WO2022044840A1 - Wireless device - Google Patents

Wireless device Download PDF

Info

Publication number
WO2022044840A1
WO2022044840A1 PCT/JP2021/029774 JP2021029774W WO2022044840A1 WO 2022044840 A1 WO2022044840 A1 WO 2022044840A1 JP 2021029774 W JP2021029774 W JP 2021029774W WO 2022044840 A1 WO2022044840 A1 WO 2022044840A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
wireless device
transmission
signal
communication
Prior art date
Application number
PCT/JP2021/029774
Other languages
French (fr)
Japanese (ja)
Inventor
修 小堺
雅博 宇野
崇之 平林
徹 寺島
雄二 村山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202180051393.7A priority Critical patent/CN116057851A/en
Publication of WO2022044840A1 publication Critical patent/WO2022044840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure relates to a wireless device having a plurality of antennas.
  • Patent Documents 1 and 2 various techniques for improving communication quality have been proposed (see Patent Documents 1 and 2).
  • smart meters used for gas meters and water meters may be installed underground or in the back of a building, and it is necessary to be able to communicate even in an environment with poor radio wave environment, and there are cases where power cannot be secured. Therefore, it is necessary to drive it for a long time with a battery.
  • Wireless devices used for smart meters and the like are required to improve communication quality while suppressing power consumption.
  • the wireless device has different directivities from each other, and has a plurality of antennas for transmitting and receiving signals to and from a communication partner, and each received signal received by each of the plurality of antennas.
  • the wireless device among the plurality of antennas, based on the information obtained from each reference signal included in each received signal received by each of the plurality of antennas having different directivity. Select one antenna with directivity suitable for transmission.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 9-247060 proposes a technique that enables effective transmission space diversity even in a communication method in which transmission and reception have different carrier frequencies. As a method, it has been proposed to switch the transmission space diversity control signal based on the reception quality information of the partner station transmitted by the partner station. In this technology, reception quality information is sent from the communication partner, it is determined whether the transmitting antenna selected by the own station is appropriate, and if it is not appropriate, the transmitting antenna of the own station is switched. In the case of this technology, additional communication from the communication partner to the own station is required, which consumes extra power and uses communication resources.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-242151
  • high-precision directivity control in downlink communication can be performed even when the propagation environments of uplink communication and downlink communication are different, and the throughput is increased. Technologies that make it possible to improve have been proposed.
  • the technique described in Patent Document 2 also requires feedback information from the communication partner, and additional communication from the communication partner to the own station is required, resulting in extra power consumption and additional power consumption. It uses communication resources.
  • IoT Internet of Things
  • IoT devices used for such applications are required to be battery-powered for a long period of time, for example, water meters are required to continue to operate for 8 years, gas meters for 10 years without battery replacement.
  • MTC Machine Type Communication
  • smart meters used for gas meters and water meters may be installed underground or in the back of a building, so it is necessary to be able to communicate even in an environment with poor radio wave environment.
  • power cannot be secured, so it is necessary to drive the battery for a long time.
  • 3GPP Computed Generation Partnership Project
  • the main function introduced for the 20 dB coverage expansion is the repetitive transmission function, and the repetitive transmission function of up to 2048 times is standardized.
  • the main functions introduced to extend the battery life are eDRX (Extended Discontinuous Reception) and PSM (Power Save Mode).
  • the repetitive transmission function has a problem that the battery life is significantly shortened because the power consumption due to the repetitive transmission for establishing communication increases in an environment where the radio wave environment is severe.
  • the eDRX and PSM have a function of reducing the electric power during non-communication, there is a problem that the electric power during communication cannot be reduced.
  • antenna diversity As a method for improving communication quality, there is antenna diversity as a method other than the above-mentioned repetitive transmission function.
  • Antenna diversity takes advantage of the different communication qualities of multiple antennas or directivity in a propagation environment to improve communication performance by selecting the optimal antenna or directivity. If the communication quality can be improved in antenna diversity, the above-mentioned repetitive transmission function can be not used or the number of repetitive transmissions can be reduced. Therefore, it is effective to apply diversity to transmission in order to reduce transmission power, but conventionally, as in the techniques shown in Patent Documents 1 and 2 above, an antenna (directivity) suitable for transmission is used. Feedback from the other party is usually needed to confirm the selection.
  • IoT devices such as gas meters and water meters are required to be battery-powered for a long time, that is, extremely low power consumption, and the generation of extra communication leads to an increase in power consumption. It is meaningless if the power consumption increases due to the operation of transmission diversity for low power consumption.
  • FIG. 1 schematically shows a configuration example of a wireless device 100 according to the first embodiment of the present disclosure.
  • the wireless device 100 has different directivities from each other, and includes a plurality of antennas for transmitting and receiving signals to and from a communication partner.
  • FIG. 1 shows an example in which a plurality of antennas are composed of a first antenna 11 having directivity 1 and a second antenna 12 having directivity 2.
  • a plurality of antennas may be composed of three or more antennas having different directivities from each other.
  • the communication partner of the wireless device 100 is, for example, a base station 200.
  • the wireless device 100 may be able to communicate with each of the plurality of base stations 200 as a communication partner.
  • the base station 200 has one or more base station antennas 201 as communication antennas.
  • the wireless device 100 may be capable of communicating with each of the plurality of base station antennas 201 included in one base station 200.
  • the wireless device 100 includes a directional changeover switch SW1, a transmission / reception changeover switch SW2, a reception circuit 21, a demodulator 22, a reference signal extraction unit 23, a transmission circuit 31, a modulator 32, and a transmission signal generation unit 33. And a control unit 40 are further provided.
  • the directivity changeover switch SW1 switches which of the first antenna 11 and the second antenna 12 is used for transmitting and receiving signals based on the control of the control unit 40.
  • the transmission / reception changeover switch SW2 switches between receiving a signal and transmitting a signal based on the control of the control unit 40.
  • the receiving circuit 21 receives a signal via the first antenna 11 or the second antenna 12.
  • the demodulator 22 demodulates the signal received by the receiving circuit 21.
  • the reference signal extraction unit 23 is an extraction unit that extracts each reference signal included in each received signal received by each of the first antenna 11 and the second antenna 12.
  • the reference signal is, for example, the reference signal (RS) shown in FIGS. 4 and 7 described later.
  • the first antenna 11 and the second antenna 12 may each be able to receive signals from a plurality of base station antennas 201 included in the base station 200.
  • the reference signal extraction unit 23 may extract each reference signal included in each received signal from the plurality of base station antennas 201 possessed by the base station 200 which is the communication partner.
  • the first antenna 11 and the second antenna 12 may each be able to receive signals from a plurality of base stations 200.
  • the reference signal extraction unit 23 may extract each reference signal included in each received signal from the plurality of base stations 200.
  • the first antenna 11 and the second antenna 12 may each be capable of receiving signals in a plurality of frequency bands.
  • the reference signal extraction unit 23 may extract each reference signal included in each received signal in a plurality of frequency bands.
  • the control unit 40 has a calculation unit 41 and a memory 42.
  • the memory 42 stores various data such as various programs executed by the wireless device 100 and calculation results by the calculation unit 41.
  • the arithmetic unit 41 has, for example, a CPU (Central Processing Unit).
  • the calculation unit 41 executes a program read from the memory 42 to perform various signal processing, calculation processing, and the like.
  • the control unit 40 selects one of the first antenna 11 and the second antenna 12 having a directivity suitable for transmission based on the information obtained from each reference signal extracted by the reference signal extraction unit 23. do.
  • the first antenna 11 and the second antenna 12 can each receive a plurality of received signals having different signal characteristics.
  • the control unit 40 is based on, for example, an averaged value of the received signal levels of a plurality of reference signals extracted from the plurality of received signals, or a median value, or a value obtained by a combination of the averaged value and the median value. Therefore, one antenna having a directivity suitable for transmission may be selected from the first antenna 11 and the second antenna 12.
  • Predetermined measurement information measured by the measuring device 300 is input to the control unit 40.
  • the measuring device 300 is, for example, a gas meter, a water meter, or the like.
  • the control unit 40 causes the transmission signal generation unit 33 to generate a transmission signal including predetermined measurement information measured by the measurement device 300.
  • the transmission signal generation unit 33 generates a transmission signal including predetermined measurement information measured by the measuring device 300 based on the control of the control unit 40.
  • the modulator 32 modulates the transmission signal generated by the transmission signal generation unit 33 by a predetermined modulation method.
  • the transmission circuit 31 transmits a transmission signal including measurement information to the base station 200 using one of the first antenna 11 and the second antenna 12 selected by the control unit 40.
  • the installation location of the first antenna 11 and the second antenna 12 may be unchanged at least during a predetermined communication period required for transmitting predetermined information.
  • the predetermined information is, for example, predetermined measurement information measured by the measuring device 300.
  • the transmission circuit 31 may transmit a transmission signal to the base station 200 a plurality of times during a predetermined communication period.
  • the control unit 40 selects one antenna having a directivity suitable for transmission before the first transmission of the signal in the predetermined communication period, and the selected state is at least during the predetermined communication period. May continue to be maintained.
  • the period before the first transmission of the signal in the predetermined communication period may be, for example, the period Tr shown in FIGS. 5 and 10 described later.
  • FIG. 2 schematically shows an example of the installation environment of the wireless device 100.
  • the wireless device 100 can be mounted on an MTC terminal such as a smart meter used for a gas meter or a water meter. It is assumed that the terminal equipped with the wireless device 100 is fixedly installed in an environment where the radio wave environment is poor (difficult to reach), such as the underground parking lot 50 shown in FIG.
  • the direction D1 in FIG. 2 corresponds to the directivity 1 of the first antenna 11 included in the wireless device 100.
  • the direction D2 in FIG. 2 corresponds to the directivity 2 of the second antenna 12 included in the wireless device 100.
  • the radio wave propagating through the inlet 51 is reflected by the wall surface 52 and the like, and is received by the first antenna 11 and the second antenna 12 of the wireless device 100 (in a multipath) from a plurality of directions. Will be done.
  • the characteristics of radio wave propagation in such an environment include the following.
  • -Propagation loss "direction bias” + "multipath effect”.
  • the directional bias corresponds to the bias in the arrival direction of the radio wave.
  • the directional bias has a high correlation even if the frequency is different between the downlink (DL (Down Link)) and the uplink (UL (Up Link)).
  • the wireless device 100 by utilizing the above-mentioned radio wave propagation characteristics and detecting the directional bias using only the received signal, it is possible to realize the optimum antenna selection at the time of transmission without increasing the power consumption as much as possible. To.
  • FIG. 3 shows an example of the frequency characteristics of the propagation loss between the wireless device 100 and the base station 200 in the installation environment shown in FIG.
  • FIG. 3 shows an example of the frequency characteristics of each of the directions D1 and D2.
  • the directional bias refers to the bias in the arrival direction of the radio wave, and is indicated by the broken line in FIG. It is desirable to judge the directional bias by the average value of propagation loss in a sufficiently wide frequency band. Judging the directional bias in a narrow band is likely to make a mistake. In the environment of FIG. 2, more radio waves arrive in the direction D1 than in the direction D2. Therefore, as shown in FIG. 3, "direction bias in direction D1"> “direction bias in direction D2". ".
  • the optimum directivity for transmission is determined by utilizing such characteristics, and the optimum antenna for transmission is selected.
  • FIG. 4 shows an example of the configuration of a wireless frame used for communication of the wireless device 100.
  • FIG. 4 shows the configuration of a downlink radio frame used in an LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • one frame is 10 ms and is composed of 10 subframes.
  • One subframe is 1 ms and is composed of two slots.
  • One slot is composed of N frequency-divisioned resource blocks (RBs).
  • One resource block is composed of a plurality of resource elements.
  • a plurality of reference signals (RS) are mapped in one resource block.
  • FIG. 5 shows an example of a communication protocol for wireless communication.
  • FIG. 6 shows an example of a downlink physical channel in one frame period of wireless communication.
  • FIG. 5 shows the communication required for exchanging one message in category M (Cat-M) shown in "Ericsson, et al., R1-1706161 Early Data Transmission for MTC, 3GPP RAN1 Meeting # 88bis, 2017." ing.
  • one message corresponds to predetermined information transmitted by the wireless device 100 (for example, predetermined measurement information measured by the measuring device 300).
  • the period required for exchanging one message includes a plurality of transmissions, but if the optimum antenna (directivity) is reselected for each transmission timing, the power consumption required there will increase.
  • the installation environment assumed in this embodiment is assumed to be a fixed installation such as a smart meter.
  • the propagation environment does not change or fluctuates very slowly with respect to the elapsed time. Therefore, the optimum antenna once selected continues to be optimum for one message exchange period, so that the power consumption is not unnecessarily increased.
  • a synchronization signal (SS: Synchronization Signal) is always transmitted at a fixed timing and a fixed frequency.
  • the base station 200 transmits a synchronization signal (SS) a plurality of times in a period of one frame.
  • the synchronization signal (SS) includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • PDSCH Physical Downlink Shared Channel
  • PRACH Physical Randam Access Channel
  • a reference signal In the LTE system, it is necessary to receive a reference signal (RS) in order to receive and demodulate a signal (downlink signal) from PBCH or other base station 200.
  • the reference signal (RS) is continuously transmitted from the base station 200 at a predetermined timing and at a predetermined frequency.
  • index values such as RSRP (Reference Signal Received Power), SIR (Signal to Interference Retio), RSSI (Received Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) can be calculated. Can be done.
  • RSRP Reference Signal Received Power
  • SIR Signal Received Power
  • RSSI Receiveived Signal Strength Indicator
  • RSRQ Reference Signal Received Quality
  • FIG. 7 shows an example of an index value that can be measured based on the reference signal (RS).
  • RSRP is the received power (received signal level) of the reference signal (RS) per resource element.
  • RSSI is the total received power (received signal level) of the OFDM symbol (resource element of all frequencies) in which the reference signal (RS) is present.
  • RSRQ is one of the indexes showing the reception quality of the reference signal (RS), is calculated by the ratio of RSRP and RSSI, and is a value normalized by the number N of resource blocks as follows.
  • SIR is one of the indexes showing the reception quality of the reference signal (RS), and is the ratio of the received power (RSRP) and the interference power (interference level) of the reference signal (RS).
  • RSSI that is, the received power in the entire frequency band of the resource element is used as the denominator, but in SIR, the interference power existing in the frequency band of one reference signal (RS) is used as the denominator. Since it is difficult to directly measure the interference power, the interference power is obtained by calculating the variation (dispersion) of the ideal signal of the reference signal (RS).
  • SINR The interference power calculated by such a method is also called SINR because it includes a noise component in addition to a signal from an adjacent cell in the same frequency band.
  • the directivity selection is performed based on the information obtained by receiving the reference signal (RS) transmitted from the base station 200.
  • RS reference signal
  • the directional bias has a high correlation between DL and UL even if the frequencies are different. Therefore, when selecting the optimum antenna, the directional bias obtained by using the received signal is used. It is possible.
  • the wireless device 100 when selecting the directivity (selecting the antenna), all the reference signals (RS) transmitted from the two or more base station antennas 201 of the one or more candidate base stations 200 are used as the received signals. Is desirable.
  • a reference signal (RS) is constantly transmitted periodically on the downlink from the base station 200 to the wireless device 100 (FIG. 4).
  • the reference signal (RS) is mapped to the resource element determined for each base station antenna 201.
  • the wireless device 100 side can know its own propagation environment by demodulating the reference signal (RS) and calculating index values such as RSRP, RSRQ, and SIR. This reference signal (RS) can also be utilized in this embodiment.
  • RS reference signals
  • the wireless device 100 receives signals in a plurality of frequency bands.
  • the reference signal extraction unit 23 extracts each reference signal (RS) included in each received signal in a plurality of frequency bands. Since the reference signal (RS) is transmitted in all of the plurality of frequency bands serviced by the operator, and the directional bias does not depend on the frequency band but depends on the installation environment of the wireless device 100, it communicates by itself. By further using a reference signal (RS) in a frequency band other than that used for, the observation accuracy of the directional bias can be improved.
  • the received signal levels of a plurality of reference signals (RS) extracted from the plurality of received signals are averaged or median, or based on a value obtained by a combination of the averaged value and the median. Therefore, it is desirable to select a directivity suitable for transmission.
  • RSRP, RSSI, RSRQ, SINR and the like are obtained by using the reference signal (RS).
  • RSSI includes noise and interference level in addition to the received signal level of the reference signal (RS), and is not suitable for obtaining a directional vise.
  • RSRP reception signal level of reference signal
  • RSRP reception signal level of reference signal
  • FIG. 8 shows an example of the frequency characteristics of the received signal.
  • FIG. 9 shows an example of the standard deviation of the level variation of the received signal when the frequency bandwidth to be averaged is changed.
  • FIG. 9 shows an example of the case where the base station antenna 201 is one and the case where the base station antenna 201 is two.
  • the strength of the received signal level has frequency characteristics as shown in FIG. 8 due to the influence of multipath.
  • Increasing the averaging bandwidth reduces the variance of level variation as shown in FIG. Dispersion can be further reduced by using uncorrelated received signal levels from the plurality of base station antennas 201.
  • one antenna having a directivity suitable for transmission is selected before the first transmission of the signal in a predetermined communication period, and the selected state is maintained for at least a predetermined communication period. It is desirable to continue.
  • the period before the first transmission of the signal in the predetermined communication period may be, for example, the period Tr shown in FIG. 5 described later.
  • the reference signal can be received by the time synchronization (PSS, SSS) after the wireless device 100 is started.
  • the antenna suitable for the period Tr after receiving the PSS and SSS and before the transmission of the PRACH. It is desirable to complete the selection of. Further, since the power consumption when the wireless device 100 transmits is large, it is desirable to finish the selection of the antenna before that.
  • the antenna may be selected every time the wireless device 100 is started, or once when the wireless device 100 is first installed. You may just run it. Further, it may be executed periodically, such as once a day.
  • FIG. 10 schematically shows an example of the overall communication processing flow of the wireless device 100 according to the first embodiment.
  • step S102 When the wireless device 100 is activated (step S101), first, synchronization processing is performed (step S102). For example, in the example of FIG. 5, synchronization processing is performed by receiving a Primary synchronization signal (PSS) and a Secondary synchronization signal (SSS).
  • PSS Primary synchronization signal
  • SSS Secondary synchronization signal
  • the wireless device 100 is activated at a timing when it becomes necessary to transmit a predetermined periodic message (for example, predetermined measurement information measured by the measuring device 300) (for example, every 10 hours). , Every few days, every few weeks). It also starts when an interrupt-like message occurs (step S102).
  • a predetermined periodic message for example, predetermined measurement information measured by the measuring device 300
  • the wireless device 100 performs a directivity (antenna) switching process by switching the directivity changeover switch SW1 based on the control of the control unit 40 (step S103).
  • the wireless device 100 performs reception processing of the reference signal (reference signal (RS)) (step S104).
  • RS reference signal
  • the wireless device 100 determines whether or not all directivity (antennas) have been switched (step S106). This determination is made by the control unit 40. If it is determined that all the directivities have not been switched (step S106; N), the radio device 100 returns to the process of step S104.
  • step S106 When it is determined that all the directivities have been switched (step S106; Y), the wireless device 100 next compares the received signal levels for each directivity and selects the optimum directivity (antenna) (step). S107). These processes are performed by the control unit 40. It is desirable that the processing of steps S104 to S107 is performed, for example, during the period Tr shown in FIG.
  • the wireless device 100 transmits a message with the selected directivity (antenna) (step S108).
  • the wireless device 100 enters a pause period (step S109).
  • the wireless device 100 determines whether or not a certain period of time has passed (step S110). If it is determined that the period has not elapsed (step S110; N), the wireless device 100 returns to the process of step S109 and continues the pause period. When it is determined that a certain period of time has passed (step S110; Y), the wireless device 100 returns to the process of step S101.
  • each reference signal reference signal (reference signal (RS)
  • RS reference signal
  • the optimum transmitting antenna can be selected only from the signal obtained by reception without adding extra transmission, so that the communication quality can be improved. ..
  • the transmission power can be reduced. This makes it possible to realize a long battery drive time of the wireless device 100.
  • FIG. 11 shows a main part of the wireless device 100 according to the first modification.
  • each of the plurality of antennas can transmit and receive signals to and from the communication partner in a time-division manner, and the directivity at the time of transmission and the directivity at the time of reception are different. May be good.
  • the directional gain is extremely high due to the stability of propagation and other reasons. You may not want to use a sex antenna. In such a case, antennas having different directional gains at the time of reception and at the time of transmission for observing the directional bias may be used.
  • an antenna having as thin a directivity as possible is used to scan the space evenly, receive radio waves, select the optimum directivity, and apply it to transmission. Is desirable.
  • the maximum antenna directivity gain and the maximum effective isotropic radiated power (EIRP (“Equivalent Isotropic Radiated Power” or “Effective Isotropic Radiated Power”)) at the time of transmission are usually limited by the Radio Law.
  • EIRP Equivalent Isotropic Radiated Power” or “Effective Isotropic Radiated Power”
  • a high gain narrow directivity antenna is used to find the optimum direction, and when transmitting, the directivity is wide enough to comply with the Radio Law. It is best to transmit using the antenna of.
  • the plurality of antennas may be capable of receiving a plurality of received signals having different signal characteristics.
  • the control unit 40 selects one antenna having a directivity suitable for transmission from the plurality of antennas based on a plurality of information obtained from the plurality of reference signals extracted from the plurality of received signals. May be good.
  • a plurality of frequency bands, a plurality of base station antennas 201, and a plurality of reference signals (RS) from a base station 200 other than the base station 200 that actually communicates are used.
  • the reference signal (RS) may be freely combined and utilized. This makes it possible to improve the measurement accuracy of the directional bias.
  • this technology can also have the following configuration.
  • it has a directivity suitable for transmission among a plurality of antennas based on the information obtained from each reference signal included in each received signal received by each of the plurality of antennas. Since one antenna is selected, it is possible to improve the communication quality while suppressing the power consumption.
  • An extraction unit that extracts each reference signal included in each received signal received by each of the plurality of antennas, and an extraction unit.
  • a control unit that selects one antenna having a directivity suitable for transmission from the plurality of antennas based on the information obtained from each of the reference signals extracted by the extraction unit.
  • a wireless device including a transmission circuit that transmits a signal to the communication partner using the one antenna selected by the control unit.
  • Each of the plurality of antennas can receive signals from the plurality of communication antennas of the communication partner.
  • Each of the plurality of antennas can receive signals from the plurality of communication partners.
  • Each of the plurality of antennas can receive signals in a plurality of frequency bands.
  • Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
  • the control unit sets the received signal levels of the plurality of reference signals extracted from the plurality of received signals to an averaged value or a median value, or a value obtained by a combination of the averaged value and the median value.
  • the wireless device according to any one of (1) to (6) above, wherein one antenna having a directivity suitable for transmission is selected from the plurality of antennas.
  • Each of the plurality of antennas can transmit and receive a signal to and from the communication partner in a time-division manner, and the directivity at the time of transmission and the directivity at the time of reception are different from the above (1) to.
  • the wireless device according to any one of (7).
  • Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
  • the control unit selects one of the plurality of antennas having a directivity suitable for transmission based on a plurality of information obtained from the plurality of reference signals extracted from the plurality of received signals.
  • the wireless device according to any one of (1) to (8) above.
  • the transmission circuit transmits a signal to the communication partner a plurality of times during the predetermined communication period.
  • the control unit selects one antenna having a directivity suitable for transmission before the first transmission of the signal in the predetermined communication period, and selects the selected state at least during the predetermined communication period.
  • the wireless device according to any one of (2) to (9) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A wireless device of this disclosure comprises: a plurality of antennas that have mutually different directivities and transmit/receive signals to/from communication partners; an extraction unit that extracts each reference signal included in each reception signal received by each of the plurality of antennas; a control unit that selects, from among the plurality of antennas, one antenna having a directivity suitable for transmission, on the basis of information obtained from the reference signals extracted by the extraction unit; and a transmission circuit that transmits a signal to a communication partner using the one antenna selected by the control unit.

Description

無線装置Wireless device
 本開示は、複数のアンテナを有する無線装置に関する。 This disclosure relates to a wireless device having a plurality of antennas.
 無線通信において、通信品質を改善する技術が種々、提案されている(特許文献1,2参照)。一方、例えばガスメータや水道メータに利用されているスマートメータ等では、地下や建物内の奥に設置されるケースもあり、電波環境が悪い環境下でも通信できる必要があり、さらに電源が確保できないケースもあることから電池での長時間駆動が必要とされている。 In wireless communication, various techniques for improving communication quality have been proposed (see Patent Documents 1 and 2). On the other hand, for example, smart meters used for gas meters and water meters may be installed underground or in the back of a building, and it is necessary to be able to communicate even in an environment with poor radio wave environment, and there are cases where power cannot be secured. Therefore, it is necessary to drive it for a long time with a battery.
特開平9-247060号公報Japanese Unexamined Patent Publication No. 9-247060 特開2004-242151号公報Japanese Unexamined Patent Publication No. 2004-242151
 スマートメータ等に用いられる無線装置では、消費電力を抑えつつ、通信品質を改善することが求められている。 Wireless devices used for smart meters and the like are required to improve communication quality while suppressing power consumption.
 消費電力を抑えつつ、通信品質を改善することが可能な無線装置を提供することが望ましい。 It is desirable to provide a wireless device that can improve communication quality while suppressing power consumption.
 本開示の一実施の形態に係る無線装置は、互いに異なる指向性を有し、通信相手との間で信号の送受信を行う複数のアンテナと、複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号を抽出する抽出部と、抽出部によって抽出された各基準信号から得られる情報に基づいて、複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する制御部と、制御部によって選択された1つのアンテナを用いて、通信相手に信号を送信する送信回路とを備える。 The wireless device according to the embodiment of the present disclosure has different directivities from each other, and has a plurality of antennas for transmitting and receiving signals to and from a communication partner, and each received signal received by each of the plurality of antennas. Control to select one antenna having directivity suitable for transmission from a plurality of antennas based on the extraction unit that extracts each included reference signal and the information obtained from each reference signal extracted by the extraction unit. It includes a unit and a transmission circuit that transmits a signal to a communication partner using one antenna selected by the control unit.
 本開示の一実施の形態に係る無線装置では、互いに指向性の異なる複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号から得られる情報に基づいて、複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する。 In the wireless device according to the embodiment of the present disclosure, among the plurality of antennas, based on the information obtained from each reference signal included in each received signal received by each of the plurality of antennas having different directivity. Select one antenna with directivity suitable for transmission.
本開示の第1の実施の形態に係る無線装置の一構成例を概略的に示す構成図である。It is a block diagram which shows typically one configuration example of the wireless device which concerns on 1st Embodiment of this disclosure. 第1の実施の形態に係る無線装置の設置環境の一例を概略的に示す説明図である。It is explanatory drawing which shows typically an example of the installation environment of the wireless device which concerns on 1st Embodiment. 図2に示した設置環境における無線装置と基地局との間の伝搬ロスの周波数特性の一例を示す説明図である。It is explanatory drawing which shows an example of the frequency characteristic of the propagation loss between a radio device and a base station in the installation environment shown in FIG. 無線フレームの構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of a wireless frame. 無線通信の通信プロトコルの一例を示す説明図である。It is explanatory drawing which shows an example of the communication protocol of wireless communication. 無線通信の1フレーム期間における下り方向の物理チャネルの一例を示す説明図である。It is explanatory drawing which shows an example of the physical channel in the downlink direction in one frame period of wireless communication. リファレンス信号に基づいて測定可能な指標値の一例を示す説明図である。It is explanatory drawing which shows an example of the index value which can measure based on a reference signal. 受信信号の周波数特性の一例を示す説明図である。It is explanatory drawing which shows an example of the frequency characteristic of a received signal. 平均化する周波数帯域幅を変えた際の受信信号のレベル変動の標準偏差の一例を示す説明図である。It is explanatory drawing which shows an example of the standard deviation of the level fluctuation of the received signal when the frequency bandwidth to be averaged is changed. 第1の実施の形態に係る無線装置の全体的な通信処理の流れの一例を概略的に示す流れ図である。It is a flow chart schematically showing an example of the flow of the whole communication processing of the wireless device which concerns on 1st Embodiment. 変形例1に係る無線装置の要部を示す説明図である。It is explanatory drawing which shows the main part of the radio apparatus which concerns on modification 1. FIG.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 0.比較例
 1.第1の実施の形態(図1~図11)
  1.1 構成
  1.2 動作
  1.3 効果
  1.4 変形例
 2.その他の実施の形態
 
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The explanation will be given in the following order.
0. Comparative example 1. First Embodiment (FIGS. 1 to 11)
1.1 Configuration 1.2 Operation 1.3 Effect 1.4 Modification example 2. Other embodiments
<0.比較例>
 特許文献1(特開平9-247060号公報)には、送信と受信とでキャリア周波数が異なる通信方式においても効果的な送信空間ダイバーシティを行うことを可能にする技術が提案されている。その方法として、相手局が送信する相手局受信品質情報に基づき送信空間ダイバーシティ制御信号を切り替えることが提案されている。この技術では、通信相手から受信品質情報を送ってもらい、自局が選択した送信アンテナが適切かどうかを判断し、適切でない場合は、自局の送信アンテナを切り替える。この技術の場合、通信相手から自局に対する通信が追加で必要となってしまい、余計な電力消費や、通信リソースを使ってしまう。
<0. Comparative example>
Patent Document 1 (Japanese Unexamined Patent Publication No. 9-247060) proposes a technique that enables effective transmission space diversity even in a communication method in which transmission and reception have different carrier frequencies. As a method, it has been proposed to switch the transmission space diversity control signal based on the reception quality information of the partner station transmitted by the partner station. In this technology, reception quality information is sent from the communication partner, it is determined whether the transmitting antenna selected by the own station is appropriate, and if it is not appropriate, the transmitting antenna of the own station is switched. In the case of this technology, additional communication from the communication partner to the own station is required, which consumes extra power and uses communication resources.
 特許文献2(特開2004-242151号公報)には、ディジタル無線伝送において、上り通信と下り通信の伝搬環境が異なる場合でも下り通信における高精度の指向性制御を行うことができ、かつスループットの向上を図ることを可能にする技術が提案されている。特許文献2に記載の技術においても、上記特許文献1と同様に通信相手からのフィードバック情報が必要であり、通信相手から自局に対する通信が追加で必要となってしまい、余計な電力消費や、通信リソースを使ってしまう。 According to Patent Document 2 (Japanese Unexamined Patent Publication No. 2004-242151), in digital wireless transmission, high-precision directivity control in downlink communication can be performed even when the propagation environments of uplink communication and downlink communication are different, and the throughput is increased. Technologies that make it possible to improve have been proposed. Similar to Patent Document 1, the technique described in Patent Document 2 also requires feedback information from the communication partner, and additional communication from the communication partner to the own station is required, resulting in extra power consumption and additional power consumption. It uses communication resources.
 一方、いわゆるIoT(Internet of Things)機器においてはセンサが計測した情報を、通信により自動的に収集することで効率的なセンサ情報の収集やそれを基にした効率的な運用が求められている。そのような用途に使われるIoT機器は長時間の電池駆動が求められ、例えば水道メータでは8年、ガスメータでは10年間、電池交換不要で動作し続けることが求められている。 On the other hand, in so-called IoT (Internet of Things) devices, efficient collection of sensor information by automatically collecting information measured by sensors by communication and efficient operation based on the information are required. .. IoT devices used for such applications are required to be battery-powered for a long period of time, for example, water meters are required to continue to operate for 8 years, gas meters for 10 years without battery replacement.
 ガスメータや水道メータに利用されているスマートメータ等に代表されるMTC(Machine Type Communication)端末は、地下や建物内の奥に設置されるケースもあり、電波環境が悪い環境下でも通信できる必要があり、さらに電源が確保できないケースもあることから電池で長時間駆動が必要とされている。 MTC (Machine Type Communication) terminals such as smart meters used for gas meters and water meters may be installed underground or in the back of a building, so it is necessary to be able to communicate even in an environment with poor radio wave environment. In addition, there are cases where power cannot be secured, so it is necessary to drive the battery for a long time.
 このような要求の元、3GPP(Third Generation Partnership Project)ではMTCシステムとして既存のシステムに対し、20dBのカバレッジ拡大と、5Wh電池で10年以上の動作が可能なシステムが規格化された。20dBのカバレッジ拡大に対して導入された主な機能は繰り返し送信機能であり、最大2048回の繰り返し送信機能が規格化されている。一方、電池寿命の拡大に対して導入された主な機能は、eDRX(Extended Discontinuous Reception)やPSM(Power Save Mode)である。しかしながら、繰り返し送信機能は、電波環境の厳しい環境下では通信の成立のための繰り返し送信による消費電力が大きくなるため電池寿命は著しく低下するという課題を有する。また、eDRXやPSMでは、通信していないときの電力を削減する機能であるため、通信時の電力を削減できないという課題を有する。 Based on such demands, 3GPP (Third Generation Partnership Project) has standardized a system that can operate for 10 years or more with a 20 dB coverage expansion and a 5 Wh battery compared to the existing system as an MTC system. The main function introduced for the 20 dB coverage expansion is the repetitive transmission function, and the repetitive transmission function of up to 2048 times is standardized. On the other hand, the main functions introduced to extend the battery life are eDRX (Extended Discontinuous Reception) and PSM (Power Save Mode). However, the repetitive transmission function has a problem that the battery life is significantly shortened because the power consumption due to the repetitive transmission for establishing communication increases in an environment where the radio wave environment is severe. Further, since the eDRX and PSM have a function of reducing the electric power during non-communication, there is a problem that the electric power during communication cannot be reduced.
 通信品質を改善する方法として、上記繰り返し送信機能以外の方法としては、アンテナダイバーシティがある。アンテナダイバーシティは、伝搬環境下における複数のアンテナまたは指向性での通信品質が異なることを利用して、最適なアンテナまたは指向性を選択することで通信性能を改善する。アンテナダイバーシティにおいて通信品質を改善できると、上記繰り返し送信機能を使わない、あるいは繰り返し送信の数を低減することができる。このため、送信電力の削減を行うために送信にダイバーシティを適用することが有効であるが、従来では、上記特許文献1,2に示す技術のように、送信に適切なアンテナ(指向性)を選択したことを確認するために通信相手からのフィードバック情報が通常必要である。しかしながら、ガスメータや水道メータに代表されるIoT機器では長時間の電池駆動、つまり極低消費電力が求められ、余計な通信の発生は消費電力の増加につながってしまう。低消費電力化のための送信ダイバーシティの動作のために消費電力が増加してしまっては意味がない。 As a method for improving communication quality, there is antenna diversity as a method other than the above-mentioned repetitive transmission function. Antenna diversity takes advantage of the different communication qualities of multiple antennas or directivity in a propagation environment to improve communication performance by selecting the optimal antenna or directivity. If the communication quality can be improved in antenna diversity, the above-mentioned repetitive transmission function can be not used or the number of repetitive transmissions can be reduced. Therefore, it is effective to apply diversity to transmission in order to reduce transmission power, but conventionally, as in the techniques shown in Patent Documents 1 and 2 above, an antenna (directivity) suitable for transmission is used. Feedback from the other party is usually needed to confirm the selection. However, IoT devices such as gas meters and water meters are required to be battery-powered for a long time, that is, extremely low power consumption, and the generation of extra communication leads to an increase in power consumption. It is meaningless if the power consumption increases due to the operation of transmission diversity for low power consumption.
 そこで、本実施の形態では、以下で説明するように、特に送信時の消費電力が大きいことに着目し、消費電力の増加を抑えつつ適切なアンテナ(指向性)を選択することを可能にする技術を提案する。これにより、繰り返し送信機能を用いずとも(あるいは繰り返し送信の回数を低減しても)、良好な通信品質を実現可能にする。 Therefore, in the present embodiment, as described below, it is possible to select an appropriate antenna (directivity) while suppressing an increase in power consumption, paying particular attention to the large power consumption during transmission. Propose technology. This makes it possible to realize good communication quality without using the repetitive transmission function (or even if the number of repetitive transmissions is reduced).
<1.第1の実施の形態>
[1.1 構成]
 図1は、本開示の第1の実施の形態に係る無線装置100の一構成例を概略的に示している。
<1. First Embodiment>
[1.1 Configuration]
FIG. 1 schematically shows a configuration example of a wireless device 100 according to the first embodiment of the present disclosure.
 無線装置100は、互いに異なる指向性を有し、通信相手との間で信号の送受信を行う複数のアンテナを備えている。図1では、複数のアンテナが、指向性1を有する第1アンテナ11と、指向性2を有する第2アンテナ12とで構成されている例を示す。ただし、複数のアンテナが、互いに異なる指向性を有する3つ以上のアンテナで構成されていてもよい。 The wireless device 100 has different directivities from each other, and includes a plurality of antennas for transmitting and receiving signals to and from a communication partner. FIG. 1 shows an example in which a plurality of antennas are composed of a first antenna 11 having directivity 1 and a second antenna 12 having directivity 2. However, a plurality of antennas may be composed of three or more antennas having different directivities from each other.
 無線装置100の通信相手は、例えば基地局200である。無線装置100は、通信相手として複数の基地局200のそれぞれと通信可能であってもよい。基地局200は、通信アンテナとして、1または複数の基地局アンテナ201を有している。無線装置100は、1つの基地局200が有する複数の基地局アンテナ201のそれぞれと通信可能であってもよい。 The communication partner of the wireless device 100 is, for example, a base station 200. The wireless device 100 may be able to communicate with each of the plurality of base stations 200 as a communication partner. The base station 200 has one or more base station antennas 201 as communication antennas. The wireless device 100 may be capable of communicating with each of the plurality of base station antennas 201 included in one base station 200.
 無線装置100は、指向性切り替えスイッチSW1と、送受切り替えスイッチSW2と、受信回路21と、復調器22と、基準信号抽出部23と、送信回路31と、変調器32と、送信信号生成部33と、制御部40とを、さらに備えている。 The wireless device 100 includes a directional changeover switch SW1, a transmission / reception changeover switch SW2, a reception circuit 21, a demodulator 22, a reference signal extraction unit 23, a transmission circuit 31, a modulator 32, and a transmission signal generation unit 33. And a control unit 40 are further provided.
 指向性切り替えスイッチSW1は、制御部40の制御に基づいて、第1アンテナ11および第2アンテナ12のうち、いずれのアンテナを用いて信号の送受信を行うかの切り替えを行う。 The directivity changeover switch SW1 switches which of the first antenna 11 and the second antenna 12 is used for transmitting and receiving signals based on the control of the control unit 40.
 送受切り替えスイッチSW2は、制御部40の制御に基づいて、信号の受信を行うか、信号の送信を行うかの切り替えを行う。 The transmission / reception changeover switch SW2 switches between receiving a signal and transmitting a signal based on the control of the control unit 40.
 受信回路21は、第1アンテナ11または第2アンテナ12を介して信号を受信する。 The receiving circuit 21 receives a signal via the first antenna 11 or the second antenna 12.
 復調器22は、受信回路21が受信した信号の復調を行う。 The demodulator 22 demodulates the signal received by the receiving circuit 21.
 基準信号抽出部23は、第1アンテナ11および第2アンテナ12のそれぞれにおいて受信された各受信信号に含まれる各基準信号を抽出する抽出部である。ここで、基準信号は、例えば後述する図4および図7に示すリファレンス信号(RS)である。 The reference signal extraction unit 23 is an extraction unit that extracts each reference signal included in each received signal received by each of the first antenna 11 and the second antenna 12. Here, the reference signal is, for example, the reference signal (RS) shown in FIGS. 4 and 7 described later.
 第1アンテナ11および第2アンテナ12はそれぞれ、基地局200が有する複数の基地局アンテナ201からの信号を受信可能であってもよい。この場合、基準信号抽出部23は、通信相手である基地局200が有する複数の基地局アンテナ201からの各受信信号に含まれる各基準信号を抽出してもよい。 The first antenna 11 and the second antenna 12 may each be able to receive signals from a plurality of base station antennas 201 included in the base station 200. In this case, the reference signal extraction unit 23 may extract each reference signal included in each received signal from the plurality of base station antennas 201 possessed by the base station 200 which is the communication partner.
 第1アンテナ11および第2アンテナ12はそれぞれ、複数の基地局200からの信号を受信可能であってもよい。この場合、基準信号抽出部23は、複数の基地局200からの各受信信号に含まれる各基準信号を抽出してもよい。 The first antenna 11 and the second antenna 12 may each be able to receive signals from a plurality of base stations 200. In this case, the reference signal extraction unit 23 may extract each reference signal included in each received signal from the plurality of base stations 200.
 第1アンテナ11および第2アンテナ12はそれぞれ、複数の周波数帯域の信号を受信可能であってもよい。この場合、基準信号抽出部23は、複数の周波数帯域の各受信信号に含まれる各基準信号を抽出してもよい。 The first antenna 11 and the second antenna 12 may each be capable of receiving signals in a plurality of frequency bands. In this case, the reference signal extraction unit 23 may extract each reference signal included in each received signal in a plurality of frequency bands.
 制御部40は、演算部41と、メモリ42とを有している。メモリ42は、無線装置100が実行する各種のプログラムや演算部41による演算結果等の各種のデータを記憶する。演算部41は、例えばCPU(Central Processing Unit)を有している。制御部40では、例えば、演算部41がメモリ42から読み出されたプログラムを実行することで、各種の信号処理および演算処理等を行う。 The control unit 40 has a calculation unit 41 and a memory 42. The memory 42 stores various data such as various programs executed by the wireless device 100 and calculation results by the calculation unit 41. The arithmetic unit 41 has, for example, a CPU (Central Processing Unit). In the control unit 40, for example, the calculation unit 41 executes a program read from the memory 42 to perform various signal processing, calculation processing, and the like.
