WO2022044986A1 - Heat-shielding ring for cylinder liner, and internal combustion engine - Google Patents

Heat-shielding ring for cylinder liner, and internal combustion engine Download PDF

Info

Publication number
WO2022044986A1
WO2022044986A1 PCT/JP2021/030523 JP2021030523W WO2022044986A1 WO 2022044986 A1 WO2022044986 A1 WO 2022044986A1 JP 2021030523 W JP2021030523 W JP 2021030523W WO 2022044986 A1 WO2022044986 A1 WO 2022044986A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
cross
heat shield
sectional shape
shield ring
Prior art date
Application number
PCT/JP2021/030523
Other languages
French (fr)
Japanese (ja)
Inventor
公一 畠山
浩二 奥山
勇気 黒政
Original Assignee
Tpr株式会社
Tpr工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, Tpr工業株式会社 filed Critical Tpr株式会社
Priority to JP2021571748A priority Critical patent/JP7157262B2/en
Publication of WO2022044986A1 publication Critical patent/WO2022044986A1/en
Priority to JP2022103537A priority patent/JP2022141676A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F2001/006Cylinders; Cylinder heads  having a ring at the inside of a liner or cylinder for preventing the deposit of carbon oil particles, e.g. oil scrapers

Definitions

  • the present invention relates to a heat shield ring for a cylinder liner and an internal combustion engine.
  • Patent Documents 1, 2, etc. For the purpose of reducing heat loss of an internal combustion engine, a technique of providing a heat shield ring on the inner peripheral surface near the end of the cylinder liner on the combustion chamber side is known (for example, Patent Documents 1, 2, etc.).
  • Patent Documents 1 and 2 in the conventional heat shield ring, in order to form an air layer for heat insulation, a groove having a rectangular cross section in a cross section orthogonal to the circumferential direction is formed on the outer peripheral surface of the heat shield ring. Is provided.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat shield ring for a cylinder liner, which is less likely to be damaged due to a groove, and an internal combustion engine using the same.
  • the heat shield ring for a cylinder liner of the present invention has a ring-shaped member, and in a cross section orthogonal to the circumferential direction of the ring-shaped member, the outer peripheral surface of the ring-shaped member is a flat portion parallel to the axial direction of the ring-shaped member. And a groove portion recessed on the inner peripheral side of the ring-shaped member from the flat portion, and the cross-sectional shape of the groove portion is formed only from (1) two straight lines and one corner portion which is an intersection of the two straight lines.
  • the V-shaped first cross-sectional shape to be formed (2) the second cross-sectional shape in which the vicinity of the corners in the first cross-sectional shape is rounded to form a curved line, and (3) the third formed only from the arc-shaped curve. It is characterized in that it is at least one selected from the group consisting of the cross-sectional shape of (4) U-shaped fourth cross-sectional shape.
  • the angle formed by the two straight lines in the first cross-sectional shape and the second cross-sectional shape is 45 degrees to 160 degrees.
  • Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (1).
  • -Equation (1) 0.85 ⁇ Sr / (Dr ⁇ Wr) ⁇ 0.5
  • Sr means the cross-sectional area (mm 2 ) of the groove portion in the cross section orthogonal to the circumferential direction of the ring-shaped member
  • Dr means the maximum groove depth (mm) of the groove portion
  • Wr means the ring. It means the maximum opening width (mm) of the groove portion in the axial direction of the shaped member.
  • Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (2).
  • ⁇ Equation (2) 0.41 ⁇ Dr / Wr
  • Dr means the maximum groove depth (mm) of the groove portion
  • Wr means the maximum opening width (mm) of the groove portion in the axial direction of the ring-shaped member.
  • Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (3).
  • ⁇ Equation (3) 0.57 ⁇ Dr / Tr
  • Dr means the maximum groove depth (mm) of the groove portion
  • Tr means the radial thickness (mm) of the ring-shaped member.
  • Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (4).
  • ⁇ Equation (4) 0.55 ⁇ Fr / Hr
  • Fr means the length (mm) of the flat portion in the axial direction of the ring-shaped member
  • Hr means the axial height (mm) of the ring-shaped member.
  • the inner diameter of the ring-shaped member is 84 mm to 247 mm
  • the radial thickness Tr is 1.5 mm to 8.0 mm
  • the axial height Hr is 5. It is preferably 0.0 mm to 70.0 mm.
  • Another embodiment of the heat shield ring for the cylinder liner of the present invention is preferably carbon scraper ring.
  • the internal combustion engine of the present invention has a cylindrical member, and the inner peripheral surface of the cylindrical member is composed of a first region near one end side in the axial direction of the cylindrical member and a second region other than near one end side.
  • a cylinder liner having an inner diameter in the first region larger than the inner diameter in the second region and a heat shield ring having a ring-shaped member and fitted in the first region of the cylinder liner are provided at least.
  • the outer peripheral surface of the ring-shaped member has a flat portion parallel to the axial direction of the ring-shaped member and a groove portion recessed on the inner peripheral side of the ring-shaped member from the flat portion.
  • the cross-sectional shape of the groove is a V-shaped first cross-sectional shape formed only from (1) two straight lines and one corner that is the intersection of the two straight lines, (2) first.
  • the inner diameter of the ring-shaped member is smaller than the inner diameter of the second region.
  • Another embodiment of the internal combustion engine of the present invention is preferably a diesel engine.
  • FIG. 5 (A) is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis
  • FIG. 5 (B) is the temperature of the heat shield ring and the cylinder liner shown in FIG. 5 (A).
  • FIG. 5C is a figure which shows the stress distribution of the heat shield ring shown in FIG. 5A.
  • FIG. 5A shows an example of the analysis result which simulated the stress distribution and the temperature distribution in the heat shield ring for a cylinder liner of this embodiment.
  • FIG. 6A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis
  • FIG. 6B is the temperature of the heat shield ring and the cylinder liner shown in FIG. 6A.
  • FIG. 6C is a figure which shows the stress distribution of the heat shield ring shown in FIG. 6A.
  • FIG. 7A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis
  • FIG. 7B is the temperature of the heat shield ring and the cylinder liner shown in FIG. 7A.
  • FIG. 10A is a diagram showing a case where the cross-sectional shape of the groove portion is a semicircular arc
  • FIG. 10B is a diagram in which the cross-sectional shape of the groove portion is looser than the semicircular arc. It is a figure which shows the case of a curved arc.
  • Heat shield ring for cylinder liner> 1 to 4 are schematic cross-sectional views showing an example of a heat shield ring for a cylinder liner (hereinafter, abbreviated as “heat shield ring”) of the present embodiment, and have a cross-sectional structure orthogonal to the circumferential direction of the heat shield ring. It is a figure which shows about. 1 to 4 show a state in which the heat shield ring is mounted on the inner peripheral surface near the end of the cylinder liner on the combustion chamber side. Further, the Y direction shown in FIGS.
  • 1 to 4 and other drawings means a direction parallel to the axial direction of the heat shield ring and the cylinder liner, and the X direction orthogonal to the Y direction is the heat shield ring and the cylinder liner. It means the direction parallel to the radial direction.
  • the heat shield ring 10 shown in FIGS. 1 to 4 has a ring-shaped member 20, and the outer peripheral surface 30 of the ring-shaped member 20 has a cross section (paper surface in the drawing) orthogonal to the circumferential direction of the ring-shaped member 20. It includes a flat portion 32 that is parallel to the axial direction of the ring-shaped member 20, and a groove portion 34 that is recessed on the inner peripheral side of the ring-shaped member 20 with respect to the flat portion 32.
  • the heat shield ring 10 is mounted on the inner peripheral surface 130A (first region) near the end of the cylinder liner 102 on the combustion chamber side. Therefore, of the outer peripheral surface 30, the flat portion 32 is in contact with the inner peripheral surface 130A of the cylinder liner 102. Further, in the examples shown in FIGS. 1 to 4, two groove portions 34 and three flat portions 32 are provided, and one groove portion 34 is located between the two flat portions 32. Further, in the examples shown in FIGS. 1 to 4, the outer peripheral surface 30 is also provided with notches (chamfered portions) 38 on both end sides in the axial direction. However, the notch portion (chamfered portion) 38 may be omitted.
  • the groove portion 34 is preferably provided continuously with respect to the circumferential direction of the heat shield ring 10, but may be provided discontinuously. Further, when the groove portion 34 is continuously provided in the circumferential direction of the heat shield ring 10, the groove portion 34 may be continuously provided so as to be parallel to the circumferential direction, and the groove portions 34 intersect with each other in the circumferential direction. Therefore, it may be continuously provided so as to form a constant angle (for example, an angle exceeding 0 degrees and 30 degrees or less).
  • the outer peripheral surface 30 of the heat shield ring 10A (10) shown in FIG. 1 has a V-shaped cross-sectional shape formed only by two straight lines and one corner portion which is an intersection of the two straight lines.
  • a groove portion 34A (34) having a first cross-sectional shape) is provided, and the outer peripheral surface 30 of the heat shield ring 10B (10) shown in FIG. 2 is curved by rounding the vicinity of the corner portion in the first cross-sectional shape.
  • a groove portion 34B (34) having a cross-sectional shape (second cross-sectional shape) is provided.
  • the outer peripheral surface 30 of the heat shield ring 10C (10) shown in FIG. 3 is provided with a groove portion 34C (34) having a cross-sectional shape (third cross-sectional shape) formed only by an arcuate curve.
  • the outer peripheral surface 30 of the heat shield ring 10D (10) shown in FIG. 4 is provided with a groove portion 34D (34) having a U-shaped cross-sectional shape (fourth cross-sectional shape).
  • the groove portions 34 are arranged at regular intervals (Fr2) with respect to the axial direction of the ring-shaped member 20.
  • the distance (Fr2) between the two groove portions 34 adjacent to each other in the axial direction may be made as small as possible, and a large number of groove portions 34 may be provided in a saw blade shape.
  • the cross-sectional shape of the groove portion 34 provided on the outer peripheral surface 30 is based on the above-mentioned first cross-sectional shape, second cross-sectional shape, third cross-sectional shape, and fourth cross-sectional shape. Any one or more selected from the group may be used. For example, if the number of the groove portions 34 provided on the outer peripheral surface 30 is only one, the cross-sectional shapes of the groove portions 34 are the first cross-sectional shape, the second cross-sectional shape, the third cross-sectional shape, and the fourth cross-sectional shape. It is any one selected from the group consisting of.
  • the cross-sectional shape of the groove portions 34 is the first as illustrated in FIGS. 1 to 4 (a). It may be only one kind selected from the group consisting of the cross-sectional shape, the second cross-sectional shape, the third cross-sectional shape and the fourth cross-sectional shape, and (b) a combination of two or more kinds. There may be.
  • the groove portion 34 having any of the cross-sectional shapes selected from the first to fourth cross-sectional shapes is the groove portion having a rectangular cross-sectional shape provided on the outer peripheral surface of the conventional heat shield ring exemplified in Patent Documents 1 and 2.
  • the heat shield ring is less likely to be damaged. The reason will be explained below.
  • the intracranial pressure acts on the inner peripheral surface of the heat shield ring. Therefore, a strong force acts on the heat shield ring from the inner peripheral side to the outer peripheral side of the heat shield ring. Therefore, if a groove is provided on the outer peripheral surface of the heat shield ring to form a heat insulating air layer, it is unavoidable that local stress concentration is likely to occur in or near the groove.
  • FIG. 5 is a diagram showing an example of an analysis result simulating a stress distribution and a temperature distribution in a conventional heat shield ring provided with a groove having a rectangular cross section.
  • FIG. 5A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used in the simulation analysis.
  • FIG. 5A shows a state in which the heat shield ring 12 is mounted on the inner peripheral surface 130A of the cylinder liner 102.
  • the outer peripheral surface 30 of the heat shield ring 12 shown in FIG. 5A is provided with two groove portions 36 having a rectangular cross section instead of the two groove portions 34 shown in FIGS. 1 to 4, and other than the groove portions 36.
  • the dimensions and shape of each part of the heat shield ring 12 are the same as those of the heat shield ring 10B shown in FIG. 6A, which will be described later.
  • 5 (C) is a diagram showing the stress distribution of the heat shield ring 12 shown in FIG. 5 (A)
  • FIG. 5 (B) is a diagram showing the heat shield ring 12 and the cylinder liner shown in FIG. 5 (A). It is a figure which shows the temperature distribution of 102.
  • the dimensions of the main part are set as follows.
  • the dimensional shape only the dimensional shape of the groove portion 36 and the groove portion 34B is different between FIG. 5 (A) and FIG. 6 (A) described later, and it is different from FIG. 5 (A) and FIG. 6 (A) described later.
  • Only the presence or absence of the groove portions 36 and 34B is different from FIG. 7A described later.
  • the simulation analysis shown in FIG. 5 was carried out using commercially available strength and thermal analysis software.
  • the material of the heat shield ring 12 and the cylinder liner 102 is assumed to be cast iron (FC250), and the general in-cylinder pressure and combustion heat in the internal combustion engine act from the inner peripheral side of the heat shield ring 12.
  • the ambient temperature was carried out under the condition assuming room temperature.
  • the gradation display shown in white to black means the magnitude of stress, the whiter the stress, the larger the stress, and the blacker the stress, the smaller the stress.
  • FIG. 5B will be described later. Further, in FIGS. 5 (A) and 5 (B), the description of the back side of the heat shield ring 12 is omitted.
  • the present inventors have found the heat shield ring 10 of the present embodiment having the groove portion 34 exemplified in FIGS. 1 to 4.
  • the groove portion 34A having the first cross-sectional shape has one corner portion, and the central portion of the bottom surface of the groove portion 34A is V-shaped.
  • groove portions 34B, 34C, 34D having the second to fourth cross-sectional shapes do not have the corner portions 36C, and the central portion of the groove portion bottom surface of the groove portions 34B, 34C, 34D is convex in the inner peripheral direction. It has an arch shape composed of curved curves.
  • FIG. 6 is a diagram showing an example of analysis results simulating the stress distribution and the temperature distribution in the heat shield ring of the present embodiment.
  • FIG. 6A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used in the simulation analysis, and is substantially the same as the heat shield ring 10B shown in FIG. 2 except that the dimensions of each part are set to predetermined values. It is the same sectional view.
  • 6 (C) is a diagram showing the stress distribution of the heat shield ring 10B shown in FIG. 6 (A)
  • FIG. 6 (B) is a diagram showing the heat shield ring 10B and the cylinder liner shown in FIG. 6 (A). It is a figure which shows the temperature distribution of 102.
  • the dimensions of the main part of the heat shield ring 10B are set as follows. Further, the dimensions of the main part of the cylinder liner 102 were set to be the same as those in FIG. 5 (A).
  • the cross-sectional shape of the groove portion 34B is line-symmetric with respect to a straight line that passes through the central portion of the bottom surface of the groove portion 34B and is parallel to the radial direction of the ring-shaped member 20.
  • the radial thickness of the ring-shaped member 20 constituting the heat shield ring 10B : 2.3 mm.
  • Axial height of the ring-shaped member 20 constituting the heat shield ring 10B 9.9 mm -Maximum opening width of the groove 34B in the axial direction of the ring-shaped member 20: 3.15 mm -Maximum groove depth of groove 34B: 0.5 mm -Radius of curvature of the curve near the center of the bottom surface of the groove 34B: 1.0 mm
  • the insulated air layer Since the space (insulated air layer) surrounded by the groove and the cylinder liner is filled with a gas having extremely low thermal conductivity (air, combustion gas or a mixed gas thereof), the insulated air layer is formed by a heat shield ring. It greatly contributes to the exertion of heat insulation. Based on this point, it is considered that a larger volume of the adiabatic air layer is more advantageous for improving the adiabatic property.
  • FIG. 7 is a diagram showing an example of analysis results simulating the temperature distribution in a heat shield ring having no groove.
  • FIG. 7A shows a state in which the heat shield ring 14 is mounted on the inner peripheral surface 130A of the cylinder liner 102.
  • the heat shield ring 14 shown in FIG. 7 (A) has the heat shield ring 12 and FIG. 6 (A) shown in FIG. 5 (A) in terms of material and dimensional shape, except that the outer peripheral surface 30 is not provided with a groove. It is the same member as the heat shield ring 10B shown in 1.
  • FIG. 7B is a diagram showing the temperature distribution of the heat shield ring 14 and the cylinder liner 102 shown in FIG. 7A.
  • the gradation display shown by white to black means the difference in temperature, and the whiter the temperature, the higher the temperature, and the blacker the temperature, the lower the temperature. Means that.
  • the dimensions of the main part of the heat shield ring 14 are set as follows. Further, the dimensions of the main part of the cylinder liner 102 were set to be the same as those in FIG. 5 (A).
  • the radial thickness of the ring-shaped member 20 constituting the heat shield ring 14 2.3 mm.
  • Axial height of the ring-shaped member 20 constituting the heat shield ring 14 9.9 mm
  • the heat shield rings 10B and 12 themselves are heat shielded due to the presence of the groove portions 34B and 36 (insulated air layer).
  • the temperature is higher than that of the ring 14.
  • the temperature on the cylinder liner 102 side becomes lower.
  • the heat shield ring 10B and the heat shield ring 12 are slightly inferior in heat insulating property to the heat shield ring 12, but when the heat shield ring 14 is used as a reference, the heat shield ring is used as a reference. It can be seen that there is no significant difference in the heat insulating properties between the 10B and the heat shield ring 12.
  • the groove portion 34B provided in the heat shield ring 10B and the groove portion 36 provided in the heat shield ring 12 are the same in the maximum opening width, the maximum groove depth and the number of groove portions, and the difference between the two is that of the groove portion. Only the cross-sectional shape and the resulting cross-sectional area (volume of the adiabatic air layer).
  • the cross-sectional area of the groove portion 34B (volume of the adiabatic air layer) is about 1 ⁇ 2 of the cross-sectional area of the groove portion 36 (volume of the adiabatic air layer). That is, from the simulation analysis results shown in FIGS.
  • the heat insulating property is simply improved in proportion to the volume of the insulated air layer. It turns out. Further, from these results, the heat insulating property is the maximum opening width of the grooves 34B and 36 rather than the volume of the heat insulating air layer, in other words, the heat conduction path from the heat shield rings 10B and 12 to the cylinder liner 102 side. It is considered that the cross-sectional length of the flat portion 32 is substantially dependent on the cross-sectional length.
  • the groove portion 36 having a rectangular cross-sectional shape and the groove portions 34A, 34B, 34C, and 34D having the first to fourth cross-sectional shapes have the same maximum opening width and maximum groove depth
  • the groove portion is more than the groove portion 36.
  • the cross-sectional area (volume of the adiabatic air layer) of 34A, 34B, 34C, and 34D is smaller, and the material portion (actual meat portion) constituting the heat shield ring 10 increases as the cross-sectional area becomes smaller. become.
  • the groove portions 34A, 34B, 34C, and 34D having the first to fourth cross-sectional shapes are based on the groove portion 36 having the same maximum opening width and maximum groove depth and having a rectangular cross-sectional shape.
  • FIG. 8 is an enlarged cross-sectional view showing an example of the groove portion 34A having the first cross-sectional shape
  • FIG. 9 is an enlarged cross-sectional view showing an example of the groove portion 34B having the second cross-sectional shape.
  • the cross-sectional shape of the groove portion 34A is a V-shaped cross-sectional shape formed only by two straight lines 40A and 40B and one corner portion 42 which is an intersection of these two straight lines 40A and 40B. It is a cross-sectional shape in which the vicinity of the corner portion 42 in the cross-sectional shape of the groove portion 34A is rounded to form a curved line 44.
  • the angle ⁇ 1 formed by the two straight lines 40A and 40B is not particularly limited as long as the shape formed by the two straight lines 40A and 40B is V-shaped, but is preferably 45 degrees to 160 degrees, preferably 90 degrees. It is more preferably about 160 degrees, further preferably 120 degrees to 150 degrees, and particularly preferably 135 degrees to 145 degrees.
  • the angle ⁇ 2A formed by the straight line 40A and the flat portion 32 and the angle ⁇ 2B formed by the straight line 40B and the flat portion 32 are not particularly limited as long as the desired angle ⁇ 1 can be obtained, but are usually set to the angle ⁇ 2A and the angle ⁇ 2B. Is preferably the same. In the examples shown in FIGS. 8 and 9, the angle ⁇ 2A and the angle ⁇ 2B are set to be the same. Further, (i) the angle ⁇ 2A and the angle ⁇ 2B are preferably 90 degrees to 170 degrees, more preferably 100 degrees to 170 degrees, still more preferably 120 degrees to 170 degrees, respectively.
  • the sum of the angles ⁇ 2A and the angle ⁇ 2B ( ⁇ 2A + ⁇ 2B) is preferably 225 degrees to 340 degrees, more preferably 240 degrees to 320 degrees.
  • is preferably 0 to 45 degrees, more preferably 0 to 30 degrees, further preferably 0 to 15 degrees, and 0 degrees. Most preferred.
  • the groove portions 34A and 34B satisfying the conditions (a) and (b) may be provided.
  • the radius of curvature of the curve 44 is not particularly limited, but is preferably 0.2 mm to 4.0 mm, more preferably 0.5 mm to 1.5 mm, and particularly preferably 0.8 mm to 1.5 mm.
  • FIG. 10 is an enlarged cross-sectional view showing an example of a groove portion 34C having a third cross-sectional shape.
  • FIG. 10B shows a case where the cross-sectional shape of the groove portion 34C is an arc 50B (50) curved more loosely than the semicircular arc 50A (2 ⁇ maximum groove depth Dr ⁇ maximum opening width Wr). Case) is an example shown.
  • FIG. 11 is an enlarged cross-sectional view showing an example of a groove portion 34D having a fourth cross-sectional shape (U-shaped cross section).
  • the groove portion 34D having a U-shaped cross section has a cross-sectional shape obtained by combining an arc 50 as illustrated in FIG. 10 and two straight lines 52 extending from both ends of the arc 50 toward the outer peripheral side of the heat shield ring 10D. ..
  • each numerical parameter in the equations (1) to (4) is as follows.
  • Dr Maximum groove depth (mm) of the groove 34
  • Wr Maximum opening width (mm) of the groove 34 in the axial direction of the ring-shaped member 20.
  • Sr Cross-sectional area (mm 2 ) of the groove 34 in a cross section orthogonal to the circumferential direction of the ring-shaped member 20.
  • Tr Radial thickness (mm) of the ring-shaped member 20
  • Fr Length (mm) of the flat portion 32 in the axial direction of the ring-shaped member 20
  • Hr Axial height (mm) of the ring-shaped member 20
  • the length Fr of the flat portion 32 means the total length of the lengths Fr1 to Frn of the individual flat portions 32.
  • the flat portion 32 located on the combustion chamber side in the axial direction of the ring-shaped member 20, the flat portion 32 located in the central portion, and the flat portion 32 located on the crank chamber side are located.
  • Sr / (Dr ⁇ Wr) is more preferably 0.50 to 0.84, further preferably 0.53 to 0.70, and 0.54 to 0.68. Especially preferable.
  • Dr / Wr shown in the formula (2) is a parameter meaning the aspect ratio of the groove portion 34
  • Dr / Tr shown in the formula (3) means the depth ratio of the groove portion 34 to the heat shield ring 10. It is a parameter.
  • the lower limit of Dr / Wr is not particularly limited, but is preferably 0.10 or more in practical use
  • the lower limit of Dr / Tr is not particularly limited, but is preferably 0.15 or more in practical use.
  • the Dr / Wr is more preferably 0.16 to 0.41 and even more preferably 0.16 to 0.21 from the viewpoint of achieving both heat insulating properties and strength in a well-balanced manner. Further, regarding Dr / Tr, 0.22 to 0.57 is more preferable, and 0.22 to 0.29 is further preferable, from the viewpoint of achieving both heat insulating properties and strength in a well-balanced manner.
  • Fr / Hr shown in the equation (4) means the ratio of the length Fr of the flat portion 32 to the axial height Hr of the heat shield ring 10. Considering that the ratio of the cutout portion (chamfered portion) 38 to the axial height Hr is relatively very small, Fr / Hr is ⁇ Wr / Hr (maximum opening width Wr with respect to the axial height Hr). It can also be said to be the inverse function of the sum ratio). When the formula (4) is satisfied, it is possible to obtain a heat shield ring 10 having substantially the same degree of heat insulation as that of the heat shield ring 12 having a groove portion 36 having a rectangular cross-sectional shape, but with greatly improved strength. It will be easier.
  • Fr / Hr is not particularly limited, but practically, it is preferably 0.10 or more. Further, Fr / Hr is more preferably 0.18 or more and less than 0.37 when it is desired to further improve the heat insulating property rather than the strength, and 0.37 to 0. It is more preferably 55.
  • the material of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment is not particularly limited, and is, for example, iron, iron alloy (heat resistant steel such as SUH, stainless steel such as SUS, cast iron (particularly with cylinder liner 102). (Cast iron of the same material), etc.), nickel alloy (Inconel, etc.) can be mentioned. It was, for example, iron, iron alloy (heat resistant steel such as SUH, stainless steel such as SUS, cast iron (particularly with cylinder liner 102). (Cast iron of the same material), etc.), nickel alloy (Inconel, etc.) can be mentioned. It was
  • the external dimensions of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment are not particularly limited, but in general, the inner diameter is preferably 84 mm to 247 mm, more preferably 107 mm to 234 mm. It is preferable that the thickness is 111 mm to 147 mm, the radial thickness Tr is preferably 1.5 mm to 8 mm, the radial thickness Tr is more preferably 1.5 mm to 3.0 mm, and the axial height Hr is 5. It is preferably 0 mm to 70.0 mm, more preferably 6.5 mm to 18.0 mm.
  • the maximum opening width Wr and the maximum groove depth Dr which are dimensions common to the first to fourth cross-sectional shapes, are not particularly limited, but for example, the maximum opening width Wr is about 1.0 mm to 40 mm.
  • the maximum groove depth Dr is preferably about 0.2 mm to 4.0 mm.
  • the number of groove portions 34 provided on the outer peripheral surface 30 in the cross section orthogonal to the circumferential direction of the ring-shaped member 20 is not particularly limited, and any number can be selected as long as it is one or more per the entire axial height of the ring-shaped member 20. .. However, the number of groove portions 34 is more preferably 2 to 5 per 10 mm in axial height of the ring-shaped member 20, further preferably 2 to 3, and particularly preferably 2. When the number of the groove portions 34 is one per the entire axial height of the ring-shaped member 20 and the equation (4) is to be further satisfied, both sides of the one groove portion 34 in the axial direction of the ring-shaped member 20. Stress tends to concentrate on the two narrow flat portions 32 located in.
  • the heat shield ring 10 of the present embodiment is a member used for the purpose of reducing the heat loss of the internal combustion engine, but in addition to this purpose, the purpose is to scrape off the carbon adhering to the top land of the piston. It may also be used as a member (carbon scraper ring).
  • the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10 is the inner diameter of the cylinder liner 102 to which the heat shield ring 10 is mounted (the portion where the heat shield ring 10 is mounted). It is set slightly smaller than the inner diameter of the part on the crank chamber side).
  • the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10 is the inner diameter of the cylinder liner 102 to which the heat shield ring 10 is mounted (shielding).
  • the inner diameter at the portion on the crank chamber side of the portion where the heat ring 10 is mounted may be substantially equal to or larger than this.
  • the surface of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment may be subjected to various surface treatments or various film formations may be formed, if necessary.
  • a thermal spraying film formed by a thermal spraying treatment, a manganese phosphate film formed by a parfoss treatment, or the like can be formed on the surface of the ring-shaped member 20.
  • These films may be selectively formed on a part of the surface of the ring-shaped member 20 (outer peripheral surface 30, inner peripheral surface 60, etc.) or the entire surface of the ring-shaped member 20 may be formed, although it depends on the method of forming the film. It can be formed to cover.
  • the thermal spraying film and the manganese phosphate film are generally excellent in heat insulating properties, they are formed on at least the outer peripheral surface 30 of the ring-shaped member 20 from the viewpoint of improving the heat insulating properties of the heat shield ring 10. preferable.
  • the heat shield ring 10 of the present embodiment can be used in any type of internal combustion engine as long as it is an internal combustion engine provided with a cylinder liner to which the heat shield ring 10 can be mounted. Typical examples of such an internal combustion engine include a gasoline engine and a diesel engine. When the heat shield ring 10 of the present embodiment is used in a diesel engine in which carbon is likely to be generated in the combustion chamber, it is preferable that the heat shield ring 10 of the present embodiment is also used as carbon scraper ring.
  • the internal combustion engine of the present embodiment includes at least a cylinder liner and a heat shield ring 10 of the present embodiment.
  • 1 to 4 are schematic cross-sectional views showing an example of the internal combustion engine 200A (200) of the present embodiment.
  • the internal combustion engine 200A shown in FIGS. 1 to 4 includes at least a cylinder liner 102 and a heat shield ring 10 of the present embodiment.
  • the cylinder liner 102 has a cylindrical member 120, and the inner peripheral surface 130 of the cylindrical member 120 has a first region 130A near one end side (combustion chamber side) in the axial direction of the cylindrical member 120 and a vicinity of one end side. It is composed of a second region 130B other than the above.
  • the inner diameter in the first region 130A is set to be larger than the inner diameter in the second region 130B.
  • the heat shield ring 10 is fitted in a portion where the inner peripheral surface 130 of the cylinder liner 102 is partially recessed toward the outer peripheral side, that is, in the first region 130A of the cylinder liner 102.
  • FIG. 12 is a schematic cross-sectional view showing another example of the internal combustion engine of the present embodiment, and is a diagram showing an example of the internal combustion engine 200 provided with the heat shield ring 10 of the present embodiment that also functions as carbon scraper ring. ..
  • the internal combustion engine 200D (200) shown in FIG. 12 has a cylinder liner 102 similar to that illustrated in FIGS. 1 to 4, and a heat shield ring of the present embodiment fitted in the first region 130A of the cylinder liner 102. It has at least 10E (10).
  • the heat shield ring 10E shown in FIG. 12 is a member having the same dimensions and shape as the heat shield ring 10B shown in FIG.
  • the inner diameter thereof is smaller than the inner diameter of the heat shield ring 10B shown in FIG. be.
  • the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10E is smaller than the inner diameter of the cylindrical member 120 constituting the cylinder liner 102 in the second region 130B. Therefore, the inner peripheral surface 60 of the ring-shaped member 20 is positioned so as to protrude from the central axis side of the cylinder liner 102 with respect to the second region 130B of the cylinder liner 102.
  • the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10E is set to be larger than the outer diameter of the top land 310 of the piston 300.
  • the inner peripheral surface 60 of the ring-shaped member 20 constituting the heat shield rings 10A, 10B, 10C, and 10D and the second region 130B of the cylinder liner 102 are surfaces. It is one. That is, the inner diameter of the second region 130B and the inner diameter of the ring-shaped member 20 are the same. Therefore, in the internal combustion engine 200A, the heat shield rings 10A, 10B, 10C, and 10D do not have a function as carbon scraper ring. It was
  • the internal combustion engine 200 of the present embodiment may be any type of internal combustion engine, but is preferably a gasoline engine or a diesel engine.
  • the inner peripheral surface 130 of the cylindrical member 120 constituting the cylinder liner 102 may be subjected to various surface treatments or various film formations may be formed, if necessary.
  • a thermal spraying film formed by a thermal spraying treatment, a manganese phosphate film formed by a parfoss treatment, or the like can be formed on the inner peripheral surface 130 of the cylindrical member 120.
  • These coatings may be selectively formed on a part of the inner peripheral surface 130 of the cylindrical member 120 (first region 130A, second region 130B, etc.) or the inner peripheral surface 130, depending on the method of forming the coating. It can be formed so as to cover the whole.
  • the thermal spraying film and the manganese phosphate film are generally excellent in heat insulating properties, they are formed in at least the first region 130A from the viewpoint of improving the heat insulating properties in the vicinity of the portion where the heat shield ring 10 is attached. Is preferable.
  • the two grooves are provided at equal intervals with respect to the axial direction of the heat shield ring as illustrated in FIG.
  • the simulation analysis shown in Tables 1 to 3 was carried out using commercially available strength and thermal analysis software.
  • the material of the heat shield ring and the cylinder liner used in combination with it is assumed to be cast iron (FC250), and the general in-cylinder pressure and combustion heat in the internal combustion engine are applied from the inner peripheral side of the heat shield ring. It worked and the ambient temperature was assumed to be room temperature.
  • Table 1 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the groove radial direction with respect to Sr / (Dr ⁇ Wr) when the maximum opening width Wr and the maximum groove depth Dr of the groove are the same. Shows.
  • changing the value of Sr / (Dr ⁇ Wr) is also synonymous with changing the shape of the groove portion, and the cross-sectional shape is quantitatively changed. It can be said that it is defined as a parameter. Therefore, it can be said that Table 1 is the result of evaluating the inner peripheral surface temperature and the maximum displacement amount in the radial direction of the groove portion with respect to the cross-sectional shape of the groove portion.
  • Table 2 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the radial direction of the groove with respect to the maximum groove depth Dr when the cross-sectional shape of the groove and the maximum opening width Wr are the same.
  • the influence of the maximum groove depth Dr on the heat insulating property and the mechanical strength is strongly influenced not by the absolute value of the maximum groove depth Dr but by the relative ratio of the maximum groove depth Dr to the entire heat shield ring. it is conceivable that. Therefore, in Table 2, the maximum groove depth when the maximum opening width Wr, which is the main axial dimension of the heat shield ring, and the radial thickness Tr, which is the main radial dimension of the heat shield ring, are used as reference values.
  • Table 3 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the groove radial direction with respect to the flat portion length Fr (or the maximum opening width Wr which can be said to be a substantially inverse function of the flat portion length Fr).
  • the influence of the flat portion length Fr on the heat insulating property and the mechanical strength is not strongly influenced by the absolute value of the flat portion length Fr but by the relative ratio of the flat portion length Fr to the entire heat shield ring. .. Therefore, in Table 3, the ratio of the flat portion length Fr when the axial height Hr, which is the main axial dimension of the heat shield ring, is used as a reference value, that is, the inner peripheral surface temperature and the groove portion diameter with respect to Fr / Hr. The result of evaluating the maximum displacement in the direction is shown. Fr / Hr can be said to be the occupancy ratio of the flat portion in the axial direction.
  • Heat shield ring 12 Heat shield ring 14: Heat shield ring 20: Ring-shaped member 30: Outer peripheral surface 32: Flat portion 34, 34A, 34B, 34C, 34D: Groove portion 36 : Groove 36B: Groove bottom surface 36C: Corner 38: Notch (chamfer) 40A, 40B: Straight line 42: Corner 44: Curve 50, 50A, 50B: Arc 52: Straight line 60: Inner peripheral surface 102: Cylinder liner 120: Cylindrical member 130: Inner peripheral surface 130A: First region (combustion chamber side) Inner peripheral surface near the end of 130B: Second region 200, 200A, 200D: Internal combustion engine 300: Piston 310: Topland 400: Carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Provided are a heat-shielding ring for a cylinder liner that is less likely to be damaged due to a groove for forming an insulation air layer, and an internal combustion engine that uses said heat-shielding ring. The present invention is a heat-shielding ring 10 for a cylinder liner and an internal combustion engine 200 that uses the heat-shielding ring 10. In the heat-shielding ring 10 for a cylinder liner, the cross-sectional shape of a groove 34 provided in an outer peripheral surface 30 of a ring-form member 20 constituting the heat-shielding ring 10 is any one or more shapes selected from the group comprising (1) a first cross-sectional shape in the form of a letter V, (2) a second cross-sectional shape in which the vicinities of the corners of the first cross-sectional shape are rounded into a curve, (3) a third cross-sectional shape formed from only an arcuate curve, and (4) a fourth cross-sectional shape in the form of a letter U.

Description

シリンダライナ用遮熱リングおよび内燃機関Heat shield ring for cylinder liner and internal combustion engine
 本発明は、シリンダライナ用遮熱リングおよび内燃機関に関するものである。 The present invention relates to a heat shield ring for a cylinder liner and an internal combustion engine.
 内燃機関の熱損失の低減を目的として、シリンダライナの燃焼室側の端部近傍の内周面に、遮熱リングを設ける技術が知られている(たとえば、特許文献1、2等)。特許文献1、2に例示されるように従来の遮熱リングでは、断熱用空気層を形成するために、遮熱リングの外周面に、周方向と直交する断面における断面形状が方形状の溝部が設けられている。 For the purpose of reducing heat loss of an internal combustion engine, a technique of providing a heat shield ring on the inner peripheral surface near the end of the cylinder liner on the combustion chamber side is known (for example, Patent Documents 1, 2, etc.). As exemplified in Patent Documents 1 and 2, in the conventional heat shield ring, in order to form an air layer for heat insulation, a groove having a rectangular cross section in a cross section orthogonal to the circumferential direction is formed on the outer peripheral surface of the heat shield ring. Is provided.
実公平05-12527号公報Jitsufuku No. 05-12527 特開2007-32401号公報Japanese Unexamined Patent Publication No. 2007-32401
 しかし、従来の断熱空気層形成用の溝部を有する遮熱リングでは、内燃機関内での使用により溝部に起因する破損が生じることがある。 However, in the conventional heat shield ring having a groove for forming a heat insulating air layer, damage due to the groove may occur due to use in an internal combustion engine.
 本発明は、上記事情に鑑みてなされたものであり、溝部に起因する破損の生じにくいシリンダライナ用遮熱リングおよびこれを用いた内燃機関を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat shield ring for a cylinder liner, which is less likely to be damaged due to a groove, and an internal combustion engine using the same.
 上記課題は以下の本発明により達成される。すなわち、
 本発明のシリンダライナ用遮熱リングは、リング状部材を有し、リング状部材の周方向と直交する断面において、リング状部材の外周面は、リング状部材の軸方向と平行を成す平坦部と、平坦部よりもリング状部材の内周側に凹む溝部と、を含み、溝部の断面形状が、(1)2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、(2)第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、(3)円弧状の曲線のみから形成される第三の断面形状、および、(4)U字状の第四の断面形状、からなる群より選択されるいずれか1種以上であることを特徴とする。
The above object is achieved by the following invention. That is,
The heat shield ring for a cylinder liner of the present invention has a ring-shaped member, and in a cross section orthogonal to the circumferential direction of the ring-shaped member, the outer peripheral surface of the ring-shaped member is a flat portion parallel to the axial direction of the ring-shaped member. And a groove portion recessed on the inner peripheral side of the ring-shaped member from the flat portion, and the cross-sectional shape of the groove portion is formed only from (1) two straight lines and one corner portion which is an intersection of the two straight lines. The V-shaped first cross-sectional shape to be formed, (2) the second cross-sectional shape in which the vicinity of the corners in the first cross-sectional shape is rounded to form a curved line, and (3) the third formed only from the arc-shaped curve. It is characterized in that it is at least one selected from the group consisting of the cross-sectional shape of (4) U-shaped fourth cross-sectional shape.
 本発明のシリンダライナ用遮熱リングの一実施形態は、第一の断面形状および第二の断面形状において、2つの直線の成す角度が45度~160度であることが好ましい。 In one embodiment of the heat shield ring for a cylinder liner of the present invention, it is preferable that the angle formed by the two straight lines in the first cross-sectional shape and the second cross-sectional shape is 45 degrees to 160 degrees.
 本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(1)を満たすことが好ましい。
・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
〔式(1)中、Srはリング状部材の周方向と直交する断面における溝部の断面積(mm)を意味し、Drは溝部の最大溝深さ(mm)を意味し、Wrはリング状部材の軸方向における溝部の最大開口幅(mm)を意味する。〕
Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (1).
-Equation (1) 0.85 ≧ Sr / (Dr × Wr) ≧ 0.5
[In the formula (1), Sr means the cross-sectional area (mm 2 ) of the groove portion in the cross section orthogonal to the circumferential direction of the ring-shaped member, Dr means the maximum groove depth (mm) of the groove portion, and Wr means the ring. It means the maximum opening width (mm) of the groove portion in the axial direction of the shaped member. ]
 本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(2)を満たすことが好ましい。
・式(2) 0.41≧Dr/Wr
〔式(2)中、Drは溝部の最大溝深さ(mm)を意味し、Wrはリング状部材の軸方向における溝部の最大開口幅(mm)を意味する。〕
Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (2).
・ Equation (2) 0.41 ≧ Dr / Wr
[In the formula (2), Dr means the maximum groove depth (mm) of the groove portion, and Wr means the maximum opening width (mm) of the groove portion in the axial direction of the ring-shaped member. ]
 本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(3)を満たすことが好ましい。
・式(3) 0.57≧Dr/Tr
〔式(3)中、Drは溝部の最大溝深さ(mm)を意味し、Trはリング状部材の径方向厚み(mm)を意味する。〕
Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (3).
・ Equation (3) 0.57 ≧ Dr / Tr
[In the formula (3), Dr means the maximum groove depth (mm) of the groove portion, and Tr means the radial thickness (mm) of the ring-shaped member. ]
 本発明のシリンダライナ用遮熱リングの他の実施形態は、下式(4)を満たすことが好ましい。
・式(4) 0.55≧Fr/Hr
〔式(4)中、Frはリング状部材の軸方向における平坦部の長さ(mm)を意味し、Hrはリング状部材の軸方向高さ(mm)を意味する。〕
Another embodiment of the heat shield ring for a cylinder liner of the present invention preferably satisfies the following formula (4).
・ Equation (4) 0.55 ≧ Fr / Hr
[In the formula (4), Fr means the length (mm) of the flat portion in the axial direction of the ring-shaped member, and Hr means the axial height (mm) of the ring-shaped member. ]
 本発明のシリンダライナ用遮熱リングの他の実施形態は、リング状部材の内径が84mm~247mmであり、径方向厚みTrが1.5mm~8.0mmであり、軸方向高さHrが5.0mm~70.0mmであることが好ましい。 In another embodiment of the heat shield ring for a cylinder liner of the present invention, the inner diameter of the ring-shaped member is 84 mm to 247 mm, the radial thickness Tr is 1.5 mm to 8.0 mm, and the axial height Hr is 5. It is preferably 0.0 mm to 70.0 mm.
 本発明のシリンダライナ用遮熱リングの他の実施形態は、カーボンスクレーパリングであることが好ましい。 Another embodiment of the heat shield ring for the cylinder liner of the present invention is preferably carbon scraper ring.
 本発明の内燃機関は、円筒状部材を有し、円筒状部材の内周面が、円筒状部材の軸方向の一端側近傍の第一領域と、一端側近傍以外の第二領域とから構成され、第一領域における内径が、第二領域における内径よりも大きいシリンダライナと、リング状部材を有し、かつ、シリンダライナの第一領域に嵌合された遮熱リングと、を少なくとも備え、リング状部材の周方向と直交する断面において、リング状部材の外周面は、リング状部材の軸方向と平行を成す平坦部と、平坦部よりもリング状部材の内周側に凹む溝部と、を含み、溝部の断面形状が、(1)2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、(2)第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、(3)円弧状の曲線のみから形成される第三の断面形状、および、(4)U字状の第四の断面形状、からなる群より選択されるいずれか1種以上であることを特徴とする。 The internal combustion engine of the present invention has a cylindrical member, and the inner peripheral surface of the cylindrical member is composed of a first region near one end side in the axial direction of the cylindrical member and a second region other than near one end side. A cylinder liner having an inner diameter in the first region larger than the inner diameter in the second region and a heat shield ring having a ring-shaped member and fitted in the first region of the cylinder liner are provided at least. In the cross section orthogonal to the circumferential direction of the ring-shaped member, the outer peripheral surface of the ring-shaped member has a flat portion parallel to the axial direction of the ring-shaped member and a groove portion recessed on the inner peripheral side of the ring-shaped member from the flat portion. The cross-sectional shape of the groove is a V-shaped first cross-sectional shape formed only from (1) two straight lines and one corner that is the intersection of the two straight lines, (2) first. A second cross-sectional shape in which the vicinity of the corners of the cross-sectional shape is rounded to form a curved line, (3) a third cross-sectional shape formed only from an arcuate curve, and (4) a U-shaped fourth cross-sectional shape. It is characterized in that it is at least one kind selected from the group consisting of.
 本発明の内燃機関の一実施形態は、第二領域の内径よりも、リング状部材の内径の方が小さいことが好ましい。 In one embodiment of the internal combustion engine of the present invention, it is preferable that the inner diameter of the ring-shaped member is smaller than the inner diameter of the second region.
 本発明の内燃機関の他の実施形態は、ディーゼルエンジンであることが好ましい。 Another embodiment of the internal combustion engine of the present invention is preferably a diesel engine.
 本発明によれば、溝部に起因する破損の生じにくいシリンダライナ用遮熱リングおよびこれを用いた内燃機関を提供することができる。 According to the present invention, it is possible to provide a heat shield ring for a cylinder liner, which is less likely to be damaged due to a groove, and an internal combustion engine using the same.
本実施形態のシリンダライナ用遮熱リングの一例および本実施形態の内燃機関の一例を示す模式断面図である。It is a schematic sectional drawing which shows an example of the heat shield ring for a cylinder liner of this embodiment, and an example of an internal combustion engine of this embodiment. 本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。It is a schematic sectional drawing which shows the other example of the heat shield ring for a cylinder liner of this embodiment, and another example of the internal combustion engine of this embodiment. 本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。It is a schematic sectional drawing which shows the other example of the heat shield ring for a cylinder liner of this embodiment, and another example of the internal combustion engine of this embodiment. 本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。It is a schematic sectional drawing which shows the other example of the heat shield ring for a cylinder liner of this embodiment, and another example of the internal combustion engine of this embodiment. 従来の断面方形状の溝部が設けられたシリンダライナ用遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、図5(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、図5(B)は、図5(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図であり、図5(C)は、図5(A)に示す遮熱リングの応力分布を示す図である。It is a figure which shows an example of the analysis result which simulated the stress distribution and the temperature distribution in the heat shield ring for a cylinder liner provided with the groove part of the conventional rectangular cross section. Here, FIG. 5 (A) is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis, and FIG. 5 (B) is the temperature of the heat shield ring and the cylinder liner shown in FIG. 5 (A). It is a figure which shows the distribution, and FIG. 5C is a figure which shows the stress distribution of the heat shield ring shown in FIG. 5A. 本実施形態のシリンダライナ用遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、図6(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、図6(B)は、図6(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図であり、図6(C)は、図6(A)に示す遮熱リングの応力分布を示す図である。It is a figure which shows an example of the analysis result which simulated the stress distribution and the temperature distribution in the heat shield ring for a cylinder liner of this embodiment. Here, FIG. 6A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis, and FIG. 6B is the temperature of the heat shield ring and the cylinder liner shown in FIG. 6A. It is a figure which shows the distribution, and FIG. 6C is a figure which shows the stress distribution of the heat shield ring shown in FIG. 6A. 溝部が設けられていない遮熱リングにおける温度分布をシミュレーションした解析結果の一例を示す図である。ここで、図7(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、図7(B)は、図7(A)に示す遮熱リングおよびシリンダライナの温度分布を示す図である。It is a figure which shows an example of the analysis result which simulated the temperature distribution in the heat shield ring which does not provide a groove part. Here, FIG. 7A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used for the simulation analysis, and FIG. 7B is the temperature of the heat shield ring and the cylinder liner shown in FIG. 7A. It is a figure which shows the distribution. 第一の断面形状を有する溝部の一例を示す拡大断面図である。It is an enlarged cross-sectional view which shows an example of the groove part which has the first cross-sectional shape. 第二の断面形状を有する溝部の一例を示す拡大断面図である。It is an enlarged cross-sectional view which shows an example of the groove part which has the 2nd cross-sectional shape. 第三の断面形状を有する溝部の一例を示す拡大断面図である。ここで、図10(A)は、溝部の断面形状が半円状の円弧である場合について示す図であり、図10(B)は、溝部の断面形状が半円状の円弧よりもより緩く湾曲した円弧である場合について示す図である。It is an enlarged cross-sectional view which shows an example of the groove part which has a 3rd cross-sectional shape. Here, FIG. 10A is a diagram showing a case where the cross-sectional shape of the groove portion is a semicircular arc, and FIG. 10B is a diagram in which the cross-sectional shape of the groove portion is looser than the semicircular arc. It is a figure which shows the case of a curved arc. 第四の断面形状を有する溝部の一例を示す拡大断面図である。It is an enlarged cross-sectional view which shows an example of the groove part which has the 4th cross-sectional shape. 本実施形態のシリンダライナ用遮熱リングの他の例および本実施形態の内燃機関の他の例を示す模式断面図である。It is a schematic sectional drawing which shows the other example of the heat shield ring for a cylinder liner of this embodiment, and another example of the internal combustion engine of this embodiment.
<シリンダライナ用遮熱リング>
 図1~図4は、本実施形態のシリンダライナ用遮熱リング(以下、「遮熱リング」と略す)の一例を示す模式断面図であり、遮熱リングの周方向と直交する断面の構造について示す図である。なお、図1~図4は、遮熱リングが、シリンダライナの燃焼室側の端部近傍の内周面に装着された状態について示してある。また、図1~図4およびその他の図面に示すY方向は、遮熱リングおよびシリンダライナの軸方向と平行な方向を意味し、Y方向と直交するX方向は、遮熱リングおよびシリンダライナの径方向と平行な方向を意味する。
<Heat shield ring for cylinder liner>
1 to 4 are schematic cross-sectional views showing an example of a heat shield ring for a cylinder liner (hereinafter, abbreviated as “heat shield ring”) of the present embodiment, and have a cross-sectional structure orthogonal to the circumferential direction of the heat shield ring. It is a figure which shows about. 1 to 4 show a state in which the heat shield ring is mounted on the inner peripheral surface near the end of the cylinder liner on the combustion chamber side. Further, the Y direction shown in FIGS. 1 to 4 and other drawings means a direction parallel to the axial direction of the heat shield ring and the cylinder liner, and the X direction orthogonal to the Y direction is the heat shield ring and the cylinder liner. It means the direction parallel to the radial direction.
 図1~図4に示す遮熱リング10は、リング状部材20を有し、リング状部材20の周方向と直交する断面(図中の紙面)において、リング状部材20の外周面30は、リング状部材20の軸方向と平行を成す平坦部32と、平坦部32よりもリング状部材20の内周側に凹む溝部34と、を含む。 The heat shield ring 10 shown in FIGS. 1 to 4 has a ring-shaped member 20, and the outer peripheral surface 30 of the ring-shaped member 20 has a cross section (paper surface in the drawing) orthogonal to the circumferential direction of the ring-shaped member 20. It includes a flat portion 32 that is parallel to the axial direction of the ring-shaped member 20, and a groove portion 34 that is recessed on the inner peripheral side of the ring-shaped member 20 with respect to the flat portion 32.
 図1~4に示す例では、遮熱リング10は、シリンダライナ102の燃焼室側の端部近傍の内周面130A(第一領域)に装着されている。このため、外周面30のうち、平坦部32は、シリンダライナ102の内周面130Aと接触している。また、図1~図4に示す例では、2つの溝部34と、3つの平坦部32とが設けられており、2つの平坦部32の間に1つの溝部34が位置している。さらに、図1~図4に示す例では、外周面30には、軸方向の両端側に切り欠き部(面取り部)38も設けられている。但し、切り欠き部(面取り部)38は省略することもできる。なお、溝部34は、遮熱リング10の周方向に対して連続的に設けられていることが好ましいが、非連続的に設けられていてもよい。また、溝部34を遮熱リング10の周方向に対して連続的に設ける場合、溝部34が周方向と平行を成すように連続的に設けてもよく、溝部34が周方向に対して交差することで一定の角度(たとえば、0度を超え30度以下の角度)を成すように連続的に設けてもよい。 In the examples shown in FIGS. 1 to 4, the heat shield ring 10 is mounted on the inner peripheral surface 130A (first region) near the end of the cylinder liner 102 on the combustion chamber side. Therefore, of the outer peripheral surface 30, the flat portion 32 is in contact with the inner peripheral surface 130A of the cylinder liner 102. Further, in the examples shown in FIGS. 1 to 4, two groove portions 34 and three flat portions 32 are provided, and one groove portion 34 is located between the two flat portions 32. Further, in the examples shown in FIGS. 1 to 4, the outer peripheral surface 30 is also provided with notches (chamfered portions) 38 on both end sides in the axial direction. However, the notch portion (chamfered portion) 38 may be omitted. The groove portion 34 is preferably provided continuously with respect to the circumferential direction of the heat shield ring 10, but may be provided discontinuously. Further, when the groove portion 34 is continuously provided in the circumferential direction of the heat shield ring 10, the groove portion 34 may be continuously provided so as to be parallel to the circumferential direction, and the groove portions 34 intersect with each other in the circumferential direction. Therefore, it may be continuously provided so as to form a constant angle (for example, an angle exceeding 0 degrees and 30 degrees or less).
 ここで、図1に示す遮熱リング10A(10)の外周面30には、2つの直線と、2つの直線の交点となる1つの角部とのみから形成されるV字状の断面形状(第一の断面形状)を有する溝部34A(34)が設けられており、図2に示す遮熱リング10B(10)の外周面30には、第一の断面形状における角部近傍を丸めて曲線とした断面形状(第二の断面形状)を有する溝部34B(34)が設けられている。 Here, the outer peripheral surface 30 of the heat shield ring 10A (10) shown in FIG. 1 has a V-shaped cross-sectional shape formed only by two straight lines and one corner portion which is an intersection of the two straight lines. A groove portion 34A (34) having a first cross-sectional shape) is provided, and the outer peripheral surface 30 of the heat shield ring 10B (10) shown in FIG. 2 is curved by rounding the vicinity of the corner portion in the first cross-sectional shape. A groove portion 34B (34) having a cross-sectional shape (second cross-sectional shape) is provided.
 また、図3に示す遮熱リング10C(10)の外周面30には、円弧状の曲線のみから形成される断面形状(第三の断面形状)を有する溝部34C(34)が設けられており、図4に示す遮熱リング10D(10)の外周面30には、U字状の断面形状(第四の断面形状)を有する溝部34D(34)が設けられている。なお、図1~図4に示す遮熱リング10においては、溝部34は、リング状部材20の軸方向に対して一定の間隔(Fr2)を設けて配置されている。しかしながら、軸方向に隣り合う2つの溝部34の間隔(Fr2)を極力小さくして、多数の溝部34を鋸刃状に設けてもよい。 Further, the outer peripheral surface 30 of the heat shield ring 10C (10) shown in FIG. 3 is provided with a groove portion 34C (34) having a cross-sectional shape (third cross-sectional shape) formed only by an arcuate curve. , The outer peripheral surface 30 of the heat shield ring 10D (10) shown in FIG. 4 is provided with a groove portion 34D (34) having a U-shaped cross-sectional shape (fourth cross-sectional shape). In the heat shield ring 10 shown in FIGS. 1 to 4, the groove portions 34 are arranged at regular intervals (Fr2) with respect to the axial direction of the ring-shaped member 20. However, the distance (Fr2) between the two groove portions 34 adjacent to each other in the axial direction may be made as small as possible, and a large number of groove portions 34 may be provided in a saw blade shape.
 本実施形態の遮熱リング10においては、外周面30に設けられる溝部34の断面形状が、上述した第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種以上であればよい。たとえば、外周面30に設けられる溝部34の数が1つのみであれば、溝部34の断面形状は、第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種である。また、外周面30に設けられる溝部34の数が2つ以上であれば、溝部34の断面形状は、(a)図1~図4に例示したように、溝部34の断面形状は、第一の断面形状、第二の断面形状、第三の断面形状および第四の断面形状からなる群より選択されるいずれか1種のみであってもよく、(b)2種類以上を組み合わせたものであってもよい。 In the heat shield ring 10 of the present embodiment, the cross-sectional shape of the groove portion 34 provided on the outer peripheral surface 30 is based on the above-mentioned first cross-sectional shape, second cross-sectional shape, third cross-sectional shape, and fourth cross-sectional shape. Any one or more selected from the group may be used. For example, if the number of the groove portions 34 provided on the outer peripheral surface 30 is only one, the cross-sectional shapes of the groove portions 34 are the first cross-sectional shape, the second cross-sectional shape, the third cross-sectional shape, and the fourth cross-sectional shape. It is any one selected from the group consisting of. Further, when the number of the groove portions 34 provided on the outer peripheral surface 30 is two or more, the cross-sectional shape of the groove portions 34 is the first as illustrated in FIGS. 1 to 4 (a). It may be only one kind selected from the group consisting of the cross-sectional shape, the second cross-sectional shape, the third cross-sectional shape and the fourth cross-sectional shape, and (b) a combination of two or more kinds. There may be.
 第一~第四の断面形状から選択されるいずれかの断面形状を有する溝部34は、特許文献1,2に例示される従来の遮熱リングの外周面に設けられた断面方形状の溝部と比べて、遮熱リングの破損を招きにくい。以下にその理由について説明する。 The groove portion 34 having any of the cross-sectional shapes selected from the first to fourth cross-sectional shapes is the groove portion having a rectangular cross-sectional shape provided on the outer peripheral surface of the conventional heat shield ring exemplified in Patent Documents 1 and 2. In comparison, the heat shield ring is less likely to be damaged. The reason will be explained below.
 まず、内燃機関の稼働時においては遮熱リングの内周面には筒内圧が作用する。このため、遮熱リングには、遮熱リングの内周側から外周側へと向かう強い力が作用する。それゆえ、遮熱リングの外周面に断熱用空気層を形成するために溝部が設けられていると、当該溝部やその近傍で局所的な応力集中が生じやすくなることは避け難い。 First, when the internal combustion engine is operating, the intracranial pressure acts on the inner peripheral surface of the heat shield ring. Therefore, a strong force acts on the heat shield ring from the inner peripheral side to the outer peripheral side of the heat shield ring. Therefore, if a groove is provided on the outer peripheral surface of the heat shield ring to form a heat insulating air layer, it is unavoidable that local stress concentration is likely to occur in or near the groove.
 そこで、本発明者らは、従来の断面方形状の溝部が設けられた遮熱リングにおいて、溝部に起因した破損が生じやすい原因を検討すべく、遮熱リング断面の応力分布について検討した。図5は、従来の断面方形状の溝部が設けられた遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。 Therefore, the present inventors examined the stress distribution in the cross section of the heat shield ring in order to investigate the cause of the tendency of damage caused by the groove in the conventional heat shield ring provided with the groove portion having a rectangular cross section. FIG. 5 is a diagram showing an example of an analysis result simulating a stress distribution and a temperature distribution in a conventional heat shield ring provided with a groove having a rectangular cross section.
 ここで、図5(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図である。図5(A)では、遮熱リング12がシリンダライナ102の内周面130Aに装着された状態を示している。図5(A)に示す遮熱リング12の外周面30には、図1~図4に示す2つの溝部34の代わりに断面方形状の2つの溝部36が設けられており、溝部36以外の遮熱リング12の各部の寸法形状については後述する図6(A)に示す遮熱リング10Bと同様である。また、図5(C)は、図5(A)に示す遮熱リング12の応力分布を示す図であり、図5(B)は、図5(A)に示す遮熱リング12およびシリンダライナ102の温度分布を示す図である。 Here, FIG. 5A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used in the simulation analysis. FIG. 5A shows a state in which the heat shield ring 12 is mounted on the inner peripheral surface 130A of the cylinder liner 102. The outer peripheral surface 30 of the heat shield ring 12 shown in FIG. 5A is provided with two groove portions 36 having a rectangular cross section instead of the two groove portions 34 shown in FIGS. 1 to 4, and other than the groove portions 36. The dimensions and shape of each part of the heat shield ring 12 are the same as those of the heat shield ring 10B shown in FIG. 6A, which will be described later. 5 (C) is a diagram showing the stress distribution of the heat shield ring 12 shown in FIG. 5 (A), and FIG. 5 (B) is a diagram showing the heat shield ring 12 and the cylinder liner shown in FIG. 5 (A). It is a figure which shows the temperature distribution of 102.
 なお、図5(A)に示す遮熱リング12およびシリンダライナ102では、主要部の寸法を以下のように設定した。なお、寸法形状に関しては、図5(A)と後述する図6(A)とでは、溝部36と溝部34Bとの寸法形状のみが異なり、図5(A)および後述する図6(A)と、後述する図7(A)とでは、溝部36,34Bの有無のみが異なる。
・遮熱リング12を構成するリング状部材の径方向厚み:2.3mm
・遮熱リング12を構成するリング状部材の軸方向高さ:9.9mm
・リング状部材の軸方向における溝部36の最大開口幅:3.15mm
・溝部36の最大溝深さ:0.5mm
・シリンダライナ102を構成する円筒状部材(但し、第一領域130Aに対応する部分)の径方向厚み2.7mm
・シリンダライナ102を構成する円筒状部材(但し、第一領域130Aに対応する部分)の軸方向長さ9.9mm
In the heat shield ring 12 and the cylinder liner 102 shown in FIG. 5A, the dimensions of the main part are set as follows. Regarding the dimensional shape, only the dimensional shape of the groove portion 36 and the groove portion 34B is different between FIG. 5 (A) and FIG. 6 (A) described later, and it is different from FIG. 5 (A) and FIG. 6 (A) described later. , Only the presence or absence of the groove portions 36 and 34B is different from FIG. 7A described later.
-Diametric thickness of the ring-shaped member constituting the heat shield ring 12: 2.3 mm
Axial height of the ring-shaped member constituting the heat shield ring 12: 9.9 mm
-Maximum opening width of the groove 36 in the axial direction of the ring-shaped member: 3.15 mm
-Maximum groove depth of groove 36: 0.5 mm
-The radial thickness of the cylindrical member (however, the portion corresponding to the first region 130A) constituting the cylinder liner 102 is 2.7 mm.
-The axial length of the cylindrical member (however, the portion corresponding to the first region 130A) constituting the cylinder liner 102 is 9.9 mm.
 図5に示すシミュレーション解析は、市販の強度及び熱解析ソフトを用いて実施した。シミュレーション解析に際しては、遮熱リング12およびシリンダライナ102の材質を鋳鉄(FC250)と想定し、また、内燃機関における一般的な筒内圧および燃焼熱が遮熱リング12の内周側から作用し、かつ、周囲温度は室温を想定した条件下にて実施した。ここで、図5(C)中、白~黒で示される階調表示は応力の大きさを意味し、白いほど応力が大きく、黒いほど応力が小さいことを意味する。なお、図5(B)の解説については後述する。また、図5(A)および図5(B)において、遮熱リング12の断面よりも奥側については描写を省略してある。 The simulation analysis shown in FIG. 5 was carried out using commercially available strength and thermal analysis software. In the simulation analysis, the material of the heat shield ring 12 and the cylinder liner 102 is assumed to be cast iron (FC250), and the general in-cylinder pressure and combustion heat in the internal combustion engine act from the inner peripheral side of the heat shield ring 12. Moreover, the ambient temperature was carried out under the condition assuming room temperature. Here, in FIG. 5C, the gradation display shown in white to black means the magnitude of stress, the whiter the stress, the larger the stress, and the blacker the stress, the smaller the stress. The explanation of FIG. 5B will be described later. Further, in FIGS. 5 (A) and 5 (B), the description of the back side of the heat shield ring 12 is omitted.
 図5(C)から明らかなように、断面方形状の溝部36の2つの角部36Cおよび溝部底面36Bの中央部において、極めて強い応力が作用する層(図中の最も白い部分)と微弱な応力が作用する層(図中の最も黒い部分)とが直接接触して形成される界面(応力集中部)が存在することを確認した。このような応力集中部は、界面の一方側と他方側とにそれぞれ作用する応力の強さが極端に異なる。このため、応力集中部が遮熱リング12の破壊を生じさせる原因になると推定される。 As is clear from FIG. 5 (C), in the central portion of the two corner portions 36C and the groove portion bottom surface 36B of the groove portion 36 having a rectangular cross section, a layer (whitest portion in the figure) on which extremely strong stress acts and a weak portion are weak. It was confirmed that there is an interface (stress concentration part) formed by direct contact with the stressed layer (blackest part in the figure). In such a stress concentration portion, the strength of the stress acting on one side and the other side of the interface is extremely different. Therefore, it is presumed that the stress concentration portion causes the heat shield ring 12 to break.
 上述した知見を踏まえれば、溝部の断面形状において、(a)応力集中部の発生原因となる角部36Cの数を減らすあるいは無くすこと、および、(b)応力集中部の発生原因となる溝部底面36Bの中央部を、内周方向に凸を成すアーチ状あるいはV字状に形成することで溝部底面36Bの中央部に局所的に作用する強い応力を周囲に分散させること、が重要であると考えられる。そこで、本発明者らは、図1~図4に例示する溝部34を有する本実施形態の遮熱リング10を見出した。ここで、第一の断面形状を有する溝部34Aは、角部の数が1つであり、溝部34Aの底面の中央部はV字状となっている。また、第二~第四の断面形状を有する溝部34B、34C、34Dは、角部36Cが存在せず、溝部34B、34C、34Dの溝部底面の中央部は内周方向に凸を成すように湾曲した曲線から構成されるアーチ状となっている。 Based on the above findings, in the cross-sectional shape of the groove, (a) the number of corners 36C that cause the stress concentration part is reduced or eliminated, and (b) the bottom surface of the groove that causes the stress concentration part is generated. It is important to disperse the strong stress that acts locally on the central part of the groove bottom surface 36B by forming the central part of the 36B in an arch shape or a V shape that is convex in the inner peripheral direction. Conceivable. Therefore, the present inventors have found the heat shield ring 10 of the present embodiment having the groove portion 34 exemplified in FIGS. 1 to 4. Here, the groove portion 34A having the first cross-sectional shape has one corner portion, and the central portion of the bottom surface of the groove portion 34A is V-shaped. Further, the groove portions 34B, 34C, 34D having the second to fourth cross-sectional shapes do not have the corner portions 36C, and the central portion of the groove portion bottom surface of the groove portions 34B, 34C, 34D is convex in the inner peripheral direction. It has an arch shape composed of curved curves.
 図6は、本実施形態の遮熱リングにおける応力分布および温度分布をシミュレーションした解析結果の一例を示す図である。ここで、図6(A)は、シミュレーション解析に用いた遮熱リングの断面形状を示す断面図であり、各部の寸法を所定の値に設定した以外は図2に示す遮熱リング10Bと実質同一の断面図である。また、図6(C)は、図6(A)に示す遮熱リング10Bの応力分布を示す図であり、図6(B)は、図6(A)に示す遮熱リング10Bおよびシリンダライナ102の温度分布を示す図である。図6に示すシミュレーション解析は、遮熱リング10Bの溝部34Bと遮熱リング12の溝部36とにおける断面形状が異なる以外は、図5に示すシミュレーション解析と同条件にて実施した。すなわち、筒内圧がシリンダライナ102側へと伝達されるシリンダライナ102と遮熱リング10B、12との接触部(平坦部32)の位置・数・面積は、遮熱リング10Bと遮熱リング12とでは同一となっている。また、溝部34Bおよび溝部36の最大開口幅と最大溝深さも同一である。それゆえ、図5(C)と図6(C)とにおける応力分布の違いは、実質的に遮熱リング10Bの溝部34Bと遮熱リング12の溝部36とにおける断面形状の違いに起因すると考えられる。なお、図6(B)の解説については後述する。また、図6(A)および図6(B)において、遮熱リング10Bの断面よりも奥側については描写を省略してある。 FIG. 6 is a diagram showing an example of analysis results simulating the stress distribution and the temperature distribution in the heat shield ring of the present embodiment. Here, FIG. 6A is a cross-sectional view showing the cross-sectional shape of the heat shield ring used in the simulation analysis, and is substantially the same as the heat shield ring 10B shown in FIG. 2 except that the dimensions of each part are set to predetermined values. It is the same sectional view. 6 (C) is a diagram showing the stress distribution of the heat shield ring 10B shown in FIG. 6 (A), and FIG. 6 (B) is a diagram showing the heat shield ring 10B and the cylinder liner shown in FIG. 6 (A). It is a figure which shows the temperature distribution of 102. The simulation analysis shown in FIG. 6 was carried out under the same conditions as the simulation analysis shown in FIG. 5, except that the cross-sectional shapes of the groove portion 34B of the heat shield ring 10B and the groove portion 36 of the heat shield ring 12 were different. That is, the positions, numbers, and areas of the contact portions (flat portions 32) between the cylinder liner 102 and the heat shield rings 10B and 12 at which the cylinder internal pressure is transmitted to the cylinder liner 102 side are the heat shield ring 10B and the heat shield ring 12. Is the same as. Further, the maximum opening width and the maximum groove depth of the groove portion 34B and the groove portion 36 are also the same. Therefore, it is considered that the difference in stress distribution between FIGS. 5 (C) and 6 (C) is substantially due to the difference in cross-sectional shape between the groove portion 34B of the heat shield ring 10B and the groove portion 36 of the heat shield ring 12. Be done. The explanation of FIG. 6B will be described later. Further, in FIGS. 6A and 6B, the description on the back side of the heat shield ring 10B is omitted.
 なお、図6(A)に示す遮熱リング10Bでは、遮熱リング10Bの主要部の寸法を以下のように設定した。また、シリンダライナ102の主要部の寸法は、図5(A)と同一に設定した。なお、溝部34Bの断面形状は、溝部34Bの底面中央部を通りかつリング状部材20の径方向と平行を成す直線に対して線対称を成している。
・遮熱リング10Bを構成するリング状部材20の径方向厚み:2.3mm
・遮熱リング10Bを構成するリング状部材20の軸方向高さ:9.9mm
・リング状部材20の軸方向における溝部34Bの最大開口幅:3.15mm
・溝部34Bの最大溝深さ:0.5mm
・溝部34Bの底面中央近傍の曲線の曲率半径:1.0mm
In the heat shield ring 10B shown in FIG. 6A, the dimensions of the main part of the heat shield ring 10B are set as follows. Further, the dimensions of the main part of the cylinder liner 102 were set to be the same as those in FIG. 5 (A). The cross-sectional shape of the groove portion 34B is line-symmetric with respect to a straight line that passes through the central portion of the bottom surface of the groove portion 34B and is parallel to the radial direction of the ring-shaped member 20.
The radial thickness of the ring-shaped member 20 constituting the heat shield ring 10B: 2.3 mm.
Axial height of the ring-shaped member 20 constituting the heat shield ring 10B: 9.9 mm
-Maximum opening width of the groove 34B in the axial direction of the ring-shaped member 20: 3.15 mm
-Maximum groove depth of groove 34B: 0.5 mm
-Radius of curvature of the curve near the center of the bottom surface of the groove 34B: 1.0 mm
 図6(C)から明らかなように、本実施形態の遮熱リング10Bにおいても応力分布は存在するものの、図5(C)に示されるような顕著な応力集中部は確認されなかった。この結果は、図5に示す溝部36よりも、図1~図4に示す溝部34A、34B、34C、34Dの方が、溝部に起因する破損が生じにくいことを裏付けるものである。 As is clear from FIG. 6 (C), although the stress distribution exists also in the heat shield ring 10B of the present embodiment, the remarkable stress concentration portion as shown in FIG. 5 (C) was not confirmed. This result confirms that the groove portions 34A, 34B, 34C, and 34D shown in FIGS. 1 to 4 are less likely to be damaged due to the groove portion than the groove portion 36 shown in FIG.
 なお、溝部とシリンダライナとで囲まれた空間(断熱空気層)は、熱伝導性の極めて低い気体(空気、燃焼ガスあるいはその混合ガス)で満たされるため、断熱空気層が、遮熱リングによる断熱性の発揮に大きく寄与する。この点を踏まえれば、断熱空気層の容積が大きい方が断熱性の向上にはより有利であると考えられる。しかしながら、本発明者らが、断熱空気層の容積と、遮熱リングの断熱性との関係について検討したところ、断熱空気層の容積を単純に増大させても、断熱性が大きく向上しない場合があることが判った。以下にその理由について説明する。 Since the space (insulated air layer) surrounded by the groove and the cylinder liner is filled with a gas having extremely low thermal conductivity (air, combustion gas or a mixed gas thereof), the insulated air layer is formed by a heat shield ring. It greatly contributes to the exertion of heat insulation. Based on this point, it is considered that a larger volume of the adiabatic air layer is more advantageous for improving the adiabatic property. However, when the present inventors examined the relationship between the volume of the heat insulating air layer and the heat insulating property of the heat shield ring, there are cases where the heat insulating property is not significantly improved even if the volume of the heat insulating air layer is simply increased. It turned out that there was. The reason will be explained below.
 図7は、溝部が設けられていない遮熱リングにおける温度分布をシミュレーションした解析結果の一例を示す図である。図7(A)では、遮熱リング14がシリンダライナ102の内周面130Aに装着された状態を示している。図7(A)に示す遮熱リング14は、外周面30に溝部が設けられていない点を除けば、材質や寸法形状において図5(A)に示す遮熱リング12および図6(A)に示す遮熱リング10Bと同一の部材である。また、図7(B)は、図7(A)に示す遮熱リング14およびシリンダライナ102の温度分布を示す図である。図7に示すシミュレーション解析は、遮熱リング14が溝部を有さない点を除けば、図5および図6に示すシミュレーション解析と同条件にて実施した。ここで、図5(B)、図6(B)および図7(B)中、白~黒で示される階調表示は温度の違いを意味し、白いほど温度が高く、黒いほど温度が低いことを意味する。 FIG. 7 is a diagram showing an example of analysis results simulating the temperature distribution in a heat shield ring having no groove. FIG. 7A shows a state in which the heat shield ring 14 is mounted on the inner peripheral surface 130A of the cylinder liner 102. The heat shield ring 14 shown in FIG. 7 (A) has the heat shield ring 12 and FIG. 6 (A) shown in FIG. 5 (A) in terms of material and dimensional shape, except that the outer peripheral surface 30 is not provided with a groove. It is the same member as the heat shield ring 10B shown in 1. Further, FIG. 7B is a diagram showing the temperature distribution of the heat shield ring 14 and the cylinder liner 102 shown in FIG. 7A. The simulation analysis shown in FIG. 7 was performed under the same conditions as the simulation analysis shown in FIGS. 5 and 6 except that the heat shield ring 14 does not have a groove. Here, in FIGS. 5 (B), 6 (B), and 7 (B), the gradation display shown by white to black means the difference in temperature, and the whiter the temperature, the higher the temperature, and the blacker the temperature, the lower the temperature. Means that.
 なお、図7(A)に示す遮熱リング14では、遮熱リング14の主要部の寸法を以下のように設定した。また、シリンダライナ102の主要部の寸法は、図5(A)と同一に設定した。
・遮熱リング14を構成するリング状部材20の径方向厚み:2.3mm
・遮熱リング14を構成するリング状部材20の軸方向高さ:9.9mm
In the heat shield ring 14 shown in FIG. 7A, the dimensions of the main part of the heat shield ring 14 are set as follows. Further, the dimensions of the main part of the cylinder liner 102 were set to be the same as those in FIG. 5 (A).
The radial thickness of the ring-shaped member 20 constituting the heat shield ring 14: 2.3 mm.
Axial height of the ring-shaped member 20 constituting the heat shield ring 14: 9.9 mm
 図7(B)から明らかなように、溝部を有さない遮熱リング14では、燃焼室側から遮熱リング14を経てシリンダライナ102へと、熱がスムーズに伝達されている。すなわち、溝部を有さない遮熱リング14では、断熱効果は殆ど無い。 As is clear from FIG. 7B, in the heat shield ring 14 having no groove, heat is smoothly transferred from the combustion chamber side to the cylinder liner 102 via the heat shield ring 14. That is, the heat shield ring 14 having no groove has almost no heat insulating effect.
 また、図5(B)および図6(B)をさらに参照すると、遮熱リング10B、12では、溝部34B、36(断熱空気層)の存在により、遮熱リング10B、12自体は、遮熱リング14と比べて高温になっている。しかしながら、これにより、シリンダライナ102側の温度はより低温となっている。ここで、遮熱リング10Bと遮熱リング12とを比べると、遮熱リング12よりも遮熱リング10Bの方が若干断熱性に劣るものの、遮熱リング14を基準とした場合、遮熱リング10Bと遮熱リング12との断熱性には顕著な差が無いことが判る。 Further, referring to FIGS. 5 (B) and 6 (B), in the heat shield rings 10B and 12, the heat shield rings 10B and 12 themselves are heat shielded due to the presence of the groove portions 34B and 36 (insulated air layer). The temperature is higher than that of the ring 14. However, due to this, the temperature on the cylinder liner 102 side becomes lower. Here, comparing the heat shield ring 10B and the heat shield ring 12, the heat shield ring 10B is slightly inferior in heat insulating property to the heat shield ring 12, but when the heat shield ring 14 is used as a reference, the heat shield ring is used as a reference. It can be seen that there is no significant difference in the heat insulating properties between the 10B and the heat shield ring 12.
 一方、遮熱リング10Bに設けられた溝部34Bと遮熱リング12に設けられた溝部36とでは、最大開口幅、最大溝深さおよび溝部の数において同一であり、両者の差は、溝部の断面形状およびこれに起因する断面積(断熱空気層の容積)のみである。そして溝部34Bの断面積(断熱空気層の容積)は、溝部36の断面積(断熱空気層の容積)の約1/2である。すなわち、図5(B)、図6(B)および図7(B)に示すシミュレーション解析結果からは、必ずしも断熱空気層の容積に単純に比例して断熱性が向上するとは言えない場合もあることが判る。また、これらの結果からは、断熱性は、断熱空気層の容積よりも溝部34B、36の最大開口幅、言い換えれば、遮熱リング10B、12からシリンダライナ102側への熱伝導の経路となる平坦部32の断面長さに実質的に大きく依存していると考えられる。 On the other hand, the groove portion 34B provided in the heat shield ring 10B and the groove portion 36 provided in the heat shield ring 12 are the same in the maximum opening width, the maximum groove depth and the number of groove portions, and the difference between the two is that of the groove portion. Only the cross-sectional shape and the resulting cross-sectional area (volume of the adiabatic air layer). The cross-sectional area of the groove portion 34B (volume of the adiabatic air layer) is about ½ of the cross-sectional area of the groove portion 36 (volume of the adiabatic air layer). That is, from the simulation analysis results shown in FIGS. 5 (B), 6 (B), and 7 (B), it may not always be possible to say that the heat insulating property is simply improved in proportion to the volume of the insulated air layer. It turns out. Further, from these results, the heat insulating property is the maximum opening width of the grooves 34B and 36 rather than the volume of the heat insulating air layer, in other words, the heat conduction path from the heat shield rings 10B and 12 to the cylinder liner 102 side. It is considered that the cross-sectional length of the flat portion 32 is substantially dependent on the cross-sectional length.
 ここで、断面方形状の溝部36と、第一~第四の断面形状を有する溝部34A,34B、34C、34Dとが同一の最大開口幅および最大溝深さを有する場合、溝部36よりも溝部34A,34B、34C、34Dの方が断面積(断熱空気層の容積)はより小さく、また、断面積が小さくなった分だけ遮熱リング10を構成する材質部分(実肉部)が増えることになる。 Here, when the groove portion 36 having a rectangular cross-sectional shape and the groove portions 34A, 34B, 34C, and 34D having the first to fourth cross-sectional shapes have the same maximum opening width and maximum groove depth, the groove portion is more than the groove portion 36. The cross-sectional area (volume of the adiabatic air layer) of 34A, 34B, 34C, and 34D is smaller, and the material portion (actual meat portion) constituting the heat shield ring 10 increases as the cross-sectional area becomes smaller. become.
 これらのことからは、第一~第四の断面形状を有する溝部34A,34B、34C、34Dは、同一の最大開口幅および最大溝深さを有する断面方形状の溝部36を基準とした場合、(a)溝部36と概ね同程度の断熱効果を発揮しつつも、(b)溝部36に対して溝部の断面形状の違いに由来する遮熱リング10の強度向上効果に加えて、(c)溝部36に対して実肉部の増大による遮熱リング10の強度向上効果も有すると考えられる。 From these facts, the groove portions 34A, 34B, 34C, and 34D having the first to fourth cross-sectional shapes are based on the groove portion 36 having the same maximum opening width and maximum groove depth and having a rectangular cross-sectional shape. (A) While exhibiting a heat insulating effect almost the same as that of the groove portion 36, in addition to the effect of (b) improving the strength of the heat shield ring 10 due to the difference in the cross-sectional shape of the groove portion with respect to the groove portion 36, (c). It is considered that the heat shield ring 10 also has an effect of improving the strength of the heat shield ring 10 by increasing the actual meat portion with respect to the groove portion 36.
 次に、本実施形態の遮熱リング10のより好適な形態について説明する。 Next, a more preferable form of the heat shield ring 10 of the present embodiment will be described.
 図8は、第一の断面形状を有する溝部34Aの一例を示す拡大断面図であり、図9は、第二の断面形状を有する溝部34Bの一例を示す拡大断面図である。溝部34Aの断面形状は、2つの直線40A,40Bと、これら2つの直線40A、40Bの交点となる1つの角部42とのみから形成されるV字状の断面形状であり、溝部34Bは、溝部34Aの断面形状における角部42近傍を丸めて曲線44とした断面形状である。 FIG. 8 is an enlarged cross-sectional view showing an example of the groove portion 34A having the first cross-sectional shape, and FIG. 9 is an enlarged cross-sectional view showing an example of the groove portion 34B having the second cross-sectional shape. The cross-sectional shape of the groove portion 34A is a V-shaped cross-sectional shape formed only by two straight lines 40A and 40B and one corner portion 42 which is an intersection of these two straight lines 40A and 40B. It is a cross-sectional shape in which the vicinity of the corner portion 42 in the cross-sectional shape of the groove portion 34A is rounded to form a curved line 44.
 ここで、2つの直線40A、40Bの成す角度θ1は、2つの直線40A、40Bの成す形状がV字状である限りは特に制限されないが、45度~160度であることが好ましく、90度~160度であることがより好ましく、120度~150度であることがさらに好ましく、135度~145度が特に好ましい。角度θ1が45度未満において遮熱リング10A、10Bの断熱性を十分に確保するためには、(a)リング状部材20の単位軸方向高さ当たりの外周面30に設ける溝部34A、34Bの数を増やすか、あるいは、(b)溝部34A、34Bの最大溝深さDrおよび最大開口幅Wrをより大きくする必要がある。しかし、(a)前者の場合、遮熱リング10A、10Bの製造に際して、溝部34A、34Bの加工がより煩雑になる。また、(b)後者の場合、実肉部が大幅に減少するため、遮熱リング10A、10Bの強度が低下し易くなる場合がある。また、角度θ1が160度を超える場合は、最大開口幅Wrに対して相対的に断熱空気層の厚みが極端に薄くなるため、遮熱リング10A、10Bの断熱性が低下し易くなる場合がある。 Here, the angle θ1 formed by the two straight lines 40A and 40B is not particularly limited as long as the shape formed by the two straight lines 40A and 40B is V-shaped, but is preferably 45 degrees to 160 degrees, preferably 90 degrees. It is more preferably about 160 degrees, further preferably 120 degrees to 150 degrees, and particularly preferably 135 degrees to 145 degrees. In order to sufficiently secure the heat insulating properties of the heat shield rings 10A and 10B when the angle θ1 is less than 45 degrees, (a) the groove portions 34A and 34B provided on the outer peripheral surface 30 per the unit axial height of the ring-shaped member 20. It is necessary to increase the number or (b) increase the maximum groove depth Dr and the maximum opening width Wr of the groove portions 34A and 34B. However, in the case of (a) the former, the processing of the groove portions 34A and 34B becomes more complicated when the heat shield rings 10A and 10B are manufactured. Further, in the latter case (b), since the actual meat portion is significantly reduced, the strength of the heat shield rings 10A and 10B may be easily reduced. Further, when the angle θ1 exceeds 160 degrees, the thickness of the heat insulating air layer becomes extremely thin relative to the maximum opening width Wr, so that the heat insulating properties of the heat shield rings 10A and 10B may easily deteriorate. be.
 一方、直線40Aと平坦部32とが成す角度θ2A、および、直線40Bと平坦部32とが成す角度θ2Bは、所望の角度θ1が得られる限り特に制限されないが、通常、角度θ2Aと角度θ2Bとは同一であることが好ましい。なお、図8および図9に示す例では、角度θ2Aと角度θ2Bとは同一に設定されている。また、(i)角度θ2Aおよび角度θ2Bは、各々、90度~170度であることが好ましく、100度~170度であることがより好ましく、120度~170度であることがさらに好ましく、(ii)角度θ2Aおよび角度θ2Bの和(θ2A+θ2B)は、225度~340度であることが好ましく、240度~320度であることがより好ましい。さらに、(iii)角度θ2Aと角度θ2Bとの絶対差|θ2A-θ2B|は、0度~45度が好ましく、0度~30度がより好ましく、0度~15度がさらに好ましく、0度が最も好ましい。 On the other hand, the angle θ2A formed by the straight line 40A and the flat portion 32 and the angle θ2B formed by the straight line 40B and the flat portion 32 are not particularly limited as long as the desired angle θ1 can be obtained, but are usually set to the angle θ2A and the angle θ2B. Is preferably the same. In the examples shown in FIGS. 8 and 9, the angle θ2A and the angle θ2B are set to be the same. Further, (i) the angle θ2A and the angle θ2B are preferably 90 degrees to 170 degrees, more preferably 100 degrees to 170 degrees, still more preferably 120 degrees to 170 degrees, respectively. ii) The sum of the angles θ2A and the angle θ2B (θ2A + θ2B) is preferably 225 degrees to 340 degrees, more preferably 240 degrees to 320 degrees. Further, (iii) the absolute difference between the angle θ2A and the angle θ2B | θ2A-θ2B | is preferably 0 to 45 degrees, more preferably 0 to 30 degrees, further preferably 0 to 15 degrees, and 0 degrees. Most preferred.
 なお、(a)角度θ2A(あるいは角度θ2B)が90度以上100度未満であり、かつ、(b)|θ2A-θ2B|が30度を超える場合、溝部34A、34Bの断面形状の非対称性が大きくなる上に、直線40A(あるいは直線40B)は、径方向と平行または略平行を成すことになる。このような断面形状を有する溝部34A、34Bでは、溝部34A、34Bを切削加工などにより形成する際の加工が困難になる場合がある。それゆえ、溝部34A、34Bの加工をより容易とする観点からは、上記条件(i)~(iii)を満たす範囲内であっても、上記条件(a)および(b)を満たす範囲以外で、角度θ2Aおよび角度θ2Bを適宜選択することがより好適である。しかしながら、加工性に優れた加工手段が利用できる場合やその他のメリットが存在する場合など、必要であれば、勿論、条件(a)および(b)を満たす溝部34A、34Bを設けてもよい。 When (a) the angle θ2A (or the angle θ2B) is 90 degrees or more and less than 100 degrees, and (b) | θ2A−θ2B | exceeds 30 degrees, the asymmetry of the cross-sectional shapes of the groove portions 34A and 34B becomes In addition to being larger, the straight line 40A (or straight line 40B) will be parallel or substantially parallel to the radial direction. In the groove portions 34A and 34B having such a cross-sectional shape, it may be difficult to process the groove portions 34A and 34B by cutting or the like. Therefore, from the viewpoint of facilitating the processing of the groove portions 34A and 34B, even within the range satisfying the above conditions (i) to (iii), other than the range satisfying the above conditions (a) and (b). , It is more preferable to appropriately select the angle θ2A and the angle θ2B. However, if necessary, such as when a processing means having excellent workability can be used or when there are other merits, the groove portions 34A and 34B satisfying the conditions (a) and (b) may be provided.
 また、曲線44の曲率半径は特に限定されないが、0.2mm~4.0mmが好ましく、0.5mm~1.5mmがより好ましく、0.8mm~1.5mmが特に好ましい。 The radius of curvature of the curve 44 is not particularly limited, but is preferably 0.2 mm to 4.0 mm, more preferably 0.5 mm to 1.5 mm, and particularly preferably 0.8 mm to 1.5 mm.
 図10は、第三の断面形状を有する溝部34Cの例を示す拡大断面図である。ここで、図10(A)は、溝部34Cの断面形状が半円状の円弧50A(50)である場合(2×最大溝深さDr=最大開口幅Wrである場合)について示した例であり、図10(B)は、溝部34Cの断面形状が半円状の円弧50Aよりもより緩く湾曲した円弧50B(50)である場合(2×最大溝深さDr<最大開口幅Wrである場合)について示した例である。 FIG. 10 is an enlarged cross-sectional view showing an example of a groove portion 34C having a third cross-sectional shape. Here, FIG. 10A is an example showing a case where the cross-sectional shape of the groove portion 34C is a semicircular arc 50A (50) (2 × maximum groove depth Dr = maximum opening width Wr). FIG. 10B shows a case where the cross-sectional shape of the groove portion 34C is an arc 50B (50) curved more loosely than the semicircular arc 50A (2 × maximum groove depth Dr <maximum opening width Wr). Case) is an example shown.
 図11は、第四の断面形状(断面U字状)を有する溝部34Dの例を示す拡大断面図である。断面U字状の溝部34Dは、図10に例示したような円弧50と、円弧50の両端から遮熱リング10Dの外周側方向に延びる2つの直線52とを組み合わせた断面形状を有することになる。 FIG. 11 is an enlarged cross-sectional view showing an example of a groove portion 34D having a fourth cross-sectional shape (U-shaped cross section). The groove portion 34D having a U-shaped cross section has a cross-sectional shape obtained by combining an arc 50 as illustrated in FIG. 10 and two straight lines 52 extending from both ends of the arc 50 toward the outer peripheral side of the heat shield ring 10D. ..
 図1~図4および図8~図11に例示した溝部34および溝部34を有する遮熱リング10においては、下式(1)~(4)の少なくとも1つを満たすことが好ましく、いずれか2つを同時に満たすことがより好ましく、いずれか3つを同時に満たすことがさらに好ましく、4つ全てを同時に満たすことが特に好ましい。 In the heat shield ring 10 having the groove portion 34 and the groove portion 34 exemplified in FIGS. 1 to 4 and FIGS. 8 to 11, it is preferable that at least one of the following formulas (1) to (4) is satisfied, and any two of them are satisfied. It is more preferable to fill one at the same time, further preferably to fill any three at the same time, and particularly preferably to fill all four at the same time.
・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
・式(2) 0.41≧Dr/Wr
・式(3) 0.57≧Dr/Tr
・式(4) 0.55≧Fr/Hr
-Equation (1) 0.85 ≧ Sr / (Dr × Wr) ≧ 0.5
・ Equation (2) 0.41 ≧ Dr / Wr
・ Equation (3) 0.57 ≧ Dr / Tr
・ Equation (4) 0.55 ≧ Fr / Hr
 ここで、式(1)~式(4)における各数値パラメーターの意味は以下のとうりである。
Dr:溝部34の最大溝深さ(mm)
Wr:リング状部材20の軸方向における溝部34の最大開口幅(mm)
Sr:リング状部材20の周方向と直交する断面における溝部34の断面積(mm
Tr:リング状部材20の径方向厚み(mm)
Fr:リング状部材20の軸方向における平坦部32の長さ(mm)
Hr:リング状部材20の軸方向高さ(mm)
Here, the meaning of each numerical parameter in the equations (1) to (4) is as follows.
Dr: Maximum groove depth (mm) of the groove 34
Wr: Maximum opening width (mm) of the groove 34 in the axial direction of the ring-shaped member 20.
Sr: Cross-sectional area (mm 2 ) of the groove 34 in a cross section orthogonal to the circumferential direction of the ring-shaped member 20.
Tr: Radial thickness (mm) of the ring-shaped member 20
Fr: Length (mm) of the flat portion 32 in the axial direction of the ring-shaped member 20
Hr: Axial height (mm) of the ring-shaped member 20
 なお、平坦部32の長さFrは、個々の平坦部32の長さFr1~Frnの合計長さを意味する。たとえば、図1~図4に示す遮熱リング10では、リング状部材20の軸方向の燃焼室側に位置する平坦部32と、中央部に位置する平坦部32と、クランク室側に位置する平坦部32の合計3つの平坦部32が存在する。したがって、これら3つの平坦部32の長さFr1、Fr2、Fr3の合計値を、平坦部32の長さFrとする。 The length Fr of the flat portion 32 means the total length of the lengths Fr1 to Frn of the individual flat portions 32. For example, in the heat shield ring 10 shown in FIGS. 1 to 4, the flat portion 32 located on the combustion chamber side in the axial direction of the ring-shaped member 20, the flat portion 32 located in the central portion, and the flat portion 32 located on the crank chamber side are located. There are a total of three flat portions 32, which are flat portions 32. Therefore, the total value of the lengths Fr1, Fr2, and Fr3 of these three flat portions 32 is defined as the length Fr of the flat portion 32.
 ここで、式(1)に示すSr/(Dr×Wr)について、値が1である場合は、断面形状が方形状の溝部36であることを意味し、値が0.5である場合は、断面形状がV字状の溝部34Aであることを意味し、値が0.5から1へと増加するに従い、溝部の断面形状は、V字状(第一の断面形状)から、V字状の角部を丸めて曲線とした第二の断面形状、円弧状(第三の断面形状)、U字状(第四の断面形状)、方形状、に順次変化する。式(1)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が向上した遮熱リング10を得ることがより容易となる。なお、強度をより改善する観点からは、Sr/(Dr×Wr)は、0.50~0.84がより好ましく、0.53~0.70がさらに好ましく、0.54~0.68が特に好ましい。 Here, for Sr / (Dr × Wr) shown in the equation (1), when the value is 1, it means that the cross-sectional shape is a rectangular groove portion 36, and when the value is 0.5, it means that the cross-sectional shape is a rectangular groove portion 36. , Means that the cross-sectional shape is a V-shaped groove 34A, and as the value increases from 0.5 to 1, the cross-sectional shape of the groove changes from V-shaped (first cross-sectional shape) to V-shaped. It sequentially changes into a second cross-sectional shape in which the corners of the shape are rounded into a curved line, an arc shape (third cross-sectional shape), a U-shape (fourth cross-sectional shape), and a square shape. When the formula (1) is satisfied, it is more possible to obtain the heat shield ring 10 having improved strength while maintaining substantially the same heat insulating property as the heat shield ring 12 having the groove portion 36 having a rectangular cross section. It will be easy. From the viewpoint of further improving the strength, Sr / (Dr × Wr) is more preferably 0.50 to 0.84, further preferably 0.53 to 0.70, and 0.54 to 0.68. Especially preferable.
 また、式(2)に示すDr/Wrは、溝部34のアスペクト比を意味するパラメーターであり、式(3)に示すDr/Trは、遮熱リング10に対する溝部34の深さ比率を意味するパラメーターである。式(2)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が向上した遮熱リング10を得ることがより容易となる。そして、式(3)を満たす場合も同様である。
Dr/Wrの下限値は特に限定されないが実用上は、0.10以上であることが好ましく、Dr/Trの下限値も特に限定されないが実用上は、0.15以上であることが好ましい。なお、Dr/Wrは、断熱性と強度とをバランスよく両立させる観点から、0.16~0.41がより好ましく、0.16~0.21がさらに好ましい。また、Dr/Trについても、断熱性と強度とをバランスよく両立させる観点から、0.22~0.57がより好ましく、0.22~0.29がさらに好ましい。
Further, Dr / Wr shown in the formula (2) is a parameter meaning the aspect ratio of the groove portion 34, and Dr / Tr shown in the formula (3) means the depth ratio of the groove portion 34 to the heat shield ring 10. It is a parameter. When the formula (2) is satisfied, it is more possible to obtain the heat shield ring 10 having improved strength while maintaining substantially the same heat insulating property as the heat shield ring 12 having the groove portion 36 having a rectangular cross section. It will be easy. The same applies to the case where the equation (3) is satisfied.
The lower limit of Dr / Wr is not particularly limited, but is preferably 0.10 or more in practical use, and the lower limit of Dr / Tr is not particularly limited, but is preferably 0.15 or more in practical use. The Dr / Wr is more preferably 0.16 to 0.41 and even more preferably 0.16 to 0.21 from the viewpoint of achieving both heat insulating properties and strength in a well-balanced manner. Further, regarding Dr / Tr, 0.22 to 0.57 is more preferable, and 0.22 to 0.29 is further preferable, from the viewpoint of achieving both heat insulating properties and strength in a well-balanced manner.
 さらに、式(4)に示すFr/Hrは、遮熱リング10の軸方向高さHrに対する平坦部32の長さFrの比率を意味する。なお、軸方向高さHrに対する切り欠き部(面取り部)38の割合は、相対的に非常に小さいことを考慮すると、Fr/Hrは、ΣWr/Hr(軸方向高さHrに対する最大開口幅Wrの総和の比率)の逆関数とも言える。式(4)を満たす場合、断面形状が方形状の溝部36を有する遮熱リング12と比べて、略同等程度の断熱性を維持しつつも強度が大きく向上した遮熱リング10を得ることがより容易となる。Fr/Hrの下限値は特に限定されないが実用上は、0.10以上であることが好ましい。また、Fr/Hrは、強度よりも断熱性をより改善したい場合、0.18以上0.37未満であることがより好ましく、断熱性よりも強度をより改善したい場合、0.37~0.55であることがより好ましい。 Further, Fr / Hr shown in the equation (4) means the ratio of the length Fr of the flat portion 32 to the axial height Hr of the heat shield ring 10. Considering that the ratio of the cutout portion (chamfered portion) 38 to the axial height Hr is relatively very small, Fr / Hr is ΣWr / Hr (maximum opening width Wr with respect to the axial height Hr). It can also be said to be the inverse function of the sum ratio). When the formula (4) is satisfied, it is possible to obtain a heat shield ring 10 having substantially the same degree of heat insulation as that of the heat shield ring 12 having a groove portion 36 having a rectangular cross-sectional shape, but with greatly improved strength. It will be easier. The lower limit of Fr / Hr is not particularly limited, but practically, it is preferably 0.10 or more. Further, Fr / Hr is more preferably 0.18 or more and less than 0.37 when it is desired to further improve the heat insulating property rather than the strength, and 0.37 to 0. It is more preferably 55.
 また、本実施形態の遮熱リング10においては、遮熱リング10の強度が低下するのを抑制する観点から下式(5)を満たすことも好適である。
・式(5) Tr-Dr≧1.0mm
Further, in the heat shield ring 10 of the present embodiment, it is also preferable to satisfy the following formula (5) from the viewpoint of suppressing the decrease in the strength of the heat shield ring 10.
-Equation (5) Tr-Dr ≧ 1.0 mm
 本実施形態の遮熱リング10を構成するリング状部材20の材質としては特に限定されないが、たとえば、鉄、鉄合金(SUH等の耐熱鋼、SUS等のステンレス鋼、鋳鉄(特にシリンダライナ102と同一材質の鋳鉄)など)、ニッケル合金(インコネルなど)が挙げられる。  The material of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment is not particularly limited, and is, for example, iron, iron alloy (heat resistant steel such as SUH, stainless steel such as SUS, cast iron (particularly with cylinder liner 102). (Cast iron of the same material), etc.), nickel alloy (Inconel, etc.) can be mentioned. It was
 また、本実施形態の遮熱リング10を構成するリング状部材20の外観寸法は特に限定されないが、一般的には、内径が84mm~247mmであることが好ましく、107mm~234mmであることがより好ましく、111mm~147mmであることがさらに好ましく、径方向厚みTrが1.5mm~8mmであることが好ましく、1.5mm~3.0mmであることがより好ましく、軸方向高さHrが5.0mm~70.0mmであることが好ましく、6.5mm~18.0mmであることがより好ましい。また、第一~第四の断面形状に共通する寸法である最大開口幅Wrおよび最大溝深さDrについては、特に限定されるものではないが、たとえば最大開口幅Wrは1.0mm~40mm程度とすることが好ましく、最大溝深さDrは0.2mm~4.0mm程度とすることが好ましい。 Further, the external dimensions of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment are not particularly limited, but in general, the inner diameter is preferably 84 mm to 247 mm, more preferably 107 mm to 234 mm. It is preferable that the thickness is 111 mm to 147 mm, the radial thickness Tr is preferably 1.5 mm to 8 mm, the radial thickness Tr is more preferably 1.5 mm to 3.0 mm, and the axial height Hr is 5. It is preferably 0 mm to 70.0 mm, more preferably 6.5 mm to 18.0 mm. The maximum opening width Wr and the maximum groove depth Dr, which are dimensions common to the first to fourth cross-sectional shapes, are not particularly limited, but for example, the maximum opening width Wr is about 1.0 mm to 40 mm. The maximum groove depth Dr is preferably about 0.2 mm to 4.0 mm.
 リング状部材20の周方向と直交する断面において外周面30に設けられる溝部34の数は特に制限されずリング状部材20の軸方向高さ全域当たり1個以上であれば任意の個数を選択できる。しかしながら、溝部34の数は、リング状部材20の軸方向高さ10mm当たり2個~5個がより好ましく、2個~3個がさらに好ましく、2個が特に好ましい。溝部34の数がリング状部材20の軸方向高さ全域当たり1個の場合においてさらに式(4)を満たそうとしたときは、リング状部材20の軸方向において、1個の溝部34の両側に位置する2つの狭い平坦部32に応力が集中し易くなる。すなわち、遮熱リング10の強度確保の観点で、リング状部材20の軸方向に適度に応力を分散させることが困難になり易い。また、溝部34の数がリング状部材20の軸方向高さ10mm当たり6個以上の場合、リング状部材20の軸方向において隣り合う2つの溝部34の間に位置する平坦部32の幅(軸方向長さ)は狭くなる。このため、溝部34を切削加工で形成する際に、平坦部32の破損が生じ易くなる。 The number of groove portions 34 provided on the outer peripheral surface 30 in the cross section orthogonal to the circumferential direction of the ring-shaped member 20 is not particularly limited, and any number can be selected as long as it is one or more per the entire axial height of the ring-shaped member 20. .. However, the number of groove portions 34 is more preferably 2 to 5 per 10 mm in axial height of the ring-shaped member 20, further preferably 2 to 3, and particularly preferably 2. When the number of the groove portions 34 is one per the entire axial height of the ring-shaped member 20 and the equation (4) is to be further satisfied, both sides of the one groove portion 34 in the axial direction of the ring-shaped member 20. Stress tends to concentrate on the two narrow flat portions 32 located in. That is, from the viewpoint of ensuring the strength of the heat shield ring 10, it tends to be difficult to appropriately disperse the stress in the axial direction of the ring-shaped member 20. Further, when the number of the groove portions 34 is 6 or more per 10 mm of the axial height of the ring-shaped member 20, the width (axis) of the flat portion 32 located between the two adjacent groove portions 34 in the axial direction of the ring-shaped member 20. Directional length) becomes narrower. Therefore, when the groove portion 34 is formed by cutting, the flat portion 32 is likely to be damaged.
 なお、本実施形態の遮熱リング10は、内燃機関の熱損失の低減を目的として利用される部材であるが、この目的に加えて、ピストンのトップランドに付着したカーボンの掻き落としを目的とした部材(カーボンスクレーパリング)としても用いてもよい。遮熱リング10をカーボンスクレーパリングとしても用いる場合、遮熱リング10を構成するリング状部材20の内径は、遮熱リング10を装着するシリンダライナ102の内径(遮熱リング10が装着される部位よりもクランク室側の部位における内径)よりも若干小さめに設定される。一方、本実施形態の遮熱リング10を、カーボンスクレーパリングとして用いない場合は、遮熱リング10を構成するリング状部材20の内径は、遮熱リング10を装着するシリンダライナ102の内径(遮熱リング10が装着される部位よりもクランク室側の部位における内径)と略同等、あるいは、これよりも大きくてもよい。 The heat shield ring 10 of the present embodiment is a member used for the purpose of reducing the heat loss of the internal combustion engine, but in addition to this purpose, the purpose is to scrape off the carbon adhering to the top land of the piston. It may also be used as a member (carbon scraper ring). When the heat shield ring 10 is also used as a carbon scraper ring, the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10 is the inner diameter of the cylinder liner 102 to which the heat shield ring 10 is mounted (the portion where the heat shield ring 10 is mounted). It is set slightly smaller than the inner diameter of the part on the crank chamber side). On the other hand, when the heat shield ring 10 of the present embodiment is not used as a carbon scraper ring, the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10 is the inner diameter of the cylinder liner 102 to which the heat shield ring 10 is mounted (shielding). The inner diameter at the portion on the crank chamber side of the portion where the heat ring 10 is mounted) may be substantially equal to or larger than this.
 また、本実施形態の遮熱リング10を構成するリング状部材20の表面に対しては、必要に応じて各種の表面処理を施したり、各種の皮膜を成膜してもよい。たとえば、リング状部材20の表面に溶射処理により形成された溶射膜や、パルホス処理により形成されたリン酸マンガン皮膜などを形成することができる。これらの皮膜は、皮膜の形成方法にも依存するが、リング状部材20の表面の一部分(外周面30、内周面60など)に選択的に形成したり、リング状部材20の表面全体を覆うように形成することができる。なお、溶射膜やリン酸マンガン皮膜は、一般的に断熱性にも優れることから、遮熱リング10の断熱性を向上させる観点ではリング状部材20の少なくとも外周面30に形成されていることが好ましい。 Further, the surface of the ring-shaped member 20 constituting the heat shield ring 10 of the present embodiment may be subjected to various surface treatments or various film formations may be formed, if necessary. For example, a thermal spraying film formed by a thermal spraying treatment, a manganese phosphate film formed by a parfoss treatment, or the like can be formed on the surface of the ring-shaped member 20. These films may be selectively formed on a part of the surface of the ring-shaped member 20 (outer peripheral surface 30, inner peripheral surface 60, etc.) or the entire surface of the ring-shaped member 20 may be formed, although it depends on the method of forming the film. It can be formed to cover. Since the thermal spraying film and the manganese phosphate film are generally excellent in heat insulating properties, they are formed on at least the outer peripheral surface 30 of the ring-shaped member 20 from the viewpoint of improving the heat insulating properties of the heat shield ring 10. preferable.
 本実施形態の遮熱リング10は、遮熱リング10を装着可能なシリンダライナを備えた内燃機関であれば、如何様なタイプの内燃機関においても利用できる。このような内燃機関としては、代表的にはガソリンエンジン、ディーゼルエンジンが挙げられる。なお、燃焼室においてカーボンが発生し易いディーゼルエンジンにおいて本実施形態の遮熱リング10を用いる場合、本実施形態の遮熱リング10は、カーボンスクレーパリングとしても用いられることが好ましい。 The heat shield ring 10 of the present embodiment can be used in any type of internal combustion engine as long as it is an internal combustion engine provided with a cylinder liner to which the heat shield ring 10 can be mounted. Typical examples of such an internal combustion engine include a gasoline engine and a diesel engine. When the heat shield ring 10 of the present embodiment is used in a diesel engine in which carbon is likely to be generated in the combustion chamber, it is preferable that the heat shield ring 10 of the present embodiment is also used as carbon scraper ring.
<内燃機関> 
 本実施形態の内燃機関は、シリンダライナと本実施形態の遮熱リング10とを少なくとも備える。図1~図4は、本実施形態の内燃機関200A(200)の一例を示す模式断面図である。図1~図4に示す内燃機関200Aは、シリンダライナ102と、本実施形態の遮熱リング10とを少なくとも備えている。シリンダライナ102は、円筒状部材120を有し、円筒状部材120の内周面130が、円筒状部材120の軸方向の一端側(燃焼室側)近傍の第一領域130Aと、一端側近傍以外の第二領域130Bとから構成される。また、第一領域130Aにおける内径は、第二領域130Bにおける内径よりも大きくなるように設定されている。そして、遮熱リング10は、シリンダライナ102の内周面130が外周側へと部分的に凹んだ部分、すなわち、シリンダライナ102の第一領域130Aに嵌合されている。
<Internal combustion engine>
The internal combustion engine of the present embodiment includes at least a cylinder liner and a heat shield ring 10 of the present embodiment. 1 to 4 are schematic cross-sectional views showing an example of the internal combustion engine 200A (200) of the present embodiment. The internal combustion engine 200A shown in FIGS. 1 to 4 includes at least a cylinder liner 102 and a heat shield ring 10 of the present embodiment. The cylinder liner 102 has a cylindrical member 120, and the inner peripheral surface 130 of the cylindrical member 120 has a first region 130A near one end side (combustion chamber side) in the axial direction of the cylindrical member 120 and a vicinity of one end side. It is composed of a second region 130B other than the above. Further, the inner diameter in the first region 130A is set to be larger than the inner diameter in the second region 130B. The heat shield ring 10 is fitted in a portion where the inner peripheral surface 130 of the cylinder liner 102 is partially recessed toward the outer peripheral side, that is, in the first region 130A of the cylinder liner 102.
 図12は、本実施形態の内燃機関の他の例を示す模式断面図であり、カーボンスクレーパリングとしても機能する本実施形態の遮熱リング10を備えた内燃機関200の一例について示す図である。図12に示す内燃機関200D(200)は、図1~図4に例示したものと同様のシリンダライナ102と、このシリンダライナ102の第一領域130Aに嵌合された本実施形態の遮熱リング10E(10)とを少なくとも備えている。ここで、図12に示す遮熱リング10Eは、その内径が図2に示す遮熱リング10Bの内径よりも小さい点を除けば図2に示す遮熱リング10Bと同一の寸法形状を有する部材である。図12に示す内燃機関200Dでは、シリンダライナ102を構成する円筒状部材120の第二領域130Bにおける内径よりも、遮熱リング10Eを構成するリング状部材20の内径の方が小さくなっている。このため、シリンダライナ102の第二領域130Bに対して、リング状部材20の内周面60は、シリンダライナ102の中心軸側により突出するように位置する。それゆえ、ピストン300のトップランド310の外周面にカーボン400が付着した場合、カーボン400は、シリンダライナ102内においてピストン300が上死点に向かって移動する際に、遮熱リング10Eにより掻き落される。なお、遮熱リング10Eを構成するリング状部材20の内径は、ピストン300のトップランド310の外径よりも大きくなるように設定される。 FIG. 12 is a schematic cross-sectional view showing another example of the internal combustion engine of the present embodiment, and is a diagram showing an example of the internal combustion engine 200 provided with the heat shield ring 10 of the present embodiment that also functions as carbon scraper ring. .. The internal combustion engine 200D (200) shown in FIG. 12 has a cylinder liner 102 similar to that illustrated in FIGS. 1 to 4, and a heat shield ring of the present embodiment fitted in the first region 130A of the cylinder liner 102. It has at least 10E (10). Here, the heat shield ring 10E shown in FIG. 12 is a member having the same dimensions and shape as the heat shield ring 10B shown in FIG. 2, except that the inner diameter thereof is smaller than the inner diameter of the heat shield ring 10B shown in FIG. be. In the internal combustion engine 200D shown in FIG. 12, the inner diameter of the ring-shaped member 20 constituting the heat shield ring 10E is smaller than the inner diameter of the cylindrical member 120 constituting the cylinder liner 102 in the second region 130B. Therefore, the inner peripheral surface 60 of the ring-shaped member 20 is positioned so as to protrude from the central axis side of the cylinder liner 102 with respect to the second region 130B of the cylinder liner 102. Therefore, when the carbon 400 adheres to the outer peripheral surface of the top land 310 of the piston 300, the carbon 400 is scraped off by the heat shield ring 10E as the piston 300 moves toward the top dead center in the cylinder liner 102. Will be done. The inner diameter of the ring-shaped member 20 constituting the heat shield ring 10E is set to be larger than the outer diameter of the top land 310 of the piston 300.
 なお、図1~図4に例示した内燃機関200Aでは、遮熱リング10A、10B、10C、10Dを構成するリング状部材20の内周面60と、シリンダライナ102の第二領域130Bとは面一を成している。すなわち、第二領域130Bの内径とリング状部材20の内径とは同一である。このため、内燃機関200Aでは、遮熱リング10A、10B、10C、10Dは、カーボンスクレーパリングとしての機能は有さない。  In the internal combustion engine 200A illustrated in FIGS. 1 to 4, the inner peripheral surface 60 of the ring-shaped member 20 constituting the heat shield rings 10A, 10B, 10C, and 10D and the second region 130B of the cylinder liner 102 are surfaces. It is one. That is, the inner diameter of the second region 130B and the inner diameter of the ring-shaped member 20 are the same. Therefore, in the internal combustion engine 200A, the heat shield rings 10A, 10B, 10C, and 10D do not have a function as carbon scraper ring. It was
 本実施形態の内燃機関200は、如何様なタイプの内燃機関でもよいが、代表的にはガソリンエンジンあるいはディーゼルエンジンであることが好ましい。 The internal combustion engine 200 of the present embodiment may be any type of internal combustion engine, but is preferably a gasoline engine or a diesel engine.
 なお、シリンダライナ102を構成する円筒状部材120の内周面130に対しては、必要に応じて各種の表面処理を施したり、各種の皮膜を成膜してもよい。たとえば、円筒状部材120の内周面130に溶射処理により形成された溶射膜や、パルホス処理により形成されたリン酸マンガン皮膜などを形成することができる。これらの皮膜は、皮膜の形成方法にも依存するが、円筒状部材120の内周面130の一部分(第一領域130A、第二領域130Bなど)に選択的に形成したり、内周面130全体を覆うように形成することができる。なお、溶射膜やリン酸マンガン皮膜は、一般的に断熱性にも優れることから、遮熱リング10が装着された部位近傍の断熱性を向上させる観点では少なくとも第一領域130Aに形成されていることが好ましい。 The inner peripheral surface 130 of the cylindrical member 120 constituting the cylinder liner 102 may be subjected to various surface treatments or various film formations may be formed, if necessary. For example, a thermal spraying film formed by a thermal spraying treatment, a manganese phosphate film formed by a parfoss treatment, or the like can be formed on the inner peripheral surface 130 of the cylindrical member 120. These coatings may be selectively formed on a part of the inner peripheral surface 130 of the cylindrical member 120 (first region 130A, second region 130B, etc.) or the inner peripheral surface 130, depending on the method of forming the coating. It can be formed so as to cover the whole. Since the thermal spraying film and the manganese phosphate film are generally excellent in heat insulating properties, they are formed in at least the first region 130A from the viewpoint of improving the heat insulating properties in the vicinity of the portion where the heat shield ring 10 is attached. Is preferable.
 以下に本発明を実施例により具体的に説明する。但し、本発明は以下に示す実施例にのみ限定されるものでは無い。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below.
 実施例1~9および比較例1の遮熱リングについて、式(1)~式(4)に示すパラメーター:Sr/(Dr×Wr)、Dr/Wr、Dr/Tr、Fr/Hrに対する、遮熱リングの内周面温度および溝部径方向最大変位量の変動傾向についてシミュレーション解析を実施した。結果を表1~表3に示す。なお、いずれの実施例および比較例においても、遮熱リングの外観寸法、溝部の数および材質は全て同一としてある。また、表中に示す遮熱リングの各部の寸法の単位は全てmmである。さらに、2つの溝部は、遮熱リングの軸方向に対して図1等に例示されるように等間隔に設けた。なお、内周面温度は、値が大きい程、遮熱リングの断熱性が優れていることを意味する評価項目であり、溝部径方向最大変位量は、値が小さい程、遮熱リング内で生じている応力が小さく、遮熱リングの疲労破壊が生じにくいことを意味する評価項目である。 Regarding the heat shield rings of Examples 1 to 9 and Comparative Example 1, the parameters shown in the formulas (1) to (4): Sr / (Dr × Wr), Dr / Wr, Dr / Tr, and Fr / Hr are shielded. A simulation analysis was performed on the fluctuation tendency of the inner peripheral surface temperature of the heat ring and the maximum displacement in the radial direction of the groove. The results are shown in Tables 1 to 3. In each of the examples and comparative examples, the external dimensions of the heat shield ring, the number of grooves, and the material are all the same. In addition, the unit of dimensions of each part of the heat shield ring shown in the table is mm. Further, the two grooves are provided at equal intervals with respect to the axial direction of the heat shield ring as illustrated in FIG. The larger the value of the inner peripheral surface temperature, the better the heat insulating property of the heat shield ring, and the smaller the value, the better the heat insulating property of the heat shield ring. This is an evaluation item that means that the generated stress is small and fatigue fracture of the heat shield ring is unlikely to occur.
 なお、表1~表3に示すシミュレーション解析は、市販の強度及び熱解析ソフトを用いて実施した。シミュレーション解析に際しては、遮熱リングおよびこれと組み合わせて用いたシリンダライナの材質を鋳鉄(FC250)と想定し、また、内燃機関における一般的な筒内圧および燃焼熱が遮熱リングの内周側から作用し、かつ、周囲温度は室温を想定した条件下にて実施した。 The simulation analysis shown in Tables 1 to 3 was carried out using commercially available strength and thermal analysis software. In the simulation analysis, the material of the heat shield ring and the cylinder liner used in combination with it is assumed to be cast iron (FC250), and the general in-cylinder pressure and combustion heat in the internal combustion engine are applied from the inner peripheral side of the heat shield ring. It worked and the ambient temperature was assumed to be room temperature.
 ここで、表1は、溝部の最大開口幅Wrおよび最大溝深さDrが同一である場合において、Sr/(Dr×Wr)に対する内周面温度および溝部径方向最大変位量を評価した結果について示している。なお、溝部の最大開口幅Wrおよび最大溝深さDrが同一である場合において、Sr/(Dr×Wr)の値を変えることは溝部の形状を変えることと同義でもあり、断面形状を定量的パラメーターとして定義したものとも言える。よって、表1は、溝部の断面形状に対する内周面温度および溝部径方向最大変位量を評価した結果と言うこともできる。 Here, Table 1 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the groove radial direction with respect to Sr / (Dr × Wr) when the maximum opening width Wr and the maximum groove depth Dr of the groove are the same. Shows. When the maximum opening width Wr and the maximum groove depth Dr of the groove portion are the same, changing the value of Sr / (Dr × Wr) is also synonymous with changing the shape of the groove portion, and the cross-sectional shape is quantitatively changed. It can be said that it is defined as a parameter. Therefore, it can be said that Table 1 is the result of evaluating the inner peripheral surface temperature and the maximum displacement amount in the radial direction of the groove portion with respect to the cross-sectional shape of the groove portion.
 表2は、溝部の断面形状および最大開口幅Wrが同一である場合において、最大溝深さDrに対する内周面温度および溝部径方向最大変位量を評価した結果について示している。但し、最大溝深さDrの断熱性および機械的強度への影響は、最大溝深さDrの絶対値では無く、遮熱リング全体に占める最大溝深さDrの相対的割合により強く影響されると考えられる。このため、表2では、遮熱リングの主要な軸方向寸法である最大開口幅Wr、および、遮熱リングの主要な径方向寸法である径方向厚みTrを基準値とした際の最大溝深さDrの比率、すなわち、Dr/Wr(溝部のアスペクト比)、Dr/Tr(遮熱リングに対する溝部の深さ比率)に対する内周面温度および溝部径方向最大変位量を評価した結果について示した。 Table 2 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the radial direction of the groove with respect to the maximum groove depth Dr when the cross-sectional shape of the groove and the maximum opening width Wr are the same. However, the influence of the maximum groove depth Dr on the heat insulating property and the mechanical strength is strongly influenced not by the absolute value of the maximum groove depth Dr but by the relative ratio of the maximum groove depth Dr to the entire heat shield ring. it is conceivable that. Therefore, in Table 2, the maximum groove depth when the maximum opening width Wr, which is the main axial dimension of the heat shield ring, and the radial thickness Tr, which is the main radial dimension of the heat shield ring, are used as reference values. The results of evaluating the ratio of Dr, that is, the inner peripheral surface temperature and the maximum displacement in the groove radial direction with respect to Dr / Wr (aspect ratio of the groove) and Dr / Tr (depth ratio of the groove to the heat shield ring) are shown. ..
 表3は、平坦部長さFr(あるいは、平坦部長さFrの実質的に逆関数と言える最大開口幅Wr)に対する内周面温度および溝部径方向最大変位量を評価した結果について示している。但し、平坦部長さFrの断熱性および機械的強度への影響は、平坦部長さFrの絶対値では無く、遮熱リング全体に占める平坦部長さFrの相対的割合により強く影響されると考えられる。このため、表3では、遮熱リングの主要な軸方向寸法である軸方向高さHrを基準値とした際の平坦部長さFrの比率、すなわち、Fr/Hrに対する内周面温度および溝部径方向最大変位量を評価した結果について示した。Fr/Hrは、軸方向における平坦部の占有比率と言える。 Table 3 shows the results of evaluating the inner peripheral surface temperature and the maximum displacement in the groove radial direction with respect to the flat portion length Fr (or the maximum opening width Wr which can be said to be a substantially inverse function of the flat portion length Fr). However, it is considered that the influence of the flat portion length Fr on the heat insulating property and the mechanical strength is not strongly influenced by the absolute value of the flat portion length Fr but by the relative ratio of the flat portion length Fr to the entire heat shield ring. .. Therefore, in Table 3, the ratio of the flat portion length Fr when the axial height Hr, which is the main axial dimension of the heat shield ring, is used as a reference value, that is, the inner peripheral surface temperature and the groove portion diameter with respect to Fr / Hr. The result of evaluating the maximum displacement in the direction is shown. Fr / Hr can be said to be the occupancy ratio of the flat portion in the axial direction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
10、10A、10B、10C、10D、10E  :遮熱リング
12  :遮熱リング
14  :遮熱リング
20  :リング状部材
30  :外周面
32  :平坦部
34、34A、34B、34C、34D  :溝部
36  :溝部
36B  :溝部底面
36C  :角部
38  :切り欠き部(面取り部)
40A、40B  :直線
42  :角部
44  :曲線
50、50A、50B  :円弧
52  :直線
60  :内周面
102  :シリンダライナ
120  :円筒状部材
130  :内周面
130A  :第一領域(燃焼室側の端部近傍の内周面)
130B  :第二領域
200、200A、200D  :内燃機関
300  :ピストン
310  :トップランド
400  :カーボン
10, 10A, 10B, 10C, 10D, 10E: Heat shield ring 12: Heat shield ring 14: Heat shield ring 20: Ring-shaped member 30: Outer peripheral surface 32: Flat portion 34, 34A, 34B, 34C, 34D: Groove portion 36 : Groove 36B: Groove bottom surface 36C: Corner 38: Notch (chamfer)
40A, 40B: Straight line 42: Corner 44: Curve 50, 50A, 50B: Arc 52: Straight line 60: Inner peripheral surface 102: Cylinder liner 120: Cylindrical member 130: Inner peripheral surface 130A: First region (combustion chamber side) Inner peripheral surface near the end of
130B: Second region 200, 200A, 200D: Internal combustion engine 300: Piston 310: Topland 400: Carbon

Claims (10)

  1.  リング状部材を有し、
     前記リング状部材の周方向と直交する断面において、前記リング状部材の外周面は、前記リング状部材の軸方向と平行を成す平坦部と、前記平坦部よりも前記リング状部材の内周側に凹む溝部と、を含み、
     前記溝部の断面形状が、
     (1)2つの直線と、前記2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、
     (2)前記第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、
     (3)円弧状の曲線のみから形成される第三の断面形状、および、
     (4)U字状の第四の断面形状、
    からなる群より選択されるいずれか1種以上であることを特徴とするシリンダライナ用遮熱リング。
    Has a ring-shaped member,
    In a cross section orthogonal to the circumferential direction of the ring-shaped member, the outer peripheral surface of the ring-shaped member has a flat portion parallel to the axial direction of the ring-shaped member and an inner peripheral side of the ring-shaped member with respect to the flat portion. Including the groove that is dented in
    The cross-sectional shape of the groove is
    (1) A V-shaped first cross-sectional shape formed only from two straight lines and one corner portion that is an intersection of the two straight lines.
    (2) A second cross-sectional shape in which the vicinity of the corners in the first cross-sectional shape is rounded to form a curved line.
    (3) A third cross-sectional shape formed only from an arcuate curve, and
    (4) U-shaped fourth cross-sectional shape,
    A heat shield ring for a cylinder liner, characterized in that it is one or more selected from the group consisting of.
  2.  前記第一の断面形状および前記第二の断面形状において、前記2つの直線の成す角度が45度~160度であることを特徴とする請求項1に記載のシリンダライナ用遮熱リング。 The heat shield ring for a cylinder liner according to claim 1, wherein the angle formed by the two straight lines in the first cross-sectional shape and the second cross-sectional shape is 45 degrees to 160 degrees.
  3.  下式(1)を満たすことを特徴とする請求項1または2に記載のシリンダライナ用遮熱リング。
    ・式(1) 0.85≧Sr/(Dr×Wr)≧0.5
    〔前記式(1)中、Srは前記リング状部材の周方向と直交する断面における前記溝部の断面積(mm)を意味し、Drは前記溝部の最大溝深さ(mm)を意味し、Wrは前記リング状部材の軸方向における前記溝部の最大開口幅(mm)を意味する。〕
    The heat shield ring for a cylinder liner according to claim 1 or 2, wherein the following formula (1) is satisfied.
    -Equation (1) 0.85 ≧ Sr / (Dr × Wr) ≧ 0.5
    [In the formula (1), Sr means the cross-sectional area (mm 2 ) of the groove portion in the cross section orthogonal to the circumferential direction of the ring-shaped member, and Dr means the maximum groove depth (mm) of the groove portion. , Wr means the maximum opening width (mm) of the groove portion in the axial direction of the ring-shaped member. ]
  4.  下式(2)を満たすことを特徴とする請求項1~3のいずれか1つに記載のシリンダライナ用遮熱リング。
    ・式(2) 0.41≧Dr/Wr
    〔前記式(2)中、Drは前記溝部の最大溝深さ(mm)を意味し、Wrは前記リング状部材の軸方向における前記溝部の最大開口幅(mm)を意味する。〕
    The heat shield ring for a cylinder liner according to any one of claims 1 to 3, wherein the heat shield ring for a cylinder liner is characterized by satisfying the following formula (2).
    ・ Equation (2) 0.41 ≧ Dr / Wr
    [In the formula (2), Dr means the maximum groove depth (mm) of the groove portion, and Wr means the maximum opening width (mm) of the groove portion in the axial direction of the ring-shaped member. ]
  5.  下式(3)を満たすことを特徴とする請求項1~4のいずれか1つに記載のシリンダライナ用遮熱リング。
    ・式(3) 0.57≧Dr/Tr
    〔前記式(3)中、Drは前記溝部の最大溝深さ(mm)を意味し、Trは前記リング状部材の径方向厚み(mm)を意味する。〕
    The heat shield ring for a cylinder liner according to any one of claims 1 to 4, wherein the heat shield ring for a cylinder liner is characterized by satisfying the following formula (3).
    ・ Equation (3) 0.57 ≧ Dr / Tr
    [In the formula (3), Dr means the maximum groove depth (mm) of the groove portion, and Tr means the radial thickness (mm) of the ring-shaped member. ]
  6.  下式(4)を満たすことを特徴とする請求項1~5のいずれか1つに記載のシリンダライナ用遮熱リング。
    ・式(4) 0.55≧Fr/Hr
    〔前記式(4)中、Frは前記リング状部材の軸方向における前記平坦部の長さ(mm)を意味し、Hrは前記リング状部材の軸方向高さ(mm)を意味する。〕
    The heat shield ring for a cylinder liner according to any one of claims 1 to 5, which satisfies the following formula (4).
    ・ Equation (4) 0.55 ≧ Fr / Hr
    [In the formula (4), Fr means the length (mm) of the flat portion in the axial direction of the ring-shaped member, and Hr means the axial height (mm) of the ring-shaped member. ]
  7.  カーボンスクレーパリングであることを特徴とする請求項1~6のいずれか1つに記載のシリンダライナ用遮熱リング。 The heat shield ring for a cylinder liner according to any one of claims 1 to 6, which is a carbon scraper ring.
  8.  円筒状部材を有し、前記円筒状部材の内周面が、前記円筒状部材の軸方向の一端側近傍の第一領域と、前記一端側近傍以外の第二領域とから構成され、前記第一領域における内径が、前記第二領域における内径よりも大きいシリンダライナと、
     リング状部材を有し、かつ、前記シリンダライナの前記第一領域に嵌合された遮熱リングと、を少なくとも備え、
     前記リング状部材の周方向と直交する断面において、前記リング状部材の外周面は、前記リング状部材の軸方向と平行を成す平坦部と、前記平坦部よりも前記リング状部材の内周側に凹む溝部と、を含み、
     前記溝部の断面形状が、
     (1)2つの直線と、前記2つの直線の交点となる1つの角部とのみから形成されるV字状の第一の断面形状、
     (2)前記第一の断面形状における角部近傍を丸めて曲線とした第二の断面形状、
     (3)円弧状の曲線のみから形成される第三の断面形状、および、
     (4)U字状の第四の断面形状、
    からなる群より選択されるいずれか1種以上であることを特徴とする内燃機関。
    It has a cylindrical member, and the inner peripheral surface of the cylindrical member is composed of a first region in the vicinity of one end side in the axial direction of the cylindrical member and a second region other than the vicinity of the one end side. A cylinder liner having an inner diameter in one region larger than the inner diameter in the second region.
    A heat shield ring having a ring-shaped member and fitted to the first region of the cylinder liner is provided at least.
    In a cross section orthogonal to the circumferential direction of the ring-shaped member, the outer peripheral surface of the ring-shaped member has a flat portion parallel to the axial direction of the ring-shaped member and an inner peripheral side of the ring-shaped member with respect to the flat portion. Including the groove that is dented in
    The cross-sectional shape of the groove is
    (1) A V-shaped first cross-sectional shape formed only from two straight lines and one corner portion that is an intersection of the two straight lines.
    (2) A second cross-sectional shape in which the vicinity of the corners in the first cross-sectional shape is rounded to form a curved line.
    (3) A third cross-sectional shape formed only from an arcuate curve, and
    (4) U-shaped fourth cross-sectional shape,
    An internal combustion engine characterized by being one or more selected from the group consisting of.
  9.  前記第二領域の内径よりも、前記リング状部材の内径の方が小さいことを特徴とする請求項8に記載の内燃機関。 The internal combustion engine according to claim 8, wherein the inner diameter of the ring-shaped member is smaller than the inner diameter of the second region.
  10.  ディーゼルエンジンであることを特徴とする請求項8または9に記載の内燃機関。 The internal combustion engine according to claim 8 or 9, which is a diesel engine.
PCT/JP2021/030523 2020-08-25 2021-08-20 Heat-shielding ring for cylinder liner, and internal combustion engine WO2022044986A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021571748A JP7157262B2 (en) 2020-08-25 2021-08-20 Heat shield rings for cylinder liners and internal combustion engines
JP2022103537A JP2022141676A (en) 2020-08-25 2022-06-28 Heat shielding ring for cylinder liner, and internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-142034 2020-08-25
JP2020142034 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044986A1 true WO2022044986A1 (en) 2022-03-03

Family

ID=80355218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030523 WO2022044986A1 (en) 2020-08-25 2021-08-20 Heat-shielding ring for cylinder liner, and internal combustion engine

Country Status (3)

Country Link
JP (2) JP7157262B2 (en)
CN (2) CN114109639B (en)
WO (1) WO2022044986A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298744U (en) * 1985-12-11 1987-06-23
JPH01257745A (en) * 1988-04-08 1989-10-13 Isuzu Motors Ltd Structure of heat insulating engine
US20160097340A1 (en) * 2014-10-03 2016-04-07 Caterpillar Inc. Cylinder liner assembly having air gap insulation
EP3670882A1 (en) * 2018-12-18 2020-06-24 FPT Motorenforschung AG Diesel internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3038235C2 (en) 1980-10-10 1983-12-22 Mahle Gmbh, 7000 Stuttgart Cylinder or cylinder liner for reciprocating internal combustion engines
EP2243940A1 (en) * 2009-04-06 2010-10-27 Wärtsilä Schweiz AG Reduction device for reducing gas pressure in the piston ring package of a hydraulic piston combustion engine
EP2905454A1 (en) * 2014-02-10 2015-08-12 Caterpillar Energy Solutions GmbH Cylinder liner with deposit wiping face
JP6298744B2 (en) 2014-09-04 2018-03-20 ヤンマー株式会社 engine
CN207701233U (en) * 2018-01-16 2018-08-07 宁波浩锐动力机械有限公司 A kind of diesel cylinder sleeve with flame ring structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298744U (en) * 1985-12-11 1987-06-23
JPH01257745A (en) * 1988-04-08 1989-10-13 Isuzu Motors Ltd Structure of heat insulating engine
US20160097340A1 (en) * 2014-10-03 2016-04-07 Caterpillar Inc. Cylinder liner assembly having air gap insulation
EP3670882A1 (en) * 2018-12-18 2020-06-24 FPT Motorenforschung AG Diesel internal combustion engine

Also Published As

Publication number Publication date
JP2022141676A (en) 2022-09-29
CN114109639A (en) 2022-03-01
CN216077343U (en) 2022-03-18
CN114109639B (en) 2023-04-07
JP7157262B2 (en) 2022-10-19
JPWO2022044986A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US4522412A (en) Oil ring with coil expander
KR20030030037A (en) steel piston ring
KR101118396B1 (en) Multilayer metallic flat gasket, in particular cylinder head gasket
US8128099B2 (en) Gasket
WO2022044986A1 (en) Heat-shielding ring for cylinder liner, and internal combustion engine
EP0385699A1 (en) A steel laminate gasket
JP2010506107A (en) Flat seal with deformation restriction
KR100739500B1 (en) Cylinder head gasket
KR100687831B1 (en) Metal gasket
CA2507433A1 (en) Fluid coupling and method of designing
US6675750B1 (en) Cylinder liner
WO2018181383A1 (en) Piston for internal combustion engine, and piston ring
US5308089A (en) Combined oil ring
JPH11344117A (en) Metal sheet gasket
EP0222864B1 (en) Multiple part oil-control ring for piston
CN213928565U (en) Heat insulation ring for cylinder sleeve and internal combustion engine
US11448317B2 (en) Side rail
JP6695663B2 (en) Piston rings for internal combustion engines
CN216518303U (en) Cylinder liner and internal combustion engine
JP2006132609A (en) Metal gasket
US10704690B2 (en) Piston ring
EP0164940A1 (en) Improvements relating to cylinder head gaskets
JP6860328B2 (en) Pressure ring for internal combustion engine piston
WO2019167241A1 (en) Piston ring
JP7001655B2 (en) Spark plug

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861413

Country of ref document: EP

Kind code of ref document: A1