WO2022044470A1 - Mobile body control method, mobile body control device, and mobile body - Google Patents

Mobile body control method, mobile body control device, and mobile body Download PDF

Info

Publication number
WO2022044470A1
WO2022044470A1 PCT/JP2021/020954 JP2021020954W WO2022044470A1 WO 2022044470 A1 WO2022044470 A1 WO 2022044470A1 JP 2021020954 W JP2021020954 W JP 2021020954W WO 2022044470 A1 WO2022044470 A1 WO 2022044470A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
moving
control
model
parameter
Prior art date
Application number
PCT/JP2021/020954
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 澁沢
智奇 劉
亨宗 白方
貴行 築澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022044470A1 publication Critical patent/WO2022044470A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present disclosure relates to a moving body control method for controlling a moving body, a moving body control device, and a moving body.
  • Self-propelled vacuum cleaners are gaining popularity.
  • the self-propelled vacuum cleaner generates a traveling route for cleaning a predetermined cleaning range, and performs cleaning while traveling along the traveling route. In order to clean the entire cleaning area, it is necessary to run a self-propelled vacuum cleaner so that it does not deviate from the specified travel route.
  • Model predictive control is a control method that optimizes control while predicting future responses at each time using a predictive model (see, for example, Patent Document 1).
  • the present disclosure provides a technique for improving the accuracy of controlling a moving body.
  • the moving body control method in the present disclosure includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a movement for estimating the parameters used in the prediction model. It comprises a step of estimating parameters based on the behavior of the moving body when the moving body is moved by a pattern.
  • the moving body control method in the present disclosure includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body.
  • the behavior of the moving body is based on the lateral slip speed, which indicates the speed at which the moving direction of the moving body shifts to the left or right, or the dead time, which represents the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body. Predict.
  • a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body and a step of controlling the movement of the moving body by model prediction control are controlled.
  • the step to determine the necessity of estimating the parameters used in the prediction model based on the accuracy, and the estimation of the parameters are provided.
  • the moving body control device in the present disclosure is a control unit that controls the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a parameter for estimating the parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when the moving body is moved in a moving pattern.
  • the moving body in the present disclosure is a moving body, and includes a moving unit driven to move and a control device for controlling the moving unit.
  • the control device moves the moving body with a control unit that controls the moving part by model prediction control using a prediction model for predicting the behavior of the moving body and a movement pattern for estimating the parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when it is made to move.
  • the accuracy of controlling the moving body can be improved.
  • FIG. 1 It is a block diagram which shows the structure of the self-propelled vacuum cleaner which is an example of the moving body of this disclosure. It is a control flow diagram which shows the procedure of the moving body control method which concerns on Embodiment 1.
  • FIG. It is a control flow diagram which shows the detailed procedure of step S21 of FIG.
  • It is a figure which shows the test running pattern 1 in the moving body control method which concerns on Embodiment 1.
  • FIG. It is a figure which shows the test running pattern 2 in the moving body control method which concerns on Embodiment 1.
  • FIG. It is a figure which shows the time change of the turning angle when the self-propelled vacuum cleaner is run according to the test run pattern 2.
  • It is a figure which shows the test running pattern 3 in the moving body control method which concerns on Embodiment 1.
  • FIG. 14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 1.
  • 14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 2.
  • 14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 3. It is a figure which shows the contribution degree of 5 kinds of parameter estimation accuracy to the follow-up performance to a target path.
  • the moving body control method in order to move a moving body such as a self-propelled vacuum cleaner accurately and efficiently along a target path, the movement of the moving body is controlled by model prediction control.
  • the first control instruction in the time series of future control inputs obtained by solving the optimization problem is input to the moving body.
  • the state of the actual moving object is acquired from the sensor, and by solving the optimization problem again, a control instruction for correcting the deviation between the target route and the actual traveling route is input to the moving object. ..
  • the model predictive control the moving object is feedback-controlled while calculating the optimization problem at high speed online. As a result, the moving body can be efficiently moved while suppressing deviation from the target path and unnecessary movement.
  • the prediction model at least represents the lateral slip speed indicating the speed at which the moving direction of the moving body shifts to the left or right, and the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body.
  • the values of these parameters depend on the material of the floor, the shape of the unevenness of the floor, the presence or absence of rugs such as carpets and tiles laid on the floor, the type and material, and the condition of the surface of the floor and rug. It can be different.
  • the parameters are estimated based on the behavior of the moving body when the moving body is moved by the movement pattern for estimating the parameters used in these prediction models.
  • the value of the parameter in the moving range of the moving body can be estimated and set with high accuracy, so that the accuracy of the prediction model can be further improved, and by extension, the moving body is moved more accurately and efficiently. be able to.
  • the values of these parameters are not always constant in the moving range of the moving object and may vary depending on the position.
  • the parameter values may change over time due to changes in the state of the rug laid on the floor.
  • the accuracy of prediction by the prediction model or the quality of the tracking performance of the moving body to the target path is determined, and based on the prediction accuracy or the quality of the tracking performance. , Determine the necessity of estimating the parameters used in the prediction model.
  • the moving object is moved by the movement pattern for estimating the parameter to estimate the parameter.
  • the accuracy of the prediction model can be maintained well, so that the moving body can be moved more accurately and efficiently.
  • FIG. 1 is a block diagram showing a configuration of a self-propelled vacuum cleaner 50, which is an example of the moving body of the present disclosure.
  • the self-propelled vacuum cleaner 50 includes a traveling unit 3, a position angle sensor 4, a model estimation unit 5, an overall control unit 6, a performance quality determination unit 9, a control target generation unit 10, and a control unit 11.
  • the overall control unit 6 controls functions and operations such as cleaning by the self-propelled vacuum cleaner 50.
  • the traveling unit 3 includes a configuration such as a wheel for moving the main body of the self-propelled vacuum cleaner 50, a motor for driving the wheel, and a steering device for changing the direction of the wheel.
  • the position / angle sensor 4 detects the position and turning angle of the self-propelled vacuum cleaner 50.
  • the position / angle sensor 4 may include any sensor capable of detecting a position or an angle, such as a LiDAR, an acceleration sensor, a gyro sensor, or a GPS.
  • the control target generation unit 10 includes a target route generation unit 1 and a test running pattern generation unit 7.
  • the control unit 11 includes a model prediction control unit 2 and a test drive control unit 8.
  • the overall control unit 6 sets the traveling mode to the predictive control traveling mode.
  • the target route generation unit 1 of the control target generation unit 10 generates the target route
  • the model predictive control unit 2 of the control unit 11 travels the self-propelled vacuum cleaner 50 along the target route. Let me.
  • the overall control unit 6 sets the traveling mode to the test traveling mode.
  • test driving pattern generation unit 7 of the control target generation unit 10 In the test driving mode, the test driving pattern generation unit 7 of the control target generation unit 10 generates a test driving pattern for estimating the parameters, and the test driving control unit 8 of the control unit 11 self-propells according to the test driving pattern.
  • the running vacuum cleaner 50 is run.
  • the target route generation unit 1 generates a target route when the self-propelled vacuum cleaner 50 performs cleaning.
  • the target route generation unit 1 generates a travel route for efficiently cleaning the entire cleaning range set by the overall control unit 6, and sets it in the model prediction control unit 2 as the target route of the self-propelled vacuum cleaner 50. do.
  • the model prediction control unit 2 controls the traveling unit 3 so as to move the self-propelled vacuum cleaner 50 along the target route generated by the target route generating unit 1.
  • the model prediction control unit 2 holds a prediction model for predicting the behavior of the self-propelled vacuum cleaner 50.
  • this prediction model at least represents the lateral slip speed, which indicates the speed at which the moving direction of the moving body shifts to the left and right, and the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body.
  • One of the time, the constraint condition of the turning speed of the moving body, the natural angular frequency and the attenuation coefficient, which are the secondary delay factors in the turning control of the moving body, is used as a parameter.
  • the model prediction control unit 2 is a target path, the current position and direction of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4, the traveling speed and turning angle by the traveling unit 3, and the future self-propelled type predicted by the prediction model. Based on the behavior of the vacuum cleaner 50 and the like, the control instructions to be input to the motor and the steering device of the traveling unit 3 are determined.
  • the test running pattern generation unit 7 generates a test running pattern for estimating the above parameters and outputs the test running pattern to the test running control unit 8.
  • the test running pattern generation unit 7 may further generate a movement route to the target region for which the parameter is estimated.
  • the target area may be the entire cleaning range of the self-propelled vacuum cleaner 50, or may be a part of the cleaning range.
  • a region in which the estimation accuracy of the prediction model is not good may be a target region for estimating parameters.
  • the test running pattern generation unit 7 generates a test running pattern for estimating the parameters in the target area. The details of the test running pattern will be described later.
  • the test running pattern may be stored in advance in the storage device, or may be automatically generated by the test running pattern generation unit 7 according to the type and accuracy of the parameter to be estimated.
  • the test travel control unit 8 controls the travel unit 3 according to the test travel pattern generated by the test travel pattern generation unit 7.
  • the test running control unit 8 does not perform feedback control such as model prediction control, and outputs control instructions according to the test running pattern to the running unit 3.
  • the test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the target area along the movement route, and then self-propells in the target area according to the test travel pattern.
  • the running vacuum cleaner 50 is run. While controlling the test run of the self-propelled vacuum cleaner 50, the test run control unit 8 stores the position and turning angle of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4 in association with the time. Record on the device. Recording of the position and the turning angle may be performed by the model estimation unit 5.
  • the model estimation unit 5 estimates the target in the target area based on the time-series data of the position and turning angle of the self-propelled vacuum cleaner 50 recorded in the storage device while the self-propelled vacuum cleaner 50 is in a test run. The parameters are estimated, and the prediction model held in the model prediction control unit 2 is updated. Details of the parameter estimation method will be described later.
  • the performance quality determination unit 9 was acquired from the target route generated by the target route generation unit 1 and the position / angle sensor 4 when the model prediction control unit 2 controls the traveling of the self-propelled vacuum cleaner 50. Compare with the actual driving route and judge whether the performance to follow the target route meets the standard. The performance quality determination unit 9 predicts performance in a certain region when statistical values such as an integrated value, an average value, and a maximum value of the magnitude of deviation between the target route and the actual traveling route exceed a predetermined value. May be judged not to be good. The performance quality determination unit 9 may determine the quality of the prediction performance or the follow-up performance in a certain region based on the control instruction value calculated by the model prediction control unit 2.
  • the difference between the control instruction value calculated by the model prediction control unit 2 and the control instruction value when the model prediction control is not performed, and the statistical values such as the integrated value, the average value, and the maximum value of the difference are predetermined values. If it exceeds, it may be judged that the prediction performance or the follow-up performance in the region is not good.
  • the performance quality determination unit 9 records the determination result in the storage device in association with the position and the turning angle of the self-propelled vacuum cleaner 50.
  • the self-propelled vacuum cleaner 50 has a suction motor for sucking dust, a dust box for storing the sucked dust, a brush for sweeping the floor surface, and the like. However, it is omitted in FIG.
  • FIG. 2 is a control flow diagram showing a procedure of the mobile body control method according to the first embodiment.
  • FIG. 3 is a control flow diagram showing a detailed procedure of step S21 of FIG.
  • a first test run is performed to estimate the parameters in the cleaning range prior to cleaning (S11).
  • the test running pattern generation unit 7 generates a test running pattern for estimating all parameters in the new cleaning range, and the test running control unit 8 uses the self-propelled vacuum cleaner 50 according to the generated test running pattern. Let it run.
  • the model estimation unit 5 estimates parameters based on the time-series data of the control instruction value obtained in step S11, the position of the self-propelled vacuum cleaner 50, and the turning angle, and sets the parameters in the prediction model of the model prediction control unit 2. (S12). Note that this initial parameter estimation may be omitted. In that case, typical values may be preset in the prediction model of the model prediction control unit 2 according to the material, type, surface condition, etc. of the floor or rug in the cleaning range of the self-propelled vacuum cleaner 50. ..
  • the target route generation unit 1 When the self-propelled vacuum cleaner 50 cleans the cleaning range, the target route generation unit 1 generates a target route for cleaning the cleaning range, and the model prediction control unit 2 generates a target route along the target route by model prediction control.
  • the self-propelled vacuum cleaner 50 is run (S21).
  • the model prediction control unit 2 acquires the position and turning angle information of the self-propelled vacuum cleaner 50 from the position angle sensor 4 (S211).
  • the model prediction control unit 2 calculates an output plan of the control instruction value so that the distance between the target route and the position of the self-propelled vacuum cleaner 50 becomes the shortest in the future using the prediction model (S212).
  • the model prediction control unit 2 outputs the first output of the calculated output plan to the traveling unit 3 as a control instruction value (S213). Steps S211 to S213 are repeated (N in S214) until the traveling control of the self-propelled vacuum cleaner 50 is completed (Y in S214).
  • the performance quality determination unit 9 determines whether the prediction performance or the follow-up performance is good or bad, and if there is a place where the prediction performance or the follow-up performance is not good, the position is recorded. (S22). If there is no place where the prediction performance or the follow-up performance is not good (N in S30), steps S21 and S22 are repeated at the next cleaning timing.
  • the parameters are re-estimated in that region. Parameter re-estimation is performed for the number of performance deterioration regions output by the overall control unit 6.
  • the overall control unit 6 notifies the test travel pattern generation unit 7 of the performance deterioration region and the estimation target parameter, the test travel pattern generation unit 7 sets the movement route to the test travel start point in the performance deterioration region and the performance deterioration region. Generate a test run pattern for estimating the parameters to be estimated.
  • the test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test travel start point in the performance deterioration region according to the generated movement route (S31).
  • the test run control unit 8 performs the test run (S32) and the parameter estimation (S33) in the same manner as in steps S11 and S12. If there is a performance deterioration region for which the parameter should be estimated (N in S41), the process returns to step S31, moves to the test run start point of the next performance deterioration region, and performs test run and parameter estimation. When the estimation of the parameters in all the performance deterioration regions is completed (Y in S41), the test run is completed, and steps S21 and S22 are executed at the next cleaning timing.
  • test run and parameter estimation performed in steps S11 and S12, or steps S32 and S33 five types of parameters are estimated by three types of test run patterns. Model parameter estimation using these test driving patterns will be described with reference to FIGS. 4 to 8.
  • FIG. 4 shows a test running pattern 1 in the moving body control method according to the first embodiment.
  • the test running pattern 1 is a test running pattern for estimating the lateral slip speed of the self-propelled vacuum cleaner 50.
  • the test running pattern 1 includes a straight path longer than a predetermined length along the traveling direction of the target path. If there is no influence of the lateral slip speed or the noise component contained in the self-propelled vacuum cleaner 50, the self-propelled vacuum cleaner 50 should go straight according to the test running pattern 1. However, due to the influence of the lateral slip speed and noise, the self-propelled vacuum cleaner 50 advances while shifting in the direction in which the lateral slip speed is generated, as shown by L12 in FIG.
  • the noise component includes rattling of the main body and the carpet, irregular vibration caused by the turning angle control inside the self-propelled vacuum cleaner 50, and the like.
  • the overall control unit 6 instructs the test travel pattern generation unit 7, the test travel control unit 8, and the model estimation unit 5 to estimate the strike-slip speed in the target range for estimating the parameters.
  • the test running pattern generation unit 7 generates a test running pattern 1 for estimating the movement route to the test start point of the target range and the lateral slip speed.
  • the test travel control unit 8 inputs a control instruction to the travel unit 3 according to the generated test travel pattern 1, and causes the self-propelled vacuum cleaner 50 to travel. While the self-propelled vacuum cleaner 50 is running, the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device.
  • the model estimation unit 5 acquires the forward distance D11 and the lateral slip distance D12 from the path L12 recorded when the self-propelled vacuum cleaner 50 runs the test running pattern 1. Calculate the lateral slip speed with respect to the forward speed.
  • the length of the straight path included in the test running pattern 1 may be a value such that the estimation accuracy of the strike-slip speed is higher than the required level.
  • FIG. 5 shows a test running pattern 2 in the moving body control method according to the first embodiment.