 制御部40は、基準信号抽出部23によって抽出された各基準信号から得られる情報に基づいて、第1アンテナ11および第2アンテナ12のうち、送信に適した指向性を有する1つのアンテナを選択する。 The control unit 40 selects one of the first antenna 11 and the second antenna 12 having a directivity suitable for transmission based on the information obtained from each reference signal extracted by the reference signal extraction unit 23. do.
 第1アンテナ11および第2アンテナ12はそれぞれ、信号特性の異なる複数の受信信号を受信可能である。制御部40は、例えば、複数の受信信号から抽出された複数の基準信号の受信信号レベルを平均化した値、もしくは中央値、または平均化した値と中央値との組み合わせによって得られる値に基づいて、第1アンテナ11および第2アンテナ12のうち、送信に適した指向性を有する1つのアンテナを選択するようにしてもよい。 The first antenna 11 and the second antenna 12 can each receive a plurality of received signals having different signal characteristics. The control unit 40 is based on, for example, an averaged value of the received signal levels of a plurality of reference signals extracted from the plurality of received signals, or a median value, or a value obtained by a combination of the averaged value and the median value. Therefore, one antenna having a directivity suitable for transmission may be selected from the first antenna 11 and the second antenna 12.
 制御部40には、計測装置300で計測された所定の計測情報が入力される。計測装置300は、例えばガスメータや水道メータ等である。制御部40は、計測装置300で計測された所定の計測情報を含む送信信号を送信信号生成部33に生成させる。 Predetermined measurement information measured by the measuring device 300 is input to the control unit 40. The measuring device 300 is, for example, a gas meter, a water meter, or the like. The control unit 40 causes the transmission signal generation unit 33 to generate a transmission signal including predetermined measurement information measured by the measurement device 300.
 送信信号生成部33は、制御部40の制御に基づいて、計測装置300で計測された所定の計測情報を含む送信信号を生成する。 The transmission signal generation unit 33 generates a transmission signal including predetermined measurement information measured by the measuring device 300 based on the control of the control unit 40.
 変調器32は、送信信号生成部33によって生成された送信信号に対して所定の変調方式で変調を行う。 The modulator 32 modulates the transmission signal generated by the transmission signal generation unit 33 by a predetermined modulation method.
 送信回路31は、第1アンテナ11および第2アンテナ12のうち、制御部40によって選択された1つのアンテナを用いて、基地局200に計測情報を含む送信信号を送信する。 The transmission circuit 31 transmits a transmission signal including measurement information to the base station 200 using one of the first antenna 11 and the second antenna 12 selected by the control unit 40.
 第1アンテナ11および第2アンテナ12は、少なくとも、所定の情報を送信するのに要する所定の通信期間において、設置場所が不変であってもよい。ここで、所定の情報とは、例えば計測装置300で計測された所定の計測情報である。 The installation location of the first antenna 11 and the second antenna 12 may be unchanged at least during a predetermined communication period required for transmitting predetermined information. Here, the predetermined information is, for example, predetermined measurement information measured by the measuring device 300.
 送信回路31は、所定の通信期間において、基地局200に送信信号の送信を複数回、行ってもよい。この場合、制御部40は、所定の通信期間における信号の最初の送信よりも前に、送信に適した指向性を有する1つのアンテナを選択し、少なくとも所定の通信期間の間は、その選択状態を維持し続けるようにしてもよい。ここで、所定の通信期間における信号の最初の送信よりも前の期間は、例えば後述する図5および図10に示す期間Trであってもよい。 The transmission circuit 31 may transmit a transmission signal to the base station 200 a plurality of times during a predetermined communication period. In this case, the control unit 40 selects one antenna having a directivity suitable for transmission before the first transmission of the signal in the predetermined communication period, and the selected state is at least during the predetermined communication period. May continue to be maintained. Here, the period before the first transmission of the signal in the predetermined communication period may be, for example, the period Tr shown in FIGS. 5 and 10 described later.
[1.2 動作]
 以下、無線装置100を用いた通信動作および通信方法を具体的な事例を挙げて説明する。
[1.2 Operation]
Hereinafter, a communication operation and a communication method using the wireless device 100 will be described with specific examples.
(設置環境の例)
 図2は、無線装置100の設置環境の一例を概略的に示している。
(Example of installation environment)
FIG. 2 schematically shows an example of the installation environment of the wireless device 100.
 無線装置100は、ガスメータや水道メータに利用されているスマートメータ等のMTC端末に搭載可能である。無線装置100を搭載した端末は、例えば図2に示す地下駐車場50など、電波環境が悪い(届きにくい)環境に固定設置されることが想定される。図2における方向D1は、無線装置100が有する第1アンテナ11の指向性1に対応する。図2における方向D2は、無線装置100が有する第2アンテナ12の指向性2に対応する。図2の環境下では、入口51を介して伝搬してきた電波が壁面52などを介して反射され、複数の方向から(マルチパスで)無線装置100の第1アンテナ11および第2アンテナ12で受信される。 The wireless device 100 can be mounted on an MTC terminal such as a smart meter used for a gas meter or a water meter. It is assumed that the terminal equipped with the wireless device 100 is fixedly installed in an environment where the radio wave environment is poor (difficult to reach), such as the underground parking lot 50 shown in FIG. The direction D1 in FIG. 2 corresponds to the directivity 1 of the first antenna 11 included in the wireless device 100. The direction D2 in FIG. 2 corresponds to the directivity 2 of the second antenna 12 included in the wireless device 100. Under the environment of FIG. 2, the radio wave propagating through the inlet 51 is reflected by the wall surface 52 and the like, and is received by the first antenna 11 and the second antenna 12 of the wireless device 100 (in a multipath) from a plurality of directions. Will be done.
 このような環境における電波の伝搬の特徴として以下が挙げられる。
・伝搬ロス=「方向バイアス」+「マルチパス影響」で表される。方向バイアスは、電波の到来方向の偏りに相当する。
・方向バイアスは、下り(DL(Down Link))と上り(UL(Up Link))とで周波数が異なっても高い相関がある。
The characteristics of radio wave propagation in such an environment include the following.
-Propagation loss = "direction bias" + "multipath effect". The directional bias corresponds to the bias in the arrival direction of the radio wave.
-The directional bias has a high correlation even if the frequency is different between the downlink (DL (Down Link)) and the uplink (UL (Up Link)).
 無線装置100では、上記電波の伝搬の特徴を利用し、受信信号のみを使って方向バイアスを検出することで、消費電力を極力増加させることなく最適な送信時のアンテナ選択を実現することを可能にする。 In the wireless device 100, by utilizing the above-mentioned radio wave propagation characteristics and detecting the directional bias using only the received signal, it is possible to realize the optimum antenna selection at the time of transmission without increasing the power consumption as much as possible. To.
 図3は、図2に示した設置環境における無線装置100と基地局200との間の伝搬ロスの周波数特性の一例を示している。図3には、方向D1と方向D2とのそれぞれの周波数特性の一例を示す。図3に示したように、方向バイアスは電波の到来方向の偏りを指し、図3の破線で示される。方向バイアスは十分広い周波数帯域における伝搬ロスの平均値で判断することが望ましい。狭い帯域で方向バイアスを判断すると判断を間違う可能性が高い。図2の環境下では方向D2に比べて方向D1の方に対して多くの電波が到来しているので、図3に示したように、「方向D1の方向バイアス」>「方向D2の方向バイアス」となっている。 FIG. 3 shows an example of the frequency characteristics of the propagation loss between the wireless device 100 and the base station 200 in the installation environment shown in FIG. FIG. 3 shows an example of the frequency characteristics of each of the directions D1 and D2. As shown in FIG. 3, the directional bias refers to the bias in the arrival direction of the radio wave, and is indicated by the broken line in FIG. It is desirable to judge the directional bias by the average value of propagation loss in a sufficiently wide frequency band. Judging the directional bias in a narrow band is likely to make a mistake. In the environment of FIG. 2, more radio waves arrive in the direction D1 than in the direction D2. Therefore, as shown in FIG. 3, "direction bias in direction D1"> "direction bias in direction D2". ".
 無線装置100では、このような特性を利用して送信に最適な指向性を判断し、送信に最適なアンテナを選択する。 In the wireless device 100, the optimum directivity for transmission is determined by utilizing such characteristics, and the optimum antenna for transmission is selected.
(無線フレームの構成例)
 図4は、無線装置100の通信に用いられる無線フレームの構成の一例を示している。図4には、LTE(Long Term Evolution)システムにおいて用いられるダウンリンクの無線フレームの構成を示す。
(Wireless frame configuration example)
FIG. 4 shows an example of the configuration of a wireless frame used for communication of the wireless device 100. FIG. 4 shows the configuration of a downlink radio frame used in an LTE (Long Term Evolution) system.
 LTEシステムにおいて用いられるダウンリンクの無線フレームでは、1フレームは10msであり、10個のサブフレームで構成される。1サブフレームは1msであり、2個のスロットで構成される。1スロットは、周波数分割されたN個のリソースブロック(RB)で構成される。1リソースブロックは、複数のリソースエレメントで構成される。1リソースブロック内には、複数のリファレンス信号(RS)がマッピングされている。 In the downlink wireless frame used in the LTE system, one frame is 10 ms and is composed of 10 subframes. One subframe is 1 ms and is composed of two slots. One slot is composed of N frequency-divisioned resource blocks (RBs). One resource block is composed of a plurality of resource elements. A plurality of reference signals (RS) are mapped in one resource block.
 図5は、無線通信の通信プロトコルの一例を示している。図6は、無線通信の1フレーム期間におけるダウンリンクの物理チャネルの一例を示している。 FIG. 5 shows an example of a communication protocol for wireless communication. FIG. 6 shows an example of a downlink physical channel in one frame period of wireless communication.
 図5には「Ericsson, et al., R1-1706161 Early Data Transmission for MTC, 3GPP RAN1 Meeting #88bis, 2017.」に示されるカテゴリーM(Cat-M)における1メッセージのやり取りに必要な通信を示している。ここで、1メッセージとは、無線装置100が送信する所定の情報(例えば計測装置300で計測された所定の計測情報)に相当する。1メッセージのやり取りに必要な期間には、複数の送信が含まれるが、送信タイミングの度に最適なアンテナ(指向性)を選択し直していてはそこに必要な消費電力が増加してしまう。本実施の形態において想定する設置環境は上述したように、スマートメータ等の固定設置されるものを想定している。このような環境下では伝搬環境の変動は生じない、または経過時間に対して非常に緩やかに変動するとされている。従って、一旦選択した最適なアンテナは1メッセージやり取り期間の間最適であり続けるので、消費電力を無駄に増やすことがない。 FIG. 5 shows the communication required for exchanging one message in category M (Cat-M) shown in "Ericsson, et al., R1-1706161 Early Data Transmission for MTC, 3GPP RAN1 Meeting # 88bis, 2017." ing. Here, one message corresponds to predetermined information transmitted by the wireless device 100 (for example, predetermined measurement information measured by the measuring device 300). The period required for exchanging one message includes a plurality of transmissions, but if the optimum antenna (directivity) is reselected for each transmission timing, the power consumption required there will increase. As described above, the installation environment assumed in this embodiment is assumed to be a fixed installation such as a smart meter. Under such an environment, it is said that the propagation environment does not change or fluctuates very slowly with respect to the elapsed time. Therefore, the optimum antenna once selected continues to be optimum for one message exchange period, so that the power consumption is not unnecessarily increased.
 LTEシステムでは、基地局200からは常に電波が出ていて、図5に示したように、決まったタイミングと決まった周波数で同期信号(SS:Synchronization Signal)が常に送信されている。基地局200からは、図6に示したように、1フレームの期間において、複数回、同期信号(SS)が送信されている。同期信号(SS)は、Primary同期信号(PSS)と、Secondary同期信号(SSS)とがある。ここで同期ができると、PBCH(Physical Broadcast Channel)およびPDSCH(Physical Downlink Shared Channel)を復調できる。その後、最初の送信としてPRACH(Physical Randam Access Channel)が送信される。 In the LTE system, radio waves are always emitted from the base station 200, and as shown in FIG. 5, a synchronization signal (SS: Synchronization Signal) is always transmitted at a fixed timing and a fixed frequency. As shown in FIG. 6, the base station 200 transmits a synchronization signal (SS) a plurality of times in a period of one frame. The synchronization signal (SS) includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). If synchronization is possible here, PBCH (Physical Broadcast Channel) and PDSCH (Physical Downlink Shared Channel) can be demodulated. After that, PRACH (Physical Randam Access Channel) is transmitted as the first transmission.
 LTEシステムでは、PBCHや、その他の基地局200からの信号(下り信号)を受信して復調するためにはリファレンス信号(RS)を受信する必要がある。リファレンス信号(RS)は所定のタイミング、および所定の周波数で継続的に基地局200から常に送信されている。このリファレンス信号(RS)を受信することで、RSRP(Reference Signal Received Power),SIR(Signal to Interference Retio),RSSI(Received Signal Strength Indicator),RSRQ(Reference Signal Received Quality)といった指標値を算出することができる。LTEシステムでは、リファレンス信号(RS)を受信するためにはタイミングが分からないといけないので、PSS,SSSを先に受信する必要がある。 In the LTE system, it is necessary to receive a reference signal (RS) in order to receive and demodulate a signal (downlink signal) from PBCH or other base station 200. The reference signal (RS) is continuously transmitted from the base station 200 at a predetermined timing and at a predetermined frequency. By receiving this reference signal (RS), index values such as RSRP (Reference Signal Received Power), SIR (Signal to Interference Retio), RSSI (Received Signal Strength Indicator), and RSRQ (Reference Signal Received Quality) can be calculated. Can be done. In the LTE system, since the timing must be known in order to receive the reference signal (RS), it is necessary to receive the PSS and SSS first.
