WO2022044949A1 - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
WO2022044949A1
WO2022044949A1 PCT/JP2021/030358 JP2021030358W WO2022044949A1 WO 2022044949 A1 WO2022044949 A1 WO 2022044949A1 JP 2021030358 W JP2021030358 W JP 2021030358W WO 2022044949 A1 WO2022044949 A1 WO 2022044949A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
diaphragm
crystal
vibrating portion
resin film
Prior art date
Application number
PCT/JP2021/030358
Other languages
French (fr)
Japanese (ja)
Inventor
学 大西
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to JP2022544513A priority Critical patent/JPWO2022044949A1/ja
Publication of WO2022044949A1 publication Critical patent/WO2022044949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to a piezoelectric vibration device such as a piezoelectric vibrator.
  • This surface-mounted crystal unit is derived from the excitation electrodes on both sides of the crystal vibrating piece to the holding electrode in the box-shaped base having an open upper surface made of ceramic.
  • the crystal vibrating piece is housed and mounted in the base by fixing the electrode to the electrode with a conductive adhesive.
  • the lid is joined to the opening of the base on which the crystal vibrating piece is mounted so as to be airtightly sealed.
  • a mounting terminal for surface mounting the crystal oscillator is formed on the outer bottom surface of the base.
  • piezoelectric vibrators have a package made by joining a metal or ceramic lid to a ceramic base, so that the package is expensive and the piezoelectric vibrator is expensive. It has become.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an inexpensive piezoelectric vibration device.
  • the piezoelectric vibration device of the present invention has a first excitation electrode formed on one main surface of both main surfaces and a second excitation electrode formed on the other main surface of both main surfaces, and has the above-mentioned
  • the piezoelectric vibrating plate has a piezoelectric vibrating plate having first and second metal films connected to the first and second exciting electrodes, respectively, and the piezoelectric vibrating plate so as to cover the first and second exciting electrodes of the piezoelectric vibrating plate.
  • the piezoelectric vibrating plate is provided with a first and second sealing member to be joined to both main surfaces, respectively, and the piezoelectric vibrating plate has a vibrating portion in which first and second exciting electrodes are formed on both main surfaces and the vibration.
  • the portion side has an inner surface connected to at least one of the two main surfaces, and the thickness of the vibrating portion is formed to be thinner than the thickness of the piezoelectric vibrating plate other than the vibrating portion.
  • At least one sealing member of the second sealing member is a resin film, and the resin film is bonded to the remaining region other than the bonding region bonded to the main surface of the piezoelectric vibrating plate. It is joined to at least a part of at least one of the inner side surface connected to the main surface and the outer side surface of the piezoelectric vibrating plate.
  • the first and second sealing members cover the first and second excitation electrodes of the piezoelectric vibration plate having the first and second excitation electrodes formed on both main surfaces. Since the piezoelectric vibrating pieces are joined and sealed, it is not necessary to store and mount the piezoelectric vibrating piece in a box-shaped base having an open upper surface as in the conventional case, and an expensive base is not required.
  • sealing members of the first and second sealing members is made of a resin film, as compared with the case where both sealing members are made of a metal or ceramic lid. The cost can be reduced.
  • the vibrating part In a piezoelectric vibration device, the vibrating part needs to have a certain size or more in order to obtain the required vibration characteristics. Therefore, in a small piezoelectric vibration device, it is necessary to join the resin film and the piezoelectric diaphragm. It is not easy to secure a large area.
  • the resin film is not only bonded to the main surface of the piezoelectric vibrating plate, but is the residue of the resin film other than the bonding region bonded to the main surface of the piezoelectric vibrating plate. Since the region is bonded to at least a part of the side surface connected to the main surface to which the resin film is bonded, the bonding area between the resin film and the piezoelectric vibration plate can be increased without increasing the size of the piezoelectric vibration device. It can be increased to secure the required joint area.
  • the piezoelectric diaphragm has an outer frame portion surrounding the vibrating portion, the vibrating portion is thinner than the outer frame portion, and the vibrating portion and the outer frame are formed.
  • the resin film has a penetrating portion between the portions, and the peripheral end portions thereof are joined to at least one main surface of both main surfaces of the outer frame portion.
  • the peripheral end portion of the resin film is joined to the outer frame portion surrounding the thin-walled vibrating portion, the resin film does not come into contact with the thin-walled vibrating portion, and the vibrating portion is excited.
  • the electrodes can be sealed.
  • the inner surface connected to the main surface is a side surface connected to the main surface on the inner peripheral side of the outer frame portion surrounding the vibrating portion.
  • the resin film bonded to the side surface connected to the main surface on the inner peripheral side of the outer frame portion is continuously connected to the central side so as to cover the exciting electrode of the vibrating portion on the central side surrounded by the outer frame portion. Therefore, the portion joined to the side surface of the resin film does not have an edge that triggers peeling, and peeling can be effectively prevented.
  • the residual region of the film faces the vibrating portion surrounded by the outer frame portion and has a gap between the vibrating portion and the vibrating portion.
  • the remaining region other than the bonding region bonded to the main surface of the piezoelectric diaphragm faces the vibrating portion surrounded by the outer frame portion, and is between the vibrating portion and the vibrating portion. Since it has a gap, the resin film does not come into contact with the vibrating portion.
  • the inner side surface connected to the main surface to which the resin film is bonded protrudes toward the vibrating portion toward the opposite main surface. It is an inclined inclined surface, and the angle formed by the inner surface surface with respect to the main surface to which the resin film is bonded is an obtuse angle.
  • the inner surface connected to the main surface to which the resin film is bonded is an inclined surface inclined so as to project toward the vibrating portion, and the angle formed with respect to the main surface is an obtuse angle.
  • the resin film bonded to the main surface is bonded over an inclined surface connected to the main surface along a gentle obtuse angle. Therefore, the resin film is more likely to be bonded than in the case of the inner surface where the angle formed by the inclined surface with respect to the main surface is an acute angle.
  • the piezoelectric diaphragm is a quartz diaphragm.
  • the piezoelectric diaphragm is a quartz diaphragm, it is connected to the main surface of the quartz diaphragm and forms a blunt angle with respect to the main plane by utilizing the etching anisotropy due to the crystal orientation of the quartz.
  • An inclined surface can be formed, and a resin film can be bonded from the main surface to the inclined surface.
  • the first and second sealing members are joined and sealed so as to cover the first and second excitation electrodes formed on both main surfaces of the piezoelectric diaphragm, as in the conventional case.
  • sealing members of the first and second sealing members is made of a resin film, as compared with the case where both sealing members are made of a metal or ceramic lid. The cost can be reduced.
  • the resin film is not only bonded to the main surface of the piezoelectric diaphragm but also to the side surface connected to the main surface, the size of the piezoelectric vibration device is not increased, and the resin film and the piezoelectric film are bonded.
  • the required joint area can be secured by increasing the joint area with the diaphragm.
  • FIG. 1 is a schematic perspective view of a crystal oscillator according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a quartz diaphragm constituting the crystal oscillator of FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along the line AA of the crystal diaphragm of FIG.
  • FIG. 4 is a schematic cross-sectional view taken along the line BB of the crystal diaphragm of FIG.
  • FIG. 5 is a schematic bottom view of the crystal diaphragm constituting the crystal oscillator of FIG. 1.
  • FIG. 6 is a schematic cross-sectional view corresponding to FIG. 3 of the crystal oscillator of FIG.
  • FIG. 7 is a schematic cross-sectional view corresponding to FIG.
  • FIG. 8 is an enlarged view of section P1 of FIG.
  • FIG. 9 is an enlarged view of section P2 of FIG.
  • FIG. 10 is an enlarged view of section P3 of FIG.
  • 11A is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1.
  • 11B is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1.
  • 11C is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1.
  • 11D is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1.
  • FIG. 11E is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1.
  • FIG. 12A is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D.
  • 12B is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D.
  • 12C is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D.
  • FIG. 13 is a schematic plan view of a quartz diaphragm constituting the crystal oscillator according to another embodiment of the present invention.
  • FIG. 14 is a schematic bottom view of the crystal diaphragm of FIG.
  • FIG. 15 is a schematic perspective view corresponding to FIG. 1 of still another embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view corresponding to FIG. 6 of the embodiment of
  • FIG. 1 is a schematic perspective view of a crystal oscillator according to an embodiment of the present invention.
  • the crystal oscillator 1 of this embodiment has an AT-cut crystal diaphragm 2 on which a metal film is formed, and first and second metal films 27 at both ends on both main surfaces of the front and back surfaces of the crystal diaphragm 2.
  • the first and second resin films 3 and 4 bonded so as to cover the rectangular region excluding 28 (in FIG. 1, only the first resin film 3 bonded to one main surface is shown). It is equipped with.
  • This crystal oscillator 1 has a rectangular parallelepiped shape and is a rectangular parallelepiped.
  • the crystal oscillator 1 of this embodiment has, for example, 1.2 mm ⁇ 1.0 mm and a thickness of 0.2 mm in a plan view, and is aimed at miniaturization and low profile.
  • the size of the crystal oscillator 1 is not limited to the above, and a different size can be applied.
  • FIG. 2 is a schematic plan view of the crystal diaphragm 2 constituting the crystal oscillator 1 of FIG. 1, that is, the crystal oscillator 1 in a state where the first and second resin films 3 and 4 are not bonded.
  • 3 is a schematic cross-sectional view of the crystal diaphragm 2 of FIG. 2 along the line AA
  • FIG. 4 is a schematic cross-sectional view of the crystal diaphragm 2 of FIG. 2 along the line BB
  • FIG. 5 is a schematic cross-sectional view.
  • It is a schematic bottom view of the crystal diaphragm 2.
  • FIGS. 3 and 4 and FIGS. 11A to 11E and FIGS. 12A to 12C described later the metal film formed on the quartz diaphragm 2 is exaggerated for convenience of explanation.
  • the quartz diaphragm 2 of this embodiment is an AT-cut quartz plate processed by rotating a rectangular quartz plate around the X-axis, which is the crystal axis of quartz, by 35 ° 15', and the new rotated axis is Y. It is called the'and Z'axis.
  • both front and back main surfaces F1 and F2 are XZ'planes.
  • the short side direction of the rectangular crystal diaphragm 2 in plan view (vertical direction in FIGS. 2 and 5) is the X-axis direction
  • the long side direction of the crystal diaphragm 2 (left and right in FIGS. 2 and 5).
  • Direction is the Z'axis direction.
  • the crystal diaphragm 2 connects a vibrating portion 21 having a substantially rectangular plan view, an outer frame portion 23 that surrounds the vibrating portion 21 with a penetrating portion 22 interposed therebetween, and the vibrating portion 21 and the outer frame portion 23. It is provided with a connecting portion 24 to be formed.
  • the vibrating portion 21, the outer frame portion 23, and the connecting portion 24 are integrally formed.
  • the vibrating portion 21 and the connecting portion 24 are formed thinner than the outer frame portion 23 surrounding the vibrating portion 21. That is, the vibrating portion 21 is thinner than the outer frame portion 23, which is the other portion.
  • a pair of first and second excitation electrodes 25 and 26 are formed on both main surfaces F1 and F2 on the front and back of the vibrating portion 21, respectively.
  • the first and second resins are formed on the outer frame portions 23 at both ends in the long side direction of the rectangular crystal diaphragm 2 in a plan view.
  • the first and second metal films 27 and 28 that are not covered by the films 3 and 4 are formed along the short side direction of the crystal diaphragm 2, respectively. That is, the first and second metal films 27 and 28 are formed at both ends of the crystal diaphragm 2 in the long side direction (Z'axis direction) with the vibrating portion 21 interposed therebetween.
  • a first sealing pattern 201 formed in a rectangular annular shape so as to surround the vibrating portion 21 is continuously provided on the first metal film 27 formed over both main surfaces F1 and F2.
  • the first and second metals are formed on the outer frame portions 23 at both ends in the long side direction of the rectangular crystal diaphragm 2 in a plan view.
  • the films 27 and 28 are formed along the short side direction of the crystal diaphragm 2, respectively.
  • a second sealing pattern 202 formed in a rectangular annular shape so as to surround the vibrating portion 21 is continuously provided on the second metal film 28 formed over both main surfaces F1 and F2.
  • the first metal film 27 is a region not covered by the rectangular first resin film 3 shown in FIG. 1 and is exposed to the outside.
  • the second metal film 28 is a region not covered by the second resin film 4, which will be described later, and is exposed to the outside. These metal films 27 and 28 are used as mounting terminals for mounting the crystal oscillator 1 on a circuit board or the like.
  • the first metal films 27 and the second metal films 28 on both main surfaces F1 and F2 of the crystal diaphragm 2 are electrically connected to each other.
  • the first metal films 27 and the second metal films 28 on both main surfaces F1 and F2 are electrically connected to each other by a routing electrode routed on the opposite long side side surfaces of the crystal diaphragm 2.
  • the side surfaces of the crystal diaphragm 2 on the opposite short side are electrically connected by a routed electrode.
  • the crystal oscillator 1 can be connected to the first and second metal films 27.
  • the, 28 When mounting the, 28 as a mounting terminal on a circuit board or the like, it can be mounted on either of the front and back main surfaces F1 and F2.
  • the first metal films 27 and the second metal films 28 on both main surfaces may be electrically connected to each other via a through electrode penetrating both main surfaces, or a side routing electrode may be used. It may be electrically connected via a through electrode and may be electrically connected via a through electrode.
  • the inner side surface connected to the main surfaces F1 and F2 on the inner peripheral side surrounding the substantially rectangular vibrating portion 21 is the crystal orientation of the crystal in the outer shape processing by wet etching of the crystal plate. Due to the etching anisotropy due to the above, as shown in FIGS. 3 and 4, the first to sixth inclined surfaces S1 to S6 are inclined.
  • the outer outer surfaces of the outer peripheral side connected to both main surfaces F1 and F2 of the crystal diaphragm 2 and extending along the long side direction of the crystal diaphragm 2 are the seventh to the outer surfaces.
  • the outer peripheral surface of the vibrating portion 21 surrounded by the first to sixth inclined surfaces S1 to S6 on the inner surface of the outer frame portion 23 is inclined from the eleventh to the eighteenth due to the etching anisotropy due to the crystal orientation of the crystal.
  • the surfaces are S11 to S18.
  • the vibrating portion 21 faces the eleventh and twelfth inclined surfaces S11 and S12 facing the first inclined surface S1 of the outer frame portion 23, and the second inclined surface S2 of the outer frame portion 23. It has 13th and 14th inclined surfaces S13 and S14. As shown in FIG.
  • the vibrating portion 21 includes the 15th and 16th inclined surfaces S15 and S16 facing the third and fourth inclined surfaces S3 and S4 of the outer frame portion 23, and the outer frame portion 23. It has 17th and 18th inclined surfaces S17 and S18 facing the 5th and 6th inclined surfaces S5 and S6, respectively.
  • the first inclined surface S1 shown in FIG. 3 extends along the short side direction of the quartz diaphragm 2 having a rectangular plan view, and the first inclined surface S1 is a side surface on the inner peripheral side which is the vibrating portion 21 side. That is, the inner surface.
  • the first inclined surface S1 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2.
  • the second inclined surface S2 extends along the short side direction of the crystal diaphragm 2, and the second inclined surface S2 is a side surface on the inner peripheral side, that is, an inner side surface, which is the vibrating portion 21 side.
  • the second inclined surface S2 is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward the one main surface F1.
  • the third inclined surface S3 shown in FIG. 4 extends along the long side direction of the crystal diaphragm 2, and the third inclined surface S3 is the inner surface on the inner peripheral side which is the vibrating portion 21 side.
  • the third inclined surface S3 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2, and is continuous with the fourth inclined surface S4.
  • the fourth inclined surface S4 is an inner surface on the vibrating portion 21 side, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward one main surface F1. be.
  • the fifth inclined surface S5 extends along the long side direction of the crystal diaphragm 2, and the fifth inclined surface S5 is an inner surface on the vibrating portion 21 side.
  • the fifth inclined surface S5 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2, and is continuous with the sixth inclined surface S6.
  • the sixth inclined surface S6 is an inner surface on the vibrating portion 21 side, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward one main surface F1. be.
  • the seventh inclined surface S7 shown in FIG. 4 extends along the long side direction of the crystal diaphragm 2, and the seventh inclined surface S7 is a side surface on the outer peripheral side of the crystal diaphragm 2, that is, an outer surface. be.
  • the seventh inclined surface S7 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project outward toward the other main surface F2, and is continuous with the eighth inclined surface S8.
  • the eighth inclined surface S8 is an outer surface on the outer peripheral side of the crystal diaphragm 2, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project outward toward the one main surface F1. Is.
  • the ninth inclined surface S9 extends along the long side direction of the crystal diaphragm 2, and the ninth inclined surface S9 is an outer surface on the outer peripheral side of the crystal diaphragm 2.
  • the ninth inclined surface S9 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project outward toward the other main surface F2, and is continuous with the tenth inclined surface S10.
  • the tenth inclined surface S10 is an outer surface on the outer peripheral side of the crystal diaphragm 2, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project outward toward one main surface F1. Is.
  • the angle formed by the first inclined surface S1 with respect to one main surface F1 is an obtuse angle
  • the angle formed by the second inclined surface S2 with respect to the other main surface F2 is an obtuse angle. ..
  • the angle formed by the third inclined surface S3 with respect to one main surface F1 and the angle formed by the fourth inclined surface S4 with respect to the other main surface F2 are both obtuse angles. Further, the angle formed by the fifth inclined surface S5 with respect to one main surface F1 and the angle formed by the sixth inclined surface S6 with respect to the other main surface F2 are both obtuse angles.
  • the angle formed by the seventh inclined surface S7 with respect to one main surface F1 and the angle formed by the eighth inclined surface S8 with respect to the other main surface F2 are both obtuse angles. Further, the angle formed by the ninth inclined surface S9 with respect to one main surface F1 and the angle formed by the tenth inclined surface S10 with respect to the other main surface F2 are both obtuse angles.
  • the rectangular annular first sealing pattern 201 on one main surface F1 side of the crystal diaphragm 2 is one end portion in the long side direction (Z'axis direction) of the crystal diaphragm 2.
  • the connecting portion 201a connected to the first metal film 27 of the above, and the first extending portions 201b and 201b extending from both ends of the connecting portion 201a along the long side direction (Z'axis direction), respectively, and crystal vibration. It is provided with a second extending portion 201c that extends along the short side direction (X-axis direction) of the plate 2 and connects the extending ends of the first extending portions 201b and 201b.
  • the second extension portion 201c is connected to the first extraction electrode 203 drawn from the first excitation electrode 25. Therefore, the first metal film 27 is electrically connected to the first excitation electrode 25 via the first drawer electrode 203 and the first sealing pattern 201.
  • An electrodeless region in which no electrode is formed is provided between the second extending portion 201c extending along the short side direction of the crystal diaphragm 2 and the second metal film 28, and the first sealing is performed.
  • the pattern 201 and the second metal film 28 are insulated from each other.
  • the rectangular annular second sealing pattern 202 on the other main surface F2 side of the crystal diaphragm 2 is the other end portion in the long side direction (Z'axis direction) of the crystal diaphragm 2.
  • 202a connected to the second metal film 28, first extending portions 202b and 202b extending from both ends of the connecting portion 202a along the long side direction, and the short side direction of the crystal diaphragm 2.
  • a second extension portion 202c is provided so as to extend along the above and connect the extension ends of the first extension portions 202b and 202b.
  • the connection portion 202a is connected to the second extraction electrode 204 drawn from the second excitation electrode 26.
  • the second metal film 28 is electrically connected to the second excitation electrode 26 via the connection portion 202a of the second extraction electrode 204 and the second sealing pattern 202.
  • An electrodeless region in which no electrode is formed is provided between the second extending portion 202c extending along the short side direction of the crystal diaphragm 2 and the first metal film 27, and the second sealing is provided.
  • the pattern 202 and the first metal film 27 are insulated from each other.
  • the widths of the first extending portions 201b and 201b of the first sealing pattern 201 extending along the long side direction of the crystal diaphragm 2 are along the long side direction. Electrodeless regions are provided on both sides of the first extending portions 201b, 201b in the width direction (vertical direction in FIG. 2), which is narrower than the width of the extending outer frame portion 23, and in which electrodes are not formed.
  • the outer non-electrode regions extend to the first metal film 27, and the second metal film 28 and the second extending portion 201c It is connected to the electrodeless area between them.
  • the outside of the connection portion 201a, the first extension portion 201b, 201b, and the second extension portion 201c of the first sealing pattern 201 is surrounded by electrodeless regions having substantially the same width.
  • This electrodeless region extends from the outside of one end of the connecting portion 201a extending along the short side direction of the crystal diaphragm 2 along the first extending portion 201b, and extends from the extending end to the second extending portion. It extends along 201c and extends from the extending end to the outside of the other end of the connecting portion 201a along the other first extending portion 201b.
  • An electrodeless region is formed inside the connection portion 201a of the first sealing pattern 201 in the width direction, and this electrodeless region is continuous with the electrodeless region inside the first extension portions 201b, 201b. There is. An electrodeless region is formed inside the second extending portion 201c in the width direction except for the first drawing electrode 203 of the connecting portion 24, and this electrodeless region is formed in the first extending portions 201b and 201b. It is connected to the inner electrodeless region. As a result, the inside of the connecting portion 201a, the first extending portion 201b, 201b, and the second extending portion 201c of the first sealing pattern 201 in the width direction except for the first drawing electrode 203 of the connecting portion 24. It is surrounded by a rectangular annular electrodeless region in plan view.
  • the widths of the first extending portions 202b and 202b of the second sealing pattern 202 extending along the long side direction of the crystal diaphragm 2 are along the long side direction. Electrodeless regions are provided on both sides of the first extending portions 202b, 202b in the width direction (vertical direction in FIG. 5), which are narrower than the width of the extending outer frame portion 23 and have no electrodes formed.
  • the outer non-electrode regions extend to the second metal film 28, and the first metal film 27 and the second extending portion 202c It is connected to the electrodeless area between them.
  • the outside of the connection portion 202a, the first extension portion 202b, 202b, and the second extension portion 202c of the second sealing pattern 202 is surrounded by electrodeless regions having substantially the same width.
  • This electrodeless region extends from the outside of one end of the connecting portion 202a extending along the short side direction of the crystal diaphragm 2 along one of the first extending portions 202b, and extends from the extending end to the second extending portion. It extends along 202c and extends from the extending end to the outside of the other end of the connecting portion 201a along the other first extending portion 202b.
  • An electrodeless region is formed inside the connecting portion 202a of the second sealing pattern 202 in the width direction except for the second drawer electrode 204 of the connecting portion 24, and this electrodeless region is the first extending portion. It is connected to the electrodeless region inside 202b and 202b.
  • An electrodeless region is formed inside the second extending portion 202c in the width direction, and this electrodeless region is continuous with the inner non-electrode region of the first extending portions 202b, 202b.
  • the first extension portions 201b, 201b; 202b, 202b of the first and second sealing patterns 201, 202 are made narrower than the width of the outer frame portion 23, and the first extension portions 201b, 201b; Electrodeless regions are provided on both sides of 202b and 202b in the width direction, and electrodeless regions are provided inside the connecting portions 201a and 202a and the second extending portions 201c and 202c in the width direction.
  • the electrodeless region is formed by patterning the first and second sealing patterns 201 and 202 that wrap around the side surface of the outer frame portion 23 during sputtering by photolithography technology and removing them by metal etching. .. As a result, it is possible to prevent a short circuit caused by the first and second sealing patterns 201 and 202 wrapping around the side surface of the outer frame portion 23.
  • the first and second excitation electrodes 25 and 26 of the quartz diaphragm 2 are covered on both main surfaces of the quartz diaphragm 2 having the above configuration. 1, The second resin films 3 and 4 are bonded.
  • FIGS. 6 and 7 are schematic cross-sectional views of the crystal oscillator 1 of FIG. 1, and FIG. 2 shows a state in which the first and second resin films 3 and 4 are bonded to the crystal diaphragm 2 of FIG. It is a schematic cross-sectional view along the line AA and the line BB.
  • the excitation electrodes 25, 26, the metal films 27, 28, etc. are negligibly thinner than the crystal diaphragm 2 and the first and second resin films 3, 4, and are omitted in FIGS. 6 and 7. ing.
  • the first and second resin films 3 and 4 are rectangular films.
  • the rectangular first and second resin films 3 and 4 have the first and second sealing patterns 201, except for the first and second metal films 27 and 28 at both ends in the longitudinal direction of the crystal diaphragm 2. It is a size that covers a rectangular area including 202, and is joined to the rectangular area.
  • the first and second resin films 3 and 4 are made of a heat-resistant resin film, for example, a polyimide resin film.
  • the first and second resin films 3 and 4 have a thermoplastic adhesive layer formed on the entire front and back surfaces.
  • the first and second resin films 3 and 4 have, for example, such that the rectangular peripheral end portion seals the vibrating portion 21 on the outer frame portions 23 of both main surfaces F1 and F2 of the crystal diaphragm 2. , Each is heat-bonded by a heat press.
  • the polyimide resin film has a heat resistance of about 300 ° C., it can withstand the high temperature of the solder reflow process when the crystal oscillator 1 is solder-mounted on a circuit board or the like, and the first and second resin films 3 can be used. , 4 will not be deformed.
  • the first and second resin films 3 and 4 of this embodiment are transparent, but may be opaque depending on the conditions of heat crimping.
  • the first and second resin films 3 and 4 may be transparent, opaque, or translucent.
  • the first and second resin films 3 and 4 are not limited to polyimide resins, and resins classified as super engineering plastics, such as polyamide resins and polyether ether ketone resins, may be used.
  • the base layer is Ti, and Au and Ti are laminated and formed on the base layer. Since the uppermost layer is Ti in this way, the bonding strength with the polyimide resin film is improved as compared with the case where Au is the uppermost layer.
  • the upper layer of the rectangular annular first and second sealing patterns 201 and 202 to which the rectangular first and second resin films 3 and 4 are bonded is made of Ti, Cr or Ni (or oxides thereof). ), So that the bonding strength with the first and second resin films 3 and 4 can be increased as compared with Au and the like.
  • the vibrating unit 21 In the crystal oscillator 1, in order to obtain the required vibration characteristics, the vibrating unit 21 needs to have a size of a certain size or more. Therefore, in the small crystal oscillator 1, an area of a certain size or more is secured in the vibrating portion 21, and further, an area required for joining the first and second resin films 3 and 4 and the crystal diaphragm 2 is secured. Is not easy.
  • the bonding area between the first and second resin films 3 and 4 and the crystal diaphragm 2 can be increased without increasing the size of the crystal oscillator 1 so that the required bonding area can be secured. It is configured as follows.
  • FIG. 8 is an enlarged view of section P1 of FIG.
  • the first resin film 3 is a part of the first inclined surface S1 in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is an inner surface connected to the one main surface F1. It is joined to S1a. That is, the first resin film 3 is joined not only from one main surface F1 but also from the main surface F1 to a part S1a of the first inclined surface S1.
  • the angle formed by the first inclined surface S1 with respect to one main surface F1 of the crystal diaphragm 2 and the angle formed by the second inclined surface S2 with respect to the other main surface F2 of the crystal diaphragm 2 are both. It is an obtuse angle. Therefore, the first and second resin films 3 and 4 are joined from the main surfaces F1 and F2 along a gentle obtuse angle over a part of the first and second inclined surfaces S1 and S2.
  • FIG. 9 is an enlarged view of section P2 of FIG.
  • the first resin film 3 is a part of a fifth inclined surface S5 in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is an inner surface connected to one main surface F1. It is joined to S5a. That is, the first resin film 3 is bonded not only to one main surface F1 but also from the main surface F1 to a part S5a of the fifth inclined surface S5.
  • the second resin film 4 is bonded not only to the other main surface F2 but also from the main surface F2 to a part of the fourth and sixth inclined surfaces S4 and S6.
  • the angles formed by S4 and S6 are obtuse angles. Therefore, the first and second resin films 3 and 4 are formed on the third and fifth inclined surfaces S3 and S5 or the fourth and sixth inclined surfaces S4 along a gentle obtuse angle from the main surfaces F1 and F2. Each part of S6 is joined.
  • the first and second resin films 3 and 4 are formed from the main surfaces F1 and F2 of the outer frame portion 23 to the inner side surfaces of the third and fifth inclined surfaces S3 and S5, or the fourth and sixth surfaces. Since the first and second resin films 3 and 4 are joined only to each of the inclined surfaces S4 and S6, the first and second resin films 3 and 4 are joined only to the main surfaces F1 and F2. 2 The resin films 3 and 4 are close to the vibrating portion 21 side.
  • the corners on the outer peripheral side of the vibrating portion 21 are the third and fifth inclined surfaces S3 and S5 of the outer frame portion 23, and the fourth and sixth inclined surfaces S4.
  • the first and second resin films 3 and 4 are the third to sixth inner surfaces of the outer frame portion 23, as compared with the case where the corner portion on the outer peripheral side of the vibrating portion 21 is not an inclined surface. It is possible to increase the separation distance from the portion joined to each part of the inclined surfaces S3 to S6 to the vibrating portion 21. Since the separation distance can be increased in this way, when the first and second resin films 3 and 4 are bent toward the vibrating portion 21, for example, the first and second resin films 3 and 4 and the vibrating portion are formed. It is possible to suppress contact with 21.
  • FIG. 10 is an enlarged view of section P3 of FIG.
  • the first resin film 3 is an outer surface in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is connected to one main surface F1. It is joined to a part S7a of the seventh inclined surface S7. That is, the first resin film 3 is bonded not only to one main surface F1 but also from the main surface F1 to a part S7a of the seventh inclined surface S7.
  • the second resin film 4 is bonded not only to the other main surface F2 but also from the main surface F2 to a part of the eighth and tenth inclined surfaces S8 and S10, respectively.
  • the angles formed by the 7th and 9th obtuse planes S7 and S9 with respect to one main surface F1 of the crystal diaphragm 2 and the 8th and 10th obtuse planes with respect to the other main surface F2 of the crystal diaphragm 2 are obtuse angles. Therefore, the first and second resin films 3 and 4 have the seventh and ninth inclined surfaces S7 and S9, or the eighth and tenth inclined surfaces S8, along a gentle obtuse angle from the main surfaces F1 and F2. Each part of S10 is joined.
  • the first and second resin films 3 and 4 are not only the two main surfaces F1 and F2 of the crystal diaphragm 2, but also the first to sixth inner peripheral sides surrounding the vibrating portion 21. Since it is also joined to a part of the inclined surfaces S1 to S6 and a part of the seventh to tenth inclined surfaces S7 to S10 which are outer surfaces, the first one without increasing the size of the crystal oscillator 1.
  • the required bonding area can be secured by increasing the bonding area between the second resin films 3 and 4 and the crystal diaphragm 2.
  • the first resin film 3 or the second resin film 4 is joined to all the inclined surfaces S1 to S10 of the first to sixth inclined surfaces S1 to S6 and the seventh to tenth inclined surfaces S7 to S10. It does not have to be, and may be joined to a part of at least one inclined surface.
  • the vibrating portion 21 having a substantially rectangular plan view is connected to the outer frame portion 23 by a connecting portion 24 provided at one corner of the vibrating portion 21, 2
  • the stress acting on the vibrating portion 21 can be reduced as compared with the configuration in which the portions are connected at or above.
  • the connecting portion 24 protrudes from one side of the inner circumference of the outer frame portion 23 along the X-axis direction and is formed along the Z'axis direction.
  • the first and second metal films 27 and 28 formed at both ends of the crystal diaphragm 2 in the Z'axis direction are used as mounting terminals and are directly bonded to a circuit board or the like by soldering or the like. Therefore, it is conceivable that the contraction stress acts in the long side direction (Z'axis direction) of the crystal oscillator, and the stress propagates to the vibrating portion, so that the oscillation frequency of the crystal oscillator is likely to change.
  • the connecting portion 24 is formed in the direction along the contraction stress, it is possible to suppress the contraction stress from propagating to the vibrating portion 21. As a result, it is possible to suppress a change in the oscillation frequency when the crystal oscillator 1 is mounted on the circuit board.
  • the penetrating portion 22 between the vibrating portion 21 and the outer frame portion 23 may be omitted, and the outer frame portion 23 may be continuously provided to the vibrating portion 21 so as to surround the thin-walled vibrating portion 21.
  • 11A to 11E are schematic cross-sectional views schematically showing a process of manufacturing the crystal oscillator 1.
  • the AT-cut crystal wafer (AT-cut crystal plate) 5 before processing shown in FIG. 11A is prepared.
  • the crystal wafer 5 is subjected to wet etching using a photolithography technique to form an outer shape of a plurality of crystal diaphragm portions 2a and a frame portion (not shown) that supports them.
  • the outer shape of each part such as the outer frame portion 23a and the vibration portion 21a thinner than the outer frame portion 23a is formed on the crystal diaphragm portion 2a. That is, the processing process of the outer shape and the vibrating portion is carried out.
  • the first and second excitation electrodes 25a and 26a and the first and second excitation electrodes 25a and 26a are placed at predetermined positions of the crystal vibrating plate portion 2a by the sputtering technique or the vapor deposition technique and the photolithography technique.
  • An electrode forming step of forming the metal films 27a, 28a and the like is carried out.
  • the resin films 3a and 4a are heat-bonded so as to cover both the front and back main surfaces of each crystal diaphragm portion 2a with continuous resin films 3a and 4a, respectively, and each crystal vibration is performed.
  • Each vibrating portion 21a of the plate portion 2a is sealed.
  • 12A to 12C are schematic cross-sectional views schematically showing a step of heat-pressing the resin films 3a and 4a to each quartz diaphragm portion 2a.
  • each crystal diaphragm portion whose main surfaces are covered with resin films 3a and 4a, respectively. 2a is set with the protective film 6 interposed above and below.
  • the first and second resin films 3a and 4a are pressure-heated and pressure-bonded to each crystal diaphragm portion 2a by the upper and lower pressure-heating blocks 7 and 8.
  • the resin films 3a and 4a are not only on both main surfaces F1 and F2 of the crystal diaphragm portion 2a but also on the inner surface surface. It is joined to at least a part of the first to sixth inclined surfaces S1 to S6 and the outer surface, the seventh to tenth inclined surfaces S7 to S10.
  • each crystal diaphragm portion 2a to which the first and second resin films 3a and 4a are bonded is taken out. Then, the protective film 6 is removed in the protective film removing step.
  • the step of heat-pressing the resin films 3a and 4a to each crystal diaphragm portion 2a is performed in an atmosphere of an inert gas such as nitrogen gas.
  • the step of heat crimping is not limited to the atmosphere of the inert gas, but may be performed in the atmosphere of the atmosphere or the atmosphere of reduced pressure.
  • the continuous resin films 3a and 4a are cut so as to expose the first and second metal films 27 and 28 so as to correspond to the respective crystal diaphragms 2. Unnecessary parts are removed, and each crystal diaphragm 2 is separated and individualized.
  • the first and second resin films 3 and 4 are joined to both the front and back main surfaces F1 and F2 of the crystal diaphragm 2 to form the crystal oscillator 1, an insulating material such as ceramic is formed.
  • An expensive base or lid is not required as in the conventional example in which the crystal vibrating piece is housed in the base having the concave portion and the lid is joined to the base and sealed airtightly.
  • the cost of the crystal oscillator 1 can be reduced, and the crystal oscillator 1 can be provided at a low cost.
  • the vibrating portion 21 is sealed by the first and second resin films 3 and 4
  • a metal or ceramic lid is joined to the base and hermetically sealed.
  • the airtightness is inferior to that of the conventional example, and the resonance frequency of the crystal oscillator 1 tends to change over time.
  • a first sealing pattern 201 to which the first resin film 3 is bonded is substantially formed on one main surface F1 of both main surfaces F1 and F2 of the crystal diaphragm 2.
  • a second resin film 4 is bonded to both main surfaces F1 and F2 of the crystal diaphragm 2 so as to surround the rectangular vibrating portion 21 and to the other main surface F2 as shown in FIG.
  • the second sealing pattern 202 is formed in a rectangular ring shape so as to surround the substantially rectangular vibration portion 21, but the first and second sealing patterns 201 and 202 of the rectangular ring shape may be omitted.
  • 13 and 14 are a schematic plan view and a schematic bottom view of the crystal diaphragm 21 excluding the first and second sealing patterns 201 and 202.
  • the first metal film 27 is electrically connected to the first excitation electrode 25 via the routing electrode 209 and the first extraction electrode 203.
  • the second metal film 28 is electrically connected to the second excitation electrode 26 by extending the second extraction electrode 204.
  • the first and second metal films 27 and 28 of the crystal diaphragms 2 and 2 1 function as mounting terminals for mounting the crystal oscillator 1 on a circuit board or the like as described above.
  • the first and second mounting terminals are formed separately from the first and second metal films 27 and 28, and the first and second metal films 27 and 28 are formed by the first and first metal films 27 and 28.
  • the two mounting terminals may function as connection electrodes for electrically connecting the first and second excitation electrodes 25 and 26.
  • first and second metal films 27 and 28 function as connection electrodes for electrically connecting the first and second mounting terminals and the first and second excitation electrodes 25 and 26 is shown in the figure. 15 and FIG.
  • the external size of the crystal oscillator 1 of this embodiment is the same as the external size of the crystal oscillator 1 of each of the above embodiments.
  • the inclined surface of the crystal is simplified in order to exaggerate the formed region of the metal film.
  • the crystal vibrating plate 2 2 of the crystal oscillator 1 1 of this embodiment has a vibrating portion 21 1 on which the first and second excitation electrodes 25 1 , 26 1 are formed and the vibrating portion 21 2 thereof, as in each of the above embodiments. It is provided with an outer frame portion 23 1 that surrounds the periphery of the 21 1 with the penetrating portion 22 1 interposed therebetween, and a connecting portion 24 1 that connects the vibrating portion 21 1 and the outer frame portion 23 1 .
  • the first and second resin films 3 1 and 4 1 are the vibrating portion 21 1 on which the first and second excitation electrodes 25 1 and 26 1 of the crystal diaphragm 2 2 are formed and the rectangle around the vibrating portion 21 1 . It is joined so as to cover not only the region of the above but also the entire surfaces of both main surfaces of the crystal diaphragm 22. That is, the sizes of the first and second resin films 3 1 and 4 1 are larger than the sizes of the first and second resin films 3 and 4 of each of the above embodiments, and are the same size as the crystal diaphragm 2 2 . ..
  • the portions formed on both main surfaces are the first and second metal films. It is covered with resin films 3 1 and 4 1 .
  • the first and second resin films 3 are attached to both ends of the crystal diaphragm 2 2 in which the first and second resin films 3 1 and 4 1 are bonded to the entire surfaces of both main surfaces in the long side direction.
  • a conductive paste is applied so as to cover substantially the entire outer surface of 1 , 41 and the crystal diaphragm 22 and heat-cured to form the first and second mounting terminals 17 and 18.
  • the first metal film 27 1 is formed on each side surface on the long side facing each other and the short side facing each other on one end of both ends in the long side direction of the quartz diaphragm 22. It is formed over one side. Since the first mounting terminal 17 is formed on the first metal film 27 1 , the first mounting terminal 17 is electrically connected to the first metal film 27 1 . Since the first metal film 27 1 is electrically connected to the first excitation electrode 25 1 as in each of the above embodiments, the first metal film 27 1 is the first excitation electrode 25 1 and the first. It functions as a connection electrode for electrically connecting to the mounting terminal 17.
  • the second metal film 28 1 extends over each side surface on the opposite long side and the other side surface on the opposite short side of the other end of both ends in the long side direction of the quartz diaphragm 22. Is formed. Since the second mounting terminal 18 is formed on the second metal film 281, the second mounting terminal 18 is electrically connected to the second metal film 281. Since the second metal film 28 1 is electrically connected to the second excitation electrode 26 1 , the second metal film 28 1 electrically connects the second excitation electrode 26 1 and the second mounting terminal 18. Functions as a connecting electrode to connect.
  • the first and second mounting terminals 17 and 18 are formed on the outer surface of the first and second resin films 3 1 and 4 1 bonded to the crystal diaphragm 22.
  • the first formed on the crystal diaphragm 2 2 is performed.
  • the size of the second metal films 27 1 , 28 1 can be reduced, and the size of the vibrating portion 21 1 sandwiched between the first and second metal films 27 1 , 28 1 can be increased accordingly. ..
  • the vibrating portion 21 1 can be lengthened along the long side direction of the crystal diaphragm 2 2 to improve the vibration characteristics without increasing the size of the crystal oscillator 1 1 itself, and the crystal can be improved. It is possible to secure the junction regions of the first and second mounting terminals 17 and 18 required for mounting the oscillator 11.
  • the connecting portions 24 and 24 1 are provided at one corner of the vibrating portions 21 and 21 1 having a substantially rectangular plan view.
  • the number of formations is not limited to this. Further, the widths of the connecting portions 24 and 241 do not have to be constant.
  • inverted mesa type quartz diaphragm having a thin vibrating portion and a thick peripheral portion without having a penetrating portion.
  • the first and second resin films 3, 3 1 ; 4, 4 1 having a thermoplastic adhesive layer are heat-bonded to the crystal vibrating plates 2 , 2 1 , 22.
  • a photosensitive resin film for example, a photosensitive polyimide film is used as the first and second resin films, and the photosensitive resin film is laminated on a crystal vibrating plate and exposed via a photomask. , It may be developed to remove unnecessary portions of the photosensitive resin film and to be cured.
  • the first and second resin films 3, 4; 3 1 , 4 1 are bonded to both main surfaces of the crystal diaphragms 2, 2 1 and 2 2 to seal the vibrating portion 21.
  • a conventional lid instead of the resin film on at least one main surface, a conventional lid may be joined to seal the vibrating portion 21.
  • the crystal diaphragm may be a substantially rectangular shape in a plan view, and is not limited to the rectangle in a plan view as described above. It may have a shape in which a notch, a rectangle or the like in which an electrode is adhered to the notch, is formed.
  • the present invention is not limited to the crystal oscillator, and may be applied to other piezoelectric vibration devices such as the crystal oscillator.
  • the crystal oscillator according to the present invention and the integrated circuit element constituting the oscillation circuit together with the crystal oscillator are mounted on a substrate and sealed by covering the substrate with a cover, or the substrate is resin-molded.
  • a crystal oscillator may be configured.

Abstract

This piezoelectric vibration device comprises: a piezoelectric vibration plate having first and second excitation electrodes on the two main surfaces and first and second metal films respectively connected to the first and second excitation electrodes; and first and second sealing members joined to the main surfaces of the piezoelectric vibration plate so as to cover the first and second excitation electrodes of the piezoelectric vibration plate. At least one of the first and second sealing members is a resin film, and in the resin film, a remaining region other than a joined region that is joined to the corresponding main surface of the piezoelectric vibration plate is joined to a part of an inner surface which is contiguous to the main surface to which the resin film is joined.

Description

圧電振動デバイスPiezoelectric vibration device
 本発明は、圧電振動子等の圧電振動デバイスに関する。 The present invention relates to a piezoelectric vibration device such as a piezoelectric vibrator.
 圧電振動デバイス、例えば、圧電振動子として、表面実装型の水晶振動子が広く用いられている。この表面実装型の水晶振動子は、例えば、特許文献1に記載されているように、セラミックからなる上面が開口した箱形のベース内の保持電極に、水晶振動片の両面の励振電極から導出された電極を、導電性接着剤によって固着することによって、水晶振動片をベース内に収納して搭載する。このようにして水晶振動片を搭載したベースの開口に、蓋体を接合して気密に封止するようにしている。また、ベースの外底面には、当該水晶振動子を表面実装するための実装端子が形成されている。 Surface mount type crystal oscillators are widely used as piezoelectric vibration devices, for example, piezoelectric vibrators. As described in Patent Document 1, for example, this surface-mounted crystal unit is derived from the excitation electrodes on both sides of the crystal vibrating piece to the holding electrode in the box-shaped base having an open upper surface made of ceramic. The crystal vibrating piece is housed and mounted in the base by fixing the electrode to the electrode with a conductive adhesive. In this way, the lid is joined to the opening of the base on which the crystal vibrating piece is mounted so as to be airtightly sealed. Further, a mounting terminal for surface mounting the crystal oscillator is formed on the outer bottom surface of the base.
特開2005-184325号公報Japanese Unexamined Patent Publication No. 2005-184325
 上記のような圧電振動子の多くは、セラミック製のベースに、金属製あるいはセラミック製の蓋体が接合されてパッケージが構成されているので、パッケージが高価となり、圧電振動子が高価なものとなっている。 Most of the above-mentioned piezoelectric vibrators have a package made by joining a metal or ceramic lid to a ceramic base, so that the package is expensive and the piezoelectric vibrator is expensive. It has become.
 本発明は、上記のような点に鑑みて為されたものであって、安価な圧電振動デバイスを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide an inexpensive piezoelectric vibration device.
 本発明では、上記目的を達成するために、次のように構成している。 In the present invention, in order to achieve the above object, it is configured as follows.
 (1)本発明の圧電振動デバイスは、両主面の一方の主面に形成された第1励振電極及び前記両主面の他方の主面に形成された第2励振電極を有すると共に、前記第1,第2励振電極にそれぞれ接続された第1,第2金属膜を有する圧電振動板と、前記圧電振動板の前記第1,第2励振電極をそれぞれ覆うように、前記圧電振動板の前記両主面にそれぞれ接合される第1,第2封止部材とを備え、前記圧電振動板は、前記両主面に第1,第2励振電極がそれぞれ形成された振動部と、該振動部側に前記両主面の少なくとも一方の主面に連なる内側面を有し、前記振動部の厚みは、該振動部以外の前記圧電振動板の厚みよりも薄肉に形成され、前記第1,第2封止部材の少なくとも一方の封止部材は、樹脂フィルムであり、前記樹脂フィルムは、前記圧電振動板の主面に接合されている接合領域以外の残余の領域が、該樹脂フィルムが接合されている前記主面に連なる前記内側面及び前記圧電振動板の外側面の少なくともいずれか一方の側面の、少なくとも一部に接合されている。 (1) The piezoelectric vibration device of the present invention has a first excitation electrode formed on one main surface of both main surfaces and a second excitation electrode formed on the other main surface of both main surfaces, and has the above-mentioned The piezoelectric vibrating plate has a piezoelectric vibrating plate having first and second metal films connected to the first and second exciting electrodes, respectively, and the piezoelectric vibrating plate so as to cover the first and second exciting electrodes of the piezoelectric vibrating plate. The piezoelectric vibrating plate is provided with a first and second sealing member to be joined to both main surfaces, respectively, and the piezoelectric vibrating plate has a vibrating portion in which first and second exciting electrodes are formed on both main surfaces and the vibration. The portion side has an inner surface connected to at least one of the two main surfaces, and the thickness of the vibrating portion is formed to be thinner than the thickness of the piezoelectric vibrating plate other than the vibrating portion. At least one sealing member of the second sealing member is a resin film, and the resin film is bonded to the remaining region other than the bonding region bonded to the main surface of the piezoelectric vibrating plate. It is joined to at least a part of at least one of the inner side surface connected to the main surface and the outer side surface of the piezoelectric vibrating plate.
 本発明の圧電振動デバイスによれば、両主面に第1,第2励振電極が形成された圧電振動板の前記第1,第2励振電極を覆うように、第1,第2封止部材を接合して封止するので、従来のように、上面が開口した箱形のベース内に圧電振動片を収納搭載して封止する必要がなく、高価なベースが不要になる。 According to the piezoelectric vibration device of the present invention, the first and second sealing members cover the first and second excitation electrodes of the piezoelectric vibration plate having the first and second excitation electrodes formed on both main surfaces. Since the piezoelectric vibrating pieces are joined and sealed, it is not necessary to store and mount the piezoelectric vibrating piece in a box-shaped base having an open upper surface as in the conventional case, and an expensive base is not required.
 また、第1,第2封止部材の少なくとも一方の封止部材を、樹脂フィルムで構成しているので、両封止部材を、金属製やセラミック製の蓋体で構成するのに比べて、コストを低減することができる。 Further, since at least one of the sealing members of the first and second sealing members is made of a resin film, as compared with the case where both sealing members are made of a metal or ceramic lid. The cost can be reduced.
 圧電振動デバイスにおいて、所要の振動特性を得るためには、振動部は、一定以上の大きさが必要であり、このため、小型の圧電振動デバイスでは、樹脂フィルムと圧電振動板との接合に必要な面積を確保するのが容易でない。 In a piezoelectric vibration device, the vibrating part needs to have a certain size or more in order to obtain the required vibration characteristics. Therefore, in a small piezoelectric vibration device, it is necessary to join the resin film and the piezoelectric diaphragm. It is not easy to secure a large area.
 本発明の圧電振動デバイスによれば、樹脂フィルムは、圧電振動板の主面のみに接合されるのではなく、樹脂フィルムの、圧電振動板の主面に接合されている接合領域以外の残余の領域が、該樹脂フィルムが接合されている主面に連なる側面の少なくとも一部に接合されているので、当該圧電振動デバイスのサイズを大きくすることなく、樹脂フィルムと圧電振動板との接合面積を増加させて、必要な接合面積を確保することができる。 According to the piezoelectric vibration device of the present invention, the resin film is not only bonded to the main surface of the piezoelectric vibrating plate, but is the residue of the resin film other than the bonding region bonded to the main surface of the piezoelectric vibrating plate. Since the region is bonded to at least a part of the side surface connected to the main surface to which the resin film is bonded, the bonding area between the resin film and the piezoelectric vibration plate can be increased without increasing the size of the piezoelectric vibration device. It can be increased to secure the required joint area.
 (2)本発明の好ましい実施態様では、前記圧電振動板は、前記振動部を囲む外枠部を有し、前記振動部は、前記外枠部より薄肉であり、前記振動部と前記外枠部との間には貫通部を有し、前記樹脂フィルムは、その周端部が前記外枠部の両主面の少なくとも一方の主面に接合されている。 (2) In a preferred embodiment of the present invention, the piezoelectric diaphragm has an outer frame portion surrounding the vibrating portion, the vibrating portion is thinner than the outer frame portion, and the vibrating portion and the outer frame are formed. The resin film has a penetrating portion between the portions, and the peripheral end portions thereof are joined to at least one main surface of both main surfaces of the outer frame portion.
 この実施態様によると、樹脂フィルムは、その周端部が、薄肉の振動部を囲む外枠部に接合されるので、樹脂フィルムが、薄肉の振動部に接触することなく、該振動部の励振電極を封止することができる。 According to this embodiment, since the peripheral end portion of the resin film is joined to the outer frame portion surrounding the thin-walled vibrating portion, the resin film does not come into contact with the thin-walled vibrating portion, and the vibrating portion is excited. The electrodes can be sealed.
 (3)本発明の一実施態様では、前記主面に連なる前記内側面は、前記振動部を囲む前記外枠部の内周側の主面に連なる側面である。 (3) In one embodiment of the present invention, the inner surface connected to the main surface is a side surface connected to the main surface on the inner peripheral side of the outer frame portion surrounding the vibrating portion.
 この実施態様によると、外枠部の内周側の主面に連なる側面に接合された樹脂フィルムは、外枠部に囲まれた中央側の振動部の励振電極を覆うように中央側へ連続して延びているので、樹脂フィルムの前記側面に接合された部分には、剥離のきっかけとなる端縁はなく、剥離を有効に防止することができる。 According to this embodiment, the resin film bonded to the side surface connected to the main surface on the inner peripheral side of the outer frame portion is continuously connected to the central side so as to cover the exciting electrode of the vibrating portion on the central side surrounded by the outer frame portion. Therefore, the portion joined to the side surface of the resin film does not have an edge that triggers peeling, and peeling can be effectively prevented.
 (4)本発明の他の実施態様では、前記フィルムの前記残余の領域は、前記外枠部で囲まれた前記振動部に対向し、当該振動部との間に空隙を有している。 (4) In another embodiment of the present invention, the residual region of the film faces the vibrating portion surrounded by the outer frame portion and has a gap between the vibrating portion and the vibrating portion.
 この実施態様によると、樹脂フィルムは、圧電振動板の主面に接合されている接合領域以外の残余の領域が、外枠部で囲まれた振動部に対向し、当該振動部との間に空隙を有しているので、樹脂フィルムが、振動部に接触することがない。 According to this embodiment, in the resin film, the remaining region other than the bonding region bonded to the main surface of the piezoelectric diaphragm faces the vibrating portion surrounded by the outer frame portion, and is between the vibrating portion and the vibrating portion. Since it has a gap, the resin film does not come into contact with the vibrating portion.
 (5)本発明の更に他の実施態様では、前記樹脂フィルムが接合されている前記主面に連なる前記内側面が、前記反対側の主面に向けて、前記振動部側へ突出するように傾斜した傾斜面であり、前記樹脂フィルムが接合されている前記主面に対する前記内側面の成す角が、鈍角である。 (5) In still another embodiment of the present invention, the inner side surface connected to the main surface to which the resin film is bonded protrudes toward the vibrating portion toward the opposite main surface. It is an inclined inclined surface, and the angle formed by the inner surface surface with respect to the main surface to which the resin film is bonded is an obtuse angle.
 この実施態様によると、樹脂フィルムが接合されている主面に連なる内側面は、振動部側へ突出するように傾斜した傾斜面であって、主面に対して成す角が、鈍角であるので、主面に接合されている樹脂フィルムは、緩やかな鈍角に沿って主面に連なる傾斜面に亘って接合する。そのため、前記傾斜面が主面に対して成す角が鋭角である内側面の場合に比べて、樹脂フィルムが接合され易くなる。 According to this embodiment, the inner surface connected to the main surface to which the resin film is bonded is an inclined surface inclined so as to project toward the vibrating portion, and the angle formed with respect to the main surface is an obtuse angle. The resin film bonded to the main surface is bonded over an inclined surface connected to the main surface along a gentle obtuse angle. Therefore, the resin film is more likely to be bonded than in the case of the inner surface where the angle formed by the inclined surface with respect to the main surface is an acute angle.
 (6)本発明の他の実施態様では、前記圧電振動板が、水晶振動板である。 (6) In another embodiment of the present invention, the piezoelectric diaphragm is a quartz diaphragm.
 この実施態様によると、圧電振動板が水晶振動板であるので、水晶の結晶方位によるエッチング異方性を利用して、水晶振動板の主面に連なって、該主面に対して鈍角を成す傾斜面を形成することができ、主面から傾斜面に亘って樹脂フィルムを接合することができる。 According to this embodiment, since the piezoelectric diaphragm is a quartz diaphragm, it is connected to the main surface of the quartz diaphragm and forms a blunt angle with respect to the main plane by utilizing the etching anisotropy due to the crystal orientation of the quartz. An inclined surface can be formed, and a resin film can be bonded from the main surface to the inclined surface.
 本発明によれば、圧電振動板の両主面に形成された第1,第2励振電極を覆うように、第1,第2封止部材を接合して封止するので、従来のように、上面が開口した箱形のベース内に圧電振動片を収納搭載して封止する必要がなく、高価なベースが不要になる。 According to the present invention, the first and second sealing members are joined and sealed so as to cover the first and second excitation electrodes formed on both main surfaces of the piezoelectric diaphragm, as in the conventional case. There is no need to store and mount the piezoelectric vibrating piece in a box-shaped base with an open top surface and seal it, eliminating the need for an expensive base.
 また、第1,第2封止部材の少なくとも一方の封止部材を、樹脂フィルムで構成しているので、両封止部材を、金属製やセラミック製の蓋体で構成するのに比べて、コストを低減することができる。 Further, since at least one of the sealing members of the first and second sealing members is made of a resin film, as compared with the case where both sealing members are made of a metal or ceramic lid. The cost can be reduced.
 更に、樹脂フィルムは、圧電振動板の主面のみに接合されるのではなく、主面に連なる側面にも接合されているので、当該圧電振動デバイスのサイズを大きくすることなく、樹脂フィルムと圧電振動板との接合面積を増加させて、必要な接合面積を確保することができる。 Further, since the resin film is not only bonded to the main surface of the piezoelectric diaphragm but also to the side surface connected to the main surface, the size of the piezoelectric vibration device is not increased, and the resin film and the piezoelectric film are bonded. The required joint area can be secured by increasing the joint area with the diaphragm.
図1は本発明の一実施形態に係る水晶振動子の概略斜視図である。FIG. 1 is a schematic perspective view of a crystal oscillator according to an embodiment of the present invention. 図2は図1の水晶振動子を構成する水晶振動板の概略平面図である。FIG. 2 is a schematic plan view of a quartz diaphragm constituting the crystal oscillator of FIG. 1. 図3は図2の水晶振動板のA-A線に沿う概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line AA of the crystal diaphragm of FIG. 図4は図2の水晶振動板のB-B線に沿う概略断面図である。FIG. 4 is a schematic cross-sectional view taken along the line BB of the crystal diaphragm of FIG. 図5は図1の水晶振動子を構成する水晶振動板の概略底面図である。FIG. 5 is a schematic bottom view of the crystal diaphragm constituting the crystal oscillator of FIG. 1. 図6は図1の水晶振動子の図3に対応する概略断面図である。FIG. 6 is a schematic cross-sectional view corresponding to FIG. 3 of the crystal oscillator of FIG. 図7は図1の水晶振動子の図4に対応する概略断面図である。FIG. 7 is a schematic cross-sectional view corresponding to FIG. 4 of the crystal oscillator of FIG. 図8は図6のセクションP1の拡大図である。FIG. 8 is an enlarged view of section P1 of FIG. 図9は図7のセクションP2の拡大図である。FIG. 9 is an enlarged view of section P2 of FIG. 図10は図7のセクションP3の拡大図である。FIG. 10 is an enlarged view of section P3 of FIG. 図11Aは図1の水晶振動子の製造工程の一部を模式的に示す概略断面図である。11A is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1. 図11Bは図1の水晶振動子の製造工程の一部を模式的に示す概略断面図である。11B is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1. 図11Cは図1の水晶振動子の製造工程の一部を模式的に示す概略断面図である。11C is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1. 図11Dは図1の水晶振動子の製造工程の一部を模式的に示す概略断面図である。11D is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1. 図11Eは図1の水晶振動子の製造工程の一部を模式的に示す概略断面図である。11E is a schematic cross-sectional view schematically showing a part of the manufacturing process of the crystal oscillator of FIG. 1. 図12Aは図11Dの樹脂フィルムの加熱圧着工程の一部を模式的に示す概略断面図である。FIG. 12A is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D. 図12Bは図11Dの樹脂フィルムの加熱圧着工程の一部を模式的に示す概略断面図である。12B is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D. 図12Cは図11Dの樹脂フィルムの加熱圧着工程の一部を模式的に示す概略断面図である。12C is a schematic cross-sectional view schematically showing a part of the heat crimping process of the resin film of FIG. 11D. 図13は本発明の他の実施形態に係る水晶振動子を構成する水晶振動板の概略平面図である。FIG. 13 is a schematic plan view of a quartz diaphragm constituting the crystal oscillator according to another embodiment of the present invention. 図14は図13の水晶振動板の概略底面図である。FIG. 14 is a schematic bottom view of the crystal diaphragm of FIG. 図15は本発明の更に他の実施形態の図1に対応する概略斜視図である。FIG. 15 is a schematic perspective view corresponding to FIG. 1 of still another embodiment of the present invention. 図16は図15の実施形態の図6に対応する概略断面図である。FIG. 16 is a schematic cross-sectional view corresponding to FIG. 6 of the embodiment of FIG.
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。この実施形態では、水晶振動デバイスとして水晶振動子に適用して説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, it will be described by applying it to a crystal oscillator as a crystal vibration device.
 図1は、本発明の一実施形態に係る水晶振動子の概略斜視図である。 FIG. 1 is a schematic perspective view of a crystal oscillator according to an embodiment of the present invention.
 この実施形態の水晶振動子1は、金属膜が形成されたATカットの水晶振動板2と、この水晶振動板2の表裏の両主面に、両端部の第1,第2金属膜27,28を除く矩形の領域を覆うようにそれぞれ接合された第1,第2樹脂フィルム3,4(図1では、一方の主面に接合された第1樹脂フィルム3のみが示されている)とを備えている。 The crystal oscillator 1 of this embodiment has an AT-cut crystal diaphragm 2 on which a metal film is formed, and first and second metal films 27 at both ends on both main surfaces of the front and back surfaces of the crystal diaphragm 2. The first and second resin films 3 and 4 bonded so as to cover the rectangular region excluding 28 (in FIG. 1, only the first resin film 3 bonded to one main surface is shown). It is equipped with.
 この水晶振動子1は、直方体状であって、平面視矩形である。この実施形態の水晶振動子1は、平面視で、例えば、1.2mm×1.0mmで、厚みは0.2mmであり、小型化及び低背化を図っている。 This crystal oscillator 1 has a rectangular parallelepiped shape and is a rectangular parallelepiped. The crystal oscillator 1 of this embodiment has, for example, 1.2 mm × 1.0 mm and a thickness of 0.2 mm in a plan view, and is aimed at miniaturization and low profile.
 なお、水晶振動子1のサイズは、上記に限定されるものではなく、これとは異なるサイズであっても適用可能である。 The size of the crystal oscillator 1 is not limited to the above, and a different size can be applied.
 図2は、図1の水晶振動子1を構成する水晶振動板2、すなわち、第1,第2樹脂フィルム3,4が接合されていない状態の水晶振動子1の概略平面図であり、図3は、図2の水晶振動板2のA-A線に沿う概略断面図であり、図4は、図2の水晶振動板2のB-B線に沿う概略断面図であり、図5は、水晶振動板2の概略底面図である。なお、図3,図4及び後述の図11A~図11E,図12A~図12Cでは、説明の便宜上、水晶振動板2に形成されている金属膜を誇張して示している。 FIG. 2 is a schematic plan view of the crystal diaphragm 2 constituting the crystal oscillator 1 of FIG. 1, that is, the crystal oscillator 1 in a state where the first and second resin films 3 and 4 are not bonded. 3 is a schematic cross-sectional view of the crystal diaphragm 2 of FIG. 2 along the line AA, FIG. 4 is a schematic cross-sectional view of the crystal diaphragm 2 of FIG. 2 along the line BB, and FIG. 5 is a schematic cross-sectional view. , It is a schematic bottom view of the crystal diaphragm 2. In FIGS. 3 and 4 and FIGS. 11A to 11E and FIGS. 12A to 12C described later, the metal film formed on the quartz diaphragm 2 is exaggerated for convenience of explanation.
 この実施形態の水晶振動板2は、矩形の水晶板を水晶の結晶軸であるX軸の周りに35°15´回転させて加工したATカットの水晶板であり、回転した新たな軸をY´及びZ´軸という。ATカット水晶板では、その表裏の両主面F1,F2が、XZ´平面である。 The quartz diaphragm 2 of this embodiment is an AT-cut quartz plate processed by rotating a rectangular quartz plate around the X-axis, which is the crystal axis of quartz, by 35 ° 15', and the new rotated axis is Y. It is called the'and Z'axis. In the AT-cut quartz plate, both front and back main surfaces F1 and F2 are XZ'planes.
 このXZ´平面において、平面視矩形の水晶振動板2の短辺方向(図2,図5の上下方向)がX軸方向となり、水晶振動板2の長辺方向(図2,図5の左右方向)がZ´軸方向となる。 In this XZ'plane, the short side direction of the rectangular crystal diaphragm 2 in plan view (vertical direction in FIGS. 2 and 5) is the X-axis direction, and the long side direction of the crystal diaphragm 2 (left and right in FIGS. 2 and 5). Direction) is the Z'axis direction.
 この水晶振動板2は、平面視が略矩形の振動部21と、この振動部21の周囲を、貫通部22を挟んで取り囲む外枠部23と、振動部21と外枠部23とを連結する連結部24とを備えている。振動部21、外枠部23及び連結部24は、一体的に形成されている。振動部21及び連結部24は、振動部21を囲む外枠部23に比べて薄く形成されている。すなわち、振動部21は、それ以外の部分である外枠部23に比べて薄肉である。 The crystal diaphragm 2 connects a vibrating portion 21 having a substantially rectangular plan view, an outer frame portion 23 that surrounds the vibrating portion 21 with a penetrating portion 22 interposed therebetween, and the vibrating portion 21 and the outer frame portion 23. It is provided with a connecting portion 24 to be formed. The vibrating portion 21, the outer frame portion 23, and the connecting portion 24 are integrally formed. The vibrating portion 21 and the connecting portion 24 are formed thinner than the outer frame portion 23 surrounding the vibrating portion 21. That is, the vibrating portion 21 is thinner than the outer frame portion 23, which is the other portion.
 振動部21の表裏の両主面F1,F2には、一対の第1,第2励振電極25,26がそれぞれ形成されている。 A pair of first and second excitation electrodes 25 and 26 are formed on both main surfaces F1 and F2 on the front and back of the vibrating portion 21, respectively.
 両主面F1,F2の一方の主面F1では、図2に示されるように、平面視矩形の水晶振動板2の長辺方向の両端部の外枠部23に、第1,第2樹脂フィルム3,4で覆われない第1,第2金属膜27,28が、水晶振動板2の短辺方向に沿ってそれぞれ形成されている。すなわち、第1,第2金属膜27,28は、振動部21を挟んで水晶振動板2の長辺方向(Z´軸方向)の両端部にそれぞれ形成されている。両主面F1,F2に亘って形成されている第1金属膜27には、振動部21を囲むように矩形環状に形成された第1封止パターン201が連設されている。 In one of the main surfaces F1 of both main surfaces F1 and F2, as shown in FIG. 2, the first and second resins are formed on the outer frame portions 23 at both ends in the long side direction of the rectangular crystal diaphragm 2 in a plan view. The first and second metal films 27 and 28 that are not covered by the films 3 and 4 are formed along the short side direction of the crystal diaphragm 2, respectively. That is, the first and second metal films 27 and 28 are formed at both ends of the crystal diaphragm 2 in the long side direction (Z'axis direction) with the vibrating portion 21 interposed therebetween. A first sealing pattern 201 formed in a rectangular annular shape so as to surround the vibrating portion 21 is continuously provided on the first metal film 27 formed over both main surfaces F1 and F2.
 両主面F1,F2の他方の主面F2では、図5に示されるように、平面視矩形の水晶振動板2の長辺方向の両端部の外枠部23に、第1,第2金属膜27,28が、水晶振動板2の短辺方向に沿ってそれぞれ形成されている。両主面F1,F2に亘って形成されている第2金属膜28には、振動部21を囲むように矩形環状に形成された第2封止パターン202が連設されている。 In the other main surface F2 of both main surfaces F1 and F2, as shown in FIG. 5, the first and second metals are formed on the outer frame portions 23 at both ends in the long side direction of the rectangular crystal diaphragm 2 in a plan view. The films 27 and 28 are formed along the short side direction of the crystal diaphragm 2, respectively. A second sealing pattern 202 formed in a rectangular annular shape so as to surround the vibrating portion 21 is continuously provided on the second metal film 28 formed over both main surfaces F1 and F2.
 第1金属膜27は、上記図1に示される矩形の第1樹脂フィルム3で覆われない領域であって、外部に露出する。同様に、第2金属膜28は、後述の第2樹脂フィルム4で覆われない領域であって、外部に露出する。これら金属膜27,28は、当該水晶振動子1を回路基板等に実装するための実装端子として使用される。 The first metal film 27 is a region not covered by the rectangular first resin film 3 shown in FIG. 1 and is exposed to the outside. Similarly, the second metal film 28 is a region not covered by the second resin film 4, which will be described later, and is exposed to the outside. These metal films 27 and 28 are used as mounting terminals for mounting the crystal oscillator 1 on a circuit board or the like.
 水晶振動板2の両主面F1,F2の第1金属膜27同士、及び、第2金属膜28同士はそれぞれ電気的に接続されている。この実施形態では、両主面F1,F2の第1金属膜27同士及び第2金属膜28同士は、水晶振動板2の対向する長辺側の側面を引き回された引き回し電極でそれぞれ電気的に接続されると共に、水晶振動板2の対向する短辺側の側面を引き回された引き回し電極でそれぞれ電気的に接続されている。 The first metal films 27 and the second metal films 28 on both main surfaces F1 and F2 of the crystal diaphragm 2 are electrically connected to each other. In this embodiment, the first metal films 27 and the second metal films 28 on both main surfaces F1 and F2 are electrically connected to each other by a routing electrode routed on the opposite long side side surfaces of the crystal diaphragm 2. In addition to being connected to each other, the side surfaces of the crystal diaphragm 2 on the opposite short side are electrically connected by a routed electrode.
 このように両主面F1,F2の第1金属膜27同士及び第2金属膜28同士は、電気的にそれぞれ接続されているので、当該水晶振動子1を、第1,第2金属膜27,28を実装端子として回路基板等に実装する際に、表裏の両主面F1,F2のいずれの面でも実装することができる。 Since the first metal films 27 and the second metal films 28 on both main surfaces F1 and F2 are electrically connected to each other in this way, the crystal oscillator 1 can be connected to the first and second metal films 27. When mounting the, 28 as a mounting terminal on a circuit board or the like, it can be mounted on either of the front and back main surfaces F1 and F2.
 なお、両主面の第1金属膜27同士及び第2金属膜28同士は、両主面を貫通する貫通電極を介して電気的に接続されるようにしてもよく、あるいは、側面の引き回し電極を介して電気的に接続されると共に、貫通電極を介して電気的に接続されるようにしてもよい。 The first metal films 27 and the second metal films 28 on both main surfaces may be electrically connected to each other via a through electrode penetrating both main surfaces, or a side routing electrode may be used. It may be electrically connected via a through electrode and may be electrically connected via a through electrode.
 水晶振動板2の両主面F1,F2において、略矩形の振動部21を囲む内周側の主面F1,F2に連なる内側面は、水晶板のウェットエッチングによる外形加工において、水晶の結晶方位によるエッチング異方性のために、図3及び図4に示すように、傾斜した第1~第6傾斜面S1~S6となっている。 In both main surfaces F1 and F2 of the crystal vibrating plate 2, the inner side surface connected to the main surfaces F1 and F2 on the inner peripheral side surrounding the substantially rectangular vibrating portion 21 is the crystal orientation of the crystal in the outer shape processing by wet etching of the crystal plate. Due to the etching anisotropy due to the above, as shown in FIGS. 3 and 4, the first to sixth inclined surfaces S1 to S6 are inclined.
 また、水晶振動板2の両主面F1,F2に連なる外周側の外側面であって、水晶振動板2の長辺方向に沿って延びる外側面は、図4に示すように、第7~第10傾斜面S7~S10となっている。 Further, as shown in FIG. 4, the outer outer surfaces of the outer peripheral side connected to both main surfaces F1 and F2 of the crystal diaphragm 2 and extending along the long side direction of the crystal diaphragm 2 are the seventh to the outer surfaces. The tenth inclined surfaces S7 to S10.
 外枠部23の上記内側面の第1~第6傾斜面S1~S6によって囲まれた振動部21の外周面は、水晶の結晶方位によるエッチング異方性のために、第11~第18傾斜面S11~S18となっている。振動部21は、図3に示すように、外枠部23の第1傾斜面S1に対向する第11,第12傾斜面S11,S12、及び、外枠部23の第2傾斜面S2に対向する第13,第14傾斜面S13,S14を有する。振動部21は、図4に示すように、外枠部23の第3,第4傾斜面S3,S4にそれぞれ対向する第15,第16傾斜面S15,S16、及び、外枠部23の第5,第6傾斜面S5,S6にそれぞれ対向する第17,第18傾斜面S17,S18を有する。 The outer peripheral surface of the vibrating portion 21 surrounded by the first to sixth inclined surfaces S1 to S6 on the inner surface of the outer frame portion 23 is inclined from the eleventh to the eighteenth due to the etching anisotropy due to the crystal orientation of the crystal. The surfaces are S11 to S18. As shown in FIG. 3, the vibrating portion 21 faces the eleventh and twelfth inclined surfaces S11 and S12 facing the first inclined surface S1 of the outer frame portion 23, and the second inclined surface S2 of the outer frame portion 23. It has 13th and 14th inclined surfaces S13 and S14. As shown in FIG. 4, the vibrating portion 21 includes the 15th and 16th inclined surfaces S15 and S16 facing the third and fourth inclined surfaces S3 and S4 of the outer frame portion 23, and the outer frame portion 23. It has 17th and 18th inclined surfaces S17 and S18 facing the 5th and 6th inclined surfaces S5 and S6, respectively.
 図3に示される第1傾斜面S1は、平面視矩形の水晶振動板2の短辺方向に沿って延びており、この第1傾斜面S1は、振動部21側である内周側の側面、すなわち、内側面である。この第1傾斜面S1は、一方の主面F1に連なって、他方の主面F2に向けて振動部21側へ突出するように傾斜した傾斜面である。第2傾斜面S2は、水晶振動板2の短辺方向に沿って延びており、この第2傾斜面S2は、振動部21側である内周側の側面、すなわち、内側面である。この第2傾斜面S2は、他方の主面F2に連なって、一方の主面F1に向けて振動部21側へ突出するように傾斜した傾斜面である。 The first inclined surface S1 shown in FIG. 3 extends along the short side direction of the quartz diaphragm 2 having a rectangular plan view, and the first inclined surface S1 is a side surface on the inner peripheral side which is the vibrating portion 21 side. That is, the inner surface. The first inclined surface S1 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2. The second inclined surface S2 extends along the short side direction of the crystal diaphragm 2, and the second inclined surface S2 is a side surface on the inner peripheral side, that is, an inner side surface, which is the vibrating portion 21 side. The second inclined surface S2 is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward the one main surface F1.
 図4に示される第3傾斜面S3は、水晶振動板2の長辺方向に沿って延びており、この第3傾斜面S3は、振動部21側である内周側の内側面である。この第3傾斜面S3は、一方の主面F1に連なって、他方の主面F2に向けて振動部21側へ突出するように傾斜した傾斜面であって、第4傾斜面S4に連なっている。この第4傾斜面S4は、振動部21側の内側面であって、他方の主面F2に連なって、一方の主面F1に向けて振動部21側へ突出するように傾斜した傾斜面である。 The third inclined surface S3 shown in FIG. 4 extends along the long side direction of the crystal diaphragm 2, and the third inclined surface S3 is the inner surface on the inner peripheral side which is the vibrating portion 21 side. The third inclined surface S3 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2, and is continuous with the fourth inclined surface S4. There is. The fourth inclined surface S4 is an inner surface on the vibrating portion 21 side, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward one main surface F1. be.
 第5傾斜面S5は、水晶振動板2の長辺方向に沿って延びており、この第5傾斜面S5は、振動部21側の内側面である。この第5傾斜面S5は、一方の主面F1に連なって、他方の主面F2に向けて振動部21側へ突出するように傾斜した傾斜面であって、第6傾斜面S6に連なっている。この第6傾斜面S6は、振動部21側の内側面であって、他方の主面F2に連なって、一方の主面F1に向けて振動部21側へ突出するように傾斜した傾斜面である。 The fifth inclined surface S5 extends along the long side direction of the crystal diaphragm 2, and the fifth inclined surface S5 is an inner surface on the vibrating portion 21 side. The fifth inclined surface S5 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project toward the vibrating portion 21 toward the other main surface F2, and is continuous with the sixth inclined surface S6. There is. The sixth inclined surface S6 is an inner surface on the vibrating portion 21 side, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project toward the vibrating portion 21 toward one main surface F1. be.
 図4に示される第7傾斜面S7は、水晶振動板2の長辺方向に沿って延びており、この第7傾斜面S7は、水晶振動板2の外周側の側面、すなわち、外側面である。この第7傾斜面S7は、一方の主面F1に連なって、他方の主面F2に向けて外方へ突出するように傾斜した傾斜面であって、第8傾斜面S8に連なっている。この第8傾斜面S8は、水晶振動板2の外周側の外側面であって、他方の主面F2に連なって、一方の主面F1に向けて外方へ突出するように傾斜した傾斜面である。 The seventh inclined surface S7 shown in FIG. 4 extends along the long side direction of the crystal diaphragm 2, and the seventh inclined surface S7 is a side surface on the outer peripheral side of the crystal diaphragm 2, that is, an outer surface. be. The seventh inclined surface S7 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project outward toward the other main surface F2, and is continuous with the eighth inclined surface S8. The eighth inclined surface S8 is an outer surface on the outer peripheral side of the crystal diaphragm 2, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project outward toward the one main surface F1. Is.
 第9傾斜面S9は、水晶振動板2の長辺方向に沿って延びており、この第9傾斜面S9は、水晶振動板2の外周側の外側面である。この第9傾斜面S9は、一方の主面F1に連なって、他方の主面F2に向けて外方へ突出するように傾斜した傾斜面であって、第10傾斜面S10に連なっている。この第10傾斜面S10は、水晶振動板2の外周側の外側面であって、他方の主面F2に連なって、一方の主面F1に向けて外方へ突出するように傾斜した傾斜面である。 The ninth inclined surface S9 extends along the long side direction of the crystal diaphragm 2, and the ninth inclined surface S9 is an outer surface on the outer peripheral side of the crystal diaphragm 2. The ninth inclined surface S9 is an inclined surface that is continuous with one main surface F1 and is inclined so as to project outward toward the other main surface F2, and is continuous with the tenth inclined surface S10. The tenth inclined surface S10 is an outer surface on the outer peripheral side of the crystal diaphragm 2, and is an inclined surface that is continuous with the other main surface F2 and is inclined so as to project outward toward one main surface F1. Is.
 図3に示すように、第1傾斜面S1が一方の主面F1に対して成す角は、鈍角であり、第2傾斜面S2が他方の主面F2に対して成す角度は、鈍角である。 As shown in FIG. 3, the angle formed by the first inclined surface S1 with respect to one main surface F1 is an obtuse angle, and the angle formed by the second inclined surface S2 with respect to the other main surface F2 is an obtuse angle. ..
 図4に示すように、第3傾斜面S3が一方の主面F1に対して成す角、及び、第4傾斜面S4が他方の主面F2に対して成す角は、いずれも鈍角である。また、第5傾斜面S5が一方の主面F1に対して成す角、及び、第6傾斜面S6が他方の主面F2に対して成す角は、いずれも鈍角である。 As shown in FIG. 4, the angle formed by the third inclined surface S3 with respect to one main surface F1 and the angle formed by the fourth inclined surface S4 with respect to the other main surface F2 are both obtuse angles. Further, the angle formed by the fifth inclined surface S5 with respect to one main surface F1 and the angle formed by the sixth inclined surface S6 with respect to the other main surface F2 are both obtuse angles.
 図4に示すように、第7傾斜面S7が一方の主面F1に対して成す角、及び、第8傾斜面S8が他方の主面F2に対して成す角は、いずれも鈍角である。また、第9傾斜面S9が一方の主面F1に対して成す角、及び、第10傾斜面S10が他方の主面F2に対して成す角は、いずれも鈍角である。 As shown in FIG. 4, the angle formed by the seventh inclined surface S7 with respect to one main surface F1 and the angle formed by the eighth inclined surface S8 with respect to the other main surface F2 are both obtuse angles. Further, the angle formed by the ninth inclined surface S9 with respect to one main surface F1 and the angle formed by the tenth inclined surface S10 with respect to the other main surface F2 are both obtuse angles.
 水晶振動板2の一方の主面F1側の矩形環状の第1封止パターン201は、図2に示されるように、水晶振動板2の長辺方向(Z´軸方向)の一方の端部の第1金属膜27に連なる接続部201aと、この接続部201aの両端部から前記長辺方向(Z´軸方向)に沿ってそれぞれ延出する第1延出部201b,201bと、水晶振動板2の短辺方向(X軸方向)に沿って延出して前記各第1延出部201b,201bの延出端を接続する第2延出部201cとを備えている。第2延出部201cは、第1励振電極25から引出された第1引出し電極203に接続されている。したがって、第1金属膜27は、第1引出し電極203及び第1封止パターン201を介して第1励振電極25に電気的に接続されている。水晶振動板2の短辺方向に沿って延出する第2延出部201cと第2金属膜28との間には、電極が形成されていない無電極領域が設けられて、第1封止パターン201と第2金属膜28との絶縁が図られている。 As shown in FIG. 2, the rectangular annular first sealing pattern 201 on one main surface F1 side of the crystal diaphragm 2 is one end portion in the long side direction (Z'axis direction) of the crystal diaphragm 2. The connecting portion 201a connected to the first metal film 27 of the above, and the first extending portions 201b and 201b extending from both ends of the connecting portion 201a along the long side direction (Z'axis direction), respectively, and crystal vibration. It is provided with a second extending portion 201c that extends along the short side direction (X-axis direction) of the plate 2 and connects the extending ends of the first extending portions 201b and 201b. The second extension portion 201c is connected to the first extraction electrode 203 drawn from the first excitation electrode 25. Therefore, the first metal film 27 is electrically connected to the first excitation electrode 25 via the first drawer electrode 203 and the first sealing pattern 201. An electrodeless region in which no electrode is formed is provided between the second extending portion 201c extending along the short side direction of the crystal diaphragm 2 and the second metal film 28, and the first sealing is performed. The pattern 201 and the second metal film 28 are insulated from each other.
 水晶振動板2の他方の主面F2側の矩形環状の第2封止パターン202は、図5に示されるように、水晶振動板2の長辺方向(Z´軸方向)の他方の端部の第2金属膜28に連なる接続部202aと、この接続部202aの両端部から前記長辺方向に沿ってそれぞれ延出する第1延出部202b,202bと、水晶振動板2の短辺方向に沿って延出して、前記各第1延出部202b,202bの延出端を接続する第2延出部202cとを備えている。接続部202aは、第2励振電極26から引出された第2引出し電極204に接続されている。したがって、第2金属膜28は、第2引出し電極204及び第2封止パターン202の接続部202aを介して第2励振電極26に電気的に接続されている。水晶振動板2の短辺方向に沿って延出する第2延出部202cと第1金属膜27との間には、電極が形成されていない無電極領域が設けられて、第2封止パターン202と第1金属膜27との絶縁が図られている。 As shown in FIG. 5, the rectangular annular second sealing pattern 202 on the other main surface F2 side of the crystal diaphragm 2 is the other end portion in the long side direction (Z'axis direction) of the crystal diaphragm 2. 202a connected to the second metal film 28, first extending portions 202b and 202b extending from both ends of the connecting portion 202a along the long side direction, and the short side direction of the crystal diaphragm 2. A second extension portion 202c is provided so as to extend along the above and connect the extension ends of the first extension portions 202b and 202b. The connection portion 202a is connected to the second extraction electrode 204 drawn from the second excitation electrode 26. Therefore, the second metal film 28 is electrically connected to the second excitation electrode 26 via the connection portion 202a of the second extraction electrode 204 and the second sealing pattern 202. An electrodeless region in which no electrode is formed is provided between the second extending portion 202c extending along the short side direction of the crystal diaphragm 2 and the first metal film 27, and the second sealing is provided. The pattern 202 and the first metal film 27 are insulated from each other.
 図2に示されるように、第1封止パターン201の、水晶振動板2の長辺方向に沿ってそれぞれ延出する第1延出部201b,201bの幅は、前記長辺方向に沿って延びる外枠部23の幅より狭く、第1延出部201b,201bの幅方向(図2の上下方向)の両側には、電極が形成されていない無電極領域が設けられている。 As shown in FIG. 2, the widths of the first extending portions 201b and 201b of the first sealing pattern 201 extending along the long side direction of the crystal diaphragm 2 are along the long side direction. Electrodeless regions are provided on both sides of the first extending portions 201b, 201b in the width direction (vertical direction in FIG. 2), which is narrower than the width of the extending outer frame portion 23, and in which electrodes are not formed.
 この第1延出部201b,201bの両側の無電極領域の内、外側の無電極領域は、第1金属膜27まで延びていると共に、第2金属膜28と第2延出部201cとの間の無電極領域に連なっている。これによって、第1封止パターン201の接続部201a、第1延出部201b,201b、及び、第2延出部201cの外側は、略等しい幅の無電極領域によって囲まれている。この無電極領域は、水晶振動板2の短辺方向に沿って延びる接続部201aの一端の外側から一方の第1延出部201bに沿って延出し、その延出端から第2延出部201cに沿って延出し、その延出端から他方の第1延出部201bに沿って接続部201aの他端の外側まで延出している。 Of the electrodeless regions on both sides of the first extending portions 201b and 201b, the outer non-electrode regions extend to the first metal film 27, and the second metal film 28 and the second extending portion 201c It is connected to the electrodeless area between them. As a result, the outside of the connection portion 201a, the first extension portion 201b, 201b, and the second extension portion 201c of the first sealing pattern 201 is surrounded by electrodeless regions having substantially the same width. This electrodeless region extends from the outside of one end of the connecting portion 201a extending along the short side direction of the crystal diaphragm 2 along the first extending portion 201b, and extends from the extending end to the second extending portion. It extends along 201c and extends from the extending end to the outside of the other end of the connecting portion 201a along the other first extending portion 201b.
 第1封止パターン201の接続部201aの幅方向の内側には、無電極領域が形成されており、この無電極領域は、第1延出部201b,201bの内側の無電極領域に連なっている。第2延出部201cの幅方向の内側には、連結部24の第1引出し電極203を除いて無電極領域が形成されており、この無電極領域は、第1延出部201b,201bの内側の無電極領域に連なっている。これによって、第1封止パターン201の接続部201a、第1延出部201b,201b、及び、第2延出部201cの幅方向の内側は、連結部24の第1引出し電極203を除いて平面視で矩形環状の無電極領域によって囲まれている。 An electrodeless region is formed inside the connection portion 201a of the first sealing pattern 201 in the width direction, and this electrodeless region is continuous with the electrodeless region inside the first extension portions 201b, 201b. There is. An electrodeless region is formed inside the second extending portion 201c in the width direction except for the first drawing electrode 203 of the connecting portion 24, and this electrodeless region is formed in the first extending portions 201b and 201b. It is connected to the inner electrodeless region. As a result, the inside of the connecting portion 201a, the first extending portion 201b, 201b, and the second extending portion 201c of the first sealing pattern 201 in the width direction except for the first drawing electrode 203 of the connecting portion 24. It is surrounded by a rectangular annular electrodeless region in plan view.
 図5に示されるように、第2封止パターン202の、水晶振動板2の長辺方向に沿ってそれぞれ延出する第1延出部202b,202bの幅は、前記長辺方向に沿って延びる外枠部23の幅より狭く、第1延出部202b,202bの幅方向(図5の上下方向)の両側には、電極が形成されていない無電極領域が設けられている。 As shown in FIG. 5, the widths of the first extending portions 202b and 202b of the second sealing pattern 202 extending along the long side direction of the crystal diaphragm 2 are along the long side direction. Electrodeless regions are provided on both sides of the first extending portions 202b, 202b in the width direction (vertical direction in FIG. 5), which are narrower than the width of the extending outer frame portion 23 and have no electrodes formed.
 この第1延出部202b,202bの両側の無電極領域の内、外側の無電極領域は、第2金属膜28まで延びていると共に、第1金属膜27と第2延出部202cとの間の無電極領域に連なっている。これによって、第2封止パターン202の接続部202a、第1延出部202b,202b、及び、第2延出部202cの外側は、略等しい幅の無電極領域によって囲まれている。この無電極領域は、水晶振動板2の短辺方向に沿って延びる接続部202aの一端の外側から一方の第1延出部202bに沿って延出し、その延出端から第2延出部202cに沿って延出し、その延出端から他方の第1延出部202bに沿って接続部201aの他端の外側まで延出している。 Of the electrodeless regions on both sides of the first extending portions 202b and 202b, the outer non-electrode regions extend to the second metal film 28, and the first metal film 27 and the second extending portion 202c It is connected to the electrodeless area between them. As a result, the outside of the connection portion 202a, the first extension portion 202b, 202b, and the second extension portion 202c of the second sealing pattern 202 is surrounded by electrodeless regions having substantially the same width. This electrodeless region extends from the outside of one end of the connecting portion 202a extending along the short side direction of the crystal diaphragm 2 along one of the first extending portions 202b, and extends from the extending end to the second extending portion. It extends along 202c and extends from the extending end to the outside of the other end of the connecting portion 201a along the other first extending portion 202b.
 第2封止パターン202の接続部202aの幅方向の内側には、連結部24の第2引出し電極204を除いて無電極領域が形成されており、この無電極領域は、第1延出部202b,202bの内側の無電極領域に連なっている。第2延出部202cの幅方向の内側には、無電極領域が形成されており、この無電極領域は、第1延出部202b,202bの内側の無電極領域に連なっている。これによって、第2封止パターン202の接続部202a、第1延出部202b,202b、及び、第2延出部202cの幅方向の内側は、連結部24の第2引出し電極204を除いて平面視で矩形環状の無電極領域によって囲まれている。 An electrodeless region is formed inside the connecting portion 202a of the second sealing pattern 202 in the width direction except for the second drawer electrode 204 of the connecting portion 24, and this electrodeless region is the first extending portion. It is connected to the electrodeless region inside 202b and 202b. An electrodeless region is formed inside the second extending portion 202c in the width direction, and this electrodeless region is continuous with the inner non-electrode region of the first extending portions 202b, 202b. As a result, the inside of the connecting portion 202a, the first extending portion 202b, 202b, and the second extending portion 202c of the second sealing pattern 202 in the width direction except for the second drawing electrode 204 of the connecting portion 24. It is surrounded by a rectangular annular electrodeless region in plan view.
 上記のように第1,第2封止パターン201,202の第1延出部201b,201b;202b,202bを、外枠部23の幅よりも狭くし、第1延出部201b,201b;202b,202bの幅方向の両側には、無電極領域を設けていると共に、接続部201a,202a及び第2延出部201c,202cの幅方向の内側には、無電極領域を設けている。前記無電極領域は、スパッタリング時に外枠部23の側面に回り込んだ第1,第2封止パターン201,202を、フォトリソグラフィー技術によりパターニングし、これをメタルエッチングで除去することによって形成される。これにより、第1,第2封止パターン201,202が外枠部23の側面に回り込むことによる短絡を防止することができる。 As described above, the first extension portions 201b, 201b; 202b, 202b of the first and second sealing patterns 201, 202 are made narrower than the width of the outer frame portion 23, and the first extension portions 201b, 201b; Electrodeless regions are provided on both sides of 202b and 202b in the width direction, and electrodeless regions are provided inside the connecting portions 201a and 202a and the second extending portions 201c and 202c in the width direction. The electrodeless region is formed by patterning the first and second sealing patterns 201 and 202 that wrap around the side surface of the outer frame portion 23 during sputtering by photolithography technology and removing them by metal etching. .. As a result, it is possible to prevent a short circuit caused by the first and second sealing patterns 201 and 202 wrapping around the side surface of the outer frame portion 23.
 この実施形態では、上記構成を有する水晶振動板2の両主面に、水晶振動板2の第1,第2励振電極25,26を覆うように、第1,第2封止部材としての第1,第2樹脂フィルム3,4が接合される。 In this embodiment, as the first and second sealing members, the first and second excitation electrodes 25 and 26 of the quartz diaphragm 2 are covered on both main surfaces of the quartz diaphragm 2 having the above configuration. 1, The second resin films 3 and 4 are bonded.
 図6及び図7は、図1の水晶振動子1の概略断面図であって、図2の水晶振動板2に、第1,第2樹脂フィルム3,4が接合された状態の図2のA-A線及びB-B線に沿う概略断面図である。水晶振動板2や第1,第2樹脂フィルム3,4に比べて、上記励振電極25,26及び金属膜27,28等は、無視できる程度に薄いので、図6及び図7では、省略している。 6 and 7 are schematic cross-sectional views of the crystal oscillator 1 of FIG. 1, and FIG. 2 shows a state in which the first and second resin films 3 and 4 are bonded to the crystal diaphragm 2 of FIG. It is a schematic cross-sectional view along the line AA and the line BB. The excitation electrodes 25, 26, the metal films 27, 28, etc. are negligibly thinner than the crystal diaphragm 2 and the first and second resin films 3, 4, and are omitted in FIGS. 6 and 7. ing.
 この第1,第2樹脂フィルム3,4は、矩形のフィルムである。この矩形の第1,第2樹脂フィルム3,4は、水晶振動板2の長手方向の両端部の第1,第2金属膜27,28を除いて、第1,第2封止パターン201,202を含む矩形の領域を覆うサイズであり、前記矩形の領域に接合される。 The first and second resin films 3 and 4 are rectangular films. The rectangular first and second resin films 3 and 4 have the first and second sealing patterns 201, except for the first and second metal films 27 and 28 at both ends in the longitudinal direction of the crystal diaphragm 2. It is a size that covers a rectangular area including 202, and is joined to the rectangular area.
 この実施形態では、第1,第2樹脂フィルム3,4は、耐熱性の樹脂フィルム、例えば、ポリイミド樹脂フィルムで構成されている。この第1,第2樹脂フィルム3,4は、表裏両面の全面に熱可塑性の接着層が形成されている。この第1,第2樹脂フィルム3,4は、その矩形の周端部が、水晶振動板2の両主面F1,F2の外枠部23に、振動部21を封止するように、例えば、熱プレスによってそれぞれ加熱圧着される。 In this embodiment, the first and second resin films 3 and 4 are made of a heat-resistant resin film, for example, a polyimide resin film. The first and second resin films 3 and 4 have a thermoplastic adhesive layer formed on the entire front and back surfaces. The first and second resin films 3 and 4 have, for example, such that the rectangular peripheral end portion seals the vibrating portion 21 on the outer frame portions 23 of both main surfaces F1 and F2 of the crystal diaphragm 2. , Each is heat-bonded by a heat press.
 ポリイミド樹脂フィルムは、300℃程度の耐熱性を有するので、当該水晶振動子1を、回路基板等に半田実装する場合の半田リフロー処理の高温に耐えることができ、第1,第2樹脂フィルム3,4が変形等することがない。 Since the polyimide resin film has a heat resistance of about 300 ° C., it can withstand the high temperature of the solder reflow process when the crystal oscillator 1 is solder-mounted on a circuit board or the like, and the first and second resin films 3 can be used. , 4 will not be deformed.
 この実施形態の第1,第2樹脂フィルム3,4は、透明であるが、加熱圧着の条件によっては、不透明となる場合がある。なお、この第1,第2樹脂フィルム3,4は、透明、不透明、あるいは、半透明であってもよい。 The first and second resin films 3 and 4 of this embodiment are transparent, but may be opaque depending on the conditions of heat crimping. The first and second resin films 3 and 4 may be transparent, opaque, or translucent.
 第1,第2樹脂フィルム3,4は、ポリイミド樹脂に限らず、スーパーエンジニアリングプラスチックに分類されるような樹脂、例えば、ポリアミド樹脂やポリエーテルエーテルケトン樹脂等を用いてもよい。 The first and second resin films 3 and 4 are not limited to polyimide resins, and resins classified as super engineering plastics, such as polyamide resins and polyether ether ketone resins, may be used.
 水晶振動板2の第1,第2励振電極25,26、第1,第2金属膜27,28,第1,第2封止パターン201,202、及び、第1,第2引出し電極203,204は、例えば、TiまたはCrからなる下地層上に、例えば、Auが積層され、更に、例えば、Ti、CrまたはNiが積層形成されて構成されている。 The first and second excitation electrodes 25 and 26 of the crystal diaphragm 2, the first and second metal films 27 and 28, the first and second sealing patterns 201 and 202, and the first and second extraction electrodes 203, In 204, for example, Au is laminated on a base layer made of, for example, Ti or Cr, and further, for example, Ti, Cr or Ni is laminated and formed.
 この実施形態では、下地層はTiであり、その上に、Au、Tiが積層形成されている。このように最上層がTiであることによって、Auが最上層である場合に比べて、ポリイミド樹脂フィルムとの接合強度が向上する。 In this embodiment, the base layer is Ti, and Au and Ti are laminated and formed on the base layer. Since the uppermost layer is Ti in this way, the bonding strength with the polyimide resin film is improved as compared with the case where Au is the uppermost layer.
 矩形の第1,第2樹脂フィルム3,4が接合される矩形環状の第1,第2封止パターン201,202の上層は、上記のように、Ti、CrまたはNi(またはこれらの酸化物)から構成されるので、Au等に比べて、第1,第2樹脂フィルム3,4との接合強度を高めることができる。 As described above, the upper layer of the rectangular annular first and second sealing patterns 201 and 202 to which the rectangular first and second resin films 3 and 4 are bonded is made of Ti, Cr or Ni (or oxides thereof). ), So that the bonding strength with the first and second resin films 3 and 4 can be increased as compared with Au and the like.
 水晶振動子1において、所要の振動特性を得るためには、振動部21は、一定以上の大きさが必要である。このため、小型の水晶振動子1では、振動部21に一定以上の面積を確保し、更に、第1,第2樹脂フィルム3,4と水晶振動板2との接合に必要な面積を確保するのは容易でない。 In the crystal oscillator 1, in order to obtain the required vibration characteristics, the vibrating unit 21 needs to have a size of a certain size or more. Therefore, in the small crystal oscillator 1, an area of a certain size or more is secured in the vibrating portion 21, and further, an area required for joining the first and second resin films 3 and 4 and the crystal diaphragm 2 is secured. Is not easy.
 この実施形態では、水晶振動子1のサイズを大きくすることなく、第1,第2樹脂フィルム3,4と水晶振動板2との接合面積を増加させて、必要な接合面積を確保できるように次のように構成している。 In this embodiment, the bonding area between the first and second resin films 3 and 4 and the crystal diaphragm 2 can be increased without increasing the size of the crystal oscillator 1 so that the required bonding area can be secured. It is configured as follows.
 図8は、図6のセクションP1の拡大図である。 FIG. 8 is an enlarged view of section P1 of FIG.
 第1樹脂フィルム3は、水晶振動板2の一方の主面F1に接合されている接合領域以外の残余の領域が、一方の主面F1に連なる内側面である第1傾斜面S1の一部S1aに接合している。すなわち、第1樹脂フィルム3は、一方の主面F1のみでなく、この主面F1から第1傾斜面S1の一部S1aに亘って接合されている。 The first resin film 3 is a part of the first inclined surface S1 in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is an inner surface connected to the one main surface F1. It is joined to S1a. That is, the first resin film 3 is joined not only from one main surface F1 but also from the main surface F1 to a part S1a of the first inclined surface S1.
 この図8では、水晶振動板2の短辺方向に沿って延びる第1傾斜面S1のみを示しているが、同じく水晶振動板2の短辺方向に沿って延びる図6に示される第2傾斜面S2についても同様である。すなわち、第2樹脂フィルム4は、他方の主面F2のみでなく、この主面F2から第2傾斜面S2の一部に亘って接合されている。 In FIG. 8, only the first inclined surface S1 extending along the short side direction of the crystal diaphragm 2 is shown, but the second inclined surface also shown in FIG. 6 extending along the short side direction of the crystal diaphragm 2 is shown. The same applies to the surface S2. That is, the second resin film 4 is joined not only from the other main surface F2 but also from the main surface F2 to a part of the second inclined surface S2.
 上記のように、水晶振動板2の一方の主面F1に対する第1傾斜面S1の成す角、及び、水晶振動板2の他方の主面F2に対する第2傾斜面S2の成す角は、いずれも鈍角である。このため、第1,第2樹脂フィルム3,4は、各主面F1,F2から緩やかな鈍角に沿って第1,第2傾斜面S1,S2の一部に亘って接合されている。 As described above, the angle formed by the first inclined surface S1 with respect to one main surface F1 of the crystal diaphragm 2 and the angle formed by the second inclined surface S2 with respect to the other main surface F2 of the crystal diaphragm 2 are both. It is an obtuse angle. Therefore, the first and second resin films 3 and 4 are joined from the main surfaces F1 and F2 along a gentle obtuse angle over a part of the first and second inclined surfaces S1 and S2.
 図9は、図7のセクションP2の拡大図である。 FIG. 9 is an enlarged view of section P2 of FIG.
 第1樹脂フィルム3は、水晶振動板2の一方の主面F1に接合されている接合領域以外の残余の領域が、一方の主面F1に連なる内側面である第5傾斜面S5の一部S5aに接合している。すなわち、第1樹脂フィルム3は、一方の主面F1のみでなく、この主面F1から第5傾斜面S5の一部S5aに亘って接合されている。 The first resin film 3 is a part of a fifth inclined surface S5 in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is an inner surface connected to one main surface F1. It is joined to S5a. That is, the first resin film 3 is bonded not only to one main surface F1 but also from the main surface F1 to a part S5a of the fifth inclined surface S5.
 この図9では、水晶振動板2の長辺方向に沿って延びる第5傾斜面S5のみを示しているが、同じく水晶振動板2の長辺方向に沿って延びる図7に示される第3傾斜面S3ついても同様である。すなわち、第3樹脂フィルム3は、一方の主面F1のみでなく、この主面F1から第3傾斜面S3の一部に亘って接合されている。 In FIG. 9, only the fifth inclined surface S5 extending along the long side direction of the crystal diaphragm 2 is shown, but the third inclined surface also shown in FIG. 7 extending along the long side direction of the crystal diaphragm 2 is shown. The same applies to the surface S3. That is, the third resin film 3 is joined not only from one main surface F1 but also from the main surface F1 to a part of the third inclined surface S3.
 また、水晶振動板2の長辺方向に沿って延びる図7に示される第4,第6傾斜面S4,S6ついても同様である。すなわち、第2樹脂フィルム4は、他方の主面F2のみでなく、この主面F2から第4,第6傾斜面S4,S6の一部に亘ってそれぞれ接合されている。 The same applies to the fourth and sixth inclined surfaces S4 and S6 shown in FIG. 7 extending along the long side direction of the crystal diaphragm 2. That is, the second resin film 4 is bonded not only to the other main surface F2 but also from the main surface F2 to a part of the fourth and sixth inclined surfaces S4 and S6.
 上記のように、水晶振動板2の一方の主面F1に対する第3,第5傾斜面S3,S5の成す角、及び、水晶振動板2の他方の主面F2に対する第4,第6傾斜面S4,S6の成す角は、いずれも鈍角である。このため、第1,第2樹脂フィルム3,4は、各主面F1,F2から緩やかな鈍角に沿って第3,第5傾斜面S3,S5、あるいは、第4,第6傾斜面S4,S6の各一部に亘ってそれぞれ接合されている。 As described above, the angle formed by the third and fifth obtuse surfaces S3 and S5 with respect to one main surface F1 of the crystal diaphragm 2 and the fourth and sixth obtuse surfaces with respect to the other main surface F2 of the crystal diaphragm 2. The angles formed by S4 and S6 are obtuse angles. Therefore, the first and second resin films 3 and 4 are formed on the third and fifth inclined surfaces S3 and S5 or the fourth and sixth inclined surfaces S4 along a gentle obtuse angle from the main surfaces F1 and F2. Each part of S6 is joined.
 このように第1,第2樹脂フィルム3,4は、外枠部23の各主面F1,F2から、内側面である第3,第5傾斜面S3,S5、あるいは、第4,第6傾斜面S4,S6の各一部にまで亘ってそれぞれ接合されるので、第1,第2樹脂フィルム3,4が各主面F1,F2のみに接合される場合に比べて、第1,第2樹脂フィルム3,4は、振動部21側に近接することになる。 As described above, the first and second resin films 3 and 4 are formed from the main surfaces F1 and F2 of the outer frame portion 23 to the inner side surfaces of the third and fifth inclined surfaces S3 and S5, or the fourth and sixth surfaces. Since the first and second resin films 3 and 4 are joined only to each of the inclined surfaces S4 and S6, the first and second resin films 3 and 4 are joined only to the main surfaces F1 and F2. 2 The resin films 3 and 4 are close to the vibrating portion 21 side.
 この実施形態では、図7に示すように、振動部21の外周側の角部は、外枠部23の第3,第5傾斜面S3,S5、及び、第4,第6傾斜面S4,S6にそれぞれ対向する第15,第17傾斜面S15,S17、及び、第16,第18傾斜面S18となっている。これによって、振動部21の外周側の角部が傾斜面となっていない場合に比べて、第1,第2樹脂フィルム3,4が、外枠部23の内側面である第3~第6傾斜面S3~S6の各一部と接合する箇所から振動部21までの離間距離を長くすることが可能となる。このように離間距離を長くできるので、第1,第2樹脂フィルム3,4が、例えば、振動部21側へ撓んだような場合に、第1,第2樹脂フィルム3,4と振動部21とが接触するのを抑制することができる。 In this embodiment, as shown in FIG. 7, the corners on the outer peripheral side of the vibrating portion 21 are the third and fifth inclined surfaces S3 and S5 of the outer frame portion 23, and the fourth and sixth inclined surfaces S4. The 15th and 17th inclined surfaces S15 and S17 facing S6, and the 16th and 18th inclined surfaces S18, respectively. As a result, the first and second resin films 3 and 4 are the third to sixth inner surfaces of the outer frame portion 23, as compared with the case where the corner portion on the outer peripheral side of the vibrating portion 21 is not an inclined surface. It is possible to increase the separation distance from the portion joined to each part of the inclined surfaces S3 to S6 to the vibrating portion 21. Since the separation distance can be increased in this way, when the first and second resin films 3 and 4 are bent toward the vibrating portion 21, for example, the first and second resin films 3 and 4 and the vibrating portion are formed. It is possible to suppress contact with 21.
 図10は、図7のセクションP3の拡大図である。 FIG. 10 is an enlarged view of section P3 of FIG.
 この図10に示すように、第1樹脂フィルム3は、水晶振動板2の一方の主面F1に接合されている接合領域以外の残余の領域が、一方の主面F1に連なる外側面である第7傾斜面S7の一部S7aに接合されている。すなわち、第1樹脂フィルム3は、一方の主面F1のみでなく、この主面F1から第7傾斜面S7の一部S7aに亘って接合されている。 As shown in FIG. 10, the first resin film 3 is an outer surface in which the remaining region other than the bonding region bonded to one main surface F1 of the crystal diaphragm 2 is connected to one main surface F1. It is joined to a part S7a of the seventh inclined surface S7. That is, the first resin film 3 is bonded not only to one main surface F1 but also from the main surface F1 to a part S7a of the seventh inclined surface S7.
 この図10では、水晶振動板2の長辺方向に沿って延びる第7傾斜面S7のみを示しているが、同じく水晶振動板2の長辺方向に沿って延びる図7に示される第9傾斜面S9についても同様である。すなわち、第3樹脂フィルム3は、一方の主面F1のみでなく、この主面F1から第9傾斜面S9の一部に亘って接合されている。 In FIG. 10, only the seventh inclined surface S7 extending along the long side direction of the crystal diaphragm 2 is shown, but the ninth inclined surface also shown in FIG. 7 extending along the long side direction of the crystal diaphragm 2 is shown. The same applies to the surface S9. That is, the third resin film 3 is joined not only from one main surface F1 but also from the main surface F1 to a part of the ninth inclined surface S9.
 また、水晶振動板2の長辺方向に沿って延びる図7に示される第8,第10傾斜面S8,S10ついても同様である。すなわち、第2樹脂フィルム4は、他方の主面F2のみでなく、この主面F2から第8,第10傾斜面S8,S10の一部に亘ってそれぞれ接合されている。 The same applies to the 8th and 10th inclined surfaces S8 and S10 shown in FIG. 7 extending along the long side direction of the crystal diaphragm 2. That is, the second resin film 4 is bonded not only to the other main surface F2 but also from the main surface F2 to a part of the eighth and tenth inclined surfaces S8 and S10, respectively.
 上記のように、水晶振動板2の一方の主面F1に対する第7,第9傾斜面S7,S9の成す角、及び、水晶振動板2の他方の主面F2に対する第8,第10傾斜面S8,S10の成す角は、いずれも鈍角である。このため、第1,第2樹脂フィルム3,4は、各主面F1,F2から緩やかな鈍角に沿って第7,第9傾斜面S7,S9、あるいは、第8,第10傾斜面S8,S10の各一部に亘ってそれぞれ接合されている。 As described above, the angles formed by the 7th and 9th obtuse planes S7 and S9 with respect to one main surface F1 of the crystal diaphragm 2 and the 8th and 10th obtuse planes with respect to the other main surface F2 of the crystal diaphragm 2 The angles formed by S8 and S10 are obtuse angles. Therefore, the first and second resin films 3 and 4 have the seventh and ninth inclined surfaces S7 and S9, or the eighth and tenth inclined surfaces S8, along a gentle obtuse angle from the main surfaces F1 and F2. Each part of S10 is joined.
 このように本実施形態では、第1,第2樹脂フィルム3,4は、水晶振動板の2の両主面F1,F2のみでなく、振動部21を囲む内周側の第1~第6傾斜面S1~S6の一部、及び、外側面である第7~第10傾斜面S7~S10の一部にも接合されるので、水晶振動子1のサイズを大きくすることなく、第1,第2樹脂フィルム3,4と水晶振動板2との接合面積を増加させて、必要な接合面積を確保することができる。 As described above, in the present embodiment, the first and second resin films 3 and 4 are not only the two main surfaces F1 and F2 of the crystal diaphragm 2, but also the first to sixth inner peripheral sides surrounding the vibrating portion 21. Since it is also joined to a part of the inclined surfaces S1 to S6 and a part of the seventh to tenth inclined surfaces S7 to S10 which are outer surfaces, the first one without increasing the size of the crystal oscillator 1. The required bonding area can be secured by increasing the bonding area between the second resin films 3 and 4 and the crystal diaphragm 2.
 なお、第1樹脂フィルム3又は第2樹脂フィルム4は、第1~第6傾斜面S1~S6、及び、第7~第10傾斜面S7~S10の全ての傾斜面S1~S10に接合されている必要はなく、少なくともいずれかの一つの傾斜面の一部に接合されていればよい。 The first resin film 3 or the second resin film 4 is joined to all the inclined surfaces S1 to S10 of the first to sixth inclined surfaces S1 to S6 and the seventh to tenth inclined surfaces S7 to S10. It does not have to be, and may be joined to a part of at least one inclined surface.
 この実施形態では、図2に示すように、平面視が略矩形の振動部21を、その一つの角部に設けた一箇所の連結部24によって外枠部23に連結しているので、2箇所以上で連結する構成に比べて、振動部21に作用する応力を低減することができる。 In this embodiment, as shown in FIG. 2, since the vibrating portion 21 having a substantially rectangular plan view is connected to the outer frame portion 23 by a connecting portion 24 provided at one corner of the vibrating portion 21, 2 The stress acting on the vibrating portion 21 can be reduced as compared with the configuration in which the portions are connected at or above.
 また、この実施形態では、連結部24は、外枠部23の内周のうちX軸方向に沿う一辺から突出し、かつ、Z´軸方向に沿って形成されている。水晶振動板2のZ´軸方向の両端部に形成された第1,第2金属膜27,28は、実装端子として使用され、半田等によって回路基板等に直接接合される。このため、水晶振動子の長辺方向(Z´軸方向)に収縮応力が働き、当該応力が振動部に伝搬することにより水晶振動子の発振周波数が変化し易くなることが考えられる。これに対して、この実施形態では、前記収縮応力に沿う方向に連結部24が形成されているため、当該収縮応力が振動部21に伝搬するのを抑制することができる。その結果、水晶振動子1を回路基板に実装した際の発振周波数の変化を抑制することができる。 Further, in this embodiment, the connecting portion 24 protrudes from one side of the inner circumference of the outer frame portion 23 along the X-axis direction and is formed along the Z'axis direction. The first and second metal films 27 and 28 formed at both ends of the crystal diaphragm 2 in the Z'axis direction are used as mounting terminals and are directly bonded to a circuit board or the like by soldering or the like. Therefore, it is conceivable that the contraction stress acts in the long side direction (Z'axis direction) of the crystal oscillator, and the stress propagates to the vibrating portion, so that the oscillation frequency of the crystal oscillator is likely to change. On the other hand, in this embodiment, since the connecting portion 24 is formed in the direction along the contraction stress, it is possible to suppress the contraction stress from propagating to the vibrating portion 21. As a result, it is possible to suppress a change in the oscillation frequency when the crystal oscillator 1 is mounted on the circuit board.
 なお、振動部21と外枠部23との間の貫通部22を省略し、薄肉の振動部21を囲むように外枠部23を、振動部21に連設してもよい。 Note that the penetrating portion 22 between the vibrating portion 21 and the outer frame portion 23 may be omitted, and the outer frame portion 23 may be continuously provided to the vibrating portion 21 so as to surround the thin-walled vibrating portion 21.
 次に、この実施形態の水晶振動子1の製造方法について説明する。 Next, a method for manufacturing the crystal oscillator 1 of this embodiment will be described.
 図11A~図11Eは、水晶振動子1を製造する工程を模式的に示す概略断面図である。 11A to 11E are schematic cross-sectional views schematically showing a process of manufacturing the crystal oscillator 1.
 先ず、図11Aに示される加工前のATカットの水晶ウェハ(ATカット水晶板)5を準備する。この水晶ウェハ5に対して、フォトリソグラフィー技術を用いたウェットエッチングによって、図11Bに示すように、複数の水晶振動板部分2a及びそれらを支持するフレーム部分(図示せず)等の外形を形成し、更に、水晶振動板部分2aに、外枠部分23aや、外枠部分23aよりも薄肉の振動部分21a等の各部の外形を形成する。すなわち、外形及び振動部の加工工程を実施する。 First, the AT-cut crystal wafer (AT-cut crystal plate) 5 before processing shown in FIG. 11A is prepared. As shown in FIG. 11B, the crystal wafer 5 is subjected to wet etching using a photolithography technique to form an outer shape of a plurality of crystal diaphragm portions 2a and a frame portion (not shown) that supports them. Further, the outer shape of each part such as the outer frame portion 23a and the vibration portion 21a thinner than the outer frame portion 23a is formed on the crystal diaphragm portion 2a. That is, the processing process of the outer shape and the vibrating portion is carried out.
 この水晶ウェハ5のウェットエッチングによって、水晶の結晶方位によるエッチング異方性のために、上記の第1~第10傾斜面S1~S10等が形成される。なお、上記図3に対応する図11A~図11Eでは、第1,第2傾斜面S1,S2のみが示されている。 By the wet etching of the crystal wafer 5, the above-mentioned first to tenth inclined surfaces S1 to S10 and the like are formed due to the etching anisotropy due to the crystal orientation of the crystal. In FIGS. 11A to 11E corresponding to FIG. 3, only the first and second inclined surfaces S1 and S2 are shown.
 次に、図11Cに示すように、スパッタリング技術または蒸着技術、及び、フォトリソグラフィー技術によって、水晶振動板部分2aの所定の位置に、第1,第2励振電極25a,26a及び第1,第2金属膜27a,28a等を形成する、電極形成工程を実施する。 Next, as shown in FIG. 11C, the first and second excitation electrodes 25a and 26a and the first and second excitation electrodes 25a and 26a are placed at predetermined positions of the crystal vibrating plate portion 2a by the sputtering technique or the vapor deposition technique and the photolithography technique. An electrode forming step of forming the metal films 27a, 28a and the like is carried out.
 更に、図11Dに示されるように、各水晶振動板部分2aの表裏の両主面を、連続した樹脂フィルム3a,4aでそれぞれ覆うように、樹脂フィルム3a,4aを加熱圧着し、各水晶振動板部分2aの各振動部分21aを封止する。 Further, as shown in FIG. 11D, the resin films 3a and 4a are heat-bonded so as to cover both the front and back main surfaces of each crystal diaphragm portion 2a with continuous resin films 3a and 4a, respectively, and each crystal vibration is performed. Each vibrating portion 21a of the plate portion 2a is sealed.
 図12A~図12Cは、樹脂フィルム3a,4aを、各水晶振動板部分2aに加熱圧着する工程を模式的に示す概略断面図である。 12A to 12C are schematic cross-sectional views schematically showing a step of heat-pressing the resin films 3a and 4a to each quartz diaphragm portion 2a.
 先ず、図12Aに示すように、上側の加圧加熱ブロック7と、下側の加圧加熱ブロック8との間に、両主面が樹脂フィルム3a,4aでそれぞれ覆われた各水晶振動板部分2aを、上下に保護フィルム6を介在させた状態でセットする。 First, as shown in FIG. 12A, between the upper pressure heating block 7 and the lower pressure heating block 8, each crystal diaphragm portion whose main surfaces are covered with resin films 3a and 4a, respectively. 2a is set with the protective film 6 interposed above and below.
 次に、図12Bに示すように、上下の加圧加熱ブロック7,8によって、各水晶振動板部分2aに、第1,第2樹脂フィルム3a,4aを加圧加熱して圧着する。この樹脂フィルム3a,4aを各水晶振動板部分2aに加熱圧着する工程によって、上記のように、樹脂フィルム3a,4aを、水晶振動板部分2aの両主面F1,F2のみでなく、内側面である第1~第6傾斜面S1~S6、及び、外側面である第7~第10傾斜面S7~S10の少なくとも一部に接合する。 Next, as shown in FIG. 12B, the first and second resin films 3a and 4a are pressure-heated and pressure-bonded to each crystal diaphragm portion 2a by the upper and lower pressure- heating blocks 7 and 8. By the step of heat-pressing the resin films 3a and 4a to each crystal diaphragm portion 2a, as described above, the resin films 3a and 4a are not only on both main surfaces F1 and F2 of the crystal diaphragm portion 2a but also on the inner surface surface. It is joined to at least a part of the first to sixth inclined surfaces S1 to S6 and the outer surface, the seventh to tenth inclined surfaces S7 to S10.
 次に、図12Cに示すように、第1,第2樹脂フィルム3a,4aが接合された各水晶振動板部分2aを取り出す。そして、保護フィルム除去工程において保護フィルム6を除去する。 Next, as shown in FIG. 12C, each crystal diaphragm portion 2a to which the first and second resin films 3a and 4a are bonded is taken out. Then, the protective film 6 is removed in the protective film removing step.
 この樹脂フィルム3a,4aを、各水晶振動板部分2aに加熱圧着する工程は、窒素ガス等の不活性ガス雰囲気中で行われる。なお、この加熱圧着する工程は、不活性ガス雰囲気中に限らず、大気中や減圧雰囲気中で行ってもよい。 The step of heat-pressing the resin films 3a and 4a to each crystal diaphragm portion 2a is performed in an atmosphere of an inert gas such as nitrogen gas. The step of heat crimping is not limited to the atmosphere of the inert gas, but may be performed in the atmosphere of the atmosphere or the atmosphere of reduced pressure.
 次に、図11Eに示すように、各水晶振動板2にそれぞれ対応するように、連続した各樹脂フィルム3a,4aを、第1,第2金属膜27,28が露出するように切断して不要部分を除去し、各水晶振動板2を分離して個片化する。 Next, as shown in FIG. 11E, the continuous resin films 3a and 4a are cut so as to expose the first and second metal films 27 and 28 so as to correspond to the respective crystal diaphragms 2. Unnecessary parts are removed, and each crystal diaphragm 2 is separated and individualized.
 これによって、図1に示される水晶振動子1が複数得られる。 As a result, a plurality of crystal oscillators 1 shown in FIG. 1 can be obtained.
 本実施形態によれば、水晶振動板2の表裏の両主面F1,F2に、第1,第2樹脂フィルム3,4を接合して水晶振動子1を構成するので、セラミック等の絶縁材料からなる凹部を有するベースに、水晶振動片を収納し、蓋体をベースに接合して、気密に封止する従来例のように、高価なベースや蓋体が不要となる。 According to the present embodiment, since the first and second resin films 3 and 4 are joined to both the front and back main surfaces F1 and F2 of the crystal diaphragm 2 to form the crystal oscillator 1, an insulating material such as ceramic is formed. An expensive base or lid is not required as in the conventional example in which the crystal vibrating piece is housed in the base having the concave portion and the lid is joined to the base and sealed airtightly.
 これによって、水晶振動子1のコストを低減することができ、水晶振動子1を、安価に提供することができる。 Thereby, the cost of the crystal oscillator 1 can be reduced, and the crystal oscillator 1 can be provided at a low cost.
 また、ベースの凹部に、水晶振動片を収納して蓋体で封止する従来例に比べて、薄型化(低背化)を図ることができる。 In addition, it is possible to reduce the thickness (lower height) compared to the conventional example in which the quartz vibrating piece is stored in the concave portion of the base and sealed with a lid.
 本実施形態の水晶振動子1では、第1,第2樹脂フィルム3,4によって振動部21を封止しているので、ベースに金属製やセラミック製の蓋体を接合して気密に封止する従来例に比べて気密性が劣り、水晶振動子1の共振周波数の経年変化が生じ易い。 In the crystal oscillator 1 of the present embodiment, since the vibrating portion 21 is sealed by the first and second resin films 3 and 4, a metal or ceramic lid is joined to the base and hermetically sealed. The airtightness is inferior to that of the conventional example, and the resonance frequency of the crystal oscillator 1 tends to change over time.
 しかし、例えば、近距離無線通信用途のうちBLE(Bluetooth(登録商標) Low Energy)等では、周波数偏差等の規格が比較的緩やかであるので、かかる用途では、樹脂フィルムで封止した安価な水晶振動子1を使用することが可能である。 However, for example, in BLE (Bluetooth (registered trademark) Low Energy) among short-range wireless communication applications, standards such as frequency deviation are relatively loose, so in such applications, inexpensive crystals sealed with a resin film are used. It is possible to use the oscillator 1.
 上記実施形態では、水晶振動板2の両主面F1,F2の一方の主面F1には、図2に示すように、第1樹脂フィルム3が接合される第1封止パターン201が、略矩形の振動部21を取り囲むように矩形環状に形成され、水晶振動板2の両主面F1,F2の他方の主面F2には、図5に示すように、第2樹脂フィルム4が接合される第2封止パターン202が、略矩形の振動部21を取り囲むように矩形環状に形成されたが、矩形環状の第1,第2封止パターン201,202を省略してもよい。 In the above embodiment, as shown in FIG. 2, a first sealing pattern 201 to which the first resin film 3 is bonded is substantially formed on one main surface F1 of both main surfaces F1 and F2 of the crystal diaphragm 2. A second resin film 4 is bonded to both main surfaces F1 and F2 of the crystal diaphragm 2 so as to surround the rectangular vibrating portion 21 and to the other main surface F2 as shown in FIG. The second sealing pattern 202 is formed in a rectangular ring shape so as to surround the substantially rectangular vibration portion 21, but the first and second sealing patterns 201 and 202 of the rectangular ring shape may be omitted.
 図13及び図14は、第1,第2封止パターン201,202を省略した水晶振動板2の概略平面図及び概略底面図である。 13 and 14 are a schematic plan view and a schematic bottom view of the crystal diaphragm 21 excluding the first and second sealing patterns 201 and 202.
 この水晶振動板2では、第1金属膜27は、図13に示されるように、引き回し電極209及び第1引出し電極203を介して第1励振電極25に電気的に接続されている。 In the quartz diaphragm 21, as shown in FIG. 13, the first metal film 27 is electrically connected to the first excitation electrode 25 via the routing electrode 209 and the first extraction electrode 203.
 第2金属膜28は、図14に示されるように、第2引出し電極204が延長されて第2励振電極26に電気的に接続されている。 As shown in FIG. 14, the second metal film 28 is electrically connected to the second excitation electrode 26 by extending the second extraction electrode 204.
 その他の構成は、上記実施形態と同様である。 Other configurations are the same as those in the above embodiment.
 上記各実施形態では、水晶振動板2,2の第1,第2金属膜27,28は、上記のように当該水晶振動子1を、回路基板等に実装するための実装端子としての機能を有している。本発明の他の実施形態として、第1,第2実装端子を、第1,第2金属膜27,28とは別に形成し、第1,第2金属膜27,28を、第1,第2実装端子と第1,第2励振電極25,26とを電気的に接続する接続電極として機能させてもよい。 In each of the above embodiments, the first and second metal films 27 and 28 of the crystal diaphragms 2 and 2 1 function as mounting terminals for mounting the crystal oscillator 1 on a circuit board or the like as described above. have. As another embodiment of the present invention, the first and second mounting terminals are formed separately from the first and second metal films 27 and 28, and the first and second metal films 27 and 28 are formed by the first and first metal films 27 and 28. The two mounting terminals may function as connection electrodes for electrically connecting the first and second excitation electrodes 25 and 26.
 このように第1,第2金属膜27,28を、第1,第2実装端子と第1,第2励振電極25,26とを電気的に接続する接続電極として機能させた実施形態を図15及び図16に示す。 The embodiment in which the first and second metal films 27 and 28 function as connection electrodes for electrically connecting the first and second mounting terminals and the first and second excitation electrodes 25 and 26 is shown in the figure. 15 and FIG.
 この図15及び図16は、水晶振動子1の概略斜視図及び概略断面図である。この実施形態の水晶振動子1の外形サイズは、上記各実施形態の水晶振動子1の外形サイズと同じである。なお、図16では、金属膜の形成領域を誇張して示すために、水晶の傾斜面は簡略化している。 15 and 16 are a schematic perspective view and a schematic cross-sectional view of the crystal oscillator 11. The external size of the crystal oscillator 1 of this embodiment is the same as the external size of the crystal oscillator 1 of each of the above embodiments. In FIG. 16, the inclined surface of the crystal is simplified in order to exaggerate the formed region of the metal film.
 この実施形態の水晶振動子1の水晶振動板2は、上記各実施形態と同様に、第1,第2励振電極25,26が形成された振動部21と、この振動部21の周囲を、貫通部22を挟んで取り囲む外枠部23と、振動部21と外枠部23とを連結する連結部24とを備えている。 The crystal vibrating plate 2 2 of the crystal oscillator 1 1 of this embodiment has a vibrating portion 21 1 on which the first and second excitation electrodes 25 1 , 26 1 are formed and the vibrating portion 21 2 thereof, as in each of the above embodiments. It is provided with an outer frame portion 23 1 that surrounds the periphery of the 21 1 with the penetrating portion 22 1 interposed therebetween, and a connecting portion 24 1 that connects the vibrating portion 21 1 and the outer frame portion 23 1 .
 この実施形態では、第1,第2樹脂フィルム3,4は、水晶振動板2の第1,第2励振電極25,26が形成された振動部21及びその周囲の矩形の領域だけではなく、水晶振動板2の両主面の全面をそれぞれ覆うように接合されている。すなわち、第1,第2樹脂フィルム3,4のサイズは、上記各実施形態の第1,第2樹脂フィルム3,4のサイズに比べて大きく、水晶振動板2と同じサイズである。 In this embodiment, the first and second resin films 3 1 and 4 1 are the vibrating portion 21 1 on which the first and second excitation electrodes 25 1 and 26 1 of the crystal diaphragm 2 2 are formed and the rectangle around the vibrating portion 21 1 . It is joined so as to cover not only the region of the above but also the entire surfaces of both main surfaces of the crystal diaphragm 22. That is, the sizes of the first and second resin films 3 1 and 4 1 are larger than the sizes of the first and second resin films 3 and 4 of each of the above embodiments, and are the same size as the crystal diaphragm 2 2 . ..
 したがって、図16に示すように、水晶振動板2に形成されている第1,第2金属膜27,28の内、両主面に形成されている部分は、第1,第2樹脂フィルム3,4で覆われている。 Therefore, as shown in FIG. 16, of the first and second metal films 27 1 , 28 1 formed on the quartz diaphragm 22, the portions formed on both main surfaces are the first and second metal films. It is covered with resin films 3 1 and 4 1 .
 この実施形態では、両主面の全面に第1,第2樹脂フィルム3,4がそれぞれ接合された水晶振動板2の長辺方向の両端部に、第1,第2樹脂フィルム3,4及び水晶振動板2の外表面の略全面を覆うように導電性ペーストを塗布して熱硬化させて第1,第2実装端子17,18を形成している。 In this embodiment, the first and second resin films 3 are attached to both ends of the crystal diaphragm 2 2 in which the first and second resin films 3 1 and 4 1 are bonded to the entire surfaces of both main surfaces in the long side direction. A conductive paste is applied so as to cover substantially the entire outer surface of 1 , 41 and the crystal diaphragm 22 and heat-cured to form the first and second mounting terminals 17 and 18.
 第1金属膜27は、上記各実施形態と同様に、水晶振動板2の長辺方向の両端部の一方の端部の、対向する長辺側の各側面及び対向する短辺側の一方の側面に亘って形成されている。第1実装端子17は、この第1金属膜27上に形成されているので、第1実装端子17は、第1金属膜27に電気的に接続される。第1金属膜27は、上記各実施形態と同様に、第1励振電極25に電気的に接続されているので、この第1金属膜27は、第1励振電極25と第1実装端子17とを電気的に接続する接続電極として機能する。 Similar to each of the above-described embodiments, the first metal film 27 1 is formed on each side surface on the long side facing each other and the short side facing each other on one end of both ends in the long side direction of the quartz diaphragm 22. It is formed over one side. Since the first mounting terminal 17 is formed on the first metal film 27 1 , the first mounting terminal 17 is electrically connected to the first metal film 27 1 . Since the first metal film 27 1 is electrically connected to the first excitation electrode 25 1 as in each of the above embodiments, the first metal film 27 1 is the first excitation electrode 25 1 and the first. It functions as a connection electrode for electrically connecting to the mounting terminal 17.
 同様に、第2金属膜28は、水晶振動板2の長辺方向の両端部の他方の端部の、対向する長辺側の各側面及び対向する短辺側の他方の側面に亘って形成されている。第2実装端子18は、この第2金属膜28上に形成されているので、第2実装端子18は、第2金属膜28に電気的に接続される。第2金属膜28は、第2励振電極26に電気的に接続されているので、この第2金属膜28は、第2励振電極26と第2実装端子18とを電気的に接続する接続電極として機能する。 Similarly, the second metal film 28 1 extends over each side surface on the opposite long side and the other side surface on the opposite short side of the other end of both ends in the long side direction of the quartz diaphragm 22. Is formed. Since the second mounting terminal 18 is formed on the second metal film 281, the second mounting terminal 18 is electrically connected to the second metal film 281. Since the second metal film 28 1 is electrically connected to the second excitation electrode 26 1 , the second metal film 28 1 electrically connects the second excitation electrode 26 1 and the second mounting terminal 18. Functions as a connecting electrode to connect.
 この実施形態では、第1,第2実装端子17,18を、水晶振動板2に接合された第1,第2樹脂フィルム3,4の外表面に形成するので、上記各実施形態のような、水晶振動板2,2に形成された第1,第2金属膜27,28を第1,第2実装端子とする構成に比べて、水晶振動板2に形成する第1,第2金属膜27,28のサイズを小さくすることができ、その分、第1,第2金属膜27,28に挟まれた振動部21のサイズを大きくすることができる。 In this embodiment, the first and second mounting terminals 17 and 18 are formed on the outer surface of the first and second resin films 3 1 and 4 1 bonded to the crystal diaphragm 22. Compared with the configuration in which the first and second metal films 27 and 28 formed on the crystal diaphragms 2 and 2 1 are used as the first and second mounting terminals as in the above configuration, the first formed on the crystal diaphragm 2 2 is performed. , The size of the second metal films 27 1 , 28 1 can be reduced, and the size of the vibrating portion 21 1 sandwiched between the first and second metal films 27 1 , 28 1 can be increased accordingly. ..
 これによって、水晶振動子1自体のサイズを大きくすることなく、振動部21を、水晶振動板2の長辺方向に沿って長くして振動特性を向上させることができると共に、当該水晶振動子1の実装に必要な第1,第2実装端子17,18の接合領域を確保することができる。 As a result, the vibrating portion 21 1 can be lengthened along the long side direction of the crystal diaphragm 2 2 to improve the vibration characteristics without increasing the size of the crystal oscillator 1 1 itself, and the crystal can be improved. It is possible to secure the junction regions of the first and second mounting terminals 17 and 18 required for mounting the oscillator 11.
 上記各実施形態では、連結部24,24は平面視が略矩形の振動部21,21の一つの角部に一箇所、設けられていたが、連結部24,24の形成位置や形成数はこの限りではない。さらに連結部24,24の幅は一定でなくてもよい。 In each of the above embodiments, the connecting portions 24 and 24 1 are provided at one corner of the vibrating portions 21 and 21 1 having a substantially rectangular plan view. The number of formations is not limited to this. Further, the widths of the connecting portions 24 and 241 do not have to be constant.
 また、貫通部を有することなく、振動部を薄く、その周辺部を厚くした逆メサ型の水晶振動板に適用してもよい。 Further, it may be applied to an inverted mesa type quartz diaphragm having a thin vibrating portion and a thick peripheral portion without having a penetrating portion.
 上記各実施形態では、熱可塑性の接着層を有する第1,第2樹脂フィルム3,3;4,4を、水晶振動板2,2,2に加熱圧着したが、本発明の他の実施形態として、第1,第2樹脂フィルムとして、感光性樹脂フィルム、例えば、感光性ポリイミドフィルムを使用し、この感光性樹脂フィルムを、水晶振動板にラミネートし、フォトマスクを介して露光、現像して、感光性樹脂フィルムの不要部分を除去して硬化させるようにしてもよい。 In each of the above embodiments, the first and second resin films 3, 3 1 ; 4, 4 1 having a thermoplastic adhesive layer are heat-bonded to the crystal vibrating plates 2 , 2 1 , 22. As another embodiment, a photosensitive resin film, for example, a photosensitive polyimide film is used as the first and second resin films, and the photosensitive resin film is laminated on a crystal vibrating plate and exposed via a photomask. , It may be developed to remove unnecessary portions of the photosensitive resin film and to be cured.
 上記各実施形態では、水晶振動板2,2,2の両主面に、第1,第2樹脂フィルム3,4;3,4を接合して、振動部21を封止したが、少なくとも一方の主面の樹脂フィルムに代えて、従来の蓋体を接合して振動部21を封止してもよい。 In each of the above embodiments, the first and second resin films 3, 4; 3 1 , 4 1 are bonded to both main surfaces of the crystal diaphragms 2, 2 1 and 2 2 to seal the vibrating portion 21. However, instead of the resin film on at least one main surface, a conventional lid may be joined to seal the vibrating portion 21.
 水晶振動板は、平面視略矩形であればよく、上記のような平面視矩形に限らず、例えば、水晶振動板の角部を面取りした形状、あるいは、水晶振動板の周縁部を厚み方向に切欠き、切欠き部に電極が被着されてなるキャスタレーション等が形成された形状であってもよい。 The crystal diaphragm may be a substantially rectangular shape in a plan view, and is not limited to the rectangle in a plan view as described above. It may have a shape in which a notch, a rectangle or the like in which an electrode is adhered to the notch, is formed.
 本発明は、水晶振動子に限らず、水晶発振器等の他の圧電振動デバイスに適用してもよい。例えば、本発明に係る水晶振動子と、この水晶振動子と共に発振回路を構成する集積回路素子とを基板に実装し、基板にカバーを被せて封止したり、あるいは、前記基板を樹脂モールドして水晶発振器を構成してもよい。 The present invention is not limited to the crystal oscillator, and may be applied to other piezoelectric vibration devices such as the crystal oscillator. For example, the crystal oscillator according to the present invention and the integrated circuit element constituting the oscillation circuit together with the crystal oscillator are mounted on a substrate and sealed by covering the substrate with a cover, or the substrate is resin-molded. A crystal oscillator may be configured.
 1,1        水晶振動子
 2,2,2     水晶振動板
 3,3        第1樹脂フィルム
 4,4        第2樹脂フィルム
 5           水晶ウェハ
 21,21      振動部
 23,23      外枠部
 24,24      連結部
 25,25      第1励振電極
 26,26      第2励振電極
 27,27      第1金属膜
 28,28      第2金属膜
 201         第1封止パターン
 202         第2封止パターン
1,1 1 Crystal oscillator 2,2 1,2 2 Crystal vibrating plate 3,3 1 First resin film 4,4 1 Second resin film 5 Crystal wafer 21,21 1 Vibrating part 23,23 1 Outer frame part 24 , 24 1 Connection part 25, 25 1 1st excitation electrode 26,26 1 2nd excitation electrode 27,27 1 1st metal film 28,28 1 2nd metal film 201 1st sealing pattern 202 2nd sealing pattern

Claims (7)

  1.  両主面の一方の主面に形成された第1励振電極及び前記両主面の他方の主面に形成された第2励振電極を有すると共に、前記第1,第2励振電極にそれぞれ接続された第1,第2金属膜を有する圧電振動板と、
     前記圧電振動板の前記第1,第2励振電極をそれぞれ覆うように、前記圧電振動板の前記両主面にそれぞれ接合される第1,第2封止部材とを備え、
     前記圧電振動板は、前記両主面に第1,第2励振電極がそれぞれ形成された振動部と、該振動部側に前記両主面の少なくとも一方の主面に連なる内側面を有し、
     前記振動部の厚みは、該振動部以外の前記圧電振動板の厚みよりも薄肉に形成され、
     前記第1,第2封止部材の少なくとも一方の封止部材は、樹脂フィルムであり、
     前記樹脂フィルムは、前記圧電振動板の主面に接合されている接合領域以外の残余の領域が、該樹脂フィルムが接合されている前記主面に連なる前記内側面及び前記圧電振動板の外側面の少なくともいずれか一方の側面の、少なくとも一部に接合されている、
     ことを特徴とする圧電振動デバイス。
    It has a first excitation electrode formed on one main surface of both main surfaces and a second excitation electrode formed on the other main surface of both main surfaces, and is connected to the first and second excitation electrodes, respectively. A piezoelectric diaphragm having first and second metal films,
    A first and second sealing member to be joined to both main surfaces of the piezoelectric diaphragm so as to cover the first and second excitation electrodes of the piezoelectric diaphragm is provided.
    The piezoelectric diaphragm has a vibrating portion in which first and second excitation electrodes are formed on both main surfaces, and an inner surface connected to at least one main surface of the two main surfaces on the vibrating portion side.
    The thickness of the vibrating portion is formed to be thinner than the thickness of the piezoelectric diaphragm other than the vibrating portion.
    At least one of the first and second sealing members is a resin film.
    In the resin film, the remaining region other than the bonding region bonded to the main surface of the piezoelectric diaphragm is connected to the main surface to which the resin film is bonded, the inner surface surface and the outer surface of the piezoelectric diaphragm. Joined to at least part of at least one side of the
    A piezoelectric vibration device characterized by that.
  2.  前記圧電振動板は、前記振動部を囲む外枠部を有し、前記振動部は、前記外枠部より薄肉であり、前記振動部と前記外枠部との間には貫通部を有し、
     前記樹脂フィルムは、その周端部が前記外枠部の両主面の少なくとも一方の主面に接合されている、
     請求項1に記載の圧電振動デバイス。
    The piezoelectric diaphragm has an outer frame portion that surrounds the vibrating portion, the vibrating portion is thinner than the outer frame portion, and has a penetrating portion between the vibrating portion and the outer frame portion. ,
    The peripheral end of the resin film is joined to at least one main surface of both main surfaces of the outer frame portion.
    The piezoelectric vibration device according to claim 1.
  3.  前記主面に連なる前記内側面は、前記振動部を囲む前記外枠部の内周側の主面に連なる側面である、
     請求項2に記載の圧電振動デバイス。
    The inner surface connected to the main surface is a side surface connected to the main surface on the inner peripheral side of the outer frame portion surrounding the vibrating portion.
    The piezoelectric vibration device according to claim 2.
  4.  前記フィルムの前記残余の領域は、前記外枠部で囲まれた前記振動部に対向し、当該振動部との間に空隙を有している、
     請求項3に記載の圧電振動デバイス。
    The residual region of the film faces the vibrating portion surrounded by the outer frame portion and has a gap between the vibrating portion and the vibrating portion.
    The piezoelectric vibration device according to claim 3.
  5.  前記樹脂フィルムが接合されている前記主面に連なる前記内側面が、前記反対側の主面に向けて、前記振動部側へ突出するように傾斜した傾斜面であり、
    前記樹脂フィルムが接合されている前記主面に対する前記内側面の成す角が、鈍角である、
     請求項1ないし4のいずれか一項に記載の圧電振動デバイス。
    The inner side surface connected to the main surface to which the resin film is bonded is an inclined surface inclined so as to project toward the vibrating portion side toward the main surface on the opposite side.
    The angle formed by the inner surface with respect to the main surface to which the resin film is bonded is an obtuse angle.
    The piezoelectric vibration device according to any one of claims 1 to 4.
  6.  前記圧電振動板が、水晶振動板である、
     請求項1ないし4のいずれか一項に記載の圧電振動デバイス。
    The piezoelectric diaphragm is a quartz diaphragm.
    The piezoelectric vibration device according to any one of claims 1 to 4.
  7.  前記圧電振動板が、水晶振動板である、
     請求項5に記載の圧電振動デバイス。
    The piezoelectric diaphragm is a quartz diaphragm.
    The piezoelectric vibration device according to claim 5.
PCT/JP2021/030358 2020-08-26 2021-08-19 Piezoelectric vibration device WO2022044949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022544513A JPWO2022044949A1 (en) 2020-08-26 2021-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020142482 2020-08-26
JP2020-142482 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022044949A1 true WO2022044949A1 (en) 2022-03-03

Family

ID=80355104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030358 WO2022044949A1 (en) 2020-08-26 2021-08-19 Piezoelectric vibration device

Country Status (3)

Country Link
JP (1) JPWO2022044949A1 (en)
TW (1) TWI777743B (en)
WO (1) WO2022044949A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325250A (en) * 2006-05-01 2007-12-13 Epson Toyocom Corp Piezoelectric resonator and method for manufacturing thereof
JP2015019240A (en) * 2013-07-11 2015-01-29 日本電波工業株式会社 Piezoelectric vibration piece, manufacturing method of piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric device
WO2018212150A1 (en) * 2017-05-15 2018-11-22 株式会社村田製作所 Liquid crystal oscillation element, liquid crystal oscillator, and method for manufacturing these

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060628A (en) * 2010-08-07 2012-03-22 Nippon Dempa Kogyo Co Ltd Piezoelectric device and manufacturing method for the same
JP5930532B2 (en) * 2012-06-01 2016-06-08 日本電波工業株式会社 Piezoelectric vibrating piece and piezoelectric device
JP6017189B2 (en) * 2012-06-12 2016-10-26 日本電波工業株式会社 Piezoelectric vibrating piece and piezoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325250A (en) * 2006-05-01 2007-12-13 Epson Toyocom Corp Piezoelectric resonator and method for manufacturing thereof
JP2015019240A (en) * 2013-07-11 2015-01-29 日本電波工業株式会社 Piezoelectric vibration piece, manufacturing method of piezoelectric vibration piece, piezoelectric device, and manufacturing method of piezoelectric device
WO2018212150A1 (en) * 2017-05-15 2018-11-22 株式会社村田製作所 Liquid crystal oscillation element, liquid crystal oscillator, and method for manufacturing these

Also Published As

Publication number Publication date
TWI777743B (en) 2022-09-11
JPWO2022044949A1 (en) 2022-03-03
TW202209810A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP5729457B2 (en) Bonding structure between electronic component package and circuit board
JP4864152B2 (en) Surface mount crystal unit
TWI708479B (en) Piezoelectric vibration element
JPWO2020122179A1 (en) Piezoelectric vibration device
JP2016158147A (en) Crystal element and crystal device
WO2021059731A1 (en) Piezoelectric vibration plate, piezoelectric vibration device, and method for manufacturing piezoelectric vibration device
WO2022044949A1 (en) Piezoelectric vibration device
WO2021075124A1 (en) Piezoelectric vibration device and manufacturing method therefor
JP6794941B2 (en) Crystal diaphragm and crystal vibration device
WO2020195144A1 (en) Crystal vibration device
JP6295835B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP2022038696A (en) Piezoelectric vibration device
JP2022038150A (en) Piezoelectric vibration device
JP2022034229A (en) Manufacturing method of piezoelectric vibration device and piezoelectric vibration device
JP7375392B2 (en) Method for manufacturing piezoelectric vibration device
JP2022038149A (en) Piezoelectric vibration device
JP2022038151A (en) Piezoelectric vibration device and method for manufacturing the same
TWI817286B (en) Piezoelectric vibration device
WO2023136156A1 (en) Piezoelectric vibration device
JP2023048424A (en) Piezoelectric vibration device and manufacturing method thereof
JP6701161B2 (en) Piezoelectric vibration device and manufacturing method thereof
JP2001144572A (en) Ceramic container and crystal vibrator using the same
JP2016092463A (en) Container for piezoelectric device and piezoelectric device using the container
JP2001136047A (en) Crystal vibrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861377

Country of ref document: EP

Kind code of ref document: A1