  • the test running pattern 2 is a test running pattern for estimating the constraint conditions of the dead time and the turning speed of the self-propelled vacuum cleaner 50.
  • a route that advances by the distance D11 previously acquired and travels straight so as to shift laterally by the distance D12 is used as a reference route.
  • the test running pattern 2 includes a route along the reference route L20 halfway and turning right or left from the middle. The angle of turning to the right or left is set to an angle larger than a predetermined angle that touches the constraint condition of the turning speed of the self-propelled vacuum cleaner 50.
  • the self-propelled vacuum cleaner 50 should proceed according to the test driving pattern 2 if it is not affected by the dead time, the constraint condition of the turning speed, the natural angular frequency, the attenuation coefficient, and the noise component of the self-propelled vacuum cleaner 50. Is. However, due to the influence of dead time, turning speed constraints, natural angular frequency, attenuation coefficient, and noise, the self-propelled vacuum cleaner 50 draws a forward bulging path as shown by L22 in FIG. ..
  • FIG. 6 is a diagram showing the time change of the turning angle when the self-propelled vacuum cleaner 50 is run according to the test running pattern 2.
  • the alternate long and short dash line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven along the path L20.
  • the broken line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L21, that is, the test running pattern 2.
  • 0 ° is output to the running section 3 as a control instruction value of the turning angle until the middle of the route, but at a point where the turning angle is largely turned to the right or left, the angle is larger than the predetermined angle in a stepped manner.
  • the control instruction value of the turning angle is output to the traveling unit 3.
  • This turning angle is a target value in the traveling direction of the self-propelled vacuum cleaner 50, but since it is larger than the turning angle that touches the constraint condition of the turning speed of the traveling unit 3, the self-propelled vacuum cleaner 50 immediately follows. Can not. Therefore, in the traveling path L22 of the actual self-propelled vacuum cleaner 50, the turning angle increases or decreases with the inclination defined by the constraint condition of the turning speed, and eventually converges to the turning angle of the control instruction value.
  • the constraint condition of the turning speed can be estimated from the slope of the time change of the turning angle.
  • the dead time is estimated from the delay from the output of the turning angle control instruction value to the traveling unit 3 until the turning angle of the self-propelled vacuum cleaner 50 starts to increase or decrease. can do.
  • the overall control unit 6 instructs the test travel pattern generation unit 7, the test travel control unit 8, and the model estimation unit 5 to estimate the constraint conditions of the dead time and the turning speed in the target range for estimating the parameters.
  • the test running pattern generation unit 7 generates a test running pattern 2 for estimating the movement path from the test end point of the test run pattern 1 to the test start point of the test run pattern 2 and the constraint conditions of the dead time and the turning speed. do.
  • the test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test start point, then inputs a control instruction to the travel unit 3 according to the generated test travel pattern 2, and travels the self-propelled vacuum cleaner 50. Let me.
  • the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device.
  • the model estimation unit 5 outputs the control instruction value of the turning angle to the running unit 3 at the point where the test running pattern 2 makes a large right or left turn, and then the self-propelled vacuum cleaner.
  • the dead time is estimated from the delay until the turning angle of 50 begins to increase or decrease.
  • the model estimation unit 5 estimates the constraint condition of the turning speed from the slope of the time change of the turning angle when the test running pattern 2 makes a large turn to the right or left.
  • the model estimation unit 5 estimates the natural angular frequency and the damping coefficient from the change in the turning angle before and after touching the constraint condition of the turning speed and holds them as temporary values for the generation of the test running pattern 3 described later. Use for.
  • FIG. 7 shows a test running pattern 3 in the moving body control method according to the first embodiment.
  • the test running pattern 3 is a test running pattern for estimating the natural angular frequency and the attenuation coefficient of the self-propelled vacuum cleaner 50.
  • the bending angle of the path L21 of the test running pattern 2 is made smaller than a predetermined angle that does not touch the constraint condition of the turning speed.
  • the turning angle that does not touch the constraint condition of the turning angle is obtained by the constraint condition of the turning speed obtained above and the tentatively estimated natural angular frequency and attenuation coefficient.
  • the self-propelled vacuum cleaner 50 should proceed according to the test driving pattern 3 if it is not affected by the dead time, the constraint condition of the turning speed, the natural angular frequency, the attenuation coefficient, and the noise component of the self-propelled vacuum cleaner 50. Is. However, due to the influence of dead time, turning speed constraints, natural angular frequency, attenuation coefficient, and noise, the self-propelled vacuum cleaner 50 draws a forward bulging path as shown by L32 in FIG. ..
  • FIG. 8 is a diagram showing the time change of the turning angle when the self-propelled vacuum cleaner 50 is run according to the test running pattern 3.
  • the alternate long and short dash line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L21, that is, the test running pattern 2.
  • the broken line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L31, that is, the test running pattern 3.
  • a control instruction value having a turning angle smaller than that of the test running pattern 2 is output to the running unit 3.
  • the turning angle of the actual self-propelled vacuum cleaner 50 in the traveling path L32 draws a curve and converges to the turning angle of the control instruction value while having vibration due to noise.
  • a quadratic lag curve that fits this curve, it is possible to estimate the natural angular frequency and the attenuation coefficient in the change in the turning speed of the self-propelled vacuum cleaner 50.
  • the overall control unit 6 instructs the test drive pattern generation unit 7, the test drive control unit 8, and the model estimation unit 5 to estimate the natural angular frequency and the attenuation coefficient in the target range for estimating the parameters.
  • the test running pattern generation unit 7 generates a moving path from the test ending point of the test running pattern 2 to the test starting point of the test running pattern 3, and a test running pattern 3 for estimating the natural angular frequency and the attenuation coefficient.
  • the test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test start point, then inputs a control instruction to the travel unit 3 according to the generated test travel pattern 3, and travels the self-propelled vacuum cleaner 50. Let me.
  • the test running control unit 8 While the self-propelled vacuum cleaner 50 is running, the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device. When the running of the test running pattern 3 is completed, the model estimation unit 5 obtains a quadratic lag curve that matches the curve of the turning angle change after the point where the test running pattern 3 makes a large right or left turn, thereby determining the intrinsic angle. Estimate frequency and attenuation coefficient.
  • the traveling paths L12, L22, and L32 of the actual self-propelled vacuum cleaner 50 all include irregular vibration due to the influence of noise and the like, but the influence of noise is caused by using the test traveling pattern 1.
  • the suppressed lateral slip speed can be estimated, and by using the test running pattern 2, it is possible to estimate the constraint conditions of the dead time and the turning speed in which the influence of noise is suppressed, and the test running pattern 3 is used. Therefore, it is possible to estimate the intrinsic angular frequency and the attenuation coefficient in which the influence of the turning speed constraint condition and noise is suppressed.
  • steps S31, S32, and S33 a test run is performed in the performance deterioration region detected in step S21, and the parameters are estimated and used again in addition to the parameters estimated in step S12 only in that region. Test running and parameter estimation in such a performance deterioration region will be described with reference to FIGS. 9 to 11.
  • FIG. 9 shows an example of a traveling route of the self-propelled vacuum cleaner 50 according to the first embodiment.
  • steps S11 and S12 when the initial test run and the initial parameter estimation are performed at the point 20 near the start point of the target route, the prediction model of the model prediction control unit 2 and the actual one are as long as the characteristics of the point 20 and the floor are the same. Since the behavior of the self-propelled vacuum cleaner 50 is the same, the model prediction control unit 2 can accurately predict the behavior of the self-propelled vacuum cleaner 50 and accurately follow the target path L41.
  • step S21 the performance quality determination unit 9 starts from the target path L41 based on the target path L41 generated by the target path generation unit 1 and the path L42 of the self-propelled vacuum cleaner 50 acquired by the position angle sensor 4. The deviation and the position and turning angle of the self-propelled vacuum cleaner 50 when the deviation occurs are recorded.
  • the overall control unit 6 determines a test travel target point for which the parameter should be re-estimated based on the information of the position and the turning angle at which the follow-up performance to the target route is below the reference.
  • the performance deterioration region 30 may be divided according to a position, a traveling direction, or the like, and a test running target point may be set in the divided region.
  • FIG. 10 shows an example of a test run in a performance deterioration region.
  • the performance deterioration region 30 recorded in the example of FIG. 9 is divided into three by the overall control unit 6, and test travel target points T1 to T3 are set in each region.
  • the test running pattern generation unit 7 generates a movement route from the test running start point 21 to the test running end point 22 through three types of test running patterns at each of the test running target points T1 to T3.
  • the test run control unit 8 moves the self-propelled vacuum cleaner 50 to the start point of the test run pattern at the test run target point T1.
  • the test run control unit 8 carries out a test run according to three types of test run patterns.
  • step S33 the model estimation unit 5 estimates the parameters at the test travel target point T1 based on the data of the position and the turning angle of the self-propelled vacuum cleaner 50 obtained in step S32.
  • the model estimation unit 5 records the estimated area-specific parameters in the storage device in association with the area, and reflects them in the prediction model of the model prediction control unit 2. The above steps are carried out for all test driving target points T1 to T3.
  • FIG. 11 shows an example of a traveling path of the self-propelled vacuum cleaner 50 after re-estimating the parameters.
  • the model prediction control unit 2 predicts based on the position and turning angle of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4. Switch the parameters used in the model for each region.
  • Control instructions can be output. Therefore, as shown in FIG. 11, the follow-up performance to the target path can be maintained above the standard in all regions.
  • the test run according to the test run patterns 1 to 3 may be executed separately from the cleaning route for the self-propelled vacuum cleaner 50 to clean the cleaning range. For example, if it is necessary to estimate the parameters after the self-propelled vacuum cleaner 50 finishes cleaning and returns to the charging station or the like, a test run is executed at a predetermined timing until the next cleaning is executed. May be good.
  • the overall control unit 6 may drive a suction motor, a brush, or the like to perform a cleaning operation while the test travel control unit 8 is executing the test travel according to the test travel patterns 1 to 3.
  • the overall control unit 6 may stop driving the suction motor, the brush, or the like while the test travel control unit 8 is executing the test travel according to the test travel patterns 1 to 3. As a result, even when the test run is executed at night or during breaks, the noise and vibration generated by the test run can be suppressed.
  • the test run according to the test run patterns 1 to 3 is incorporated into the cleaning path for the self-propelled vacuum cleaner 50 to clean the cleaning range, and the parameters are estimated when the self-propelled vacuum cleaner 50 cleans the cleaning range. May be good. In the target area where the parameters are estimated, only a test run may be performed, or both a test run and a run for cleaning may be performed. In the former case, when the self-propelled vacuum cleaner 50 is traveling along the cleaning route in the predictive control travel mode and reaches the test travel start point, the overall control unit 6 switches the travel mode to the test travel mode. Perform a test run.
  • the overall control unit 6 switches the run mode to the predictive control run mode, and the self-propelled vacuum cleaner 50 runs along the cleaning route from the test run end point.
  • the overall control unit 6 may execute the cleaning operation even during the test run. In the latter case, when the test run is completed, the self-propelled vacuum cleaner 50 returns to the test run start point.
  • the overall control unit 6 switches the travel mode to the predictive control travel mode, and the self-propelled vacuum cleaner 50 travels along the cleaning route from the test travel start point. This makes it possible to efficiently estimate the parameters and update the prediction model.
  • FIGS. 12 (a) and 12 (b) are diagrams for explaining the effect of the test running pattern 1.
  • FIG. 12A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control.
  • the lateral slip speed of the self-propelled vacuum cleaner 50 is set to 0.05 [m / s].
  • As the strike-slip velocity parameter of the MPC 0.10 [m / s] having an error of + 100% from the true value is set.
  • a normal distribution random number with a standard deviation of 2 deg is given as noise in the turning direction, and a standard deviation of 0.01 m is given as noise in the position.
  • FIG. 12B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 1. Since the test travel control unit 8 outputs a control instruction to the travel unit 3 so as to go straight forward regardless of the deviation from the target route, the lateral deviation of the actual travel route is directly reflected in the self-propelled vacuum cleaner in the target area.
  • FIG. 13A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control.
  • the dead time of the self-propelled vacuum cleaner 50 is set to 0.5 [s], and the upper limit value of 12.5 [deg / s] is set as a constraint condition of the turning speed. Since the control instruction is output in small steps to follow the target path, the influence of the constraints of the dead time and the turning speed is unlikely to appear. Therefore, when the constraints of dead time and turning speed were estimated based on this behavior, + 10% and -25% of the true values were calculated, respectively.
  • FIG. 13A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control.
  • the dead time of the self-propelled vacuum cleaner 50 is set to 0.5 [s]
  • the upper limit value of 12.5 [deg / s] is set as a constraint condition of the turning speed. Since the control instruction is output in small steps to follow the target path, the influence of
  • 13B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 2. Since the test travel control unit 8 outputs the control instruction value of the stepped turning angle to the travel unit 3 regardless of the deviation from the target path, the influence of the constraint conditions of the dead time and the turning speed appears remarkably. Therefore, when the constraints of dead time and turning speed were estimated based on this behavior, + 5% and -2.5% of the true values were calculated, respectively. That is, by estimating the constraint conditions of the dead time and the turning speed using the test running pattern 2, the estimation accuracy can be significantly improved.
  • FIG. 14A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control.
  • the natural angular frequency of the self-propelled vacuum cleaner 50 is set to 3.0 [rad / s], and the attenuation coefficient is set to 0.90. Since the control instruction is output in small steps to follow the target path, the influence of the natural angular frequency and the attenuation coefficient is unlikely to appear. Therefore, when the natural angular frequency and the attenuation coefficient were estimated based on this behavior, + 50% and + 25% of the true values were calculated, respectively.
  • FIG. 14A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control.
  • the natural angular frequency of the self-propelled vacuum cleaner 50 is set to 3.0 [rad / s], and the attenuation coefficient is set to 0.90. Since the control instruction is output in small steps to follow the target path, the influence of the natural angular frequency and the attenuation
  • 14B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 3. Since the test travel control unit 8 outputs a control instruction value of a stepped turning angle smaller than that of the test travel pattern 2 to the travel unit 3 regardless of the deviation from the target path, the influence of the natural angular frequency and the attenuation coefficient is affected. Appears prominently. Therefore, when the natural angular frequency and the attenuation coefficient were estimated based on this behavior, the true values of ⁇ 2.5% and ⁇ 5% were calculated, respectively. That is, by estimating the natural angular frequency and the attenuation coefficient using the test running pattern 3, the estimation accuracy can be significantly improved.
  • FIG. 15 shows the contribution of five types of parameter estimation accuracy to the tracking performance of the target path.
  • the values of the five types of parameters four types are fixed to the above true values, and the behavior of the self-propelled vacuum cleaner 50 that runs under the control of model prediction control is simulated while changing the remaining one type.
  • the average value of the deviation from the target path was plotted. It can be seen that in any of the parameters, the more the estimated value deviates from the true value, the lower the tracking performance to the target path. In particular, it can be seen that the contribution of the strike-slip speed is large, and the estimation error of the strike-slip speed is directly linked to the deviation from the target path.
  • the dead time, proper angular frequency, and attenuation coefficient also have a large contribution, and especially when a value smaller than the true value is estimated, the deviation from the target path is large.
  • the constraint condition of the turning speed if the estimation error is large, the deviation from the target path becomes large.
  • the model while predicting the behavior of the self-propelled vacuum cleaner 50 with a prediction model using five types of parameters estimated with high accuracy by three types of test running patterns.
  • the moving body control method is used in the step of controlling the movement of the moving body by the model prediction control using the prediction model for predicting the behavior of the moving body, and in the prediction model. It is provided with a step of estimating parameters based on the behavior of the moving body when the moving body is moved by a movement pattern for estimating the parameters. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
  • the moving body control method moves the moving body in a plurality of movement patterns in order to estimate each of the plurality of parameters used in the prediction model.
  • the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
  • the above parameter includes a lateral slip speed representing a speed at which the moving direction of the moving body shifts to the left or right, and the moving pattern includes a linear moving path longer than a predetermined length.
  • the above parameters include a dead time representing a delay time until the control instruction issued to the moving body is reflected or a constraint condition of the turning speed of the moving body, and the movement pattern has a predetermined angle. Includes a travel path that swivels at a greater angle.