 図7は、リファレンス信号(RS)に基づいて測定可能な指標値の一例を示している。 FIG. 7 shows an example of an index value that can be measured based on the reference signal (RS).
 RSRPは、1リソースエレメント当たりのリファレンス信号(RS)の受信電力(受信信号レベル)である。 RSRP is the received power (received signal level) of the reference signal (RS) per resource element.
 RSSIは、リファレンス信号(RS)が存在するOFDMシンボル(全周波数のリソースエレメント)の全体の受信電力(受信信号レベル)である。 RSSI is the total received power (received signal level) of the OFDM symbol (resource element of all frequencies) in which the reference signal (RS) is present.
 RSRQは、リファレンス信号(RS)の受信品質を表す指標の1つであり、RSRPとRSSIとの比によって計算され、以下のようにリソースブロックの数Nで正規化された値となる。
 RSRQ=RSRP×N/RSSI
 リソースブロック当たりで考えれば、RSRQ=RSRP/(RSSI/N)と同じ意味となる。
RSRQ is one of the indexes showing the reception quality of the reference signal (RS), is calculated by the ratio of RSRP and RSSI, and is a value normalized by the number N of resource blocks as follows.
RSRQ = RSRP × N / RSSI
Considering per resource block, it has the same meaning as RSRQ = RSRP / (RSSI / N).
 SIRは、RSRQと同様にリファレンス信号(RS)の受信品質を表す指標の1つであり、リファレンス信号(RS)についての受信電力(RSRP)と干渉電力(干渉レベル)との比である。RSRQの計算には、分母にRSSI、つまりリソースエレメントの全周波数帯域の受信電力を用いているが、SIRでは1つのリファレンス信号(RS)の周波数帯域内に存在する干渉電力を分母とする。直接、干渉電力を測定することは難しいため、リファレンス信号(RS)の理想信号のばらつき(分散)を計算して、干渉電力が求められる。このような方法で計算される干渉電力は、同じ周波数帯域の隣接セルからの信号に加えて雑音成分も含まれているためSINRとも言われる。 Similar to RSRQ, SIR is one of the indexes showing the reception quality of the reference signal (RS), and is the ratio of the received power (RSRP) and the interference power (interference level) of the reference signal (RS). In the calculation of RSRQ, RSSI, that is, the received power in the entire frequency band of the resource element is used as the denominator, but in SIR, the interference power existing in the frequency band of one reference signal (RS) is used as the denominator. Since it is difficult to directly measure the interference power, the interference power is obtained by calculating the variation (dispersion) of the ideal signal of the reference signal (RS). The interference power calculated by such a method is also called SINR because it includes a noise component in addition to a signal from an adjacent cell in the same frequency band.
(望ましい動作例)
 無線装置100において、指向性の選択(アンテナの選択)は、基地局200から送信されるリファレンス信号(RS)を受信して得られる情報に基づいて行われる。上述したように、方向バイアスはDLとULとの間で周波数が異なっていても高い相関があるため、最適なアンテナの選択の際には、受信信号を使って求めた方向バイアスに基づいて行うことが可能である。
(Desirable operation example)
In the wireless device 100, the directivity selection (antenna selection) is performed based on the information obtained by receiving the reference signal (RS) transmitted from the base station 200. As described above, the directional bias has a high correlation between DL and UL even if the frequencies are different. Therefore, when selecting the optimum antenna, the directional bias obtained by using the received signal is used. It is possible.
 無線装置100において、指向性の選択(アンテナの選択)に際し、受信信号は1以上の候補となる基地局200が有する2以上の基地局アンテナ201から送信される全てのリファレンス信号(RS)を用いることが望ましい。LTEシステムにおいては、基地局200から無線装置100への下り回線においてリファレンス信号(RS)が定期的に常に送信されている(図4)。リファレンス信号(RS)は基地局アンテナ201ごとに決められたリソースエレメントにマッピングされている。通常、無線装置100側はリファレンス信号(RS)を復調し、RSRP,RSRQ,SIRなどの指標値を算出することで、自身の伝搬環境を知ることができる。本実施の形態においてもこのリファレンス信号(RS)を活用できる。無線装置100では、複数の基地局アンテナ201からのリファレンス信号(RS)を用いることで、伝搬変動の偏りを軽減でき、より正確な方向バイスを知ることができる。 In the wireless device 100, when selecting the directivity (selecting the antenna), all the reference signals (RS) transmitted from the two or more base station antennas 201 of the one or more candidate base stations 200 are used as the received signals. Is desirable. In the LTE system, a reference signal (RS) is constantly transmitted periodically on the downlink from the base station 200 to the wireless device 100 (FIG. 4). The reference signal (RS) is mapped to the resource element determined for each base station antenna 201. Normally, the wireless device 100 side can know its own propagation environment by demodulating the reference signal (RS) and calculating index values such as RSRP, RSRQ, and SIR. This reference signal (RS) can also be utilized in this embodiment. In the wireless device 100, by using reference signals (RS) from a plurality of base station antennas 201, it is possible to reduce the bias of propagation fluctuations and to know a more accurate direction vise.
 無線装置100では、複数の周波数帯域の信号を受信することが望ましい。この場合、基準信号抽出部23は、複数の周波数帯域の各受信信号に含まれる各リファレンス信号(RS)を抽出することが望ましい。リファレンス信号(RS)は事業者がサービスしている複数の周波数帯域の全てにおいてそれぞれ送信されており、方向バイアスは周波数帯域に依存せず、無線装置100の設置環境に依存するので、自身が通信に使用する以外の他の周波数帯域のリファレンス信号(RS)をさらに用いることで方向バイアスの観測精度を上げることができる。 It is desirable that the wireless device 100 receives signals in a plurality of frequency bands. In this case, it is desirable that the reference signal extraction unit 23 extracts each reference signal (RS) included in each received signal in a plurality of frequency bands. Since the reference signal (RS) is transmitted in all of the plurality of frequency bands serviced by the operator, and the directional bias does not depend on the frequency band but depends on the installation environment of the wireless device 100, it communicates by itself. By further using a reference signal (RS) in a frequency band other than that used for, the observation accuracy of the directional bias can be improved.
 無線装置100では、複数の受信信号から抽出された複数のリファレンス信号(RS)の受信信号レベルを平均化した値もしくは中央値、または平均化した値と中央値との組み合わせによって得られる値に基づいて、送信に適した指向性を選択することが望ましい。通常、LTEシステムでは、上述したように、リファレンス信号(RS)を使って、RSRP,RSSI,RSRQ,SINRなどを求めている。RSSIはリファレンス信号(RS)の受信信号レベル以外にノイズや干渉レベルも含んでおり、方向バイスを求めるのに好適ではない。同様にRSRQやSINRも好適ではなく、本実施の形態において、方向バイスを求める際にはRSRP(リファレンス信号(RS)の受信信号レベル)を周波数方向や、複数の基地局アンテナ201、および複数の周波数帯域について平均化された値もしくは中央値、または平均化した値と中央値との組み合わせによって得られる値を用いることが好適である。 In the wireless device 100, the received signal levels of a plurality of reference signals (RS) extracted from the plurality of received signals are averaged or median, or based on a value obtained by a combination of the averaged value and the median. Therefore, it is desirable to select a directivity suitable for transmission. Usually, in the LTE system, as described above, RSRP, RSSI, RSRQ, SINR and the like are obtained by using the reference signal (RS). RSSI includes noise and interference level in addition to the received signal level of the reference signal (RS), and is not suitable for obtaining a directional vise. Similarly, RSRQ and SINR are also unsuitable, and in the present embodiment, when obtaining a directional vise, RSRP (reception signal level of reference signal (RS)) is set in the frequency direction, a plurality of base station antennas 201, and a plurality of base station antennas 201. It is preferable to use the averaged value or the median value for the frequency band, or the value obtained by the combination of the averaged value and the median value.
 図8は、受信信号の周波数特性の一例を示している。図9は、平均化する周波数帯域幅を変えた際の受信信号のレベル変動の標準偏差の例を示している。図9には、基地局アンテナ201が1つの場合と、2つの場合とのそれぞれの例を示す。 FIG. 8 shows an example of the frequency characteristics of the received signal. FIG. 9 shows an example of the standard deviation of the level variation of the received signal when the frequency bandwidth to be averaged is changed. FIG. 9 shows an example of the case where the base station antenna 201 is one and the case where the base station antenna 201 is two.
 例えば図2のような設置環境下では、マルチパスの影響により、図8に示したように受信信号レベルの強弱が周波数特性を持つ。平均化する帯域幅を広くすると、図9に示したようにレベル変動の分散が小さくなる。複数の基地局アンテナ201からの無相関な受信信号レベルを用いると、さらに分散を低減できる。 For example, in the installation environment as shown in FIG. 2, the strength of the received signal level has frequency characteristics as shown in FIG. 8 due to the influence of multipath. Increasing the averaging bandwidth reduces the variance of level variation as shown in FIG. Dispersion can be further reduced by using uncorrelated received signal levels from the plurality of base station antennas 201.
 無線装置100では、所定の通信期間における信号の最初の送信よりも前に、送信に適した指向性を有する1つのアンテナを選択し、少なくとも所定の通信期間の間は、その選択状態を維持し続けることが望ましい。ここで、所定の通信期間における信号の最初の送信よりも前の期間は、例えば後述する図5に示す期間Trであってもよい。例えば、LTEシステムでは、図5に示すように、1メッセージのやり取りには複数の送信が含まれるため、最初の送信であるPRACHの前に最適なアンテナの選択を完了することが望ましい。LTEシステムでは、無線装置100の起動後の時間同期(PSS,SSS)により、リファレンス信号(RS)の受信が可能となるのでPSS,SSSの受信後、PRACHの送信前の期間Trに適切なアンテナの選択を完了することが望ましい。また、無線装置100が送信するときの電力消費が大きいので、その前にアンテナの選択を終えることが望ましい。 In the wireless device 100, one antenna having a directivity suitable for transmission is selected before the first transmission of the signal in a predetermined communication period, and the selected state is maintained for at least a predetermined communication period. It is desirable to continue. Here, the period before the first transmission of the signal in the predetermined communication period may be, for example, the period Tr shown in FIG. 5 described later. For example, in an LTE system, as shown in FIG. 5, since the exchange of one message includes a plurality of transmissions, it is desirable to complete the selection of the optimum antenna before the first transmission, PRACH. In the LTE system, the reference signal (RS) can be received by the time synchronization (PSS, SSS) after the wireless device 100 is started. Therefore, the antenna suitable for the period Tr after receiving the PSS and SSS and before the transmission of the PRACH. It is desirable to complete the selection of. Further, since the power consumption when the wireless device 100 transmits is large, it is desirable to finish the selection of the antenna before that.
 なお、無線装置100の設置場所が固定されていることを考慮すると、アンテナの選択は、無線装置100の起動時に毎回、実行してもよいし、無線装置100の最初に設置したときに1回だけ実行してもよい。また、1日1回等、定期的に実行してもよい。 Considering that the installation location of the wireless device 100 is fixed, the antenna may be selected every time the wireless device 100 is started, or once when the wireless device 100 is first installed. You may just run it. Further, it may be executed periodically, such as once a day.
(通信処理の流れ)
 図10は、第1の実施の形態に係る無線装置100の全体的な通信処理の流れの一例を概略的に示している。
(Flow of communication processing)
FIG. 10 schematically shows an example of the overall communication processing flow of the wireless device 100 according to the first embodiment.
 無線装置100が起動する(ステップS101)と、まず、同期処理を行う(ステップS102)。例えば図5の例では、Primary同期信号(PSS)と、Secondary同期信号(SSS)とを受信することで同期処理が行われる。なお、無線装置100の起動は、あらかじめ決められた定期的なメッセージ(例えば計測装置300で計測された所定の計測情報)の送信を行う必要が生じたタイミングに合わせて行われる(例えば10時間ごと、数日ごと、数週間ごと)。また、割り込み的なメッセージが発生(ステップS102)した場合にも起動する。 When the wireless device 100 is activated (step S101), first, synchronization processing is performed (step S102). For example, in the example of FIG. 5, synchronization processing is performed by receiving a Primary synchronization signal (PSS) and a Secondary synchronization signal (SSS). The wireless device 100 is activated at a timing when it becomes necessary to transmit a predetermined periodic message (for example, predetermined measurement information measured by the measuring device 300) (for example, every 10 hours). , Every few days, every few weeks). It also starts when an interrupt-like message occurs (step S102).
 次に、無線装置100は、制御部40の制御に基づいて指向性切り替えスイッチSW1を切り替えることにより、指向性(アンテナ)の切り替え処理を行う(ステップS103)。次に、無線装置100は、基準信号(リファレンス信号(RS))の受信処理を行う(ステップS104)。 Next, the wireless device 100 performs a directivity (antenna) switching process by switching the directivity changeover switch SW1 based on the control of the control unit 40 (step S103). Next, the wireless device 100 performs reception processing of the reference signal (reference signal (RS)) (step S104).
 次に、無線装置100は、全ての指向性(アンテナ)を切り替えたか否かを判断する(ステップS106)。この判断は制御部40が行う。全ての指向性を切り替えてはいないと判断した場合(ステップS106;N)には、無線装置100は、ステップS104の処理に戻る。 Next, the wireless device 100 determines whether or not all directivity (antennas) have been switched (step S106). This determination is made by the control unit 40. If it is determined that all the directivities have not been switched (step S106; N), the radio device 100 returns to the process of step S104.
 全ての指向性を切り替えたと判断した場合(ステップS106;Y)には、無線装置100は、次に、指向性ごとの受信信号レベルを比較し、最適な指向性(アンテナ)を選択する(ステップS107)。これらの処理は制御部40が行う。ステップS104~S107の処理は、例えば図5に示す期間Trの間に行われることが望ましい。 When it is determined that all the directivities have been switched (step S106; Y), the wireless device 100 next compares the received signal levels for each directivity and selects the optimum directivity (antenna) (step). S107). These processes are performed by the control unit 40. It is desirable that the processing of steps S104 to S107 is performed, for example, during the period Tr shown in FIG.
 次に、無線装置100は、選択した指向性(アンテナ)でメッセージを送信する(ステップS108)。次に、無線装置100は、休止期間に入る(ステップS109)。 Next, the wireless device 100 transmits a message with the selected directivity (antenna) (step S108). Next, the wireless device 100 enters a pause period (step S109).
 次に、無線装置100は、一定期間、経過したか否かを判断する(ステップS110)。一定期間、経過していないと判断した場合(ステップS110;N)には、無線装置100は、ステップS109の処理に戻り、休止期間を継続する。一定期間、経過したと判断した場合(ステップS110;Y)には、無線装置100は、ステップS101の処理に戻る。 Next, the wireless device 100 determines whether or not a certain period of time has passed (step S110). If it is determined that the period has not elapsed (step S110; N), the wireless device 100 returns to the process of step S109 and continues the pause period. When it is determined that a certain period of time has passed (step S110; Y), the wireless device 100 returns to the process of step S101.
[1.3 効果]
 以上説明したように、第1の実施の形態に係る無線装置100によれば、複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号(リファレンス信号(RS))から得られる情報に基づいて、複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択するようにしたので、消費電力を抑えつつ、通信品質を改善することが可能となる。
[1.3 Effect]
As described above, according to the radio device 100 according to the first embodiment, information obtained from each reference signal (reference signal (RS)) included in each received signal received by each of the plurality of antennas. Since one antenna having a directivity suitable for transmission is selected from the plurality of antennas based on the above, it is possible to improve the communication quality while suppressing the power consumption.
 また、第1の実施の形態に係る無線装置100によれば、余計な送信を追加することなく、受信によって得られる信号のみから最適な送信アンテナを選択できるので、通信品質の改善が可能となる。その結果、送信の繰り返しを回避、あるいは繰り返し回数を低減できるので、送信電力の削減ができる。これにより、無線装置100の長時間のバッテリ駆動時間を実現できる。 Further, according to the wireless device 100 according to the first embodiment, the optimum transmitting antenna can be selected only from the signal obtained by reception without adding extra transmission, so that the communication quality can be improved. .. As a result, it is possible to avoid the repetition of transmission or reduce the number of repetitions, so that the transmission power can be reduced. This makes it possible to realize a long battery drive time of the wireless device 100.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained. The same applies to the effects of the other embodiments thereafter.
[1.4 変形例]
(変形例1)
 図11は、変形例1に係る無線装置100の要部を示している。
[1.4 Modification example]
(Modification 1)
FIG. 11 shows a main part of the wireless device 100 according to the first modification.
 無線装置100において、複数のアンテナはそれぞれ、通信相手との間で信号の送信と受信とを時分割で行うことが可能であり、送信時の指向性と受信時の指向性とが異なっていてもよい。 In the wireless device 100, each of the plurality of antennas can transmit and receive signals to and from the communication partner in a time-division manner, and the directivity at the time of transmission and the directivity at the time of reception are different. May be good.
 方向バイアスの計測精度を上げるには、指向性利得の高い指向性アンテナを使って方向サーチをすることが好適であるが、送信においては伝搬の安定性やその他の理由により極端に高利得の指向性アンテナを使用したくない場合もあり得る。このような場合は、方向バイアスを観測する受信時と送信時とで異なる指向性利得のアンテナを用いてもよい。 In order to improve the measurement accuracy of the directional bias, it is preferable to perform a directional search using a directional antenna with a high directional gain, but in transmission, the directional gain is extremely high due to the stability of propagation and other reasons. You may not want to use a sex antenna. In such a case, antennas having different directional gains at the time of reception and at the time of transmission for observing the directional bias may be used.
 例えば、無線装置100において、最適なアンテナ(指向性)を選択する場合、なるべく細い指向性を有するアンテナを用いて空間をまんべんなく走査、電波受信し、最適な指向性を選択し、送信に適用するのが望ましい。しかし、通常各国ではそれぞれ電波法によって、送信時の最大アンテナ指向性利得や最大の実効等方放射電力(EIRP(「Equivalent Isotropic Radiated Power」または「Effective Isotropic Radiated Power」))が制限されている。このような場合、図11に示したように、電波法の制約を受けない受信時には高利得狭指向性のアンテナを用いて最適な方向を見つけ、送信時には電波法に準拠する程度の広い指向性のアンテナを用いて送信することが最適である。 For example, in the wireless device 100, when selecting the optimum antenna (directivity), an antenna having as thin a directivity as possible is used to scan the space evenly, receive radio waves, select the optimum directivity, and apply it to transmission. Is desirable. However, in each country, the maximum antenna directivity gain and the maximum effective isotropic radiated power (EIRP (“Equivalent Isotropic Radiated Power” or “Effective Isotropic Radiated Power”)) at the time of transmission are usually limited by the Radio Law. In such a case, as shown in FIG. 11, when receiving without being restricted by the Radio Law, a high gain narrow directivity antenna is used to find the optimum direction, and when transmitting, the directivity is wide enough to comply with the Radio Law. It is best to transmit using the antenna of.
(変形例2)
 無線装置100において、複数のアンテナはそれぞれ、信号特性の異なる複数の受信信号を受信可能であってもよい。制御部40は、複数の受信信号から抽出された複数の基準信号から得られる複数の情報に基づいて、複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択するようにしてもよい。
(Modification 2)
In the wireless device 100, the plurality of antennas may be capable of receiving a plurality of received signals having different signal characteristics. The control unit 40 selects one antenna having a directivity suitable for transmission from the plurality of antennas based on a plurality of information obtained from the plurality of reference signals extracted from the plurality of received signals. May be good.
 例えば、無線装置100において、方向バイアスを求める際、複数の周波数帯域や複数の基地局アンテナ201のほか、実際に通信する基地局200以外の基地局200からのリファレンス信号(RS)等、複数のリファレンス信号(RS)を自由に組み合わせて活用するようにしてもよい。これにより、方向バイアスの計測精度を改善することができる。 For example, in the wireless device 100, when obtaining a directional bias, a plurality of frequency bands, a plurality of base station antennas 201, and a plurality of reference signals (RS) from a base station 200 other than the base station 200 that actually communicates are used. The reference signal (RS) may be freely combined and utilized. This makes it possible to improve the measurement accuracy of the directional bias.
<2.その他の実施の形態>
 本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
<2. Other embodiments>
The technique according to the present disclosure is not limited to the description of each of the above embodiments, and various modifications can be carried out.
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号から得られる情報に基づいて、複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択するようにしたので、消費電力を抑えつつ、通信品質を改善することが可能となる。
For example, this technology can also have the following configuration.
According to the present technology having the following configuration, it has a directivity suitable for transmission among a plurality of antennas based on the information obtained from each reference signal included in each received signal received by each of the plurality of antennas. Since one antenna is selected, it is possible to improve the communication quality while suppressing the power consumption.
(1)
 互いに異なる指向性を有し、通信相手との間で信号の送受信を行う複数のアンテナと、
 前記複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号を抽出する抽出部と、
 前記抽出部によって抽出された前記各基準信号から得られる情報に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する制御部と、
 前記制御部によって選択された前記1つのアンテナを用いて、前記通信相手に信号を送信する送信回路と
 を備える
 無線装置。
(2)
 前記複数のアンテナは、少なくとも、所定の情報を送信するのに要する所定の通信期間において、設置場所が不変である
 上記(1)に記載の無線装置。
(3)
 前記所定の情報とは、計測装置で計測された所定の計測情報である
 上記(2)に記載の無線装置。
(4)
 前記複数のアンテナはそれぞれ、前記通信相手が有する複数の通信アンテナからの信号を受信可能であり、
 前記抽出部は、前記通信相手が有する複数の通信アンテナからの各受信信号に含まれる各基準信号を抽出する
 上記(1)ないし(3)のいずれか1つに記載の無線装置。
(5)
 前記複数のアンテナはそれぞれ、複数の前記通信相手からの信号を受信可能であり、
 前記抽出部は、複数の前記通信相手からの各受信信号に含まれる各基準信号を抽出する
 上記(1)ないし(4)のいずれか1つに記載の無線装置。
(6)
 前記複数のアンテナはそれぞれ、複数の周波数帯域の信号を受信可能であり、
 前記抽出部は、複数の周波数帯域の各受信信号に含まれる各基準信号を抽出する
 上記(1)ないし(5)のいずれか1つに記載の無線装置。
(7)
 前記複数のアンテナはそれぞれ、信号特性の異なる複数の受信信号を受信可能であり、
 前記制御部は、前記複数の受信信号から抽出された複数の前記基準信号の受信信号レベルを平均化した値もしくは中央値、または前記平均化した値と前記中央値との組み合わせによって得られる値に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する
 上記(1)ないし(6)のいずれか1つに記載の無線装置。
(8)
 前記複数のアンテナはそれぞれ、前記通信相手との間で信号の送信と受信とを時分割で行うことが可能であり、送信時の指向性と受信時の指向性とが異なる
 上記(1)ないし(7)のいずれか1つに記載の無線装置。
(9)
 前記複数のアンテナはそれぞれ、信号特性の異なる複数の受信信号を受信可能であり、
 前記制御部は、前記複数の受信信号から抽出された複数の前記基準信号から得られる複数の情報に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する
 上記(1)ないし(8)のいずれか1つに記載の無線装置。
(10)
 前記送信回路は、前記所定の通信期間において、前記通信相手に信号の送信を複数回、行い、
 前記制御部は、前記所定の通信期間における信号の最初の送信よりも前に、送信に適した指向性を有する1つのアンテナを選択し、少なくとも前記所定の通信期間の間は、その選択状態を維持し続ける
 上記(2)ないし(9)のいずれか1つに記載の無線装置。
(1)
Multiple antennas that have different directivity and send and receive signals to and from the communication partner,
An extraction unit that extracts each reference signal included in each received signal received by each of the plurality of antennas, and an extraction unit.
A control unit that selects one antenna having a directivity suitable for transmission from the plurality of antennas based on the information obtained from each of the reference signals extracted by the extraction unit.
A wireless device including a transmission circuit that transmits a signal to the communication partner using the one antenna selected by the control unit.
(2)
The wireless device according to (1) above, wherein the plurality of antennas do not change their installation location at least during a predetermined communication period required for transmitting predetermined information.
(3)
The predetermined information is the predetermined measurement information measured by the measuring device. The wireless device according to (2) above.
(4)
Each of the plurality of antennas can receive signals from the plurality of communication antennas of the communication partner.
The wireless device according to any one of (1) to (3) above, wherein the extraction unit extracts each reference signal included in each received signal from a plurality of communication antennas of the communication partner.
(5)
Each of the plurality of antennas can receive signals from the plurality of communication partners.
The wireless device according to any one of (1) to (4) above, wherein the extraction unit extracts each reference signal included in each received signal from the plurality of communication partners.
(6)
Each of the plurality of antennas can receive signals in a plurality of frequency bands.
The wireless device according to any one of (1) to (5) above, wherein the extraction unit extracts each reference signal included in each received signal in a plurality of frequency bands.
(7)
Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
The control unit sets the received signal levels of the plurality of reference signals extracted from the plurality of received signals to an averaged value or a median value, or a value obtained by a combination of the averaged value and the median value. The wireless device according to any one of (1) to (6) above, wherein one antenna having a directivity suitable for transmission is selected from the plurality of antennas.
(8)
Each of the plurality of antennas can transmit and receive a signal to and from the communication partner in a time-division manner, and the directivity at the time of transmission and the directivity at the time of reception are different from the above (1) to. The wireless device according to any one of (7).
(9)
Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
The control unit selects one of the plurality of antennas having a directivity suitable for transmission based on a plurality of information obtained from the plurality of reference signals extracted from the plurality of received signals. The wireless device according to any one of (1) to (8) above.
(10)
The transmission circuit transmits a signal to the communication partner a plurality of times during the predetermined communication period.
The control unit selects one antenna having a directivity suitable for transmission before the first transmission of the signal in the predetermined communication period, and selects the selected state at least during the predetermined communication period. The wireless device according to any one of (2) to (9) above.
 本出願は、日本国特許庁において2020年8月31日に出願された日本特許出願番号第2020-146215号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2020-146215 filed at the Japan Patent Office on August 31, 2020, and the entire contents of this application are referred to in this application. Incorporate into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
 
Those skilled in the art may conceive various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the claims and their equivalents. It is understood that it is one of ordinary skill in the art.

Claims (10)

  1.  互いに異なる指向性を有し、通信相手との間で信号の送受信を行う複数のアンテナと、
     前記複数のアンテナのそれぞれにおいて受信された各受信信号に含まれる各基準信号を抽出する抽出部と、
     前記抽出部によって抽出された前記各基準信号から得られる情報に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する制御部と、
     前記制御部によって選択された前記1つのアンテナを用いて、前記通信相手に信号を送信する送信回路と
     を備える
     無線装置。
    Multiple antennas that have different directivity and send and receive signals to and from the communication partner,
    An extraction unit that extracts each reference signal included in each received signal received by each of the plurality of antennas, and an extraction unit.
    A control unit that selects one antenna having a directivity suitable for transmission from the plurality of antennas based on the information obtained from each of the reference signals extracted by the extraction unit.
    A wireless device including a transmission circuit that transmits a signal to the communication partner using the one antenna selected by the control unit.
  2.  前記複数のアンテナは、少なくとも、所定の情報を送信するのに要する所定の通信期間において、設置場所が不変である
     請求項1に記載の無線装置。
    The wireless device according to claim 1, wherein the plurality of antennas have an invariant installation location at least during a predetermined communication period required for transmitting predetermined information.
  3.  前記所定の情報とは、計測装置で計測された所定の計測情報である
     請求項2に記載の無線装置。
    The wireless device according to claim 2, wherein the predetermined information is predetermined measurement information measured by the measuring device.
  4.  前記複数のアンテナはそれぞれ、前記通信相手が有する複数の通信アンテナからの信号を受信可能であり、
     前記抽出部は、前記通信相手が有する複数の通信アンテナからの各受信信号に含まれる各基準信号を抽出する
     請求項1に記載の無線装置。
    Each of the plurality of antennas can receive signals from the plurality of communication antennas of the communication partner.
    The wireless device according to claim 1, wherein the extraction unit extracts each reference signal included in each received signal from a plurality of communication antennas of the communication partner.
  5.  前記複数のアンテナはそれぞれ、複数の前記通信相手からの信号を受信可能であり、
     前記抽出部は、複数の前記通信相手からの各受信信号に含まれる各基準信号を抽出する
     請求項1に記載の無線装置。
    Each of the plurality of antennas can receive signals from the plurality of communication partners.
    The wireless device according to claim 1, wherein the extraction unit extracts each reference signal included in each received signal from the plurality of communication partners.
  6.  前記複数のアンテナはそれぞれ、複数の周波数帯域の信号を受信可能であり、
     前記抽出部は、複数の周波数帯域の各受信信号に含まれる各基準信号を抽出する
     請求項1に記載の無線装置。
    Each of the plurality of antennas can receive signals in a plurality of frequency bands.
    The wireless device according to claim 1, wherein the extraction unit extracts each reference signal included in each received signal in a plurality of frequency bands.
  7.  前記複数のアンテナはそれぞれ、信号特性の異なる複数の受信信号を受信可能であり、
     前記制御部は、前記複数の受信信号から抽出された複数の前記基準信号の受信信号レベルを平均化した値もしくは中央値、または前記平均化した値と前記中央値との組み合わせによって得られる値に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する
     請求項1に記載の無線装置。
    Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
    The control unit sets the received signal levels of the plurality of reference signals extracted from the plurality of received signals to an averaged value or a median value, or a value obtained by a combination of the averaged value and the median value. The wireless device according to claim 1, wherein one of the plurality of antennas having a directivity suitable for transmission is selected based on the above.
  8.  前記複数のアンテナはそれぞれ、前記通信相手との間で信号の送信と受信とを時分割で行うことが可能であり、送信時の指向性と受信時の指向性とが異なる
     請求項1に記載の無線装置。
    The first aspect of claim 1, wherein each of the plurality of antennas can transmit and receive a signal to and from the communication partner in a time-division manner, and the directivity at the time of transmission and the directivity at the time of reception are different. Wireless device.
  9.  前記複数のアンテナはそれぞれ、信号特性の異なる複数の受信信号を受信可能であり、
     前記制御部は、前記複数の受信信号から抽出された複数の前記基準信号から得られる複数の情報に基づいて、前記複数のアンテナのうち、送信に適した指向性を有する1つのアンテナを選択する
     請求項1に記載の無線装置。
    Each of the plurality of antennas can receive a plurality of received signals having different signal characteristics.
    The control unit selects one of the plurality of antennas having a directivity suitable for transmission based on a plurality of information obtained from the plurality of reference signals extracted from the plurality of received signals. The wireless device according to claim 1.
  10.  前記送信回路は、前記所定の通信期間において、前記通信相手に信号の送信を複数回、行い、
     前記制御部は、前記所定の通信期間における信号の最初の送信よりも前に、送信に適した指向性を有する1つのアンテナを選択し、少なくとも前記所定の通信期間の間は、その選択状態を維持し続ける
     請求項2に記載の無線装置。
    The transmission circuit transmits a signal to the communication partner a plurality of times during the predetermined communication period.
    The control unit selects one antenna having a directivity suitable for transmission before the first transmission of the signal in the predetermined communication period, and selects the selected state at least during the predetermined communication period. The wireless device according to claim 2, which is to be maintained.
PCT/JP2021/029774 2020-08-31 2021-08-12 Wireless device WO2022044840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180051393.7A CN116057851A (en) 2020-08-31 2021-08-12 Wireless device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146215 2020-08-31
JP2020146215 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044840A1 true WO2022044840A1 (en) 2022-03-03

Family

ID=80353191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029774 WO2022044840A1 (en) 2020-08-31 2021-08-12 Wireless device

Country Status (2)

Country Link
CN (1) CN116057851A (en)
WO (1) WO2022044840A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115044A (en) * 1998-10-09 2000-04-21 Kyocera Ddi Mirai Tsushin Kenkyusho:Kk Polarized wave diversity transmission system
JP2003046422A (en) * 2001-05-24 2003-02-14 Japan Telecom Holdings Co Ltd Mobile communication method for base station, mobile communication base station device and mobile station device
JP2003244056A (en) * 2002-02-14 2003-08-29 Oki Electric Ind Co Ltd Wireless communication system
JP2006254110A (en) * 2005-03-10 2006-09-21 Nec Corp Portable terminal and antenna switching control method in the portable terminal
JP2007214780A (en) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2009135802A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radio reception apparatus and radio reception method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115044A (en) * 1998-10-09 2000-04-21 Kyocera Ddi Mirai Tsushin Kenkyusho:Kk Polarized wave diversity transmission system
JP2003046422A (en) * 2001-05-24 2003-02-14 Japan Telecom Holdings Co Ltd Mobile communication method for base station, mobile communication base station device and mobile station device
JP2003244056A (en) * 2002-02-14 2003-08-29 Oki Electric Ind Co Ltd Wireless communication system
JP2006254110A (en) * 2005-03-10 2006-09-21 Nec Corp Portable terminal and antenna switching control method in the portable terminal
JP2007214780A (en) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2009135802A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radio reception apparatus and radio reception method

Also Published As

Publication number Publication date
CN116057851A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
US11197338B2 (en) Power saving radio resource management (RRM) measurements in a wireless network
US8705438B2 (en) Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
EP2476275B1 (en) Adjusting sensing rate of wireless transmissions from a licensed user in a cognitive radio system
US8594690B2 (en) Subcell measurement procedures in a distributed antenna system
US7899073B2 (en) Methods and apparatus for monitoring for signals and selecting and/or using a communications band based on the monitoring results
US9369996B2 (en) Base station apparatus, user apparatus and communication control method
US20090016363A1 (en) Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
JP4977015B2 (en) Communication system, primary station, and transmission power control method
US20220376747A1 (en) Customer Premise Equipment
US20100009695A1 (en) Communication system to perform lending and/or borrowing of a radio resource
CN106797673B (en) Apparatus, network node and method for enabling relaying in a radio communication network
US20220095281A1 (en) Resource selection method in internet of vehicles system and user equipment thereof
CA2581887A1 (en) Wireless terminal location using apparatus and methods employing carrier diversity
US8605670B2 (en) Method for selecting a relay station
KR101030841B1 (en) Mobile communication system, base station device, mobile station device, and mobile communication method
US20220329314A1 (en) Electronic device, wireless communication method, and computer readable medium
US20080153553A1 (en) Radio communication terminal and radio communication system
CN111869123B (en) Communication device for efficient beam management
US8452300B2 (en) Communication system including a FEMTO base station and a communication terminal, and a communication method thereof
JP4237668B2 (en) Wireless communication system, base station apparatus, and transmission power control method
JP2008193340A (en) Radio base station device, radio terminal device, wireless communication system, and channel quality indicator estimation method
WO2022044840A1 (en) Wireless device
JP4988379B2 (en) Radio base station and channel allocation information transmission method
US20190059006A1 (en) Method for performing measurement and device using same
TW202308425A (en) Method and user equipment for beam group reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP