WO2022044723A1 - Thermally conductive composition and thermally conductive sheet using same - Google Patents

Thermally conductive composition and thermally conductive sheet using same Download PDF

Info

Publication number
WO2022044723A1
WO2022044723A1 PCT/JP2021/028782 JP2021028782W WO2022044723A1 WO 2022044723 A1 WO2022044723 A1 WO 2022044723A1 JP 2021028782 W JP2021028782 W JP 2021028782W WO 2022044723 A1 WO2022044723 A1 WO 2022044723A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
heat
thermally conductive
conductive composition
conductive sheet
Prior art date
Application number
PCT/JP2021/028782
Other languages
French (fr)
Japanese (ja)
Inventor
昌幸 松島
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022044723A1 publication Critical patent/WO2022044723A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • This technology relates to a heat conductive composition and a heat conductive sheet using the same.
  • This application claims priority on the basis of Japanese Patent Application No. 2020-142900 filed on August 26, 2020 in Japan, and this application is referred to in this application. It will be used.
  • a material called a thermal interface material which relaxes the thermal resistance of the path through which heat generated from a semiconductor element is released to a heat sink, a housing, or the like, is in the form of a sheet, gel, or the like. It is used in various forms such as grease.
  • thermal interface material examples include a composite material (heat conductive composition) in which a heat conductive filler is dispersed in an epoxy resin or a silicone resin.
  • a heat conductive filler metal oxides and metal nitrides are often used.
  • silicone resin which is an example of resin, is widely used from the viewpoint of heat resistance and flexibility.
  • the flexibility of the obtained heat conductive sheet tends to decrease.
  • the stress applied to the semiconductor element having a relatively weak strength is large, and an unreasonable force is applied to the semiconductor element. become.
  • the stress applied to the substrate also increases, the stress on the substrate increases, and the substrate may bend. There is a concern that the semiconductor element mounted on the substrate may be peeled off due to such bending of the substrate.
  • the heat conductive sheet is usually sandwiched between the heat generating member and the heat radiating member by applying a load.
  • the heat generating member or the heat radiating member has a concave portion or a convex portion
  • the surface of the heat conductive sheet may not sufficiently contact the concave portion or the convex portion of the heat generating member or the heat radiating member.
  • a heat conductive sheet having poor followability (flexibility) to the contacting member is used, there is a concern that the heat conductivity of the heat conductive sheet may be lowered.
  • This technique has been proposed in view of such conventional circumstances, and is a heat conductive composition capable of forming a heat conductive sheet having good heat conductivity and flexibility, and a heat conductive sheet using the same.
  • the purpose is to provide.
  • a predetermined acrylic-silicone copolymer is contained in a heat conductive composition containing an organopolysiloxane, a heat conductive filler, and an alkoxysilane compound, and an alkoxy is obtained with respect to the organopolysiloxane. It has been found that the above-mentioned problems can be solved by setting the total content of the silane compound and the siloxane-modified acrylic resin to a predetermined value or more.
  • the thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin, and the content of the organopolysiloxane is 100 parts by mass. , The total content of the alkoxysilane compound and the siloxane-modified acrylic resin is 100 parts by mass or more.
  • the heat conductive sheet according to the present technology is made of a cured product of the above heat conductive composition.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet.
  • FIG. 2 is a cross-sectional view showing an example of a semiconductor device.
  • the thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin. Further, in the heat conductive composition, when the content of organopolysiloxane is 100 parts by mass, the total content of the alkoxysilane compound and the siloxane-modified acrylic resin is 100 parts by mass or more, and 200 parts by mass or more. It may be 300 parts by mass or more, 400 parts by mass or more, 500 parts by mass or more, 600 parts by mass or more, or 700 parts by mass or more. It may be 800 parts by mass or more.
  • the upper limit of the total content of the alkoxysilane compound and the siloxane-modified acrylic resin is not particularly limited, and is, for example, 1000 parts by mass. It can be as follows. Hereinafter, each component will be described in detail.
  • the thermally conductive composition according to the present technology contains organopolysiloxane from the viewpoints of molding processability, weather resistance, adhesion to electronic components, followability, and the like.
  • Organopolysiloxane refers to a polymer compound in which an organic group is added to a structure having a portion in which a silicon atom is bonded to another silicon atom via oxygen.
  • Organopolysiloxane usually refers to an organic polymer having a siloxane bond as a main chain.
  • Organopolysiloxane can be cured by applying thermal energy, light energy, or the like in the presence of a curing catalyst.
  • the organopolysiloxane is classified according to the curing mechanism, and examples thereof include an addition polymerization curing type (addition reaction type), a polypolymerization curing type (condensation type), an ultraviolet curing type, and a peroxide fusing type.
  • the organopolysiloxane may be used alone or in combination of two or more.
  • organopoly is used from the viewpoint of adhesion between the heat generating surface and the heat sink surface of the electronic component.
  • an addition reaction type silicone resin (additional reaction type liquid silicone resin) as the siloxane.
  • the addition reaction type silicone resin include (i) a main agent containing silicone having an alkenyl group as a main component, (ii) a main agent containing a curing catalyst, and (iii) a curing agent having a hydrosilyl group (Si—H group).
  • the addition reaction type silicone resin include (i) a main agent containing silicone having an alkenyl group as a main component, (ii) a main agent containing a curing catalyst, and (iii) a curing agent having a hydrosilyl group (Si—H group). Examples thereof include a two-component addition reaction type silicone resin comprising.
  • the (ii) curing catalyst is a catalyst for promoting an addition reaction between (i) an alkenyl group in a silicone having an alkenyl group and (iii) a hydrosilyl group in a curing agent having a hydrosilyl group.
  • Examples of the curing catalyst include well-known catalysts as catalysts used in the hydrosilylation reaction, and for example, platinum group curing catalysts such as platinum group metals such as platinum, rhodium and palladium, platinum chloride and the like may be used. Can be done.
  • the curing agent having a hydrosilyl group for example, an organopolysiloxane having a hydrosilyl group can be used.
  • the organopolysiloxane component may contain a silicone resin containing a Si—OH group.
  • the silicone resin containing a Si—OH group is a group consisting of M unit (R 3 SiO 1/2 ), Q unit (SiO 2 ), T unit (RSiO 3/2 ) and D unit (R 2 SiO). Examples thereof include an organopolysiloxane composed of a copolymer having at least one unit (R represents a monovalent hydrocarbon group or a hydroxyl group) selected from the above.
  • an organopolysiloxane (MQ resin) made of a copolymer having M units and Q units is preferable.
  • the addition reaction type silicone resin which is an example of organopolysiloxane
  • a desired commercially available product can be used in consideration of the hardness of the cured product obtained by curing the heat conductive composition.
  • CY52-276, CY52-272, EG-3100, EG-4000, EG-4100, 527 above, manufactured by Toray Dow Corning
  • KE-1800T, KE-1031, KE-1051J aboveve, Shin-Etsu Chemical. (Made by Kogyo Co., Ltd.).
  • the heat conductive filler can be selected from known materials in view of the desired thermal conductivity and filling property, for example, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, aluminum, copper and silver. Examples thereof include metals such as, alumina, metal oxides such as magnesium oxide, metal nitrides such as aluminum nitride, boron nitride and silicon nitride, carbon nanotubes, metallic silicon and fiber fillers (glass fiber, carbon fiber).
  • the heat conductive filler may be used alone or in combination of two or more.
  • the thermally conductive composition according to the present technology preferably contains, for example, an inorganic filler as a thermally conductive filler, more preferably a nitrogen compound, and heat, from the viewpoint of achieving good flame retardancy. It is more preferable to contain a nitrogen compound having a conductivity of 60 W / m ⁇ K or more. As such a nitrogen compound, aluminum nitride or boron nitride is preferable, and aluminum nitride is more preferable. Further, the heat conductive composition according to the present technology may contain at least one of aluminum nitride, metal hydroxide, metal oxide and carbon fiber as the heat conductive filler.
  • the metal hydroxide and the metal oxide examples include aluminum hydroxide, alumina, aluminum nitride, magnesium oxide and the like.
  • the heat conductive filler only alumina, only aluminum nitride, or only carbon fibers may be used.
  • the heat conductive composition according to the present technology preferably contains at least aluminum nitride as a heat conductive filler from the viewpoint of flame retardancy and heat conductivity, and contains aluminum nitride, alumina, and magnesium oxide. It is more preferable to use a mixture, and a mixture containing carbon fibers further may be used.
  • the content of the heat conductive filler in the heat conductive composition can be appropriately determined according to the desired thermal conductivity and the like, and the volume content in the heat conductive composition can be set to, for example, 80 to 90 volumes. Can be%.
  • the content of the heat conductive filler in the heat conductive composition is less than 80% by volume, it tends to be difficult to obtain sufficient thermal conductivity. Further, when the content of the heat conductive filler in the heat conductive composition exceeds 90% by volume, it tends to be difficult to fill the heat conductive filler.
  • the content of the heat conductive filler in the heat conductive composition can be 83% by volume or more, 84% by volume or more, 85% by volume or more, and 83 to 85%. It can also be% by volume. When two or more kinds of thermally conductive fillers are used in combination, it is preferable that the total amount satisfies the above range of contents.
  • the content of aluminum nitride in the heat conductive filler can be 1 to 100% by volume.
  • the thermally conductive composition contains an alkoxysilane compound.
  • the alkoxysilane compound is hydrolyzed with, for example, the amount of water contained in the heat conductive filler, binds to the heat conductive filler, and contributes to the dispersion of the heat conductive filler. do.
  • the alkoxysilane compound is a compound having a structure in which 1 to 3 of the four bonds of the silicon atom (Si) are bonded to an alkoxy group and the remaining bonds are bonded to an organic substituent.
  • alkoxy group contained in the alkoxysilane compound examples include a methoxy group, an ethoxy group, a protoxy group, a butoxy group, a pentoxy group, and a hexatoxy group.
  • the alkoxysilane compound is preferably an alkoxysilane compound having a methoxy group or an ethoxy group from the viewpoint of availability.
  • the number of alkoxy groups contained in the alkoxysilane compound is preferably two or more, and more preferably three (trialkoxysilane), from the viewpoint of further enhancing the affinity with the heat conductive filler as an inorganic substance.
  • at least one selected from a trimethoxysilane compound and a triethoxysilane compound is preferable.
  • the functional groups contained in the organic substituents of the alkoxysilane compound are, for example, an acryloyl group, an alkyl group, a carboxyl group, a vinyl group, a methacrylic group, an aromatic group, an amino group, an isocyanate group, an isocyanurate group, an epoxy group and a hydroxyl group.
  • Examples include a group and a mercapto group.
  • an addition reaction type organopolysiloxane containing a platinum catalyst is used as the precursor of the above-mentioned addition reaction type silicone resin, it is preferable that the alkoxysilane compound does not easily affect the curing reaction of the organopolysiloxane. ..
  • the organic substituent of the alkoxysilane compound does not contain an amino group, an isocyanate group, an isocyanurate group, a hydroxyl group, or a mercapto group. Is preferable.
  • an alkylalkoxysilane compound having an alkyl group bonded to a silicon atom that is, an alkyl group-containing alkoxysilane compound.
  • the number of carbon atoms of the alkyl group bonded to the silicon atom is preferably 4 or more, and may be 6 or more, 8 or more, or 10 or more. ..
  • the number of carbon atoms of the alkyl group bonded to the silicon atom in the alkyl group-containing alkoxysilane compound is preferably 16 or less, and may be 14 or less. , 12 or less.
  • the alkyl group bonded to the silicon atom may be linear, branched, or cyclic.
  • the alkoxysilane compound may be used alone or in combination of two or more.
  • Specific examples of the alkoxysilane compound include a vinyl group-containing alkoxysilane compound, an acryloyl group-containing alkoxysilane compound, a methacrylic group-containing alkoxysilane compound, an aromatic group-containing alkoxysilane compound, and an amino group-containing compound, in addition to the alkyl group-containing alkoxysilane compound.
  • Examples thereof include an alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, an isocyanurate group-containing alkoxysilane compound, an epoxy group-containing alkoxysilane compound, and a mercapto group-containing alkoxysilane compound.
  • alkyl group-containing alkoxysilane compound examples include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, and n-propyltri.
  • alkyl group-containing alkoxysilane compounds isobutyltrimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxy
  • At least one selected from silane and hexadecyltrimethoxysilane is preferable, and at least one of n-decyltrimethoxysilane and hexadecyltrimethoxysilane is more preferable.
  • Examples of the vinyl group-containing alkoxysilane compound include vinyltrimethoxysilane and vinyltriethoxysilane.
  • Examples of the acryloyl group-containing alkoxysilane compound include 3-acryloyloxypropyltrimethoxysilane.
  • Examples of the methacryl group-containing alkoxysilane compound include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyltriethoxysilane.
  • aromatic group-containing alkoxysilane compound examples include phenyltrimethoxysilane and phenyltriethoxysilane.
  • amino group-containing alkoxysilane compound examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltri. Examples thereof include methoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
  • Examples of the isocyanate group-containing alkoxysilane compound include 3-isocyanatepropyltriethoxysilane.
  • Examples of the isocyanurate group-containing alkoxysilane compound include tris- (trimethoxysilylpropyl) isocyanurate.
  • epoxy group-containing alkoxysilane compound examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid. Examples thereof include xipropyltriethoxysilane.
  • Examples of the mercapto group-containing alkoxysilane compound include 3-mercaptopropyltrimethoxysilane.
  • the thermally conductive composition according to the present technology preferably contains an arcosixylan compound having a melting point of ⁇ 40 ° C. or higher and a boiling point of 100 ° C. or higher.
  • the boiling point of the alcoholicylan compound is 100 ° C. or higher, it is possible to more effectively suppress the vaporization of the alkoxysilane compound at room temperature, and as a result, the heat conductive sheet becomes too hard due to condensation or the like. It can be prevented more reliably.
  • "normal temperature” means a range of 15 to 25 ° C. specified in JIS K0050: 2019 (general rule of chemical analysis method). Further, when the melting point of the alkoxysilane compound is ⁇ 40 ° C.
  • the upper limit of the boiling point of the alcoholicylan compound is not particularly limited, and the higher the boiling point, the more preferable.
  • Examples of alcoholicylan compounds having a melting point of ⁇ 40 ° C. or higher and a boiling point of 100 ° C. or higher include decyltrimethoxysilane, hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, n-dodecyltrimethoxysilane, and the like.
  • thermally conductive composition examples thereof include n-dodecyltriethoxysilane and hexyltrimethoxysilane.
  • decyltrimethoxysilane and hexadecyltrimethoxysilane in combination.
  • the content of the alkoxysilane compound can be, for example, 50 parts by mass or more, or 100 parts by mass or more. , 200 parts by mass or more, 300 parts by mass or more, 350 parts by mass or more, 400 parts by mass or more, 500 parts by mass or more. , 600 parts by mass or more can be used.
  • the upper limit of the content of the alkoxysilane compound can be, for example, 750 parts by mass or less, and 700 parts by mass or less. It can also be 650 parts by mass or less.
  • the content of the alkoxysilane compound in the heat conductive composition is not particularly limited, and may be, for example, 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the heat conductive filler. , 0.2 to 2.0 parts by mass. When two or more kinds of alkoxysilane compounds are used in combination, it is preferable that the total amount satisfies the above range of contents.
  • the mass ratio of decyltrimethoxysilane to hexadecyltrimethoxysilane is , 100: 98 to 100: 201 are preferable.
  • the thermally conductive composition according to the present technology contains a siloxane-modified acrylic resin.
  • the siloxane-modified acrylic resin is a (meth) acrylic acid ester having one or more polydimethylsiloxane structure (-(CH 3 ) 2 SiO) n- ; n is an integer of 1 or more) and a (meth) acrylic acid alkyl ester. It is a copolymer with.
  • the siloxane-modified acrylic resin is a component for softening the sheet obtained from the thermally conductive composition.
  • the siloxane-modified acrylic resin can further improve the dispersibility of the thermally conductive filler in the thermally conductive composition as compared with, for example, silicone oil.
  • Examples of the (meth) acrylic acid ester having one or more polydimethylsiloxane structures include dimethicone methacrylate.
  • Examples of the (meth) acrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylhexyl acrylate, tridecylic acrylate, and stearyl acrylate.
  • siloxane-modified acrylic resin examples include stearyl-modified acrylate silicone (a copolymer of acrylate, stearyl acrylate and dimethicone methacrylate) and behenyl-modified acrylate silicone (a copolymer of acrylate, behenyl acrylate and dimethicone methacrylate). ), Ethylhexyl-modified acrylate silicone (a copolymer of acrylate, ethylhexyl acrylate and dimethicone methacrylate) and the like.
  • the siloxane-modified acrylic resin may have a hydrophilic functional group such as a carboxy group, an epoxy group, a carbonyl group, a hydroxyl group, or an ether group.
  • the thermally conductive composition according to the present technology preferably contains a siloxane-modified acrylic resin having a melting point of 55 ° C. or lower, and may contain a siloxane-modified acrylic resin having a melting point in the range of 0 to 45 ° C. More preferred.
  • the melting point of the siloxane-modified acrylic resin is 55 ° C or lower, flexibility is exhibited in the actual use range, and it becomes easier to adhere to semiconductor chips such as ICs, CPUs (Central Processing Units), and APs (application processors).
  • the lower limit of the melting point of the siloxane-modified acrylic resin is not particularly limited, but is preferably 25 ° C. or higher, for example.
  • the melting point of the siloxane-modified acrylic resin is 25 ° C or higher, the siloxane-modified acrylic resin becomes a solid at room temperature, and the siloxane-modified acrylic resin becomes a liquid by heating. It can be further improved.
  • siloxane-modified acrylic resins include KP-541, KP-543, KP-545, KP-545L, KP-550, KP-561P, KP-562P, KP-574, and KP-578 (above, Shin-Etsu Silicone). (Manufactured by Toagosei Co., Ltd.), Cymac (registered trademark) US-350 (manufactured by Toagosei Co., Ltd.) and the like.
  • KP-561P and KP-562P are preferable, and KP-561P is more preferable, from the viewpoint of having a melting point of 55 ° C. or lower.
  • the siloxane-modified acrylic resin may be used alone or in combination of two or more. Further, two or more kinds of siloxane-modified acrylic resins having a melting point of 55 ° C. or lower may be used in combination.
  • the content of the siloxane-modified acrylic resin can be, for example, 50 parts by mass or more, or 100 parts by mass or more. It can be 200 parts by mass or more, 300 parts by mass or more, or 350 parts by mass or more. Further, when the content of the organopolysiloxane in the heat conductive composition is 100 parts by mass, the upper limit of the content of the siloxane-modified acrylic resin can be, for example, 500 parts by mass or less, and 450 parts by mass. It can be as follows, or it can be 400 parts by mass or less.
  • the lower limit of the content of the siloxane-modified acrylic resin can be, for example, 0.1 part by mass or more with respect to 100 parts by mass of the heat conductive filler, or 0.3 part by mass or more. It may be 1 part by mass or more.
  • the upper limit of the content of the siloxane-modified acrylic resin can be, for example, 10 parts by mass or less, 7 parts by mass or less, or 5 parts by mass with respect to 100 parts by mass of the heat conductive filler. It may be less than 2 parts by mass, less than 2 parts by mass, or less than 1 part by mass. When two or more kinds of siloxane-modified acrylic resins are used in combination, it is preferable that the total amount satisfies the above range of contents.
  • the thermally conductive resin composition according to the present technology may further contain an antioxidant in addition to the above-mentioned components from the viewpoint of further enhancing the effect of the present technology.
  • an antioxidant for example, a hindered phenolic antioxidant may be used, or a hindered phenolic antioxidant and a thiol-based antioxidant may be used in combination.
  • the hindered phenolic antioxidant for example, captures radicals (peroxy radicals) and effectively contributes to the suppression of oxidative deterioration of organopolysiloxane (addition reaction type silicone resin).
  • a thiol-based antioxidant effectively contributes by decomposing hydrooxide radicals and suppressing oxidative deterioration of organopolysiloxane (addition reaction type silicone resin).
  • hindered phenolic antioxidant examples include those having a structure represented by the following formula 1 as a hindered phenol skeleton.
  • the hindered phenolic antioxidant preferably has one or more skeletons represented by the following formula 1, and may have two or more skeletons represented by the following formula 1.
  • R 1 and R 2 represent a t-butyl group and R 3 represents a hydrogen atom (hindered type)
  • R 1 represents a methyl group
  • R 2 represents a t-butyl group
  • R 3 represents a hydrogen atom (semi-hindered type)
  • R 1 represents a hydrogen atom
  • R 2 represents a t-butyl group
  • R 3 represents a methyl group (less hindered type).
  • a semi-hindered type or a hindered type is preferable.
  • the hindered phenolic antioxidant has three or more skeletons represented by the above formula 1 in one molecule, and the three or more skeletons represented by the formula 1 are hydrocarbon groups or. , It is preferable that the structure is linked by a group consisting of a hydrocarbon group and a combination of —O— and —CO—.
  • the hydrocarbon group may be linear, branched or cyclic.
  • the number of carbon atoms of the hydrocarbon group can be, for example, 3 to 8.
  • the molecular weight of the hindered phenolic antioxidant can be, for example, 300 to 850, or 500 to 800.
  • the hindered phenolic antioxidant may have an ester bond in its structure.
  • examples of such phenolic antioxidants include stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and tetrakis [3- (3', 5'-di-t-butyl-).
  • phenolic antioxidants include Adekastab AO-30, Adekastab AO-50, Adekastab AO-60, Adekastab AO-80 (above, manufactured by ADEKA), Irganox 1010, Irganox 1035, Irganox 1076, Ilganox 1135 (above, manufactured by BASF) and the like can be mentioned.
  • the phenolic antioxidant may be used alone or in combination of two or more.
  • the lower limit of the content of the phenolic antioxidant can be, for example, 0.1 part by mass or more, or 0.5 part by mass or more with respect to 100 parts by mass of the organopolysiloxane.
  • the upper limit of the content of the phenolic antioxidant may be, for example, 10 parts by mass or less with respect to 100 parts by mass of the organopolysiloxane, and may be 5 parts by mass or less.
  • thiol-based antioxidant examples include a type having a thioether skeleton and a type having a hindered phenol skeleton.
  • examples of the thiol-based antioxidant include ditridecyl 3,3'-thiobispropionic acid, tetrakis [3- (dodecylthio) propionic acid] pentaerythritol, and 4,6-bis (octylthiomethyl) -o-cresol. Can be mentioned.
  • thiol-based antioxidants include ADEKA STAB AO-412S, ADEKA STAB AO-503, ADEKA STAB AO-26 (above, manufactured by ADEKA), Sumilyzer TP-D (manufactured by Sumitomo Chemical), and Irganox1520L (manufactured by BASF Japan). ) And so on.
  • thiol-based antioxidants tetrakis [3- (dodecylthio) propionic acid] pentaerythritol (commercially available: Adecastab AO-412S, Sumitomo Chemical Co., Ltd.), Irganox 1520L is preferable.
  • the thiol-based antioxidant may be used alone or in combination of two or more.
  • the content of the thiol-based antioxidant in the heat conductive composition may be about the same as that of the phenol-based antioxidant, or may be higher than that of the phenol-based antioxidant.
  • the lower limit of the content of the thiol-based antioxidant can be, for example, 0.1 part by mass or more with respect to 100 parts by mass of the organopolysiloxane.
  • the upper limit of the content of the thiol-based antioxidant may be, for example, 20 parts by mass or less, or 10 parts by mass or less, with respect to 100 parts by mass of the organopolysiloxane.
  • the thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin.
  • the synergistic effect can improve the thermal conductivity and flexibility when the thermally conductive composition is made into a thermally conductive sheet.
  • the heat conductive composition according to the present technology has heat conductivity and flexibility when formed into a sheet even if the heat conductive filler contains 80 to 90% by volume of the heat conductive filler. Can be good.
  • the thermally conductive composition according to the present technology may further contain components other than the above-mentioned components as long as the effects of the present technology are not impaired.
  • the thermally conductive composition may further contain a heavy metal inactivating agent for the purpose of improving the deterioration resistance of the thermally conductive sheet.
  • the heavy metal deactivating agent include the ADEKA STAB ZS series (such as ADEKA STAB ZS-90) manufactured by ADEKA.
  • the thermally conductive composition according to the present technology can be obtained, for example, by kneading each of the above-mentioned components using a kneader (planetary kneader, ball mill, Henschel mixer, etc.).
  • a kneader planetary kneader, ball mill, Henschel mixer, etc.
  • the required amount of the heat conductive filler is not mixed at once with the main agent, the curing agent and the heat conductive filler.
  • the main agent and the curing agent may be divided and mixed separately, and the component containing the main agent and the component containing the curing agent may be mixed at the time of use.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet.
  • the heat conductive sheet 1 is made of a cured product of the above-mentioned heat conductive composition.
  • the heat conductive sheet 1 is desired to have a heat conductive composition on a release film 11 formed of, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyolefin, polymethylpentene, glassin paper, or the like. It is obtained by curing the organopolysiloxane, which is a binder resin, by applying it to the thickness of the above and heating it.
  • the thickness of the heat conductive sheet 1 (thickness of the sheet body excluding the release film 11) can be appropriately selected depending on the intended purpose, and can be, for example, 0.05 to 5 mm.
  • the thermal conductive sheet 1 can have a thermal conductivity of 3.5 W / m ⁇ K or more, and can also have a thermal conductivity of 4.0 W / m ⁇ K or more. , 4.5 W / m ⁇ K or more, 5.0 W / m ⁇ K or more, 6.0 W / m ⁇ K or more, 7.0 W / m ⁇ K or more It can be more than 7.5 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity of the thermal conductivity sheet 1 is not particularly limited, but can be, for example, 12.0 W / m ⁇ K or less, 11.0 W / m ⁇ K or less, and 9 It can also be set to 0.0 W / m ⁇ K or less.
  • the method for measuring the thermal conductivity is the same as in the examples described later.
  • the thermal resistance sheet 1 can have a thermal resistance value of 1.0 ° C. cm 2 / W or less, 0.9 ° C. cm 2 / W or less, and 0.7 ° C. ⁇ . It can be cm 2 / W or less, 0.5 ° C. cm 2 / W or less, 0.3 ° C. cm 2 / W or less, 0.2 ° C. cm 2 or less. It can also be less than / W.
  • the lower limit of the thermal resistance value of the heat conductive sheet 1 is not particularly limited, but may be, for example, 0.01 ° C. cm 2 / W or more. The method for measuring the thermal resistance value is the same as in the examples described later.
  • the thermal conductivity sheet 1 can have a thermal conductivity retention rate of 70% or more, which is 75% or more, as shown by the following formula 2 when aged at 200 ° C. for 24 hours, for example. It can be 80% or more, or 90% or more. Equation 2: (Thermal conductivity of the heat conductive sheet after the aging treatment / The thermal conductivity of the heat conductive sheet before the aging treatment) ⁇ 100
  • the heat conductive sheet 1 uses the above-mentioned heat conductive composition, it has good flexibility.
  • the compressibility heat conductivity
  • the ratio of the amount of change from the initial thickness of the sheet) divided by the initial thickness of the heat conductive sheet, that is, the compressibility represented by the following formula 3 can be 60% or more, and can be 70% or more. It can be 80% or more.
  • the heat conductive sheet 1 is made of the above-mentioned heat conductive composition, due to the synergistic effect of the organopolysiloxane, the heat conductive filler, the alkoxysilane compound, and the siloxane modified acrylic resin, It has good thermal conductivity and flexibility, and in particular, even those made of a thermally conductive composition containing 80 to 90% by volume of a thermally conductive filler have good thermal conductivity and flexibility. Further, since the heat conductive sheet 1 has a small repulsion against compression and the sheet itself is softened by heat, it has good adhesion to, for example, a heat generating element or a heat radiating body. That is, the heat conductive sheet 1 has high followability to the heat generating element and the radiator.
  • the heat conductive sheet 1 has good heat conductivity and flexibility, it can be applied to a heat dissipation structure in which the heat conductive sheet 1 is sandwiched between a heating element and a heat radiation member.
  • the heating element include integrated circuit elements such as CPUs, GPUs (Graphics Processing Units), DRAMs (Dynamic Random Access Memory), flash memories, transistors, resistors, and other electronic components that generate heat in electric circuits.
  • the heating element also includes a component that receives an optical signal such as an optical transceiver in a communication device.
  • the heat radiating member may be a member that conducts heat generated from a heating element and dissipates it to the outside.
  • a heat sink, a heat spreader, or the like which is used in combination with an integrated circuit element, a transistor, an optical transceiver housing, or the like.
  • the heat radiating member include a radiator, a cooler, a die pad, a printed circuit board, a cooling fan, a Pelche element, a heat pipe, a metal cover, a housing, and the like.
  • FIG. 2 is a cross-sectional view showing an example of a semiconductor device.
  • the heat conductive sheet 1 from which the release film 11 has been peeled off can be mounted inside an electronic component such as a semiconductor device or various electronic devices.
  • the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices and is sandwiched between a heating element and a heat radiating member. That is, the electronic device includes a heating element, a heat radiating member, and a heat conductive sheet 1 arranged between the heating element and the heat radiating member.
  • the second has at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 1, and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51.
  • the semiconductor device 50 has high heat dissipation.
  • the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 to form a heat radiating member that dissipates heat of the electronic component 51 together with the heat spreader 52.
  • the mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 and between the heat spreader 52 and the heat sink 53, and can be appropriately selected depending on the configuration of the electronic device or the semiconductor device.
  • Articles having such a heat dissipation structure include, for example, ECUs used for controlling electrical components such as personal computers, server devices, mobile phones, radio base stations, engines of transportation machines such as automobiles, power transmission systems, steering systems, and air conditioners. (Electronic Control Unit) can be mentioned.
  • thermally conductive composition composed of the raw materials shown in Table 1 was obtained.
  • the dispersibility of this thermally conductive composition was evaluated.
  • each evaluation shown in Table 1 was performed on the heat conductive sheet obtained from the heat conductive composition.
  • the present technology is not limited to the following examples.
  • Silicone resin A (Product name: CY52-276A, manufactured by Toray Dow Corning) Silicone resin B (Product name: CY52-276B, manufactured by Toray Dow Corning) Graft copolymer composed of acrylic polymer and dimethylpolysiloxane (product name: KP-561P, melting point 25-35 ° C, manufactured by Shinetsu Silicone Co., Ltd.) Graft copolymer composed of acrylic polymer and dimethylpolysiloxane (product name: KP-578, melting point 55 ° C or less, manufactured by Shin-Etsu Silicone Co., Ltd.) Polyglycerin-modified silicone surfactant with branched silicone chains (Product name: KF-6106, manufactured by Shinetsu Silicone Co., Ltd.) Alkoxytrialkoxysilane: Hexadecyltrimethoxysilane (Product name: Dynasylan 9116 (melting point 1 ° C, boiling point 155 ° C), manufactured by
  • Examples 1 to 5 Comparative Examples 1 and 2>
  • the heat conductive filler a mixture of aluminum nitride and alumina or a mixture of aluminum nitride, alumina and magnesium oxide was used.
  • the mixing amount is about 10640 parts by mass of aluminum nitride and about 1880 parts by mass of alumina with respect to 100 parts by mass of the silicone resin, one by one for the silicone resin. It was stirred each time it was added.
  • the mixing amount was about 4220 parts by mass of aluminum nitride and about 2800 parts by mass of alumina with respect to 100 parts by mass of the silicone resin.
  • the amount of magnesium oxide was about 4980 parts by mass, and the mixture was stirred each time it was added to the silicone resin one by one.
  • the total mixing amount of aluminum nitride, alumina and magnesium oxide is about 8000 parts by mass (aluminum nitride) with respect to 100 parts by mass of the silicone resin.
  • the mixture was stirred each time it was added to the silicone resin one by one.
  • a planetary stirrer was used for stirring, and the rotation speed was set to 1200 rpm.
  • the heat conductive composition was applied onto a release film (material: PET, thickness 125 ⁇ m) so as to have a thickness of 2 mm or 1.5 mm, and then a cover film (material) to which a release agent was applied. : PET, thickness 50 ⁇ m) was covered and heated at 80 ° C. for 6 hours to obtain a heat conductive sheet.
  • the heat conductive filler was added one by one to the heat conductive composition in which the components excluding the heat conductive filler were mixed, and the mixture was stirred.
  • a commercially available rotation / revolution stirrer (rotational vacuum stirring defoaming mixer (device name: V-mini 300, manufactured by EME) was used for stirring, and the rotation speed was set to 1200 rpm.
  • the time required for the conductive filler to disperse was visually evaluated. The results are shown in Table 1.
  • Thermal resistance value Using a thermal resistance measuring device compliant with ASTM-D5470, the thermal resistance value (° C. cm 2 / W) of the heat conductive sheet was measured by applying a load of 1 kgf / cm 2 . Practically, the thermal resistance value is preferably 1.0 (° C. cm 2 / W) or less. The results are shown in Table 1.
  • Heat stability Is the shape of the heat conductive sheet maintained and the oil bleeding is minimal when the heat conductive sheet is cut to a thickness of 2 mm and 30 mm ⁇ 30 mm and aged at 200 ° C for 24 hours (super accelerated test)? Please evaluate (heat stability). When there is no shape change and the oil bleed is within 1 mm, the heat resistance stability is evaluated as " ⁇ ”, and when the shape is slightly deformed but the oil bleed is within 1 mm, the heat resistance stability is evaluated as " ⁇ " and the shape is The heat stability was evaluated as "x" when it was significantly deformed or when it did not correspond to " ⁇ ” or " ⁇ ”. Practically, it is preferable that the evaluation of heat resistance stability is " ⁇ " or " ⁇ ". The results are shown in Table 1.
  • Examples 1 to 5 when the organopolysiloxane, the heat conductive filler, the alkoxysilane compound, and the siloxane-modified acrylic resin are contained, and the content of the organopolysiloxane is 100 parts by mass, the alkoxysilane compound is used. Since the heat conductive composition having a total content of 100 parts by mass or more of the siloxane-modified acrylic resin was used, it was found that a heat conductive sheet having good initial thermal conductivity and softness (flexibility) could be obtained. ..

Abstract

Provided are: a thermally conductive composition from which a thermally conductive sheet having satisfactory thermal conductivity and flexibility can be formed; and a thermally conductive sheet produced using the thermally conductive composition. This thermally conductive composition comprises an organopolysiloxane, a thermally conductive filler, an alkoxy silane compound and a siloxane-modified acrylic resin, in which, when the content of the organopolysiloxane is defined as 100 parts by mass, the total content of the alkoxy silane compound and the siloxane-modified acrylic resin is 100 parts by mass or more. The thermally conductive sheet comprises a cured product of the thermally conductive composition.

Description

熱伝導性組成物及びこれを用いた熱伝導性シートA heat conductive composition and a heat conductive sheet using the same
 本技術は、熱伝導性組成物及びこれを用いた熱伝導性シートに関する。本出願は、日本国において2020年8月26日に出願された日本特許出願番号特願2020-142900を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 This technology relates to a heat conductive composition and a heat conductive sheet using the same. This application claims priority on the basis of Japanese Patent Application No. 2020-142900 filed on August 26, 2020 in Japan, and this application is referred to in this application. It will be used.
 近年、半導体デバイスのパワー密度上昇に伴い、デバイスに使用される材料には、より高度な放熱特性が求められている。このような放熱特性を実現するために、サーマルインターフェースマテリアルと呼ばれる、半導体素子から発生する熱を、ヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するための材料が、シート状、ゲル状、グリース状など多様な形態で用いられている。 In recent years, with the increase in power density of semiconductor devices, the materials used for the devices are required to have higher heat dissipation characteristics. In order to realize such heat dissipation characteristics, a material called a thermal interface material, which relaxes the thermal resistance of the path through which heat generated from a semiconductor element is released to a heat sink, a housing, or the like, is in the form of a sheet, gel, or the like. It is used in various forms such as grease.
 一般に、サーマルインターフェースマテリアルは、例えば、エポキシ樹脂やシリコーン樹脂に、熱伝導性充填材を分散した複合材料(熱伝導性組成物)が挙げられる。熱伝導性充填材としては、金属酸化物や金属窒化物が多く用いられている。また、樹脂の一例であるシリコーン樹脂は、耐熱性や柔軟性の観点から、広く用いられている。 In general, examples of the thermal interface material include a composite material (heat conductive composition) in which a heat conductive filler is dispersed in an epoxy resin or a silicone resin. As the heat conductive filler, metal oxides and metal nitrides are often used. Further, silicone resin, which is an example of resin, is widely used from the viewpoint of heat resistance and flexibility.
 近年、半導体素子等の高密度実装や発熱量の増大により、熱伝導性シートには、高い熱伝導率が求められている。この課題に対して、例えば、熱伝導性組成物中の熱伝導性充填剤の添加量を増やすことが考えられる。 In recent years, due to high-density mounting of semiconductor devices and the increase in heat generation, high thermal conductivity is required for thermal conductivity sheets. To solve this problem, for example, it is conceivable to increase the amount of the heat conductive filler added to the heat conductive composition.
 しかし、熱伝導性組成物中の熱伝導性充填剤の添加量を増やすと、得られる熱伝導性シートの柔軟性が低下する傾向にある。このように柔軟性が低下した熱伝導性シートを、例えば半導体素子とヒートシンクとの間に挟持させると、相対的に強度の弱い半導体素子に掛かる応力が大きく、半導体素子に無理な力が加わることになる。また、基板に実装された半導体素子の場合には、基板に掛かる応力も増加し、基板への応力が大きくなり、基板が撓んでしまうこともある。このような基板のたわみにより、基板に搭載されている半導体素子が剥がれてしまうことも懸念される。 However, if the amount of the heat conductive filler added to the heat conductive composition is increased, the flexibility of the obtained heat conductive sheet tends to decrease. When a heat conductive sheet having such reduced flexibility is sandwiched between a semiconductor element and a heat sink, for example, the stress applied to the semiconductor element having a relatively weak strength is large, and an unreasonable force is applied to the semiconductor element. become. Further, in the case of a semiconductor element mounted on a substrate, the stress applied to the substrate also increases, the stress on the substrate increases, and the substrate may bend. There is a concern that the semiconductor element mounted on the substrate may be peeled off due to such bending of the substrate.
 また、熱伝導性シートは、通常、荷重をかけて発熱部材と放熱部材との間に挟みこむ。しかし、発熱部材や放熱部材に凹部や凸部があると、熱伝導性シートの面が発熱部材や放熱部材の凹部や凸部に対応して十分に接しないことがある。このように、接する部材への追従性(柔軟性)が良好ではない熱伝導性シートを使用すると、熱伝導性シートの熱伝導性が低下してしまうことが懸念される。 In addition, the heat conductive sheet is usually sandwiched between the heat generating member and the heat radiating member by applying a load. However, if the heat generating member or the heat radiating member has a concave portion or a convex portion, the surface of the heat conductive sheet may not sufficiently contact the concave portion or the convex portion of the heat generating member or the heat radiating member. As described above, if a heat conductive sheet having poor followability (flexibility) to the contacting member is used, there is a concern that the heat conductivity of the heat conductive sheet may be lowered.
国際公開第2018/131486号International Publication No. 2018/131486
 本技術は、このような従来の実情に鑑みて提案されたものであり、熱伝導性と柔軟性が良好な熱伝導性シートを形成できる熱伝導性組成物及びこれを用いた熱伝導性シートを提供することを目的とする。 This technique has been proposed in view of such conventional circumstances, and is a heat conductive composition capable of forming a heat conductive sheet having good heat conductivity and flexibility, and a heat conductive sheet using the same. The purpose is to provide.
 本件発明者が鋭意検討したところ、オルガノポリシロキサンと熱伝導性充填剤とアルコキシシラン化合物とを含有する熱伝導性組成物に、所定のアクリル-シリコーン共重合体を含有させ、オルガノポリシロキサンに対するアルコキシシラン化合物とシロキサン変性アクリル樹脂の合計含有量を所定値以上とすることで、上述した課題を解決できることを見出した。 As a result of diligent studies by the present inventor, a predetermined acrylic-silicone copolymer is contained in a heat conductive composition containing an organopolysiloxane, a heat conductive filler, and an alkoxysilane compound, and an alkoxy is obtained with respect to the organopolysiloxane. It has been found that the above-mentioned problems can be solved by setting the total content of the silane compound and the siloxane-modified acrylic resin to a predetermined value or more.
 本技術に係る熱伝導性組成物は、オルガノポリシロキサンと、熱伝導性充填剤と、アルコキシシラン化合物と、シロキサン変性アクリル樹脂とを含有し、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物とシロキサン変性アクリル樹脂の合計含有量が100質量部以上である。 The thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin, and the content of the organopolysiloxane is 100 parts by mass. , The total content of the alkoxysilane compound and the siloxane-modified acrylic resin is 100 parts by mass or more.
 本技術に係る熱伝導性シートは、上記熱伝導性組成物の硬化物からなる。 The heat conductive sheet according to the present technology is made of a cured product of the above heat conductive composition.
 本技術によれば、熱伝導性と柔軟性が良好な熱伝導性シートを提供することができる。 According to this technology, it is possible to provide a heat conductive sheet having good heat conductivity and flexibility.
図1は、熱伝導性シートの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet. 図2は、半導体装置の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a semiconductor device.
 <熱伝導性組成物>
 本技術に係る熱伝導性組成物は、オルガノポリシロキサンと、熱伝導性充填剤と、アルコキシシラン化合物と、シロキサン変性アクリル樹脂とを含有する。また、熱伝導性組成物は、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物とシロキサン変性アクリル樹脂の合計含有量が100質量部以上であり、200質量部以上であってもよく、300質量部以上であってもよく、400質量部以上であってもよく、500質量部以上であってもよく、600質量部以上であってもよく、700質量部以上であってもよく、800質量部以上であってもよい。また、熱伝導性組成物は、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物とシロキサン変性アクリル樹脂の合計含有量の上限値は、特に限定されず、例えば、1000質量部以下とすることができる。以下、各成分について詳細に説明する。
<Thermal conductive composition>
The thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin. Further, in the heat conductive composition, when the content of organopolysiloxane is 100 parts by mass, the total content of the alkoxysilane compound and the siloxane-modified acrylic resin is 100 parts by mass or more, and 200 parts by mass or more. It may be 300 parts by mass or more, 400 parts by mass or more, 500 parts by mass or more, 600 parts by mass or more, or 700 parts by mass or more. It may be 800 parts by mass or more. Further, in the heat conductive composition, when the content of organopolysiloxane is 100 parts by mass, the upper limit of the total content of the alkoxysilane compound and the siloxane-modified acrylic resin is not particularly limited, and is, for example, 1000 parts by mass. It can be as follows. Hereinafter, each component will be described in detail.
 <オルガノポリシロキサン>
 本技術に係る熱伝導性組成物は、成形加工性、耐候性、電子部品に対する密着性や追従性などの観点で、オルガノポリシロキサンを含有する。オルガノポリシロキサンとは、ケイ素原子が酸素を介して他のケイ素原子と結合した部分を持つ構造に、有機基が付加している高分子化合物をいう。オルガノポリシロキサンは、通常、シロキサン結合を主鎖とする有機重合体をいう。オルガノポリシロキサンは、硬化触媒の存在下で、熱エネルギーや光エネルギー等を与えることにより硬化させることができる。オルガノポリシロキサンは、硬化のメカニズムにより分類すると、付加重合硬化タイプ(付加反応型)、縮重合硬化タイプ(縮合型)、紫外線硬化タイプ、パーオキサイド架硫タイプなどが挙げられる。オルガノポリシロキサンは、1種単独で用いてもよいし、2種以上を併用してもよい。
<Organopolysiloxane>
The thermally conductive composition according to the present technology contains organopolysiloxane from the viewpoints of molding processability, weather resistance, adhesion to electronic components, followability, and the like. Organopolysiloxane refers to a polymer compound in which an organic group is added to a structure having a portion in which a silicon atom is bonded to another silicon atom via oxygen. Organopolysiloxane usually refers to an organic polymer having a siloxane bond as a main chain. Organopolysiloxane can be cured by applying thermal energy, light energy, or the like in the presence of a curing catalyst. The organopolysiloxane is classified according to the curing mechanism, and examples thereof include an addition polymerization curing type (addition reaction type), a polypolymerization curing type (condensation type), an ultraviolet curing type, and a peroxide fusing type. The organopolysiloxane may be used alone or in combination of two or more.
 特に、熱伝導性組成物を、発熱体と放熱部材との間に挟持される熱伝導性シートに適用する場合には、電子部品の発熱面とヒートシンク面との密着性の観点では、オルガノポリシロキサンとして付加反応型シリコーン樹脂(付加反応型液状シリコーン樹脂)を用いることが好ましい。付加反応型シリコーン樹脂としては、例えば、(i)アルケニル基を有するシリコーンを主成分とし、(ii)硬化触媒を含有する主剤と、(iii)ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂が挙げられる。(i)アルケニル基を有するシリコーンとしては、例えば、ビニル基を有するオルガノポリシロキサンを用いることができる。(ii)硬化触媒は、(i)アルケニル基を有するシリコーン中のアルケニル基と、(iii)ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。(ii)硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。(iii)ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するオルガノポリシロキサンを用いることができる。 In particular, when the heat conductive composition is applied to a heat conductive sheet sandwiched between a heating element and a heat radiating member, organopoly is used from the viewpoint of adhesion between the heat generating surface and the heat sink surface of the electronic component. It is preferable to use an addition reaction type silicone resin (additional reaction type liquid silicone resin) as the siloxane. Examples of the addition reaction type silicone resin include (i) a main agent containing silicone having an alkenyl group as a main component, (ii) a main agent containing a curing catalyst, and (iii) a curing agent having a hydrosilyl group (Si—H group). Examples thereof include a two-component addition reaction type silicone resin comprising. (I) As the silicone having an alkenyl group, for example, an organopolysiloxane having a vinyl group can be used. The (ii) curing catalyst is a catalyst for promoting an addition reaction between (i) an alkenyl group in a silicone having an alkenyl group and (iii) a hydrosilyl group in a curing agent having a hydrosilyl group. (Ii) Examples of the curing catalyst include well-known catalysts as catalysts used in the hydrosilylation reaction, and for example, platinum group curing catalysts such as platinum group metals such as platinum, rhodium and palladium, platinum chloride and the like may be used. Can be done. (Iii) As the curing agent having a hydrosilyl group, for example, an organopolysiloxane having a hydrosilyl group can be used.
 オルガノポリシロキサン成分は、Si-OH基を含有するシリコーンレジンを含有していてもよい。Si-OH基を含有するシリコーンレジンとしては、M単位(RSiO1/2)と、Q単位(SiO)、T単位(RSiO3/2)及びD単位(RSiO)からなる群より選択される少なくとも1種の単位(Rは、1価の炭化水素基又は水酸基を表す)とを有する共重合体からなるオルガノポリシロキサンが挙げられる。Si-OH基を含有するシリコーンレジンとしては、M単位とQ単位とを有する共重合体からなるオルガノポリシロキサン(MQレジン)が好ましい。 The organopolysiloxane component may contain a silicone resin containing a Si—OH group. The silicone resin containing a Si—OH group is a group consisting of M unit (R 3 SiO 1/2 ), Q unit (SiO 2 ), T unit (RSiO 3/2 ) and D unit (R 2 SiO). Examples thereof include an organopolysiloxane composed of a copolymer having at least one unit (R represents a monovalent hydrocarbon group or a hydroxyl group) selected from the above. As the silicone resin containing a Si—OH group, an organopolysiloxane (MQ resin) made of a copolymer having M units and Q units is preferable.
 オルガノポリシロキサンの一例である付加反応型シリコーン樹脂としては、熱伝導性組成物を硬化させた硬化物の有する硬度などを考慮して、所望の市販品を用いることができる。例えば、CY52-276、CY52-272、EG-3100、EG-4000、EG-4100、527(以上、東レ・ダウコーニング社製)、KE-1800T、KE-1031、KE-1051J(以上、信越化学工業社製)などが挙げられる。 As the addition reaction type silicone resin which is an example of organopolysiloxane, a desired commercially available product can be used in consideration of the hardness of the cured product obtained by curing the heat conductive composition. For example, CY52-276, CY52-272, EG-3100, EG-4000, EG-4100, 527 (above, manufactured by Toray Dow Corning), KE-1800T, KE-1031, KE-1051J (above, Shin-Etsu Chemical). (Made by Kogyo Co., Ltd.).
 <熱伝導性充填剤>
 熱伝導性充填剤は、所望とする熱伝導率や充填性を鑑み、公知の物から選択することができ、例えば、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、アルミニウム、銅、銀などの金属、アルミナ、酸化マグネシウムなどの金属酸化物、窒化アルミニウム、窒化ホウ素、窒化珪素などの金属窒化物、カーボンナノチューブ、金属シリコン、繊維フィラー(ガラス繊維、炭素繊維)が挙げられる。熱伝導性充填剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Thermal conductive filler>
The heat conductive filler can be selected from known materials in view of the desired thermal conductivity and filling property, for example, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, aluminum, copper and silver. Examples thereof include metals such as, alumina, metal oxides such as magnesium oxide, metal nitrides such as aluminum nitride, boron nitride and silicon nitride, carbon nanotubes, metallic silicon and fiber fillers (glass fiber, carbon fiber). The heat conductive filler may be used alone or in combination of two or more.
 本技術に係る熱伝導性組成物は、例えば、良好な難燃性を実現する観点では、熱伝導性充填剤として無機フィラーを含有することが好ましく、窒素化合物を含有することがより好ましく、熱伝導率が60W/m・K以上である窒素化合物を含有することがさらに好ましい。このような窒素化合物としては、窒化アルミニウムや窒化ホウ素が好ましく、窒化アルミニウムがより好ましい。また、本技術に係る熱伝導性組成物は、熱伝導性充填剤として、窒化アルミニウム、金属水酸化物、金属酸化物及び炭素繊維の少なくとも1種を含有してもよい。金属水酸化物及び金属酸化物としては、水酸化アルミニウム、アルミナ、窒化アルミニウム、酸化マグネシウムなどが挙げられる。例えば、熱伝導性充填剤としては、アルミナのみ、窒化アルミニウムのみ、又は炭素繊維のみを用いてもよい。特に、本技術に係る熱伝導性組成物は、熱伝導性充填剤として、難燃性と熱伝導性の観点から、少なくとも窒化アルミニウムを含有することが好ましく、窒化アルミニウムとアルミナと酸化マグネシウムとの混合物を用いることがより好ましく、この混合物に炭素繊維をさらに含有させたものを用いてもよい。 The thermally conductive composition according to the present technology preferably contains, for example, an inorganic filler as a thermally conductive filler, more preferably a nitrogen compound, and heat, from the viewpoint of achieving good flame retardancy. It is more preferable to contain a nitrogen compound having a conductivity of 60 W / m · K or more. As such a nitrogen compound, aluminum nitride or boron nitride is preferable, and aluminum nitride is more preferable. Further, the heat conductive composition according to the present technology may contain at least one of aluminum nitride, metal hydroxide, metal oxide and carbon fiber as the heat conductive filler. Examples of the metal hydroxide and the metal oxide include aluminum hydroxide, alumina, aluminum nitride, magnesium oxide and the like. For example, as the heat conductive filler, only alumina, only aluminum nitride, or only carbon fibers may be used. In particular, the heat conductive composition according to the present technology preferably contains at least aluminum nitride as a heat conductive filler from the viewpoint of flame retardancy and heat conductivity, and contains aluminum nitride, alumina, and magnesium oxide. It is more preferable to use a mixture, and a mixture containing carbon fibers further may be used.
 熱伝導性組成物中の熱伝導性充填剤の含有量は、所望の熱伝導率などに応じて適宜決定することができ、熱伝導性組成物中における体積含有量を、例えば80~90体積%とすることができる。熱伝導性組成物中の熱伝導性充填剤の含有量が80体積%未満であると、十分な熱伝導率を得るのが難しい傾向にある。また、熱伝導性組成物中の熱伝導性充填剤の含有量が90体積%を超えると、熱伝導性充填剤の充填が難しい傾向にある。熱伝導性組成物中の熱伝導性充填剤の含有量は、83体積%以上とすることもでき、84体積%以上とすることもでき、85体積%以上とすることもでき、83~85体積%とすることもできる。熱伝導性充填剤を2種以上併用するときは、その合計量が上記含有量の範囲を満たすことが好ましい。 The content of the heat conductive filler in the heat conductive composition can be appropriately determined according to the desired thermal conductivity and the like, and the volume content in the heat conductive composition can be set to, for example, 80 to 90 volumes. Can be%. When the content of the heat conductive filler in the heat conductive composition is less than 80% by volume, it tends to be difficult to obtain sufficient thermal conductivity. Further, when the content of the heat conductive filler in the heat conductive composition exceeds 90% by volume, it tends to be difficult to fill the heat conductive filler. The content of the heat conductive filler in the heat conductive composition can be 83% by volume or more, 84% by volume or more, 85% by volume or more, and 83 to 85%. It can also be% by volume. When two or more kinds of thermally conductive fillers are used in combination, it is preferable that the total amount satisfies the above range of contents.
 また、熱伝導性充填剤が窒化アルミニウムを含有する場合、熱伝導性充填剤中の窒化アルミニウムの含有量は、1~100体積%とすることができる。 Further, when the heat conductive filler contains aluminum nitride, the content of aluminum nitride in the heat conductive filler can be 1 to 100% by volume.
 <アルコキシシラン化合物>
 熱伝導性組成物は、アルコキシシラン化合物を含有する。アルコキシシラン化合物は、熱伝導性組成物中において、例えば、熱伝導性充填剤に含まれる程度の水分と加水分解して、熱伝導性充填剤に結合し、熱伝導性充填剤の分散に寄与する。アルコキシシラン化合物は、ケイ素原子(Si)が持つ4個の結合のうち、1~3個がアルコキシ基と結合し、残余の結合が有機置換基と結合した構造を有する化合物である。
<Alkoxysilane compound>
The thermally conductive composition contains an alkoxysilane compound. In the heat conductive composition, the alkoxysilane compound is hydrolyzed with, for example, the amount of water contained in the heat conductive filler, binds to the heat conductive filler, and contributes to the dispersion of the heat conductive filler. do. The alkoxysilane compound is a compound having a structure in which 1 to 3 of the four bonds of the silicon atom (Si) are bonded to an alkoxy group and the remaining bonds are bonded to an organic substituent.
 アルコキシシラン化合物が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロトキシ基、ブトキシ基、ペントキシ基、及びヘキサトキシ基が挙げられる。アルコキシシラン化合物は、入手容易性の観点では、メトキシ基又はエトキシ基を有するアルコキシシラン化合物が好ましい。アルコキシシラン化合物の有するアルコキシ基の数は、無機物としての熱伝導性充填材との親和性をより高める観点では、2つ以上が好ましく、3つ(トリアルコキシシラン)がより好ましい。アルコキシシラン化合物の具体例としては、トリメトキシシラン化合物及びトリエトキシシラン化合物から選ばれる少なくとも1種が好ましい。 Examples of the alkoxy group contained in the alkoxysilane compound include a methoxy group, an ethoxy group, a protoxy group, a butoxy group, a pentoxy group, and a hexatoxy group. The alkoxysilane compound is preferably an alkoxysilane compound having a methoxy group or an ethoxy group from the viewpoint of availability. The number of alkoxy groups contained in the alkoxysilane compound is preferably two or more, and more preferably three (trialkoxysilane), from the viewpoint of further enhancing the affinity with the heat conductive filler as an inorganic substance. As a specific example of the alkoxysilane compound, at least one selected from a trimethoxysilane compound and a triethoxysilane compound is preferable.
 アルコキシシラン化合物の有する有機置換基に含まれる官能基は、例えば、アクリロイル基、アルキル基、カルボキシル基、ビニル基、メタクリル基、芳香族基、アミノ基、イソシアネート基、イソシアヌレート基、エポキシ基、ヒドロキシル基、メルカプト基が挙げられる。ここで、上述した付加反応型シリコーン樹脂の前駆体として、例えば白金触媒を含む付加反応型のオルガノポリシロキサンを用いる場合、アルコキシシラン化合物は、オルガノポリシロキサンの硬化反応に影響を与え難いものが好ましい。例えば、オルガノポリシロキサンとして、白金触媒を含む付加反応型のオルガノポリシロキサンを用いる場合、アルコキシシラン化合物の有機置換基は、アミノ基、イソシアネート基、イソシアヌレート基、ヒドロキシル基、又はメルカプト基を含まないことが好ましい。 The functional groups contained in the organic substituents of the alkoxysilane compound are, for example, an acryloyl group, an alkyl group, a carboxyl group, a vinyl group, a methacrylic group, an aromatic group, an amino group, an isocyanate group, an isocyanurate group, an epoxy group and a hydroxyl group. Examples include a group and a mercapto group. Here, when an addition reaction type organopolysiloxane containing a platinum catalyst is used as the precursor of the above-mentioned addition reaction type silicone resin, it is preferable that the alkoxysilane compound does not easily affect the curing reaction of the organopolysiloxane. .. For example, when an addition reaction type organopolysiloxane containing a platinum catalyst is used as the organopolysiloxane, the organic substituent of the alkoxysilane compound does not contain an amino group, an isocyanate group, an isocyanurate group, a hydroxyl group, or a mercapto group. Is preferable.
 熱伝導性充填剤の分散性をより高めて、熱伝導性充填剤をより高充填し易くする観点では、ケイ素原子に結合したアルキル基を有するアルキルアルコキシシラン化合物、すなわち、アルキル基含有アルコキシシラン化合物が好ましい。アルキル基含有アルコキシシラン化合物において、ケイ素原子に結合したアルキル基の炭素数は4以上であることが好ましく、6以上であってもよく、8以上であってもよく、10以上であってもよい。また、熱伝導性組成物の粘度をより低く抑える観点では、アルキル基含有アルコキシシラン化合物においてケイ素原子に結合したアルキル基の炭素数は、16以下であることが好ましく、14以下であってもよく、12以下であってもよい。アルキル基含有アルコキシシラン化合物において、ケイ素原子に結合したアルキル基は、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよい。 From the viewpoint of increasing the dispersibility of the thermally conductive filler and facilitating higher filling of the thermally conductive filler, an alkylalkoxysilane compound having an alkyl group bonded to a silicon atom, that is, an alkyl group-containing alkoxysilane compound. Is preferable. In the alkyl group-containing alkoxysilane compound, the number of carbon atoms of the alkyl group bonded to the silicon atom is preferably 4 or more, and may be 6 or more, 8 or more, or 10 or more. .. Further, from the viewpoint of suppressing the viscosity of the thermally conductive composition to be lower, the number of carbon atoms of the alkyl group bonded to the silicon atom in the alkyl group-containing alkoxysilane compound is preferably 16 or less, and may be 14 or less. , 12 or less. In the alkyl group-containing alkoxysilane compound, the alkyl group bonded to the silicon atom may be linear, branched, or cyclic.
 アルコキシシラン化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。アルコキシシラン化合物の具体例としては、アルキル基含有アルコキシシラン化合物以外に、ビニル基含有アルコキシシラン化合物、アクリロイル基含有アルコキシシラン化合物、メタクリル基含有アルコキシシラン化合物、芳香族基含有アルコキシシラン化合物、アミノ基含有アルコキシシラン化合物、イソシアネート基含有アルコキシシラン化合物、イソシアヌレート基含有アルコキシシラン化合物、エポキシ基含有アルコキシシラン化合物、メルカプト基含有アルコキシシラン化合物などが挙げられる。 The alkoxysilane compound may be used alone or in combination of two or more. Specific examples of the alkoxysilane compound include a vinyl group-containing alkoxysilane compound, an acryloyl group-containing alkoxysilane compound, a methacrylic group-containing alkoxysilane compound, an aromatic group-containing alkoxysilane compound, and an amino group-containing compound, in addition to the alkyl group-containing alkoxysilane compound. Examples thereof include an alkoxysilane compound, an isocyanate group-containing alkoxysilane compound, an isocyanurate group-containing alkoxysilane compound, an epoxy group-containing alkoxysilane compound, and a mercapto group-containing alkoxysilane compound.
 アルキル基含有アルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、ヘキサデシルトリメトキシシランなどが挙げられる。アルキル基含有アルコキシシラン化合物の中でも、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、及び、ヘキサデシルトリメトキシシランから選ばれる少なくとも1種が好ましく、n-デシルトリメトキシシラン及びヘキサデシルトリメトキシシランの少なくとも1種がより好ましい。 Examples of the alkyl group-containing alkoxysilane compound include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, and n-propyltri. Ethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, hexadecyltrimethoxy Examples include silane. Among the alkyl group-containing alkoxysilane compounds, isobutyltrimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxy At least one selected from silane and hexadecyltrimethoxysilane is preferable, and at least one of n-decyltrimethoxysilane and hexadecyltrimethoxysilane is more preferable.
 ビニル基含有アルコキシシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどが挙げられる。 Examples of the vinyl group-containing alkoxysilane compound include vinyltrimethoxysilane and vinyltriethoxysilane.
 アクリロイル基含有アルコキシシラン化合物としては、例えば、3-アクリロキシプロピルトリメトキシシランなどが挙げられる。 Examples of the acryloyl group-containing alkoxysilane compound include 3-acryloyloxypropyltrimethoxysilane.
 メタクリル基含有アルコキシシラン化合物としては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどが挙げられる。 Examples of the methacryl group-containing alkoxysilane compound include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyltriethoxysilane.
 芳香族基含有アルコキシシラン化合物としては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシランなどが挙げられる。 Examples of the aromatic group-containing alkoxysilane compound include phenyltrimethoxysilane and phenyltriethoxysilane.
 アミノ基含有アルコキシシラン化合物としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。 Examples of the amino group-containing alkoxysilane compound include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltri. Examples thereof include methoxysilane, 3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
 イソシアネート基含有アルコキシシラン化合物としては、例えば、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。イソシアヌレート基含有アルコキシシラン化合物としては、例えば、トリス-(トリメトキシシリルプロピル)イソシアヌレートなどが挙げられる。 Examples of the isocyanate group-containing alkoxysilane compound include 3-isocyanatepropyltriethoxysilane. Examples of the isocyanurate group-containing alkoxysilane compound include tris- (trimethoxysilylpropyl) isocyanurate.
 エポキシ基含有アルコキシシラン化合物としては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが挙げられる。 Examples of the epoxy group-containing alkoxysilane compound include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid. Examples thereof include xipropyltriethoxysilane.
 メルカプト基含有アルコキシシラン化合物としては、例えば、3-メルカプトプロピルトリメトキシシランなどが挙げられる。 Examples of the mercapto group-containing alkoxysilane compound include 3-mercaptopropyltrimethoxysilane.
 特に、本技術に係る熱伝導性組成物は、融点が-40℃以上であり、沸点が100℃以上であるアルコシキシラン化合物を含有することが好ましい。アルコシキシラン化合物の沸点が100℃以上であることにより、アルコキシシラン化合物が常温で気化してしまうのをより効果的に抑制でき、その結果、縮合などで熱伝導性シートが硬くなりすぎることをより確実に防止できる。本明細書において、「常温」とは、JIS K 0050:2019(化学分析方法通則)に規定される15~25℃の範囲をいう。また、アルコキシシラン化合物の融点が-40℃以上であることにより、室温(例えば1~30℃)以下で熱伝導性シートが硬くなることをより効果的に抑制でき、シートの柔軟性をより良好にできる。アルコシキシラン化合物の沸点の上限値は特に制限されず、高ければ高いほど好ましい。融点が-40℃以上であり、沸点が100℃以上であるアルコシキシラン化合物の例としては、デシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、ヘキシルトリメトキシシランなどが挙げられる。本技術に係る熱伝導性組成物は、デシルトリメトキシシランとヘキサデシルトリメトキシシランとを併用することが好ましい。 In particular, the thermally conductive composition according to the present technology preferably contains an arcosixylan compound having a melting point of −40 ° C. or higher and a boiling point of 100 ° C. or higher. When the boiling point of the alcoholicylan compound is 100 ° C. or higher, it is possible to more effectively suppress the vaporization of the alkoxysilane compound at room temperature, and as a result, the heat conductive sheet becomes too hard due to condensation or the like. It can be prevented more reliably. In the present specification, "normal temperature" means a range of 15 to 25 ° C. specified in JIS K0050: 2019 (general rule of chemical analysis method). Further, when the melting point of the alkoxysilane compound is −40 ° C. or higher, it is possible to more effectively suppress the hardening of the thermally conductive sheet at room temperature (for example, 1 to 30 ° C.) or lower, and the flexibility of the sheet is further improved. Can be done. The upper limit of the boiling point of the alcoholicylan compound is not particularly limited, and the higher the boiling point, the more preferable. Examples of alcoholicylan compounds having a melting point of −40 ° C. or higher and a boiling point of 100 ° C. or higher include decyltrimethoxysilane, hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, n-dodecyltrimethoxysilane, and the like. Examples thereof include n-dodecyltriethoxysilane and hexyltrimethoxysilane. In the thermally conductive composition according to the present technology, it is preferable to use decyltrimethoxysilane and hexadecyltrimethoxysilane in combination.
 熱伝導性組成物中、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物の含有量は、例えば、50質量部以上とすることができ、100質量部以上とすることもでき、200質量部以上とすることもでき、300質量部以上とすることもでき、350質量部以上とすることもでき、400質量部以上とすることもでき、500質量部以上とすることもでき、600質量部以上とすることもできる。また、熱伝導性組成物中、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物の含有量の上限値は、例えば、750質量部以下とすることができ、700質量部以下とすることもでき、650質量部以下とすることもできる。 When the content of the organopolysiloxane in the heat conductive composition is 100 parts by mass, the content of the alkoxysilane compound can be, for example, 50 parts by mass or more, or 100 parts by mass or more. , 200 parts by mass or more, 300 parts by mass or more, 350 parts by mass or more, 400 parts by mass or more, 500 parts by mass or more. , 600 parts by mass or more can be used. Further, when the content of the organopolysiloxane in the heat conductive composition is 100 parts by mass, the upper limit of the content of the alkoxysilane compound can be, for example, 750 parts by mass or less, and 700 parts by mass or less. It can also be 650 parts by mass or less.
 また、熱伝導性組成物中のアルコキシシラン化合物の含有量は、特に限定されず、例えば、熱伝導性充填剤100質量部に対して、0.1~4.0質量部とすることができ、0.2~2.0質量部とすることもできる。アルコキシシラン化合物を2種以上併用するときは、その合計量が上記含有量の範囲を満たすことが好ましい。 The content of the alkoxysilane compound in the heat conductive composition is not particularly limited, and may be, for example, 0.1 to 4.0 parts by mass with respect to 100 parts by mass of the heat conductive filler. , 0.2 to 2.0 parts by mass. When two or more kinds of alkoxysilane compounds are used in combination, it is preferable that the total amount satisfies the above range of contents.
 また、アルコキシシラン化合物として、デシルトリメトキシシランとヘキサデシルトリメトキシシランとを併用する場合、デシルトリメトキシシランとヘキサデシルトリメトキシシランとの質量比(デシルトリメトキシシラン:ヘキサデシルトリメトキシシラン)は、100:98~100:201の範囲であることが好ましい。 When decyltrimethoxysilane and hexadecyltrimethoxysilane are used in combination as the alkoxysilane compound, the mass ratio of decyltrimethoxysilane to hexadecyltrimethoxysilane (decyltrimethoxysilane: hexadecyltrimethoxysilane) is , 100: 98 to 100: 201 are preferable.
 <シロキサン変性アクリル樹脂>
 本技術に係る熱伝導性組成物は、シロキサン変性アクリル樹脂を含有する。シロキサン変性アクリル樹脂とは、ポリジメチルシロキサン構造(-(CHSiO)-;nは1以上の整数)を1つ以上有する(メタ)アクリル酸エステルと、(メタ)アクリル酸アルキルエステルとの共重合体である。シロキサン変性アクリル樹脂は、熱伝導性組成物から得られるシートを軟化させるための成分である。シロキサン変性アクリル樹脂は、例えばシリコーンオイルと比べて、熱伝導性組成物中における熱伝導性充填剤の分散性をより向上させることができる。
<siloxane-modified acrylic resin>
The thermally conductive composition according to the present technology contains a siloxane-modified acrylic resin. The siloxane-modified acrylic resin is a (meth) acrylic acid ester having one or more polydimethylsiloxane structure (-(CH 3 ) 2 SiO) n- ; n is an integer of 1 or more) and a (meth) acrylic acid alkyl ester. It is a copolymer with. The siloxane-modified acrylic resin is a component for softening the sheet obtained from the thermally conductive composition. The siloxane-modified acrylic resin can further improve the dispersibility of the thermally conductive filler in the thermally conductive composition as compared with, for example, silicone oil.
 ポリジメチルシロキサン構造を1つ以上有する(メタ)アクリル酸エステルとしては、例えば、メタクリル酸ジメチコンが挙げられる。また、(メタ)アクリル酸アルキルエステルの例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸エチルヘキシル、アクリル酸トリデシル、アクリル酸ステアリルなどが挙げられる。 Examples of the (meth) acrylic acid ester having one or more polydimethylsiloxane structures include dimethicone methacrylate. Examples of the (meth) acrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylhexyl acrylate, tridecylic acrylate, and stearyl acrylate.
 シロキサン変性アクリル樹脂の具体例としては、ステアリル変性アクリレートシリコーン(アクリレートとアクリル酸ステアリルとメタクリル酸ジメチコンとの共重合体)、ベヘニル変性アクリレートシリコーン(アクリレートとアクリル酸ベヘニルとメタクリル酸ジメチコンとの共重合体)、エチルヘキシル変性アクリレートシリコーン(アクリレートとアクリル酸エチルヘキシルとメタクリル酸ジメチコンとの共重合体)などが挙げられる。なお、シロキサン変性アクリル樹脂は、カルボキシ基、エポキシ基、カルボニル基、水酸基、エーテル基等の親水性官能基を有していてもよい。 Specific examples of the siloxane-modified acrylic resin include stearyl-modified acrylate silicone (a copolymer of acrylate, stearyl acrylate and dimethicone methacrylate) and behenyl-modified acrylate silicone (a copolymer of acrylate, behenyl acrylate and dimethicone methacrylate). ), Ethylhexyl-modified acrylate silicone (a copolymer of acrylate, ethylhexyl acrylate and dimethicone methacrylate) and the like. The siloxane-modified acrylic resin may have a hydrophilic functional group such as a carboxy group, an epoxy group, a carbonyl group, a hydroxyl group, or an ether group.
 特に、本技術に係る熱伝導性組成物は、融点が55℃以下であるシロキサン変性アクリル樹脂を含有することが好ましく、融点が0~45℃の範囲であるシロキサン変性アクリル樹脂を含有することがより好ましい。シロキサン変性アクリル樹脂の融点が55℃以下であることにより、実使用範囲で柔軟性を発現し、例えばIC、CPU(Central Processing Unit)、AP(アプリケーションプロセッサ)等の半導体チップにより密着しやすくなるという利点がある。また、シロキサン変性アクリル樹脂の融点の下限値は、特に限定されないが、例えば、25℃以上であることが好ましい。シロキサン変性アクリル樹脂の融点が25℃以上であると、シロキサン変性アクリル樹脂が常温で固体となり、加熱によってシロキサン変性アクリル樹脂が液体になるので、熱伝導性シートとしたときに熱源への密着性をより向上させることができる。 In particular, the thermally conductive composition according to the present technology preferably contains a siloxane-modified acrylic resin having a melting point of 55 ° C. or lower, and may contain a siloxane-modified acrylic resin having a melting point in the range of 0 to 45 ° C. More preferred. When the melting point of the siloxane-modified acrylic resin is 55 ° C or lower, flexibility is exhibited in the actual use range, and it becomes easier to adhere to semiconductor chips such as ICs, CPUs (Central Processing Units), and APs (application processors). There are advantages. The lower limit of the melting point of the siloxane-modified acrylic resin is not particularly limited, but is preferably 25 ° C. or higher, for example. When the melting point of the siloxane-modified acrylic resin is 25 ° C or higher, the siloxane-modified acrylic resin becomes a solid at room temperature, and the siloxane-modified acrylic resin becomes a liquid by heating. It can be further improved.
 シロキサン変性アクリル樹脂の市販品としては、KP-541、KP-543、KP-545、KP-545L、KP-550、KP-561P、KP-562P、KP-574、KP-578(以上、信越シリコーン社製)、サイマック(登録商標)US-350(東亞合成社製)などが挙げられる。これらのシロキサン変性アクリル樹脂の市販品の中でも、融点が55℃以下である観点では、KP-561P、KP-562Pが好ましく、KP-561Pを含むことがより好ましい。シロキサン変性アクリル樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。また、融点が55℃以下であるシロキサン変性アクリル樹脂を2種以上併用してもよい。 Commercially available siloxane-modified acrylic resins include KP-541, KP-543, KP-545, KP-545L, KP-550, KP-561P, KP-562P, KP-574, and KP-578 (above, Shin-Etsu Silicone). (Manufactured by Toagosei Co., Ltd.), Cymac (registered trademark) US-350 (manufactured by Toagosei Co., Ltd.) and the like. Among these commercially available siloxane-modified acrylic resins, KP-561P and KP-562P are preferable, and KP-561P is more preferable, from the viewpoint of having a melting point of 55 ° C. or lower. The siloxane-modified acrylic resin may be used alone or in combination of two or more. Further, two or more kinds of siloxane-modified acrylic resins having a melting point of 55 ° C. or lower may be used in combination.
 熱伝導性組成物中、オルガノポリシロキサンの含有量を100質量部とした場合、シロキサン変性アクリル樹脂の含有量は、例えば、50質量部以上とすることができ、100質量部以上とすることもでき、200質量部以上とすることもでき、300質量部以上とすることもでき、350質量部以上とすることもできる。また、熱伝導性組成物中、オルガノポリシロキサンの含有量を100質量部とした場合、シロキサン変性アクリル樹脂の含有量の上限値は、例えば、500質量部以下とすることができ、450質量部以下とすることもでき、400質量部以下とすることもできる。 When the content of organopolysiloxane in the heat conductive composition is 100 parts by mass, the content of the siloxane-modified acrylic resin can be, for example, 50 parts by mass or more, or 100 parts by mass or more. It can be 200 parts by mass or more, 300 parts by mass or more, or 350 parts by mass or more. Further, when the content of the organopolysiloxane in the heat conductive composition is 100 parts by mass, the upper limit of the content of the siloxane-modified acrylic resin can be, for example, 500 parts by mass or less, and 450 parts by mass. It can be as follows, or it can be 400 parts by mass or less.
 また、シロキサン変性アクリル樹脂の含有量の下限値は、例えば、熱伝導性充填剤100質量部に対して0.1質量部以上とすることができ、0.3質量部以上とすることもでき、1質量部以上とすることもできる。また、シロキサン変性アクリル樹脂の含有量の上限値は、例えば、熱伝導性充填剤100質量部に対して、10質量部以下とすることができ、7質量部以下とすることもでき、5質量部以下とすることもでき、2質量部以下とすることもでき、1質量部以下とすることもできる。シロキサン変性アクリル樹脂を2種以上併用するときは、その合計量が上記含有量の範囲を満たすことが好ましい。 Further, the lower limit of the content of the siloxane-modified acrylic resin can be, for example, 0.1 part by mass or more with respect to 100 parts by mass of the heat conductive filler, or 0.3 part by mass or more. It may be 1 part by mass or more. Further, the upper limit of the content of the siloxane-modified acrylic resin can be, for example, 10 parts by mass or less, 7 parts by mass or less, or 5 parts by mass with respect to 100 parts by mass of the heat conductive filler. It may be less than 2 parts by mass, less than 2 parts by mass, or less than 1 part by mass. When two or more kinds of siloxane-modified acrylic resins are used in combination, it is preferable that the total amount satisfies the above range of contents.
 <酸化防止剤>
 本技術に係る熱伝導性樹脂組成物は、本技術の効果をより高める観点で、上述した成分に加えて酸化防止剤をさらに含有してもよい。酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤を用いてもよいし、ヒンダードフェノール系酸化防止剤とチオール系酸化防止剤とを併用してもよい。ヒンダードフェノール系酸化防止剤は、例えば、ラジカル(パーオキシラジカル)を捕捉して、オルガノポリシロキサン(付加反応型シリコーン樹脂)の酸化劣化の抑制により効果的に寄与する。チオール系酸化防止剤は、例えば、ヒドロオキサイドラジカルを分解して、オルガノポリシロキサン(付加反応型シリコーン樹脂)の酸化劣化の抑制により効果的に寄与する。
<Antioxidant>
The thermally conductive resin composition according to the present technology may further contain an antioxidant in addition to the above-mentioned components from the viewpoint of further enhancing the effect of the present technology. As the antioxidant, for example, a hindered phenolic antioxidant may be used, or a hindered phenolic antioxidant and a thiol-based antioxidant may be used in combination. The hindered phenolic antioxidant, for example, captures radicals (peroxy radicals) and effectively contributes to the suppression of oxidative deterioration of organopolysiloxane (addition reaction type silicone resin). For example, a thiol-based antioxidant effectively contributes by decomposing hydrooxide radicals and suppressing oxidative deterioration of organopolysiloxane (addition reaction type silicone resin).
 <ヒンダードフェノール系酸化防止剤>
 ヒンダードフェノール系酸化防止剤としては、ヒンダードフェノール骨格として下記式1で表される構造を有するものが挙げられる。ヒンダードフェノール系酸化防止剤は、下記式1で表される骨格を1つ以上有することが好ましく、下記式1で表される骨格を2つ以上有していてもよい。
<Hindered phenolic antioxidant>
Examples of the hindered phenolic antioxidant include those having a structure represented by the following formula 1 as a hindered phenol skeleton. The hindered phenolic antioxidant preferably has one or more skeletons represented by the following formula 1, and may have two or more skeletons represented by the following formula 1.
(式1)
Figure JPOXMLDOC01-appb-C000001
(Equation 1)
Figure JPOXMLDOC01-appb-C000001
 式1中、R及びRがt-ブチル基を表し、Rが水素原子を表す場合(ヒンダードタイプ)、Rがメチル基を表し、Rがt-ブチル基を表し、Rが水素原子を表す場合(セミヒンダードタイプ)、Rが水素原子を表し、Rがt-ブチル基を表し、Rがメチル基を表す場合(レスヒンダードタイプ)が好ましい。高温環境下での長期熱安定性の観点からは、セミヒンダードタイプ又はヒンダードタイプが好ましい。また、ヒンダードフェノール系酸化防止剤は、1分子中に、上述した式1で表される骨格を3つ以上有し、3つ以上の式1で表される骨格が、炭化水素基、又は、炭化水素基と-O-と-CO-との組み合わせからなる基で連結された構造であることが好ましい。炭化水素基は、直鎖状、分岐鎖状又は環状のいずれであってもよい。炭化水素基の炭素数は、例えば3~8とすることができる。ヒンダードフェノール系酸化防止剤の分子量は、例えば300~850とすることができ、500~800とすることもできる。 In formula 1, when R 1 and R 2 represent a t-butyl group and R 3 represents a hydrogen atom (hindered type), R 1 represents a methyl group, R 2 represents a t-butyl group, and R When 3 represents a hydrogen atom (semi-hindered type), R 1 represents a hydrogen atom, R 2 represents a t-butyl group, and R 3 represents a methyl group (less hindered type). From the viewpoint of long-term thermal stability in a high temperature environment, a semi-hindered type or a hindered type is preferable. Further, the hindered phenolic antioxidant has three or more skeletons represented by the above formula 1 in one molecule, and the three or more skeletons represented by the formula 1 are hydrocarbon groups or. , It is preferable that the structure is linked by a group consisting of a hydrocarbon group and a combination of —O— and —CO—. The hydrocarbon group may be linear, branched or cyclic. The number of carbon atoms of the hydrocarbon group can be, for example, 3 to 8. The molecular weight of the hindered phenolic antioxidant can be, for example, 300 to 850, or 500 to 800.
 ヒンダードフェノール系酸化防止剤は、その構造中に、エステル結合を有していてもよい。このようなフェノール系酸化防止剤としては、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、テトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオン酸]ペンタエリトリトール、2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート]などが挙げられる。また、ヒンダードフェノール系酸化防止剤としては、その構造中に、エステル結合を有しないもの、例えば1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタンなどを用いることもできる。 The hindered phenolic antioxidant may have an ester bond in its structure. Examples of such phenolic antioxidants include stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and tetrakis [3- (3', 5'-di-t-butyl-). 4'-Hydroxyphenyl) propionic acid] pentaerythritol, 2,2'-dimethyl-2,2'-(2,4,8,10-tetraoxaspiro [5.5] undecane-3,9-diyl) dipropane -1,1'-Diyl-bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propanoate] and the like can be mentioned. Further, as the hindered phenol-based antioxidant, those having no ester bond in its structure, for example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane and the like, etc. Can also be used.
 フェノール系酸化防止剤の市販品としては、アデカスタブAO-30、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-80(以上、ADEKA社製)、イルガノックス1010、イルガノックス1035、イルガノックス1076、イルガノックス1135(以上、BASF社製)などが挙げられる。フェノール系酸化防止剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Commercially available phenolic antioxidants include Adekastab AO-30, Adekastab AO-50, Adekastab AO-60, Adekastab AO-80 (above, manufactured by ADEKA), Irganox 1010, Irganox 1035, Irganox 1076, Ilganox 1135 (above, manufactured by BASF) and the like can be mentioned. The phenolic antioxidant may be used alone or in combination of two or more.
 フェノール系酸化防止剤の含有量の下限値は、例えば、オルガノポリシロキサン100質量部に対して、0.1質量部以上とすることができ、0.5質量部以上とすることもできる。また、フェノール系酸化防止剤の含有量の上限値は、例えば、オルガノポリシロキサン100質量部に対して、10質量部以下とすることができ、5質量部以下とすることもできる。フェノール系酸化防止剤を2種以上併用するときは、その合計量が上記含有量の範囲を満たすことが好ましい。 The lower limit of the content of the phenolic antioxidant can be, for example, 0.1 part by mass or more, or 0.5 part by mass or more with respect to 100 parts by mass of the organopolysiloxane. Further, the upper limit of the content of the phenolic antioxidant may be, for example, 10 parts by mass or less with respect to 100 parts by mass of the organopolysiloxane, and may be 5 parts by mass or less. When two or more kinds of phenolic antioxidants are used in combination, it is preferable that the total amount satisfies the above range of contents.
 <チオール系酸化防止剤>
 チオール系酸化防止剤としては、チオエーテル骨格を有するタイプや、ヒンダードフェノール骨格を有するタイプなどが挙げられる。例えば、チオール系酸化防止剤としては、3,3’-チオビスプロピオン酸ジトリデシル、テトラキス[3-(ドデシルチオ)プロピオン酸]ペンタエリトリトール、4,6-ビス(オクチルチオメチル)-o-クレゾール等が挙げられる。
<Thiol-based antioxidant>
Examples of the thiol-based antioxidant include a type having a thioether skeleton and a type having a hindered phenol skeleton. For example, examples of the thiol-based antioxidant include ditridecyl 3,3'-thiobispropionic acid, tetrakis [3- (dodecylthio) propionic acid] pentaerythritol, and 4,6-bis (octylthiomethyl) -o-cresol. Can be mentioned.
 チオール系酸化防止剤の市販品としては、アデカスタブAO-412S、アデカスタブAO-503、アデカスタブAO-26(以上、ADEKA社製)、スミライザーTP-D(住友化学社製)、Irganox1520L(BASFジャパン社製)などが挙げられる。これらのチオール系酸化防止剤の中でも、より硬化阻害が少ない点から、テトラキス[3-(ドデシルチオ)プロピオン酸]ペンタエリトリトール(市販品:アデカスタブAO-412S、スミライザーTP-D(住友化学社製)、Irganox1520Lが好ましい。チオール系酸化防止剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Commercially available thiol-based antioxidants include ADEKA STAB AO-412S, ADEKA STAB AO-503, ADEKA STAB AO-26 (above, manufactured by ADEKA), Sumilyzer TP-D (manufactured by Sumitomo Chemical), and Irganox1520L (manufactured by BASF Japan). ) And so on. Among these thiol-based antioxidants, tetrakis [3- (dodecylthio) propionic acid] pentaerythritol (commercially available: Adecastab AO-412S, Sumitomo Chemical Co., Ltd.), Irganox 1520L is preferable. The thiol-based antioxidant may be used alone or in combination of two or more.
 熱伝導性組成物中のチオール系酸化防止剤の含有量は、フェノール系酸化防止剤と同量程度としてもよいし、フェノール系酸化防止剤よりも多くしてもよい。例えば、チオール系酸化防止剤の含有量の下限値は、例えば、オルガノポリシロキサン100質量部に対して、0.1質量部以上とすることができる。また、チオール系酸化防止剤の含有量の上限値は、例えば、オルガノポリシロキサン100質量部に対して、20質量部以下とすることができ、10質量部以下とすることもできる。チオール系酸化防止剤を2種以上併用するときは、その合計量が上記含有量の範囲を満たすことが好ましい。 The content of the thiol-based antioxidant in the heat conductive composition may be about the same as that of the phenol-based antioxidant, or may be higher than that of the phenol-based antioxidant. For example, the lower limit of the content of the thiol-based antioxidant can be, for example, 0.1 part by mass or more with respect to 100 parts by mass of the organopolysiloxane. Further, the upper limit of the content of the thiol-based antioxidant may be, for example, 20 parts by mass or less, or 10 parts by mass or less, with respect to 100 parts by mass of the organopolysiloxane. When two or more kinds of thiol-based antioxidants are used in combination, it is preferable that the total amount satisfies the above range of contents.
 以上のように、本技術に係る熱伝導性組成物は、オルガノポリシロキサンと、熱伝導性充填剤と、アルコキシシラン化合物と、シロキサン変性アクリル樹脂とを含有する。これらの成分を併用することにより、その相乗効果で、熱伝導性組成物を熱伝導性シートとしたときに、熱伝導性と柔軟性を良好にすることができる。また、本技術に係る熱伝導性組成物は、熱伝導性組成物中に、熱伝導性充填剤を80~90体積%含有しても、シート状にしたときの熱伝導性と柔軟性を良好にすることができる。 As described above, the thermally conductive composition according to the present technology contains an organopolysiloxane, a thermally conductive filler, an alkoxysilane compound, and a siloxane-modified acrylic resin. By using these components in combination, the synergistic effect can improve the thermal conductivity and flexibility when the thermally conductive composition is made into a thermally conductive sheet. Further, the heat conductive composition according to the present technology has heat conductivity and flexibility when formed into a sheet even if the heat conductive filler contains 80 to 90% by volume of the heat conductive filler. Can be good.
 なお、本技術に係る熱伝導性組成物は、本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有してもよい。例えば、熱伝導性組成物は、熱伝導シートの耐劣化性をより良好にする目的で、重金属不活性化剤をさらに含有してもよい。重金属不活性化剤としては、例えば、ADEKA社製のアデカスタブZSシリーズ(アデカスタブZS-90など)が挙げられる。 The thermally conductive composition according to the present technology may further contain components other than the above-mentioned components as long as the effects of the present technology are not impaired. For example, the thermally conductive composition may further contain a heavy metal inactivating agent for the purpose of improving the deterioration resistance of the thermally conductive sheet. Examples of the heavy metal deactivating agent include the ADEKA STAB ZS series (such as ADEKA STAB ZS-90) manufactured by ADEKA.
 本技術に係る熱伝導性組成物は、例えば、上述した各成分を混錬機(遊星式混錬機、ボールミル、ヘンシェルミキサーなど)を用いて混錬して得ることができる。なお、オルガノポリシロキサンとして、例えば2液型の付加反応型シリコーン樹脂を用いる場合は、主剤と硬化剤と熱伝導性充填剤を一度に混合するのではなく、熱伝導性充填剤の所要量を主剤と硬化剤それぞれに分割して混合しておき、使用時に主剤を含む成分と硬化剤を含む成分とを混合するようにしてもよい。 The thermally conductive composition according to the present technology can be obtained, for example, by kneading each of the above-mentioned components using a kneader (planetary kneader, ball mill, Henschel mixer, etc.). When, for example, a two-component addition reaction type silicone resin is used as the organopolysiloxane, the required amount of the heat conductive filler is not mixed at once with the main agent, the curing agent and the heat conductive filler. The main agent and the curing agent may be divided and mixed separately, and the component containing the main agent and the component containing the curing agent may be mixed at the time of use.
 <熱伝導性シート>
 図1は、熱伝導性シートの一例を示す断面図である。熱伝導性シート1は、上述した熱伝導性組成物の硬化物からなる。例えば、熱伝導性シート1は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリオレフィン、ポリメチルペンテン、グラシン紙等から形成された剥離フィルム11上に、熱伝導性組成物を所望の厚みで塗布し、加熱することで、バインダ樹脂であるオルガノポリシロキサンを硬化させて得られる。熱伝導性シート1の厚み(剥離フィルム11を除くシート本体の厚み)は、目的に応じて適宜選択することができ、例えば、0.05~5mmとすることができる。
<Thermal conductive sheet>
FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet. The heat conductive sheet 1 is made of a cured product of the above-mentioned heat conductive composition. For example, the heat conductive sheet 1 is desired to have a heat conductive composition on a release film 11 formed of, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyolefin, polymethylpentene, glassin paper, or the like. It is obtained by curing the organopolysiloxane, which is a binder resin, by applying it to the thickness of the above and heating it. The thickness of the heat conductive sheet 1 (thickness of the sheet body excluding the release film 11) can be appropriately selected depending on the intended purpose, and can be, for example, 0.05 to 5 mm.
 熱伝導性シート1は、上述した熱伝導性組成物を用いることで、熱伝導率を3.5W/m・K以上とすることができ、4.0W/m・K以上とすることもでき、4.5W/m・K以上とすることもでき、5.0W/m・K以上とすることもでき、6.0W/m・K以上とすることもでき、7.0W/m・K以上とすることもでき、7.5W/m・K以上とすることもできる。熱伝導性シート1の熱伝導率の上限値は、特に限定されないが、例えば、12.0W/m・K以下とすることができ、11.0W/m・K以下とすることもでき、9.0W/m・K以下とすることもできる。熱伝導率の測定方法は、後述する実施例と同様である。 By using the above-mentioned thermal conductive composition, the thermal conductive sheet 1 can have a thermal conductivity of 3.5 W / m · K or more, and can also have a thermal conductivity of 4.0 W / m · K or more. , 4.5 W / m · K or more, 5.0 W / m · K or more, 6.0 W / m · K or more, 7.0 W / m · K or more It can be more than 7.5 W / m · K or more. The upper limit of the thermal conductivity of the thermal conductivity sheet 1 is not particularly limited, but can be, for example, 12.0 W / m · K or less, 11.0 W / m · K or less, and 9 It can also be set to 0.0 W / m · K or less. The method for measuring the thermal conductivity is the same as in the examples described later.
 また、熱伝導性シート1は、シート自体が熱によって軟化するため、例えば発熱素子や放熱体との密着度を高めて熱抵抗値(接触熱抵抗値)を低下させることができる。例えば、熱伝導性シート1は、熱抵抗値を1.0℃・cm/W以下とすることができ、0.9℃・cm/W以下とすることもでき、0.7℃・cm/W以下とすることもでき、0.5℃・cm/W以下とすることもでき、0.3℃・cm/W以下とすることもでき、0.2℃・cm/W以下とすることもできる。熱伝導性シート1の熱抵抗値の下限値は、特に限定されないが、例えば、0.01℃・cm/W以上とすることができる。熱抵抗値の測定方法は、後述する実施例と同様である。 Further, since the heat conductive sheet 1 itself is softened by heat, for example, the degree of adhesion to a heat generating element or a heat radiator can be increased and the thermal resistance value (contact thermal resistance value) can be lowered. For example, the thermal resistance sheet 1 can have a thermal resistance value of 1.0 ° C. cm 2 / W or less, 0.9 ° C. cm 2 / W or less, and 0.7 ° C. ·. It can be cm 2 / W or less, 0.5 ° C. cm 2 / W or less, 0.3 ° C. cm 2 / W or less, 0.2 ° C. cm 2 or less. It can also be less than / W. The lower limit of the thermal resistance value of the heat conductive sheet 1 is not particularly limited, but may be, for example, 0.01 ° C. cm 2 / W or more. The method for measuring the thermal resistance value is the same as in the examples described later.
 また、熱伝導性シート1は、例えば、200℃、24時間の条件でエージングしたときの下記式2で示す熱伝導率の維持率を70%以上とすることができ、75%以上とすることもでき、80%以上とすることもでき、90%以上とすることもできる。
 式2:(エージング処理後の熱伝導性シートの熱伝導率/エージング処理前の熱伝導性シートの熱伝導率)×100
Further, the thermal conductivity sheet 1 can have a thermal conductivity retention rate of 70% or more, which is 75% or more, as shown by the following formula 2 when aged at 200 ° C. for 24 hours, for example. It can be 80% or more, or 90% or more.
Equation 2: (Thermal conductivity of the heat conductive sheet after the aging treatment / The thermal conductivity of the heat conductive sheet before the aging treatment) × 100
 また、熱伝導性シート1は、上述した熱伝導性組成物を用いるため、柔軟性が良好であり、例えば、45℃、荷重1kgf/cmで圧力をかけたときの圧縮率(熱伝導性シートの初期厚みからの変化量)を熱伝導性シートの初期厚みで除した比率、すなわち、下記式3で表される圧縮率を60%以上とすることができ、70%以上とすることもでき、80%以上とすることもできる。圧縮率の上限値は、特に限定されないが、例えば、90%以下とすることができる。
式3:圧縮率(%)=((熱伝導性シートの初期厚み-熱伝導性シートの初期圧縮厚)/熱伝導性シートの初期厚み)×100
Further, since the heat conductive sheet 1 uses the above-mentioned heat conductive composition, it has good flexibility. For example, the compressibility (heat conductivity) when pressure is applied at 45 ° C. and a load of 1 kgf / cm 2 . The ratio of the amount of change from the initial thickness of the sheet) divided by the initial thickness of the heat conductive sheet, that is, the compressibility represented by the following formula 3 can be 60% or more, and can be 70% or more. It can be 80% or more. The upper limit of the compression rate is not particularly limited, but can be, for example, 90% or less.
Equation 3: Compressibility (%) = ((Initial thickness of heat conductive sheet-Initial compression thickness of heat conductive sheet) / Initial thickness of heat conductive sheet) × 100
 以上のように、熱伝導性シート1は、上述した熱伝導性組成物からなるため、オルガノポリシロキサンと、熱伝導性充填剤と、アルコキシシラン化合物と、シロキサン変性アクリル樹脂との相乗効果により、熱伝導性と柔軟性が良好であり、特に、熱伝導性充填剤を80~90体積%含有する熱伝導性組成物からなるものであっても、熱伝導性と柔軟性が良好である。また、熱伝導性シート1は、圧縮に対する反発が小さく、シート自体が熱によって軟化するため、例えば発熱素子や放熱体との密着性が良好である。すなわち、熱伝導性シート1は、発熱素子や放熱体に対して高追従性を有する。 As described above, since the heat conductive sheet 1 is made of the above-mentioned heat conductive composition, due to the synergistic effect of the organopolysiloxane, the heat conductive filler, the alkoxysilane compound, and the siloxane modified acrylic resin, It has good thermal conductivity and flexibility, and in particular, even those made of a thermally conductive composition containing 80 to 90% by volume of a thermally conductive filler have good thermal conductivity and flexibility. Further, since the heat conductive sheet 1 has a small repulsion against compression and the sheet itself is softened by heat, it has good adhesion to, for example, a heat generating element or a heat radiating body. That is, the heat conductive sheet 1 has high followability to the heat generating element and the radiator.
 このように、熱伝導性シート1は、熱伝導性と柔軟性が良好であるため、発熱体と放熱部材との間に熱伝導性シート1を挟持させた放熱構造に適用できる。発熱体としては、例えば、CPU、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱体には、通信機器における光トランシーバー等の光信号を受信する部品も含まれる。放熱部材としては、発熱体から発生する熱を伝導して外部に放散させるものであればよく、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバー筐体などと組み合わされて用いられるものが挙げられる。また、放熱部材としては、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等も挙げられる。 As described above, since the heat conductive sheet 1 has good heat conductivity and flexibility, it can be applied to a heat dissipation structure in which the heat conductive sheet 1 is sandwiched between a heating element and a heat radiation member. Examples of the heating element include integrated circuit elements such as CPUs, GPUs (Graphics Processing Units), DRAMs (Dynamic Random Access Memory), flash memories, transistors, resistors, and other electronic components that generate heat in electric circuits. The heating element also includes a component that receives an optical signal such as an optical transceiver in a communication device. The heat radiating member may be a member that conducts heat generated from a heating element and dissipates it to the outside. For example, a heat sink, a heat spreader, or the like, which is used in combination with an integrated circuit element, a transistor, an optical transceiver housing, or the like. Can be mentioned. Further, examples of the heat radiating member include a radiator, a cooler, a die pad, a printed circuit board, a cooling fan, a Pelche element, a heat pipe, a metal cover, a housing, and the like.
 図2は、半導体装置の一例を示す断面図である。実使用時には、例えば、剥離フィルム11を剥離した熱伝導性シート1を、半導体装置等の電子部品や、各種電子機器の内部に実装することができる。熱伝導性シート1は、例えば、図2に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱体と放熱部材との間に挟持される。すなわち、電子機器は、発熱体と、放熱部材と、発熱体と放熱部材との間に配置された熱伝導性シート1とを備える。図2に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導性シート1とを少なくとも有し、熱伝導性シート1がヒートスプレッダ52と電子部品51との間に挟持されている。熱伝導性シート1を用いることによって、半導体装置50は、高い放熱性を有する。また、熱伝導性シート1は、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導性シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できる。 FIG. 2 is a cross-sectional view showing an example of a semiconductor device. In actual use, for example, the heat conductive sheet 1 from which the release film 11 has been peeled off can be mounted inside an electronic component such as a semiconductor device or various electronic devices. As shown in FIG. 2, for example, the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices and is sandwiched between a heating element and a heat radiating member. That is, the electronic device includes a heating element, a heat radiating member, and a heat conductive sheet 1 arranged between the heating element and the heat radiating member. The semiconductor device 50 shown in FIG. 2 has at least an electronic component 51, a heat spreader 52, and a heat conductive sheet 1, and the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the electronic component 51. By using the heat conductive sheet 1, the semiconductor device 50 has high heat dissipation. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 52 and the heat sink 53 to form a heat radiating member that dissipates heat of the electronic component 51 together with the heat spreader 52. The mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 and between the heat spreader 52 and the heat sink 53, and can be appropriately selected depending on the configuration of the electronic device or the semiconductor device.
 本技術は、上述した放熱構造を備えた物品にも適用することができる。このような放熱構造を備える物品としては、例えば、パーソナルコンピュータ、サーバ機器、携帯電話、無線基地局、自動車等輸送機械のエンジン、動力伝達系、操舵系、エアコンなど電装品の制御に用いられるECU(Electronic Control Unit)が挙げられる。 This technology can also be applied to articles equipped with the heat dissipation structure described above. Articles having such a heat dissipation structure include, for example, ECUs used for controlling electrical components such as personal computers, server devices, mobile phones, radio base stations, engines of transportation machines such as automobiles, power transmission systems, steering systems, and air conditioners. (Electronic Control Unit) can be mentioned.
 以下、本技術の実施例について説明する。本実施例では、表1に示す原料からなる熱伝導性組成物を得た。この熱伝導性組成物について、分散性の評価を行った。また、熱伝導性組成物から得られた熱伝導性シートについて、表1に示す各評価を行った。なお、本技術は、以下の実施例に限定されるものではない。 Hereinafter, examples of this technology will be described. In this example, a thermally conductive composition composed of the raw materials shown in Table 1 was obtained. The dispersibility of this thermally conductive composition was evaluated. In addition, each evaluation shown in Table 1 was performed on the heat conductive sheet obtained from the heat conductive composition. The present technology is not limited to the following examples.
 <熱伝導性組成物の作製>
 本実施例で用いた原料は、以下の通りである。
<Preparation of thermally conductive composition>
The raw materials used in this example are as follows.
 シリコーン樹脂A(製品名:CY52-276A、東レ・ダウコーニング社製)
 シリコーン樹脂B(製品名:CY52-276B、東レ・ダウコーニング社製)
 アクリルポリマーとジメチルポリシロキサンからなるグラフト共重合体(製品名:KP-561P、融点25~35℃、信越シリコーン社製)
 アクリルポリマーとジメチルポリシロキサンからなるグラフト共重合体(製品名:KP-578、融点55℃以下、信越シリコーン社製)
 シリコーン鎖が分岐したポリグリセリン変性シリコーン界面活性剤(製品名:KF-6106、信越シリコーン社製)
 アルキルトリアルコキシシラン:ヘキサデシルトリメトキシシラン(製品名:Dynasylan 9116(融点1℃、沸点155℃)、エボニック・ジャパン社製)
 アルキルトリアルコキシシラン:デシルトリメトキシシラン(製品名:Z-6210(融点-37℃、沸点115℃)、東レ・ダウコーニング社製)
 フェノール系酸化防止剤(製品名:AO-80、ADEKA社製)
 重金属不活性化剤(ZS-90、ADEKA社製)
 窒化アルミニウムと、アルミナ(球状アルミナ)と、酸化マグネシウムとの混合物
 窒化アルミニウムと、アルミナ(球状アルミナ)との混合物
Silicone resin A (Product name: CY52-276A, manufactured by Toray Dow Corning)
Silicone resin B (Product name: CY52-276B, manufactured by Toray Dow Corning)
Graft copolymer composed of acrylic polymer and dimethylpolysiloxane (product name: KP-561P, melting point 25-35 ° C, manufactured by Shinetsu Silicone Co., Ltd.)
Graft copolymer composed of acrylic polymer and dimethylpolysiloxane (product name: KP-578, melting point 55 ° C or less, manufactured by Shin-Etsu Silicone Co., Ltd.)
Polyglycerin-modified silicone surfactant with branched silicone chains (Product name: KF-6106, manufactured by Shinetsu Silicone Co., Ltd.)
Alkoxytrialkoxysilane: Hexadecyltrimethoxysilane (Product name: Dynasylan 9116 (melting point 1 ° C, boiling point 155 ° C), manufactured by Evonik Japan)
Alkoxytrialkoxysilane: decyltrimethoxysilane (product name: Z-6210 (melting point -37 ° C, boiling point 115 ° C), manufactured by Toray Dow Corning)
Phenolic antioxidant (Product name: AO-80, manufactured by ADEKA)
Heavy metal deactivating agent (ZS-90, manufactured by ADEKA Corporation)
Mixture of Aluminum Nitride, Alumina (Spherical Alumina) and Magnesium Oxide Mixage of Aluminum Nitride and Alumina (Spherical Alumina)
 <実施例1~5、比較例1,2>
 熱伝導性充填剤として、窒化アルミニウムとアルミナとの混合物、又は、窒化アルミニウムとアルミナと酸化マグネシウムの混合物を用いた。窒化アルミニウムとアルミナとの混合物を用いる実施例1,3の場合の混合量は、シリコーン樹脂100質量部に対して窒化アルミニウムを約10640質量部、アルミナを約1880質量部とし、シリコーン樹脂に一種ずつ添加する毎に攪拌した。また、窒化アルミニウムとアルミナと酸化マグネシウムの混合物を用いる実施例2,4,5の場合の混合量は、シリコーン樹脂100質量部に対して窒化アルミニウムを約4220質量部、アルミナを約2800質量部、酸化マグネシウムを約4980質量部とし、シリコーン樹脂に一種ずつ添加する毎に攪拌した。また、窒化アルミニウムとアルミナと酸化マグネシウムの混合物を用いる比較例1,2の場合の混合量は、シリコーン樹脂100質量部に対して窒化アルミニウムとアルミナと酸化マグネシウムとを合計約8000質量部(窒化アルミニウム:アルミナ:酸化マグネシウム=1.5:1:1.78の比率)とし、シリコーン樹脂に一種ずつ添加する毎に攪拌した。攪拌には遊星撹拌機を用い、回転数は1200rpmとした。次に、バーコーターを用いて熱伝導性組成物を厚み2mmまたは1.5mmとなるように、剥離フィルム(材質:PET、厚み125μm)上に塗布した後、剥離剤を塗布したカバーフィルム(材質:PET、厚み50μm)をかぶせ、80℃で6時間加熱して熱伝導性シートを得た。
<Examples 1 to 5, Comparative Examples 1 and 2>
As the heat conductive filler, a mixture of aluminum nitride and alumina or a mixture of aluminum nitride, alumina and magnesium oxide was used. In the case of Examples 1 and 3 using the mixture of aluminum nitride and alumina, the mixing amount is about 10640 parts by mass of aluminum nitride and about 1880 parts by mass of alumina with respect to 100 parts by mass of the silicone resin, one by one for the silicone resin. It was stirred each time it was added. In the case of Examples 2, 4 and 5 using a mixture of aluminum nitride, alumina and magnesium oxide, the mixing amount was about 4220 parts by mass of aluminum nitride and about 2800 parts by mass of alumina with respect to 100 parts by mass of the silicone resin. The amount of magnesium oxide was about 4980 parts by mass, and the mixture was stirred each time it was added to the silicone resin one by one. Further, in the case of Comparative Examples 1 and 2 using a mixture of aluminum nitride, alumina and magnesium oxide, the total mixing amount of aluminum nitride, alumina and magnesium oxide is about 8000 parts by mass (aluminum nitride) with respect to 100 parts by mass of the silicone resin. : Alumina: Magnesium oxide = 1.5: 1: 1.78), and the mixture was stirred each time it was added to the silicone resin one by one. A planetary stirrer was used for stirring, and the rotation speed was set to 1200 rpm. Next, using a bar coater, the heat conductive composition was applied onto a release film (material: PET, thickness 125 μm) so as to have a thickness of 2 mm or 1.5 mm, and then a cover film (material) to which a release agent was applied. : PET, thickness 50 μm) was covered and heated at 80 ° C. for 6 hours to obtain a heat conductive sheet.
 [分散性]
 熱伝導性充填剤を除く成分を混合した熱伝導性組成物中に、熱伝導性充填剤を一種ずつ添加して攪拌した。攪拌には、市販の自転公転撹拌機(自公転式真空撹拌脱泡ミキサー(装置名:V-mini 300、EME社製)を用い、回転数を1200rpmとした。熱伝導性組成物中に熱伝導性充填剤が分散するまでの時間について目視で評価した。結果を表1に示す。
A:2分以内
B:2分超、4分以内
C:4分超、6分以内
D:6分超、10分以内
E:10分超攪拌しても全く混合できず
[Dispersity]
The heat conductive filler was added one by one to the heat conductive composition in which the components excluding the heat conductive filler were mixed, and the mixture was stirred. A commercially available rotation / revolution stirrer (rotational vacuum stirring defoaming mixer (device name: V-mini 300, manufactured by EME) was used for stirring, and the rotation speed was set to 1200 rpm. The time required for the conductive filler to disperse was visually evaluated. The results are shown in Table 1.
A: Within 2 minutes B: Over 2 minutes, within 4 minutes C: Over 4 minutes, within 6 minutes D: Over 6 minutes, within 10 minutes E: Over 10 minutes Stirring does not allow mixing at all.
 [初期熱伝導率]
 ASTM-D5470に準拠した熱抵抗測定装置を用いて、荷重1kgf/cmをかけて熱伝導性シートの厚み方向の初期熱伝導率(W/m・K)を測定した。測定時のシート温度は45℃であった。結果を表1に示す。
[Initial thermal conductivity]
Using a thermal resistance measuring device compliant with ASTM-D5470, the initial thermal conductivity (W / m · K) in the thickness direction of the heat conductive sheet was measured by applying a load of 1 kgf / cm 2 . The sheet temperature at the time of measurement was 45 ° C. The results are shown in Table 1.
 [圧縮率]
 圧縮率(初期圧縮率)は、各実施例及び比較例で作成された熱伝導性シートを、所定の大きさ(20mmφ×厚み2000μm)にカットし、熱伝導性シートの平均温度が45℃になるようにし、1kgf/cmの荷重をかけ、安定した後の厚み(初期圧縮厚[μm])を測定し、上述した式3に従って圧縮率(%)を求めた。結果を表1に示す。
[Compression rate]
For the compressibility (initial compressibility), the heat conductive sheet prepared in each example and comparative example is cut into a predetermined size (20 mmφ × thickness 2000 μm), and the average temperature of the heat conductive sheet becomes 45 ° C. A load of 1 kgf / cm 2 was applied, and the thickness after stabilization (initial compression thickness [μm]) was measured, and the compressibility (%) was determined according to the above formula 3. The results are shown in Table 1.
 [熱抵抗値]
 ASTM-D5470に準拠した熱抵抗測定装置を用いて、荷重1kgf/cmをかけて熱伝導性シートの熱抵抗値(℃・cm/W)を測定した。実用上、熱抵抗値が1.0(℃・cm/W)以下であることが好ましい。結果を表1に示す。
[Thermal resistance value]
Using a thermal resistance measuring device compliant with ASTM-D5470, the thermal resistance value (° C. cm 2 / W) of the heat conductive sheet was measured by applying a load of 1 kgf / cm 2 . Practically, the thermal resistance value is preferably 1.0 (° C. cm 2 / W) or less. The results are shown in Table 1.
 [取扱性(室温)]
 室温(25℃)において、剥離フィルムから熱伝導シートを容易に剥離できたときを取扱性が「OK」と評価し、熱伝導性シートを剥離できない場合を取扱性が「NG」と評価した。結果を表1に示す。
[Handling (room temperature)]
At room temperature (25 ° C.), the handleability was evaluated as "OK" when the heat conductive sheet could be easily peeled off from the release film, and the handleability was evaluated as "NG" when the heat conductive sheet could not be peeled off. The results are shown in Table 1.
 [軟化性]
 25.4mm角、厚み1.5mmの熱伝導シートを、圧縮速度25.4mm/minで70%圧縮した際の最大応力と、10分間圧縮状態を保持した場合のシートの残留応力を観測し、最大応力が300psi以下、残留応力が50psi以下のときをOKと評価し、それ以外のときをNGと評価した。結果を表1に示す。
[Softness]
Observe the maximum stress when a 25.4 mm square, 1.5 mm thick heat conductive sheet is compressed by 70% at a compression rate of 25.4 mm / min, and the residual stress of the sheet when the compressed state is held for 10 minutes. When the maximum stress was 300 psi or less and the residual stress was 50 psi or less, it was evaluated as OK, and when it was not, it was evaluated as NG. The results are shown in Table 1.
 [耐熱安定性]
 熱伝導性シートを2mm厚、30mm×30mmにカットし、200℃、24時間のエージング(超加速試験)処理したときに、熱伝導性シートの形状が維持され、オイルブリードも最小限であるかどうか(耐熱安定性)を評価した。形状変化がなく、オイルブリード1mm以内のときを耐熱安定性が「〇」と評価し、形状が僅かに変形するがオイルブリード1mm以内のときを耐熱安定性が「△」と評価し、形状が大きく変形するとき又は「〇」か「△」に該当しないときを耐熱安定性が「×」と評価した。実用上、耐熱安定性の評価が「〇」又は「△」であることが好ましい。結果を表1に示す。
[Heat stability]
Is the shape of the heat conductive sheet maintained and the oil bleeding is minimal when the heat conductive sheet is cut to a thickness of 2 mm and 30 mm × 30 mm and aged at 200 ° C for 24 hours (super accelerated test)? Please evaluate (heat stability). When there is no shape change and the oil bleed is within 1 mm, the heat resistance stability is evaluated as "○", and when the shape is slightly deformed but the oil bleed is within 1 mm, the heat resistance stability is evaluated as "△" and the shape is The heat stability was evaluated as "x" when it was significantly deformed or when it did not correspond to "○" or "Δ". Practically, it is preferable that the evaluation of heat resistance stability is "〇" or "Δ". The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~5では、オルガノポリシロキサンと、熱伝導性充填剤と、アルコキシシラン化合物と、シロキサン変性アクリル樹脂とを含有し、オルガノポリシロキサンの含有量を100質量部とした場合、アルコキシシラン化合物とシロキサン変性アクリル樹脂の合計含有量が100質量部以上である熱伝導性組成物を用いたため、初期熱伝導率と軟化性(柔軟性)が良好な熱伝導性シートが得られることが分かった。 In Examples 1 to 5, when the organopolysiloxane, the heat conductive filler, the alkoxysilane compound, and the siloxane-modified acrylic resin are contained, and the content of the organopolysiloxane is 100 parts by mass, the alkoxysilane compound is used. Since the heat conductive composition having a total content of 100 parts by mass or more of the siloxane-modified acrylic resin was used, it was found that a heat conductive sheet having good initial thermal conductivity and softness (flexibility) could be obtained. ..
 一方、比較例1では、アルコキシシラン化合物を含有しない熱伝導性組成物を用いため、熱伝導性組成物の分散性が良好ではなく、熱伝導性シートとするのが難しいことが分かった。 On the other hand, in Comparative Example 1, since the heat conductive composition containing no alkoxysilane compound was used, it was found that the dispersibility of the heat conductive composition was not good and it was difficult to obtain a heat conductive sheet.
 比較例2では、シロキサン変性アクリル樹脂を含有しない熱伝導性組成物を用いため、軟化性が良好ではないことが分かった。 In Comparative Example 2, it was found that the softening property was not good because the heat conductive composition containing no siloxane-modified acrylic resin was used.
1 熱伝導性シート、11 剥離フィルム、50 半導体装置、51 電子部品、52 ヒートスプレッダ、53 ヒートシンク 1 Thermal conductive sheet, 11 release film, 50 semiconductor device, 51 electronic components, 52 heat spreader, 53 heat sink

Claims (13)

  1.  オルガノポリシロキサンと、
     熱伝導性充填剤と、
     アルコキシシラン化合物と、
     シロキサン変性アクリル樹脂とを含有し、
     上記オルガノポリシロキサンの含有量を100質量部とした場合、上記アルコキシシラン化合物と上記シロキサン変性アクリル樹脂の合計含有量が100質量部以上である、熱伝導性組成物。
    Organopolysiloxane and
    Thermally conductive filler and
    Alkoxysilane compound and
    Contains siloxane-modified acrylic resin,
    A thermally conductive composition in which the total content of the alkoxysilane compound and the siloxane-modified acrylic resin is 100 parts by mass or more, where the content of the organopolysiloxane is 100 parts by mass.
  2.  上記アルコキシシラン化合物が、融点が-40℃以上であり、沸点が100℃以上であるアルコシキシラン化合物を含む、請求項1に記載の熱伝導性組成物。 The thermally conductive composition according to claim 1, wherein the alkoxysilane compound contains an alcoholicylan compound having a melting point of −40 ° C. or higher and a boiling point of 100 ° C. or higher.
  3.  上記シロキサン変性アクリル樹脂の融点が55℃以下である、請求項1又は2に記載の熱伝導性組成物。 The thermally conductive composition according to claim 1 or 2, wherein the siloxane-modified acrylic resin has a melting point of 55 ° C. or lower.
  4.  上記シロキサン変性アクリル樹脂が常温で固体である、請求項1又は2に記載の熱伝導性組成物。 The heat conductive composition according to claim 1 or 2, wherein the siloxane-modified acrylic resin is solid at room temperature.
  5.  上記熱伝導性充填剤を80~90体積%含有する、請求項1~4のいずれか1項に記載の熱伝導性組成物。 The heat conductive composition according to any one of claims 1 to 4, which contains 80 to 90% by volume of the heat conductive filler.
  6.  上記アルコキシシラン化合物が、デシルトリメトキシシラン及びヘキサデシルトリメトキシシランの少なくとも1種を含有する、請求項1~5のいずれか1項に記載の熱伝導性組成物。 The thermally conductive composition according to any one of claims 1 to 5, wherein the alkoxysilane compound contains at least one of decyltrimethoxysilane and hexadecyltrimethoxysilane.
  7.  上記デシルトリメトキシシランと上記ヘキサデシルトリメトキシシランとの質量比(デシルトリメトキシシラン:ヘキサデシルトリメトキシシラン)が100:98~100:201の範囲である、請求項6に記載の熱伝導性組成物。 The thermal conductivity according to claim 6, wherein the mass ratio of the decyltrimethoxysilane to the hexadecyltrimethoxysilane (decyltrimethoxysilane: hexadecyltrimethoxysilane) is in the range of 100: 98 to 100: 201. Composition.
  8.  上記オルガノポリシロキサンが、付加反応型オルガノポリシロキサンである、請求項1~7のいずれか1項に記載の熱伝導性組成物。 The thermally conductive composition according to any one of claims 1 to 7, wherein the organopolysiloxane is an addition reaction type organopolysiloxane.
  9.  上記オルガノポリシロキサンが、ビニル基を有するオルガノポリシロキサンと、ヒドロシリル基を有する硬化剤と、硬化触媒とからなる、2液型の付加反応型シリコーン樹脂である、請求項1~8のいずれか1項に記載の熱伝導性組成物。 One of claims 1 to 8, wherein the organopolysiloxane is a two-component addition reaction type silicone resin comprising an organopolysiloxane having a vinyl group, a curing agent having a hydrosilyl group, and a curing catalyst. The thermally conductive composition according to the section.
  10.  請求項1~9のいずれか1項に記載の熱伝導性組成物の硬化物からなる、熱伝導性シート。 A heat conductive sheet made of a cured product of the heat conductive composition according to any one of claims 1 to 9.
  11.  熱伝導率が6.0W/m・K以上である、請求項10記載の熱伝導性シート。 The heat conductive sheet according to claim 10, which has a thermal conductivity of 6.0 W / m · K or more.
  12.  45℃、荷重1kgf/cmで圧力をかけたとき、下記式3で表される圧縮率が60%以上である、請求項10又は11に記載の熱伝導性シート。
    式3:圧縮率(%)=((当該熱伝導性シートの初期厚み-当該熱伝導性シートの初期圧縮厚)/当該熱伝導性シートの初期厚み)×100
    The heat conductive sheet according to claim 10 or 11, wherein the compressibility represented by the following formula 3 is 60% or more when a pressure is applied at 45 ° C. and a load of 1 kgf / cm 2 .
    Equation 3: Compressibility (%) = ((Initial thickness of the heat conductive sheet-Initial compression thickness of the heat conductive sheet) / Initial thickness of the heat conductive sheet) × 100
  13.  発熱体と、
     放熱部材と、
     上記発熱体と上記放熱部材との間に配置された熱伝導性シートとを備え、
     上記熱伝導性シートは、請求項1~9のいずれか1項に記載の熱伝導性組成物の硬化物からなる、電子機器。
     
    With a heating element,
    With heat dissipation member,
    A heat conductive sheet arranged between the heating element and the heat radiating member is provided.
    The heat conductive sheet is an electronic device made of a cured product of the heat conductive composition according to any one of claims 1 to 9.
PCT/JP2021/028782 2020-08-26 2021-08-03 Thermally conductive composition and thermally conductive sheet using same WO2022044723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020142900A JP2022038407A (en) 2020-08-26 2020-08-26 Thermally conductive composition and thermally conductive sheet using the same
JP2020-142900 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022044723A1 true WO2022044723A1 (en) 2022-03-03

Family

ID=80355133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028782 WO2022044723A1 (en) 2020-08-26 2021-08-03 Thermally conductive composition and thermally conductive sheet using same

Country Status (3)

Country Link
JP (1) JP2022038407A (en)
TW (1) TW202219162A (en)
WO (1) WO2022044723A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162636A1 (en) * 2022-02-28 2023-08-31 信越化学工業株式会社 Thermally conductive silicone composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Heat-conductive silicone rubber composition
WO2017002474A1 (en) * 2015-07-01 2017-01-05 昭和電工株式会社 Thermosetting silicone resin composition containing boron nitride, dispersant for silicone resin compositions, and inorganic filler
WO2017051738A1 (en) * 2015-09-25 2017-03-30 信越化学工業株式会社 Thermosoftening and heat conductive silicone grease composition, heat conductive film formation method, heat dissipation structure, and power module device
JP2020073626A (en) * 2019-08-01 2020-05-14 昭和電工株式会社 Inorganic particle dispersion resin composition and method for producing inorganic particle dispersion resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Heat-conductive silicone rubber composition
WO2017002474A1 (en) * 2015-07-01 2017-01-05 昭和電工株式会社 Thermosetting silicone resin composition containing boron nitride, dispersant for silicone resin compositions, and inorganic filler
WO2017051738A1 (en) * 2015-09-25 2017-03-30 信越化学工業株式会社 Thermosoftening and heat conductive silicone grease composition, heat conductive film formation method, heat dissipation structure, and power module device
JP2020073626A (en) * 2019-08-01 2020-05-14 昭和電工株式会社 Inorganic particle dispersion resin composition and method for producing inorganic particle dispersion resin composition

Also Published As

Publication number Publication date
TW202219162A (en) 2022-05-16
JP2022038407A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
TWI635169B (en) Thermally conductive composite sheet
US20100140538A1 (en) Silicone elastomer composition and silicone elastomer
JP2009209165A (en) Thermally-conductive cured product and method for producing same
JP7050704B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
JP6997834B1 (en) Thermally conductive resin composition and thermally conductive sheet using it
US11634581B2 (en) Thermally conductive resin composition and thermally conductive sheet using the same
WO2022044723A1 (en) Thermally conductive composition and thermally conductive sheet using same
JP2004099842A (en) Adhesive silicone composition for heat radiation member
WO2022038888A1 (en) Curable organopolysiloxane composition, thermally conductive member and heat dissipation structure
CN113454165B (en) Thermally conductive silica gel composition
WO2022004086A1 (en) Silicone gel composition and silicone gel sheet
KR20170131231A (en) Thermal-conductive composite sheet
JP2001294840A (en) Method of making heat-radiating structure and heat- radiating structure
JP2022078110A (en) Heat-conductive silicone rubber sheet having heat-conductive adhesive layer
WO2022249754A1 (en) Heat-conductive silicone composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861151

Country of ref document: EP

Kind code of ref document: A1