 60 seconds to prepare the fiber cord.
 次いで、得られた繊維コードを変性共役ジエン系ゴム(A-1)、または変性共役ジエン系ゴム(A-2)を含むエマルションに浸漬した後、ローラーで搾液し140℃で60秒間乾燥処理した後に巻き取ることにより補強繊維を作製した。 Next, the obtained fiber cord was immersed in an emulsion containing a modified conjugated diene rubber (A-1) or a modified conjugated diene rubber (A-2), squeezed with a roller, and dried at 140 ° C. for 60 seconds. Then, the reinforcing fiber was produced by winding it up.
(2)評価用供試体の作製
 作製した補強繊維を、後述の配合により調製したNR/SBR未加硫のゴム組成物に一定の間隔を空け3本並べた。次いで、150℃、圧力20kg/cm2の条件で30分間プレス加硫することにより評価用供試体を作製した。
(2) Preparation of Evaluated Specimen Three reinforcing fibers prepared were arranged at regular intervals on an NR / SBR unvulcanized rubber composition prepared by the formulation described below. Next, an evaluation specimen was prepared by press vulcanization at 150 ° C. and a pressure of 20 kg / cm 2 for 30 minutes.
〔NR/SBR未加硫ゴムの配合組成〕
 NRゴム              :   70質量部
 SBRゴム             :41.25質量部
 フィラー(カーボンブラック)    :   45質量部
 加硫剤(硫黄粉)          :  3.5質量部
 加硫助剤(亜鉛華、ステアリン酸)  :    6質量部
 加硫促進剤(チアゾール系)     :    1質量部
[Composite composition of NR / SBR unvulcanized rubber]
NR rubber: 70 parts by mass SBR rubber: 41.25 parts by mass Filler (carbon black): 45 parts by mass Vulcanizing agent (sulfur powder): 3.5 parts by mass Vulcanization aid (zinc flower, stealic acid): 6 parts by mass Vulcanization accelerator (thiazole type): 1 part by mass
(3)評価
 最後に、得られた評価用試供体をゴムからT型剥離させるときに要した力(N/3本)を測定し、ゴム接着力として対繊維接着性を評価した。結果を表4に示す。
 ゴム接着力の評価結果は、数値が大きいほど補強繊維とゴムとの接着力が大きいことを示す。
〔基準〕
 A:対ポリエステル系繊維接着性が70N/3本以上である場合
 B:対ポリエステル系繊維接着性が40N/3本以上、70N/3本未満である場合
 C:対ポリエステル系繊維接着性が40N/3本未満である場合
 なお、表中の括弧内の数値は前記測定値(N/3本)である。
(3) Evaluation Finally, the force (N / 3) required for T-shaped peeling of the obtained evaluation specimen from the rubber was measured, and the adhesiveness to the fiber was evaluated as the rubber adhesive force. The results are shown in Table 4.
The evaluation result of the rubber adhesive strength indicates that the larger the numerical value, the larger the adhesive strength between the reinforcing fiber and the rubber.
〔standard〕
A: When the adhesiveness to polyester fibers is 70N / 3 or more B: When the adhesiveness to polyester fibers is 40N / 3 or more and less than 70N / 3 C: The adhesiveness to polyester fibers is 40N When less than / 3 lines The numerical value in parentheses in the table is the measured value (N / 3 lines).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<対ポリアミド系繊維接着性>
 対ポリアミド系繊維接着性については、下記手順にしたがって補強繊維を作製し、次いで評価用供試体を作製した。
 なお、対ポリアミド系繊維接着性の評価は、表5の配合において液状の共役ジエン系ゴム、希釈剤、界面活性剤、及び水酸化ナトリウムの配合量の和が全体(エマルション組成物)の10質量%となる実施例7についてのみ行った。結果を表5に示す。
<Adhesion to polyamide fibers>
Regarding the adhesiveness to polyamide fibers, reinforcing fibers were prepared according to the following procedure, and then a test piece for evaluation was prepared.
In the evaluation of the adhesiveness to the polyamide fiber, the sum of the amounts of the liquid conjugated diene rubber, the diluent, the surfactant, and the sodium hydroxide in the formulation shown in Table 5 is 10% by mass of the whole (emulsion composition). Only for Example 7 which is%. The results are shown in Table 5.
(1)補強繊維の製造〔表面改質層の構成材料(表面改質剤)〕
 まず、以下の各成分を混合することにより、表面改質層の構成材料(D-1)を調製した。
・ポリエチレンイミン化合物 : 0.01質量部
・水            :99.99質量部
(1) Manufacture of reinforcing fibers [Constituent material of surface modification layer (surface modifier)]
First, the constituent material (D-1) of the surface modification layer was prepared by mixing the following components.
-Polyethyleneimine compound: 0.01 parts by mass-Water: 99.99 parts by mass
 D-1に用いた化合物の詳細は以下のとおりである。
・ポリエチレンイミン化合物(株式会社日本触媒製 SP-200)
The details of the compound used for D-1 are as follows.
-Polyethyleneimine compound (SP-200 manufactured by Nippon Shokubai Co., Ltd.)
〔撚り合わせコードの処理方法〕
 次に、下記撚り合わせコードを前記表面改質層の構成材料(D-1)で処理をした。具体的には、ポリアミド系繊維であるナイロン繊維(総繊度1400dtex、単糸繊度6.86dtex)2本を、上撚470回/m、下撚470回/mを掛けることにより、撚り合わせ繊維コードを作製した。次いで、前記撚り合わせコードを表面改質層の構成材料(D-1)中に浸漬した後、ローラーで搾液した。得られた繊維コードを140℃で60秒間乾燥処理し、更に210℃で60秒間熱処理して作製した。
[Handling method of twisted cord]
Next, the following twisted cord was treated with the constituent material (D-1) of the surface modification layer. Specifically, a twisted fiber cord is obtained by multiplying two nylon fibers (total fineness 1400 dtex, single yarn fineness 6.86 dtex), which are polyamide fibers, by 470 times / m of upper twist and 470 times / m of lower twist. Was produced. Next, the twisted cord was immersed in the constituent material (D-1) of the surface modification layer, and then squeezed with a roller. The obtained fiber cord was dried at 140 ° C. for 60 seconds and further heat-treated at 210 ° C. for 60 seconds to prepare the fiber cord.
 次いで、得られた繊維コードを、変性共役ジエン系ゴム(A-2)を含むエマルションに浸漬した後、ローラーで搾液し140℃で60秒間乾燥処理した後に巻き取ることにより補強繊維を作製した。 Next, the obtained fiber cord was immersed in an emulsion containing a modified conjugated diene rubber (A-2), squeezed with a roller, dried at 140 ° C. for 60 seconds, and then wound to prepare a reinforcing fiber. ..
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例及び比較例の記載から明らかなように、本発明によれば、エマルションの安定性に優れるエマルション組成物を得ることができる。また、本発明のエマルション組成物を用いて接着した場合、優れた接着性を示すことが分かる。 As is clear from the description of Examples and Comparative Examples, according to the present invention, an emulsion composition having excellent emulsion stability can be obtained. Further, it can be seen that when the emulsion composition of the present invention is used for adhesion, excellent adhesiveness is exhibited.

Claims (7)

  1.  液状の共役ジエン系ゴム、20℃における蒸気圧が10Pa以下である希釈剤、界面活性剤及び水を含有するエマルション組成物。 An emulsion composition containing a liquid conjugated diene rubber, a diluent having a vapor pressure of 10 Pa or less at 20 ° C., a surfactant, and water.
  2.  前記液状の共役ジエン系ゴムが、ブタジエン、イソプレン、及びβ-ファルネセンから選ばれる1種以上に由来する単量体単位を含む、請求項1に記載のエマルション組成物。 The emulsion composition according to claim 1, wherein the liquid conjugated diene rubber contains a monomer unit derived from one or more selected from butadiene, isoprene, and β-farnesene.
  3.  前記液状の共役ジエン系ゴムが、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムである、請求項1又は2に記載のエマルション組成物。 The emulsion composition according to claim 1 or 2, wherein the liquid conjugated diene rubber is a modified conjugated diene rubber having a hydrogen-bonding functional group as a part of the conjugated diene rubber.
  4.  前記水素結合性官能基が、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、ボロニル基、ボロニル基の塩、ボロニル基のエステル化体、シラノール基、及びシラノール基のエステル化体から選ばれる1種以上である、請求項3に記載のエマルション組成物。 The hydrogen-binding functional group is a hydroxy group, an epoxy group, an aldehyde group, an acetalized form of an aldehyde group, a carboxy group, a salt of a carboxy group, an esterified form of a carboxy group, an acid anhydride of a carboxy group, a boronyl group, or a boronyl. The emulsion composition according to claim 3, wherein the emulsion composition is one or more selected from a group salt, an esterified body of a boronyl group, a silanol group, and an esterified product of a silanol group.
  5.  前記界面活性剤がノニオン界面活性剤である、請求項1~4のいずれかに記載のエマルション組成物。 The emulsion composition according to any one of claims 1 to 4, wherein the surfactant is a nonionic surfactant.
  6.  前記エマルション組成物中の前記界面活性剤の含有量が、前記液状の共役ジエン系ゴム及び前記希釈剤の合計100質量部に対して1~15質量部である、請求項1~5のいずれかに記載のエマルション組成物。 Any of claims 1 to 5, wherein the content of the surfactant in the emulsion composition is 1 to 15 parts by mass with respect to 100 parts by mass in total of the liquid conjugated diene rubber and the diluent. The emulsion composition according to.
  7.  請求項1~6のいずれかに記載のエマルション組成物の製造方法であって、前記液状の共役ジエン系ゴム、前記希釈剤、前記界面活性剤、及び水を混合して水中油滴エマルションを製造した後、前記希釈剤を除去しないことを特徴とする、エマルション組成物の製造方法。 The method for producing an emulsion composition according to any one of claims 1 to 6, wherein the liquid conjugated diene rubber, the diluent, the surfactant, and water are mixed to produce an oil droplet emulsion in water. A method for producing an emulsion composition, which comprises not removing the diluent after the emulsion composition.
PCT/JP2021/031831 2020-08-31 2021-08-31 Emulsion composition and method for producing same WO2022045344A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21861765.2A EP4206233A1 (en) 2020-08-31 2021-08-31 Emulsion composition and method for producing same
US18/023,555 US20230303808A1 (en) 2020-08-31 2021-08-31 Emulsion composition and method for producing same
JP2022545762A JPWO2022045344A1 (en) 2020-08-31 2021-08-31
CN202180053517.5A CN116348499A (en) 2020-08-31 2021-08-31 Emulsion composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145643 2020-08-31
JP2020-145643 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045344A1 true WO2022045344A1 (en) 2022-03-03

Family

ID=80353501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031831 WO2022045344A1 (en) 2020-08-31 2021-08-31 Emulsion composition and method for producing same

Country Status (6)

Country Link
US (1) US20230303808A1 (en)
EP (1) EP4206233A1 (en)
JP (1) JPWO2022045344A1 (en)
CN (1) CN116348499A (en)
TW (1) TW202219132A (en)
WO (1) WO2022045344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069992A1 (en) * 2022-09-30 2024-04-04 株式会社クラレ Adhesive composition and production method for adhesive composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493034A (en) * 1977-12-29 1979-07-23 Kuraray Co Ltd Production of liquid polyisoprene emulsion
JPS54124040A (en) * 1978-03-20 1979-09-26 Kuraray Co Ltd Preparation of liquid polyisoprene emulsion
JPS55108428A (en) * 1979-02-13 1980-08-20 Kuraray Co Ltd Water-containing gel substance
JPS56112946A (en) * 1980-02-11 1981-09-05 Kuraray Co Ltd Rubber-based water-containing gel-like material
JPH10330720A (en) * 1997-05-29 1998-12-15 Sekisui Chem Co Ltd Water-based urethane adhesive
JP2007291347A (en) * 2006-03-28 2007-11-08 Sumitomo Rubber Ind Ltd Method for producing oil-extended rubber for tire, oil-extended rubber for tire, and rubber composition and tire using the same
JP2008101055A (en) * 2006-10-17 2008-05-01 Nippon Zeon Co Ltd Silica-containing rubber composition, its manufacturing method and crosslinked molded item
JP2011132298A (en) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd Modified copolymer and rubber composition and pneumatic tire using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493034A (en) * 1977-12-29 1979-07-23 Kuraray Co Ltd Production of liquid polyisoprene emulsion
JPS54124040A (en) * 1978-03-20 1979-09-26 Kuraray Co Ltd Preparation of liquid polyisoprene emulsion
JPS55108428A (en) * 1979-02-13 1980-08-20 Kuraray Co Ltd Water-containing gel substance
JPS56112946A (en) * 1980-02-11 1981-09-05 Kuraray Co Ltd Rubber-based water-containing gel-like material
JPH10330720A (en) * 1997-05-29 1998-12-15 Sekisui Chem Co Ltd Water-based urethane adhesive
JP2007291347A (en) * 2006-03-28 2007-11-08 Sumitomo Rubber Ind Ltd Method for producing oil-extended rubber for tire, oil-extended rubber for tire, and rubber composition and tire using the same
JP2008101055A (en) * 2006-10-17 2008-05-01 Nippon Zeon Co Ltd Silica-containing rubber composition, its manufacturing method and crosslinked molded item
JP2011132298A (en) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd Modified copolymer and rubber composition and pneumatic tire using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, JAPAN, vol. 57, no. 10, pages 78 - 89

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069992A1 (en) * 2022-09-30 2024-04-04 株式会社クラレ Adhesive composition and production method for adhesive composition

Also Published As

Publication number Publication date
TW202219132A (en) 2022-05-16
CN116348499A (en) 2023-06-27
JPWO2022045344A1 (en) 2022-03-03
EP4206233A1 (en) 2023-07-05
US20230303808A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP7314128B2 (en) Reinforcing fiber, method for producing same, and molded article using same
JP7458367B2 (en) Reinforcing fiber, method for producing the same, and molded article using the same
CA2942256C (en) Rubber composition comprising modified liquid isoprene rubber
TW201538584A (en) Rubber composition
WO2022045344A1 (en) Emulsion composition and method for producing same
WO2022092083A1 (en) Curable composition and sealant
JP2022040767A (en) Reinforcement fiber and method for producing the same, and molding including the same
JP2022040774A (en) Formed body and method of producing the same
WO2023085412A1 (en) Reinforcing fibers, method for producing same, and elastomer product using reinforcing fibers
JP7323104B2 (en) Reinforcing fiber, method for producing same, and molded article using same
JP7071218B2 (en) Reinforcing fiber and its manufacturing method, and a molded product using it
WO2023085413A1 (en) Aqueous adhesive, reinforcement fibers using same, and elastomer product using reinforcement fibers
KR20220101644A (en) Surface-modified fibers, reinforcing fibers, and molded articles using the same
JP7145948B2 (en) rubber composition
WO2022044460A1 (en) Reinforcing fibers and molded body using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861765

Country of ref document: EP

Effective date: 20230331