  • the above parameters include the natural angular frequency or the attenuation coefficient, which are secondary delay elements in the movement control of the moving body, and the movement pattern is a movement path that turns at an angle smaller than a predetermined angle. include.
  • the natural angular frequency or the attenuation coefficient can be estimated with high accuracy, so that the accuracy of the prediction model can be improved.
  • the above parameters are estimated for each of a plurality of regions included in the moving range of the moving body.
  • the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
  • the step of estimating the parameter is executed before or after the moving body moves in the area where the parameter is not estimated.
  • the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
  • the moving body control method includes a step of determining the accuracy of prediction by the prediction model or control by the model prediction control when the movement of the moving body is controlled by the model prediction control. It further includes a step of determining whether or not the parameter needs to be estimated based on the above, and a step of estimating the parameter when it is determined that the parameter needs to be estimated.
  • the accuracy of the prediction model can be maintained high, so that the accuracy of controlling the moving body can be further improved.
  • the necessity of parameter estimation is determined for each of a plurality of regions included in the moving range of the moving body, and the parameters are estimated in the region where it is determined that the parameter estimation is necessary. ..
  • the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
  • the moving body is a vacuum cleaner
  • the movement of the moving body is controlled by model prediction control so that the moving body moves along a cleaning path for cleaning a predetermined cleaning range. .. This makes it possible to improve the cleaning efficiency of the vacuum cleaner.
  • the step of estimating the parameter is executed in a movement pattern different from the cleaning route.
  • the accuracy of the prediction model can be further improved, so that the accuracy of vacuum cleaner control and the cleaning efficiency can be further improved.
  • the cleaning operation by the vacuum cleaner is also executed in the step of estimating the parameters.
  • the accuracy of the prediction model can be further improved, so that the accuracy of vacuum cleaner control and the cleaning efficiency can be further improved.
  • the cleaning path includes a movement pattern, and the parameters are estimated when the vacuum cleaner cleans a predetermined cleaning range. This can improve the efficiency of parameter estimation.
  • the moving body control method includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and the prediction model is a moving body.
  • the behavior of the moving body is predicted by using the lateral slip speed, which indicates the speed at which the moving direction shifts to the left or right, or the dead time, which represents the delay time until the control instruction issued to the moving body is reflected, as parameters.
  • the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
  • the moving body control method includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a movement of the moving body by model prediction control.
  • a step to determine the accuracy of prediction by the predictive model or control by model predictive control when is controlled, a step to determine the necessity of estimating the parameters used in the predictive model based on the accuracy, and the parameter It comprises a step of estimating parameters when it is determined that estimation is necessary.
  • the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
  • the moving body control device is a control unit that controls the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when the moving body is moved by the movement pattern for estimating. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
  • the moving body includes a moving unit driven to move and a control device for controlling the moving unit
  • the control device is a prediction model for predicting the behavior of the moving body.
  • the parameters are estimated based on the behavior of the moving body when the moving body is moved by the control unit that controls the moving unit by the model prediction control using and the movement pattern for estimating the parameters used in the prediction model. It is equipped with a parameter estimation unit. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.
  • the self-propelled vacuum cleaner 50 has been described as an example of the moving body.
  • the moving body may be any moving body that can move autonomously, such as an autonomous vehicle, a carrier, and a robot.
  • This disclosure can be used to control moving objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A mobile body control method of the present disclosure includes a step (S21) for controlling movement of a mobile body by model predictive control using a predictive model for predicting a behavior of the mobile body, and a step (S33) for estimating a parameter, on the basis of the behavior of the mobile body when the mobile body was moved in a movement pattern for estimating a parameter used in the predictive model.

Description

移動体制御方法、移動体制御装置、および移動体Mobile control method, mobile control device, and mobile
 本開示は、移動体を制御するための移動体制御方法、移動体制御装置、および移動体に関する。 The present disclosure relates to a moving body control method for controlling a moving body, a moving body control device, and a moving body.
 自走式の掃除機が人気を博している。自走式掃除機は、所定の清掃範囲を清掃するための走行経路を生成し、走行経路に沿って走行しながら清掃を行う。清掃範囲をくまなく清掃するためには、定められた走行経路からずれないように自走式掃除機を走行させる必要がある。 Self-propelled vacuum cleaners are gaining popularity. The self-propelled vacuum cleaner generates a traveling route for cleaning a predetermined cleaning range, and performs cleaning while traveling along the traveling route. In order to clean the entire cleaning area, it is necessary to run a self-propelled vacuum cleaner so that it does not deviate from the specified travel route.
特開2015-28804号公報Japanese Unexamined Patent Publication No. 2015-28804
 しかし、本発明者らは、絨毯などの上を自走式掃除機が走行するときに、車輪が絨毯の毛足にとられるなどして、自走式掃除機が走行経路からずれる場合があることを課題として認識した。そして、このような場合にも自走式掃除機を走行経路に沿って走行させるために、モデル予測制御(Model Predictive Control:MPC)により自走式掃除機の走行を制御することを検討した。モデル予測制御は、各時刻において未来の応答を予測モデルにより予測しながら制御を最適化する制御手法である(例えば、特許文献1参照)。 However, when the self-propelled vacuum cleaner travels on a carpet or the like, the present inventors may deviate from the traveling path due to the wheels being taken by the fluff of the carpet or the like. I recognized that as an issue. Then, in order to allow the self-propelled vacuum cleaner to travel along the traveling route even in such a case, it was examined to control the traveling of the self-propelled vacuum cleaner by model predictive control (MPC). Model predictive control is a control method that optimizes control while predicting future responses at each time using a predictive model (see, for example, Patent Document 1).
 モデル予測制御により自走式掃除機を制御する際の精度および効率を向上させるためには、予測モデルの精度を更に向上させる必要がある。 In order to improve the accuracy and efficiency when controlling a self-propelled vacuum cleaner by model predictive control, it is necessary to further improve the accuracy of the predictive model.
 本開示は、移動体の制御の精度を向上させる技術を提供する。 The present disclosure provides a technique for improving the accuracy of controlling a moving body.
 本開示における移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップと、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するステップと、を備える。 The moving body control method in the present disclosure includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a movement for estimating the parameters used in the prediction model. It comprises a step of estimating parameters based on the behavior of the moving body when the moving body is moved by a pattern.
 本開示における移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップを備える。予測モデルは、移動体の移動方向が左右へずれる速度を表す横ずれ速度または移動体に出した制御指示が移動体の旋回に反映されるまでの遅延時間を表すむだ時間をパラメータとして移動体の挙動を予測する。 The moving body control method in the present disclosure includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body. In the prediction model, the behavior of the moving body is based on the lateral slip speed, which indicates the speed at which the moving direction of the moving body shifts to the left or right, or the dead time, which represents the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body. Predict.
 本開示における移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップと、モデル予測制御により移動体の移動が制御されているときに予測モデルによる予測またはモデル予測制御による制御の精度を判定するステップと、精度に基づいて、予測モデルにおいて使用されるパラメータの推定の要否を判定するステップと、パラメータの推定が必要であると判定された場合に、パラメータを推定するステップと、を備える。 In the moving body control method in the present disclosure, a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body and a step of controlling the movement of the moving body by model prediction control are controlled. Sometimes it is necessary to determine the accuracy of the prediction by the prediction model or the control by the model prediction control, the step to determine the necessity of estimating the parameters used in the prediction model based on the accuracy, and the estimation of the parameters. When it is determined that, a step of estimating a parameter is provided.
 本開示における移動体制御装置は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御する制御部と、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するパラメータ推定部と、を備える。 The moving body control device in the present disclosure is a control unit that controls the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a parameter for estimating the parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when the moving body is moved in a moving pattern.
 本開示における移動体は、移動体であって、移動するために駆動される移動部と、移動部を制御する制御装置と、を備える。制御装置は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動部を制御する制御部と、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するパラメータ推定部と、を備える。 The moving body in the present disclosure is a moving body, and includes a moving unit driven to move and a control device for controlling the moving unit. The control device moves the moving body with a control unit that controls the moving part by model prediction control using a prediction model for predicting the behavior of the moving body and a movement pattern for estimating the parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when it is made to move.
 本開示の移動体制御技術によれば、移動体の制御の精度を向上させることができる。 According to the moving body control technology of the present disclosure, the accuracy of controlling the moving body can be improved.
本開示の移動体の一例である自走式掃除機の構成を表すブロック図である。It is a block diagram which shows the structure of the self-propelled vacuum cleaner which is an example of the moving body of this disclosure. 実施の形態1に係る移動体制御方法の手順を示す制御フロー図である。It is a control flow diagram which shows the procedure of the moving body control method which concerns on Embodiment 1. FIG. 図2のステップS21の詳細な手順を示す制御フロー図である。It is a control flow diagram which shows the detailed procedure of step S21 of FIG. 実施の形態1に係る移動体制御方法におけるテスト走行パターン1を示す図である。It is a figure which shows the test running pattern 1 in the moving body control method which concerns on Embodiment 1. FIG. 実施の形態1に係る移動体制御方法におけるテスト走行パターン2を示す図である。It is a figure which shows the test running pattern 2 in the moving body control method which concerns on Embodiment 1. FIG. テスト走行パターン2にしたがって自走式掃除機を走行させたときの旋回角度の時間変化を示す図である。It is a figure which shows the time change of the turning angle when the self-propelled vacuum cleaner is run according to the test run pattern 2. 実施の形態1に係る移動体制御方法におけるテスト走行パターン3を示す図である。It is a figure which shows the test running pattern 3 in the moving body control method which concerns on Embodiment 1. FIG. テスト走行パターン3にしたがって自走式掃除機を走行させたときの旋回角度の時間変化を示す図である。It is a figure which shows the time change of the turning angle when the self-propelled vacuum cleaner is run according to the test run pattern 3. 実施の形態1に係る自走式掃除機の走行経路の例を示す図である。It is a figure which shows the example of the traveling path of the self-propelled vacuum cleaner which concerns on Embodiment 1. FIG. 性能悪化領域におけるテスト走行の例を示す図である。It is a figure which shows the example of the test run in the performance deterioration area. パラメータを再推定した後の自走式掃除機の走行経路の例を示す図である。It is a figure which shows the example of the traveling path of the self-propelled vacuum cleaner after re-estimating the parameter. 図14(a)(b)は、テスト走行パターン1の効果を説明するための図である。14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 1. 図14(a)(b)は、テスト走行パターン2の効果を説明するための図である。14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 2. 図14(a)(b)は、テスト走行パターン3の効果を説明するための図である。14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 3. 目標経路への追従性能に対する5種類のパラメータ推定精度の寄与度を示す図である。It is a figure which shows the contribution degree of 5 kinds of parameter estimation accuracy to the follow-up performance to a target path.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1~図15を用いて、実施の形態1を説明する。実施の形態1に係る移動体制御方法においては、自走式掃除機などの移動体を目標経路に沿って精度良く効率的に移動させるために、モデル予測制御により移動体の移動を制御する。制御タイミングにおいて、最適化問題を解くことにより得られた未来の制御入力の時系列のうち最初の制御指示を移動体に入力する。次の制御タイミングにおいて、実際の移動体の状態をセンサから取得し、再び最適化問題を解くことにより、目標経路と実際の走行経路とのずれを補正するような制御指示を移動体に入力する。このように、モデル予測制御では、オンラインで高速に最適化問題を計算しながら移動体をフィードバック制御する。これにより、目標経路からのずれや無駄な動きを抑えながら移動体を効率良く移動させることができる。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 15. In the moving body control method according to the first embodiment, in order to move a moving body such as a self-propelled vacuum cleaner accurately and efficiently along a target path, the movement of the moving body is controlled by model prediction control. At the control timing, the first control instruction in the time series of future control inputs obtained by solving the optimization problem is input to the moving body. At the next control timing, the state of the actual moving object is acquired from the sensor, and by solving the optimization problem again, a control instruction for correcting the deviation between the target route and the actual traveling route is input to the moving object. .. In this way, in the model predictive control, the moving object is feedback-controlled while calculating the optimization problem at high speed online. As a result, the moving body can be efficiently moved while suppressing deviation from the target path and unnecessary movement.
 モデル予測制御の精度および効率を向上させるためには、移動体の挙動を予測するための予測モデルの精度を向上させる必要がある。本実施の形態では、予測モデルは、少なくとも、移動体の移動方向が左右へずれる速度を表す横ずれ速度、移動体に出した制御指示が移動体の旋回に反映されるまでの遅延時間を表すむだ時間、移動体の旋回速度の制約条件、移動体の旋回制御における二次遅れ要素である固有角周波数および減衰係数のうちいずれかをパラメータとして用いる。これにより、予測モデルの計算負荷が過大にならないように抑えつつ、精度を向上させることができる。 In order to improve the accuracy and efficiency of model prediction control, it is necessary to improve the accuracy of the prediction model for predicting the behavior of moving objects. In the present embodiment, the prediction model at least represents the lateral slip speed indicating the speed at which the moving direction of the moving body shifts to the left or right, and the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body. One of the time, the constraint condition of the turning speed of the moving body, the natural angular frequency and the attenuation coefficient, which are the secondary delay factors in the turning control of the moving body, is used as a parameter. As a result, the accuracy can be improved while suppressing the calculation load of the prediction model from becoming excessive.
 これらのパラメータの値は、床面の材質、床面の凹凸などの形状、床面に敷かれた絨毯やタイルなどの敷物の有無、種類、および材質、床面や敷物の表面の状態などによって異なりうる。本実施の形態では、これらの予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定する。これにより、移動体の移動範囲におけるパラメータの値を精度良く推定して設定することができるので、予測モデルの精度を更に向上させることができ、ひいては、移動体をより精度良く効率的に移動させることができる。 The values of these parameters depend on the material of the floor, the shape of the unevenness of the floor, the presence or absence of rugs such as carpets and tiles laid on the floor, the type and material, and the condition of the surface of the floor and rug. It can be different. In the present embodiment, the parameters are estimated based on the behavior of the moving body when the moving body is moved by the movement pattern for estimating the parameters used in these prediction models. As a result, the value of the parameter in the moving range of the moving body can be estimated and set with high accuracy, so that the accuracy of the prediction model can be further improved, and by extension, the moving body is moved more accurately and efficiently. be able to.
 これらのパラメータの値は、移動体の移動範囲において一定であるとは限らず、位置によって異なりうる。また、床面に敷かれた敷物の状態の変化などによって、パラメータの値が経時変化する場合もある。本実施の形態では、移動体の移動が制御されているときに、予測モデルによる予測の精度または移動体の目標経路への追従性能の良否を判定し、予測精度または追従性能の良否に基づいて、予測モデルにおいて使用されるパラメータの推定の要否を判定する。パラメータの推定が必要であると判定された場合は、パラメータを推定するための移動パターンで移動体を移動させてパラメータを推定する。これにより、予測モデルの精度を良好に維持することができるので、移動体をより精度良く効率的に移動させることができる。 The values of these parameters are not always constant in the moving range of the moving object and may vary depending on the position. In addition, the parameter values may change over time due to changes in the state of the rug laid on the floor. In the present embodiment, when the movement of the moving body is controlled, the accuracy of prediction by the prediction model or the quality of the tracking performance of the moving body to the target path is determined, and based on the prediction accuracy or the quality of the tracking performance. , Determine the necessity of estimating the parameters used in the prediction model. When it is determined that the parameter needs to be estimated, the moving object is moved by the movement pattern for estimating the parameter to estimate the parameter. As a result, the accuracy of the prediction model can be maintained well, so that the moving body can be moved more accurately and efficiently.
 [1-1.構成]
 図1は、本開示の移動体の一例である自走式掃除機50の構成を表すブロック図である。自走式掃除機50は、走行部3、位置角度センサ4、モデル推定部5、全体制御部6、性能良否判断部9、制御目標生成部10、および制御部11を備える。
[1-1. Constitution]
FIG. 1 is a block diagram showing a configuration of a self-propelled vacuum cleaner 50, which is an example of the moving body of the present disclosure. The self-propelled vacuum cleaner 50 includes a traveling unit 3, a position angle sensor 4, a model estimation unit 5, an overall control unit 6, a performance quality determination unit 9, a control target generation unit 10, and a control unit 11.
 これらの構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 These configurations can be realized by the CPU, memory, and other LSIs of any computer in terms of hardware, and can be realized by programs loaded in memory in terms of software, but here, they are linked. It depicts the functional blocks that will be realized. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms only by hardware and by a combination of hardware and software.
 全体制御部6は、自走式掃除機50による清掃などの機能および動作を制御する。走行部3は、自走式掃除機50の本体を移動させるための車輪、車輪を駆動するためのモータ、車輪の向きを変化させるための操舵装置などの構成を含む。位置角度センサ4は、自走式掃除機50の位置および旋回角度を検知する。位置角度センサ4は、LiDAR、加速度センサ、ジャイロセンサ、GPSなど、位置や角度を検知可能な任意のセンサを含んでもよい。 The overall control unit 6 controls functions and operations such as cleaning by the self-propelled vacuum cleaner 50. The traveling unit 3 includes a configuration such as a wheel for moving the main body of the self-propelled vacuum cleaner 50, a motor for driving the wheel, and a steering device for changing the direction of the wheel. The position / angle sensor 4 detects the position and turning angle of the self-propelled vacuum cleaner 50. The position / angle sensor 4 may include any sensor capable of detecting a position or an angle, such as a LiDAR, an acceleration sensor, a gyro sensor, or a GPS.
 制御目標生成部10は、目標経路生成部1およびテスト走行パターン生成部7を備える。制御部11は、モデル予測制御部2およびテスト走行制御部8を備える。自走式掃除機50が清掃を行うとき、全体制御部6は、走行モードを予測制御走行モードに設定する。予測制御走行モードにおいては、制御目標生成部10のうち目標経路生成部1が目標経路を生成し、制御部11のうちモデル予測制御部2が目標経路に沿って自走式掃除機50を走行させる。自走式掃除機50がパラメータを推定するとき、全体制御部6は、走行モードをテスト走行モードに設定する。テスト走行モードにおいては、制御目標生成部10のうちテスト走行パターン生成部7がパラメータを推定するためのテスト走行パターンを生成し、制御部11のうちテスト走行制御部8がテスト走行パターンにしたがって自走式掃除機50を走行させる。 The control target generation unit 10 includes a target route generation unit 1 and a test running pattern generation unit 7. The control unit 11 includes a model prediction control unit 2 and a test drive control unit 8. When the self-propelled vacuum cleaner 50 performs cleaning, the overall control unit 6 sets the traveling mode to the predictive control traveling mode. In the predictive control travel mode, the target route generation unit 1 of the control target generation unit 10 generates the target route, and the model predictive control unit 2 of the control unit 11 travels the self-propelled vacuum cleaner 50 along the target route. Let me. When the self-propelled vacuum cleaner 50 estimates the parameters, the overall control unit 6 sets the traveling mode to the test traveling mode. In the test driving mode, the test driving pattern generation unit 7 of the control target generation unit 10 generates a test driving pattern for estimating the parameters, and the test driving control unit 8 of the control unit 11 self-propells according to the test driving pattern. The running vacuum cleaner 50 is run.
 目標経路生成部1は、自走式掃除機50が清掃を行う際の目標経路を生成する。目標経路生成部1は、全体制御部6により設定された清掃範囲をくまなく効率的に清掃するための走行経路を生成し、自走式掃除機50の目標経路としてモデル予測制御部2に設定する。 The target route generation unit 1 generates a target route when the self-propelled vacuum cleaner 50 performs cleaning. The target route generation unit 1 generates a travel route for efficiently cleaning the entire cleaning range set by the overall control unit 6, and sets it in the model prediction control unit 2 as the target route of the self-propelled vacuum cleaner 50. do.
 モデル予測制御部2は、目標経路生成部1により生成された目標経路に沿って自走式掃除機50を移動させるように走行部3を制御する。モデル予測制御部2は、自走式掃除機50の挙動を予測するための予測モデルを保持する。この予測モデルは、上述したように、少なくとも、移動体の移動方向が左右へずれる速度を表す横ずれ速度、移動体に出した制御指示が移動体の旋回に反映されるまでの遅延時間を表すむだ時間、移動体の旋回速度の制約条件、移動体の旋回制御における二次遅れ要素である固有角周波数および減衰係数のうちいずれかをパラメータとして用いる。モデル予測制御部2は、目標経路、位置角度センサ4により検知された自走式掃除機50現在位置および向き、走行部3による走行速度および旋回角度、予測モデルにより予測された未来の自走式掃除機50の挙動などに基づいて、走行部3のモータおよび操舵装置に入力する制御指示を決定する。 The model prediction control unit 2 controls the traveling unit 3 so as to move the self-propelled vacuum cleaner 50 along the target route generated by the target route generating unit 1. The model prediction control unit 2 holds a prediction model for predicting the behavior of the self-propelled vacuum cleaner 50. As described above, this prediction model at least represents the lateral slip speed, which indicates the speed at which the moving direction of the moving body shifts to the left and right, and the delay time until the control instruction issued to the moving body is reflected in the turning of the moving body. One of the time, the constraint condition of the turning speed of the moving body, the natural angular frequency and the attenuation coefficient, which are the secondary delay factors in the turning control of the moving body, is used as a parameter. The model prediction control unit 2 is a target path, the current position and direction of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4, the traveling speed and turning angle by the traveling unit 3, and the future self-propelled type predicted by the prediction model. Based on the behavior of the vacuum cleaner 50 and the like, the control instructions to be input to the motor and the steering device of the traveling unit 3 are determined.
 テスト走行パターン生成部7は、上記のパラメータを推定するためのテスト走行パターンを生成し、テスト走行制御部8に出力する。テスト走行パターン生成部7は、パラメータを推定する対象領域までの移動経路を更に生成してもよい。対象領域は、自走式掃除機50の清掃範囲の全体であってもよいし、一部の領域であってもよい。後述するように、予測モデルの推定精度が良好でない領域を、パラメータを推定する対象領域としてもよい。テスト走行パターン生成部7は、対象領域におけるパラメータを推定するためのテスト走行パターンを生成する。テスト走行パターンの詳細は後述する。テスト走行パターンは、記憶装置に予め記憶されていてもよいし、推定すべきパラメータの種類や精度などに応じてテスト走行パターン生成部7が自動的に生成してもよい。 The test running pattern generation unit 7 generates a test running pattern for estimating the above parameters and outputs the test running pattern to the test running control unit 8. The test running pattern generation unit 7 may further generate a movement route to the target region for which the parameter is estimated. The target area may be the entire cleaning range of the self-propelled vacuum cleaner 50, or may be a part of the cleaning range. As will be described later, a region in which the estimation accuracy of the prediction model is not good may be a target region for estimating parameters. The test running pattern generation unit 7 generates a test running pattern for estimating the parameters in the target area. The details of the test running pattern will be described later. The test running pattern may be stored in advance in the storage device, or may be automatically generated by the test running pattern generation unit 7 according to the type and accuracy of the parameter to be estimated.
 テスト走行制御部8は、テスト走行パターン生成部7により生成されたテスト走行パターンにしたがって走行部3を制御する。テスト走行制御部8は、モデル予測制御などのフィードバック制御は行わず、テスト走行パターンの通りの制御指示を走行部3に出力する。対象領域までの移動経路が設定されている場合は、テスト走行制御部8は、移動経路に沿って対象領域まで自走式掃除機50を移動させた後に、対象領域においてテスト走行パターンにしたがって自走式掃除機50を走行させる。テスト走行制御部8は、自走式掃除機50のテスト走行を制御している間、位置角度センサ4により検知された自走式掃除機50の位置および旋回角度を、時刻と対応付けて記憶装置に記録する。位置および旋回角度の記録は、モデル推定部5によって実施されてもよい。 The test travel control unit 8 controls the travel unit 3 according to the test travel pattern generated by the test travel pattern generation unit 7. The test running control unit 8 does not perform feedback control such as model prediction control, and outputs control instructions according to the test running pattern to the running unit 3. When the movement route to the target area is set, the test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the target area along the movement route, and then self-propells in the target area according to the test travel pattern. The running vacuum cleaner 50 is run. While controlling the test run of the self-propelled vacuum cleaner 50, the test run control unit 8 stores the position and turning angle of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4 in association with the time. Record on the device. Recording of the position and the turning angle may be performed by the model estimation unit 5.
 モデル推定部5は、自走式掃除機50がテスト走行しているときに記憶装置に記録された自走式掃除機50の位置および旋回角度の時系列データに基づいて、対象領域における推定対象パラメータを推定し、モデル予測制御部2に保持された予測モデルを更新する。パラメータの推定方法の詳細は後述する。 The model estimation unit 5 estimates the target in the target area based on the time-series data of the position and turning angle of the self-propelled vacuum cleaner 50 recorded in the storage device while the self-propelled vacuum cleaner 50 is in a test run. The parameters are estimated, and the prediction model held in the model prediction control unit 2 is updated. Details of the parameter estimation method will be described later.
 性能良否判断部9は、モデル予測制御部2が自走式掃除機50の走行を制御しているときに、目標経路生成部1により生成された目標経路と、位置角度センサ4から取得された実際の走行経路とを比較し、目標経路に追従する性能が基準を満たしているか否かを判断する。性能良否判断部9は、ある領域における目標経路と実際の走行経路とのずれの大きさの積分値、平均値、最大値などの統計値が所定値を超えた場合に、その領域における予測性能が良好でないと判断してもよい。性能良否判断部9は、モデル予測制御部2により算出された制御指示値に基づいて、ある領域における予測性能または追従性能の良否を判断してもよい。例えば、モデル予測制御部2により算出された制御指示値と、モデル予測制御を行わない場合の制御指示値との差や、差の積分値、平均値、最大値などの統計値が所定値を超えた場合に、その領域における予測性能または追従性能が良好でないと判断してもよい。性能良否判断部9は、判断結果と自走式掃除機50の位置および旋回角度とを紐づけて記憶装置に記録する。 The performance quality determination unit 9 was acquired from the target route generated by the target route generation unit 1 and the position / angle sensor 4 when the model prediction control unit 2 controls the traveling of the self-propelled vacuum cleaner 50. Compare with the actual driving route and judge whether the performance to follow the target route meets the standard. The performance quality determination unit 9 predicts performance in a certain region when statistical values such as an integrated value, an average value, and a maximum value of the magnitude of deviation between the target route and the actual traveling route exceed a predetermined value. May be judged not to be good. The performance quality determination unit 9 may determine the quality of the prediction performance or the follow-up performance in a certain region based on the control instruction value calculated by the model prediction control unit 2. For example, the difference between the control instruction value calculated by the model prediction control unit 2 and the control instruction value when the model prediction control is not performed, and the statistical values such as the integrated value, the average value, and the maximum value of the difference are predetermined values. If it exceeds, it may be judged that the prediction performance or the follow-up performance in the region is not good. The performance quality determination unit 9 records the determination result in the storage device in association with the position and the turning angle of the self-propelled vacuum cleaner 50.
 自走式掃除機50は、図1に示した構成に加えて、塵埃を吸引するための吸引モータ、吸引された塵埃を格納するためのダストボックス、床面を掃くためのブラシなどの清掃動作のための構成を備えているが、図1では省略している。 In addition to the configuration shown in FIG. 1, the self-propelled vacuum cleaner 50 has a suction motor for sucking dust, a dust box for storing the sucked dust, a brush for sweeping the floor surface, and the like. However, it is omitted in FIG.
 [1-2.動作]
 図2は、実施の形態1に係る移動体制御方法の手順を示す制御フロー図である。図3は、図2のステップS21の詳細な手順を示す制御フロー図である。
[1-2. motion]
FIG. 2 is a control flow diagram showing a procedure of the mobile body control method according to the first embodiment. FIG. 3 is a control flow diagram showing a detailed procedure of step S21 of FIG.
 自走式掃除機50が新たな清掃範囲を清掃するとき、清掃に先立って、その清掃範囲におけるパラメータを推定するために初回のテスト走行を実施する(S11)。テスト走行パターン生成部7は、新たな清掃範囲において全てのパラメータを推定するためのテスト走行パターンを生成し、テスト走行制御部8は、生成されたテスト走行パターンにしたがって自走式掃除機50を走行させる。モデル推定部5は、ステップS11において得られた制御指示値、自走式掃除機50の位置および旋回角度の時系列データに基づいてパラメータを推定し、モデル予測制御部2の予測モデルに設定する(S12)。なお、この初回のパラメータ推定は省略されてもよい。その場合、モデル予測制御部2の予測モデルには、自走式掃除機50の清掃範囲の床または敷物の材質、種類、表面の状態などに応じた典型的な値が予め設定されてもよい。 When the self-propelled vacuum cleaner 50 cleans a new cleaning range, a first test run is performed to estimate the parameters in the cleaning range prior to cleaning (S11). The test running pattern generation unit 7 generates a test running pattern for estimating all parameters in the new cleaning range, and the test running control unit 8 uses the self-propelled vacuum cleaner 50 according to the generated test running pattern. Let it run. The model estimation unit 5 estimates parameters based on the time-series data of the control instruction value obtained in step S11, the position of the self-propelled vacuum cleaner 50, and the turning angle, and sets the parameters in the prediction model of the model prediction control unit 2. (S12). Note that this initial parameter estimation may be omitted. In that case, typical values may be preset in the prediction model of the model prediction control unit 2 according to the material, type, surface condition, etc. of the floor or rug in the cleaning range of the self-propelled vacuum cleaner 50. ..
 自走式掃除機50が清掃範囲を清掃するとき、目標経路生成部1は、清掃範囲を清掃するための目標経路を生成し、モデル予測制御部2は、モデル予測制御により目標経路に沿って自走式掃除機50を走行させる(S21)。 When the self-propelled vacuum cleaner 50 cleans the cleaning range, the target route generation unit 1 generates a target route for cleaning the cleaning range, and the model prediction control unit 2 generates a target route along the target route by model prediction control. The self-propelled vacuum cleaner 50 is run (S21).
 具体的には、図3に示すように、モデル予測制御部2は、位置角度センサ4から自走式掃除機50の位置および旋回角度情報を取得する(S211)。モデル予測制御部2は、目標経路と自走式掃除機50の位置との距離が将来的に最も近くなるような制御指示値の出力計画を、予測モデルを用いて算出する(S212)。モデル予測制御部2は、算出された出力計画の最初の1出力を制御指示値として走行部3に出力する(S213)。自走式掃除機50の走行制御を終了するまで(S214のY)、ステップS211~S213が繰り返される(S214のN)。 Specifically, as shown in FIG. 3, the model prediction control unit 2 acquires the position and turning angle information of the self-propelled vacuum cleaner 50 from the position angle sensor 4 (S211). The model prediction control unit 2 calculates an output plan of the control instruction value so that the distance between the target route and the position of the self-propelled vacuum cleaner 50 becomes the shortest in the future using the prediction model (S212). The model prediction control unit 2 outputs the first output of the calculated output plan to the traveling unit 3 as a control instruction value (S213). Steps S211 to S213 are repeated (N in S214) until the traveling control of the self-propelled vacuum cleaner 50 is completed (Y in S214).
 自走式掃除機50が走行している間、性能良否判断部9は、予測性能または追従性能の良否を判断し、予測性能または追従性能が良好でない場所があった場合は、その位置を記録する(S22)。予測性能または追従性能が良好でない場所がなかった場合は(S30のN)、次回の清掃タイミングにおいて、ステップS21およびS22が繰り返される。 While the self-propelled vacuum cleaner 50 is running, the performance quality determination unit 9 determines whether the prediction performance or the follow-up performance is good or bad, and if there is a place where the prediction performance or the follow-up performance is not good, the position is recorded. (S22). If there is no place where the prediction performance or the follow-up performance is not good (N in S30), steps S21 and S22 are repeated at the next cleaning timing.
 予測性能または追従性能が悪化した領域があった場合は(S30のY)、その領域においてパラメータを再推定する。パラメータの再推定は、全体制御部6が出力する性能悪化領域の数だけ行われる。全体制御部6が、性能悪化領域と推定対象パラメータをテスト走行パターン生成部7に通知すると、テスト走行パターン生成部7は、性能悪化領域のテスト走行開始地点までの移動経路と、性能悪化領域において推定対象パラメータを推定するためのテスト走行パターンを生成する。テスト走行制御部8は、生成された移動経路にしたがって自走式掃除機50を性能悪化領域のテスト走行開始地点まで移動させる(S31)。テスト走行制御部8は、ステップS11およびS12と同様に、テスト走行(S32)とパラメータ推定(S33)を行う。パラメータを推定すべき性能悪化領域が残っている場合は(S41のN)、ステップS31に戻って、次の性能悪化領域のテスト走行開始地点まで移動し、テスト走行とパラメータ推定を行う。全ての性能悪化領域におけるパラメータの推定が終了すると(S41のY)、テスト走行を終了し、次回の清掃タイミングにおいて、ステップS21およびS22が実行される。 If there is a region where the prediction performance or tracking performance has deteriorated (Y in S30), the parameters are re-estimated in that region. Parameter re-estimation is performed for the number of performance deterioration regions output by the overall control unit 6. When the overall control unit 6 notifies the test travel pattern generation unit 7 of the performance deterioration region and the estimation target parameter, the test travel pattern generation unit 7 sets the movement route to the test travel start point in the performance deterioration region and the performance deterioration region. Generate a test run pattern for estimating the parameters to be estimated. The test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test travel start point in the performance deterioration region according to the generated movement route (S31). The test run control unit 8 performs the test run (S32) and the parameter estimation (S33) in the same manner as in steps S11 and S12. If there is a performance deterioration region for which the parameter should be estimated (N in S41), the process returns to step S31, moves to the test run start point of the next performance deterioration region, and performs test run and parameter estimation. When the estimation of the parameters in all the performance deterioration regions is completed (Y in S41), the test run is completed, and steps S21 and S22 are executed at the next cleaning timing.
 ステップS11およびS12、またはステップS32およびS33において実施されるテスト走行とパラメータ推定では、3種類のテスト走行パターンによって5種類のパラメータを推定する。これらのテスト走行パターンを用いたモデルパラメータ推定について、図4~図8を用いて説明する。 In the test run and parameter estimation performed in steps S11 and S12, or steps S32 and S33, five types of parameters are estimated by three types of test run patterns. Model parameter estimation using these test driving patterns will be described with reference to FIGS. 4 to 8.
 図4は、実施の形態1に係る移動体制御方法におけるテスト走行パターン1を示す。テスト走行パターン1は、自走式掃除機50の横ずれ速度を推定するためのテスト走行パターンである。テスト走行パターン1は、図4のL11で示すように、目標経路の進行方向に沿った所定長よりも長い直進経路を含む。横ずれ速度や自走式掃除機50に含まれるノイズ成分の影響がなければ、自走式掃除機50はテスト走行パターン1の通りに直進するはずである。しかし、横ずれ速度やノイズの影響を受けることにより、自走式掃除機50は、図4のL12で示すように、横ずれ速度の発生する方向にずれながら前進する。ノイズ成分には、本体や絨毯のがたつき、自走式掃除機50内部の旋回角度制御に由来する不規則な振動などが含まれる。 FIG. 4 shows a test running pattern 1 in the moving body control method according to the first embodiment. The test running pattern 1 is a test running pattern for estimating the lateral slip speed of the self-propelled vacuum cleaner 50. As shown by L11 in FIG. 4, the test running pattern 1 includes a straight path longer than a predetermined length along the traveling direction of the target path. If there is no influence of the lateral slip speed or the noise component contained in the self-propelled vacuum cleaner 50, the self-propelled vacuum cleaner 50 should go straight according to the test running pattern 1. However, due to the influence of the lateral slip speed and noise, the self-propelled vacuum cleaner 50 advances while shifting in the direction in which the lateral slip speed is generated, as shown by L12 in FIG. The noise component includes rattling of the main body and the carpet, irregular vibration caused by the turning angle control inside the self-propelled vacuum cleaner 50, and the like.
 全体制御部6が、パラメータを推定する対象範囲における横ずれ速度を推定するように、テスト走行パターン生成部7、テスト走行制御部8、およびモデル推定部5に指示する。テスト走行パターン生成部7は、対象範囲のテスト開始地点までの移動経路と、横ずれ速度を推定するためのテスト走行パターン1を生成する。テスト走行制御部8は、生成されたテスト走行パターン1にしたがって走行部3に制御指示を入力し、自走式掃除機50を走行させる。自走式掃除機50の走行中、テスト走行制御部8は、位置角度センサ4により取得される位置および旋回角度を記憶装置に記録する。テスト走行パターン1の走行が終了すると、モデル推定部5は、自走式掃除機50がテスト走行パターン1を走行したときに記録された経路L12から、前進距離D11および横ずれ距離D12を取得し、前進速度に対する横ずれ速度を算出する。テスト走行パターン1に含まれる直進経路の長さは、横ずれ速度の推定精度が要求される水準よりも高くなるような値であってもよい。 The overall control unit 6 instructs the test travel pattern generation unit 7, the test travel control unit 8, and the model estimation unit 5 to estimate the strike-slip speed in the target range for estimating the parameters. The test running pattern generation unit 7 generates a test running pattern 1 for estimating the movement route to the test start point of the target range and the lateral slip speed. The test travel control unit 8 inputs a control instruction to the travel unit 3 according to the generated test travel pattern 1, and causes the self-propelled vacuum cleaner 50 to travel. While the self-propelled vacuum cleaner 50 is running, the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device. When the running of the test running pattern 1 is completed, the model estimation unit 5 acquires the forward distance D11 and the lateral slip distance D12 from the path L12 recorded when the self-propelled vacuum cleaner 50 runs the test running pattern 1. Calculate the lateral slip speed with respect to the forward speed. The length of the straight path included in the test running pattern 1 may be a value such that the estimation accuracy of the strike-slip speed is higher than the required level.
 図5は、実施の形態1に係る移動体制御方法におけるテスト走行パターン2を示す。テスト走行パターン2は、自走式掃除機50のむだ時間および旋回速度の制約条件を推定するためのテスト走行パターンである。まず、図5のL20で示すように、先に取得した距離D11だけ前進し、距離D12だけ横にずれるように直進する経路を基準経路とする。テスト走行パターン2は、図5のL21で示すように、基準経路L20に途中まで沿い、途中から右または左に折れる経路を含む。右または左に折れる角度は、自走式掃除機50の旋回速度の制約条件に触れるような所定角度よりも大きい角度に設定される。むだ時間、旋回速度の制約条件、固有角周波数、減衰係数、および自走式掃除機50が持つノイズ成分の影響を受けなければ、自走式掃除機50はテスト走行パターン2の通りに進むはずである。しかし、むだ時間、旋回速度の制約条件、固有角周波数、減衰係数、ノイズの影響を受けることにより、自走式掃除機50は、図5のL22で示すように、前方に膨れた経路を描く。 FIG. 5 shows a test running pattern 2 in the moving body control method according to the first embodiment. The test running pattern 2 is a test running pattern for estimating the constraint conditions of the dead time and the turning speed of the self-propelled vacuum cleaner 50. First, as shown by L20 in FIG. 5, a route that advances by the distance D11 previously acquired and travels straight so as to shift laterally by the distance D12 is used as a reference route. As shown by L21 in FIG. 5, the test running pattern 2 includes a route along the reference route L20 halfway and turning right or left from the middle. The angle of turning to the right or left is set to an angle larger than a predetermined angle that touches the constraint condition of the turning speed of the self-propelled vacuum cleaner 50. The self-propelled vacuum cleaner 50 should proceed according to the test driving pattern 2 if it is not affected by the dead time, the constraint condition of the turning speed, the natural angular frequency, the attenuation coefficient, and the noise component of the self-propelled vacuum cleaner 50. Is. However, due to the influence of dead time, turning speed constraints, natural angular frequency, attenuation coefficient, and noise, the self-propelled vacuum cleaner 50 draws a forward bulging path as shown by L22 in FIG. ..
 図6は、テスト走行パターン2にしたがって自走式掃除機50を走行させたときの旋回角度の時間変化を示す図である。図6において、一点破線は、経路L20に沿って自走式掃除機50を走行させる場合の旋回角度の制御指示値を示す。また、破線は、経路L21、すなわちテスト走行パターン2にしたがって自走式掃除機50を走行させる場合の旋回角度の制御指示値を示す。テスト走行パターン2では、途中までは経路L20と同様に旋回角度の制御指示値として0°が走行部3に出力されるが、右または左に大きく折れる地点において、段差状に所定角度よりも大きな旋回角度の制御指示値が走行部3に出力される。この旋回角度は、自走式掃除機50の走行方向の目標値であるが、走行部3の旋回速度の制約条件に触れる旋回角度よりも大きいので、自走式掃除機50がすぐには追従できない。そのため、実際の自走式掃除機50の走行経路L22では、旋回速度の制約条件によって規定される傾きで旋回角度が増加または減少し、やがて制御指示値の旋回角度に収束する。この旋回角度の時間変化の傾きから、旋回速度の制約条件を推定することができる。また、右または左に大きく折れる地点において、走行部3に旋回角度の制御指示値が出力されてから自走式掃除機50の旋回角度が増加または減少し始めるまでの遅れから、むだ時間を推定することができる。 FIG. 6 is a diagram showing the time change of the turning angle when the self-propelled vacuum cleaner 50 is run according to the test running pattern 2. In FIG. 6, the alternate long and short dash line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven along the path L20. Further, the broken line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L21, that is, the test running pattern 2. In the test running pattern 2, 0 ° is output to the running section 3 as a control instruction value of the turning angle until the middle of the route, but at a point where the turning angle is largely turned to the right or left, the angle is larger than the predetermined angle in a stepped manner. The control instruction value of the turning angle is output to the traveling unit 3. This turning angle is a target value in the traveling direction of the self-propelled vacuum cleaner 50, but since it is larger than the turning angle that touches the constraint condition of the turning speed of the traveling unit 3, the self-propelled vacuum cleaner 50 immediately follows. Can not. Therefore, in the traveling path L22 of the actual self-propelled vacuum cleaner 50, the turning angle increases or decreases with the inclination defined by the constraint condition of the turning speed, and eventually converges to the turning angle of the control instruction value. The constraint condition of the turning speed can be estimated from the slope of the time change of the turning angle. Further, at a point where the turning angle is largely turned to the right or left, the dead time is estimated from the delay from the output of the turning angle control instruction value to the traveling unit 3 until the turning angle of the self-propelled vacuum cleaner 50 starts to increase or decrease. can do.
 全体制御部6が、パラメータを推定する対象範囲におけるむだ時間および旋回速度の制約条件を推定するように、テスト走行パターン生成部7、テスト走行制御部8、およびモデル推定部5に指示する。テスト走行パターン生成部7は、テスト走行パターン1のテスト終了地点からテスト走行パターン2のテスト開始地点までの移動経路と、むだ時間および旋回速度の制約条件を推定するためのテスト走行パターン2を生成する。テスト走行制御部8は、テスト開始地点まで自走式掃除機50を移動させた後、生成されたテスト走行パターン2にしたがって走行部3に制御指示を入力し、自走式掃除機50を走行させる。自走式掃除機50の走行中、テスト走行制御部8は、位置角度センサ4により取得される位置および旋回角度を記憶装置に記録する。テスト走行パターン2の走行が終了すると、モデル推定部5は、テスト走行パターン2の右または左に大きく折れる地点において、走行部3に旋回角度の制御指示値が出力されてから自走式掃除機50の旋回角度が増加または減少し始めるまでの遅れから、むだ時間を推定する。また、モデル推定部5は、テスト走行パターン2において右または左に大きく旋回するときの旋回角度の時間変化の傾きから、旋回速度の制約条件を推定する。さらに、モデル推定部5は、旋回速度の制約条件に触れる前後の旋回角度の変化から、固有角周波数と減衰係数を推定して仮の値として保持し、後述するテスト走行パターン3の生成のために利用する。 The overall control unit 6 instructs the test travel pattern generation unit 7, the test travel control unit 8, and the model estimation unit 5 to estimate the constraint conditions of the dead time and the turning speed in the target range for estimating the parameters. The test running pattern generation unit 7 generates a test running pattern 2 for estimating the movement path from the test end point of the test run pattern 1 to the test start point of the test run pattern 2 and the constraint conditions of the dead time and the turning speed. do. The test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test start point, then inputs a control instruction to the travel unit 3 according to the generated test travel pattern 2, and travels the self-propelled vacuum cleaner 50. Let me. While the self-propelled vacuum cleaner 50 is running, the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device. When the running of the test running pattern 2 is completed, the model estimation unit 5 outputs the control instruction value of the turning angle to the running unit 3 at the point where the test running pattern 2 makes a large right or left turn, and then the self-propelled vacuum cleaner. The dead time is estimated from the delay until the turning angle of 50 begins to increase or decrease. Further, the model estimation unit 5 estimates the constraint condition of the turning speed from the slope of the time change of the turning angle when the test running pattern 2 makes a large turn to the right or left. Further, the model estimation unit 5 estimates the natural angular frequency and the damping coefficient from the change in the turning angle before and after touching the constraint condition of the turning speed and holds them as temporary values for the generation of the test running pattern 3 described later. Use for.
 図7は、実施の形態1に係る移動体制御方法におけるテスト走行パターン3を示す。テスト走行パターン3は、自走式掃除機50の固有角周波数および減衰係数を推定するためのテスト走行パターンである。テスト走行パターン3は、図7のL31で示すように、テスト走行パターン2の経路L21の折れ曲がり角度を、旋回速度の制約条件に触れない所定角度よりも小さくしたものである。旋回角度の制約条件に触れない旋回角度は、先に求めた旋回速度の制約条件と、仮に推定した固有角周波数および減衰係数とによって求める。むだ時間、旋回速度の制約条件、固有角周波数、減衰係数、および自走式掃除機50が持つノイズ成分の影響を受けなければ、自走式掃除機50はテスト走行パターン3の通りに進むはずである。しかし、むだ時間、旋回速度の制約条件、固有角周波数、減衰係数、ノイズの影響を受けることにより、自走式掃除機50は、図7のL32で示すように、前方に膨れた経路を描く。 FIG. 7 shows a test running pattern 3 in the moving body control method according to the first embodiment. The test running pattern 3 is a test running pattern for estimating the natural angular frequency and the attenuation coefficient of the self-propelled vacuum cleaner 50. In the test running pattern 3, as shown by L31 in FIG. 7, the bending angle of the path L21 of the test running pattern 2 is made smaller than a predetermined angle that does not touch the constraint condition of the turning speed. The turning angle that does not touch the constraint condition of the turning angle is obtained by the constraint condition of the turning speed obtained above and the tentatively estimated natural angular frequency and attenuation coefficient. The self-propelled vacuum cleaner 50 should proceed according to the test driving pattern 3 if it is not affected by the dead time, the constraint condition of the turning speed, the natural angular frequency, the attenuation coefficient, and the noise component of the self-propelled vacuum cleaner 50. Is. However, due to the influence of dead time, turning speed constraints, natural angular frequency, attenuation coefficient, and noise, the self-propelled vacuum cleaner 50 draws a forward bulging path as shown by L32 in FIG. ..
 図8は、テスト走行パターン3にしたがって自走式掃除機50を走行させたときの旋回角度の時間変化を示す図である。図8において、一点破線は、経路L21、すなわちテスト走行パターン2にしたがって自走式掃除機50を走行させる場合の旋回角度の制御指示値を示す。破線は、経路L31、すなわちテスト走行パターン3にしたがって自走式掃除機50を走行させる場合の旋回角度の制御指示値を示す。テスト走行パターン3では、テスト走行パターン2よりも小さい旋回角度の制御指示値が走行部3に出力される。実際の自走式掃除機50の走行経路L32における旋回角度は、ノイズによる振動を持ちつつも、曲線を描いて制御指示値の旋回角度に収束する。この曲線に合うような二次遅れ曲線を求めることにより、自走式掃除機50の旋回速度変化における固有角周波数と減衰係数を推定することができる。 FIG. 8 is a diagram showing the time change of the turning angle when the self-propelled vacuum cleaner 50 is run according to the test running pattern 3. In FIG. 8, the alternate long and short dash line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L21, that is, the test running pattern 2. The broken line indicates the control instruction value of the turning angle when the self-propelled vacuum cleaner 50 is driven according to the path L31, that is, the test running pattern 3. In the test running pattern 3, a control instruction value having a turning angle smaller than that of the test running pattern 2 is output to the running unit 3. The turning angle of the actual self-propelled vacuum cleaner 50 in the traveling path L32 draws a curve and converges to the turning angle of the control instruction value while having vibration due to noise. By obtaining a quadratic lag curve that fits this curve, it is possible to estimate the natural angular frequency and the attenuation coefficient in the change in the turning speed of the self-propelled vacuum cleaner 50.
 全体制御部6が、パラメータを推定する対象範囲における固有角周波数および減衰係数を推定するように、テスト走行パターン生成部7、テスト走行制御部8、およびモデル推定部5に指示する。テスト走行パターン生成部7は、テスト走行パターン2のテスト終了地点からテスト走行パターン3のテスト開始地点までの移動経路と、固有角周波数および減衰係数を推定するためのテスト走行パターン3を生成する。テスト走行制御部8は、テスト開始地点まで自走式掃除機50を移動させた後、生成されたテスト走行パターン3にしたがって走行部3に制御指示を入力し、自走式掃除機50を走行させる。自走式掃除機50の走行中、テスト走行制御部8は、位置角度センサ4により取得される位置および旋回角度を記憶装置に記録する。テスト走行パターン3の走行が終了すると、モデル推定部5は、テスト走行パターン3の右または左に大きく折れる地点以降の旋回角度変化の曲線に合うような二次遅れ曲線を求めることにより、固有角周波数および減衰係数を推定する。 The overall control unit 6 instructs the test drive pattern generation unit 7, the test drive control unit 8, and the model estimation unit 5 to estimate the natural angular frequency and the attenuation coefficient in the target range for estimating the parameters. The test running pattern generation unit 7 generates a moving path from the test ending point of the test running pattern 2 to the test starting point of the test running pattern 3, and a test running pattern 3 for estimating the natural angular frequency and the attenuation coefficient. The test travel control unit 8 moves the self-propelled vacuum cleaner 50 to the test start point, then inputs a control instruction to the travel unit 3 according to the generated test travel pattern 3, and travels the self-propelled vacuum cleaner 50. Let me. While the self-propelled vacuum cleaner 50 is running, the test running control unit 8 records the position and turning angle acquired by the position angle sensor 4 in the storage device. When the running of the test running pattern 3 is completed, the model estimation unit 5 obtains a quadratic lag curve that matches the curve of the turning angle change after the point where the test running pattern 3 makes a large right or left turn, thereby determining the intrinsic angle. Estimate frequency and attenuation coefficient.
 このように、実際の自走式掃除機50の走行経路L12、L22、L32は、いずれもノイズなどの影響により不規則な振動を含むが、テスト走行パターン1を用いることにより、ノイズの影響が抑えられた横ずれ速度を推定することができ、テスト走行パターン2を用いることにより、ノイズの影響を抑えられたむだ時間および旋回速度の制約条件を推定することができ、テスト走行パターン3を用いることにより、旋回速度の制約条件およびノイズの影響が抑えられた固有角周波数および減衰係数を推定することができる。 As described above, the traveling paths L12, L22, and L32 of the actual self-propelled vacuum cleaner 50 all include irregular vibration due to the influence of noise and the like, but the influence of noise is caused by using the test traveling pattern 1. The suppressed lateral slip speed can be estimated, and by using the test running pattern 2, it is possible to estimate the constraint conditions of the dead time and the turning speed in which the influence of noise is suppressed, and the test running pattern 3 is used. Therefore, it is possible to estimate the intrinsic angular frequency and the attenuation coefficient in which the influence of the turning speed constraint condition and noise is suppressed.
 ステップS31、S32、S33においては、ステップS21で検出した性能悪化領域においてテスト走行を行い、その領域においてのみ、ステップS12で推定したパラメータとは別にあらためてパラメータを推定して利用する。このような性能悪化領域でのテスト走行とパラメータ推定について、図9~11を用いて説明する。 In steps S31, S32, and S33, a test run is performed in the performance deterioration region detected in step S21, and the parameters are estimated and used again in addition to the parameters estimated in step S12 only in that region. Test running and parameter estimation in such a performance deterioration region will be described with reference to FIGS. 9 to 11.
 図9は、実施の形態1に係る自走式掃除機50の走行経路の例を示す。ステップS11、S12において、目標経路の開始地点付近の地点20で初回テスト走行と初回パラメータ推定を実施した場合、その地点20と床の特性が同じ範囲では、モデル予測制御部2の予測モデルと実際の自走式掃除機50の挙動が一致するので、モデル予測制御部2は、自走式掃除機50の挙動を正確に予測しつつ、目標経路L41に精度よく追従させることができる。しかし、床の特性が異なる領域、例えば、敷いてある絨毯の毛の長さが異なる領域30が存在する場合、その領域30では、モデル予測制御部2の予測モデルと実際の自走式掃除機50の挙動が一致しないので、自走式掃除機50が目標経路L41から外れてしまう。ステップS21において、性能良否判断部9は、目標経路生成部1により生成された目標経路L41と、位置角度センサ4によって取得された自走式掃除機50の経路L42に基づいて、目標経路L41からのずれと、そのずれが発生した時の自走式掃除機50の位置および旋回角度を記録する。全体制御部6は、目標経路への追従性能が基準以下となった位置および旋回角度の情報に基づいて、パラメータを再推定すべきテスト走行対象地点を決定する。例えば、性能悪化領域30を位置や進行方向などに応じて分割し、分割された領域中にテスト走行対象地点を設定してもよい。 FIG. 9 shows an example of a traveling route of the self-propelled vacuum cleaner 50 according to the first embodiment. In steps S11 and S12, when the initial test run and the initial parameter estimation are performed at the point 20 near the start point of the target route, the prediction model of the model prediction control unit 2 and the actual one are as long as the characteristics of the point 20 and the floor are the same. Since the behavior of the self-propelled vacuum cleaner 50 is the same, the model prediction control unit 2 can accurately predict the behavior of the self-propelled vacuum cleaner 50 and accurately follow the target path L41. However, when there is an area 30 in which the characteristics of the floor are different, for example, an area 30 in which the length of the hair of the laid carpet is different, in the area 30, the prediction model of the model prediction control unit 2 and the actual self-propelled vacuum cleaner are used. Since the behaviors of the 50s do not match, the self-propelled vacuum cleaner 50 deviates from the target path L41. In step S21, the performance quality determination unit 9 starts from the target path L41 based on the target path L41 generated by the target path generation unit 1 and the path L42 of the self-propelled vacuum cleaner 50 acquired by the position angle sensor 4. The deviation and the position and turning angle of the self-propelled vacuum cleaner 50 when the deviation occurs are recorded. The overall control unit 6 determines a test travel target point for which the parameter should be re-estimated based on the information of the position and the turning angle at which the follow-up performance to the target route is below the reference. For example, the performance deterioration region 30 may be divided according to a position, a traveling direction, or the like, and a test running target point may be set in the divided region.
 図10は、性能悪化領域におけるテスト走行の例を示す。図10の例では、図9の例において記録された性能悪化領域30が、全体制御部6により3つに分割され、それぞれの領域にテスト走行対象地点T1~T3が設定されている。テスト走行パターン生成部7は、テスト走行開始地点21から、テスト走行対象地点T1~T3のそれぞれにおける3種類のテスト走行パターンを経て、テスト走行終了地点22に至る移動経路を生成する。ステップS31において、テスト走行制御部8は、テスト走行対象地点T1におけるテスト走行パターンの開始地点に自走式掃除機50を移動させる。ステップS32において、テスト走行制御部8は、3種類のテスト走行パターンにしたがってテスト走行を実施する。ステップS33において、モデル推定部5は、ステップS32で得られた自走式掃除機50の位置および旋回角度のデータに基づいて、テスト走行対象地点T1におけるパラメータを推定する。モデル推定部5は、推定された領域特有のパラメータを、領域と紐づけて記憶装置に記録し、モデル予測制御部2の予測モデルに反映する。以上のステップが、全てのテスト走行対象地点T1~T3に対して実施される。 FIG. 10 shows an example of a test run in a performance deterioration region. In the example of FIG. 10, the performance deterioration region 30 recorded in the example of FIG. 9 is divided into three by the overall control unit 6, and test travel target points T1 to T3 are set in each region. The test running pattern generation unit 7 generates a movement route from the test running start point 21 to the test running end point 22 through three types of test running patterns at each of the test running target points T1 to T3. In step S31, the test run control unit 8 moves the self-propelled vacuum cleaner 50 to the start point of the test run pattern at the test run target point T1. In step S32, the test run control unit 8 carries out a test run according to three types of test run patterns. In step S33, the model estimation unit 5 estimates the parameters at the test travel target point T1 based on the data of the position and the turning angle of the self-propelled vacuum cleaner 50 obtained in step S32. The model estimation unit 5 records the estimated area-specific parameters in the storage device in association with the area, and reflects them in the prediction model of the model prediction control unit 2. The above steps are carried out for all test driving target points T1 to T3.
 図11は、パラメータを再推定した後の自走式掃除機50の走行経路の例を示す。図10に示したように、領域ごとに異なるパラメータが設定されると、モデル予測制御部2は、位置角度センサ4により検知された自走式掃除機50の位置と旋回角度に基づいて、予測モデルにおいて使用するパラメータを領域ごとに切り替える。これにより、清掃範囲内に床の特性が異なる領域30が存在する場合でも、予測モデルと実際の自走式掃除機50の挙動を一致させることができ、どの領域においても正確な予測に基づいて制御指示を出力することができる。したがって、図11に示すように、全ての領域で目標経路への追従性能を基準以上に保つことができる。 FIG. 11 shows an example of a traveling path of the self-propelled vacuum cleaner 50 after re-estimating the parameters. As shown in FIG. 10, when different parameters are set for each region, the model prediction control unit 2 predicts based on the position and turning angle of the self-propelled vacuum cleaner 50 detected by the position angle sensor 4. Switch the parameters used in the model for each region. As a result, even if there are areas 30 with different floor characteristics within the cleaning range, the behavior of the prediction model and the actual self-propelled vacuum cleaner 50 can be matched, and the behavior of the self-propelled vacuum cleaner 50 can be matched in any area based on accurate prediction. Control instructions can be output. Therefore, as shown in FIG. 11, the follow-up performance to the target path can be maintained above the standard in all regions.
 テスト走行パターン1~3によるテスト走行は、自走式掃除機50が清掃範囲を清掃するための清掃経路とは別に実行されてもよい。例えば、自走式掃除機50が清掃を終えて充電ステーションなどに帰還した後、パラメータの推定が必要である場合は、次の清掃が実行されるまでの所定のタイミングにテスト走行が実行されてもよい。この場合、全体制御部6は、テスト走行制御部8がテスト走行パターン1~3にしたがってテスト走行を実行している間、吸引モータやブラシなどを駆動して清掃動作を実行してもよい。これにより、吸引モータやブラシなどの駆動による振動や床面に与える影響などの条件を、実際の清掃の時と同様にすることができるので、パラメータの推定精度を更に向上させることができる。全体制御部6は、テスト走行制御部8がテスト走行パターン1~3にしたがってテスト走行を実行している間、吸引モータやブラシなどの駆動を停止してもよい。これにより、夜間や休憩時間などにテスト走行を実行する場合であっても、テスト走行により発生する音や振動などを抑えることができる。 The test run according to the test run patterns 1 to 3 may be executed separately from the cleaning route for the self-propelled vacuum cleaner 50 to clean the cleaning range. For example, if it is necessary to estimate the parameters after the self-propelled vacuum cleaner 50 finishes cleaning and returns to the charging station or the like, a test run is executed at a predetermined timing until the next cleaning is executed. May be good. In this case, the overall control unit 6 may drive a suction motor, a brush, or the like to perform a cleaning operation while the test travel control unit 8 is executing the test travel according to the test travel patterns 1 to 3. As a result, conditions such as vibration caused by driving the suction motor and the brush and the influence on the floor surface can be made the same as in the actual cleaning, so that the estimation accuracy of the parameters can be further improved. The overall control unit 6 may stop driving the suction motor, the brush, or the like while the test travel control unit 8 is executing the test travel according to the test travel patterns 1 to 3. As a result, even when the test run is executed at night or during breaks, the noise and vibration generated by the test run can be suppressed.
 テスト走行パターン1~3によるテスト走行は、自走式掃除機50が清掃範囲を清掃するための清掃経路に組み込まれ、自走式掃除機50が清掃範囲を清掃するときにパラメータが推定されてもよい。パラメータを推定する対象領域において、テスト走行のみが実行されてもよいし、テスト走行と清掃のための走行の双方が実行されてもよい。前者の場合、自走式掃除機50が予測制御走行モードで清掃経路に沿って走行しているときに、テスト走行開始地点に到達すると、全体制御部6が走行モードをテスト走行モードに切り替えてテスト走行を実行する。テスト走行が終了すると、全体制御部6は走行モードを予測制御走行モードに切り替え、自走式掃除機50はテスト走行終了地点から清掃経路に沿って走行する。全体制御部6は、テスト走行中も清掃動作を実行してもよい。後者の場合、テスト走行が終了すると、自走式掃除機50はテスト走行開始地点に戻る。全体制御部6は走行モードを予測制御走行モードに切り替え、自走式掃除機50はテスト走行開始地点から清掃経路に沿って走行する。これにより、効率良くパラメータを推定して予測モデルを更新することができる。 The test run according to the test run patterns 1 to 3 is incorporated into the cleaning path for the self-propelled vacuum cleaner 50 to clean the cleaning range, and the parameters are estimated when the self-propelled vacuum cleaner 50 cleans the cleaning range. May be good. In the target area where the parameters are estimated, only a test run may be performed, or both a test run and a run for cleaning may be performed. In the former case, when the self-propelled vacuum cleaner 50 is traveling along the cleaning route in the predictive control travel mode and reaches the test travel start point, the overall control unit 6 switches the travel mode to the test travel mode. Perform a test run. When the test run is completed, the overall control unit 6 switches the run mode to the predictive control run mode, and the self-propelled vacuum cleaner 50 runs along the cleaning route from the test run end point. The overall control unit 6 may execute the cleaning operation even during the test run. In the latter case, when the test run is completed, the self-propelled vacuum cleaner 50 returns to the test run start point. The overall control unit 6 switches the travel mode to the predictive control travel mode, and the self-propelled vacuum cleaner 50 travels along the cleaning route from the test travel start point. This makes it possible to efficiently estimate the parameters and update the prediction model.
 テスト走行パターン1~3を用いることにより、横ずれ速度、むだ時間、旋回速度の制約条件、固有角周波数、および減衰係数の5種類のパラメータの推定精度を向上させることができることを示すために、自走式掃除機50がモデル予測制御により制御されて走行しているときと、テスト走行パターン1~3にしたがって走行しているときの挙動をシミュレーションにより再現し、それぞれの挙動に基づいて5種類のパラメータを推定した。 In order to show that the estimation accuracy of the five parameters of lateral slip speed, dead time, turning speed constraint condition, natural angular frequency, and damping coefficient can be improved by using the test running patterns 1 to 3 to show that the estimation accuracy can be improved. The behavior when the running type vacuum cleaner 50 is running under the control of model prediction control and when running according to the test running patterns 1 to 3 is reproduced by simulation, and five types of behaviors are reproduced based on each behavior. Estimated parameters.
 図12(a)(b)は、テスト走行パターン1の効果を説明するための図である。図12(a)は、モデル予測制御により制御されて走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。自走式掃除機50の横ずれ速度として0.05[m/s]が設定されている。MPCの横ずれ速度パラメータとして真の値から+100%の誤差を持った0.10[m/s]が設定されている。旋回方向のノイズとして標準偏差2deg、位置のノイズとして標準偏差0.01mの正規分布乱数を与えている。モデル予測制御により制御されているので、予測モデルの横ずれ速度パラメータに誤差があるとはいえ、不完全ながらも目標経路からのずれが小さくなるように制御されているため、結果的に横ずれの影響が現れにくい。そのため、この挙動に基づいて横ずれ速度を推定すると、真の値の-23.2%の値が算出された。図12(b)は、テスト走行パターン1にしたがってテスト走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。テスト走行制御部8は、目標経路からのずれに関わらず、前方へ直進するように走行部3に制御指示を出力するので、実際の走行経路の横ずれが、そのまま対象領域における自走式掃除機50の横ずれを反映する。そのため、この挙動に基づいて横ずれ速度を推定すると、真の値の+0.2%の値が算出された。すなわち、テスト走行パターン1を用いて横ずれ速度を推定することにより、推定精度を大幅に向上させることができる。 FIGS. 12 (a) and 12 (b) are diagrams for explaining the effect of the test running pattern 1. FIG. 12A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control. The lateral slip speed of the self-propelled vacuum cleaner 50 is set to 0.05 [m / s]. As the strike-slip velocity parameter of the MPC, 0.10 [m / s] having an error of + 100% from the true value is set. A normal distribution random number with a standard deviation of 2 deg is given as noise in the turning direction, and a standard deviation of 0.01 m is given as noise in the position. Since it is controlled by model predictive control, although there is an error in the lateral slip velocity parameter of the predictive model, it is controlled so that the deviation from the target path is small although it is incomplete, and as a result, the effect of lateral slip Is hard to appear. Therefore, when the strike-slip speed was estimated based on this behavior, a value of −23.2% of the true value was calculated. FIG. 12B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 1. Since the test travel control unit 8 outputs a control instruction to the travel unit 3 so as to go straight forward regardless of the deviation from the target route, the lateral deviation of the actual travel route is directly reflected in the self-propelled vacuum cleaner in the target area. Reflects 50 lateral shifts. Therefore, when the strike-slip speed was estimated based on this behavior, a value of + 0.2% of the true value was calculated. That is, by estimating the strike-slip speed using the test running pattern 1, the estimation accuracy can be significantly improved.
 図13(a)(b)は、テスト走行パターン2の効果を説明するための図である。図13(a)は、モデル予測制御により制御されて走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。自走式掃除機50のむだ時間として0.5[s]、旋回速度の制約条件として上限値12.5[deg/s]が設定されている。目標経路に追従するために小刻みに制御指示が出力されているため、むだ時間および旋回速度の制約条件の影響が現れにくい。そのため、この挙動に基づいてむだ時間および旋回速度の制約条件を推定すると、それぞれ、真の値の+10%、-25%の値が算出された。図13(b)は、テスト走行パターン2にしたがってテスト走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。テスト走行制御部8は、目標経路からのずれに関わらず、走行部3に段差状の旋回角度の制御指示値を出力するので、むだ時間および旋回速度の制約条件の影響が顕著に現れる。そのため、この挙動に基づいてむだ時間および旋回速度の制約条件を推定すると、それぞれ、真の値の+5%、-2.5%の値が算出された。すなわち、テスト走行パターン2を用いてむだ時間および旋回速度の制約条件を推定することにより、推定精度を大幅に向上させることができる。 13 (a) and 13 (b) are diagrams for explaining the effect of the test running pattern 2. FIG. 13A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control. The dead time of the self-propelled vacuum cleaner 50 is set to 0.5 [s], and the upper limit value of 12.5 [deg / s] is set as a constraint condition of the turning speed. Since the control instruction is output in small steps to follow the target path, the influence of the constraints of the dead time and the turning speed is unlikely to appear. Therefore, when the constraints of dead time and turning speed were estimated based on this behavior, + 10% and -25% of the true values were calculated, respectively. FIG. 13B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 2. Since the test travel control unit 8 outputs the control instruction value of the stepped turning angle to the travel unit 3 regardless of the deviation from the target path, the influence of the constraint conditions of the dead time and the turning speed appears remarkably. Therefore, when the constraints of dead time and turning speed were estimated based on this behavior, + 5% and -2.5% of the true values were calculated, respectively. That is, by estimating the constraint conditions of the dead time and the turning speed using the test running pattern 2, the estimation accuracy can be significantly improved.
 図14(a)(b)は、テスト走行パターン3の効果を説明するための図である。図14(a)は、モデル予測制御により制御されて走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。自走式掃除機50の固有角周波数として3.0[rad/s]、減衰係数として0.90が設定されている。目標経路に追従するために小刻みに制御指示が出力されているため、固有角周波数および減衰係数の影響が現れにくい。そのため、この挙動に基づいて固有角周波数および減衰係数を推定すると、それぞれ、真の値の+50%、+25%の値が算出された。図14(b)は、テスト走行パターン3にしたがってテスト走行しているときの自走式掃除機50の挙動をシミュレーションした結果を示す。テスト走行制御部8は、目標経路からのずれに関わらず、走行部3にテスト走行パターン2よりも小さい段差状の旋回角度の制御指示値を出力するので、固有角周波数および減衰係数の影響が顕著に現れる。そのため、この挙動に基づいて固有角周波数および減衰係数を推定すると、それぞれ、真の値の-2.5%、-5%の値が算出された。すなわち、テスト走行パターン3を用いて固有角周波数および減衰係数を推定することにより、推定精度を大幅に向上させることができる。 14 (a) and 14 (b) are diagrams for explaining the effect of the test running pattern 3. FIG. 14A shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 when traveling under the control of model prediction control. The natural angular frequency of the self-propelled vacuum cleaner 50 is set to 3.0 [rad / s], and the attenuation coefficient is set to 0.90. Since the control instruction is output in small steps to follow the target path, the influence of the natural angular frequency and the attenuation coefficient is unlikely to appear. Therefore, when the natural angular frequency and the attenuation coefficient were estimated based on this behavior, + 50% and + 25% of the true values were calculated, respectively. FIG. 14B shows the result of simulating the behavior of the self-propelled vacuum cleaner 50 during the test run according to the test run pattern 3. Since the test travel control unit 8 outputs a control instruction value of a stepped turning angle smaller than that of the test travel pattern 2 to the travel unit 3 regardless of the deviation from the target path, the influence of the natural angular frequency and the attenuation coefficient is affected. Appears prominently. Therefore, when the natural angular frequency and the attenuation coefficient were estimated based on this behavior, the true values of −2.5% and −5% were calculated, respectively. That is, by estimating the natural angular frequency and the attenuation coefficient using the test running pattern 3, the estimation accuracy can be significantly improved.
 図15は、目標経路への追従性能に対する5種類のパラメータ推定精度の寄与度を示す。5種類のパラメータの値として、4種類は上記の真の値に固定し、残りの1種類を変化させながら、モデル予測制御により制御されて走行する自走式掃除機50の挙動をシミュレートし、目標経路からのずれの平均値をプロットした。いずれのパラメータにおいても、推定値が真の値からずれるほど、目標経路への追従性能が低下することが分かる。とくに、横ずれ速度の寄与度が大きく、横ずれ速度の推定誤差は目標経路からのずれに直結することが分かる。むだ時間、固有角周波数、減衰係数も寄与度が大きく、とくに真の値よりも小さい値が推定された場合に目標経路からのずれが大きい。旋回速度の制約条件は、推定誤差が大きいと、目標経路からのずれが大きくなる。 FIG. 15 shows the contribution of five types of parameter estimation accuracy to the tracking performance of the target path. As the values of the five types of parameters, four types are fixed to the above true values, and the behavior of the self-propelled vacuum cleaner 50 that runs under the control of model prediction control is simulated while changing the remaining one type. , The average value of the deviation from the target path was plotted. It can be seen that in any of the parameters, the more the estimated value deviates from the true value, the lower the tracking performance to the target path. In particular, it can be seen that the contribution of the strike-slip speed is large, and the estimation error of the strike-slip speed is directly linked to the deviation from the target path. The dead time, proper angular frequency, and attenuation coefficient also have a large contribution, and especially when a value smaller than the true value is estimated, the deviation from the target path is large. As for the constraint condition of the turning speed, if the estimation error is large, the deviation from the target path becomes large.
 このように、本実施の形態の技術によれば、3種類のテスト走行パターンによって高精度に推定された5種類のパラメータを用いた予測モデルで自走式掃除機50の挙動を予測しながらモデル予測制御により自走式掃除機50を制御することにより、目標経路への追従性能を大幅に向上させることができる。 As described above, according to the technique of the present embodiment, the model while predicting the behavior of the self-propelled vacuum cleaner 50 with a prediction model using five types of parameters estimated with high accuracy by three types of test running patterns. By controlling the self-propelled vacuum cleaner 50 by predictive control, the follow-up performance to the target route can be significantly improved.
 [1-3.効果等]
 以上のように、本実施の形態において、移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップと、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するステップと、を備える。これにより、予測モデルの精度を向上させることができるので、移動体の制御の精度を向上させることができる。
[1-3. Effect, etc.]
As described above, in the present embodiment, the moving body control method is used in the step of controlling the movement of the moving body by the model prediction control using the prediction model for predicting the behavior of the moving body, and in the prediction model. It is provided with a step of estimating parameters based on the behavior of the moving body when the moving body is moved by a movement pattern for estimating the parameters. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
 また、本実施の形態において、移動体制御方法は、予測モデルにおいて使用される複数のパラメータのそれぞれを推定するために複数の移動パターンで移動体を移動させる。これにより、予測モデルの精度を更に向上させることができるので、移動体の制御の精度を更に向上させることができる。 Further, in the present embodiment, the moving body control method moves the moving body in a plurality of movement patterns in order to estimate each of the plurality of parameters used in the prediction model. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
 また、本実施の形態において、上記のパラメータは、移動体の移動方向が左右へずれる速度を表す横ずれ速度を含み、移動パターンは、所定長よりも長い直線の移動経路を含む。これにより、横ずれ速度を精度良く推定することができるので、予測モデルの精度を向上させることができる。 Further, in the present embodiment, the above parameter includes a lateral slip speed representing a speed at which the moving direction of the moving body shifts to the left or right, and the moving pattern includes a linear moving path longer than a predetermined length. As a result, the strike-slip speed can be estimated with high accuracy, so that the accuracy of the prediction model can be improved.
 また、本実施の形態において、上記のパラメータは、移動体に出した制御指示が反映されるまでの遅延時間を表すむだ時間または移動体の旋回速度の制約条件を含み、移動パターンは、所定角度よりも大きい角度で旋回する移動経路を含む。これにより、むだ時間または旋回速度の制約条件を精度良く推定することができるので、予測モデルの精度を向上させることができる。 Further, in the present embodiment, the above parameters include a dead time representing a delay time until the control instruction issued to the moving body is reflected or a constraint condition of the turning speed of the moving body, and the movement pattern has a predetermined angle. Includes a travel path that swivels at a greater angle. As a result, the constraint condition of the dead time or the turning speed can be estimated with high accuracy, so that the accuracy of the prediction model can be improved.
 また、本実施の形態において、上記のパラメータは、移動体の移動制御における二次遅れ要素である固有角周波数または減衰係数を含み、移動パターンは、所定角度よりも小さい角度で旋回する移動経路を含む。これにより、固有角周波数または減衰係数を精度良く推定することができるので、予測モデルの精度を向上させることができる。 Further, in the present embodiment, the above parameters include the natural angular frequency or the attenuation coefficient, which are secondary delay elements in the movement control of the moving body, and the movement pattern is a movement path that turns at an angle smaller than a predetermined angle. include. As a result, the natural angular frequency or the attenuation coefficient can be estimated with high accuracy, so that the accuracy of the prediction model can be improved.
 また、本実施の形態において、上記のパラメータは、移動体の移動範囲に含まれる複数の領域ごとに推定される。これにより、予測モデルの精度を更に向上させることができるので、移動体の制御の精度を更に向上させることができる。 Further, in the present embodiment, the above parameters are estimated for each of a plurality of regions included in the moving range of the moving body. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
 また、本実施の形態において、パラメータが推定されていない領域を移動体が移動する前または移動した後に、パラメータを推定するステップが実行される。これにより、予測モデルの精度を更に向上させることができるので、移動体の制御の精度を更に向上させることができる。 Further, in the present embodiment, the step of estimating the parameter is executed before or after the moving body moves in the area where the parameter is not estimated. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
 また、本実施の形態において、移動体制御方法は、モデル予測制御により移動体の移動が制御されているときに、予測モデルによる予測またはモデル予測制御による制御の精度を判定するステップと、精度に基づいてパラメータの推定の要否を判定するステップと、パラメータの推定が必要であると判定された場合にパラメータを推定するステップと、を更に備える。これにより、予測モデルの精度を高く維持することができるので、移動体の制御の精度を更に向上させることができる。 Further, in the present embodiment, the moving body control method includes a step of determining the accuracy of prediction by the prediction model or control by the model prediction control when the movement of the moving body is controlled by the model prediction control. It further includes a step of determining whether or not the parameter needs to be estimated based on the above, and a step of estimating the parameter when it is determined that the parameter needs to be estimated. As a result, the accuracy of the prediction model can be maintained high, so that the accuracy of controlling the moving body can be further improved.
 また、本実施の形態において、パラメータの推定の要否は、移動体の移動範囲に含まれる複数の領域ごとに判定され、パラメータの推定が必要であると判定された領域においてパラメータが推定される。これにより、予測モデルの精度を更に向上させることができるので、移動体の制御の精度を更に向上させることができる。 Further, in the present embodiment, the necessity of parameter estimation is determined for each of a plurality of regions included in the moving range of the moving body, and the parameters are estimated in the region where it is determined that the parameter estimation is necessary. .. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of controlling the moving body can be further improved.
 また、本実施の形態において、移動体は掃除機であり、所定の清掃範囲を清掃するための清掃経路に沿って移動体が移動するように、モデル予測制御により移動体の移動が制御される。これにより、掃除機の清掃効率を向上させることができる。 Further, in the present embodiment, the moving body is a vacuum cleaner, and the movement of the moving body is controlled by model prediction control so that the moving body moves along a cleaning path for cleaning a predetermined cleaning range. .. This makes it possible to improve the cleaning efficiency of the vacuum cleaner.
 また、本実施の形態において、パラメータを推定するステップは、清掃経路とは別の移動パターンにおいて実行される。これにより、予測モデルの精度を更に向上させることができるので、掃除機の制御の精度や清掃効率を更に向上させることができる。 Further, in the present embodiment, the step of estimating the parameter is executed in a movement pattern different from the cleaning route. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of vacuum cleaner control and the cleaning efficiency can be further improved.
 また、本実施の形態において、パラメータを推定するステップにおいても、掃除機による清掃動作が実行される。これにより、予測モデルの精度を更に向上させることができるので、掃除機の制御の精度や清掃効率を更に向上させることができる。 Further, in the present embodiment, the cleaning operation by the vacuum cleaner is also executed in the step of estimating the parameters. As a result, the accuracy of the prediction model can be further improved, so that the accuracy of vacuum cleaner control and the cleaning efficiency can be further improved.
 また、本実施の形態において、清掃経路に移動パターンが含まれ、掃除機が所定の清掃範囲を清掃するときにパラメータが推定される。これにより、パラメータの推定の効率を向上させることができる。 Further, in the present embodiment, the cleaning path includes a movement pattern, and the parameters are estimated when the vacuum cleaner cleans a predetermined cleaning range. This can improve the efficiency of parameter estimation.
 また、本実施の形態において、移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップを備え、予測モデルは、移動体の移動方向が左右へずれる速度を表す横ずれ速度または移動体に出した制御指示が反映されるまでの遅延時間を表すむだ時間をパラメータとして移動体の挙動を予測する。これにより、予測モデルの精度を向上させることができるので、移動体の制御の精度を向上させることができる。 Further, in the present embodiment, the moving body control method includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and the prediction model is a moving body. The behavior of the moving body is predicted by using the lateral slip speed, which indicates the speed at which the moving direction shifts to the left or right, or the dead time, which represents the delay time until the control instruction issued to the moving body is reflected, as parameters. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
 また、本実施の形態において、移動体制御方法は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御するステップと、モデル予測制御により移動体の移動が制御されているときに予測モデルによる予測またはモデル予測制御による制御の精度を判定するステップと、精度に基づいて、予測モデルにおいて使用されるパラメータの推定の要否を判定するステップと、パラメータの推定が必要であると判定された場合に、パラメータを推定するステップと、を備える。これにより、予測モデルの精度を向上させることができるので、移動体の制御の精度を向上させることができる。 Further, in the present embodiment, the moving body control method includes a step of controlling the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and a movement of the moving body by model prediction control. A step to determine the accuracy of prediction by the predictive model or control by model predictive control when is controlled, a step to determine the necessity of estimating the parameters used in the predictive model based on the accuracy, and the parameter It comprises a step of estimating parameters when it is determined that estimation is necessary. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
 また、本実施の形態において、移動体制御装置は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動体の移動を制御する制御部と、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するパラメータ推定部と、を備える。これにより、予測モデルの精度を向上させることができるので、移動体の制御の精度を向上させることができる。 Further, in the present embodiment, the moving body control device is a control unit that controls the movement of the moving body by model prediction control using a prediction model for predicting the behavior of the moving body, and parameters used in the prediction model. It is provided with a parameter estimation unit that estimates parameters based on the behavior of the moving body when the moving body is moved by the movement pattern for estimating. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
 また、本実施の形態において、移動体は、移動するために駆動される移動部と、移動部を制御する制御装置と、を備え、制御装置は、移動体の挙動を予測するための予測モデルを用いたモデル予測制御により移動部を制御する制御部と、予測モデルにおいて使用されるパラメータを推定するための移動パターンで移動体を移動させたときの移動体の挙動に基づいてパラメータを推定するパラメータ推定部と、を備える。これにより、予測モデルの精度を向上させることができるので、移動体の制御の精度を向上させることができる。 Further, in the present embodiment, the moving body includes a moving unit driven to move and a control device for controlling the moving unit, and the control device is a prediction model for predicting the behavior of the moving body. The parameters are estimated based on the behavior of the moving body when the moving body is moved by the control unit that controls the moving unit by the model prediction control using and the movement pattern for estimating the parameters used in the prediction model. It is equipped with a parameter estimation unit. As a result, the accuracy of the prediction model can be improved, so that the accuracy of controlling the moving body can be improved.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. It is also possible to combine the components described in the first embodiment to form a new embodiment.
 そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.
 実施の形態1では、移動体の一例として、自走式掃除機50を説明した。移動体は、自動運転車、運搬車、ロボットなど、自律的に移動可能な任意の移動体であってもよい。 In the first embodiment, the self-propelled vacuum cleaner 50 has been described as an example of the moving body. The moving body may be any moving body that can move autonomously, such as an autonomous vehicle, a carrier, and a robot.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Since the above-described embodiment is for exemplifying the technique in the present disclosure, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent thereof.
 本開示は、移動体の制御に利用可能である。 This disclosure can be used to control moving objects.
 1 目標経路生成部
 2 モデル予測制御部
 3 走行部
 4 位置角度センサ
 5 モデル推定部
 6 全体制御部
 7 テスト走行パターン生成部
 8 テスト走行制御部
 9 性能良否判断部
 10 制御目標生成部
 11 制御部
 20 地点
 21 テスト走行開始地点
 22 テスト走行終了地点
 30 性能悪化領域
 50 自走式掃除機
1 Target route generation unit 2 Model prediction control unit 3 Travel unit 4 Position angle sensor 5 Model estimation unit 6 Overall control unit 7 Test travel pattern generation unit 8 Test travel control unit 9 Performance quality judgment unit 10 Control target generation unit 11 Control unit 20 Point 21 Test run start point 22 Test run end point 30 Performance deterioration area 50 Self-propelled vacuum cleaner

Claims (17)

  1.  移動体の挙動を予測するための予測モデルを用いたモデル予測制御により前記移動体の移動を制御するステップと、
     前記予測モデルにおいて使用されるパラメータを推定するための移動パターンで前記移動体を移動させたときの前記移動体の挙動に基づいて前記パラメータを推定するステップと、
    を備える移動体制御方法。
    A step of controlling the movement of the moving body by model predictive control using a predictive model for predicting the behavior of the moving body, and
    A step of estimating the parameter based on the behavior of the moving body when the moving body is moved by a movement pattern for estimating the parameter used in the prediction model.
    A mobile control method comprising.
  2.  前記予測モデルにおいて使用される複数のパラメータのそれぞれを推定するために複数の移動パターンで前記移動体を移動させる請求項1に記載の移動体制御方法。 The moving body control method according to claim 1, wherein the moving body is moved by a plurality of movement patterns in order to estimate each of the plurality of parameters used in the prediction model.
  3.  前記パラメータは、前記移動体の移動方向が左右へずれる速度を表す横ずれ速度を含み、
     前記移動パターンは、所定長よりも長い直線の移動経路を含む
    請求項1または2に記載の移動体制御方法。
    The parameter includes a lateral slip speed representing a speed at which the moving direction of the moving body shifts to the left or right.
    The moving body control method according to claim 1 or 2, wherein the moving pattern includes a straight moving path longer than a predetermined length.
  4.  前記パラメータは、前記移動体に出した制御指示が反映されるまでの遅延時間を表すむだ時間または前記移動体の旋回速度の制約条件を含み、
     前記移動パターンは、所定角度よりも大きい角度で旋回する移動経路を含む
    請求項1から3のいずれかに記載の移動体制御方法。
    The parameter includes a dead time representing a delay time until the control instruction issued to the moving body is reflected, or a constraint condition of the turning speed of the moving body.
    The moving body control method according to any one of claims 1 to 3, wherein the moving pattern includes a moving path that turns at an angle larger than a predetermined angle.
  5.  前記パラメータは、前記移動体の移動制御における二次遅れ要素である固有角周波数または減衰係数を含み、
     前記移動パターンは、所定角度よりも小さい角度で旋回する移動経路を含む
    請求項1から4のいずれかに記載の移動体制御方法。
    The parameters include natural angular frequencies or attenuation coefficients that are secondary lag factors in the movement control of the moving object.
    The moving body control method according to any one of claims 1 to 4, wherein the moving pattern includes a moving path that turns at an angle smaller than a predetermined angle.
  6.  前記パラメータは、前記移動体の移動範囲に含まれる複数の領域ごとに推定される請求項1から5のいずれかに記載の移動体制御方法。 The moving body control method according to any one of claims 1 to 5, wherein the parameter is estimated for each of a plurality of regions included in the moving range of the moving body.
  7.  前記パラメータが推定されていない領域を前記移動体が移動する前または移動した後に、前記パラメータを推定するステップが実行される請求項1から6のいずれかに記載の移動体制御方法。 The moving body control method according to any one of claims 1 to 6, wherein the step of estimating the parameter is executed before or after the moving body moves in a region where the parameter is not estimated.
  8.  前記モデル予測制御により前記移動体の移動が制御されているときに、前記予測モデルによる予測または前記モデル予測制御による制御の精度を判定するステップと、
     前記精度に基づいて前記パラメータの推定の要否を判定するステップと、
     前記パラメータの推定が必要であると判定された場合に前記パラメータを推定するステップと、
    を更に備える請求項1から7のいずれかに記載の移動体制御方法。
    A step of determining the accuracy of prediction by the prediction model or control by the model prediction control when the movement of the moving object is controlled by the model prediction control.
    A step of determining the necessity of estimating the parameter based on the accuracy, and
    A step of estimating the parameter when it is determined that the parameter needs to be estimated, and a step of estimating the parameter.
    The mobile body control method according to any one of claims 1 to 7.
  9.  前記パラメータの推定の要否は、前記移動体の移動範囲に含まれる複数の領域ごとに判定され、
     前記パラメータの推定が必要であると判定された領域において前記パラメータが推定される
    請求項8に記載の移動体制御方法。
    Whether or not the parameter is estimated is determined for each of a plurality of regions included in the moving range of the moving body.
    The mobile control method according to claim 8, wherein the parameter is estimated in a region where it is determined that the parameter needs to be estimated.
  10.  前記移動体は掃除機であり、
     所定の清掃範囲を清掃するための清掃経路に沿って前記移動体が移動するように、前記モデル予測制御により前記移動体の移動が制御される
    請求項1から9のいずれかに記載の移動体制御方法。
    The moving body is a vacuum cleaner.
    The moving body according to any one of claims 1 to 9, wherein the movement of the moving body is controlled by the model predictive control so that the moving body moves along a cleaning path for cleaning a predetermined cleaning range. Control method.
  11.  前記パラメータを推定するステップは、前記清掃経路とは別の前記移動パターンにおいて実行される請求項10に記載の移動体制御方法。 The moving body control method according to claim 10, wherein the step of estimating the parameter is executed in the moving pattern different from the cleaning route.
  12.  前記パラメータを推定するステップにおいても、前記掃除機による清掃動作が実行される請求項11に記載の移動体制御方法。 The mobile control method according to claim 11, wherein the cleaning operation by the vacuum cleaner is executed even in the step of estimating the parameters.
  13.  前記清掃経路に前記移動パターンが含まれ、前記掃除機が前記所定の清掃範囲を清掃するときに前記パラメータが推定される請求項10に記載の移動体制御方法。 The moving body control method according to claim 10, wherein the cleaning path includes the moving pattern, and the parameters are estimated when the vacuum cleaner cleans the predetermined cleaning range.
  14.  移動体の挙動を予測するための予測モデルを用いたモデル予測制御により前記移動体の移動を制御するステップを備え、
     前記予測モデルは、前記移動体の移動方向が左右へずれる速度を表す横ずれ速度または前記移動体に出した制御指示が反映されるまでの遅延時間を表すむだ時間をパラメータとして前記移動体の挙動を予測する
    移動体制御方法。
    A step of controlling the movement of the moving body by model predictive control using a predictive model for predicting the behavior of the moving body is provided.
    In the prediction model, the behavior of the moving body is measured by using the lateral slip speed representing the speed at which the moving direction of the moving body shifts to the left or right or the dead time representing the delay time until the control instruction issued to the moving body is reflected as a parameter. Predictive mobile control method.
  15.  移動体の挙動を予測するための予測モデルを用いたモデル予測制御により前記移動体の移動を制御するステップと、
     前記モデル予測制御により前記移動体の移動が制御されているときに前記予測モデルによる予測または前記モデル予測制御による制御の精度を判定するステップと、
     前記精度に基づいて、前記予測モデルにおいて使用されるパラメータの推定の要否を判定するステップと、
     前記パラメータの推定が必要であると判定された場合に、前記パラメータを推定するステップと、
    を備える移動体制御方法。
    A step of controlling the movement of the moving body by model predictive control using a predictive model for predicting the behavior of the moving body, and
    A step of determining the accuracy of prediction by the prediction model or control by the model prediction control when the movement of the moving object is controlled by the model prediction control.
    A step of determining the necessity of estimating the parameters used in the prediction model based on the accuracy, and
    When it is determined that the parameter needs to be estimated, the step of estimating the parameter and the step of estimating the parameter
    A mobile control method comprising.
  16.  移動体の挙動を予測するための予測モデルを用いたモデル予測制御により前記移動体の移動を制御する制御部と、
     前記予測モデルにおいて使用されるパラメータを推定するための移動パターンで前記移動体を移動させたときの前記移動体の挙動に基づいて前記パラメータを推定するパラメータ推定部と、
    を備える移動体制御装置。
    A control unit that controls the movement of the moving object by model predictive control using a predictive model for predicting the behavior of the moving object.
    A parameter estimation unit that estimates the parameters based on the behavior of the moving body when the moving body is moved by a movement pattern for estimating the parameters used in the prediction model.
    A mobile control device.
  17.  移動体であって、
     移動するために駆動される移動部と、
     前記移動部を制御する制御装置と、
    を備え、
     前記制御装置は、
     前記移動体の挙動を予測するための予測モデルを用いたモデル予測制御により前記移動部を制御する制御部と、
     前記予測モデルにおいて使用されるパラメータを推定するための移動パターンで前記移動体を移動させたときの前記移動体の挙動に基づいて前記パラメータを推定するパラメータ推定部と、
    を備える移動体。
    It ’s a mobile body,
    A moving part driven to move,
    A control device that controls the moving unit and
    Equipped with
    The control device is
    A control unit that controls the moving unit by model prediction control using a predictive model for predicting the behavior of the moving object.
    A parameter estimation unit that estimates the parameters based on the behavior of the moving body when the moving body is moved by a movement pattern for estimating the parameters used in the prediction model.
    A mobile body equipped with.
PCT/JP2021/020954 2020-08-27 2021-06-02 Mobile body control method, mobile body control device, and mobile body WO2022044470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143222 2020-08-27
JP2020-143222 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022044470A1 true WO2022044470A1 (en) 2022-03-03

Family

ID=80353018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020954 WO2022044470A1 (en) 2020-08-27 2021-06-02 Mobile body control method, mobile body control device, and mobile body

Country Status (1)

Country Link
WO (1) WO2022044470A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208494A (en) * 1998-01-23 1999-08-03 Hino Motors Ltd Automatic steering device for vehicle
JP2018087753A (en) * 2016-11-29 2018-06-07 株式会社デンソー Nonlinear optimization program for continuous value optimization problem, and route search program and route search device
JP2019512111A (en) * 2017-01-13 2019-05-09 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. Method and system for determining road surface friction of an autonomous vehicle using learning based model predictive control
JP2019113926A (en) * 2017-12-21 2019-07-11 株式会社Ihi Model predictive control device
JP2020052816A (en) * 2018-09-27 2020-04-02 オムロン株式会社 Control unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208494A (en) * 1998-01-23 1999-08-03 Hino Motors Ltd Automatic steering device for vehicle
JP2018087753A (en) * 2016-11-29 2018-06-07 株式会社デンソー Nonlinear optimization program for continuous value optimization problem, and route search program and route search device
JP2019512111A (en) * 2017-01-13 2019-05-09 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. Method and system for determining road surface friction of an autonomous vehicle using learning based model predictive control
JP2019113926A (en) * 2017-12-21 2019-07-11 株式会社Ihi Model predictive control device
JP2020052816A (en) * 2018-09-27 2020-04-02 オムロン株式会社 Control unit

Similar Documents

Publication Publication Date Title
JP6606442B2 (en) Mobile route plan generation device
US8515612B2 (en) Route planning method, route planning device and autonomous mobile device
Philippsen et al. An interpolated dynamic navigation function
US10184917B2 (en) Method for automatically identifying resonance
JP5666322B2 (en) Route generation device and method, and mobile device including route generation device
KR102445731B1 (en) How to predict and control the robot's driving
KR102595187B1 (en) route planning
KR20170088228A (en) Map building system and its method based on multi-robot localization
JP2016024598A (en) Control method of autonomous mobile apparatus
US7546179B2 (en) Method and apparatus for allowing mobile robot to return to docking station
WO2019187122A1 (en) Autonomous running working machine and control system
KR20090126414A (en) Robot and method for planning path of the same
KR101907268B1 (en) Method and device for autonomous driving based on route adaptation
JP4467533B2 (en) Folding line following mobile robot and control method of broken line following mobile robot
CN110948488A (en) Robot self-adaptive trajectory planning algorithm based on time optimization
KR101523848B1 (en) Apparatus for estimating slip of mobile robot and method thereof
KR101878617B1 (en) Method and system for processing traictory data
WO2022044470A1 (en) Mobile body control method, mobile body control device, and mobile body
JP4432935B2 (en) Autonomous mobile body and autonomous mobile body control method
JP5442468B2 (en) Route generation device and method, and mobile device including route generation device
Calisi et al. Performance evaluation of pure-motion tasks for mobile robots with respect to world models
CN107544498A (en) The mobile route method and device for planning of movable termination
KR20090074545A (en) Robot cleaner and controlling method of the same
JP5074153B2 (en) Route generation device and method, and mobile device including route generation device
JP6863325B2 (en) Cleaning robot travel path generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP