WO2022044674A1 - Reflection optical system and projection display device - Google Patents

Reflection optical system and projection display device Download PDF

Info

Publication number
WO2022044674A1
WO2022044674A1 PCT/JP2021/027944 JP2021027944W WO2022044674A1 WO 2022044674 A1 WO2022044674 A1 WO 2022044674A1 JP 2021027944 W JP2021027944 W JP 2021027944W WO 2022044674 A1 WO2022044674 A1 WO 2022044674A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting surface
optical system
image
main ray
intersection
Prior art date
Application number
PCT/JP2021/027944
Other languages
French (fr)
Japanese (ja)
Inventor
賢 天野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022044674A1 publication Critical patent/WO2022044674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements

Definitions

  • the technology of the present disclosure relates to a catadioptric system and a projection type display device.
  • an object of the present invention is to provide a catadioptric system having a small size, a wide angle, and good optical performance, and a projection type display device provided with the catadioptric system. do.
  • the reflective optical system is a reflective optical system capable of enlarging an image displayed on an image display surface and forming an enlarged image on the projected surface, and the reflective optical system is on the enlarged side.
  • a first reflecting surface having a curvature and a second reflecting surface having a curvature are included in order from to the reduction side along the optical path, and the reflection optical system is between the first reflection surface and the second reflection surface.
  • An intermediate image is formed at a position conjugate with the image display surface, and of the optical path of the central main light beam, which is the main light beam that passes through the center of the image and is incident on the projected surface, goes from the second reflecting surface to the first reflecting surface.
  • the optical path and the optical path from the image display surface to the second reflection surface have two intersections, and of the two intersections, the intersection on the reduced side is reduced on the optical path from the image display surface to the second reflection surface.
  • the side intersection is defined as one line-shaped optical path including the reduced side intersection among the optical paths from the image display surface to the second reflection surface, and the projection is performed at the minimum incident angle of the main light rays used to form the enlarged image.
  • the main light incident on the surface is the first main light
  • the intersection of the first main light and the projected surface is the first intersection
  • the intermediate image of the first main ray is located on the first reflecting surface side with respect to the boundary, and the intermediate image of the second main ray is the second reflecting surface with respect to the boundary. Located on the side.
  • first main ray and the second main ray intersect between the first reflecting surface and the projected surface.
  • the first reflecting surface has a concave shape.
  • the catadioptric system is composed of a first reflecting surface, a second reflecting surface, a third reflecting surface having a curvature, and a fourth reflecting surface having a curvature in order from the enlargement side to the reduction side along the optical path. It may be configured. In that case, it is preferable that the second reflecting surface has a concave shape, the third reflecting surface has a convex shape, and the fourth reflecting surface has a concave shape.
  • All the reflective surfaces included in the reflective optical system may be configured to have a free curved surface shape.
  • optical axes of all the optical elements included in the reflective optical system are in the same plane.
  • the projected surface may be configured to be tilted 90 degrees with respect to the image display surface.
  • the projection type display device includes an image display element for outputting an image and a reflection optical system according to the above aspect.
  • consisting of and “consisting of” in the present specification may include members such as an image pickup element, a focusing mechanism, and a mechanical part such as an image stabilization mechanism. Is intended.
  • FIG. 1 is a cross-sectional view showing a configuration of a main part of a projection type display device according to an embodiment of the technique of the present disclosure.
  • the projection type display device of FIG. 1 includes a reflection optical system 1 according to an embodiment of the technique of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the configuration of the reflected optical system 1. Luminous flux is also shown in FIGS. 1 and 2.
  • the luminous flux including the image information output from the light bulb is incident on the reflected optical system 1 via the optical member PP.
  • the light bulb is, for example, an image display element such as a DMD (Digital Micromirror Device: registered trademark) element or a liquid crystal display element.
  • the light bulb has an image display surface Sim on which an image is displayed, and outputs an image to the image display surface Sim based on the image data.
  • the optical member PP is a member assuming a filter, a prism, or the like used for color synthesis or separation of illumination light.
  • the catadioptric system 1 magnifies and projects an image displayed on the image display surface Sim, and forms it as an enlarged image on the screen Scr.
  • the screen Scr is an example of the "projected surface" of the technique of the present disclosure.
  • the screen Scr means an object to be projected, and the screen Scr may be a wall surface, a floor surface, a ceiling, or the like, in addition to a dedicated screen.
  • the "enlarged side” means the screen side on the optical path
  • the “reduced side” means the image display surface side on the optical path
  • the reflective optical system 1 includes a first reflecting surface R1 having a curvature and a second reflecting surface R2 having a curvature continuously in order from an enlargement side to a reduction side along an optical path. Will be done.
  • the reflective optical system 1 shown in FIG. 2 has a first reflecting surface R1 having a curvature, a second reflecting surface R2 having a curvature, and a curvature continuously in order from the enlargement side to the reduction side along an optical path. It is composed of a third reflecting surface R3 and a fourth reflecting surface R4 having a curvature. According to this configuration, it is possible to achieve both miniaturization and wide-angle, even though the number of reflective surfaces is as small as four.
  • Each reflective surface can be, for example, a mirror surface.
  • the reflected optical system 1 functions as an imaging optical system for projection.
  • the entire imaging optical system for projection with the catadioptric system 1 that does not include the dioptric optical element, it is possible to make an optical system that does not generate chromatic aberration.
  • the central luminous flux LF0, the first luminous flux LF1, and the second luminous flux LF2 are shown as the three luminous fluxes from the image display surface Sim toward the screen Scr. Further, the central main ray C0 which is the main ray of the central luminous flux LF0, the first main ray C1 which is the main ray of the first luminous flux LF1, and the second main ray C2 which is the main ray of the second luminous flux LF2 are also shown.
  • the central luminous flux LF0 is a luminous flux passing through the center of the image on the image display surface Sim.
  • the first main ray C1 is a main ray that is incident on the screen Scr at the minimum incident angle among the main rays used for forming the magnified image.
  • FIG. 1 also shows the intersection P0 between the central main ray C0 and the screen Scr, the intersection P1 between the first main ray C1 and the screen Scr, and the intersection P2 between the second main ray C2 and the screen Scr.
  • the intersection point P2 is a point at a position symmetrical to the intersection point P1 with respect to the intersection point P0.
  • the second main ray C2 is defined as the main ray passing through the intersection P2.
  • the bisector of the upper maximum ray and the lower maximum ray of each luminous flux is defined as the main ray.
  • the catadioptric system 1 forms an intermediate image between the first reflecting surface R1 and the second reflecting surface R2 and at a position conjugate with the image display surface Sim, and magnifies this intermediate image as an enlarged image on the screen Scr. Reimage.
  • an intermediate image between the first reflecting surface R1 and the second reflecting surface R2 it is possible to give a strong power to the first reflecting surface R1, and various aberrations that are problematic in wide-angle lensing can be caused. It is advantageous for correction.
  • By giving the first reflecting surface R1 a strong power it is advantageous for the first reflecting surface R1 to be miniaturized, and it is also possible to contribute to suppressing the increase in the size of the second reflecting surface R2.
  • the intermediate images formed by the central main ray C0, the first luminous flux LF1, and the second luminous flux LF2 are shown as the intermediate image MI0, the intermediate image MI1, and the intermediate image MI2.
  • the positional relationship between the intermediate image MI1 and the intermediate image MI2 will be described step by step.
  • FIGS. 2 and 3 in the reflection optical system 1, among the optical paths of the central main ray C0, the optical path from the second reflection surface R2 to the first reflection surface R1 and the second reflection surface from the image display surface Sim.
  • the optical path toward R2 is configured to have two intersections.
  • FIG. 3 shows a cross-sectional view showing the configuration of each optical element, and shows only the central main ray C0 as a light ray.
  • the optical path from the image display surface Sim to the second reflection surface R2 is bent because the fourth reflection surface R4 and the third reflection surface R3 are on the way.
  • the intersection located on the reduced side on the optical path from the image display surface Sim to the second reflecting surface R2 is the reduced side intersection Pr
  • the intersection located on the larger side is the enlarged side. Shown as the intersection Pm.
  • one line segment-shaped optical path including the reduction side intersection Pr among the optical paths from the image display surface Sim to the second reflection surface R2 is defined as the boundary B.
  • the one line segment-shaped optical path is an optical path that is not bent, and in this example, the boundary B is an optical path from the image display surface Sim to the fourth reflection surface R4.
  • the reflection optical system 1 is configured such that the intermediate image MI1 is located on the first reflecting surface R1 side with respect to the boundary B, and the intermediate image MI2 is located on the second reflecting surface R2 side with respect to the boundary B. That is, the intermediate image MI1 of the first main ray C1 is located on the first reflecting surface R1 side with respect to the boundary B, and the intermediate image MI2 of the second main ray C2 is located on the second reflecting surface R2 side with respect to the boundary B. It is configured to do. In this way, the fact that the positions of the intermediate images of the two main rays symmetrical with respect to the center of the image are on opposite sides of the boundary B causes a large curvature of field at the intermediate image positions. Become.
  • the catadioptric system 1 adopts a configuration in which a large curvature of field is generated at the intermediate image position in order to obtain a magnified image in which the curvature of field is well corrected on the screen.
  • This configuration is advantageous in terms of both miniaturization of the optical system and good aberration correction, as compared with a configuration in which the curvature of field is satisfactorily corrected for both the intermediate image and the magnified image.
  • the first main ray C1 and the second main ray C2 intersect between the first reflecting surface R1 and the screen Scr and have an intersection point P12.
  • the size of the optical window 6 for emitting each light ray to the outside of the housing 5 can be reduced. .. Further, since the stray light incident on the inside of the housing 5 from the outside can be reduced, the display quality of the image projected on the screen can be improved.
  • the first reflecting surface R1 has a concave shape.
  • the size of the optical window 6 for emitting each light ray to the outside of the housing 5 can be reduced when the reflecting optical system 1 is housed in the housing 5. Further, since the stray light incident on the inside of the housing 5 from the outside can be reduced, the display quality of the image projected on the screen can be improved.
  • the reflective optical system 1 is composed of the above four reflective surfaces having curvatures
  • the second reflective surface R2 has a concave shape
  • the third reflective surface R3 has a convex shape
  • the fourth reflective surface R4 has a concave shape. It is preferable to have.
  • the fourth reflecting surface R4 converges the light spreading from the image display element, and the third reflecting surface R3 and the second reflecting surface R2 properly maintain the power of the entire reflected optical system while maintaining a wide angle. It is advantageous to achieve both miniaturization and miniaturization.
  • FIG. 5 is a diagram for explaining the shape of each reflective surface.
  • the concave and convex surfaces of each reflective surface are defined as follows. That is, a surface perpendicular to the normal of the reflecting surface at the intersection of the central main ray C0 and the reflecting surface (dotted line in FIG. 5) and in contact with the intersection of the central main ray C0 and the reflecting surface (two points in FIG. 5).
  • the chain line is used as the reference plane
  • the surface shape facing the reflection optical system side from the reference plane is defined as a concave surface
  • the surface shape facing the opposite side of the reference plane toward the reflection optical system side is defined as a convex surface.
  • An enlarged view of the portion related to the second reflecting surface R2 of FIG. 5 is shown in FIG. 6, and an enlarged view of the portion related to the third reflecting surface R3 of FIG. 5 is shown in FIG.
  • the second reflecting surface R2 has a concave shape
  • the third reflecting surface R3 has a convex shape.
  • all the reflective surfaces included in the reflective optical system 1 may be configured to have a free curved surface shape. Normally, in order to avoid interference between reflective surfaces, it is necessary to take a large eccentricity of components in the optical system, which causes eccentric aberration. However, the configuration having a free curved surface shape makes it easy to appropriately correct the eccentric aberration that occurs.
  • the optical axes of all the optical elements included in the reflective optical system 1 are in the same plane.
  • the optical axes of the four reflective surfaces, which are optical elements are in the same plane.
  • the shape of the reflecting surface can be configured to have symmetry in a predetermined plane, which is advantageous in terms of cost and manufacturability.
  • the screen Scr may be configured to be tilted 90 degrees with respect to the image display surface Sim. According to such a configuration, it is advantageous to reduce the size of the entire device including the reflective optical system 1.
  • the above 90 degrees is not limited to the complete 90 degrees, and may be an angle including an error generally allowed in the technical field to which the technique of the present disclosure belongs.
  • the reflective optical system 1 composed of four reflective surfaces has been described as an example, but the reflective optical system according to the technique of the present disclosure includes the first reflective surface R1 and the second reflective surface R2. If so, the number of reflective surfaces may be three or five or more.
  • the above-mentioned preferable configuration and possible configuration can be any combination, and it is preferable that they are appropriately and selectively adopted according to the required specifications.
  • the surface data is shown in Table 1
  • the data related to eccentricity is shown in Table 2
  • the free-form surface coefficients are shown in Tables 3A and 3B.
  • the free-form surface coefficients are shown separately in two tables to avoid lengthening one table.
  • Table 1 shows surface data for the reflected optical system 1, the optical member PP, and the image display surface Sim.
  • the surface number of the optical element on the most enlarged side (first reflective surface) is set as the first surface, and the surface numbers are shown when the numbers are increased one by one toward the reduced side.
  • the surface numbers of free-form surfaces are marked with *.
  • the radius of curvature of each surface is shown in the column of R, and the radius of curvature of the near axis is shown in the column of R of the free curved surface.
  • the column D indicates the distance between each surface and the surface adjacent to the reduced side. "Reflective surface" is written in the Nd column corresponding to each reflective surface.
  • the columns of Nd and ⁇ d corresponding to the enlarged side surface of the optical member PP indicate the refractive index of the optical member PP with respect to the d-line and the Abbe number of the d-line reference, respectively.
  • the seventh surface of Table 1 corresponds to the image display surface Sim.
  • the values of the projection distance and the total angle of view are shown in the margin of Table 1.
  • the projection distance is the distance from the first reflecting surface R1 to the screen Scr.
  • Table 2 shows the shift and tilt values of each surface.
  • the reduction side direction is the + Z axis direction
  • the shift is the translation in the Y axis direction
  • the tilt is the rotation around the X axis.
  • the shift sign is positive in the + Y-axis direction and negative in the ⁇ Y-axis direction.
  • the sign of the tilt is positive for counterclockwise rotation and negative for clockwise rotation when the X-axis is viewed in the direction from ⁇ X to + X.
  • Table 2 shows the data when the first and subsequent surfaces are tilt-eccentric by -90 degrees.
  • Tables 3A and 3B show surface numbers and free-form surface coefficients for each free-form surface.
  • the numerical value "E ⁇ n" (n: integer) of the free-form surface coefficient in Table 3 means “ ⁇ 10 ⁇ n".
  • the free-form surface coefficients shown in Tables 3A and 3B are the values of the rotationally asymmetric free-form surface coefficients C (i, j) in the free-form surface equation represented by the following equation.
  • Z ⁇ C (i, j) ⁇ X i ⁇ Y j here, X, Y, and Z are coordinates with the surface vertex as the origin.
  • the value of X is an absolute value.
  • the first ⁇ is the sum of i and the second ⁇ is the sum of j.
  • FIG. 9 shows a spot diagram when light rays are traced from the enlargement side to the reduction side in the above embodiment.
  • FIG. 8 shows an image display surface Sim which is an image formation position of a spot image when light rays are traced from the enlarged side.
  • Each spot diagram in FIG. 9 is a spot diagram at each of the 15 grid points indicated by the black circles in FIG.
  • FIG. 10 shows the distortion grid of the above embodiment.
  • the distorted grid shows the distorted shape of the grid pattern formed on the screen when an image composed of the grid pattern is projected by using the reflection optical system 1 of the above embodiment.
  • the reflected optical system 1 of the above embodiment is configured to be compact, but each aberration is satisfactorily corrected to realize high optical performance. Further, the total angle of view is 135 degrees, which is 120 degrees or more, which is a guideline for a wide angle, and a sufficiently wide angle of view is secured.
  • FIG. 11 is a schematic configuration diagram of a projection type display device according to an embodiment of the present disclosure.
  • the projection type display device 100 shown in FIG. 11 includes a reflection optical system 10 according to an embodiment of the present disclosure, a light source 15, transmission type display elements 11a to 11c as light valves corresponding to each color light, and for color separation.
  • the dichroic mirrors 12 to 13, the cross dichroic prism 14 for color synthesis, the condenser lenses 16a to 16c, and the total reflection mirrors 18a to 18c for deflecting the optical path are provided.
  • the reflective optical system 10 is schematically shown. Further, although an integrator is arranged between the light source 15 and the dichroic mirror 12, the illustration is omitted in FIG.
  • the white light from the light source 15 is decomposed into three color light beams (Green light, Blue light, Red light) by the dichroic mirrors 12 to 13, and then transmitted through the condenser lenses 16a to 16c, respectively, corresponding to each color light light beam. It is incident on the mold display elements 11a to 11c, modulated, color-synthesized by the cross dichroic prism 14, and then incident on the reflection optical system 10.
  • the catadioptric system 10 projects an optical image of the modulated light modulated by the transmissive display elements 11a to 11c on the screen 105.
  • FIG. 12 is a schematic configuration diagram of a projection type display device according to another embodiment of the present disclosure.
  • the projection type display device 200 shown in FIG. 12 includes a reflection optical system 210 according to the embodiment of the present disclosure, a light source 215, DMD elements 21a to 21c as light valves corresponding to each color light, and color separation and color synthesis. It has a TIR (Total Internal Reflection) prisms 24a to 24c for the purpose, and a polarization separation prism 25 for separating illumination light and projected light.
  • TIR Total Internal Reflection
  • FIG. 12 schematically shows the reflected optical system 210.
  • an integrator is arranged between the light source 215 and the polarization separation prism 25, the illustration thereof is omitted in FIG.
  • the white light from the light source 215 is reflected by the reflecting surface inside the polarization separation prism 25, and then decomposed into three color light beams (Green light, Blue light, Red light) by the TIR prisms 24a to 24c.
  • Each color light flux after decomposition is incident on the corresponding DMD elements 21a to 21c and modulated, and the TIR prisms 24a to 24c proceed in the opposite directions to perform color synthesis, and then pass through the polarization separation prism 25. It is incident on the reflection optical system 210.
  • the catadioptric system 210 projects an optical image of the modulated light modulated by the DMD elements 21a to 21c on the screen 205.
  • FIG. 13 is a schematic configuration diagram of a projection type display device according to still another embodiment of the present disclosure.
  • the projection type display device 300 shown in FIG. 13 includes a reflection optical system 310 according to the embodiment of the present disclosure, a light source 315, reflection type display elements 31a to 31c as light valves corresponding to each color light, and for color separation.
  • the reflection optical system 310 is schematically shown. Further, although an integrator is arranged between the light source 315 and the dichroic mirror 32, the illustration thereof is omitted in FIG.
  • the white light from the light source 315 is decomposed into three color light fluxes (Green light, Blue light, Red light) by the dichroic mirrors 32 and 33.
  • Each color light beam after decomposition passes through the polarization separation prisms 35a to 35c, is incident on the reflective display elements 31a to 31c corresponding to each color light beam, is modulated, is color-synthesized by the cross dichroic prism 34, and then is reflected. It is incident on the optical system 310.
  • the catadioptric system 310 projects an optical image of the modulated light modulated by the reflective display elements 31a to 31c on the screen 305.
  • the techniques of the present disclosure have been described above with reference to embodiments and examples, the techniques of the present disclosure are not limited to the above embodiments and examples, and various modifications are possible.
  • the radius of curvature, the surface spacing, the free curved surface coefficient, and the like of each reflecting surface are not limited to the values shown in the above embodiment, and may take other values.
  • the projection type display device is not limited to the above-mentioned configuration, and for example, the optical member and the light bulb used for luminous flux separation or luminous flux synthesis can be changed in various modes. ..
  • the light valve is not limited to the mode in which the light from the light source is spatially modulated by the image display element and output as an optical image based on the image data, and the light itself output from the self-luminous image display element is the image data. It may be an aspect of outputting as an optical image based on.
  • the self-luminous image display element include an image display element in which light emitting elements such as an LED (Light Emitting Diode) or an OLED (Organic Light Emitting Diode) are two-dimensionally arranged.

Abstract

This reflection optical system is capable of enlarging an image on an image display surface so as to form an enlarged image on a projection surface. The reflection optical system comprises, in series along an optical path and in this order from the expansion side, a first reflection surface having a curvature and a second reflection surface having a curvature, wherein an intermediate image is formed at a position that is between the first reflection surface and the second reflection surface and that is conjugate to the image display surface. An intermediate image of a first main light beam which is incident on the projection surface at a minimum angle of incidence is located on the first reflection surface side of a boundary. Located on the second reflection surface of the boundary is an intermediate image of a second main light beam that passes through a point which, with respect to the intersection between a central main light beam and the projection surface, is symmetrical to the intersection between the first main light beam and the projection surface.

Description

反射光学系および投写型表示装置Reflective optical system and projection type display device
 本開示の技術は、反射光学系、および投写型表示装置に関する。 The technology of the present disclosure relates to a catadioptric system and a projection type display device.
 従来、投写型表示装置等に使用可能であり、ミラー又は反射面を有する投写用光学系として、特開2008-250296号公報および特開2004-061961号公報に記載されたものが知られている。 Conventionally, as a projection optical system that can be used in a projection type display device or the like and has a mirror or a reflective surface, those described in JP-A-2008-250296 and JP-A-2004-061961 are known. ..
 近年、小型でありながら、広い画角が確保され、良好な光学性能を有する反射光学系が求められている。 In recent years, there has been a demand for a catadioptric system that is compact, secures a wide angle of view, and has good optical performance.
 本開示は、上記事情に鑑みなされたものであり、小型、かつ広角であり、良好な光学性能を有する反射光学系、およびこの反射光学系を備えた投写型表示装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present invention is to provide a catadioptric system having a small size, a wide angle, and good optical performance, and a projection type display device provided with the catadioptric system. do.
 本開示の技術の一態様に係る反射光学系は、画像表示面に表示される画像を拡大して被投写面に拡大像として形成可能な反射光学系であって、反射光学系は、拡大側から縮小側へ光路に沿って順に連続して、曲率を有する第1反射面と、曲率を有する第2反射面とを含み、反射光学系は、第1反射面と第2反射面との間でかつ画像表示面と共役な位置に中間像を形成し、画像の中心を通り被投写面へ入射する主光線である中心主光線の光路のうち、第2反射面から第1反射面へ向かう光路と、画像表示面から第2反射面へ向かう光路とは、2つの交点を有し、2つの交点のうち、画像表示面から第2反射面へ向かう光路上でより縮小側の交点を縮小側交点とし、画像表示面から第2反射面へ向かう光路のうち縮小側交点を含む1つの線分状の光路を境界とし、拡大像の形成に用いられる主光線のうち最小入射角で被投写面に入射する主光線を第1主光線とし、第1主光線と被投写面との交点を第1交点とし、中心主光線と被投写面との交点に対して第1交点と対称な点を通る主光線を第2主光線とした場合、第1主光線の中間像は境界に対して第1反射面側に位置し、第2主光線の中間像は境界に対して第2反射面側に位置する。 The reflective optical system according to one aspect of the technique of the present disclosure is a reflective optical system capable of enlarging an image displayed on an image display surface and forming an enlarged image on the projected surface, and the reflective optical system is on the enlarged side. A first reflecting surface having a curvature and a second reflecting surface having a curvature are included in order from to the reduction side along the optical path, and the reflection optical system is between the first reflection surface and the second reflection surface. An intermediate image is formed at a position conjugate with the image display surface, and of the optical path of the central main light beam, which is the main light beam that passes through the center of the image and is incident on the projected surface, goes from the second reflecting surface to the first reflecting surface. The optical path and the optical path from the image display surface to the second reflection surface have two intersections, and of the two intersections, the intersection on the reduced side is reduced on the optical path from the image display surface to the second reflection surface. The side intersection is defined as one line-shaped optical path including the reduced side intersection among the optical paths from the image display surface to the second reflection surface, and the projection is performed at the minimum incident angle of the main light rays used to form the enlarged image. The main light incident on the surface is the first main light, the intersection of the first main light and the projected surface is the first intersection, and the point symmetric with the first intersection with respect to the intersection of the central main light and the projected surface. When the main ray passing through is the second main ray, the intermediate image of the first main ray is located on the first reflecting surface side with respect to the boundary, and the intermediate image of the second main ray is the second reflecting surface with respect to the boundary. Located on the side.
 第1主光線と第2主光線とは、第1反射面と被投写面との間で交差することが好ましい。 It is preferable that the first main ray and the second main ray intersect between the first reflecting surface and the projected surface.
 第1反射面は凹面形状であることが好ましい。 It is preferable that the first reflecting surface has a concave shape.
 反射光学系は、拡大側から縮小側へ光路に沿って順に、第1反射面と、第2反射面と、曲率を有する第3反射面と、曲率を有する第4反射面とからなるように構成してもよい。その場合は、第2反射面は凹面形状であり、第3反射面は凸面形状であり、第4反射面は凹面形状であることが好ましい。 The catadioptric system is composed of a first reflecting surface, a second reflecting surface, a third reflecting surface having a curvature, and a fourth reflecting surface having a curvature in order from the enlargement side to the reduction side along the optical path. It may be configured. In that case, it is preferable that the second reflecting surface has a concave shape, the third reflecting surface has a convex shape, and the fourth reflecting surface has a concave shape.
 反射光学系に含まれる全ての反射面は自由曲面形状を有するように構成してもよい。 All the reflective surfaces included in the reflective optical system may be configured to have a free curved surface shape.
 反射光学系に含まれる全ての光学素子の光軸は同一平面内にあることが好ましい。 It is preferable that the optical axes of all the optical elements included in the reflective optical system are in the same plane.
 画像表示面に対して被投写面は90度傾いているように構成してもよい。 The projected surface may be configured to be tilted 90 degrees with respect to the image display surface.
 本開示の技術の別の態様に係る投写型表示装置は、画像を出力する画像表示素子と、上記態様の反射光学系とを備える。 The projection type display device according to another aspect of the technique of the present disclosure includes an image display element for outputting an image and a reflection optical system according to the above aspect.
 なお、本明細書の「~からなり」、「~からなる」は、挙げられた構成要素以外に、撮像素子、合焦機構、および手振れ補正機構等の機構部分等の部材を含んでもよいことを意図するものである。 In addition to the above-mentioned components, "consisting of" and "consisting of" in the present specification may include members such as an image pickup element, a focusing mechanism, and a mechanical part such as an image stabilization mechanism. Is intended.
 本開示の技術によれば、小型、かつ広角であり、良好な光学性能を有する反射光学系、およびこの反射光学系を備えた投写型表示装置を提供することができる。 According to the technique of the present disclosure, it is possible to provide a catadioptric system having a small size, a wide angle, and good optical performance, and a projection type display device provided with the catadioptric system.
一実施形態に係る投写型表示装置の主要部の構成と光束を示す断面図である。It is sectional drawing which shows the structure and the light flux of the main part of the projection type display device which concerns on one Embodiment. 一実施形態に係る反射光学系の構成と光束を示す断面図である。It is sectional drawing which shows the structure and the luminous flux of the reflection optical system which concerns on one Embodiment. 一実施形態に係る反射光学系の構成と中心主光線を示す図である。It is a figure which shows the structure of the reflected optical system and the central main ray which concerns on one Embodiment. 反射光学系を筐体に収納した状態の一例を示す断面図である。It is sectional drawing which shows an example of the state which the reflective optical system is housed in a housing. 各反射面の形状を説明するための図である。It is a figure for demonstrating the shape of each reflective surface. 第2反射面の形状を説明するための拡大図である。It is an enlarged view for demonstrating the shape of the 2nd reflective surface. 第3反射面の形状を説明するための拡大図である。It is an enlarged view for demonstrating the shape of the 3rd reflection surface. 画像表示面におけるスポット像の位置を示す図である。It is a figure which shows the position of the spot image on the image display surface. 一実施例のスポットダイヤグラムを示す図である。It is a figure which shows the spot diagram of one Example. 一実施例の歪曲格子を示す図である。It is a figure which shows the distortion grid of one Example. 一実施形態に係る投写型表示装置の概略構成図である。It is a schematic block diagram of the projection type display device which concerns on one Embodiment. 別の実施形態に係る投写型表示装置の概略構成図である。It is a schematic block diagram of the projection type display device which concerns on another embodiment. さらに別の実施形態に係る投写型表示装置の概略構成図である。It is a schematic block diagram of the projection type display device which concerns on still another Embodiment.
 以下、本開示の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 本開示の技術に係る反射光学系は、投写型表示装置に搭載される投写用光学系として使用可能である。図1は、本開示の技術の一実施形態に係る投写型表示装置の主要部の構成を示す断面図である。図1の投写型表示装置は、本開示の技術の一実施形態に係る反射光学系1を含んで構成される。図2は、この反射光学系1の構成を示す断面図である。図1および図2には光束も合わせて示している。 The reflected optical system according to the technique of the present disclosure can be used as a projection optical system mounted on a projection type display device. FIG. 1 is a cross-sectional view showing a configuration of a main part of a projection type display device according to an embodiment of the technique of the present disclosure. The projection type display device of FIG. 1 includes a reflection optical system 1 according to an embodiment of the technique of the present disclosure. FIG. 2 is a cross-sectional view showing the configuration of the reflected optical system 1. Luminous flux is also shown in FIGS. 1 and 2.
 投写型表示装置においては、ライトバルブから出力される画像情報を含む光束が、光学部材PPを介して、反射光学系1に入射される。ライトバルブは、例えば、DMD(Digital Micromirror Device:登録商標)素子又は液晶表示素子等の画像表示素子である。ライトバルブは、画像が表示される画像表示面Simを有し、画像データに基づいて画像表示面Simに画像を出力する。光学部材PPは、色合成または照明光の分離に用いられるフィルタおよびプリズム等を想定した部材である。反射光学系1は、画像表示面Simに表示される画像を拡大して投写しスクリーンScrに拡大像として形成する。スクリーンScrは本開示の技術の「被投写面」の一例である。スクリーンScrは投写される対象物を意味し、スクリーンScrとしては、専用のスクリーンの他、壁面、床面および天井などでもよい。 In the projection type display device, the luminous flux including the image information output from the light bulb is incident on the reflected optical system 1 via the optical member PP. The light bulb is, for example, an image display element such as a DMD (Digital Micromirror Device: registered trademark) element or a liquid crystal display element. The light bulb has an image display surface Sim on which an image is displayed, and outputs an image to the image display surface Sim based on the image data. The optical member PP is a member assuming a filter, a prism, or the like used for color synthesis or separation of illumination light. The catadioptric system 1 magnifies and projects an image displayed on the image display surface Sim, and forms it as an enlarged image on the screen Scr. The screen Scr is an example of the "projected surface" of the technique of the present disclosure. The screen Scr means an object to be projected, and the screen Scr may be a wall surface, a floor surface, a ceiling, or the like, in addition to a dedicated screen.
 以下の説明において、「拡大側」は光路上におけるスクリーン側を意味し、「縮小側」は光路上における画像表示面側を意味する。 In the following description, the "enlarged side" means the screen side on the optical path, and the "reduced side" means the image display surface side on the optical path.
 本開示の技術に係る反射光学系1は、拡大側から縮小側へ光路に沿って順に連続して、曲率を有する第1反射面R1と、曲率を有する第2反射面R2とを含んで構成される。一例として図2に示す反射光学系1は、拡大側から縮小側へ光路に沿って順に連続して、曲率を有する第1反射面R1と、曲率を有する第2反射面R2と、曲率を有する第3反射面R3と、曲率を有する第4反射面R4とからなる。この構成によれば、4枚という少ない数の反射面でありながらも、小型化と広角化との両立を図ることができる。各反射面は例えばミラー面とすることができる。 The reflective optical system 1 according to the technique of the present disclosure includes a first reflecting surface R1 having a curvature and a second reflecting surface R2 having a curvature continuously in order from an enlargement side to a reduction side along an optical path. Will be done. As an example, the reflective optical system 1 shown in FIG. 2 has a first reflecting surface R1 having a curvature, a second reflecting surface R2 having a curvature, and a curvature continuously in order from the enlargement side to the reduction side along an optical path. It is composed of a third reflecting surface R3 and a fourth reflecting surface R4 having a curvature. According to this configuration, it is possible to achieve both miniaturization and wide-angle, even though the number of reflective surfaces is as small as four. Each reflective surface can be, for example, a mirror surface.
 図1および図2の例では、反射光学系1は、投写用の結像光学系として機能する。投写用の結像光学系全体を、屈折光学素子を含まない反射光学系1で形成することによって、色収差の発生が無い光学系にすることができる。 In the examples of FIGS. 1 and 2, the reflected optical system 1 functions as an imaging optical system for projection. By forming the entire imaging optical system for projection with the catadioptric system 1 that does not include the dioptric optical element, it is possible to make an optical system that does not generate chromatic aberration.
 図1および図2では、画像表示面SimからスクリーンScrに向かう3つの光束として、中心光束LF0、第1の光束LF1、および第2の光束LF2を示す。また、中心光束LF0の主光線である中心主光線C0、第1の光束LF1の主光線である第1主光線C1、および第2の光束LF2の主光線である第2主光線C2も示す。中心光束LF0は、画像表示面Simの画像の中心を通る光束である。第1主光線C1は、拡大像の形成に用いられる主光線のうち最小入射角でスクリーンScrに入射する主光線である。 In FIGS. 1 and 2, the central luminous flux LF0, the first luminous flux LF1, and the second luminous flux LF2 are shown as the three luminous fluxes from the image display surface Sim toward the screen Scr. Further, the central main ray C0 which is the main ray of the central luminous flux LF0, the first main ray C1 which is the main ray of the first luminous flux LF1, and the second main ray C2 which is the main ray of the second luminous flux LF2 are also shown. The central luminous flux LF0 is a luminous flux passing through the center of the image on the image display surface Sim. The first main ray C1 is a main ray that is incident on the screen Scr at the minimum incident angle among the main rays used for forming the magnified image.
 図1では、中心主光線C0とスクリーンScrとの交点P0、第1主光線C1とスクリーンScrとの交点P1、および第2主光線C2とスクリーンScrとの交点P2も示している。交点P2は、交点P0に対して交点P1と対称な位置にある点である。第2主光線C2は、交点P2を通る主光線として定義される。なお、本明細書においては、交点P2、交点P0、および交点P1を結ぶ断面において、各光束の上側の最大光線と下側の最大光線との二等分角線を主光線として定義する。 FIG. 1 also shows the intersection P0 between the central main ray C0 and the screen Scr, the intersection P1 between the first main ray C1 and the screen Scr, and the intersection P2 between the second main ray C2 and the screen Scr. The intersection point P2 is a point at a position symmetrical to the intersection point P1 with respect to the intersection point P0. The second main ray C2 is defined as the main ray passing through the intersection P2. In this specification, in the cross section connecting the intersection P2, the intersection P0, and the intersection P1, the bisector of the upper maximum ray and the lower maximum ray of each luminous flux is defined as the main ray.
 反射光学系1は、第1反射面R1と第2反射面R2との間でかつ画像表示面Simと共役な位置に中間像を形成し、この中間像を拡大してスクリーンScrに拡大像として再結像させる。第1反射面R1と第2反射面R2との間に中間像を形成することによって、第1反射面R1に強いパワーを持たせることが可能となり、また、広角化で問題となる諸収差の補正に有利になる。第1反射面R1に強いパワーを持たせることによって、第1反射面R1の小型化に有利となり、また、第2反射面R2の大型化の抑制にも寄与することができる。 The catadioptric system 1 forms an intermediate image between the first reflecting surface R1 and the second reflecting surface R2 and at a position conjugate with the image display surface Sim, and magnifies this intermediate image as an enlarged image on the screen Scr. Reimage. By forming an intermediate image between the first reflecting surface R1 and the second reflecting surface R2, it is possible to give a strong power to the first reflecting surface R1, and various aberrations that are problematic in wide-angle lensing can be caused. It is advantageous for correction. By giving the first reflecting surface R1 a strong power, it is advantageous for the first reflecting surface R1 to be miniaturized, and it is also possible to contribute to suppressing the increase in the size of the second reflecting surface R2.
 図2において、中心主光線C0、第1の光束LF1、および第2の光束LF2それぞれが形成する中間像を中間像MI0、中間像MI1、および中間像MI2として示す。以下に、中間像MI1と中間像MI2との位置関係について順を追って説明する。 In FIG. 2, the intermediate images formed by the central main ray C0, the first luminous flux LF1, and the second luminous flux LF2 are shown as the intermediate image MI0, the intermediate image MI1, and the intermediate image MI2. Hereinafter, the positional relationship between the intermediate image MI1 and the intermediate image MI2 will be described step by step.
 図2および図3に示すように、反射光学系1では、中心主光線C0の光路のうち、第2反射面R2から第1反射面R1へ向かう光路と、画像表示面Simから第2反射面R2へ向かう光路とは、2つの交点を有するように構成される。図3には、各光学素子の構成を示す断面図を示し、光線としては中心主光線C0のみを示す。画像表示面Simから第2反射面R2へ向かう光路は、途中に第4反射面R4および第3反射面R3があるため、折れ曲がっている。図2および図3では2つの交点のうち、画像表示面Simから第2反射面R2へ向かう光路上でより縮小側に位置する交点を縮小側交点Pr、より拡大側に位置する交点を拡大側交点Pmとして示す。中心主光線C0の上記2つの光路が反射光学系1内で2回交差するように構成することによって、屈曲光路を形成することが可能となり、光路長を長くできるため、各反射面のパワーを過剰に強くすることなく反射光学系全体を構成することができる。その結果、反射光学系全体を小型化しながら、歪曲収差等の諸収差の補正を良好に行うことが容易となる。 As shown in FIGS. 2 and 3, in the reflection optical system 1, among the optical paths of the central main ray C0, the optical path from the second reflection surface R2 to the first reflection surface R1 and the second reflection surface from the image display surface Sim. The optical path toward R2 is configured to have two intersections. FIG. 3 shows a cross-sectional view showing the configuration of each optical element, and shows only the central main ray C0 as a light ray. The optical path from the image display surface Sim to the second reflection surface R2 is bent because the fourth reflection surface R4 and the third reflection surface R3 are on the way. In FIGS. 2 and 3, of the two intersections, the intersection located on the reduced side on the optical path from the image display surface Sim to the second reflecting surface R2 is the reduced side intersection Pr, and the intersection located on the larger side is the enlarged side. Shown as the intersection Pm. By configuring the two optical paths of the central main ray C0 to intersect twice in the reflected optical system 1, it is possible to form a bent optical path and lengthen the optical path, so that the power of each reflecting surface can be increased. The entire reflective optical system can be configured without making it excessively strong. As a result, it becomes easy to satisfactorily correct various aberrations such as distortion while reducing the size of the entire reflected optical system.
 上記構成において、画像表示面Simから第2反射面R2へ向かう光路のうち縮小側交点Prを含む1つの線分状の光路を境界Bとする。1つの線分状の光路とは、屈曲していない光路であり、本例では境界Bは、画像表示面Simから第4反射面R4までの光路である。 In the above configuration, one line segment-shaped optical path including the reduction side intersection Pr among the optical paths from the image display surface Sim to the second reflection surface R2 is defined as the boundary B. The one line segment-shaped optical path is an optical path that is not bent, and in this example, the boundary B is an optical path from the image display surface Sim to the fourth reflection surface R4.
 反射光学系1は、境界Bに対して中間像MI1は第1反射面R1側に位置し、境界Bに対して中間像MI2は第2反射面R2側に位置するように構成される。すなわち、第1主光線C1の中間像MI1は境界Bに対して第1反射面R1側に位置し、第2主光線C2の中間像MI2は境界Bに対して第2反射面R2側に位置するように構成される。このように、画像の中心に対して対称な2つの主光線それぞれの中間像の位置が境界Bに対して互いに反対側にあるということは、中間像位置に大きな像面湾曲を発生させることになる。この像面湾曲をキャンセルするように第1反射面R1を設定することによって、中間像より拡大側で像面湾曲を良好に補正することができるので、像面湾曲が良好に補正された拡大像をスクリーン上に投写することが可能となる。換言すると、反射光学系1は、スクリーン上で像面湾曲が良好に補正された拡大像を得るために、中間像位置に大きな像面湾曲を発生させる構成を採っている。この構成は、中間像および拡大像の両方について像面湾曲を良好に補正する構成に比べて、光学系の小型化および良好な収差補正の両立に有利である。 The reflection optical system 1 is configured such that the intermediate image MI1 is located on the first reflecting surface R1 side with respect to the boundary B, and the intermediate image MI2 is located on the second reflecting surface R2 side with respect to the boundary B. That is, the intermediate image MI1 of the first main ray C1 is located on the first reflecting surface R1 side with respect to the boundary B, and the intermediate image MI2 of the second main ray C2 is located on the second reflecting surface R2 side with respect to the boundary B. It is configured to do. In this way, the fact that the positions of the intermediate images of the two main rays symmetrical with respect to the center of the image are on opposite sides of the boundary B causes a large curvature of field at the intermediate image positions. Become. By setting the first reflecting surface R1 so as to cancel this curvature of field, the curvature of field can be satisfactorily corrected on the magnified side of the intermediate image, so that the enlarged image with the curvature of field satisfactorily corrected. Can be projected on the screen. In other words, the catadioptric system 1 adopts a configuration in which a large curvature of field is generated at the intermediate image position in order to obtain a magnified image in which the curvature of field is well corrected on the screen. This configuration is advantageous in terms of both miniaturization of the optical system and good aberration correction, as compared with a configuration in which the curvature of field is satisfactorily corrected for both the intermediate image and the magnified image.
 図2に示すように、第1主光線C1と第2主光線C2とは、第1反射面R1とスクリーンScrとの間で交差し、交点P12を有することが好ましい。この構成によれば、図4に一例として示すように、反射光学系1を筐体5に収納した場合に、各光線を筐体5の外部に出射するための光学窓6のサイズを小さくできる。また、外部から筐体5の内部に入射する迷光を少なくすることができるため、スクリーン上に投写する像の表示品質を向上させることができる。 As shown in FIG. 2, it is preferable that the first main ray C1 and the second main ray C2 intersect between the first reflecting surface R1 and the screen Scr and have an intersection point P12. According to this configuration, as shown as an example in FIG. 4, when the reflective optical system 1 is housed in the housing 5, the size of the optical window 6 for emitting each light ray to the outside of the housing 5 can be reduced. .. Further, since the stray light incident on the inside of the housing 5 from the outside can be reduced, the display quality of the image projected on the screen can be improved.
 第1反射面R1は凹面形状であることが好ましい。最も拡大側にある第1反射面R1を収束作用のある凹面とすることによって、第1反射面R1を小型化することが容易となる。また、第1反射面R1を凹面とすることによって、反射光学系1を筐体5に収納した場合に、各光線を筐体5の外部に出射するための光学窓6のサイズを小さくできる。また、外部から筐体5の内部に入射する迷光を少なくすることができるため、スクリーン上に投写する像の表示品質を向上させることができる。 It is preferable that the first reflecting surface R1 has a concave shape. By making the first reflecting surface R1 on the most enlarged side a concave surface having a converging action, it becomes easy to miniaturize the first reflecting surface R1. Further, by making the first reflecting surface R1 a concave surface, the size of the optical window 6 for emitting each light ray to the outside of the housing 5 can be reduced when the reflecting optical system 1 is housed in the housing 5. Further, since the stray light incident on the inside of the housing 5 from the outside can be reduced, the display quality of the image projected on the screen can be improved.
 反射光学系1が、上記4枚の曲率を有する反射面からなる場合、第2反射面R2は凹面形状であり、第3反射面R3は凸面形状であり、第4反射面R4は凹面形状であることが好ましい。このようにした場合は、第4反射面R4は画像表示素子から広がってきた光を収束させ、第3反射面R3および第2反射面R2で反射光学系全体のパワーを適切に保ちつつ、広角化と小型化とを両立させることに有利となる。 When the reflective optical system 1 is composed of the above four reflective surfaces having curvatures, the second reflective surface R2 has a concave shape, the third reflective surface R3 has a convex shape, and the fourth reflective surface R4 has a concave shape. It is preferable to have. In this case, the fourth reflecting surface R4 converges the light spreading from the image display element, and the third reflecting surface R3 and the second reflecting surface R2 properly maintain the power of the entire reflected optical system while maintaining a wide angle. It is advantageous to achieve both miniaturization and miniaturization.
 図5は、各反射面の形状を説明するための図である。本明細書においては、各反射面の凹面および凸面は以下のように定義される。すなわち、中心主光線C0と反射面との交点における反射面の法線(図5の点線)に対して垂直で、かつ中心主光線C0と反射面との交点に接する面(図5の二点鎖線)を基準面にした場合、基準面より反射光学系側を向いている面形状を凹面、基準面より反射光学系側の反対側を向いている面形状を凸面とする。図5の第2反射面R2に関する部分の拡大図を図6に示し、図5の第3反射面R3に関する部分の拡大図を図7に示す。本例では、第2反射面R2は凹面形状であり、第3反射面R3は凸面形状である。 FIG. 5 is a diagram for explaining the shape of each reflective surface. In the present specification, the concave and convex surfaces of each reflective surface are defined as follows. That is, a surface perpendicular to the normal of the reflecting surface at the intersection of the central main ray C0 and the reflecting surface (dotted line in FIG. 5) and in contact with the intersection of the central main ray C0 and the reflecting surface (two points in FIG. 5). When the chain line) is used as the reference plane, the surface shape facing the reflection optical system side from the reference plane is defined as a concave surface, and the surface shape facing the opposite side of the reference plane toward the reflection optical system side is defined as a convex surface. An enlarged view of the portion related to the second reflecting surface R2 of FIG. 5 is shown in FIG. 6, and an enlarged view of the portion related to the third reflecting surface R3 of FIG. 5 is shown in FIG. In this example, the second reflecting surface R2 has a concave shape, and the third reflecting surface R3 has a convex shape.
 なお、反射光学系1に含まれる全ての反射面は、自由曲面形状を有するように構成してもよい。通常、反射面同士の干渉を避けるために光学系内の構成部品の偏心を大きく取らなくてはならず、そうすると偏心収差が発生する。しかし、自由曲面形状を有する構成にすることによって、発生する偏心収差を適切に補正することが容易となる。 Note that all the reflective surfaces included in the reflective optical system 1 may be configured to have a free curved surface shape. Normally, in order to avoid interference between reflective surfaces, it is necessary to take a large eccentricity of components in the optical system, which causes eccentric aberration. However, the configuration having a free curved surface shape makes it easy to appropriately correct the eccentric aberration that occurs.
 また、反射光学系1に含まれる全ての光学素子の光軸は同一平面内にあることが好ましい。例えば、本例の反射光学系1では、光学素子である4枚の反射面の光軸は同一平面内にある。この構成によれば、反射面の形状を、予め定められた平面内において対称性を有する構成にすることが可能となるため、コストおよび製造性の点で有利になる。 Further, it is preferable that the optical axes of all the optical elements included in the reflective optical system 1 are in the same plane. For example, in the reflective optical system 1 of this example, the optical axes of the four reflective surfaces, which are optical elements, are in the same plane. According to this configuration, the shape of the reflecting surface can be configured to have symmetry in a predetermined plane, which is advantageous in terms of cost and manufacturability.
 画像表示面Simに対してスクリーンScrは90度傾いているように構成してもよい。かかる構成によれば、反射光学系1を含めた装置全体の小型化に有利となる。なお、上記の90度は完全な90度に限定されず、本開示の技術が属する技術分野で一般的に許容される誤差を含んだ角度でもよい。 The screen Scr may be configured to be tilted 90 degrees with respect to the image display surface Sim. According to such a configuration, it is advantageous to reduce the size of the entire device including the reflective optical system 1. The above 90 degrees is not limited to the complete 90 degrees, and may be an angle including an error generally allowed in the technical field to which the technique of the present disclosure belongs.
 なお、上記では4枚の反射面からなる反射光学系1を例にとり説明したが、本開示の技術に係る反射光学系は、上記の第1反射面R1と第2反射面R2とを含んでいれば、反射面の数は3枚でもよく、5枚以上でもよい。 In the above description, the reflective optical system 1 composed of four reflective surfaces has been described as an example, but the reflective optical system according to the technique of the present disclosure includes the first reflective surface R1 and the second reflective surface R2. If so, the number of reflective surfaces may be three or five or more.
 上述した好ましい構成および可能な構成は、任意の組合せが可能であり、要求される仕様に応じて適宜選択的に採用されることが好ましい。 The above-mentioned preferable configuration and possible configuration can be any combination, and it is preferable that they are appropriately and selectively adopted according to the required specifications.
 次に、実施例のデータについて説明する。図2に示す反射光学系1の数値データとして、面データを表1に、偏心に関するデータを表2に、自由曲面係数を表3Aおよび表3Bに示す。自由曲面係数は1つの表の長大化を避けるため2つの表に分けて示している。 Next, the data of the examples will be described. As the numerical data of the reflected optical system 1 shown in FIG. 2, the surface data is shown in Table 1, the data related to eccentricity is shown in Table 2, and the free-form surface coefficients are shown in Tables 3A and 3B. The free-form surface coefficients are shown separately in two tables to avoid lengthening one table.
 表1には、反射光学系1、光学部材PP、および画像表示面Simについての面データを示す。表1において、Snの欄には最も拡大側の光学素子の面(第1反射面)を第1面とし縮小側に向かうに従い1つずつ番号を増加させた場合の面番号を示す。自由曲面の面番号には*印を付している。Rの欄には各面の曲率半径を示し、自由曲面のRの欄には近軸曲率半径を示す。Dの欄には各面とその縮小側に隣接する面との間隔を示す。各反射面に対応するNdの欄には「反射面」と記入している。光学部材PPの拡大側の面に対応するNdおよびνdの欄にはそれぞれ、光学部材PPのd線に対する屈折率およびd線基準のアッベ数を示す。表1の第7面が画像表示面Simに対応する。 Table 1 shows surface data for the reflected optical system 1, the optical member PP, and the image display surface Sim. In Table 1, in the column of Sn, the surface number of the optical element on the most enlarged side (first reflective surface) is set as the first surface, and the surface numbers are shown when the numbers are increased one by one toward the reduced side. The surface numbers of free-form surfaces are marked with *. The radius of curvature of each surface is shown in the column of R, and the radius of curvature of the near axis is shown in the column of R of the free curved surface. The column D indicates the distance between each surface and the surface adjacent to the reduced side. "Reflective surface" is written in the Nd column corresponding to each reflective surface. The columns of Nd and νd corresponding to the enlarged side surface of the optical member PP indicate the refractive index of the optical member PP with respect to the d-line and the Abbe number of the d-line reference, respectively. The seventh surface of Table 1 corresponds to the image display surface Sim.
 表1の欄外に、投写距離および全画角の値を示す。投写距離は第1反射面R1からスクリーンScrまでの距離である。 The values of the projection distance and the total angle of view are shown in the margin of Table 1. The projection distance is the distance from the first reflecting surface R1 to the screen Scr.
 表2には、各面のシフトとティルトの値を示す。表2のデータは、右手系のXYZ直交座標系において、縮小側方向を+Z軸方向とし、シフトはY軸方向の平行移動、ティルトはX軸周りの回転を示す。シフトの符号は、+Y軸方向を正、-Y軸方向を負としている。ティルトの符号は、-Xから+Xへ向かう方向にX軸を見た場合に、反時計方向の回転を正、時計方向の回転を負としている。表2には、第1面以降を-90度ティルト偏心させた場合のデータを示す。 Table 2 shows the shift and tilt values of each surface. In the data in Table 2, in the right-handed XYZ Cartesian coordinate system, the reduction side direction is the + Z axis direction, the shift is the translation in the Y axis direction, and the tilt is the rotation around the X axis. The shift sign is positive in the + Y-axis direction and negative in the −Y-axis direction. The sign of the tilt is positive for counterclockwise rotation and negative for clockwise rotation when the X-axis is viewed in the direction from −X to + X. Table 2 shows the data when the first and subsequent surfaces are tilt-eccentric by -90 degrees.
 表3Aおよび表3Bには、各自由曲面について、面番号と、自由曲面係数とを示す。表3の自由曲面係数の数値の「E±n」(n:整数)は「×10±n」を意味する。表3Aおよび表3Bに示す自由曲面係数は、下記式で表される自由曲面式における、回転非対称自由曲面係数C(i,j)の値である。
Z=ΣΣC(i,j)・X・Y
ここで、
 X、Y、Zは、面頂点を原点とした各座標である。
 また、上記式において、Xの値は絶対値である。
 また、上記式において、1つ目のΣはiに関する総和であり、2つ目のΣはjに関する総和である。
Tables 3A and 3B show surface numbers and free-form surface coefficients for each free-form surface. The numerical value "E ± n" (n: integer) of the free-form surface coefficient in Table 3 means "× 10 ± n". The free-form surface coefficients shown in Tables 3A and 3B are the values of the rotationally asymmetric free-form surface coefficients C (i, j) in the free-form surface equation represented by the following equation.
Z = ΣΣC (i, j) ・ X i・ Y j
here,
X, Y, and Z are coordinates with the surface vertex as the origin.
Further, in the above equation, the value of X is an absolute value.
Further, in the above equation, the first Σ is the sum of i and the second Σ is the sum of j.
 各表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmm(ミリメートル)を用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることもできる。また、以下に示す各表では所定の桁でまるめた数値を記載している。 In the data in each table, degrees are used as the unit of angle and mm (millimeter) is used as the unit of length. Units can also be used. In addition, in each table shown below, numerical values rounded to a predetermined digit are listed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図9に、上記実施例において拡大側から縮小側へ向かって光線追跡した場合のスポットダイヤグラムを示す。図8は、拡大側から光線追跡した場合のスポット像の結像位置となる画像表示面Simを示す。図9の各スポットダイヤグラムは、図8に黒丸で示した15個の各格子点におけるスポットダイヤグラムである。 FIG. 9 shows a spot diagram when light rays are traced from the enlargement side to the reduction side in the above embodiment. FIG. 8 shows an image display surface Sim which is an image formation position of a spot image when light rays are traced from the enlarged side. Each spot diagram in FIG. 9 is a spot diagram at each of the 15 grid points indicated by the black circles in FIG.
 図10に、上記実施例の歪曲格子(Distortion Grid)を示す。歪曲格子は、格子パターンからなる画像を上記実施例の反射光学系1を用いて投写した場合に、スクリーン上に形成される格子パターンの歪曲形状を示すものである。 FIG. 10 shows the distortion grid of the above embodiment. The distorted grid shows the distorted shape of the grid pattern formed on the screen when an image composed of the grid pattern is projected by using the reflection optical system 1 of the above embodiment.
 以上のデータからわかるように、上記実施例の反射光学系1は、小型に構成されながらも、各収差が良好に補正されて高い光学性能を実現している。また、全画角は135度であり、広角の目安となる120度以上であり、十分広い画角が確保されている。 As can be seen from the above data, the reflected optical system 1 of the above embodiment is configured to be compact, but each aberration is satisfactorily corrected to realize high optical performance. Further, the total angle of view is 135 degrees, which is 120 degrees or more, which is a guideline for a wide angle, and a sufficiently wide angle of view is secured.
 次に、本開示の実施形態に係る投写型表示装置について説明する。図11は、本開示の一実施形態に係る投写型表示装置の概略構成図である。図11に示す投写型表示装置100は、本開示の実施形態に係る反射光学系10と、光源15と、各色光に対応したライトバルブとしての透過型表示素子11a~11cと、色分解のためのダイクロイックミラー12~13と、色合成のためのクロスダイクロイックプリズム14と、コンデンサレンズ16a~16cと、光路を偏向するための全反射ミラー18a~18cとを有する。なお、図11では、反射光学系10は概略的に図示している。また、光源15とダイクロイックミラー12の間にはインテグレーターが配されているが、図11ではその図示を省略している。 Next, the projection type display device according to the embodiment of the present disclosure will be described. FIG. 11 is a schematic configuration diagram of a projection type display device according to an embodiment of the present disclosure. The projection type display device 100 shown in FIG. 11 includes a reflection optical system 10 according to an embodiment of the present disclosure, a light source 15, transmission type display elements 11a to 11c as light valves corresponding to each color light, and for color separation. The dichroic mirrors 12 to 13, the cross dichroic prism 14 for color synthesis, the condenser lenses 16a to 16c, and the total reflection mirrors 18a to 18c for deflecting the optical path are provided. In FIG. 11, the reflective optical system 10 is schematically shown. Further, although an integrator is arranged between the light source 15 and the dichroic mirror 12, the illustration is omitted in FIG.
 光源15からの白色光は、ダイクロイックミラー12~13で3つの色光光束(Green光、Blue光、Red光)に分解された後、それぞれコンデンサレンズ16a~16cを経て各色光光束にそれぞれ対応する透過型表示素子11a~11cに入射して変調され、クロスダイクロイックプリズム14により色合成された後、反射光学系10に入射する。反射光学系10は、透過型表示素子11a~11cにより変調された変調光による光学像をスクリーン105上に投写する。 The white light from the light source 15 is decomposed into three color light beams (Green light, Blue light, Red light) by the dichroic mirrors 12 to 13, and then transmitted through the condenser lenses 16a to 16c, respectively, corresponding to each color light light beam. It is incident on the mold display elements 11a to 11c, modulated, color-synthesized by the cross dichroic prism 14, and then incident on the reflection optical system 10. The catadioptric system 10 projects an optical image of the modulated light modulated by the transmissive display elements 11a to 11c on the screen 105.
 図12は、本開示の別の実施形態に係る投写型表示装置の概略構成図である。図12に示す投写型表示装置200は、本開示の実施形態に係る反射光学系210と、光源215と、各色光に対応したライトバルブとしてのDMD素子21a~21cと、色分解および色合成のためのTIR(Total Internal Reflection)プリズム24a~24cと、照明光と投写光を分離する偏光分離プリズム25とを有する。なお、図12では反射光学系210を概略的に図示している。また、光源215と偏光分離プリズム25の間にはインテグレーターが配されているが、図12ではその図示を省略している。 FIG. 12 is a schematic configuration diagram of a projection type display device according to another embodiment of the present disclosure. The projection type display device 200 shown in FIG. 12 includes a reflection optical system 210 according to the embodiment of the present disclosure, a light source 215, DMD elements 21a to 21c as light valves corresponding to each color light, and color separation and color synthesis. It has a TIR (Total Internal Reflection) prisms 24a to 24c for the purpose, and a polarization separation prism 25 for separating illumination light and projected light. Note that FIG. 12 schematically shows the reflected optical system 210. Further, although an integrator is arranged between the light source 215 and the polarization separation prism 25, the illustration thereof is omitted in FIG.
 光源215からの白色光は、偏光分離プリズム25内部の反射面で反射された後、TIRプリズム24a~24cにより3つの色光光束(Green光、Blue光、Red光)に分解される。分解後の各色光光束はそれぞれ対応するDMD素子21a~21cに入射して変調され、再びTIRプリズム24a~24cを逆向きに進行して色合成された後、偏光分離プリズム25を透過して、反射光学系210に入射する。反射光学系210は、DMD素子21a~21cにより変調された変調光による光学像をスクリーン205上に投写する。 The white light from the light source 215 is reflected by the reflecting surface inside the polarization separation prism 25, and then decomposed into three color light beams (Green light, Blue light, Red light) by the TIR prisms 24a to 24c. Each color light flux after decomposition is incident on the corresponding DMD elements 21a to 21c and modulated, and the TIR prisms 24a to 24c proceed in the opposite directions to perform color synthesis, and then pass through the polarization separation prism 25. It is incident on the reflection optical system 210. The catadioptric system 210 projects an optical image of the modulated light modulated by the DMD elements 21a to 21c on the screen 205.
 図13は、本開示のさらに別の実施形態に係る投写型表示装置の概略構成図である。図13に示す投写型表示装置300は、本開示の実施形態に係る反射光学系310と、光源315と、各色光に対応したライトバルブとしての反射型表示素子31a~31cと、色分離のためのダイクロイックミラー32、33と、色合成のためのクロスダイクロイックプリズム34と、光路偏向のための全反射ミラー38と、偏光分離プリズム35a~35cとを有する。なお、図13では、反射光学系310は概略的に図示している。また、光源315とダイクロイックミラー32の間にはインテグレーターが配されているが、図13ではその図示を省略している。 FIG. 13 is a schematic configuration diagram of a projection type display device according to still another embodiment of the present disclosure. The projection type display device 300 shown in FIG. 13 includes a reflection optical system 310 according to the embodiment of the present disclosure, a light source 315, reflection type display elements 31a to 31c as light valves corresponding to each color light, and for color separation. Dichroic mirrors 32 and 33, a cross dichroic prism 34 for color synthesis, a total reflection mirror 38 for optical path deflection, and polarization separation prisms 35a to 35c. In addition, in FIG. 13, the reflection optical system 310 is schematically shown. Further, although an integrator is arranged between the light source 315 and the dichroic mirror 32, the illustration thereof is omitted in FIG.
 光源315からの白色光はダイクロイックミラー32、33により3つの色光光束(Green光、Blue光、Red光)に分解される。分解後の各色光光束はそれぞれ偏光分離プリズム35a~35cを経て、各色光光束それぞれに対応する反射型表示素子31a~31cに入射して変調され、クロスダイクロイックプリズム34により色合成された後、反射光学系310に入射する。反射光学系310は、反射型表示素子31a~31cにより変調された変調光による光学像をスクリーン305上に投写する。 The white light from the light source 315 is decomposed into three color light fluxes (Green light, Blue light, Red light) by the dichroic mirrors 32 and 33. Each color light beam after decomposition passes through the polarization separation prisms 35a to 35c, is incident on the reflective display elements 31a to 31c corresponding to each color light beam, is modulated, is color-synthesized by the cross dichroic prism 34, and then is reflected. It is incident on the optical system 310. The catadioptric system 310 projects an optical image of the modulated light modulated by the reflective display elements 31a to 31c on the screen 305.
 以上、実施形態および実施例を挙げて本開示の技術について説明したが、本開示の技術は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各反射面の曲率半径、面間隔、および自由曲面係数等は、上記実施例で示した値に限定されず、他の値をとり得る。 Although the techniques of the present disclosure have been described above with reference to embodiments and examples, the techniques of the present disclosure are not limited to the above embodiments and examples, and various modifications are possible. For example, the radius of curvature, the surface spacing, the free curved surface coefficient, and the like of each reflecting surface are not limited to the values shown in the above embodiment, and may take other values.
 また、本開示の技術に係る投写型表示装置も、上記構成のものに限定されず、例えば、光束分離又は光束合成に用いられる光学部材、およびライトバルブは、種々の態様の変更が可能である。ライトバルブは、光源からの光を画像表示素子により空間変調して、画像データに基づく光学像として出力する態様に限定されず、自発光型の画像表示素子から出力された光自体を、画像データに基づく光学像として出力する態様であってもよい。自発光型の画像表示素子としては、例えば、LED(Light Emitting Diode)又はOLED(Organic Light Emitting Diode)等の発光素子が2次元配列された画像表示素子が挙げられる。 Further, the projection type display device according to the technique of the present disclosure is not limited to the above-mentioned configuration, and for example, the optical member and the light bulb used for luminous flux separation or luminous flux synthesis can be changed in various modes. .. The light valve is not limited to the mode in which the light from the light source is spatially modulated by the image display element and output as an optical image based on the image data, and the light itself output from the self-luminous image display element is the image data. It may be an aspect of outputting as an optical image based on. Examples of the self-luminous image display element include an image display element in which light emitting elements such as an LED (Light Emitting Diode) or an OLED (Organic Light Emitting Diode) are two-dimensionally arranged.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference herein.

