WO2022045201A1 - Method for efficiently producing tissue from adhesive cells - Google Patents

Method for efficiently producing tissue from adhesive cells Download PDF

Info

Publication number
WO2022045201A1
WO2022045201A1 PCT/JP2021/031187 JP2021031187W WO2022045201A1 WO 2022045201 A1 WO2022045201 A1 WO 2022045201A1 JP 2021031187 W JP2021031187 W JP 2021031187W WO 2022045201 A1 WO2022045201 A1 WO 2022045201A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
fat
tissue
medium
donor
Prior art date
Application number
PCT/JP2021/031187
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 小林
伸彦 佐藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022545675A priority Critical patent/JPWO2022045201A1/ja
Publication of WO2022045201A1 publication Critical patent/WO2022045201A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for efficiently producing adhesive cells such as mesenchymal stem cells from tissues.
  • Adhesive mesenchymal stem cells are somatic stem cells that have been reported to be present in bone marrow, adipose tissue, dental pulp, etc., and have the ability to differentiate into bone, cartilage, fat, etc., and are therefore promising in cell therapy. It is attracting attention as a cell source.
  • Mesenchymal stem cells have not only differentiation ability but also immunosuppressive ability, and clinical application for acute graft-versus-host disease (GVHD) and Crohn's disease is advancing.
  • GVHD graft-versus-host disease
  • skeletal myoblasts separated from muscle tissue are also known to have adhesiveness and secrete cytokines that promote tissue regeneration, and have been put into practical use as myocardial regeneration therapy by Telmo.
  • fibroblasts that can be separated from skin tissue also have adhesiveness and are used in clinical practice for anti-aging such as cosmetology.
  • An object of the present invention is to provide a method for safely storing and / or transporting a raw material tissue containing adhesive cells such as mesenchymal stem cells, and to efficiently obtain adhesive cells from the raw material tissue containing the adhesive cells after storage / transportation. Is to provide a method of manufacturing.
  • the tissue was immersed in a buffer solution or an organ preservation solution, preserved and / or transported, and an attempt was made to produce adhesive cells from the tissue.
  • the tissue was preserved and / or transported. It was confirmed that the cells were damaged and induced a decrease in adhesiveness and damage to the adhesive cells in the tissue, and therefore the number of acquired cells decreased.
  • the present inventors surprisingly suppressed the damage to the tissue by storing and / or transporting the tissue in a medium having an appropriate compressive stress. It was found that the adhesive cells could be efficiently produced.
  • a method for producing a cell population containing the cells from a tissue containing the adhesive cells Tissues containing adherent cells are stored and / or transported embedded in a medium with a compressive stress greater than 0 and 12 N or less.
  • a method for producing adhesive cells from a tissue which comprises removing the tissue embedded in the medium from the medium and separating the adhesive cells.
  • tissues containing adherent cells such as mesenchymal stem cells can be safely preserved / transported, and adherent cells can be efficiently produced after storage / transport.
  • adhesive cells refer to cells that adhere to a petri dish, plate, or flask of a glass or plastic substrate and exhibit a spindle-shaped morphology.
  • adhesive cells include mesenchymal stem cells, skeletal myoblasts, fibroblasts, epithelial cells, myocardial stem cells, nerve stem cells, hepatic stem cells, myocardial cells, nerve cells, hepatocytes, etc. Is not limited to these cells.
  • Tissues containing adhesive cells include solid tissues such as fat, placenta, fetal membrane, amniotic membrane, villous membrane, skin, umbilical cord, heart, brain, lung, corneal membrane, intestine, muscle, and synovial cord, bone marrow, dental pulp, sheep's water, and umbilical cord.
  • solid tissues such as fat, placenta, fetal membrane, amniotic membrane, villous membrane, skin, umbilical cord, heart, brain, lung, corneal membrane, intestine, muscle, and synovial cord, bone marrow, dental pulp, sheep's water, and umbilical cord.
  • liquid tissues such as blood and blood, but the present invention is not limited to these tissues. In addition, those obtained by processing these structures are also included.
  • the "medium” in the present invention may have any state, properties, and structure as long as the compressive stress is greater than 0 and 12 N or less.
  • it may have any properties such as solid, liquid, and gas, and may be in a mixed state.
  • Specific examples of the medium having a compressive stress greater than 0 and 12 N or less include gels, sol, and the like. Something similar to.
  • the gel refers to a gel in which colloidal particles are dispersed in a liquid or a gas and lose their fluidity, and examples thereof include konjac, yokan, agar, and pudding.
  • the sol refers to a sol in which colloidal particles are dispersed in a liquid or a gas and the fluidity is not lost, and examples thereof include milk, yogurt to drink, and oil.
  • a colloid using water as a dispersion medium is preferable, and a so-called hydrogel is more preferable.
  • the medium of the present invention preferably has an appropriate hardness, and as described above, compressive stress is adopted as an index of the hardness.
  • a method for measuring compressive stress in the present invention a 2 mL medium is placed in a 24-well plate, the medium is compressed with a plunger having a diameter of 1 cm, and the stress (unit: N) when the medium is compressed by 1.5 mm is EZ. -It is obtained by measuring with TEST (Shimadzu Corporation, EZ-SX), but it is not limited to the above method when the same result can be obtained.
  • the compressive stress of the medium must satisfy the above range of "greater than 0 and 12 N or less" at the temperature during storage and / or transportation.
  • compressive stress at 4 ° C. for storage and transport at 4 ° C. and compressive stress at 15 ° C. for storage and transport at 15 ° C.
  • the compressive stress is not particularly limited as long as it is greater than 0 and 12 N or less, but is preferably 0.001 N or more, more preferably 0.005 N or more, further preferably 0.01 N or more, and most preferably 0.1 N or more.
  • the compressive stress is preferably 11 N or less, more preferably 10 N or less, and even more preferably 9 N or less. 8N or less is more preferable, and 7N or less is most preferable.
  • any one of the temperatures may be within the above compressive stress range, but at least 40% of the entire storage and / or transportation process.
  • the above period preferably satisfies the above compressive stress, more preferably 60% or more, further preferably 80% or more, and most preferably satisfying the above compressive stress under all temperature conditions. For example, when stored once at 4 ° C and transported in the range of 15 ° C to 25 ° C, any one of the compressive stresses at 4 ° C and 15 ° C to 25 ° C falls within the above compressive stress range. However, it is more preferable to satisfy all of them.
  • the medium described in the present invention preferably contains at least one selected from the group consisting of proteins, peptides, polysaccharides and synthetic polymers, and in the present invention, these are dispersed in water. It is more preferable to use a medium as a medium, but the present invention is not limited thereto.
  • a medium As the protein, gelatin, collagen, fibrin, soybean protein and the like can be used.
  • Polysaccharides or substances containing polysaccharides include agarose, pectin, carrageenan, curdlan, chitin, chitosan, arginic acids, soybean polysaccharides, celluloses such as carboxymethyl cellulose, mannans, arabic gum, gellan gum, guar gum, xanthan gum, starch, agar. , Fucoidan, etc. can be used.
  • synthetic polymer synthetic peptides (self-assembled peptides such as Panacea gel and PuraMatrix), polyvinyl alcohol, propylene glycol, silicon, polyacrylamide and the like can be used. Further, these may be used alone or in combination of two or more.
  • culture solution in the present specification is not particularly limited, and any liquid medium for cell culture is used as a basal medium, and other components (albumin, blood-derived components, growth factors, etc.) are appropriately added as needed. Can be prepared by.
  • BME medium BME medium, BGJb medium, CMRL1066 medium, Glasgo MEM medium, Applied MEM Zinc Option medium, IMDM medium (Iscover's Modified Dulvecco's Medium), Medium 199 Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium of Medium Essential Medium Eagle's medium, DMEM medium (Dulvecco's Modified Eagle's Medium), ham F10 medium, ham F12 medium, RPMI 1640 medium, Fisher's medium, and a mixed medium thereof (for example, DMEM / F12 medium). (Dulvecco's Modified Eagle's Medium / Nutient Mixture F-12 Ham)) and the like can be used, but the medium is not particularly limited. In addition, various commercially available serum-free media can also be used.
  • albumin examples include albumin, blood-derived components, growth factors, and the like.
  • concentration of albumin is preferably 0.05% by weight or more and 5% by weight or less.
  • various sera animal-derived serum such as bovine fetal serum (FBS or FCS), human serum, various animal and / or human blood-derived multiplatelet plasma and platelet lysate are prepared as raw materials. Serum, etc.), various animal and / or human blood-derived platelet lysates, plasma, etc.
  • the human serum may be derived from the same individual as the individual from which the tissue containing the adhesive cells was obtained, or may be derived from a different individual.
  • the concentration of the blood-derived component is preferably 2% by volume or more and 40% or less by volume. More preferably, it is 3% by volume or more and 30% or less by volume.
  • a reagent for stabilizing the growth factor in the medium antioxidant such as heparin, gel, polysaccharide, etc.
  • Pre-stabilized growth factors may be added to the basal medium.
  • Growth factors include, for example, fibroblast growth factor (FGF), epithelial cell growth factor (EGF), transforming growth factor (TGF), vascular endothelial cell growth factor (VEGF), platelet-derived growth factor (PDGF), and theirs. Families can be used, but are not particularly limited.
  • FGF fibroblast growth factor
  • EGF epithelial cell growth factor
  • TGF transforming growth factor
  • VEGF vascular endothelial cell growth factor
  • PDGF platelet-derived growth factor
  • the step of collecting tissue containing adherent cells such as mesenchymal stem cells can be performed by, for example, the following procedure. can.
  • adipose tissue make an incision of about 0.5 cm to 1 cm in any part of the patient (for example, abdomen, waist, tweezers) with a sharp-edged scalpel, and use any surgical instrument (for example, mosquito forceps, tweezers) to make fat. Is removed and excised. The incision should be sutured with one needle or taped.
  • Adipose tissue collected by such means is generally called excised fat.
  • fat can be aspirated from any part of the patient (for example, abdomen, waist, thigh) using a cannula or the like.
  • Adipose tissue collected by such means is generally called aspirated fat.
  • amniotic tissue fetal appendages (placenta, fetal membrane, etc.) are collected at birth, and then the amniotic membrane is detached from the stump of the fetal membrane.
  • muscular tissue the muscular tissue is collected from the thigh.
  • skin tissue it may be collected from the back of the ear using a surgical disposable knife, a skin biopsy punch, or the like, but the present invention is not limited thereto.
  • the collected tissue is stored and / or transported in a state of being embedded in a medium, and can be carried out by the following procedure, for example.
  • the tissue is embedded, stored and / or transported by embedding the collected tissue in a container-filled medium or by adding the medium to the container containing the collected tissue.
  • the step of taking out the tissue embedded in the medium can be performed, for example, by the following procedure.
  • the tissue is removed from the medium in which the tissue is embedded using any instrument (eg, mosquito forceps, tweezers, etc.).
  • the tissue is preferably preserved / transported as follows by utilizing the property. be able to.
  • gelatin is used as an example, gelatin is dissolved or dispersed in a dispersion medium such as an aqueous solution as described below to prepare a gelatin solution, and then the gelatin solution is heated to liquefy and the collected tissue is embedded.
  • the gelatin solution in which the tissue is embedded can be cooled to solidify and stored and / or transported in a gel-embedded state. Then, by heating, the gelatin solution can be liquefied and the embedded tissue can be taken out.
  • the temperature at which the above gelatin solution is liquefied varies depending on the gelatin concentration, and is, for example, 25 ° C. or higher and 60 ° C. or lower. Is more preferable.
  • the temperature at which the gelatin solution is solidified varies depending on the gelatin concentration, but is more preferably 1 ° C. or higher and 25 ° C. or lower, and 1 ° C. or higher and 10 ° C. or lower.
  • Gelatin is extracted from pig skin, pork bones, fish, cows, humans, etc., but gelatin extracted from any animal can be used. Further, it may be hydrolyzed with an acid or an alkali, but the type of gelatin is not limited in the present invention.
  • the dispersion medium for dissolving gelatin can be any water or an aqueous solution
  • the aqueous solution can be any aqueous solution such as a buffer solution, an isotonic solution, a hypotonic solution, and a hypertonic solution. ..
  • buffers and isotonic solutions are more preferable, for example, PBS, HBSS (-), Ringer's solution, Ringer's lactate, infusion solution, saline solution, culture solution, albumin solution, blood-derived components, and the like. Examples include a mixture of.
  • an antibiotic may be added to the above medium.
  • the storage and transportation time is not particularly limited, but it is preferably within 10 days from the viewpoint of reducing damage to the tissue. More specifically, 9 days or less, 8 days or less, 7 days or less, 6 days or less, 5 days or less, 4 days or less, 3 days or less, 2 days or less and 1 day or less can be mentioned.
  • the lower limit of the storage and transportation time is not particularly limited, but is, for example, 30 minutes or more, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, and 6 hours or more.
  • the storage and transportation temperatures are not particularly limited, but 37 ° C or lower is preferable from the viewpoint of reducing damage to tissues. More specifically, it is 30 ° C. or lower, 25 ° C. or lower, 20 ° C. or lower, 15 ° C. or lower, 10 ° C. or lower, or 5 ° C. or lower.
  • the lower limit of the storage and transportation temperature is not particularly limited, but is, for example, ⁇ 5 ° C. or higher and 0 ° C. or higher.
  • the step of separating the adhesive cells from the tissue taken out from the medium can be performed by, for example, the following procedure.
  • the removed tissue is treated with an enzyme, then the adherent cells are separated by centrifugation, and washing and centrifugation are repeated multiple times with a washing solution.
  • a washing solution in order to improve the digestibility by the enzyme, it may be cut into small pieces with scissors before the enzyme treatment.
  • the enzyme treatment solution collagenase, dispase and the like can be used, but the present invention is not limited thereto.
  • [3] Method for Producing Cell Population Containing Adhesive Cells Separated from Tissue Containing Adhesive Cells are, for example, as follows. It can be done by the procedure like. First, the cell suspension is centrifuged, the supernatant is removed, and the obtained cell pellet is suspended in a medium. Next, the cells are seeded in a culture vessel and cultured in a medium with a CO 2 concentration of 3% or more and 5% or less and a confluence rate of 95% or less.
  • the “culture solution” described in the explanation of the term [1] can be used, but the present invention is not limited thereto.
  • a method for producing the tissue without enzymatic treatment can be applied, for example, ceiling culture (property of floating on water). Tissue pieces are floated when the amount of medium is large. Therefore, the liquid amount can be manufactured by a method of minimizing the amount of the tissue to be immersed, a method of adhering the tissue to the dish by suppressing the floating of the tissue piece by a mesh, etc.), but the present invention is not limited to these.
  • the cells obtained by the above-mentioned culture are cells that have been cultured once (cells of the 0th passage).
  • the culture period of the above-mentioned single culture can be, for example, 2 to 21 days, more preferably 3 to 19 days, and further preferably 4 to 17 days.
  • the above-mentioned single-cultured cells can be further subcultured and cultured as follows, for example. First, the cells once cultured are treated with a cell exfoliation means such as trypsin and exfoliated from the culture vessel. The resulting cell suspension is then centrifuged, the supernatant is removed, and the resulting cell pellet is suspended in medium. Finally, the cells are seeded in a culture vessel and cultured in a medium with a CO 2 concentration of 3% or more and 5% or less and a confluence rate of 95% or less.
  • a cell exfoliation means such as trypsin and exfoliated from the culture vessel.
  • the resulting cell suspension is then centrifuged, the supernatant is removed, and the resulting cell pellet is suspended in medium.
  • the cells are seeded in a culture vessel and cultured in a medium with a CO 2 concentration of 3% or more and 5% or less and a confluence rate of 95% or less.
  • the culture period of the above culture may be, for example, 2 to 21 days, more preferably 3 to 19 days, still more preferably 4 to 17 days.
  • cells that have been passaged n times can be obtained by repeating passage and culture (n indicates an integer of 1 or more).
  • the lower limit of the number of passages n is, for example, once or more, preferably 2 times or more, more preferably 3 times or more, still more preferably 4 times or more, still more preferably 5 times or more, from the viewpoint of mass production of cells. be.
  • the upper limit of the number of passages n is preferably 25 times or less, 20 times or less, 15 times or less, 10 times or less, for example, from the viewpoint of suppressing cell aging.
  • a cell exfoliating agent may be used.
  • trypsin As the above-mentioned cell exfoliating means, for example, a cell exfoliating agent may be used.
  • trypsin As the cell exfoliating agent, trypsin, collagenase, dispase, ethylenediaminetetraacetic acid (EDTA) and the like can be used, but the cell stripping agent is not particularly limited.
  • EDTA ethylenediaminetetraacetic acid
  • the cell stripping agent is not particularly limited.
  • a commercially available cell exfoliating agent may be used. For example, trypsin-EDTA solution (manufactured by Thermo Fisher Scientific), TrypLE Select (manufactured by Thermo Fisher Scientific), Accutase (manufactured by Thermo Fisher Scientific), Accutase (manufactured by Stemcell Technologys), Acculex, etc.
  • a physical cell detachment means may be used, and for example, a cell scraper (manufactured by Corning Inc.) can be used, but the present invention is not limited thereto.
  • the cell ablation means may be used alone or in combination of two or more.
  • the means for cryopreserving a cell population containing adherent cells such as mesenchymal stem cells in the present invention is not particularly limited, and examples thereof include a program freezer, a deep freezer, and storage in liquid nitrogen.
  • the freezing temperature is preferably -30 ° C or lower, -40 ° C or lower, -50 ° C or lower, -80 ° C or lower, -90 ° C or lower, -100 ° C or lower, -150 ° C or lower. , -180 ° C or lower, or -196 ° C (liquid nitrogen temperature) or lower.
  • the preferred freezing speeds for freezing are, for example, -1 ° C / min or less, -2 ° C / min or less, -5 ° C / min or less, -9 ° C / min or less, -10 ° C / min or less. Minutes or less, -11 ° C / minute or less, or -15 ° C / minute or less.
  • a program freezer is used as the above freezing means, for example, at a freezing rate of -2 ° C./min or more and -1 ° C./min or less, up to a temperature between -50 ° C. and -30 ° C. (for example, -40 ° C.).
  • a freezing rate of -11 ° C / min or higher and -9 ° C / min or lower for example, -10 ° C / min.
  • the temperature can be rapidly lowered to -196 ° C. for freezing, and then cryopreservation can be performed in liquid nitrogen (gas phase). It can also be stored in liquid nitrogen (liquid phase).
  • the above cell population may be frozen in an arbitrary storage container.
  • the storage container include, but are not limited to, a cryotube, a cryovial, a freezing bag, and an infusion bag.
  • the above cell population may be frozen in any cryopreservation solution.
  • a cryopreservation solution a commercially available cryopreservation solution may be used.
  • CP-1 registered trademark
  • BAMBANKER manufactured by Lymphotech
  • STEM-CELLBANKER manufactured by Nippon Zenyaku Kogyo Co., Ltd.
  • ReproCryo RM manufactured by Reprocell
  • CryoNovo Acron Biotechnology
  • cryopreservation solution manufactured by Biomagnetic Industries
  • CryoStor manufactured by HemaCare
  • the cryopreservation solution may be used alone or in combination of two or more.
  • the above cryopreservation solution can contain a predetermined concentration of polysaccharides.
  • the preferable concentration of the polysaccharide is, for example, 1% by mass or more, 2% by mass or more, 4% by mass or more, or 6% by mass or more.
  • the preferable concentration of the polysaccharide is, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, or 13% by mass or less.
  • Examples of the polysaccharide include, but are not limited to, hydroxylethyl starch (HES) and dextran (Dextran40, etc.).
  • HES hydroxylethyl starch
  • Dextran40 dextran
  • the above cryopreservation solution can contain a predetermined concentration of dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • the preferred concentration of DMSO is, for example, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, or 5% by mass or more.
  • the preferable concentration of DMSO is, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, 12% by mass or less, or 10% by mass or less.
  • the above cryopreservation solution may contain albumin having a predetermined concentration higher than 0% by mass.
  • the preferable concentration of albumin is, for example, 1% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more.
  • the preferable concentration of albumin is, for example, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 9% by mass or less.
  • Examples of albumin include, but are not limited to, bovine serum albumin (BSA), mouse albumin, human albumin and the like.
  • the cell population containing the mesenchymal stem cells provided by the present invention satisfies that the ratio of mesenchymal stem cells positive for CD73, CD90, and CD105 is 80% or more. You may.
  • CD73 means a differentiation cluster 73 and is a protein also known as 5-nucleotidase or Ecto-5'-nucleotidase.
  • CD90 means differentiation cluster 90 and is a protein also known as Thy-1.
  • CD105 means differentiation cluster 105 and is a protein also known as Endoglin.
  • the proportion of mesenchymal stem cells positive for CD73 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the proportion of mesenchymal stem cells positive for CD90 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the proportion of mesenchymal stem cells positive for CD105 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the cell population containing the mesenchymal stem cells provided by the present invention satisfies that the ratio of mesenchymal stem cells exhibiting negative for CD45 and CD31 is 80% or more. good.
  • CD45 means a differentiation cluster 45, and is a protein also known as PTPRC (Protein tyrosine phosphatase, receptor type, C) or LCA (Leukocyte common engine).
  • PTPRC Protein tyrosine phosphatase, receptor type, C
  • LCA Leukocyte common engine
  • CD31 means a differentiation cluster 31, and is a protein also known as Hematopoietic progenitor cell antigen CD31.
  • the proportion of mesenchymal stem cells that are negative for CD45 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the proportion of mesenchymal stem cells that are negative for CD31 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
  • the compressive stress of the medium for transporting and storing the excised fat was as follows: 2 mL of the medium was placed in a 24-well plate, the medium was compressed with a plunger having a diameter of 1 cm at 4 ° C, and the medium was compressed by 1.5 mm. The stress at this time (unit is N) was measured by EZ-TEST (Shimadzu Corporation, EZ-SX).
  • ⁇ Comparative Example 1 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat)
  • the abdomen of the donor (donor A) who gave informed consent was incised with a scalpel with a sharp edge, and the fat was excised with mosquito forceps and tweezers.
  • the weight of the excised fat collected was weighed, and 0.06 g of the excised fat was placed in a 1.5 mL microtube as it was, and transported and stored in a refrigerated (4 ° C.) environment for about 20 hours.
  • the cell concentration was measured using a Nucleocounter (model: NC-100) manufactured by ChemoMetec.
  • NC-100 manufactured by ChemoMetec.
  • the concentration of dead cells in this measurement was measured by sucking the cell suspension into a cassette (model number: 941-0002) containing a PI solution for staining dead cells.
  • the total cell concentration in this measurement is determined by mixing the cell suspension with the cell treatment reagent A100 (model number: 910-0003) and the cell treatment reagent B (model number: 910-0002) in equal amounts to control all cells.
  • the PI solution was targeted for staining, and the cells were sucked into the above-mentioned cassette and measured.
  • the cell number and the survival rate of the obtained fat-derived MSC were calculated.
  • the fat-derived MSC could not be produced by the method of Comparative Example 1.
  • ⁇ Comparative Example 2 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat) 0.06 g of excised fat collected from a donor (donor B) different from the donor in Comparative Example 1 containing 1 mL of a Hanks balanced salt solution (without Ca / Mg) (compressive stress of the medium is 0.00 N) 1
  • the excised fat was transported and stored in the same manner as in Process 1 of Comparative Example 1, except that it was housed in a 5.5 mL microtube.
  • ⁇ Example 1 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat) 0.06 g of excised fat collected from the same donor (donor B) as the donor in Comparative Example 2 was placed in a 1.5 mL microtube, and a gelatin-containing Hanks balanced salt solution (Ca. Excised fat was transported and stored by the same method as in Process 1 of Comparative Example 1 except that it was embedded in 1 mL (without Mg). For embedding of the excised fat, a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the excised fat was placed in the solution, and then solidified at 4 ° C. Then, it was transported and stored in a refrigerator (4 ° C.) for 20 hours, heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the excised fat was taken out to carry out Process 2.
  • Process 1 Collection, transport and storage of exc
  • the number of cells in the 0th passage cell population derived from Donor B of Example 1 was 3.0 ⁇ 105, and the survival rate was 95.9%. From the above, it was found that in the method of Example 1, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
  • the cell population of the first passage was exfoliated using TripLE Select when it reached the subconfluent, diluted with a medium, and recovered by centrifugation.
  • the surface antigen analysis was performed using a Guava easyCyte Single manufactured by MERCK, with the number of analyzed cells: 10,000 cells and the flow rate setting: Slow.
  • antibodies for isotype control PE Mouse IgG1 k Isotype Control (BD company / model number: 555749), FITC Mouse IgG1 k Isotype Control (BD company / model number: 555748) and AlexaFluor647 (BD company / model number: 557714) was used as an antibody against the CD73 antigen, PE Mouse Anti-Human CD73 (manufactured by BD company / model number: 550257), and PE Mouse Anti-Human CD90 (manufactured by BD company) as an antibody against the CD90 antigen.
  • the positive rates of CD73, CD90, and CD105 were all 90% or more (specifically, CD73: 100%, The positive rate of CD90: 100%, CD105: 100%), CD45, and CD31 was less than 5% (negative rate was 95% or more) (specifically, the positive rate of CD45: 1% (negative rate: 99%). ), CD31 positive rate: 1% (negative rate: 99%)). From the above results, it was confirmed that the cell population of the first passage of Example 1 was a cell population containing high-purity mesenchymal stem cells.
  • Example 2 In Example 2 and Comparative Example 3 below, the same donor C excised fat was used.
  • Example 2 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat)
  • a gelatin-containing Hanks balanced salt having a compressive stress of 1.09 N was placed in a 1.5 mL microtube containing 0.15 g of agarose collected from a donor (donor C) different from the donors in Comparative Examples 1 and 2. It was embedded in a solution (without Ca / Mg) (donor C-gelatin), and the other was embedded with 1 mL of an agarose-containing Hanks balanced salt solution (without Ca / Mg) having a compressive stress of 1.71 N (without Ca / Mg).
  • the excised fat was transported and stored in the same manner as in Process 1 of Comparative Example 1.
  • the prepared agarose-containing Hanks equilibrium salt solution was solidified at room temperature or lower, and the excised fat was embedded in a finely crushed gel. Then, it was transported and stored in a refrigerator (4 ° C.) for 20 hours, the excised fat was removed from the gel, and the process 2 was carried out.
  • the number of cells in the 0th passage cell population derived from the donor C-gelatin of Example 2 was 1.0 ⁇ 106 , and the survival rate was 96.8%.
  • the number of cells in the 0th passage cell population derived from the donor C-agarose of Example 2 was 1.5 ⁇ 106 , and the survival rate was 98.6%. From the above, it was found that in the method of Example 2, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
  • the number of cells in the 0th passage cell population derived from Donor C of Comparative Example 3 was 0.1 ⁇ 106 , the survival rate was 90.8%, and the donor C of Example 2 was used. -Only 1/10 or less of the cell population of the 0th passage derived from gelatin and donor C-agarose could be obtained, and the survival rate was also slightly low. From the above, it was found that the method of Comparative Example 3 was not suitable for producing a fat-derived MSC.
  • Example 3 Examination of adipose tissue transport> (Process 1: Collection, transportation and storage of sucked fat) 1 mL of suction fat (donor D-suction) collected by liposuction from a donor (donor D) different from the donors in Examples 1 and 2 was placed in a 1.5 mL microtube, and each gelatin having a compressive stress shown in Table 2 was placed. It was embedded in 1 mL of a Hanks equilibrium salt solution (without Ca / Mg) and transported and stored in a refrigerated (4 ° C.) environment for about 72 hours.
  • a Hanks equilibrium salt solution without Ca / Mg
  • Process 3 Culture of fat-derived MSC
  • Cells of the 0th passage were seeded in the same manner as in Process 3 of Comparative Example 1 except that each SVF obtained from donor D-suction was seeded in a T-25 flask (manufactured by Corning Inc.) in a culture vessel. Populations were obtained and adherent cells were collected.
  • the number of cells in the 0th passage cell population derived from the donor D-suction (1) of Example 3 was 1.0 ⁇ 106 , and the survival rate was 97.4%, and the donor of Example 3 was obtained.
  • the number of cells in the 0th passage cell population derived from D-suction (2) was 1.6 ⁇ 106 , and the survival rate was 98.1%, which was derived from the donor D-suction (3) of Example 3.
  • the number of cells in the 0th passage cell population was 1.9 ⁇ 10 6 , and the survival rate was 98.8%.
  • the number of cells was 0.8 ⁇ 106 , and the survival rate was 97.1%. From the above, it was found that in the method of Example 3, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
  • ⁇ Comparative Example 4 Examination of Adipose Tissue Transport> (Process 1: Collection, transportation and storage of sucked fat) 1 mL of suction fat (donor D-suction) collected by liposuction from the same donor (donor D) as the donor in Example 3 was mixed with a Hanks balanced salt solution (without Ca / Mg) (the compressive stress of the medium was 0. 00N) The sucked fat was transported and stored in the same manner as in Process 1 of Example 3 except that it was housed in a 1.5 mL microtube containing 1 mL.
  • Example 4 Examination of adipose tissue transport> (Process 1: Collection, transportation and storage of sucked fat) 1 mL of suction fat (donor D-suction) collected by suction fat from the same donor (donor D) as the donor in Example 3 is housed in a 1.5 mL microtube, and the fibrin having a compressive stress of 6.86 N is contained in the medium. (Product name: Borheel) The aspirated fat was transported and stored by the same method as in Process 1 of Example 3 except that it was embedded in 1 mL.
  • ⁇ Comparative Example 5 Examination of adipose tissue transport> (Process 1: Collection, transportation and storage of sucked fat) 1 mL of suction fat (donor D-suction) collected by liposuction from the same donor (donor D) as the donor in Example 3 is housed in a 1.5 mL microtube, and the compressive stress of the medium is 12.27 N. The sucked fat was transported and stored by the same method as in Process 1 of Example 3 except that it was embedded in 1 mL of a Hanks balanced salt solution (without Ca / Mg).
  • Example 5 Examination of adipose tissue transport> (Process 1: Collection, transportation and storage of sucked fat)
  • the aspirated fat is transported by the same method as in Process 1 of Example 3 except that the conditions for transporting and storing the collected aspirated fat (donor D-suction) are about 192 hours in a refrigerated (4 ° C.) environment. And saved.
  • Example 5 As a result, after culturing for 7 days, the number of cells in the 0th passage cell population derived from the donor D-suction of Example 5 was 1.5 ⁇ 105, and the survival rate was 96.3%. From the above, it was found that in the method of Example 5, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
  • ⁇ Comparative Example 6 Examination of adipose tissue transport> (Process 1: Collection, transportation and storage of sucked fat)
  • the aspirated fat is transported by the same method as in Process 1 of Comparative Example 4, except that the conditions for transporting and storing the collected aspirated fat (donor D-suction) are about 192 hours in a refrigerated (4 ° C.) environment. And saved.
  • Table 3 shows the cell numbers and viability of the 0th passage cell populations of Examples 3, 4, and 5 and Comparative Examples 4, 5, and 6.
  • Example 6 In Example 6 and Comparative Example 7, the same donor D excised fat was used.
  • ⁇ Example 6 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat) A gelatin-containing Hanks having a compressive stress of 1.09 N in a 1.5 mL microtube containing 0.1 g of excised fat (donor D-excision) collected from a donor (donor D) different from that of the donor in Comparative Example 1. The excised fat was transported and stored by the same method as in Process 1 of Comparative Example 1 except that it was embedded in 1 mL of a balanced salt solution (without Ca / Mg).
  • Example 6 As a result, after culturing for 16 days, the number of cells in the 0th passage cell population derived from the donor D-resect of Example 6 was 5.0 ⁇ 105, and the survival rate was 98.3%. From the above, it was found that in the method of Example 6, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
  • ⁇ Comparative Example 7 Examination of adipose tissue transport> (Process 1: Collection, transport and storage of excised fat) Excised fat was removed by the same method as in Process 1 of Comparative Example 1 except that 0.1 g of excised fat (donor D-excision) collected from a donor (donor D) different from that of the donor in Comparative Example 1 was used. Transported and stored.
  • Table 4 shows the number of cells and the survival rate of the 0th passage cell populations of Example 6 and Comparative Example 7.
  • Examples 7 and 8 and Comparative Example 8 used the same donor E amnion tissue.
  • Example 7 Examination of amniotic membrane tissue transport> (Process 1: Amniotic membrane collection, transportation and storage) Fetal membranes and placenta, which are fetal appendages, were aseptically collected from a pregnant woman (donor E) who gave informed consent to a case of selective caesarean section. The obtained fetal membrane and placenta were placed in a container containing physiological saline, and the amniotic membrane was detached from the stump of the fetal membrane. The amniotic membrane was washed with a Hanks balanced salt solution (without Ca / Mg).
  • the weight of the collected amniotic membrane was measured, and 1 g of amniotic membrane was embedded in 1 mL of a gelatin-containing Hanks balanced salt solution (without Ca / Mg) having a compressive stress of 1.09 N and contained in a 1.5 mL microtube.
  • a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the amniotic membrane was placed in the solution, and then the amniotic membrane was solidified at 4 ° C. Then, after transporting and storing in a refrigerator (4 ° C.) for about 216 hours, the mixture was heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the amniotic membrane was taken out to carry out Process 2.
  • Example 7 As a result, after culturing for 12 days, the number of cells in the 0th passage cell population derived from Donor E of Example 7 was 9.5 ⁇ 105, and the survival rate was 98.6%. From the above, it was found that in the method of Example 7, many adhesive cells could be confirmed in the culture vessel, and many amniotic membrane-derived MSCs having a high survival rate could be produced.
  • ⁇ Comparative Example 8 Examination of amniotic tissue transport> (Process 1: Amniotic membrane collection, transportation and storage) 1 g of amniotic membrane collected from the same donor (donor E) as the donor in Example 7 is contained in a 1.5 mL microtube containing 1 mL of a Hanks balanced salt solution (without Ca / Mg) (compressive stress of the medium is 0.00 N). The amniotic membrane was transported and stored in the same manner as in Process 1 of Example 7, except that it was housed in.
  • Example 8 Examination of amniotic tissue transport> (Process 1: Amniotic membrane collection, transportation and storage) 1 g of amniotic membrane collected from the same donor (donor E) as the donor in Example 7 by the same method as in Process 1 of Example 7, was obtained from a gelatin-containing Hanks balanced salt solution having a compressive stress of 1.09 N as a medium. It was embedded in 1 mL (without Ca / Mg) and contained in a 1.5 mL microtube.
  • the amniotic membrane For the embedding of the amniotic membrane, a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the amniotic membrane was placed in the solution, and then the amniotic membrane was solidified at 4 ° C. Then, it was transported and stored at room temperature (about 20 ° C.) for about 110 hours, heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the amniotic membrane was taken out to carry out Process 2.
  • Example 6 As a result, after culturing for 11 days, the number of cells in the 0th passage cell population derived from Donor E of Example 8 was 1.3 ⁇ 106 , and the survival rate was 98.3%. From the above, it was found that in the method of Example 6, many adhesive cells could be confirmed in the culture vessel, and many amniotic membrane-derived MSCs having a high survival rate could be produced.
  • Table 5 shows the cell numbers and viability of the 0th passage cell populations of Examples 7 and 8 and Comparative Example 8.
  • amniotic membrane MSCs with high survival rate can be produced by storing and / or transporting the amniotic membrane tissue in a medium having a compressive stress greater than 0 N and 12 N or less in a state of being embedded.
  • Tissues containing adhesive cells are stored and / or transported in a state of being embedded in a medium having a compressive stress greater than 0 and 12 N or less.
  • the tissue embedded in the medium is taken out from the medium and the adhesive cells are separated. That is, according to the present invention, the tissue containing the adhesive cells such as mesenchymal stem cells is safely stored / transported. This makes it possible to efficiently produce adherent cells from raw material tissues containing adherent cells after storage / transport. This can be expected to expand opportunities for providing treatment to patients, reduce the burden on cell cultures, and reduce manufacturing costs and medical costs.

Abstract

The present invention provides a method for safely saving and/or transporting raw material tissue for producing therapeutic cells. This method produces a cell mass including adhesive cells, from tissue including the adhesive cells. The method produces adhesive cells from tissue and includes: (1) saving and/or transporting tissue that includes adhesive cells, in a state in which the tissue is embedded in a medium having a compressive stress of greater than 0N and less than 12 N; and (2) retrieving from the medium the tissue embedded in the medium, and separating the adhesive cells.

Description

接着性細胞を組織から効率的に製造する方法How to Efficiently Produce Adhesive Cells from Tissue
 本発明は、間葉系幹細胞などの接着性細胞を組織から効率的に製造するための方法に関する。 The present invention relates to a method for efficiently producing adhesive cells such as mesenchymal stem cells from tissues.
 接着性を有する間葉系幹細胞は、骨髄、脂肪組織、歯髄などに存在することが報告されている体性幹細胞であり、骨や軟骨及び脂肪などに分化する能力を有するため、細胞治療における有望な細胞ソースとして注目されている。間葉系幹細胞は、分化能だけでなく免疫抑制能も有しており、急性移植片対宿主病(GVHD)及びクローン病などに対する臨床応用が進んでいる。また、筋組織より分離される骨格筋芽細胞も接着性を有し、組織再生を促進するサイトカインを分泌することが知られており、テルモ社より心筋再生治療として実用化されている。その他にも、皮膚組織から分離できる線維芽細胞も接着性を有し、美容をはじめとしたアンチエイジング向けとして臨床現場で使用されている。 Adhesive mesenchymal stem cells are somatic stem cells that have been reported to be present in bone marrow, adipose tissue, dental pulp, etc., and have the ability to differentiate into bone, cartilage, fat, etc., and are therefore promising in cell therapy. It is attracting attention as a cell source. Mesenchymal stem cells have not only differentiation ability but also immunosuppressive ability, and clinical application for acute graft-versus-host disease (GVHD) and Crohn's disease is advancing. In addition, skeletal myoblasts separated from muscle tissue are also known to have adhesiveness and secrete cytokines that promote tissue regeneration, and have been put into practical use as myocardial regeneration therapy by Telmo. In addition, fibroblasts that can be separated from skin tissue also have adhesiveness and are used in clinical practice for anti-aging such as cosmetology.
 これら接着性を有する間葉系幹細胞、骨格筋芽細胞、線維芽細胞は、羊膜、脂肪、臍帯、胎盤、皮膚、筋肉の組織中に含まれていることが知られており、これら組織は治療用細胞を製造するための有望な原料として注目されている。業的実施においては、これら組織の採取施設と加工施設(組織から細胞を製造する施設)とは離れた場所にあるため、組織の採取施設から加工施設まで組織を安全に保存および/または輸送する必要がある。組織を保存および/または輸送する際には組織の乾燥を防ぐ目的等から溶液に浸漬されることが多いが、その溶液として緩衝液の使用が考えられる。また臓器を保存する溶液として、臓器保存液が開発され、市販されている。 These adhesive mesenchymal stem cells, skeletal myoblasts, and fibroblasts are known to be contained in sheep membrane, fat, umbilical cord, placenta, skin, and muscle tissues, and these tissues are treated. It is attracting attention as a promising raw material for producing cells for use. In commercial practice, these tissue collection and processing facilities (facilities that produce cells from the tissue) are separated from each other, so that the tissue is safely stored and / or transported from the tissue collection facility to the processing facility. There is a need. When the tissue is stored and / or transported, it is often immersed in a solution for the purpose of preventing the tissue from drying, and a buffer solution may be used as the solution. In addition, an organ preservation solution has been developed and is commercially available as a solution for preserving organs.
 本発明の課題は、間葉系幹細胞等の接着性細胞を含む原料組織を安全に保存および/または輸送する方法を提供し、保存/輸送後に接着性細胞を含む原料組織から接着性細胞を効率的に製造する方法を提供することである。 An object of the present invention is to provide a method for safely storing and / or transporting a raw material tissue containing adhesive cells such as mesenchymal stem cells, and to efficiently obtain adhesive cells from the raw material tissue containing the adhesive cells after storage / transportation. Is to provide a method of manufacturing.
 上記課題の下で検討を進める中で、組織を緩衝液や臓器保存液に浸漬し、保存および/または輸送し、当該組織から接着性細胞の製造を試みたところ、保存および/または輸送により組織がダメージを受け、接着性の低下や組織中の接着性細胞の障害を誘発し、それが故に、取得する細胞数が減少する現象を確認した。本発明者らは、更に鋭意検討を進めたところ、驚くべきことに、適度な圧縮応力をもつ媒体の中に組織を包埋した状態で保存および/または輸送することにより、組織のダメージを抑制でき、接着性細胞を効率的に製造できることを見出した。 In the course of the study under the above-mentioned problems, the tissue was immersed in a buffer solution or an organ preservation solution, preserved and / or transported, and an attempt was made to produce adhesive cells from the tissue. The tissue was preserved and / or transported. It was confirmed that the cells were damaged and induced a decrease in adhesiveness and damage to the adhesive cells in the tissue, and therefore the number of acquired cells decreased. As a result of further diligent studies, the present inventors surprisingly suppressed the damage to the tissue by storing and / or transporting the tissue in a medium having an appropriate compressive stress. It was found that the adhesive cells could be efficiently produced.
 以上の成果に基づき、次の発明が提供される。 Based on the above results, the following inventions will be provided.
 接着性細胞を含む組織から当該細胞を含む細胞集団を製造するための方法であって、
接着性細胞を含む組織を、圧縮応力が0より大きく12N以下である媒体の中に包埋した状態で保存および/または輸送し、
上記媒体に包埋された組織を媒体から取り出し、接着性細胞を分離する
ことを含む組織から接着性細胞を製造する方法。
A method for producing a cell population containing the cells from a tissue containing the adhesive cells.
Tissues containing adherent cells are stored and / or transported embedded in a medium with a compressive stress greater than 0 and 12 N or less.
A method for producing adhesive cells from a tissue, which comprises removing the tissue embedded in the medium from the medium and separating the adhesive cells.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-143577号の開示内容を包含する。 This specification includes the disclosure content of Japanese Patent Application No. 202-143577, which is the basis of the priority of the present application.
 本発明によれば、間葉系幹細胞等の接着性細胞を含む組織を、安全に保存/輸送でき、保存/輸送後に効率的に接着性細胞を製造することができる。 According to the present invention, tissues containing adherent cells such as mesenchymal stem cells can be safely preserved / transported, and adherent cells can be efficiently produced after storage / transport.
 以下、本発明の実施形態について具体的に説明するが、下記の説明は本発明の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が下記の実施形態の構成を適宜置換した他の実施形態も本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described, but the following description is for facilitating the understanding of the present invention, and the scope of the present invention is not limited to the following embodiments. Other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
 [1]用語の説明
 本発明における「接着性細胞」とは、ガラスやプラスチック基材のシャーレ、プレート、フラスコに接着し、紡錘状の形態を示すものを指す。接着性細胞の例としては、間葉系幹細胞、骨格筋芽細胞、線維芽細胞、上皮細胞、心筋幹細胞、神経幹細胞、肝幹細胞、心筋細胞、神経細胞、肝細胞などが挙げられるが、本発明はこれらの細胞に限定されない。
接着性細胞を含む組織として、脂肪、胎盤、卵膜、羊膜、絨毛膜、皮膚、臍帯、心臓、脳、肺、角膜、腸、筋肉、滑膜などの固体組織や骨髄、歯髄、羊水、臍帯血、血液などの液体組織があるが、本発明はこれらの組織に限定されない。また、これら組織を加工したものも含まれる。
[1] Explanation of terms The "adhesive cells" in the present invention refer to cells that adhere to a petri dish, plate, or flask of a glass or plastic substrate and exhibit a spindle-shaped morphology. Examples of adhesive cells include mesenchymal stem cells, skeletal myoblasts, fibroblasts, epithelial cells, myocardial stem cells, nerve stem cells, hepatic stem cells, myocardial cells, nerve cells, hepatocytes, etc. Is not limited to these cells.
Tissues containing adhesive cells include solid tissues such as fat, placenta, fetal membrane, amniotic membrane, villous membrane, skin, umbilical cord, heart, brain, lung, corneal membrane, intestine, muscle, and synovial cord, bone marrow, dental pulp, sheep's water, and umbilical cord. There are liquid tissues such as blood and blood, but the present invention is not limited to these tissues. In addition, those obtained by processing these structures are also included.
 本発明における「媒体」とは、圧縮応力が0より大きく12N以下であれば、どのような状態・性状・構造であっても構わない。例えば、固体、液体、気体などどのような性状であってもよく、その混合状態でも構わないが、圧縮応力が0より大きく12N以下となる媒体の具体例としては、例えば、ゲルやゾル、それらに類するものなどが挙げられる。ゲルとは、コロイド粒子が液体中や気体に分散し、流動性を失ったものを指し、例えば、こんにゃく、羊羹、寒天、プリンなどが挙げられる。ゾルとは、コロイド粒子が液体中や気体に分散し、流動性が失われていないものを指し、例えば、牛乳、飲むヨーグルト、油などが挙げられる。本発明におけるゾル/ゲルとしては、水を分散媒とするコロイドが好ましく、いわゆるハイドロゲルがより好ましい。 The "medium" in the present invention may have any state, properties, and structure as long as the compressive stress is greater than 0 and 12 N or less. For example, it may have any properties such as solid, liquid, and gas, and may be in a mixed state. Specific examples of the medium having a compressive stress greater than 0 and 12 N or less include gels, sol, and the like. Something similar to. The gel refers to a gel in which colloidal particles are dispersed in a liquid or a gas and lose their fluidity, and examples thereof include konjac, yokan, agar, and pudding. The sol refers to a sol in which colloidal particles are dispersed in a liquid or a gas and the fluidity is not lost, and examples thereof include milk, yogurt to drink, and oil. As the sol / gel in the present invention, a colloid using water as a dispersion medium is preferable, and a so-called hydrogel is more preferable.
 本発明の媒体は、適度な硬さを持つことが好ましく、上記の通り、圧縮応力をその硬さの指標として採用する。本発明における圧縮応力の測定方法としては、24ウェルプレートに2mLの媒体を入れ、直径1cmのプランジャーで媒体を圧縮し、媒体が1.5mm圧縮した際の応力(単位はN)を、EZ-TEST(島津製作所、EZ-SX)で測定して求められるものであるが、同等の結果が得られる場合は、上記方法に限定されない。本発明において、媒体の圧縮応力は、保存および/または輸送時の温度において、上記「0より大きく12N以下」の範囲を満たす必要がある。例えば、4℃で保存および輸送する場合には4℃における圧縮応力、15℃で保存および輸送する場合には15℃における圧縮応力である。圧縮応力は、0より大きく12N以下であれば特に限定されないが、0.001N以上が好ましく、0.005N以上がより好ましく、0.01N以上が更に好ましく、0.1N以上が最も好ましい。また圧縮応力は11N以下が好ましく、10N以下がより好ましく、9N以下が更に好ましい。8N以下がもっと好ましく、7N以下が最も好ましい。なお、保存および輸送時の温度が一定ではない場合は、それぞれの温度のいずれか一点でも、上記の圧縮応力の範囲に入っていればよいが、保存および/または輸送の全工程の少なくとも40%以上の期間は上記圧縮応力を満たすのが好ましく、その期間は60%以上がより好ましく、80%以上が更に好ましく、全温度条件において上記圧縮応力を満たすのが最も好ましい。例えば、4℃で一度保存し15℃から25℃の範囲で輸送した場合などは、4℃、15℃から25℃のそれぞれにおける圧縮応力のいずれか一点でも、上記の圧縮応力の範囲に入っていればよいが、いずれをも満たすのがより好ましい。 The medium of the present invention preferably has an appropriate hardness, and as described above, compressive stress is adopted as an index of the hardness. As a method for measuring compressive stress in the present invention, a 2 mL medium is placed in a 24-well plate, the medium is compressed with a plunger having a diameter of 1 cm, and the stress (unit: N) when the medium is compressed by 1.5 mm is EZ. -It is obtained by measuring with TEST (Shimadzu Corporation, EZ-SX), but it is not limited to the above method when the same result can be obtained. In the present invention, the compressive stress of the medium must satisfy the above range of "greater than 0 and 12 N or less" at the temperature during storage and / or transportation. For example, compressive stress at 4 ° C. for storage and transport at 4 ° C., and compressive stress at 15 ° C. for storage and transport at 15 ° C. The compressive stress is not particularly limited as long as it is greater than 0 and 12 N or less, but is preferably 0.001 N or more, more preferably 0.005 N or more, further preferably 0.01 N or more, and most preferably 0.1 N or more. The compressive stress is preferably 11 N or less, more preferably 10 N or less, and even more preferably 9 N or less. 8N or less is more preferable, and 7N or less is most preferable. If the temperature during storage and transportation is not constant, any one of the temperatures may be within the above compressive stress range, but at least 40% of the entire storage and / or transportation process. The above period preferably satisfies the above compressive stress, more preferably 60% or more, further preferably 80% or more, and most preferably satisfying the above compressive stress under all temperature conditions. For example, when stored once at 4 ° C and transported in the range of 15 ° C to 25 ° C, any one of the compressive stresses at 4 ° C and 15 ° C to 25 ° C falls within the above compressive stress range. However, it is more preferable to satisfy all of them.
 本発明に記載の媒体は、生体適合性の観点から、タンパク質、ペプチド、多糖及び合成高分子からなる群より選択される少なくとも1つを含むことが好ましく、本発明では、これらが水に分散したものを媒体として用いるのがより好ましいが、本発明はこれらに限定されない。タンパク質として、ゼラチン、コラーゲン、フィブリン、大豆タンパク質などが使用できる。多糖あるいは多糖を含む物質として、アガロース、ペクチン、カラギナン、カードラン、キチン、キトサン、アルギン酸類、大豆多糖類、カルボキシメチルセルロースなどのセルロース類、マンナン類、アラビアガム、ジェランガム、グアーガム、キサンタンガム、澱粉、寒天、フコイダンなどが使用できる。合成高分子として、合成ペプチド(パナセアゲルやPuraMatrixなどの自己組織化ペプチド)、ポリビニルアルコール、プロピレングリコール、シリコン、ポリアクリルアミドなどが使用できる。また、これらを単独で用いても、2個以上組み合わせて使用しても構わない。 From the viewpoint of biocompatibility, the medium described in the present invention preferably contains at least one selected from the group consisting of proteins, peptides, polysaccharides and synthetic polymers, and in the present invention, these are dispersed in water. It is more preferable to use a medium as a medium, but the present invention is not limited thereto. As the protein, gelatin, collagen, fibrin, soybean protein and the like can be used. Polysaccharides or substances containing polysaccharides include agarose, pectin, carrageenan, curdlan, chitin, chitosan, arginic acids, soybean polysaccharides, celluloses such as carboxymethyl cellulose, mannans, arabic gum, gellan gum, guar gum, xanthan gum, starch, agar. , Fucoidan, etc. can be used. As the synthetic polymer, synthetic peptides (self-assembled peptides such as Panacea gel and PuraMatrix), polyvinyl alcohol, propylene glycol, silicon, polyacrylamide and the like can be used. Further, these may be used alone or in combination of two or more.
 本明細書における「培養液」とは特に限定されず、任意の細胞培養用液体培地を基礎培地とし、必要に応じて他の成分(アルブミン、血液由来成分、増殖因子など)を適宜添加することにより調製することができる。 The "culture solution" in the present specification is not particularly limited, and any liquid medium for cell culture is used as a basal medium, and other components (albumin, blood-derived components, growth factors, etc.) are appropriately added as needed. Can be prepared by.
 上記基礎培地としては、BME培地、BGJb培地、CMRL1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地(Iscove’s Modified Dulbecco’s Medium)、Medium 199培地、Eagle MEM培地、αMEM(Alpha Modification of Minimum Essential Medium Eagle)培地、DMEM培地(Dulbecco’s Modified Eagle’s Medium)、ハムF10培地、ハムF12培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地(例えば、DMEM/F12培地(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham))等の培地を使用することができるが、特に限定されない。また、市販の各種の無血清培地も使用できる。 As the basal medium, BME medium, BGJb medium, CMRL1066 medium, Glasgo MEM medium, Applied MEM Zinc Option medium, IMDM medium (Iscover's Modified Dulvecco's Medium), Medium 199 Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium, Eagle's Medium of Medium Essential Medium Eagle's medium, DMEM medium (Dulvecco's Modified Eagle's Medium), ham F10 medium, ham F12 medium, RPMI 1640 medium, Fisher's medium, and a mixed medium thereof (for example, DMEM / F12 medium). (Dulvecco's Modified Eagle's Medium / Nutient Mixture F-12 Ham)) and the like can be used, but the medium is not particularly limited. In addition, various commercially available serum-free media can also be used.
 前記基礎培地に対して添加する他の成分としては、例えば、アルブミン、血液由来成分、増殖因子、などが挙げられる。前記基礎培地にアルブミンを添加する態様においては、アルブミンの濃度は0.05重量%以上、5重量%以下が好ましい。また、血液由来成分としては、各種の血清(ウシ胎児血清(FBSやFCS)などの動物由来血清、ヒト血清、各種動物および/またはヒト血液由来の多血小板血漿や血小板溶解物を原料として調製される血清など)、各種動物および/またはヒト血液由来の血小板溶解物、血漿、などが挙げられる。ヒト血清は、接着性細胞を含む組織を取得した個体と同一個体由来の血清であっても、異なる個体由来であっても、どちらでも構わない。前記基礎培地に血液由来成分を添加する態様においては、血液由来成分の濃度は2体積%以上40%体積以下が好ましい。より好ましくは3体積%以上30%体積以下である。増殖因子を添加する態様においては、増殖因子を培地中で安定化させるための試薬(ヘパリンなどの抗凝固剤、ゲル、多糖類など)を、増殖因子に加えてさらに添加してもよいし、あらかじめ安定化させた増殖因子を前記基礎培地に対して添加してもよい。増殖因子は例えば、線維芽細胞増殖因子(FGF)、上皮細胞増殖因子(EGF)、トランスフォーミング増殖因子(TGF)、血管内皮細胞増殖因子(VEGF)、血小板由来増殖因子(PDGF)、及びそれらのファミリーを使用することができるが、特に限定されない。 Examples of other components added to the basal medium include albumin, blood-derived components, growth factors, and the like. In the embodiment in which albumin is added to the basal medium, the concentration of albumin is preferably 0.05% by weight or more and 5% by weight or less. Further, as the blood-derived component, various sera (animal-derived serum such as bovine fetal serum (FBS or FCS), human serum, various animal and / or human blood-derived multiplatelet plasma and platelet lysate are prepared as raw materials. Serum, etc.), various animal and / or human blood-derived platelet lysates, plasma, etc. The human serum may be derived from the same individual as the individual from which the tissue containing the adhesive cells was obtained, or may be derived from a different individual. In the embodiment in which the blood-derived component is added to the basal medium, the concentration of the blood-derived component is preferably 2% by volume or more and 40% or less by volume. More preferably, it is 3% by volume or more and 30% or less by volume. In the embodiment in which the growth factor is added, a reagent for stabilizing the growth factor in the medium (anticoagulant such as heparin, gel, polysaccharide, etc.) may be further added in addition to the growth factor. Pre-stabilized growth factors may be added to the basal medium. Growth factors include, for example, fibroblast growth factor (FGF), epithelial cell growth factor (EGF), transforming growth factor (TGF), vascular endothelial cell growth factor (VEGF), platelet-derived growth factor (PDGF), and theirs. Families can be used, but are not particularly limited.
 [2]間葉系幹細胞などの接着性細胞を組織から効率的に分離する方法
 間葉系幹細胞などの接着性細胞を含む組織を採取する工程は、例えば、以下のような手順で行うことができる。脂肪組織の場合、患者の任意の箇所(例えば、腹部、腰部、大腿部)を尖刃のメスで0.5cm~1cm程度切開し、任意の手術器具(例えば、モスキート鉗子、ピンセット)で脂肪を摘出し、切除する。切開創は1針縫合するか、テープで固定する。このような手段で採取された脂肪組織を一般的に切除脂肪という。一方、患者の任意の箇所(例えば、腹部、腰部、大腿部)からカニューレなどを用いて脂肪を吸引することもできる。このような手段で採取された脂肪組織を一般的に吸引脂肪という。羊膜組織の場合、出産時に胎児付属物(胎盤、卵膜など)を採取した後、卵膜の断端から羊膜を剥離する。筋肉組織の場合、大腿部より筋肉組織を採取する。皮膚組織の場合、外科用のディスポのナイフや皮膚生検用パンチなどを用いて、耳の裏などから採取する、などが挙げられるが、本発明はこれらに限定されない。
[2] Method for Efficiently Separating Adhesive Cells such as Mesenchymal Stem Cells The step of collecting tissue containing adherent cells such as mesenchymal stem cells can be performed by, for example, the following procedure. can. In the case of adipose tissue, make an incision of about 0.5 cm to 1 cm in any part of the patient (for example, abdomen, waist, tweezers) with a sharp-edged scalpel, and use any surgical instrument (for example, mosquito forceps, tweezers) to make fat. Is removed and excised. The incision should be sutured with one needle or taped. Adipose tissue collected by such means is generally called excised fat. On the other hand, fat can be aspirated from any part of the patient (for example, abdomen, waist, thigh) using a cannula or the like. Adipose tissue collected by such means is generally called aspirated fat. In the case of amniotic tissue, fetal appendages (placenta, fetal membrane, etc.) are collected at birth, and then the amniotic membrane is detached from the stump of the fetal membrane. In the case of muscular tissue, the muscular tissue is collected from the thigh. In the case of skin tissue, it may be collected from the back of the ear using a surgical disposable knife, a skin biopsy punch, or the like, but the present invention is not limited thereto.
 採取した組織は、媒体の中に包埋した状態で保存および/または輸送されるが、例えば、以下のような手順で行うことができる。容器に充填した媒体に採取した組織を埋め込むこと、もしくは採取した組織を収容した容器に媒体を加えることで組織を包埋し、保存およびまたは輸送する。媒体の中に包埋した組織を取り出す工程は、例えば、以下のような手順で行うことができる。組織を包埋した媒体から、任意の器具(例えば、モスキート鉗子、ピンセットなど)を用いて組織を取り出す。 The collected tissue is stored and / or transported in a state of being embedded in a medium, and can be carried out by the following procedure, for example. The tissue is embedded, stored and / or transported by embedding the collected tissue in a container-filled medium or by adding the medium to the container containing the collected tissue. The step of taking out the tissue embedded in the medium can be performed, for example, by the following procedure. The tissue is removed from the medium in which the tissue is embedded using any instrument (eg, mosquito forceps, tweezers, etc.).
 媒体としてゼラチンのような可逆的に固化(ゲル化も含む)と液化を繰り返す性質を持つゾルまたはゲルを用いた場合、当該性質を利用して、好ましくは以下のように組織を保存/輸送することができる。例としてゼラチンを用いる場合は、ゼラチンを下記のように水溶液などの分散媒に溶解あるいは分散させてゼラチン溶液を調製した後、ゼラチン溶液を加温して液化させ、採取した組織を包埋する。組織を包埋したゼラチン溶液は冷却して固化させ、ゲルに包埋した状態で保存および/または輸送することができる。その後、加温することでゼラチン溶液を液化させ、包埋した組織を取り出すことができる。 When a sol or gel having the property of repeating reversible solidification (including gelation) and liquefaction such as gelatin is used as a medium, the tissue is preferably preserved / transported as follows by utilizing the property. be able to. When gelatin is used as an example, gelatin is dissolved or dispersed in a dispersion medium such as an aqueous solution as described below to prepare a gelatin solution, and then the gelatin solution is heated to liquefy and the collected tissue is embedded. The gelatin solution in which the tissue is embedded can be cooled to solidify and stored and / or transported in a gel-embedded state. Then, by heating, the gelatin solution can be liquefied and the embedded tissue can be taken out.
 上記のゼラチン溶液を液化させる温度は、ゼラチン濃度によって変わるが、例えば25℃以上60℃以下であるが、組織へのダメージの観点で、30℃以上55℃以下が好ましく、35℃以上45℃以下が更に好ましい。また、上記のゼラチン溶液を固化させる温度は、ゼラチン濃度によって変わるが、1℃以上25℃以下、1℃以上10℃以下がより好ましい。 The temperature at which the above gelatin solution is liquefied varies depending on the gelatin concentration, and is, for example, 25 ° C. or higher and 60 ° C. or lower. Is more preferable. The temperature at which the gelatin solution is solidified varies depending on the gelatin concentration, but is more preferably 1 ° C. or higher and 25 ° C. or lower, and 1 ° C. or higher and 10 ° C. or lower.
 ゼラチンは豚皮、豚骨、魚、牛、ヒトなどから抽出されるが、どの動物から抽出したゼラチンであっても使用できる。また酸やアルカリで加水分解されたものであっても構わないが、本発明ではゼラチンの種類は制限されない。 Gelatin is extracted from pig skin, pork bones, fish, cows, humans, etc., but gelatin extracted from any animal can be used. Further, it may be hydrolyzed with an acid or an alkali, but the type of gelatin is not limited in the present invention.
 ゼラチンを溶かす分散媒は、水又は水溶液であればいずれも使用することができ、水溶液としては、緩衝液、等張液、低張液、高張液など、どのような水溶液でも使用することができる。組織へのダメージ低減の観点で、緩衝液や等張液がより好ましく、例えば、PBS、HBSS(-)、リンゲル液、乳酸リンゲル液、輸液、生理食塩液、培養液、アルブミン溶液、血液由来成分、それらの混合物などが挙げられる。また、菌の抑制の観点で、抗生物質を上記媒体に添加しても良い。 The dispersion medium for dissolving gelatin can be any water or an aqueous solution, and the aqueous solution can be any aqueous solution such as a buffer solution, an isotonic solution, a hypotonic solution, and a hypertonic solution. .. From the viewpoint of reducing damage to tissues, buffers and isotonic solutions are more preferable, for example, PBS, HBSS (-), Ringer's solution, Ringer's lactate, infusion solution, saline solution, culture solution, albumin solution, blood-derived components, and the like. Examples include a mixture of. Further, from the viewpoint of controlling bacteria, an antibiotic may be added to the above medium.
 保存および輸送の時間は特に制限されないが、組織へのダメージ低減の観点から、10日以内が好ましい。より具体的には、9日以内、8日以内、7日以内、6日以内、5日以内、4日以内、3日以内、2日以内、1日以内を挙げることができる。保存および輸送の時間の下限は特に限定されないが、例えば30分以上、1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上である。 The storage and transportation time is not particularly limited, but it is preferably within 10 days from the viewpoint of reducing damage to the tissue. More specifically, 9 days or less, 8 days or less, 7 days or less, 6 days or less, 5 days or less, 4 days or less, 3 days or less, 2 days or less and 1 day or less can be mentioned. The lower limit of the storage and transportation time is not particularly limited, but is, for example, 30 minutes or more, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, and 6 hours or more.
 保存および輸送の温度は特に制限されないが、組織へのダメージ低減の観点から、37℃以下が好ましい。より具体的には、30℃以下、25℃以下、20℃以下、15℃以下、10℃以下、又は5℃以下である。保存および輸送の温度の下限は特に限定されないが、例えば、-5℃以上、0℃以上である。 The storage and transportation temperatures are not particularly limited, but 37 ° C or lower is preferable from the viewpoint of reducing damage to tissues. More specifically, it is 30 ° C. or lower, 25 ° C. or lower, 20 ° C. or lower, 15 ° C. or lower, 10 ° C. or lower, or 5 ° C. or lower. The lower limit of the storage and transportation temperature is not particularly limited, but is, for example, −5 ° C. or higher and 0 ° C. or higher.
 媒体から取り出した組織から、接着性細胞を分離する工程は、例えば、以下のような手順で行うことができる。取り出した組織を、酵素を使って処理し、次に、遠心分離により接着性細胞を分離し、洗浄液を用いて洗浄と遠心分離を複数回繰り返す。その際、酵素による消化効率を上げるため、酵素処理前にハサミで細かく切ってもよい。また酵素処理の溶液として、コラゲナーゼ、ディスパーゼなどが使用できるが、本発明はこれらに限定されない。 The step of separating the adhesive cells from the tissue taken out from the medium can be performed by, for example, the following procedure. The removed tissue is treated with an enzyme, then the adherent cells are separated by centrifugation, and washing and centrifugation are repeated multiple times with a washing solution. At that time, in order to improve the digestibility by the enzyme, it may be cut into small pieces with scissors before the enzyme treatment. Further, as the enzyme treatment solution, collagenase, dispase and the like can be used, but the present invention is not limited thereto.
 [3]接着性細胞を含む組織から分離した接着性細胞を含む細胞集団を製造するための方法
 接着性細胞を含む組織から分離した接着性細胞を含む細胞集団を製造する工程は、例えば、以下のような手順にて行うことができる。まず、細胞懸濁液を遠心分離し、上清を除去し、得られた細胞ペレットを培地にて懸濁する。次に、培養容器に細胞を播種し、3%以上5%以下のCO濃度、37℃環境にて、培地を用いてコンフルエント率95%以下となるように培養する。上記の培地としては、例えば、[1]用語の説明で記載した「培養液」が使用できるが、本発明はこれに限定されない。また、接着性細胞を組織から分離し、接着性細胞を含む細胞集団を製造する他の方法としては、組織を酵素処理せずに製造する方法も適用でき、例えば、天井培養(水に浮く性質をもった組織を培地で満たした培養容器の天井側に付着させて培養する方法)や組織片培養法(組織の小片を培地に沈めて培養する方法で、培地量が多いと組織片が浮遊するため、液量は組織が浸る最低限とする方法やメッシュにより組織片の浮遊を抑えることで組織をディッシュに付着させる方法など)で製造することもできるが、本発明はこれらに限定されない。上記のような培養により取得した細胞は、1回培養した細胞(0継代目の細胞)である。
[3] Method for Producing Cell Population Containing Adhesive Cells Separated from Tissue Containing Adhesive Cells The steps for producing a cell population containing adherent cells separated from tissue containing adhesive cells are, for example, as follows. It can be done by the procedure like. First, the cell suspension is centrifuged, the supernatant is removed, and the obtained cell pellet is suspended in a medium. Next, the cells are seeded in a culture vessel and cultured in a medium with a CO 2 concentration of 3% or more and 5% or less and a confluence rate of 95% or less. As the above-mentioned medium, for example, the “culture solution” described in the explanation of the term [1] can be used, but the present invention is not limited thereto. In addition, as another method for separating the adherent cells from the tissue and producing a cell population containing the adherent cells, a method for producing the tissue without enzymatic treatment can be applied, for example, ceiling culture (property of floating on water). Tissue pieces are floated when the amount of medium is large. Therefore, the liquid amount can be manufactured by a method of minimizing the amount of the tissue to be immersed, a method of adhering the tissue to the dish by suppressing the floating of the tissue piece by a mesh, etc.), but the present invention is not limited to these. The cells obtained by the above-mentioned culture are cells that have been cultured once (cells of the 0th passage).
 上記の1回の培養の培養期間としては、例えば2~21日を挙げることができ、より好ましくは3~19日、更に好ましくは4~17日である。 The culture period of the above-mentioned single culture can be, for example, 2 to 21 days, more preferably 3 to 19 days, and further preferably 4 to 17 days.
 上記の1回培養した細胞は、例えば、以下のようにさらに継代し、培養することができる。まず、1回培養した細胞を、トリプシンなどの細胞剥離手段にて処理して培養容器から剥離させる。次に、得られた細胞懸濁液を遠心分離し、上清を除去し、得られた細胞ペレットを培地にて懸濁する。最後に、培養容器に細胞を播種し、3%以上、5%以下のCO濃度、37℃環境にて、培地を用いてコンフルエント率95%以下となるように培養する。上記の培地としては、[1]用語の説明で記載した「培養液」が使用できるが、本発明はこれに限定されない。また上記培養の培養期間としては、例えば2~21日を挙げることができ、より好ましくは3~19日、更に好ましくは4~17日である。培養によって取得した細胞は、継代及び培養を繰り返すことにより、n回継代した細胞を取得することができる(nは1以上の整数を示す)。継代回数nの下限は、細胞を大量に製造する観点から、例えば、1回以上、好ましくは2回以上、より好ましくは3回以上、さらに好ましくは4回以上、さらに好ましくは5回以上である。また、継代回数nの上限は、細胞の老化を抑える観点から、例えば、25回以下、20回以下、15回以下、10回以下であることが好ましい。 The above-mentioned single-cultured cells can be further subcultured and cultured as follows, for example. First, the cells once cultured are treated with a cell exfoliation means such as trypsin and exfoliated from the culture vessel. The resulting cell suspension is then centrifuged, the supernatant is removed, and the resulting cell pellet is suspended in medium. Finally, the cells are seeded in a culture vessel and cultured in a medium with a CO 2 concentration of 3% or more and 5% or less and a confluence rate of 95% or less. As the above-mentioned medium, the "culture medium" described in the explanation of [1] terminology can be used, but the present invention is not limited thereto. The culture period of the above culture may be, for example, 2 to 21 days, more preferably 3 to 19 days, still more preferably 4 to 17 days. For cells obtained by culturing, cells that have been passaged n times can be obtained by repeating passage and culture (n indicates an integer of 1 or more). The lower limit of the number of passages n is, for example, once or more, preferably 2 times or more, more preferably 3 times or more, still more preferably 4 times or more, still more preferably 5 times or more, from the viewpoint of mass production of cells. be. Further, the upper limit of the number of passages n is preferably 25 times or less, 20 times or less, 15 times or less, 10 times or less, for example, from the viewpoint of suppressing cell aging.
 上記の細胞剥離手段として、例えば、細胞剥離剤を使用してもよい。細胞剥離剤としては、トリプシン、コラゲナーゼ、ディスパーゼ、エチレンジアミン四酢酸(EDTA)等を使用することができるが、特に限定されない。細胞剥離剤として、市販の細胞剥離剤を用いてもよい。例えば、トリプシン-EDTA溶液(Thermo Fisher Scientific社製)、TrypLE Select(Thermo Fisher Scientific社製)、Accutase(Stemcell Technologies社製)、Accumax(Stemcell Technologies社製)などが挙げられるが、これらに限定されない。また、細胞剥離手段として、物理的な細胞剥離手段を使用してもよく、例えば、セルスクレーパー(コーニング社製)を使用することができるが、これに限定されない。細胞剥離手段は、単独で使用してもよく、複数を組み合わせて使用してもよい。 As the above-mentioned cell exfoliating means, for example, a cell exfoliating agent may be used. As the cell exfoliating agent, trypsin, collagenase, dispase, ethylenediaminetetraacetic acid (EDTA) and the like can be used, but the cell stripping agent is not particularly limited. As the cell exfoliating agent, a commercially available cell exfoliating agent may be used. For example, trypsin-EDTA solution (manufactured by Thermo Fisher Scientific), TrypLE Select (manufactured by Thermo Fisher Scientific), Accutase (manufactured by Thermo Fisher Scientific), Accutase (manufactured by Stemcell Technologys), Acculex, etc. Further, as the cell detachment means, a physical cell detachment means may be used, and for example, a cell scraper (manufactured by Corning Inc.) can be used, but the present invention is not limited thereto. The cell ablation means may be used alone or in combination of two or more.
 本発明における間葉系幹細胞などの接着性細胞を含む細胞集団を凍結保存するための手段は、特に限定されないが、例えば、プログラムフリーザー、ディープフリーザー、液体窒素での保存などが挙げられる。プログラムフリーザーを用いた場合、凍結する際の温度は、好ましくは-30℃以下、-40℃以下、-50℃以下、-80℃以下、-90℃以下、-100℃以下、-150℃以下、-180℃以下、又は-196℃(液体窒素温度)以下である。プログラムフリーザーを用いた場合、凍結する際の好ましい凍結速度は、例えば、-1℃/分以下、-2℃/分以下、-5℃/分以下、-9℃/分以下、-10℃/分以下、-11℃/分以下、又は-15℃/分以下である。上記の凍結手段としてプログラムフリーザーを用いた場合、例えば、-2℃/分以上-1℃/分以下の凍結速度で-50℃以上-30℃以下の間の温度(例えば、-40℃)まで温度を下げ、さらに-11℃/分以上-9℃/分以下(例えば、-10℃/分)の凍結速度で-100℃以上-80℃以下の温度(例えば、-90℃)まで温度を下げることができる。また、上記の凍結手段として液体窒素への浸漬を用いた場合、例えば、-196℃まで急速に温度を下げて凍結させた後、液体窒素(気相)中で凍結保存することができる。また液体窒素(液相)中で保存することもできる。 The means for cryopreserving a cell population containing adherent cells such as mesenchymal stem cells in the present invention is not particularly limited, and examples thereof include a program freezer, a deep freezer, and storage in liquid nitrogen. When a program freezer is used, the freezing temperature is preferably -30 ° C or lower, -40 ° C or lower, -50 ° C or lower, -80 ° C or lower, -90 ° C or lower, -100 ° C or lower, -150 ° C or lower. , -180 ° C or lower, or -196 ° C (liquid nitrogen temperature) or lower. When a program freezer is used, the preferred freezing speeds for freezing are, for example, -1 ° C / min or less, -2 ° C / min or less, -5 ° C / min or less, -9 ° C / min or less, -10 ° C / min or less. Minutes or less, -11 ° C / minute or less, or -15 ° C / minute or less. When a program freezer is used as the above freezing means, for example, at a freezing rate of -2 ° C./min or more and -1 ° C./min or less, up to a temperature between -50 ° C. and -30 ° C. (for example, -40 ° C.). Lower the temperature and further increase the temperature to a temperature of -100 ° C or higher and -80 ° C or lower (eg, -90 ° C) at a freezing rate of -11 ° C / min or higher and -9 ° C / min or lower (for example, -10 ° C / min). Can be lowered. When immersion in liquid nitrogen is used as the above-mentioned freezing means, for example, the temperature can be rapidly lowered to -196 ° C. for freezing, and then cryopreservation can be performed in liquid nitrogen (gas phase). It can also be stored in liquid nitrogen (liquid phase).
 上記の凍結手段により凍結する際、上記の細胞集団は、任意の保存容器に入った状態で凍結されてよい。上記の保存容器としては、例えば、クライオチューブ、クライオバイアル、凍結用バッグ、輸注バッグなどが挙げられるが、これらに限定されない。 When frozen by the above freezing means, the above cell population may be frozen in an arbitrary storage container. Examples of the storage container include, but are not limited to, a cryotube, a cryovial, a freezing bag, and an infusion bag.
 上記の凍結手段により凍結する際、上記の細胞集団は、任意の凍結保存液中で凍結されてもよい。上記の凍結保存液としては、市販の凍結保存液を用いてもよい。例えば、CP-1(登録商標)(極東製薬工業社製)、BAMBANKER(リンフォテック社製)、STEM-CELLBANKER(日本全薬工業社製)、ReproCryo RM(リプロセル社製)、CryoNovo(Akron Biotechnology社製)、MSC Freezing Solution(Biological Industries社製)、CryoStor(HemaCare社製)などが挙げられるが、これらに限定されない。凍結保存液は、単独で使用してもよく、複数を組み合わせて使用してもよい。 When frozen by the above freezing means, the above cell population may be frozen in any cryopreservation solution. As the above cryopreservation solution, a commercially available cryopreservation solution may be used. For example, CP-1 (registered trademark) (manufactured by Far East Pharmaceutical Co., Ltd.), BAMBANKER (manufactured by Lymphotech), STEM-CELLBANKER (manufactured by Nippon Zenyaku Kogyo Co., Ltd.), ReproCryo RM (manufactured by Reprocell), CryoNovo (Acron Biotechnology). , MSC Freezing Solution (manufactured by Biomagnetic Industries), CryoStor (manufactured by HemaCare), etc., but are not limited thereto. The cryopreservation solution may be used alone or in combination of two or more.
 上記の凍結保存液は、所定濃度の多糖類を含有することができる。多糖類の好ましい濃度は、例えば、1質量%以上、2質量%以上、4質量%以上、又は6質量%以上である。また、多糖類の好ましい濃度は、例えば、20質量%以下、18質量%以下、16質量%以下、14質量%以下、又は13質量%以下である。多糖類としては、例えば、ヒドロキシルエチルデンプン(HES)やデキストラン(Dextran40など)などを挙げることができるが、これらに限定されない。多糖類は、単独で使用してもよく、複数を組み合わせて使用してもよい。 The above cryopreservation solution can contain a predetermined concentration of polysaccharides. The preferable concentration of the polysaccharide is, for example, 1% by mass or more, 2% by mass or more, 4% by mass or more, or 6% by mass or more. The preferable concentration of the polysaccharide is, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, or 13% by mass or less. Examples of the polysaccharide include, but are not limited to, hydroxylethyl starch (HES) and dextran (Dextran40, etc.). The polysaccharide may be used alone or in combination of two or more.
 上記の凍結保存液は、所定濃度のジメチルスルホキシド(DMSO)を含有することができる。DMSOの好ましい濃度は、例えば、1質量%以上、2質量%以上、3質量%以上、4質量%以上、又は5質量%以上である。また、DMSOの好ましい濃度は、例えば、20質量%以下、18質量%以下、16質量%以下、14質量%以下、12質量%以下、又は10質量%以下である。 The above cryopreservation solution can contain a predetermined concentration of dimethyl sulfoxide (DMSO). The preferred concentration of DMSO is, for example, 1% by mass or more, 2% by mass or more, 3% by mass or more, 4% by mass or more, or 5% by mass or more. The preferable concentration of DMSO is, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, 14% by mass or less, 12% by mass or less, or 10% by mass or less.
 上記の凍結保存液は、0質量%より多い所定濃度のアルブミンを含有するものでもよい。アルブミンの好ましい濃度は、例えば、1質量%以上、2質量%以上、3質量%以上、又は4質量%以上である。また、アルブミンの好ましい濃度は、例えば、30質量%以下、20質量%以下、10質量%以下、又は9質量%以下である。アルブミンとしては、例えば、ウシ血清アルブミン(BSA)、マウスアルブミン、ヒトアルブミン等を挙げることができるが、これらに限定されない。 The above cryopreservation solution may contain albumin having a predetermined concentration higher than 0% by mass. The preferable concentration of albumin is, for example, 1% by mass or more, 2% by mass or more, 3% by mass or more, or 4% by mass or more. The preferable concentration of albumin is, for example, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 9% by mass or less. Examples of albumin include, but are not limited to, bovine serum albumin (BSA), mouse albumin, human albumin and the like.
 本発明の一態様によれば、本発明により提供される間葉系幹細胞を含む細胞集団は、CD73、CD90、CD105が陽性を呈する間葉系幹細胞の比率が80%以上であることを満たしていてもよい。 According to one aspect of the present invention, the cell population containing the mesenchymal stem cells provided by the present invention satisfies that the ratio of mesenchymal stem cells positive for CD73, CD90, and CD105 is 80% or more. You may.
 CD73は、分化クラスター73を意味し、5-Nucleotidase、或いはEcto-5’-nucleotidaseとしても知られているタンパク質である。 CD73 means a differentiation cluster 73 and is a protein also known as 5-nucleotidase or Ecto-5'-nucleotidase.
 CD90は、分化クラスター90を意味し、Thy-1としても知られているタンパク質である。 CD90 means differentiation cluster 90 and is a protein also known as Thy-1.
 CD105は、分化クラスター105を意味し、Endoglinとしても知られているタンパク質である。 CD105 means differentiation cluster 105 and is a protein also known as Endoglin.
 細胞集団においてCD73が陽性を呈する間葉系幹細胞の比率は、80%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%でもよい。 The proportion of mesenchymal stem cells positive for CD73 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
 細胞集団においてCD90が陽性を呈する間葉系幹細胞の比率は、80%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%でもよい。 The proportion of mesenchymal stem cells positive for CD90 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
 細胞集団においてCD105が陽性を呈する間葉系幹細胞の比率は、80%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%でもよい。 The proportion of mesenchymal stem cells positive for CD105 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
 本発明の一態様によれば、本発明により提供される間葉系幹細胞を含む細胞集団は、CD45、CD31が陰性を呈する間葉系幹細胞の比率が80%以上であることを満たしていてもよい。 According to one aspect of the present invention, even if the cell population containing the mesenchymal stem cells provided by the present invention satisfies that the ratio of mesenchymal stem cells exhibiting negative for CD45 and CD31 is 80% or more. good.
 CD45は、分化クラスター45を意味し、PTPRC(Protein tyrosine phosphatase,receptor type,C)、或いはLCA(Leukocyte common antigen)としても知られているタンパク質である。 CD45 means a differentiation cluster 45, and is a protein also known as PTPRC (Protein tyrosine phosphatase, receptor type, C) or LCA (Leukocyte common engine).
 CD31は、分化クラスター31を意味し、Hematopoietic progenitor cell antigen CD31としても知られているタンパク質である。 CD31 means a differentiation cluster 31, and is a protein also known as Hematopoietic progenitor cell antigen CD31.
 細胞集団においてCD45が陰性を呈する間葉系幹細胞の比率は、80%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%でもよい。 The proportion of mesenchymal stem cells that are negative for CD45 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
 細胞集団においてCD31が陰性を呈する間葉系幹細胞の比率は、80%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は100%でもよい。 The proportion of mesenchymal stem cells that are negative for CD31 in the cell population is 80% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92%. It may be 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 100%.
 以下の実施例にて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the examples.
 なお、本実施例において切除脂肪を輸送保存する媒体の圧縮応力は、24ウェルプレートに2mLの媒体を入れ、4℃において、直径1cmのプランジャーで媒体を圧縮し、媒体が1.5mm圧縮した際の応力(単位はN)を、EZ-TEST(島津製作所、EZ-SX)で測定したものである。 In this example, the compressive stress of the medium for transporting and storing the excised fat was as follows: 2 mL of the medium was placed in a 24-well plate, the medium was compressed with a plunger having a diameter of 1 cm at 4 ° C, and the medium was compressed by 1.5 mm. The stress at this time (unit is N) was measured by EZ-TEST (Shimadzu Corporation, EZ-SX).
 <比較例1:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 インフォームドコンセントを得たドナー(ドナーA)の腹部を尖刃のメスで切開し、モスキート鉗子とピンセットで脂肪を切除した。採取した切除脂肪の重量を測定し、0.06gの切除脂肪をそのまま1.5mLマイクロチューブに入れて、冷蔵(4℃)環境下で約20時間輸送および保存した。
<Comparative Example 1: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
The abdomen of the donor (donor A) who gave informed consent was incised with a scalpel with a sharp edge, and the fat was excised with mosquito forceps and tweezers. The weight of the excised fat collected was weighed, and 0.06 g of the excised fat was placed in a 1.5 mL microtube as it was, and transported and stored in a refrigerated (4 ° C.) environment for about 20 hours.
 (プロセス2:切除脂肪の酵素処理およびSVF(間質血管細胞画分)の取得)
1.5mLマイクロチューブから取り出した切除脂肪をハサミで細かく切り、0.1%(v/w)コラゲナーゼ含有のハンクス平衡塩溶液(Ca・Mg不含有)に浸し、37℃にて30分間、200rpmの条件にて振盪攪拌することにより酵素処理した。酵素処理後の溶液は遠心分離し、上清を除去した後、洗浄した。前記遠心分離と洗浄のプロセスを5回繰り返し、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF (stromal vascular cell fraction))
The excised fat taken out from the 1.5 mL microtube is cut into small pieces with scissors, immersed in a Hanks balanced salt solution containing 0.1% (v / w) collagenase (without Ca / Mg), and immersed at 37 ° C. for 30 minutes at 200 rpm. The enzyme treatment was carried out by shaking and stirring under the conditions of. The solution after the enzyme treatment was centrifuged, the supernatant was removed, and then the solution was washed. The process of centrifugation and washing was repeated 5 times to obtain an SVF containing a fat-derived MSC.
 (プロセス3:脂肪由来MSCの培養)
 上述の「プロセス2:切除脂肪の酵素処理およびSVFの取得」で得られたSVFを、培養容器の6ウエルプレート(コーニング社製)に全量播種し、終濃度にして5%のヒト血小板溶解物を含むαMEM(Alpha Modification of Minimum Essential Medium Eagle)にて接着培養した。この接着培養した細胞を、0継代目の細胞集団と呼ぶ。サブコンフルエントもしくは任意の培養期間に達した時点で、TrypLE Select(Thermo Fisher Scientific社製)を用いて0継代目の細胞集団を剥離した。
(Process 3: Culture of fat-derived MSC)
The entire amount of SVF obtained in "Process 2: Enzymatic treatment of excised fat and acquisition of SVF" was inoculated into a 6-well plate (manufactured by Corning Inc.) in a culture vessel, and the final concentration was 5% of human platelet lysate. The cells were adherently cultured in αMEM (Alpha Modification of Minimum Essential Medium Eagle) containing the above. These adherently cultured cells are called a cell population of the 0th passage. When the subconfluent or arbitrary culture period was reached, the cell population of the 0th passage was exfoliated using a TrypLE Select (manufactured by Thermo Fisher Scientific).
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 上述の「プロセス3:脂肪由来MSCの培養」で剥離した0継代目の細胞集団に関して、ヌクレオカウンターを用いて、死細胞濃度と総細胞濃度を測定した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The dead cell concentration and the total cell concentration were measured using a nucleocounter for the cell population of the 0th passage exfoliated in "Process 3: Culture of fat-derived MSC" described above.
 細胞濃度測定は、ChemoMetec社のNucleocounter(型式:NC-100)を用いた。本測定における死細胞濃度は、死細胞を染色するPI溶液が封入されたカセット(型番:941-0002)に細胞懸濁液を吸引し、測定した。また、本測定における総細胞濃度は、細胞懸濁液と細胞処理試薬A100(型番:910-0003)および細胞処理試薬B(型番:910-0002)を等量で混合することで全ての細胞をPI溶液の染色対象とし、上述のカセットに吸引し、測定した。 The cell concentration was measured using a Nucleocounter (model: NC-100) manufactured by ChemoMetec. The concentration of dead cells in this measurement was measured by sucking the cell suspension into a cassette (model number: 941-0002) containing a PI solution for staining dead cells. The total cell concentration in this measurement is determined by mixing the cell suspension with the cell treatment reagent A100 (model number: 910-0003) and the cell treatment reagent B (model number: 910-0002) in equal amounts to control all cells. The PI solution was targeted for staining, and the cells were sucked into the above-mentioned cassette and measured.
 細胞濃度測定の数値から、得られた脂肪由来MSCの細胞数および生存率を算出した。算出する計算式は以下の通り実施した。
(1)脂肪由来MSCの細胞数(個)=総細胞濃度(個/mL)×3(測定時の希釈倍率)×細胞懸濁液量(mL)
(2)脂肪由来MSCの生存率(%)=100-(死細胞濃度(個/mL)/(総細胞濃度(個/mL)×3(測定時の希釈倍率))×100)
 その結果、比較例1のドナーAに由来する0継代目の細胞集団は、8日間の培養後に培養容器への接着細胞は確認できず、得られた細胞懸濁液は、上記測定機器の検出限界以下であった。以上より、比較例1の方法では脂肪由来MSCを製造できなかった。
From the numerical values of the cell concentration measurement, the cell number and the survival rate of the obtained fat-derived MSC were calculated. The calculation formula to be calculated was carried out as follows.
(1) Number of cells of fat-derived MSC (cells) = total cell concentration (cells / mL) x 3 (dilution ratio at the time of measurement) x cell suspension amount (mL)
(2) Survival rate of fat-derived MSC (%) = 100- (dead cell concentration (cells / mL) / (total cell concentration (cells / mL) x 3 (dilution ratio at the time of measurement)) x 100)
As a result, in the cell population of the 0th passage derived from the donor A of Comparative Example 1, no adherent cells to the culture vessel could be confirmed after culturing for 8 days, and the obtained cell suspension was detected by the above-mentioned measuring instrument. It was below the limit. From the above, the fat-derived MSC could not be produced by the method of Comparative Example 1.
 下記比較例2と実施例1は、同じドナーBの切除脂肪を用いた。 In Comparative Example 2 and Example 1 below, the same donor B excised fat was used.
 <比較例2:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 比較例1におけるドナーとは異なるドナー(ドナーB)から採取した0.06gの切除脂肪を、ハンクス平衡塩溶液(Ca・Mg不含有)(媒体の圧縮応力は0.00N)1mLが入った1.5mLマイクロチューブに収容したこと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。
<Comparative Example 2: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
0.06 g of excised fat collected from a donor (donor B) different from the donor in Comparative Example 1 containing 1 mL of a Hanks balanced salt solution (without Ca / Mg) (compressive stress of the medium is 0.00 N) 1 The excised fat was transported and stored in the same manner as in Process 1 of Comparative Example 1, except that it was housed in a 5.5 mL microtube.
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、比較例2の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 2 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、比較例2のドナーBに由来する0継代目の細胞集団は、13日間の培養後に培養容器への接着細胞が確認できず、得られた細胞懸濁液は、測定機器の検出限界以下であった。以上より、比較例2の方法では脂肪由来MSCを製造できなかった。 As a result, in the cell population of the 0th passage derived from the donor B of Comparative Example 2, adherent cells to the culture vessel could not be confirmed after culturing for 13 days, and the obtained cell suspension was the detection limit of the measuring instrument. It was as follows. From the above, the fat-derived MSC could not be produced by the method of Comparative Example 2.
 <実施例1:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 比較例2におけるドナーと同一のドナー(ドナーB)から採取した0.06gの切除脂肪を1.5mLマイクロチューブに収容し、媒体の圧縮応力が1.09Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋したこと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。切除脂肪の包埋は、調製したゼラチン含有ハンクス平衡塩溶液を37℃で液化させ、切除脂肪を当該溶液に入れた後に4℃にして固化させる方法を用いた。その後、冷蔵(4℃)下で20時間輸送および保存し、37℃に加温してゼラチン含有ハンクス平衡塩溶液を液化させ、切除脂肪を取り出し、プロセス2を実施した。
<Example 1: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
0.06 g of excised fat collected from the same donor (donor B) as the donor in Comparative Example 2 was placed in a 1.5 mL microtube, and a gelatin-containing Hanks balanced salt solution (Ca. Excised fat was transported and stored by the same method as in Process 1 of Comparative Example 1 except that it was embedded in 1 mL (without Mg). For embedding of the excised fat, a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the excised fat was placed in the solution, and then solidified at 4 ° C. Then, it was transported and stored in a refrigerator (4 ° C.) for 20 hours, heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the excised fat was taken out to carry out Process 2.
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
比較例1のプロセス4と同様の手法にて、実施例1の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 1 were evaluated by the same method as in Process 4 of Comparative Example 1.
 その結果、13日間の培養後において、実施例1のドナーBに由来する0継代目の細胞集団の細胞数は3.0×10個、生存率は95.9%であった。以上より、実施例1の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As a result, after culturing for 13 days, the number of cells in the 0th passage cell population derived from Donor B of Example 1 was 3.0 × 105, and the survival rate was 95.9%. From the above, it was found that in the method of Example 1, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 (プロセス5:脂肪由来MSCの継代)
 上述の「プロセス3:脂肪由来MSCの培養」で得られた0継代目の細胞集団を、T-75フラスコ(コーニング社製)に播種することにより、継代培養を行った。この継代培養した細胞集団を、1継代目の細胞集団と呼ぶ。
(Process 5: Subculture of fat-derived MSC)
The cell population of the 0th passage obtained in the above-mentioned "Process 3: Culturing of fat-derived MSC" was seeded in a T-75 flask (manufactured by Corning Inc.) for subculture. This subcultured cell population is called the first subculture cell population.
 1継代目の細胞集団は、サブコンフルエントに達した時点でTrypLE Selectを用いて剥離し、培地を用いて希釈し、遠心分離により回収した。回収した細胞集団はCP-1(登録商標)(極東製薬工業社製):25%ヒト血清アルブミン:生理食塩液=2:1:3の比で混合した凍結保存溶液に懸濁し、-80℃まで緩慢凍結し、その後も-80℃で凍結保存した。 The cell population of the first passage was exfoliated using TripLE Select when it reached the subconfluent, diluted with a medium, and recovered by centrifugation. The recovered cell population was suspended in a cryopreservation solution mixed at a ratio of CP-1 (registered trademark) (manufactured by Far East Pharmaceutical Co., Ltd.): 25% human serum albumin: physiological saline = 2: 1: 3, and -80 ° C. It was slowly frozen until then, and then cryopreserved at -80 ° C.
 (プロセス6:表面抗原解析)
 実施例1のドナーBに由来する1継代目の細胞集団に関し、フローサイトメーターを用いて各表面抗原(CD73の陽性率、CD90の陽性率、CD105の陽性率、CD45の陽性率及び陰性率、CD31の陽性率及び陰性率)を測定した。
(Process 6: Surface antigen analysis)
With respect to the cell population of the first passage derived from the donor B of Example 1, each surface antigen (CD73 positive rate, CD90 positive rate, CD105 positive rate, CD45 positive rate and negative rate, using a flow cytometer, The positive rate and negative rate of CD31) were measured.
 表面抗原解析は、メルク(MERCK)社のGuava easyCyte Singleを用い、解析細胞数:10,000cells、流速設定:Slowにて実施した。本測定では、アイソタイプコントロール用抗体として、PE Mouse IgG1 k Isotype Control(BD社製/型番:555749)、FITC Mouse IgG1 k Isotype Control(BD社製/型番:555748)およびAlexa Fluor 647 Mouse IgG1 k Isotype Control(BD社製/型番:557714)を使用し、CD73抗原に対する抗体としてPE Mouse Anti-Human CD73(BD社製/型番:550257)を、CD90抗原に対する抗体としてPE Mouse Anti-Human CD90(BD社製/型番:555595)を、CD105抗原に対する抗体としてPE Mouse Anti-Human CD105(BD社製/型番:560839)を、CD45抗原に対する抗体としてFITC Mouse Anti-Human CD45(BD社製/型番:555482)を、CD31抗原に対する抗体としてAlexa Fluor 647 Mouse Anti-Human CD31(BD社製/型番:561654)使用した。 The surface antigen analysis was performed using a Guava easyCyte Single manufactured by MERCK, with the number of analyzed cells: 10,000 cells and the flow rate setting: Slow. In this measurement, as antibodies for isotype control, PE Mouse IgG1 k Isotype Control (BD company / model number: 555749), FITC Mouse IgG1 k Isotype Control (BD company / model number: 555748) and AlexaFluor647 (BD company / model number: 557714) was used as an antibody against the CD73 antigen, PE Mouse Anti-Human CD73 (manufactured by BD company / model number: 550257), and PE Mouse Anti-Human CD90 (manufactured by BD company) as an antibody against the CD90 antigen. / Model number: 555595), PE Mouse Anti-Human CD105 (manufactured by BD / model number: 560839) as an antibody against the CD105 antigen, and FITC Mouse Anti-Human CD45 (manufactured by BD / model number: 555482) as an antibody against the CD45 antigen. , AlexaFluor 647 Mouse Anti-Human CD31 (manufactured by BD / model number: 561654) was used as an antibody against the CD31 antigen.
 表面抗原解析の結果、実施例1のドナーBに由来する1継代目の細胞集団では、CD73、CD90、及びCD105の陽性率はいずれも90%以上であり(具体的にはCD73:100%、CD90:100%、CD105:100%)、CD45、CD31の陽性率は5%未満(陰性率は95%以上)であった(具体的にはCD45の陽性率:1%(陰性率:99%)、CD31の陽性率:1%(陰性率:99%))。以上の結果から、実施例1の1継代目の細胞集団は、純度の高い間葉系幹細胞を含む細胞集団であることが確認された。 As a result of surface antigen analysis, in the cell population of the first passage derived from donor B of Example 1, the positive rates of CD73, CD90, and CD105 were all 90% or more (specifically, CD73: 100%, The positive rate of CD90: 100%, CD105: 100%), CD45, and CD31 was less than 5% (negative rate was 95% or more) (specifically, the positive rate of CD45: 1% (negative rate: 99%). ), CD31 positive rate: 1% (negative rate: 99%)). From the above results, it was confirmed that the cell population of the first passage of Example 1 was a cell population containing high-purity mesenchymal stem cells.
 下記実施例2と比較例3は、同じドナーCの切除脂肪を用いた。 In Example 2 and Comparative Example 3 below, the same donor C excised fat was used.
 <実施例2:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 比較例1や2におけるドナーとは異なるドナー(ドナーC)から採取した0.15gの切除脂肪を1.5mLマイクロチューブに収容し、一方は媒体の圧縮応力が1.09Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)で包埋し(ドナーC-ゼラチン)、もう一方は媒体の圧縮応力が1.71Nのアガロース含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋した(ドナーC-アガロース)こと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。ただし、ドナーC-アガロースの切除脂肪の包埋は、調製したアガロース含有ハンクス平衡塩溶液を室温以下で固化させ、細かく破砕したゲル内に切除脂肪を埋め込んだ。その後、冷蔵(4℃)下で20時間輸送および保存し、切除脂肪をゲルから取り出し、プロセス2を実施した。
<Example 2: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
A gelatin-containing Hanks balanced salt having a compressive stress of 1.09 N was placed in a 1.5 mL microtube containing 0.15 g of agarose collected from a donor (donor C) different from the donors in Comparative Examples 1 and 2. It was embedded in a solution (without Ca / Mg) (donor C-gelatin), and the other was embedded with 1 mL of an agarose-containing Hanks balanced salt solution (without Ca / Mg) having a compressive stress of 1.71 N (without Ca / Mg). Except for donor C-agarose), the excised fat was transported and stored in the same manner as in Process 1 of Comparative Example 1. However, for embedding the excised fat of donor C-agarose, the prepared agarose-containing Hanks equilibrium salt solution was solidified at room temperature or lower, and the excised fat was embedded in a finely crushed gel. Then, it was transported and stored in a refrigerator (4 ° C.) for 20 hours, the excised fat was removed from the gel, and the process 2 was carried out.
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、実施例2の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 2 were evaluated by the same method as in Process 4 of Comparative Example 1.
 その結果、17日間の培養後において、実施例2のドナーC-ゼラチンに由来する0継代目の細胞集団の細胞数は1.0×10個、生存率は96.8%であった。また、実施例2のドナーC-アガロースに由来する0継代目の細胞集団の細胞数は1.5×10個、生存率は98.6%であった。以上より、実施例2の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As a result, after culturing for 17 days, the number of cells in the 0th passage cell population derived from the donor C-gelatin of Example 2 was 1.0 × 106 , and the survival rate was 96.8%. In addition, the number of cells in the 0th passage cell population derived from the donor C-agarose of Example 2 was 1.5 × 106 , and the survival rate was 98.6%. From the above, it was found that in the method of Example 2, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 <比較例3:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 実施例2におけるドナーと同一のドナー(ドナーC)からから採取した0.15gの切除脂肪をアステラス製薬のUW液(製品名:ベルザーUW冷保存液)(媒体の圧縮応力は0.00N)1mLが入った1.5mLマイクロチューブに収容したこと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。
<Comparative Example 3: Examination of Adipose Tissue Transport>
(Process 1: Collection, transport and storage of excised fat)
0.15 g of excised fat collected from the same donor (donor C) as the donor in Example 2 was collected into 1 mL of Astellas Pharma's UW solution (product name: Belzer UW cold storage solution) (compressive stress of the medium was 0.00N). The excised fat was transported and stored in the same manner as in Process 1 of Comparative Example 1, except that it was housed in a 1.5 mL microtube containing.
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、17日間の培養後に、比較例3の0継代目の細胞集団の細胞数および生存率を評価した。同一ドナー(ドナーC)の脂肪組織から取得した実施例2および比較例3の各脂肪由来MSCの細胞数の結果を表1に示す。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Comparative Example 3 were evaluated after culturing for 17 days by the same method as in Process 4 of Comparative Example 1. Table 1 shows the results of the cell number of each fat-derived MSC of Example 2 and Comparative Example 3 obtained from the adipose tissue of the same donor (donor C).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例3のドナーCに由来する0継代目の細胞集団の細胞数は0.1×10個、生存率は90.8%であり、実施例2のドナーC-ゼラチンおよびドナーC-アガロースに由来する0継代目の細胞集団の1/10以下の細胞数しか取得できず、生存率も若干低い結果となった。以上より、比較例3の方法は、脂肪由来MSCの製造に適していないことが分かった。 As shown in Table 1, the number of cells in the 0th passage cell population derived from Donor C of Comparative Example 3 was 0.1 × 106 , the survival rate was 90.8%, and the donor C of Example 2 was used. -Only 1/10 or less of the cell population of the 0th passage derived from gelatin and donor C-agarose could be obtained, and the survival rate was also slightly low. From the above, it was found that the method of Comparative Example 3 was not suitable for producing a fat-derived MSC.
 下記実施例3、4、5と比較例4、5、6は、同じドナーDの吸引脂肪を用いた。 The following Examples 3, 4, and 5 and Comparative Examples 4, 5, and 6 used the same donor D suction fat.
 <実施例3:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 実施例1、2におけるドナーとは異なるドナー(ドナーD)から、脂肪吸引により採取した吸引脂肪(ドナーD‐吸引)1mLを1.5mLマイクロチューブに収容し、表2に示す圧縮応力の各ゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋し、冷蔵(4℃)環境下で約72時間輸送および保存した。
<Example 3: Examination of adipose tissue transport>
(Process 1: Collection, transportation and storage of sucked fat)
1 mL of suction fat (donor D-suction) collected by liposuction from a donor (donor D) different from the donors in Examples 1 and 2 was placed in a 1.5 mL microtube, and each gelatin having a compressive stress shown in Table 2 was placed. It was embedded in 1 mL of a Hanks equilibrium salt solution (without Ca / Mg) and transported and stored in a refrigerated (4 ° C.) environment for about 72 hours.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
 1.5mLマイクロチューブから取り出した各吸引脂肪をそのまま0.1%(v/w)コラゲナーゼ含有のハンクス平衡塩溶液(Ca・Mg不含有)に浸したこと以外は、比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
Except for the fact that each sucked fat taken out from the 1.5 mL microtube was directly immersed in a Hanks balanced salt solution containing 0.1% (v / w) collagenase (without Ca / Mg), it was compared with Process 2 of Comparative Example 1. By the same method, SVF containing fat-derived MSC was obtained.
 (プロセス3:脂肪由来MSCの培養)
 ドナーD-吸引から得られた各SVFを、培養容器のT-25フラスコ(コーニング社製)に全量播種したこと以外は、比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
Cells of the 0th passage were seeded in the same manner as in Process 3 of Comparative Example 1 except that each SVF obtained from donor D-suction was seeded in a T-25 flask (manufactured by Corning Inc.) in a culture vessel. Populations were obtained and adherent cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、7日間の培養後において、実施例3の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 3 were evaluated after culturing for 7 days by the same method as in Process 4 of Comparative Example 1.
 その結果、実施例3のドナーD-吸引(1)に由来する0継代目の細胞集団の細胞数は1.0×10個、生存率は97.4%であり、実施例3のドナーD-吸引(2)に由来する0継代目の細胞集団の細胞数は1.6×10個、生存率は98.1%であり、実施例3のドナーD-吸引(3)に由来する0継代目の細胞集団の細胞数は1.9×10個、生存率は98.8%であり、実施例3のドナーD-吸引(4)に由来する0継代目の細胞集団の細胞数は0.8×10個、生存率は97.1%であった。以上より、実施例3の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As a result, the number of cells in the 0th passage cell population derived from the donor D-suction (1) of Example 3 was 1.0 × 106 , and the survival rate was 97.4%, and the donor of Example 3 was obtained. The number of cells in the 0th passage cell population derived from D-suction (2) was 1.6 × 106 , and the survival rate was 98.1%, which was derived from the donor D-suction (3) of Example 3. The number of cells in the 0th passage cell population was 1.9 × 10 6 , and the survival rate was 98.8%. The number of cells was 0.8 × 106 , and the survival rate was 97.1%. From the above, it was found that in the method of Example 3, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 <比較例4:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 実施例3におけるドナーと同一のドナー(ドナーD)から、脂肪吸引により採取した1mLの吸引脂肪(ドナーD‐吸引)をハンクス平衡塩溶液(Ca・Mg不含有)(媒体の圧縮応力は0.00N)1mLが入った1.5mLマイクロチューブに収容したこと以外は、実施例3のプロセス1と同様の手法にて吸引脂肪を輸送および保存した。
<Comparative Example 4: Examination of Adipose Tissue Transport>
(Process 1: Collection, transportation and storage of sucked fat)
1 mL of suction fat (donor D-suction) collected by liposuction from the same donor (donor D) as the donor in Example 3 was mixed with a Hanks balanced salt solution (without Ca / Mg) (the compressive stress of the medium was 0. 00N) The sucked fat was transported and stored in the same manner as in Process 1 of Example 3 except that it was housed in a 1.5 mL microtube containing 1 mL.
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
実施例3のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Example 3.
 (プロセス3:脂肪由来MSCの培養)
 実施例3のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 3, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、比較例4の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 4 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、7日間の培養後において、比較例4のドナーD‐吸引に由来する0継代目の細胞集団の細胞数は0.1×10個、生存率は93.3%であり、実施例3のドナーD-吸引に由来する各0継代目の細胞集団の1/5以下の細胞数しか取得できなかった。以上より、比較例3の方法は、脂肪由来MSCの製造に適していないことが分かった。 As a result, after culturing for 7 days, the number of cells in the 0th passage cell population derived from the donor D-suction of Comparative Example 4 was 0.1 × 106 , and the survival rate was 93.3%. Only 1/5 or less of the cell population of each 0th passage derived from the donor D-suction of Example 3 could be obtained. From the above, it was found that the method of Comparative Example 3 was not suitable for producing a fat-derived MSC.
 <実施例4:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 実施例3におけるドナーと同一のドナー(ドナーD)から、吸引脂肪により採取した1mLの吸引脂肪(ドナーD‐吸引)を1.5mLマイクロチューブに収容し、媒体の圧縮応力が6.86Nのフィブリン(製品名:ボルヒール)1mLで包埋したこと以外は、実施例3のプロセス1と同様の手法にて吸引脂肪を輸送および保存した。
<Example 4: Examination of adipose tissue transport>
(Process 1: Collection, transportation and storage of sucked fat)
1 mL of suction fat (donor D-suction) collected by suction fat from the same donor (donor D) as the donor in Example 3 is housed in a 1.5 mL microtube, and the fibrin having a compressive stress of 6.86 N is contained in the medium. (Product name: Borheel) The aspirated fat was transported and stored by the same method as in Process 1 of Example 3 except that it was embedded in 1 mL.
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
 実施例3のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Example 3.
 (プロセス3:脂肪由来MSCの培養)
 実施例3のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 3, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、7日間の培養後において、実施例4の0継代目の細胞集団の細胞数および生存率を評価した。その結果、実施例4のドナーD-吸引に由来する0継代目の細胞集団の細胞数は0.8×10個、生存率は97.1%であった。以上より、実施例4の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 4 were evaluated after 7 days of culturing in the same manner as in Process 4 of Comparative Example 1. As a result, the number of cells in the 0th passage cell population derived from the donor D-suction of Example 4 was 0.8 × 106 , and the survival rate was 97.1%. From the above, it was found that in the method of Example 4, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 <比較例5:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 実施例3におけるドナーと同一のドナー(ドナーD)から、脂肪吸引により採取した1mLの吸引脂肪(ドナーD‐吸引)を1.5mLマイクロチューブに収容し、媒体の圧縮応力が12.27Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋したこと以外は、実施例3のプロセス1と同様の手法にて吸引脂肪を輸送および保存した。
<Comparative Example 5: Examination of adipose tissue transport>
(Process 1: Collection, transportation and storage of sucked fat)
1 mL of suction fat (donor D-suction) collected by liposuction from the same donor (donor D) as the donor in Example 3 is housed in a 1.5 mL microtube, and the compressive stress of the medium is 12.27 N. The sucked fat was transported and stored by the same method as in Process 1 of Example 3 except that it was embedded in 1 mL of a Hanks balanced salt solution (without Ca / Mg).
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
 実施例3のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Example 3.
 (プロセス3:脂肪由来MSCの培養)
 実施例3のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 3, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、7日間の培養後において、比較例5の0継代目の細胞集団の細胞数および生存率を評価した。その結果、比較例5のドナーD‐吸引に由来する0継代目の細胞集団は培養容器に接着した細胞がごくわずかであり、取得できた細胞数は、測定機器の検出限界以下であった。以上より、比較例5の方法では脂肪由来MSCを製造できなかった。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Comparative Example 5 were evaluated after culturing for 7 days by the same method as in Process 4 of Comparative Example 1. As a result, in the cell population of the 0th passage derived from the donor D-suction of Comparative Example 5, the number of cells adhered to the culture vessel was very small, and the number of cells that could be obtained was below the detection limit of the measuring instrument. From the above, the fat-derived MSC could not be produced by the method of Comparative Example 5.
 <実施例5:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 採取した吸引脂肪(ドナーD-吸引)の輸送および保存の条件を冷蔵(4℃)環境下で約192時間としたこと以外は、実施例3のプロセス1と同様の手法にて吸引脂肪を輸送および保存した。
<Example 5: Examination of adipose tissue transport>
(Process 1: Collection, transportation and storage of sucked fat)
The aspirated fat is transported by the same method as in Process 1 of Example 3 except that the conditions for transporting and storing the collected aspirated fat (donor D-suction) are about 192 hours in a refrigerated (4 ° C.) environment. And saved.
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
 実施例3のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Example 3.
 (プロセス3:脂肪由来MSCの培養)
 実施例3のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 3, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、実施例5の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 5 were evaluated by the same method as in Process 4 of Comparative Example 1.
 その結果、7日間の培養後において、実施例5のドナーD-吸引に由来する0継代目の細胞集団の細胞数は1.5×10個、生存率は96.3%であった。以上より、実施例5の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As a result, after culturing for 7 days, the number of cells in the 0th passage cell population derived from the donor D-suction of Example 5 was 1.5 × 105, and the survival rate was 96.3%. From the above, it was found that in the method of Example 5, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 <比較例6:脂肪組織輸送の検討>
 (プロセス1:吸引脂肪の採取と輸送および保存)
 採取した吸引脂肪(ドナーD-吸引)の輸送および保存の条件を冷蔵(4℃)環境下で約192時間としたこと以外は、比較例4のプロセス1と同様の手法にて吸引脂肪を輸送および保存した。
<Comparative Example 6: Examination of adipose tissue transport>
(Process 1: Collection, transportation and storage of sucked fat)
The aspirated fat is transported by the same method as in Process 1 of Comparative Example 4, except that the conditions for transporting and storing the collected aspirated fat (donor D-suction) are about 192 hours in a refrigerated (4 ° C.) environment. And saved.
 (プロセス2:吸引脂肪の酵素処理およびSVFの取得)
 実施例3のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of aspirated fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Example 3.
 (プロセス3:脂肪由来MSCの培養)
 実施例3のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 3, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、比較例6の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 6 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、7日間の培養後において、比較例6のドナーD‐吸引に由来する0継代目の細胞集団の細胞数は0.5×10個、生存率は93.3%であり、実施例5のドナーD-吸引に由来する0継代目の細胞集団の1/3程度の細胞数しか取得できなかった。以上より、比較例6の方法は、脂肪由来MSCの製造に適していないことが分かった。 As a result, after culturing for 7 days, the number of cells in the 0th passage cell population derived from the donor D-suction of Comparative Example 6 was 0.5 × 105, and the survival rate was 93.3%. Only about 1/3 of the cell population of the 0th passage derived from the donor D-suction of Example 5 could be obtained. From the above, it was found that the method of Comparative Example 6 was not suitable for producing a fat-derived MSC.
 実施例3、4、5と比較例4、5、6の0継代目の細胞集団の細胞数および生存率を以下の表3に示す。 Table 3 below shows the cell numbers and viability of the 0th passage cell populations of Examples 3, 4, and 5 and Comparative Examples 4, 5, and 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、圧縮応力が0Nより大きく12N以下の媒体に、吸引脂肪組織を包埋した状態で保存および/または輸送すると、培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As shown in Table 3, when aspirated adipose tissue was stored and / or transported in a medium having a compressive stress greater than 0 N and 12 N or less, many adherent cells could be confirmed in the culture vessel, and the survival rate was increased. It has been found that many high fat-derived MSCs can be produced.
 実施例6と比較例7は、同じドナーDの切除脂肪を用いた。 In Example 6 and Comparative Example 7, the same donor D excised fat was used.
 <実施例6:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 比較例1におけるドナーとは異なるドナー(ドナーD)から採取した0.1gの切除脂肪(ドナーD-切除)を1.5mLマイクロチューブに収容し、媒体の圧縮応力が1.09Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋したこと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。
<Example 6: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
A gelatin-containing Hanks having a compressive stress of 1.09 N in a 1.5 mL microtube containing 0.1 g of excised fat (donor D-excision) collected from a donor (donor D) different from that of the donor in Comparative Example 1. The excised fat was transported and stored by the same method as in Process 1 of Comparative Example 1 except that it was embedded in 1 mL of a balanced salt solution (without Ca / Mg).
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、実施例6の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and viability of the 0th passage cell population of Example 6 were evaluated by the same method as in Process 4 of Comparative Example 1.
 その結果、16日間の培養後において、実施例6のドナーD-切除に由来する0継代目の細胞集団の細胞数は5.0×10個、生存率は98.3%であった。以上より、実施例6の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As a result, after culturing for 16 days, the number of cells in the 0th passage cell population derived from the donor D-resect of Example 6 was 5.0 × 105, and the survival rate was 98.3%. From the above, it was found that in the method of Example 6, many adhesive cells could be confirmed in the culture vessel, and many fat-derived MSCs having a high survival rate could be produced.
 <比較例7:脂肪組織輸送の検討>
 (プロセス1:切除脂肪の採取と輸送および保存)
 比較例1におけるドナーとは異なるドナー(ドナーD)から採取した0.1gの切除脂肪(ドナーD-切除)を用いたこと以外は、比較例1のプロセス1と同様の手法にて切除脂肪を輸送および保存した。
<Comparative Example 7: Examination of adipose tissue transport>
(Process 1: Collection, transport and storage of excised fat)
Excised fat was removed by the same method as in Process 1 of Comparative Example 1 except that 0.1 g of excised fat (donor D-excision) collected from a donor (donor D) different from that of the donor in Comparative Example 1 was used. Transported and stored.
 (プロセス2:切除脂肪の酵素処理およびSVFの取得)
 比較例1のプロセス2と同様の手法にて、脂肪由来MSCを含むSVFを取得した。
(Process 2: Enzymatic treatment of excised fat and acquisition of SVF)
An SVF containing a fat-derived MSC was obtained by the same method as in Process 2 of Comparative Example 1.
 (プロセス3:脂肪由来MSCの培養)
 比較例1のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of fat-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Comparative Example 1, and the adhesive cells were collected.
 (プロセス4:培養した脂肪由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、比較例7の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell count and survival rate of cultured fat-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 7 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、16日間の培養後において、比較例7のドナーD-切除に由来する0継代目の細胞集団の細胞数は0.2×10個と少なく、取得できた細胞数が低値であったため生存率は測定機器の検出限界以下であった。さらに、実施例6のドナーD-切除に由来する各0継代目の細胞集団の1/25程度の細胞数しか取得できなかった。以上より、比較例7の方法は、脂肪由来MSCの製造に適していないことが分かった。 As a result, after culturing for 16 days, the number of cells in the 0th passage cell population derived from the donor D-resect of Comparative Example 7 was as small as 0.2 × 105, and the number of obtained cells was low. Therefore, the survival rate was below the detection limit of the measuring instrument. Furthermore, only about 1/25 of the cell population of each 0th passage derived from the donor D-resect of Example 6 could be obtained. From the above, it was found that the method of Comparative Example 7 was not suitable for producing a fat-derived MSC.
 実施例6と比較例7の0継代目の細胞集団の細胞数および生存率を以下の表4に示す。 Table 4 below shows the number of cells and the survival rate of the 0th passage cell populations of Example 6 and Comparative Example 7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、圧縮応力が0Nより大きく12N以下の媒体に、切除脂肪組織を包埋した状態で保存および/または輸送すると、培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪由来MSCを製造できることが分かった。 As shown in Table 4, when the excised adipose tissue was stored and / or transported in a medium having a compressive stress greater than 0 N and 12 N or less, many adherent cells could be confirmed in the culture vessel, and the survival rate was increased. It has been found that many high fat-derived MSCs can be produced.
 実施例7、8と比較例8は、同じドナーEの羊膜組織を用いた。 Examples 7 and 8 and Comparative Example 8 used the same donor E amnion tissue.
 <実施例7:羊膜組織輸送の検討>
 (プロセス1:羊膜の採取と輸送および保存)
 インフォームドコンセントを得た選択的帝王切開症例の妊婦(ドナーE)から、胎児付属物である卵膜及び胎盤を無菌的に採取した。得られた卵膜及び胎盤を生理食塩水が入った容器に収容し、卵膜の断端から羊膜を剥離した。羊膜をハンクス平衡塩溶液(Ca・Mg不含有)にて洗浄した。採取した羊膜の重量を測定し、1gの羊膜を媒体の圧縮応力が1.09Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋して1.5mLマイクロチューブに収容した。羊膜の包埋は、調製したゼラチン含有ハンクス平衡塩溶液を37℃で液化させ、羊膜を当該溶液に入れた後に4℃にして固化させる方法を用いた。その後、冷蔵(4℃)下で約216時間輸送および保存した後、37℃に加温してゼラチン含有ハンクス平衡塩溶液を液化させ、羊膜を取り出し、プロセス2を実施した。
<Example 7: Examination of amniotic membrane tissue transport>
(Process 1: Amniotic membrane collection, transportation and storage)
Fetal membranes and placenta, which are fetal appendages, were aseptically collected from a pregnant woman (donor E) who gave informed consent to a case of selective caesarean section. The obtained fetal membrane and placenta were placed in a container containing physiological saline, and the amniotic membrane was detached from the stump of the fetal membrane. The amniotic membrane was washed with a Hanks balanced salt solution (without Ca / Mg). The weight of the collected amniotic membrane was measured, and 1 g of amniotic membrane was embedded in 1 mL of a gelatin-containing Hanks balanced salt solution (without Ca / Mg) having a compressive stress of 1.09 N and contained in a 1.5 mL microtube. For the embedding of the amniotic membrane, a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the amniotic membrane was placed in the solution, and then the amniotic membrane was solidified at 4 ° C. Then, after transporting and storing in a refrigerator (4 ° C.) for about 216 hours, the mixture was heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the amniotic membrane was taken out to carry out Process 2.
 (プロセス2:羊膜の酵素処理及び羊膜由来MSCの取得)
 1.5mLマイクロチューブから取り出した1gの羊膜を、240PU/mLコラゲナーゼと200PU/mLディスパーゼIとを含有するハンクス平衡塩溶液(Ca・Mg含有)に浸し、37℃にて90分間、振盪攪拌することにより羊膜を酵素処理した。酵素処理後の溶液を、ストレイナーでろ過することにより羊膜の未消化物を取り除き、羊膜由来MSCを含む細胞集団を取得した。
(Process 2: Enzymatic treatment of amniotic membrane and acquisition of amniotic membrane-derived MSC)
1 g of amniotic membrane removed from a 1.5 mL microtube is immersed in a Hanks balanced salt solution (containing Ca / Mg) containing 240 PU / mL collagenase and 200 PU / mL dispase I, and stirred at 37 ° C. for 90 minutes with shaking. The amniotic membrane was treated with an enzyme. The enzyme-treated solution was filtered with a strainer to remove undigested amniotic membrane, and a cell population containing amniotic membrane-derived MSC was obtained.
 (プロセス3:羊膜由来MSCの培養)
 上述の「プロセス2:羊膜の酵素処理及び羊膜由来MSCの取得」で得られた羊膜由来MSCを含む細胞集団を、培養容器のT-25フラスコ(コーニング社製)に1/5量播種し、終濃度にして5%のヒト血小板溶解物を含むαMEM(Alpha Modification of Minimum Essential Medium Eagle)にて接着培養した。この接着培養した細胞を、0継代目の細胞集団と呼ぶ。サブコンフルエントもしくは任意の培養期間に達した時点で、TrypLE Select(Thermo Fisher Scientific社製)を用いて0継代目の細胞集団を剥離した。
(Process 3: Culture of amniotic membrane-derived MSC)
A 1/5 amount of the cell population containing the amniotic membrane-derived MSC obtained in "Process 2: Enzymatic treatment of amniotic membrane and acquisition of amniotic membrane-derived MSC" was seeded in a T-25 flask (manufactured by Corning) of the culture vessel. Adhesion culture was performed on αMEM (Alpha Modification of Minimum Essential Medium Eagle) containing 5% human platelet lysate at a final concentration. These adherently cultured cells are called a cell population of the 0th passage. When the subconfluent or arbitrary culture period was reached, the cell population of the 0th passage was exfoliated using a TrypLE Select (manufactured by Thermo Fisher Scientific).
 (プロセス4:培養した羊膜由来MSCの細胞数および生存率の評価)
 比較例1のプロセス4と同様の手法にて、実施例7の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell number and survival rate of cultured amniotic membrane-derived MSC)
The cell number and viability of the 0th passage cell population of Example 7 were evaluated by the same method as in Process 4 of Comparative Example 1.
 その結果、12日間の培養後において、実施例7のドナーEに由来する0継代目の細胞集団の細胞数は9.5×10個、生存率は98.6%であった。以上より、実施例7の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの羊膜由来MSCを製造できることが分かった。 As a result, after culturing for 12 days, the number of cells in the 0th passage cell population derived from Donor E of Example 7 was 9.5 × 105, and the survival rate was 98.6%. From the above, it was found that in the method of Example 7, many adhesive cells could be confirmed in the culture vessel, and many amniotic membrane-derived MSCs having a high survival rate could be produced.
 <比較例8:羊膜組織輸送の検討>
 (プロセス1:羊膜の採取と輸送および保存)
 実施例7におけるドナーと同一のドナー(ドナーE)から採取した1gの羊膜をハンクス平衡塩溶液(Ca・Mg不含有)(媒体の圧縮応力は0.00N)1mLが入った1.5mLマイクロチューブに収容したこと以外は、実施例7のプロセス1と同様の手法にて羊膜を輸送および保存した。
<Comparative Example 8: Examination of amniotic tissue transport>
(Process 1: Amniotic membrane collection, transportation and storage)
1 g of amniotic membrane collected from the same donor (donor E) as the donor in Example 7 is contained in a 1.5 mL microtube containing 1 mL of a Hanks balanced salt solution (without Ca / Mg) (compressive stress of the medium is 0.00 N). The amniotic membrane was transported and stored in the same manner as in Process 1 of Example 7, except that it was housed in.
 (プロセス2:羊膜の酵素処理及び羊膜由来MSCの取得)
 実施例7のプロセス2と同様の手法にて、羊膜由来MSCを含む細胞集団を取得した。
(Process 2: Enzymatic treatment of amniotic membrane and acquisition of amniotic membrane-derived MSC)
A cell population containing amnion-derived MSC was obtained by the same method as in Process 2 of Example 7.
 (プロセス3:羊膜由来MSCの培養)
 実施例7のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of amniotic membrane-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 7, and the adhesive cells were collected.
 (プロセス4:培養した羊膜由来MSCの細胞数および生存率の評価)
比較例1のプロセス4と同様の手法にて、比較例8の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell number and survival rate of cultured amniotic membrane-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 8 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、12日間の培養後において、比較例8のドナーEに由来する0継代目の細胞集団の細胞数は5.6×10個、生存率は94.6%であり、実施例7のドナーEに由来する0継代目の細胞集団の3/5程度の細胞数しか取得できなかった。以上より、比較例8の方法は、羊膜由来MSCの製造に適していないことが分かった。 As a result, after culturing for 12 days, the number of cells in the 0th passage cell population derived from Donor E of Comparative Example 8 was 5.6 × 105, and the survival rate was 94.6%, and Example 7 Only about 3/5 of the cell population of the 0th passage derived from Donor E could be obtained. From the above, it was found that the method of Comparative Example 8 was not suitable for producing amniotic membrane-derived MSC.
 <実施例8:羊膜組織輸送の検討>
 (プロセス1:羊膜の採取と輸送および保存)
 実施例7におけるドナーと同一のドナー(ドナーE)から、実施例7のプロセス1と同様の手法にて採取した1gの羊膜を、媒体の圧縮応力が1.09Nのゼラチン含有ハンクス平衡塩溶液(Ca・Mg不含有)1mLで包埋して1.5mLマイクロチューブに収容した。羊膜の包埋は、調製したゼラチン含有ハンクス平衡塩溶液を37℃で液化させ、羊膜を当該溶液に入れた後に4℃にして固化させる方法を用いた。その後、室温(約20℃)下で約110時間輸送および保存し、37℃に加温してゼラチン含有ハンクス平衡塩溶液を液化させ、羊膜を取り出し、プロセス2を実施した。
<Example 8: Examination of amniotic tissue transport>
(Process 1: Amniotic membrane collection, transportation and storage)
1 g of amniotic membrane collected from the same donor (donor E) as the donor in Example 7 by the same method as in Process 1 of Example 7, was obtained from a gelatin-containing Hanks balanced salt solution having a compressive stress of 1.09 N as a medium. It was embedded in 1 mL (without Ca / Mg) and contained in a 1.5 mL microtube. For the embedding of the amniotic membrane, a method was used in which the prepared gelatin-containing Hanks balanced salt solution was liquefied at 37 ° C., the amniotic membrane was placed in the solution, and then the amniotic membrane was solidified at 4 ° C. Then, it was transported and stored at room temperature (about 20 ° C.) for about 110 hours, heated to 37 ° C. to liquefy the gelatin-containing Hanks balanced salt solution, and the amniotic membrane was taken out to carry out Process 2.
 (プロセス2:羊膜の酵素処理及び羊膜由来MSCの取得)
 実施例7のプロセス2と同様の手法にて、羊膜由来MSCを含む細胞集団を取得した。
(Process 2: Enzymatic treatment of amniotic membrane and acquisition of amniotic membrane-derived MSC)
A cell population containing amnion-derived MSC was obtained by the same method as in Process 2 of Example 7.
 (プロセス3:羊膜由来MSCの培養)
 実施例7のプロセス3と同様の手法にて、0継代目の細胞集団を取得し、接着性細胞を回収した。
(Process 3: Culture of amniotic membrane-derived MSC)
The cell population of the 0th passage was obtained by the same method as in Process 3 of Example 7, and the adhesive cells were collected.
 (プロセス4:培養した羊膜由来MSCの細胞数および生存率の評価)
比較例1のプロセス4と同様の手法にて、比較例8の0継代目の細胞集団の細胞数および生存率を評価した。
(Process 4: Evaluation of cell number and survival rate of cultured amniotic membrane-derived MSC)
The cell number and survival rate of the 0th passage cell population of Comparative Example 8 were evaluated by the same method as that of Process 4 of Comparative Example 1.
 その結果、11日間の培養後において、実施例8のドナーEに由来する0継代目の細胞集団の細胞数は1.3×10個、生存率は98.3%であった。以上より、実施例6の方法では培養容器に多くの接着性細胞が確認でき、生存率の高い多くの羊膜由来MSCを製造できることが分かった。 As a result, after culturing for 11 days, the number of cells in the 0th passage cell population derived from Donor E of Example 8 was 1.3 × 106 , and the survival rate was 98.3%. From the above, it was found that in the method of Example 6, many adhesive cells could be confirmed in the culture vessel, and many amniotic membrane-derived MSCs having a high survival rate could be produced.
 実施例7、8と比較例8の0継代目の細胞集団の細胞数および生存率を以下の表5に示す。 Table 5 below shows the cell numbers and viability of the 0th passage cell populations of Examples 7 and 8 and Comparative Example 8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、圧縮応力が0Nより大きく12N以下の媒体に、羊膜組織を包埋した状態で保存および/または輸送すると、生存率の高い多くの羊膜MSCを製造できることが分かった。 As shown in Table 5, it was found that many amniotic membrane MSCs with high survival rate can be produced by storing and / or transporting the amniotic membrane tissue in a medium having a compressive stress greater than 0 N and 12 N or less in a state of being embedded.
 以上より、下記(1)(2)の条件を満たした実施例の方法では、培養容器に多くの接着性細胞が確認でき、生存率の高い多くの脂肪および羊膜由来MSCを製造できることが分かった。
(1)接着性細胞を含む組織を、圧縮応力が0より大きく12N以下である媒体に包埋した状態で保存および/または輸送し、
(2)上記媒体に包埋された組織を媒体から取り出し、接着性細胞を分離する
 つまり、本発明によれば、間葉系幹細胞等の接着性細胞を含む組織を、安全に保存/輸送することが可能となり、保存/輸送後に接着性細胞を含む原料組織から接着性細胞を効率的に製造することができる。これにより、患者への治療提供機会の拡大、細胞培養者の負担軽減、製造費や医療コストの削減が期待できる。
From the above, it was found that in the method of the example satisfying the following conditions (1) and (2), many adhesive cells could be confirmed in the culture vessel, and many fats and amniotic membrane-derived MSCs having high survival rates could be produced. ..
(1) Tissues containing adhesive cells are stored and / or transported in a state of being embedded in a medium having a compressive stress greater than 0 and 12 N or less.
(2) The tissue embedded in the medium is taken out from the medium and the adhesive cells are separated. That is, according to the present invention, the tissue containing the adhesive cells such as mesenchymal stem cells is safely stored / transported. This makes it possible to efficiently produce adherent cells from raw material tissues containing adherent cells after storage / transport. This can be expected to expand opportunities for providing treatment to patients, reduce the burden on cell cultures, and reduce manufacturing costs and medical costs.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited herein shall be incorporated herein by reference as is.

Claims (11)

  1. 接着性細胞を含む組織から当該細胞を含む細胞集団を製造するための方法であって、
    (1)接着性細胞を含む組織を、圧縮応力が0より大きく12N以下である媒体に包埋した状態で保存および/または輸送し、
    (2)上記媒体に包埋された組織を媒体から取り出し、接着性細胞を分離する
    ことを含む組織から接着性細胞を製造する方法。
    A method for producing a cell population containing the cells from a tissue containing the adhesive cells.
    (1) Tissues containing adhesive cells are stored and / or transported in a state of being embedded in a medium having a compressive stress greater than 0 and 12 N or less.
    (2) A method for producing adhesive cells from a tissue, which comprises removing the tissue embedded in the medium from the medium and separating the adhesive cells.
  2. 媒体がゲルまたはゾルである請求項1記載の製造方法。 The production method according to claim 1, wherein the medium is a gel or a sol.
  3. ゲルまたはゾルが、タンパク質、ペプチド、多糖及び合成高分子からなる群より選択される少なくとも1つを含む、請求項2記載の製造方法。 The production method according to claim 2, wherein the gel or sol comprises at least one selected from the group consisting of proteins, peptides, polysaccharides and synthetic polymers.
  4. ゲルまたはゾルがゼラチン、コラーゲン、アガロース、アルギン酸、ペクチン、フィブリン、シリコン、ポリビニルアルコールの少なくとも1つを含む請求項2または3記載の製造方法。 The production method according to claim 2 or 3, wherein the gel or sol comprises at least one of gelatin, collagen, agarose, alginic acid, pectin, fibrin, silicon, and polyvinyl alcohol.
  5. 保存および/または輸送時において、ゲルまたはゾルが可逆的に液化と固化を少なくとも1回繰り返す、請求項1から4いずれか1項記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the gel or sol reversibly repeats liquefaction and solidification at least once during storage and / or transportation.
  6. 温度変化によって、ゲルまたはゾルの液化と固化の繰り返しが行われる、請求項5記載の製造方法。 The production method according to claim 5, wherein the gel or sol is repeatedly liquefied and solidified by changing the temperature.
  7. 接着性細胞を含む組織をゲルの中で保存および/または輸送したのち、接着性細胞を含む組織が包埋されたゲルを液化して組織を取り出す、請求項2から6いずれか1項記載の製造方法。 The invention according to any one of claims 2 to 6, wherein the tissue containing the adhesive cells is stored and / or transported in the gel, and then the gel in which the tissue containing the adhesive cells is embedded is liquefied to remove the tissue. Production method.
  8. 接着性細胞が間葉系幹細胞であることを特徴とする、請求項1から7いずれか1項記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the adhesive cells are mesenchymal stem cells.
  9. 接着性細胞を含む組織が、羊膜、脂肪、臍帯、胎盤、皮膚および筋肉からなる群より選択される少なくとも一つである、請求項1から8いずれか1項記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the tissue containing the adhesive cells is at least one selected from the group consisting of amniotic membrane, fat, umbilical cord, placenta, skin and muscle.
  10. 保存および輸送の時間が240時間以下である、請求項1から9いずれか1項記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the storage and transportation time is 240 hours or less.
  11. 媒体から接着性細胞を含む組織を取り出した後、酵素処理して培養するプロセスを含む、請求項1から10いずれか1項記載の製造方法。 The production method according to any one of claims 1 to 10, further comprising a process of removing a tissue containing adhesive cells from a medium and then treating and culturing the tissue.
PCT/JP2021/031187 2020-08-27 2021-08-25 Method for efficiently producing tissue from adhesive cells WO2022045201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545675A JPWO2022045201A1 (en) 2020-08-27 2021-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-143577 2020-08-27
JP2020143577 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022045201A1 true WO2022045201A1 (en) 2022-03-03

Family

ID=80355347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031187 WO2022045201A1 (en) 2020-08-27 2021-08-25 Method for efficiently producing tissue from adhesive cells

Country Status (2)

Country Link
JP (1) JPWO2022045201A1 (en)
WO (1) WO2022045201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203022A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Method for producing cell mass containing amnion-derived mesenchymal stem cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532167A (en) * 2007-06-29 2010-10-07 真理 船木 Low rigidity gel for MSC growth control
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
WO2015111686A1 (en) * 2014-01-23 2015-07-30 日産化学工業株式会社 Culture medium composition
WO2019142004A1 (en) * 2018-01-22 2019-07-25 University Of Newcastle Upon Tyne Storage and/or transport for multicellular aggregates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532167A (en) * 2007-06-29 2010-10-07 真理 船木 Low rigidity gel for MSC growth control
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
WO2015111686A1 (en) * 2014-01-23 2015-07-30 日産化学工業株式会社 Culture medium composition
WO2019142004A1 (en) * 2018-01-22 2019-07-25 University Of Newcastle Upon Tyne Storage and/or transport for multicellular aggregates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203022A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Method for producing cell mass containing amnion-derived mesenchymal stem cells

Also Published As

Publication number Publication date
JPWO2022045201A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101868653B1 (en) Stem cell suspension
KR20190055790A (en) Isolation of mesenchymal stem cells from umbilical cord amniotic membrane using cell culture medium
JP6995752B2 (en) Cell expansion culture method and therapeutic composition
JP2015061520A (en) Production method and cryopreservation method of amnion mesenchymal cell composition, and therapeutic agent
JP7102397B2 (en) A cell population containing mesenchymal stem cells, a method for producing the same, and a pharmaceutical composition.
JP7132908B2 (en) Cell population containing mesenchymal stem cells, method for producing the same, and pharmaceutical composition
KR20100084620A (en) Cell composition for tissue regeneration
CN114867347A (en) Storage or transportation preparation of mesenchymal stem cells and preparation and use method thereof
WO2022045201A1 (en) Method for efficiently producing tissue from adhesive cells
EP2540819A1 (en) Method for cultivating cells in platelet-lysate-containing medium
WO2020251020A1 (en) Cell population including mesenchymal cells, pharmaceutical composition including same, and method for producing same
JP7105195B2 (en) Cell population containing mesenchymal stem cells derived from fetal appendages, method for producing the same, and pharmaceutical composition
JP5753874B2 (en) Cell viability decline inhibitor
JP2023103416A (en) Therapeutic agent for dilated cardiomyopathy
JP2022036736A (en) Method for producing mesenchymal stem cells from excised fat
CN105695401A (en) Method for preparing and preserving umbilical arterial and vein vascular peripheral stem cells
WO2022203022A1 (en) Method for producing cell mass containing amnion-derived mesenchymal stem cells
US10400211B1 (en) Cell composition for tissue regeneration
WO2022210574A1 (en) Agent for treating muscular dystrophy
JPWO2019189353A1 (en) Sheet-like cell culture with penetrating structure
JP2022108731A (en) Method for producing cell preparation containing mesenchymal stem cells
JP2022120698A (en) Pharmaceutical composition for regeneration of soft tissue that contains cell population containing mesenchymal stem cell
JP7152389B2 (en) Cell population containing mesenchymal stem cells, method for producing the same, mesenchymal stem cells, and pharmaceutical composition
WO2022210712A1 (en) Method for producing cell sheet
JP2022155546A (en) Method for producing cell sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861624

Country of ref document: EP

Kind code of ref document: A1