Claims (9)

  1.  画像表示面に表示される画像を拡大して被投写面に拡大像として形成可能な反射光学系であって、
     前記反射光学系は、拡大側から縮小側へ光路に沿って順に連続して、曲率を有する第1反射面と、曲率を有する第2反射面とを含み、
     前記反射光学系は、前記第1反射面と前記第2反射面との間でかつ前記画像表示面と共役な位置に中間像を形成し、
     前記画像の中心を通り前記被投写面へ入射する主光線である中心主光線の光路のうち、前記第2反射面から前記第1反射面へ向かう光路と、前記画像表示面から前記第2反射面へ向かう光路とは、2つの交点を有し、
     前記2つの交点のうち、前記画像表示面から前記第2反射面へ向かう光路上でより縮小側の交点を縮小側交点とし、
     前記画像表示面から前記第2反射面へ向かう光路のうち前記縮小側交点を含む1つの線分状の光路を境界とし、
     前記拡大像の形成に用いられる主光線のうち最小入射角で前記被投写面に入射する主光線を第1主光線とし、
     前記第1主光線と前記被投写面との交点を第1交点とし、
     前記中心主光線と前記被投写面との交点に対して前記第1交点と対称な点を通る主光線を第2主光線とした場合、
     前記第1主光線の前記中間像は前記境界に対して前記第1反射面側に位置し、前記第2主光線の前記中間像は前記境界に対して前記第2反射面側に位置する反射光学系。
    It is a catadioptric system that can magnify the image displayed on the image display surface and form it as an enlarged image on the projected surface.
    The catadioptric system includes a first reflecting surface having a curvature and a second reflecting surface having a curvature continuously along an optical path from an enlargement side to a reduction side.
    The catadioptric system forms an intermediate image between the first reflecting surface and the second reflecting surface and at a position conjugate with the image display surface.
    Of the optical paths of the central main ray, which is the main ray that passes through the center of the image and is incident on the projected surface, the optical path from the second reflecting surface to the first reflecting surface and the second reflection from the image display surface. The optical path toward the surface has two intersections and has two points of intersection.
    Of the two intersections, the intersection on the reduction side on the optical path from the image display surface to the second reflection surface is defined as the reduction side intersection.
    Of the optical paths from the image display surface to the second reflection surface, one line segment-shaped optical path including the reduction side intersection is defined as a boundary.
    Of the main rays used to form the magnified image, the main ray incident on the projected surface at the minimum incident angle is defined as the first main ray.
    The intersection of the first main ray and the projected surface is set as the first intersection.
    When the main ray passing through a point symmetrical to the first intersection with respect to the intersection of the central main ray and the projected surface is the second main ray.
    The intermediate image of the first main ray is located on the first reflecting surface side with respect to the boundary, and the intermediate image of the second main ray is located on the second reflecting surface side with respect to the boundary. Optical system.
  2.  前記第1主光線と前記第2主光線とは、前記第1反射面と前記被投写面との間で交差する請求項1に記載の反射光学系。 The reflected optical system according to claim 1, wherein the first main ray and the second main ray intersect between the first reflecting surface and the projected surface.
  3.  前記第1反射面は凹面形状である請求項1又は2に記載の反射光学系。 The reflective optical system according to claim 1 or 2, wherein the first reflective surface has a concave shape.
  4.  前記反射光学系は、拡大側から縮小側へ光路に沿って順に、前記第1反射面と、前記第2反射面と、曲率を有する第3反射面と、曲率を有する第4反射面とからなる請求項1から3のいずれか1項に記載の反射光学系。 The reflective optical system is composed of the first reflecting surface, the second reflecting surface, the third reflecting surface having a curvature, and the fourth reflecting surface having a curvature, in order from the enlargement side to the reduction side along the optical path. The reflective optical system according to any one of claims 1 to 3.
  5.  前記第2反射面は凹面形状であり、前記第3反射面は凸面形状であり、前記第4反射面は凹面形状である請求項4に記載の反射光学系。 The reflective optical system according to claim 4, wherein the second reflecting surface has a concave shape, the third reflecting surface has a convex shape, and the fourth reflecting surface has a concave shape.
  6.  前記反射光学系に含まれる全ての反射面は自由曲面形状を有する請求項1から5のいずれか1項に記載の反射光学系。 The reflective optical system according to any one of claims 1 to 5, wherein all the reflective surfaces included in the reflected optical system have a free curved surface shape.
  7.  前記反射光学系に含まれる全ての光学素子の光軸は同一平面内にある請求項1から6のいずれか1項に記載の反射光学系。 The reflective optical system according to any one of claims 1 to 6, wherein the optical axes of all the optical elements included in the reflected optical system are in the same plane.
  8.  前記画像表示面に対して前記被投写面は90度傾いている請求項1から7のいずれか1項に記載の反射光学系。 The reflective optical system according to any one of claims 1 to 7, wherein the projected surface is tilted 90 degrees with respect to the image display surface.
  9.  前記画像を出力する画像表示素子と、
     請求項1から8のいずれか1項に記載の反射光学系とを備えた投写型表示装置。
    An image display element that outputs the image and
    A projection type display device including the catadioptric system according to any one of claims 1 to 8.
PCT/JP2021/027944 2020-08-28 2021-07-28 Reflection optical system and projection display device WO2022044674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020144965 2020-08-28
JP2020-144965 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022044674A1 true WO2022044674A1 (en) 2022-03-03

Family

ID=80353025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027944 WO2022044674A1 (en) 2020-08-28 2021-07-28 Reflection optical system and projection display device

Country Status (1)

Country Link
WO (1) WO2022044674A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061959A (en) * 2002-07-30 2004-02-26 Canon Inc Projection optical system, projection type picture display device and picture display system
JP2004061961A (en) * 2002-07-30 2004-02-26 Canon Inc Projection optical system, projection image display device, and image display system
JP2005024716A (en) * 2003-06-30 2005-01-27 Canon Inc Imaging optical system, optical system, optical device, imaging unit, image reader, and projection type image display device
JP2008145705A (en) * 2006-12-08 2008-06-26 Canon Inc Projection optical system and image projection device
JP2017026849A (en) * 2015-07-23 2017-02-02 キヤノン株式会社 Image display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061959A (en) * 2002-07-30 2004-02-26 Canon Inc Projection optical system, projection type picture display device and picture display system
JP2004061961A (en) * 2002-07-30 2004-02-26 Canon Inc Projection optical system, projection image display device, and image display system
JP2005024716A (en) * 2003-06-30 2005-01-27 Canon Inc Imaging optical system, optical system, optical device, imaging unit, image reader, and projection type image display device
JP2008145705A (en) * 2006-12-08 2008-06-26 Canon Inc Projection optical system and image projection device
JP2017026849A (en) * 2015-07-23 2017-02-02 キヤノン株式会社 Image display apparatus

Similar Documents

Publication Publication Date Title
USRE48309E1 (en) Projection optical system, magnification projection optical system, magnification projection apparatus, and image projection apparatus
JP5477491B2 (en) Projection optical system
JP5374848B2 (en) Projection optical system
CN110780434B (en) Projection optical system and projection type image display apparatus
JP2004258620A5 (en)
JP2008096983A (en) Projection optical system and image projection device
CN110780435A (en) Projection optical system and projection type image display apparatus
CN113176698B (en) Projection optical system and projector
WO2022044674A1 (en) Reflection optical system and projection display device
JP5937962B2 (en) Projection optical system and image projection apparatus
JP5585709B2 (en) Image projection device
TW202204969A (en) Image display device and projection optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP