WO2022044418A1 - Radiation transmission inspection device for film product reel, film product reel manufacturing method using same, and film product reel radiation transmission method - Google Patents

Radiation transmission inspection device for film product reel, film product reel manufacturing method using same, and film product reel radiation transmission method Download PDF

Info

Publication number
WO2022044418A1
WO2022044418A1 PCT/JP2021/015162 JP2021015162W WO2022044418A1 WO 2022044418 A1 WO2022044418 A1 WO 2022044418A1 JP 2021015162 W JP2021015162 W JP 2021015162W WO 2022044418 A1 WO2022044418 A1 WO 2022044418A1
Authority
WO
WIPO (PCT)
Prior art keywords
film product
film
product reel
foreign matter
radiation
Prior art date
Application number
PCT/JP2021/015162
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺充
飯塚尊則
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021520438A priority Critical patent/JPWO2022044418A1/ja
Publication of WO2022044418A1 publication Critical patent/WO2022044418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the present invention relates to a radiation transmission inspection device for inspecting foreign matter mixed in a film product reel from which a film is wound, a method for manufacturing a film product reel using the device, and a radiation transmission method for a film product reel.
  • Films such as various polymer films are generally supplied to manufacturers who use this film in a rolled state as a raw film.
  • the film is unwound from the wide original roll, slitted to obtain a desired film width, and the slitted film is wound around the core.
  • a slit-processed film unwind the film from the film product reel and use it.
  • the film is unwound from the raw material of the untreated film to perform surface treatment, and the treated film is wound to obtain a film product reel.
  • the surface-treated film is wound around the core, then the film is unwound from the film product reel, slit-processed, and then wound around the core again. Is common.
  • an object of the present invention is an inspection device capable of detecting minute foreign matter contained in a film product reel wound from a film conveyed at high speed, including whether or not it is a metallic foreign matter, for example. It is an object of the present invention to provide a method for manufacturing a film product reel using the above method, and a method for transmitting radiation from the film product reel.
  • the radiation transmission inspection device for the film product reel inspects foreign matter contained in the film product reel in which a long film is wound around the outer peripheral surface of the core.
  • a radiation transmission inspection device a mounting table on which the film product reel is placed, a pair of radiation sources and detectors that transmit and receive radiation in the radial direction with respect to the circumferential surface of the film product reel, and the detection. It comprises an image processing unit that generates a foreign matter detection image from the radiation detection result obtained by the device.
  • radiation refers to electromagnetic waves including X-rays, ⁇ -rays, ⁇ -rays, infrared rays and the like.
  • an area camera in which the image pickup elements are arranged in two dimensions, a line camera in which the image pickup elements are arranged in one dimension, or a TDI (Time Delivery Integration) camera in which a plurality of line cameras are provided perpendicular to the arrangement direction, etc. are used.
  • a line camera or a TDI camera it is preferable to arrange the image pickup elements so that they are parallel to the reel rotation axis.
  • the radiation transmission inspection device for a film product reel According to the radiation transmission inspection device for a film product reel according to the present invention, radiation is transmitted in the radial direction with respect to the circumferential surface of the film product reel, so that foreign matter can be detected with high sensitivity even if the reel width increases. It is possible to do.
  • the focus of the radiation is arranged in the inner cavity of the core and the detector is arranged on the outer side in the radial direction of the core.
  • the radiation transmission inspection device for the film product reel it is preferable to have a function of rotating the film product reel in the circumferential direction. Further, the pair of the radiation source and the detector may be swiveled in the circumferential direction of the film product reel.
  • the radiation transmission inspection device for the film product reel it is preferable to have a function of moving the film product reel in the width direction. Further, the pair of the radiation source and the detector may be moved in the width direction of the film product reel. With such a configuration, it is possible to inspect the full width of a film product reel having a width equal to or larger than one imaging field of view. Further, by setting the amount of one movement when moving in the width direction to less than half of the minimum field of view width (the imaging field of view width at the position closest to the radiation source of the film product reel), the same foreign matter can be seen in two or more fields of view. It can be imaged. In this case, since the foreign matter mixing depth can be estimated based on the foreign matter detection images before and after moving in the width direction, it is possible to determine whether or not the foreign matter is contained in the film portion of the film product reel. ..
  • the foreign matter is the film product reel based on the foreign matter detection image previously obtained for the core before the image processing unit winds the film. It is preferable to determine whether or not it is contained in the film portion of. In this way, by comparing the foreign matter detection image of the film product reel with the foreign matter detection image obtained in advance for the core before winding the film, the foreign matter contained in the core that does not directly affect the performance of the film product is subtracted. If only the foreign matter contained in the film portion is detected, the film product reel in which the foreign matter is contained only in the core is not erroneously determined as a defective product, so that the deterioration of the yield in the radiation transmission inspection can be avoided.
  • the method for manufacturing a film product reel according to the present invention includes a step of winding a long film around a core to obtain a film product reel, and the above-mentioned radiation transmission inspection apparatus. It comprises a method including a foreign matter inspection step for inspecting foreign matter contained in a film product reel. According to the method for manufacturing a film product reel according to the present invention, it is possible to efficiently manufacture a film product reel with less contamination of foreign matter.
  • the film product reel is often used as a battery separator film inserted between the positive electrode and the negative electrode of a lithium ion secondary battery, and is as small as several tens of ⁇ m. Since it is required to detect metallic foreign matter, it is effective to include the foreign matter inspection step using the above-mentioned radiation transmission inspection device in the manufacturing process of the film product reel.
  • the radiation transmission inspection method for a film product reel according to the present invention is applied to the circumferential surface of a film product reel in which a long film is wound around the outer peripheral surface of the core. It consists of a method of generating a foreign matter detection image from a radiation detection result obtained by transmitting radiation in the radial direction. According to the radiation transmission inspection method for a film product reel according to the present invention, radiation is transmitted in the radial direction with respect to the circumferential surface of the film product reel, so that foreign matter can be detected with high sensitivity even if the reel width increases. It is possible to do.
  • the present invention it is possible to perform a radiation transmission inspection of a film product reel capable of detecting foreign matter with high sensitivity even if the reel width is increased.
  • FIG. 1 It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on one Embodiment of this invention.
  • C) is a perspective view of the reel. It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on other embodiment of this invention, (A) is the perspective view of the reel when the detector of the type different from FIG. 1 is used. (B) is a schematic diagram showing that a difference in projection magnification occurs between the central portion and the end portion of the detector. It is a schematic diagram for demonstrating the method of detecting a foreign substance by the radiation transmission inspection method of FIG. The case where the rotation center axis and the X-ray focal position are deviated from each other is shown.
  • FIG. 1 It is a schematic diagram for demonstrating the method of estimating the foreign matter mixing depth by the radiation transmission inspection method of FIG.
  • the radiation transmission inspection apparatus which concerns on one Embodiment of this invention is shown, (A) front view, (B) is the left side view. It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on other embodiment of this invention.
  • FIG. 1A and 1B are schematic views for explaining a radiation transmission inspection method for a film product reel according to an embodiment of the present invention, where FIG. 1A is a front view of a reel end portion and FIG. 1B is a reel peripheral surface.
  • the front view and (C) are perspective views of the reel.
  • the X-ray source 4 is arranged on the rotation center axis of the cylindrical core 2.
  • Irradiated X-rays 5 pass through the film 3 and are received by a detector 6 composed of a TDI camera provided outside the core 2.
  • a detector 6 composed of a TDI camera provided outside the core 2.
  • foreign matter is generated by detecting the difference in the brightness of the received X-rays and performing image processing. Detected.
  • FIG. 1B is a front view of the reel peripheral surface
  • FIG. 1C is a perspective view of the reel.
  • d is the actual size of the foreign substance
  • D is the size on the detector that projects the foreign substance
  • FID Fluorescence Deformation
  • FOD Fluorescence Deformation
  • FIG. 3 is a schematic diagram for explaining a method of detecting a foreign substance by the radiation transmission inspection method of FIG.
  • the irradiation X-ray 5 is performed while rotating the product reel 1 which is a curved surface shape inspection sample in the reel circumferential direction. Is received by the detector 6, the brightness of the TDI camera can be integrated normally.
  • FIG. 3B since the rotation center axis of the core 2 and the X-ray focal point 16 are arranged so as to be offset from each other, the foreign matter B is not projected normally, and the brightness in the TDI camera is normally integrated. I can't.
  • the position of the X-ray focal point 16 may be changed.
  • the projection magnification for foreign matter existing on the inner surface of the core is FID / FOD (inside).
  • FIG. 4 is a schematic diagram for explaining a method of estimating the foreign matter mixing depth by the radiation transmission inspection method of FIG.
  • irradiation X-rays 5 are emitted while moving the product reel 1 (or a pair of the detector 6 and the X-ray source 4) in the reel width direction.
  • the detector 6 When the light is received by the detector 6, one foreign matter moves on the foreign matter detection image and draws a trajectory as shown in FIG.
  • Foreign matter is mixed in using FID and FOD by reading the relationship between the displacement of the product reel ( ⁇ x) and the displacement of foreign matter on the foreign matter detection image (x 1 ⁇ x 2 ) and performing a geometric calculation using Equation 1.
  • the depth (z) can be calculated.
  • FIG. 5 shows a radiation transmission inspection device according to an embodiment of the present invention, (A) is a front view, and (B) is a left side view.
  • the radiation transmission inspection device 11 is provided with a mounting table 13 for mounting the product reel 1 in which the film 3 is wound around the core 2 via the core receiver 12.
  • the mounting table 13 is moved in the width direction of the product reel 1 by using the width direction moving mechanism 14, so that the radiation source fixing frame 15 for fixing the X-ray source 4 is inside the core 2. Insert it into the cavity.
  • the destination can be moved to a predetermined inspection start position, but it can be moved to the end (edge) of the film 3 detected by the irradiation X-ray 5 and the detector 6, or another separately installed.
  • the inspection may be started after moving to the end of the film 3 detected by the sensor. Further, instead of moving the mounting table 13, the pair of the X-ray source 4 and the detector 6 may be moved in the width direction with respect to the fixed mounting table 13.
  • the product reel 1 is rotated by rotating the core receiver 12 in a state of irradiating X-rays so that the X-ray focus 16 of the irradiated X-rays 5 is arranged on the rotation center axis of the core 2, and the detector is detected.
  • the data continuously detected by 6 is image-processed to generate a foreign matter detection image.
  • the core receiving material preferably has a large friction with the core, and examples thereof include rubber. Further, as a measure other than the material, the core receiver and the core surface may be subjected to uneven processing and then rotated by engaging with each other.
  • the rotation position marker 17 is provided on the core 2, it is possible to obtain a foreign matter detection image for one round by using the rotation position marker 17 detected by the rotation position sensor 18 for each rotation as a clue. Further, image noise can be suppressed by averaging the foreign matter detection images for a plurality of laps.
  • a line camera or a TDI camera is used as the detector 6, it is preferable to match the scan speed of the camera with the rotation speed of the core receiver 12 in order to obtain a distortion-free image.
  • the rotation speed of the core receiver 12 or the core 2 may be measured by a speedometer such as an encoder and synchronized with the scan speed of the camera in case the rotation speed fluctuates.
  • the irradiation width of the irradiation X-ray 5 may be wider than that of the detector.
  • the mounting table 13 is moved in the width direction by a predetermined movement amount using the width direction movement mechanism 14, and then the foreign matter detection image is generated again. By repeating this over the entire width of the product reel 1, a foreign matter detection image of the entire product reel 1 can be obtained. It should be noted that it is determined whether or not the foreign matter is contained in the film 3 portion of the product reel 1 based on the foreign matter detection images before and after moving the product reel 1 or the pair of the X-ray source 4 and the detector 6 in the width direction, so-called. When performing an inspection by stereo imaging, it is preferable that the amount of movement of the mounting table 13 at one time is less than half of the foreign matter detection image width for one round. Further, when the mounting table 13 is moved, the rotation of the product reel 1 may be stopped, or the mounting table 13 may be moved while the product reel 1 is being rotated.
  • an area camera is used as the detector 6, and the others are the same. Unlike the TDI camera and the line camera, the area camera does not need to measure or control the rotation speed of the product reel 1 because it captures images in a stationary state, and as a flow for inspecting the entire circumference at a specific width position of the product reel 1.
  • the product reel 1 is rotated by ⁇ ⁇ stationary ⁇ imaging ⁇ the product reel 1 is rotated by ⁇ ⁇ ...
  • is the rotation angle of the product reel 1 at the time of imaging the next field of view.
  • it is preferable that the position of the X-ray focal point 16 is displaced from the rotation center axis of the core 2. As a result, when the same foreign matter is detected in a plurality of visual fields during the all-around inspection, the foreign matter mixing position can be estimated. This principle will be described with reference to FIG.
  • FIG. 6 shows a schematic diagram when the same foreign matter is detected in two fields of view before and after rotating the product reel 1 in the circumferential direction around the origin O.
  • the equation 2 is established because the three points of the X-ray focus, the foreign matter, and the foreign matter projection position on the detector are on the same line.
  • FID 1 and FID 2 are the lengths of the line segments s 1 and s 2 , respectively.
  • is appropriately set so that the same foreign matter is detected in a plurality of visual fields in the circumferential direction and the inspection time is not lengthened. If ⁇ is large, it may be possible to detect only one field of view, and if ⁇ is small, inspection time will be required. However, ⁇ does not have to be constant over the entire circumference. Normally, ⁇ is set to minimize the overlap with the next visual field, and only when foreign matter is detected, ⁇ is temporarily reduced to detect in multiple visual fields. You may let me. Further, although the case of detection in two visual fields has been described above, it can be obtained in the same manner even if it is detected in three or more visual fields, and the error can be further suppressed by averaging the calculated values and the like.
  • the manufacturing process to which the inspection method of the present invention is applied is not limited to the polyolefin battery separator film, but is not limited to a coating separator, a non-woven battery separator, a capacitor film, an MLCC mold release film, and a polyolefin microporous film used for high-precision filtration. It is also suitable for manufacturing processes such as.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

[Problem] To provide an inspection device capable of detecting minute foreign matter included in a film product reel of wound film conveyed at high speed, the detection including detection of whether the foreign matter is metallic, and a film product reel manufacturing method using this inspection device. [Solution] A radiation transmission inspection device for inspecting for foreign matter included in a film product reel (1) of elongated film (3) wound multiple times around the outer circumferential surface of a core (2), the radiation transmission inspection device for a film product reel comprising a placement table upon which the film product reel is to be placed, a pair consisting of a radiation source (4) and a detector (6) for causing radiation to pass through the circumferential surface of the film product reel in the radial direction and receiving the radiation, and an image processing unit for generating a foreign matter detection image from a radiation detection result obtained by the detector.

Description

フィルム製品リールの放射線透過検査装置およびこれを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法A radiation transmission inspection device for film product reels, a method for manufacturing film product reels using the same, and a radiation transmission method for film product reels.
 本発明は、フィルムを巻き取ったフィルム製品リールに混入する異物を検査する放射線透過検査装置と、これを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法とに関する。 The present invention relates to a radiation transmission inspection device for inspecting foreign matter mixed in a film product reel from which a film is wound, a method for manufacturing a film product reel using the device, and a radiation transmission method for a film product reel.
 各種のポリマーフィルムなどのフィルムは、一般に、フィルム原反として、ロールに巻かれた状態でこのフィルムを使用するメーカーに供給される。特に、フィルム原反よりも幅の小さいフィルムを使用する場合には、幅広である原反ロールからフィルムを巻き出して所望のフィルム幅とするスリット加工を行い、スリット加工されたフィルムをコアに巻き取ってフィルム製品リールとする。スリット加工されたフィルムを使用するときは、フィルム製品リールから改めてフィルムを巻き出して使用する。また、各種の表面処理がなされたフィルムを使用する場合には、未処理フィルムの原反からフィルムを巻き出して表面処理を行い、処理後のフィルムを巻き取ってフィルム製品リールとする。表面処理されかつスリット加工されたフィルムを必要とするときは、表面処理されたフィルムをコアに巻取り、その後、このフィルム製品リールからフィルムを巻き出してスリット加工を行ない、再度、コアに巻き取ることが一般的である。 Films such as various polymer films are generally supplied to manufacturers who use this film in a rolled state as a raw film. In particular, when a film having a width smaller than that of the original film is used, the film is unwound from the wide original roll, slitted to obtain a desired film width, and the slitted film is wound around the core. Take it as a film product reel. When using a slit-processed film, unwind the film from the film product reel and use it. When a film having been subjected to various surface treatments is used, the film is unwound from the raw material of the untreated film to perform surface treatment, and the treated film is wound to obtain a film product reel. When a surface-treated and slit-processed film is required, the surface-treated film is wound around the core, then the film is unwound from the film product reel, slit-processed, and then wound around the core again. Is common.
 このような過程を経て得られたフィルム製品リールからフィルムを巻き出して使用する場合、フィルム製品リール中に混入する微小な異物が問題となることがある。そこで、フィルム製品リール中に混入する異物を検出することが求められる。例えば、フィルム製品リールから巻き出したフィルムをリチウムイオン二次電池の正極と負極との間に挿入されるバッテリーセパレータフィルムとして使用する場合、フィルム製品リール中に混入していた異物はバッテリーセパレータフィルム上の異物となるが、この異物が例えば微小な金属片であれば、リチウムイオン二次電池における正極と負極との間の短絡を引き起こしたり、電解液に溶解して電池特性を劣化させたりする。そこで、フィルム製品リール中に混入する微小な異物を検出する検査方法及び装置が求められている。バッテリーセパレータフィルム向けにおいては、100μm以下の大きさ、例えば、数十μm程度の金属異物を検出することが必要である。もっとも、電気伝導性を有しない非金属の異物の場合には、より大きな異物であっても問題にならない場合もあるから、バッテリーセパレータフィルム用のフィルム製品リールでの異物の検出に際しては異物の大きさとその材質あるいは種類も判別できることが好ましい。 When the film is unwound from the film product reel obtained through such a process and used, minute foreign matter mixed in the film product reel may become a problem. Therefore, it is required to detect foreign matter mixed in the reel of the film product. For example, when a film unwound from a film product reel is used as a battery separator film inserted between the positive electrode and the negative electrode of a lithium ion secondary battery, foreign matter mixed in the film product reel is on the battery separator film. However, if the foreign matter is, for example, a minute metal piece, it may cause a short circuit between the positive electrode and the negative electrode in the lithium ion secondary battery, or it may dissolve in the electrolytic solution to deteriorate the battery characteristics. Therefore, there is a demand for an inspection method and an apparatus for detecting minute foreign substances mixed in a film product reel. For battery separator films, it is necessary to detect metal foreign substances having a size of 100 μm or less, for example, about several tens of μm. However, in the case of non-metallic foreign matter that does not have electrical conductivity, even a larger foreign matter may not be a problem, so the size of the foreign matter is large when detecting the foreign matter on the film product reel for the battery separator film. It is preferable that the material or type of the metal can be discriminated.
 また、フィルム製品リール中のどこに異物が存在するかを知ることができれば、異物が存在しない区間のフィルムを使用することができるようになって、フィルムの有効利用を図ることもできる。 Further, if it is possible to know where the foreign matter is present in the film product reel, it becomes possible to use the film in the section where the foreign matter does not exist, and the film can be effectively used.
 バッテリーセパレータフィルム上の欠陥や異物を検査する方法として、各種の放射線透過検査装置が知られている(特許文献1、2参照。)。しかしながら、例えば特許文献1の図3に開示される欠陥検査装置では、セパレータ捲回体10の左側(線源部2側)の面とセパレータ捲回体10の右側(センサ部3側)の面との検出感度の差が生じ、特に広幅のセパレータ捲回体リールにおいては検出感度の顕著な差を生じる上に、線源部2とセパレータ捲回体10の物理的干渉があるため右側(センサ部3側)の面が十分な検出感度(例えば100μm)を保てない恐れがあるため、広幅リールの検査に適用するのが困難であった。 Various radiation transmission inspection devices are known as a method for inspecting defects and foreign substances on the battery separator film (see Patent Documents 1 and 2). However, for example, in the defect inspection apparatus disclosed in FIG. 3 of Patent Document 1, the surface on the left side (radioactive source portion 2 side) of the separator winding body 10 and the surface on the right side (sensor unit 3 side) of the separator winding body 10 There is a difference in detection sensitivity between the two, and especially in a wide separator winding body reel, there is a remarkable difference in detection sensitivity, and there is physical interference between the radiation source unit 2 and the separator winding body 10, so the right side (sensor). It was difficult to apply it to the inspection of wide reels because the surface of the portion 3) may not maintain sufficient detection sensitivity (for example, 100 μm).
特開2018-91825号公報Japanese Unexamined Patent Publication No. 2018-91825 国際公開WO2020/004435International release WO2020 / 004435
 そこで、本発明の目的は、高速で搬送されるフィルムを巻き取ったフィルム製品リールに含まれる微小な異物を、例えば金属異物であるか否かを含めて検出することができる検査装置と、これを用いたフィルム製品リールの製造方法、ならびにフィルム製品リールの放射線透過方法とを提供することにある。 Therefore, an object of the present invention is an inspection device capable of detecting minute foreign matter contained in a film product reel wound from a film conveyed at high speed, including whether or not it is a metallic foreign matter, for example. It is an object of the present invention to provide a method for manufacturing a film product reel using the above method, and a method for transmitting radiation from the film product reel.
 上記課題を解決するために、本発明に係るフィルム製品リールの放射線透過検査装置は、コアの外周面に長尺のフィルムが複数周巻回されてなるフィルム製品リールに含まれる異物の検査を行う放射線透過検査装置であって、前記フィルム製品リールが置かれる載置台と、前記フィルム製品リールの円周面に対し半径方向に放射線を透過させて受光する放射線源および検出器の一対と、前記検出器で得られた放射線検出結果から異物検出画像を生成する画像処理部と、を有するものからなる。ここで放射線とは、X線、β線、γ線、赤外線等を含む電磁波をいう。検出器としては撮像素子が2次元に配列されたエリアカメラ、撮像素子が1次元に配列されたラインカメラ、あるいは複数のラインカメラを配列方向と垂直に設けたTDI(Time Delay Integration)カメラ等を用いることができる。ラインカメラまたはTDIカメラを用いる場合は、撮像素子の配列がリール回転軸と平行になるよう配置することが好ましい。 In order to solve the above problems, the radiation transmission inspection device for the film product reel according to the present invention inspects foreign matter contained in the film product reel in which a long film is wound around the outer peripheral surface of the core. A radiation transmission inspection device, a mounting table on which the film product reel is placed, a pair of radiation sources and detectors that transmit and receive radiation in the radial direction with respect to the circumferential surface of the film product reel, and the detection. It comprises an image processing unit that generates a foreign matter detection image from the radiation detection result obtained by the device. Here, radiation refers to electromagnetic waves including X-rays, β-rays, γ-rays, infrared rays and the like. As the detector, an area camera in which the image pickup elements are arranged in two dimensions, a line camera in which the image pickup elements are arranged in one dimension, or a TDI (Time Delivery Integration) camera in which a plurality of line cameras are provided perpendicular to the arrangement direction, etc. are used. Can be used. When a line camera or a TDI camera is used, it is preferable to arrange the image pickup elements so that they are parallel to the reel rotation axis.
 このような本発明に係るフィルム製品リールの放射線透過検査装置によれば、フィルム製品リールの円周面に対し半径方向に放射線を透過させるので、リール幅が増加しても高感度で異物を検出することが可能である。 According to the radiation transmission inspection device for a film product reel according to the present invention, radiation is transmitted in the radial direction with respect to the circumferential surface of the film product reel, so that foreign matter can be detected with high sensitivity even if the reel width increases. It is possible to do.
 本発明に係るフィルム製品リールの放射線透過検査装置において、前記放射線の焦点が前記コアの内側空洞部に配置され、検出器が前記コアの半径方向外側に配置されることが好ましい。検出器を外側に配置することで、検出器サイズに制約を設ける必要がなく、1回の撮像視野を大きくすることができる。 In the radiation transmission inspection device for the film product reel according to the present invention, it is preferable that the focus of the radiation is arranged in the inner cavity of the core and the detector is arranged on the outer side in the radial direction of the core. By arranging the detector on the outside, it is not necessary to limit the size of the detector, and the field of view for one imaging can be increased.
 本発明に係るフィルム製品リールの放射線透過検査装置において、前記フィルム製品リールを円周方向に回転させる機能を有することが好ましい。また、前記放射線源と前記検出器の一対を、前記フィルム製品リールの円周方向に旋回させてもよい。 In the radiation transmission inspection device for the film product reel according to the present invention, it is preferable to have a function of rotating the film product reel in the circumferential direction. Further, the pair of the radiation source and the detector may be swiveled in the circumferential direction of the film product reel.
 本発明に係るフィルム製品リールの放射線透過検査装置において、前記フィルム製品リールを幅方向に移動させる機能を有することが好ましい。また、前記放射線源と前記検出器の一対を、前記フィルム製品リールの幅方向に移動させてもよい。このような構成を有することにより、1回の撮像視野以上の幅を有するフィルム製品リールも全幅検査することができる。また、幅方向に移動させる際の1回の移動量を、最小視野幅(フィルム製品リールの最も放射線源に近い位置における撮像視野幅)の半分未満とすることにより、同一異物を2視野以上で撮像することができる。この場合、幅方向に移動させる前後の異物検出画像に基づいて異物混入深さを推定することができるので、異物がフィルム製品リールのフィルム部分に含まれるか否かを判定することが可能となる。 In the radiation transmission inspection device for the film product reel according to the present invention, it is preferable to have a function of moving the film product reel in the width direction. Further, the pair of the radiation source and the detector may be moved in the width direction of the film product reel. With such a configuration, it is possible to inspect the full width of a film product reel having a width equal to or larger than one imaging field of view. Further, by setting the amount of one movement when moving in the width direction to less than half of the minimum field of view width (the imaging field of view width at the position closest to the radiation source of the film product reel), the same foreign matter can be seen in two or more fields of view. It can be imaged. In this case, since the foreign matter mixing depth can be estimated based on the foreign matter detection images before and after moving in the width direction, it is possible to determine whether or not the foreign matter is contained in the film portion of the film product reel. ..
 本発明に係るフィルム製品リールの放射線透過検査装置において、前記画像処理部が、前記フィルムを巻回する前の前記コアについて予め得られた前記異物検出画像に基づいて、前記異物が前記フィルム製品リールのフィルム部分に含まれるか否かを判定することが好ましい。このように、フィルム製品リールの異物検出画像を、フィルムを巻回する前のコアについて予め得られた異物検出画像と対比することにより、フィルム製品の性能に直接影響しないコアに含まれる異物を差し引いてフィルム部分に含まれる異物のみを検出すれば、異物がコアのみに含まれるフィルム製品リールを不良品と誤判定することがなくなるので、放射線透過検査における収率悪化を回避することができる。 In the radiation transmission inspection device for a film product reel according to the present invention, the foreign matter is the film product reel based on the foreign matter detection image previously obtained for the core before the image processing unit winds the film. It is preferable to determine whether or not it is contained in the film portion of. In this way, by comparing the foreign matter detection image of the film product reel with the foreign matter detection image obtained in advance for the core before winding the film, the foreign matter contained in the core that does not directly affect the performance of the film product is subtracted. If only the foreign matter contained in the film portion is detected, the film product reel in which the foreign matter is contained only in the core is not erroneously determined as a defective product, so that the deterioration of the yield in the radiation transmission inspection can be avoided.
 また、上記課題を解決するために、本発明に係るフィルム製品リールの製造方法は、長尺のフィルムをコアに巻回してフィルム製品リールを得る工程と、上記の放射線透過検査装置を用いて前記フィルム製品リールに含まれる異物の検査を行う異物検査工程とを含む方法からなる。このような本発明に係るフィルム製品リールの製造方法によれば、異物の混入が少ないフィルム製品リールを効率的に製造することが可能である。特にフィルムがポリオレフィン微多孔膜からなる場合には、フィルム製品リールがリチウムイオン二次電池の正極と負極との間に挿入されるバッテリーセパレータフィルムとして用いられる場合が多く、数十μm程度の微小な金属異物を検出することが求められるため、上記の放射線透過検査装置を用いた異物検査工程をフィルム製品リールの製造工程に含めることは有効である。 Further, in order to solve the above-mentioned problems, the method for manufacturing a film product reel according to the present invention includes a step of winding a long film around a core to obtain a film product reel, and the above-mentioned radiation transmission inspection apparatus. It comprises a method including a foreign matter inspection step for inspecting foreign matter contained in a film product reel. According to the method for manufacturing a film product reel according to the present invention, it is possible to efficiently manufacture a film product reel with less contamination of foreign matter. In particular, when the film is made of a microporous film of polyolefin, the film product reel is often used as a battery separator film inserted between the positive electrode and the negative electrode of a lithium ion secondary battery, and is as small as several tens of μm. Since it is required to detect metallic foreign matter, it is effective to include the foreign matter inspection step using the above-mentioned radiation transmission inspection device in the manufacturing process of the film product reel.
 また、上記課題を解決するために、本発明に係るフィルム製品リールの放射線透過検査方法は、コアの外周面に長尺のフィルムが複数周巻回されてなるフィルム製品リールの円周面に対し半径方向に放射線を透過させて得られた放射線検出結果から異物検出画像を生成する方法からなる。このような本発明に係るフィルム製品リールの放射線透過検査方法によれば、フィルム製品リールの円周面に対し半径方向に放射線を透過させるので、リール幅が増加しても高感度で異物を検出することが可能である。 Further, in order to solve the above problems, the radiation transmission inspection method for a film product reel according to the present invention is applied to the circumferential surface of a film product reel in which a long film is wound around the outer peripheral surface of the core. It consists of a method of generating a foreign matter detection image from a radiation detection result obtained by transmitting radiation in the radial direction. According to the radiation transmission inspection method for a film product reel according to the present invention, radiation is transmitted in the radial direction with respect to the circumferential surface of the film product reel, so that foreign matter can be detected with high sensitivity even if the reel width increases. It is possible to do.
 本発明によれば、リール幅が増加しても高感度で異物を検出することが可能なフィルム製品リールの放射線透過検査が可能となる。 According to the present invention, it is possible to perform a radiation transmission inspection of a film product reel capable of detecting foreign matter with high sensitivity even if the reel width is increased.
本発明の一実施態様に係るフィルム製品リールの放射線透過検査方法を説明するための模式図であり、(A)はリール端部の正面図、(B)はリール円周面の正面図、(C)はリールの斜視図である。It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on one Embodiment of this invention. C) is a perspective view of the reel. 本発明の他の実施態様に係るフィルム製品リールの放射線透過検査方法を説明するための模式図であり、(A)は図1とは異なるタイプの検出器を用いた場合のリールの斜視図、(B)は検出器の中央部と端部とでは投影倍率の差が生じることを示す模式図である。It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on other embodiment of this invention, (A) is the perspective view of the reel when the detector of the type different from FIG. 1 is used. (B) is a schematic diagram showing that a difference in projection magnification occurs between the central portion and the end portion of the detector. 図1の放射線透過検査方法により異物を検出する方法を説明するための模式図であり、(A)はリール回転中心軸とX線焦点位置が一致している場合を示し、(B)はリール回転中心軸とX線焦点位置がずれている場合を示している。It is a schematic diagram for demonstrating the method of detecting a foreign substance by the radiation transmission inspection method of FIG. The case where the rotation center axis and the X-ray focal position are deviated from each other is shown. 図1の放射線透過検査方法により異物混入深さを推定する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of estimating the foreign matter mixing depth by the radiation transmission inspection method of FIG. 本発明の一実施態様に係る放射線透過検査装置を示し、(A)正面図、(B)は左側面図である。The radiation transmission inspection apparatus which concerns on one Embodiment of this invention is shown, (A) front view, (B) is the left side view. 本発明の他の実施態様に係るフィルム製品リールの放射線透過検査方法を説明するための模式図である。It is a schematic diagram for demonstrating the radiation transmission inspection method of the film product reel which concerns on other embodiment of this invention.
 以下に、本発明の望ましい実施の形態を、図面を参照して説明する。 Hereinafter, desirable embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、本発明の一実施態様に係るフィルム製品リールの放射線透過検査方法を説明するための模式図であり、(A)はリール端部の正面図、(B)はリール円周面の正面図、(C)はリールの斜視図である。図1(A)において、コア2に複数周巻回されたフィルム3にX線を照射するにあたり、X線源4は円筒形状のコア2の回転中心軸上に配置される。照射X線5はフィルム3を透過してコア2外部に設けられたTDIカメラからなる検出器6で受光されるが、受光したX線の輝度の違いを検出して画像処理することにより異物が検出される。
(First Embodiment)
1A and 1B are schematic views for explaining a radiation transmission inspection method for a film product reel according to an embodiment of the present invention, where FIG. 1A is a front view of a reel end portion and FIG. 1B is a reel peripheral surface. The front view and (C) are perspective views of the reel. In FIG. 1A, when the film 3 wound around the core 2 is irradiated with X-rays, the X-ray source 4 is arranged on the rotation center axis of the cylindrical core 2. Irradiated X-rays 5 pass through the film 3 and are received by a detector 6 composed of a TDI camera provided outside the core 2. However, foreign matter is generated by detecting the difference in the brightness of the received X-rays and performing image processing. Detected.
 図1(B)は、リール円周面の正面図であり、図1(C)はリールの斜視図である。製品リール1をリール幅方向に移動させながらX線を照射して照射X線5を検出器6で受光することにより、製品リール1の幅全体にわたって異物を検出することができる。また製品リール1を移動させる代わりに、検出器6とX線源(図示略)の一対をリール幅方向に移動させても同様の効果が得られる。 FIG. 1B is a front view of the reel peripheral surface, and FIG. 1C is a perspective view of the reel. By irradiating X-rays while moving the product reel 1 in the reel width direction and receiving the irradiated X-rays 5 with the detector 6, foreign matter can be detected over the entire width of the product reel 1. Further, instead of moving the product reel 1, the same effect can be obtained by moving the pair of the detector 6 and the X-ray source (not shown) in the reel width direction.
 ここで、本実施形態において、検出器6としてTDIカメラを用いることによるメリットを、図2を用いて説明する。図2は、本発明の他の実施態様に係るフィルム製品リールの放射線透過検査方法を説明するための模式図であり、図1の検出器6(TDIカメラ)とは異なるタイプの検出器26(エリアカメラ)を用いたものである。図2(A)に示すように製品リールの側表面が曲面をなしているため、図2(B)に示すように検出器26(エリアカメラ)のリール円周方向中央部とリール円周方向端部とでは投影倍率(D/d=FID/FOD)の差が生じる。投影倍率が大きいほど、より小さな異物を検出することができ、投影倍率の差は、検出感度のばらつきとなる。従って、検出器としてはエリアカメラよりもラインカメラや、ラインカメラを流れ方向に複数並べ、積算し高感度化したTDIカメラを用いることで、製品リール全周に亘って一定の検出感度で検査することができる。ここで、dとは異物の実寸法、Dとは異物を投影した検出器上での寸法、FID(Focus to Image Distance)とは焦点~検出器距離を指し、FOD(Focus to Object Distance)は焦点~対象物距離を指す。 Here, in the present embodiment, the merit of using the TDI camera as the detector 6 will be described with reference to FIG. FIG. 2 is a schematic diagram for explaining a radiation transmission inspection method for a film product reel according to another embodiment of the present invention, and is a detector 26 of a type different from the detector 6 (TDI camera) of FIG. Area camera) is used. Since the side surface of the product reel has a curved surface as shown in FIG. 2 (A), the central portion of the detector 26 (area camera) in the reel circumferential direction and the reel circumferential direction as shown in FIG. 2 (B). There is a difference in projection magnification (D / d = FID / FOD) from the end. The larger the projection magnification, the smaller the foreign matter can be detected, and the difference in the projection magnification becomes the variation in the detection sensitivity. Therefore, by using a line camera rather than an area camera or a TDI camera in which a plurality of line cameras are arranged in the flow direction and integrated to increase the sensitivity, inspection is performed with a constant detection sensitivity over the entire circumference of the product reel. be able to. Here, d is the actual size of the foreign substance, D is the size on the detector that projects the foreign substance, FID (Focus to Image Distance) is the distance from the focal point to the detector, and FOD (Focus to Object Distance) is. Refers to the distance from the focal point to the object.
 図3は、図1の放射線透過検査方法により異物を検出する方法を説明するための模式図である。図3(A)においては、コア2の回転中心軸上にX線焦点16が配置されているので、曲面形状の検査サンプルである製品リール1をリール円周方向に回転させながら照射X線5を検出器6で受光することにより、TDIカメラにおける輝度を正常に積算することができる。これに対し図3(B)においては、コア2の回転中心軸とX線焦点16がずれて配置されているので、異物Bが正常に投影されず、TDIカメラにおける輝度を正常に積算することができない。ただしTDIカメラを用いた場合でも積算誤差が許容される場合や、ラインカメラ、エリアカメラのように輝度積算不要な検出器を用いた場合はこの限りではなく、以下の長所を踏まえた上で適宜X線焦点16の位置を変更してよい。 FIG. 3 is a schematic diagram for explaining a method of detecting a foreign substance by the radiation transmission inspection method of FIG. In FIG. 3A, since the X-ray focal point 16 is arranged on the rotation center axis of the core 2, the irradiation X-ray 5 is performed while rotating the product reel 1 which is a curved surface shape inspection sample in the reel circumferential direction. Is received by the detector 6, the brightness of the TDI camera can be integrated normally. On the other hand, in FIG. 3B, since the rotation center axis of the core 2 and the X-ray focal point 16 are arranged so as to be offset from each other, the foreign matter B is not projected normally, and the brightness in the TDI camera is normally integrated. I can't. However, this does not apply when the integration error is allowed even when using a TDI camera, or when a detector that does not require luminance integration such as a line camera or area camera is used, and it is appropriate based on the following advantages. The position of the X-ray focal point 16 may be changed.
(X線焦点16を、回転中心軸から検出器側に近づけた場合のメリット)
 前述の通り、投影倍率(検出感度)を大きくする方法としては、FIDを大きくするか、FODを小さくすることが挙げられる。即ち、X線焦点16を回転中心軸から検出器側に近づけることで、FIDを維持したまま投影倍率を大きくすることができる。
(Advantages when the X-ray focus 16 is brought closer to the detector side from the rotation center axis)
As described above, as a method of increasing the projection magnification (detection sensitivity), there is an increase in FID or a decrease in FOD. That is, by moving the X-ray focal point 16 closer to the detector side from the rotation center axis, the projection magnification can be increased while maintaining the FID.
 (X線焦点16を回転中心軸から遠ざけた場合のメリット)
 コアの肉厚をt、コア内面までのFODをFOD(内)、リール外周面までのFODをFOD(外)とした場合、コア内面上に存在する異物に対する投影倍率はFID/FOD(内)、リール外周面上に存在する異物に対する投影倍率はFID/FOD(外)=FID/(FOD(内)+t)となる。両者の比をとると(FID/FOD(内))/{FID/(FOD(内)+t)}=1+t/FOD(内)となり、これが1に近いほど検出感度ばらつきが小さく好ましい。即ち、FOD(内)を大きくする(X線焦点16を回転中心軸から遠ざける)ことで、検出感度ばらつきを小さくすることができる。
(Advantages when the X-ray focus 16 is moved away from the rotation center axis)
When the wall thickness of the core is t, the FOD to the inner surface of the core is FOD (inside), and the FOD to the outer peripheral surface of the reel is FOD (outside), the projection magnification for foreign matter existing on the inner surface of the core is FID / FOD (inside). The projection magnification for foreign matter existing on the outer peripheral surface of the reel is FID / FOD (outside) = FID / (FOD (inside) + t). The ratio of the two is (FID / FOD (inside)) / {FID / (FOD (inside) + t)} = 1 + t / FOD (inside), and the closer this is to 1, the smaller the variation in detection sensitivity is, which is preferable. That is, by increasing the FOD (inside) (moving the X-ray focal point 16 away from the rotation center axis), the variation in detection sensitivity can be reduced.
 図4は、図1の放射線透過検査方法により異物混入深さを推定する方法を説明するための模式図である。図3(B)および(C)に示したように、製品リール1(または検出器6とX線源4の一対)をリール幅方向に移動させながらX線を照射して照射X線5を検出器6で受光すると、図4に示すように一つの異物が異物検出画像上で移動し軌跡を描く。製品リールの変位(Δx)と異物検出画像上の異物の変位(x-x)の関係を読み取って数式1を用いた幾何学的計算をすることにより、FIDおよびFODを用いて異物混入深さ(z)を算出することができる。 FIG. 4 is a schematic diagram for explaining a method of estimating the foreign matter mixing depth by the radiation transmission inspection method of FIG. As shown in FIGS. 3B and 3C, irradiation X-rays 5 are emitted while moving the product reel 1 (or a pair of the detector 6 and the X-ray source 4) in the reel width direction. When the light is received by the detector 6, one foreign matter moves on the foreign matter detection image and draws a trajectory as shown in FIG. Foreign matter is mixed in using FID and FOD by reading the relationship between the displacement of the product reel (Δx) and the displacement of foreign matter on the foreign matter detection image (x 1 − x 2 ) and performing a geometric calculation using Equation 1. The depth (z) can be calculated.
(数式1) z=Δx×FID/(x-x)-FOD (Formula 1) z = Δx × FID / (x 1 − x 2 ) − FOD
 図5は、本発明の一実施態様に係る放射線透過検査装置を示し、(A)正面図、(B)は左側面図である。放射線透過検査装置11は、フィルム3がコア2に巻回されてなる製品リール1を、コア受け12を介して載置するための載置台13が設けられている。 FIG. 5 shows a radiation transmission inspection device according to an embodiment of the present invention, (A) is a front view, and (B) is a left side view. The radiation transmission inspection device 11 is provided with a mounting table 13 for mounting the product reel 1 in which the film 3 is wound around the core 2 via the core receiver 12.
 検査を開始するにあたっては、まず載置台13を、幅方向移動機構14を用いて製品リール1の幅方向に移動させることにより、X線源4を固定する線源固定フレーム15をコア2の内側空洞部に挿入させる。移動先については、あらかじめ定めた検査開始位置まで移動させることもできるが、照射X線5と検出器6によって検知されたフィルム3の端部(エッジ)まで移動させたり、別途に設置した別のセンサで検知されたフィルム3の端部まで移動させてから検査を開始してもよい。また、載置台13を移動させる代わりに、固定した載置台13に対してX線源4と検出器6の一対を幅方向に移動させてもよい。 To start the inspection, first, the mounting table 13 is moved in the width direction of the product reel 1 by using the width direction moving mechanism 14, so that the radiation source fixing frame 15 for fixing the X-ray source 4 is inside the core 2. Insert it into the cavity. The destination can be moved to a predetermined inspection start position, but it can be moved to the end (edge) of the film 3 detected by the irradiation X-ray 5 and the detector 6, or another separately installed. The inspection may be started after moving to the end of the film 3 detected by the sensor. Further, instead of moving the mounting table 13, the pair of the X-ray source 4 and the detector 6 may be moved in the width direction with respect to the fixed mounting table 13.
 次に、照射X線5のX線焦点16がコア2の回転中心軸上に配置されるようにX線を照射した状態でコア受け12を回転させることにより製品リール1を回転させ、検出器6が連続的に検出したデータを画像処理して異物検出画像を生成する。コアを一定速度で回転させるために、コア受け材質はコアと摩擦の大きいものが好ましく、例えばゴムなどが挙げられる。また材質以外の対策として、コア受けとコア表面それぞれに凹凸加工を施し、噛み合わせることで回転させてもよい。コア2には回転位置マーカー17が設けられているため、1回転ごとに回転位置センサ18で検出される回転位置マーカー17を手掛かりにして1周分の異物検出画像を得ることができる。また、複数周回分の異物検出画像を平均化すれば画像ノイズを抑制することができる。また、検出器6としてラインカメラまたはTDIカメラを用いる場合には、歪みのない画像を得るために、カメラのスキャン速度とコア受け12の回転速度を一致させることが好ましい。このとき、回転速度が変動した場合に備えてコア受け12またはコア2の回転速度をエンコーダ等の速度計で測定し、カメラのスキャン速度と同期させてもよい。なお、照射X線5の照射幅は検出器より広範囲であってもよい。 Next, the product reel 1 is rotated by rotating the core receiver 12 in a state of irradiating X-rays so that the X-ray focus 16 of the irradiated X-rays 5 is arranged on the rotation center axis of the core 2, and the detector is detected. The data continuously detected by 6 is image-processed to generate a foreign matter detection image. In order to rotate the core at a constant speed, the core receiving material preferably has a large friction with the core, and examples thereof include rubber. Further, as a measure other than the material, the core receiver and the core surface may be subjected to uneven processing and then rotated by engaging with each other. Since the rotation position marker 17 is provided on the core 2, it is possible to obtain a foreign matter detection image for one round by using the rotation position marker 17 detected by the rotation position sensor 18 for each rotation as a clue. Further, image noise can be suppressed by averaging the foreign matter detection images for a plurality of laps. When a line camera or a TDI camera is used as the detector 6, it is preferable to match the scan speed of the camera with the rotation speed of the core receiver 12 in order to obtain a distortion-free image. At this time, the rotation speed of the core receiver 12 or the core 2 may be measured by a speedometer such as an encoder and synchronized with the scan speed of the camera in case the rotation speed fluctuates. The irradiation width of the irradiation X-ray 5 may be wider than that of the detector.
 次に、幅方向移動機構14を用いて載置台13をあらかじめ定められた移動量だけ幅方向に移動させてから、再び異物検出画像を生成する。これを製品リール1の全幅に渡って繰り返すことにより、製品リール1全体の異物検出画像を得ることができる。なお、製品リール1またはX線源4と検出器6の一対を幅方向に移動させる前後の異物検出画像に基づいて異物が製品リール1のフィルム3部分に含まれるか否かを判定する、いわゆるステレオ撮像による検査を行う場合には、1回あたりの載置台13の移動量を1周分の異物検出画像幅の半分未満とすることが好ましい。また、載置台13の移動時には製品リール1の回転を止めてもよいし、製品リール1を回転させたままで載置台13を移動させてもよい。 Next, the mounting table 13 is moved in the width direction by a predetermined movement amount using the width direction movement mechanism 14, and then the foreign matter detection image is generated again. By repeating this over the entire width of the product reel 1, a foreign matter detection image of the entire product reel 1 can be obtained. It should be noted that it is determined whether or not the foreign matter is contained in the film 3 portion of the product reel 1 based on the foreign matter detection images before and after moving the product reel 1 or the pair of the X-ray source 4 and the detector 6 in the width direction, so-called. When performing an inspection by stereo imaging, it is preferable that the amount of movement of the mounting table 13 at one time is less than half of the foreign matter detection image width for one round. Further, when the mounting table 13 is moved, the rotation of the product reel 1 may be stopped, or the mounting table 13 may be moved while the product reel 1 is being rotated.
 製品リール1全体の異物検出画像が得られたら、X線の照射を停止し、製品リール1の回転を停止し、線源固定フレーム15がコア2から露出する位置まで載置台13を幅方向に移動させて製品リール1をコア受け12から取り出す。 When the foreign matter detection image of the entire product reel 1 is obtained, the irradiation of X-rays is stopped, the rotation of the product reel 1 is stopped, and the mounting table 13 is moved in the width direction to the position where the radiation source fixing frame 15 is exposed from the core 2. Move the product reel 1 out of the core receiver 12.
 (第2の実施形態)
 図1において、検出器6としてエリアカメラを用い、その他は同一とする。エリアカメラは、TDIカメラやラインカメラとは異なり、静止状態で撮像するため製品リール1の回転速度を測定または制御する必要がなく、製品リール1の特定の幅位置において全周検査するフローとしては、製品リール1をθ回転→静止→撮像→製品リール1をθ回転→・・・となる。ここで、θは次視野撮像時の製品リール1の回転角度である。またエリアカメラを使用した場合は、X線焦点16の位置はコア2の回転中心軸上からずらすことが好ましい。これにより、全周検査する際に同一異物を複数視野で検出した場合において、異物混入位置を推定することができる。この原理について図6を用いて説明する。
(Second embodiment)
In FIG. 1, an area camera is used as the detector 6, and the others are the same. Unlike the TDI camera and the line camera, the area camera does not need to measure or control the rotation speed of the product reel 1 because it captures images in a stationary state, and as a flow for inspecting the entire circumference at a specific width position of the product reel 1. , The product reel 1 is rotated by θ → stationary → imaging → the product reel 1 is rotated by θ → ... Here, θ is the rotation angle of the product reel 1 at the time of imaging the next field of view. When an area camera is used, it is preferable that the position of the X-ray focal point 16 is displaced from the rotation center axis of the core 2. As a result, when the same foreign matter is detected in a plurality of visual fields during the all-around inspection, the foreign matter mixing position can be estimated. This principle will be described with reference to FIG.
 図6は製品リール1を、原点Oを中心として円周方向に回転させる前後の2視野において、同一異物を検出した場合の模式図を示している。まず、線分sにおいて、X線焦点~異物~検出器上の異物投影位置の3点が同一線上にあることから数式2が成立する。
(数式2) (FID-b)/(A-a)=(y-b)/(x-a)
FIG. 6 shows a schematic diagram when the same foreign matter is detected in two fields of view before and after rotating the product reel 1 in the circumferential direction around the origin O. First, in the line segment s 1 , the equation 2 is established because the three points of the X-ray focus, the foreign matter, and the foreign matter projection position on the detector are on the same line.
(Formula 2) (FID-b) / (A1 - a) = (y1 - b) / (x1 - a)
 同様に、線分sにおいて、数式3が成立する。
(数式3) (FID-b)/(A-a)=(y-b)/(x-a)
Similarly, in the line segment s 2 , the mathematical formula 3 holds.
(Formula 3) (FID-b) / ( A2 -a) = (y2 - b) / (x2 - a)
 次に、回転後の異物混入位置は回転前の異物混入位置をθ回転させた位置であることから数式4および数式5が成立する。
(数式4) x=x×cosθ-y×sinθ
(数式5) y=x×sinθ+y×cosθ
Next, since the position where the foreign matter is mixed after the rotation is the position where the position where the foreign matter is mixed before the rotation is rotated by θ, the formulas 4 and 5 are established.
(Formula 4) x 2 = x 1 x cosθ-y 1 x sinθ
(Formula 5) y 2 = x 1 x sin θ + y 1 x cos θ
 数式2~5の連立方程式を解くと、x、y、x、yが求められる。これらの座標から、異物混入位置(x、y)の極座標(r、φ)は、r=(x +y 1/2、φ=arctan(y/x)と求めることができる。このとき、rがコア2の外径よりも小さいか大きいかで、コア内部の異物か、フィルム中の異物かを判断することができる。 Solving the simultaneous equations of equations 2 to 5 gives x 1 , y 1 , x 2 , and y 2 . From these coordinates, the polar coordinates (r, φ) of the foreign matter mixing position (x 1 , y 1 ) are calculated as r = (x 1 2 + y 1 2 ) 1/2 , φ = arctan (y 1 / x 1 ). be able to. At this time, it is possible to determine whether the foreign matter inside the core or the foreign matter in the film is based on whether r is smaller or larger than the outer diameter of the core 2.
 ここで、X線焦点16がコア2の回転中心軸上にあった場合(a=b=0の場合)、異物混入位置半径に依らず検出器上の投影位置は同一となってしまい、数式2~5で位置を求めることができない。従って、本実施形態においてX線焦点16はコア2の回転中心軸上からずらすことが好ましい。ただしいずれの場合でも、第1の実施形態と同様に、幅方向の移動前後の画像に基づき数式1を用いて異物混入位置を求めることができる。 Here, when the X-ray focal point 16 is on the rotation center axis of the core 2 (when a = b = 0), the projected position on the detector becomes the same regardless of the foreign matter mixing position radius, and the mathematical formula The position cannot be obtained by 2 to 5. Therefore, in the present embodiment, it is preferable that the X-ray focal point 16 is displaced from the rotation center axis of the core 2. However, in any case, as in the first embodiment, the position where the foreign matter is mixed can be obtained by using the mathematical formula 1 based on the images before and after the movement in the width direction.
 異物混入位置が求められれば、投影倍率の定義式からd=D×(r/FID)により実寸法が求められ、図2で示したエリアカメラ使用時における円周方向の感度ばらつきを補正することができる。このとき、それぞれの異物混入位置(x、y)、(x、y)それぞれにおける検出器上での寸法D、Dと、X線焦点~検出器間距離FID、FIDを用いてd、dを算出し平均値を算出することで、計算誤差を抑制することができる。ここでFID、FIDとは、線分s、sのそれぞれの長さである。 If the position where foreign matter is mixed is obtained, the actual size is obtained by d = D × (r / FID) from the definition formula of the projection magnification, and the sensitivity variation in the circumferential direction when using the area camera shown in FIG. 2 is corrected. Can be done. At this time, the dimensions D 1 and D 2 on the detector at the respective foreign matter mixing positions (x 1 , y 1 ) and (x 2 , y 2 ), and the distance between the X-ray focus and the detector FID 1 and FID. By calculating d 1 and d 2 using 2 and calculating the average value, the calculation error can be suppressed. Here, FID 1 and FID 2 are the lengths of the line segments s 1 and s 2 , respectively.
 本実施形態においては、円周方向の複数視野において同一異物を検出し、かつ検査時間を長大化させないように、θを適宜設定する。θが大きいと一つの視野でしか検出できない可能性があり、θが小さいと検査時間を要してしまう。ただし、θは全周に亘って一定である必要はなく、通常時は次視野とのオーバーラップを最小限としたθとし、異物検出時のみ、一時的にθを小さくして複数視野で検出させてもよい。また上述は2視野で検出した場合を説明したが、3視野以上で検出しても同様に求めることができ、算出値を平均化する等により、さらに誤差を抑制することができる。 In this embodiment, θ is appropriately set so that the same foreign matter is detected in a plurality of visual fields in the circumferential direction and the inspection time is not lengthened. If θ is large, it may be possible to detect only one field of view, and if θ is small, inspection time will be required. However, θ does not have to be constant over the entire circumference. Normally, θ is set to minimize the overlap with the next visual field, and only when foreign matter is detected, θ is temporarily reduced to detect in multiple visual fields. You may let me. Further, although the case of detection in two visual fields has been described above, it can be obtained in the same manner even if it is detected in three or more visual fields, and the error can be further suppressed by averaging the calculated values and the like.
 本発明の検査方法を適用する製造工程は、ポリオレフィン製バッテリーセパレータフィルムに限られず、コーティングセパレータ、不織布製バッテリーセパレータ、コンデンサ用フィルム、MLCC離型用フィルム、高精度ろ過用途として用いられるポリオレフィン微多孔フィルム等の製造工程にも好適である。 The manufacturing process to which the inspection method of the present invention is applied is not limited to the polyolefin battery separator film, but is not limited to a coating separator, a non-woven battery separator, a capacitor film, an MLCC mold release film, and a polyolefin microporous film used for high-precision filtration. It is also suitable for manufacturing processes such as.
1 製品リール
2 コア
3 フィルム
4 X線源
5 照射X線
6、26 検出器
11 放射線透過検査装置
12 コア受け
13 載置台
14 幅方向移動機構
15 線源固定フレーム
16 X線焦点
17 回転位置マーカー
18 回転位置センサ
FID 焦点~検出器距離
FOD 焦点~対象物距離
 
1 Product reel 2 Core 3 Film 4 X-ray source 5 Irradiation X-ray 6, 26 Detector 11 Radiation transmission inspection device 12 Core receiver 13 Mounting stand 14 Width direction movement mechanism 15 Radiation source fixed frame 16 X-ray focus 17 Rotation position marker 18 Rotational position sensor FID focus-detector distance FOD focus-object distance

Claims (12)

  1.  コアの外周面に長尺のフィルムが複数周巻回されてなるフィルム製品リールに含まれる異物の検査を行う放射線透過検査装置であって、
     前記フィルム製品リールが置かれる載置台と、
     前記コアの内側と前記フィルム製品リールの外周面との間にて、前記フィルム製品リールの半径方向に放射線を透過させて受光する放射線源および検出器の一対と、
     前記検出器で得られた放射線検出結果から異物検出画像を生成する画像処理部と、
     を有する、フィルム製品リールの放射線透過検査装置。
    A radiation transmission inspection device that inspects foreign matter contained in film product reels in which a long film is wound around the outer peripheral surface of the core.
    The mounting table on which the film product reel is placed and
    A pair of radiation sources and detectors that transmit and receive radiation in the radial direction of the film product reel between the inside of the core and the outer peripheral surface of the film product reel.
    An image processing unit that generates a foreign matter detection image from the radiation detection result obtained by the detector, and
    A radiation transmission inspection device for film product reels.
  2.  前記放射線の焦点が前記コアの内側空洞部に配置される、請求項1に記載の放射線透過検査装置。 The radiation transmission inspection device according to claim 1, wherein the focus of the radiation is arranged in the inner cavity of the core.
  3.  前記載置台は、前記フィルム製品リールを円周方向に回転させる機能を有する、請求項1または2に記載の放射線透過検査装置。 The radiation transmission inspection device according to claim 1 or 2, wherein the stand described above has a function of rotating the film product reel in the circumferential direction.
  4.  前記放射線源と前記検出器の一対を、前記フィルム製品リールの円周方向に旋回させる機能を有する、請求項1~3のいずれかに記載の放射線透過検査装置。 The radiation transmission inspection device according to any one of claims 1 to 3, which has a function of rotating the pair of the radiation source and the detector in the circumferential direction of the film product reel.
  5.  前記画像処理部が、前記フィルム製品リールまたは前記放射線源と前記検出器の一対を円周方向に移動させる前後の前記異物検出画像に基づいて、前記異物が前記フィルム製品リールのフィルム部分に含まれるか否かを判定する、請求項1~4のいずれかに記載の放射線透過検査装置。 The foreign matter is contained in the film portion of the film product reel based on the foreign matter detection image before and after the image processing unit moves the film product reel or the pair of the radiation source and the detector in the circumferential direction. The radiation transmission inspection device according to any one of claims 1 to 4, which determines whether or not.
  6.  前記フィルム製品リールを幅方向に移動させる機能を有する、請求項1~5のいずれかに記載の放射線透過検査装置。 The radiation transmission inspection device according to any one of claims 1 to 5, which has a function of moving the film product reel in the width direction.
  7.  前記放射線源と前記検出器の一対を、前記フィルム製品リールの幅方向に移動させる機能を有する、請求項1~6のいずれかに記載の放射線透過検査装置。 The radiation transmission inspection device according to any one of claims 1 to 6, which has a function of moving the pair of the radiation source and the detector in the width direction of the film product reel.
  8.  前記画像処理部が、前記フィルム製品リールまたは前記放射線源と前記検出器の一対を幅方向に移動させる前後の前記異物検出画像に基づいて、前記異物が前記フィルム製品リールのフィルム部分に含まれるか否かを判定する、請求項6または7に記載の放射線透過検査装置。 Whether the foreign matter is contained in the film portion of the film product reel based on the foreign matter detection image before and after the image processing unit moves the film product reel or the pair of the radiation source and the detector in the width direction. The radiation transmission inspection device according to claim 6 or 7, which determines whether or not.
  9.  前記画像処理部が、前記フィルムを巻回する前の前記コアについて予め得られた前記異物検出画像に基づいて、前記異物が前記フィルム製品リールのフィルム部分に含まれるか否かを判定する、請求項1~8のいずれかに記載の放射線透過検査装置。 The image processing unit determines whether or not the foreign matter is contained in the film portion of the film product reel based on the foreign matter detection image obtained in advance for the core before winding the film. Item 6. The radiation transmission inspection apparatus according to any one of Items 1 to 8.
  10.  長尺のフィルムをコアに複数周巻回してフィルム製品リールを得る工程と、請求項1~9のいずれかに記載の放射線透過検査装置を用いて前記フィルム製品リールに含まれる異物の検査を行う異物検査工程とを含む、フィルム製品リールの製造方法。 A step of winding a long film around a core a plurality of times to obtain a film product reel and an inspection of foreign matter contained in the film product reel using the radiation transmission inspection device according to any one of claims 1 to 9. A method for manufacturing a film product reel, including a foreign matter inspection process.
  11.  前記フィルムがポリオレフィン微多孔膜からなる、請求項10に記載のフィルム製品リールの製造方法。 The method for manufacturing a film product reel according to claim 10, wherein the film is made of a microporous polyolefin film.
  12.  コアの外周面に長尺のフィルムが複数周巻回されてなるフィルム製品リールに対し、前記コアの内側と前記フィルム製品リールの外周面との間にて、前記フィルム製品リールの半径方向に放射線を透過させて得られた放射線検出結果から異物検出画像を生成する、フィルム製品リールの放射線透過検査方法。 Radiation in the radial direction of the film product reel between the inside of the core and the outer peripheral surface of the film product reel with respect to the film product reel in which a long film is wound around the outer peripheral surface of the core. A radiation transmission inspection method for film product reels, which generates a foreign matter detection image from the radiation detection results obtained by transmitting the film.
PCT/JP2021/015162 2020-08-26 2021-04-12 Radiation transmission inspection device for film product reel, film product reel manufacturing method using same, and film product reel radiation transmission method WO2022044418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520438A JPWO2022044418A1 (en) 2020-08-26 2021-04-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-142728 2020-08-26
JP2020142728 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022044418A1 true WO2022044418A1 (en) 2022-03-03

Family

ID=80354918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015162 WO2022044418A1 (en) 2020-08-26 2021-04-12 Radiation transmission inspection device for film product reel, film product reel manufacturing method using same, and film product reel radiation transmission method

Country Status (2)

Country Link
JP (1) JPWO2022044418A1 (en)
WO (1) WO2022044418A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308456A (en) * 2005-04-28 2006-11-09 Yokohama Rubber Co Ltd:The Nondestructive tire inspection device
JP2006308316A (en) * 2005-04-26 2006-11-09 Bridgestone Corp Method and device for observing tire internal structure
JP2019049544A (en) * 2017-09-08 2019-03-28 住友化学株式会社 Inspection device and inspection method
WO2019069686A1 (en) * 2017-10-05 2019-04-11 東レ株式会社 Structure inspection device
WO2019176903A1 (en) * 2018-03-15 2019-09-19 東レ株式会社 Foreign body inspecting method, inspecting device, film roll, and method for manufacturing film roll
WO2020004435A1 (en) * 2018-06-27 2020-01-02 東レ株式会社 Radiation transmission inspection method and device, and method for manufacturing microporous film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308316A (en) * 2005-04-26 2006-11-09 Bridgestone Corp Method and device for observing tire internal structure
JP2006308456A (en) * 2005-04-28 2006-11-09 Yokohama Rubber Co Ltd:The Nondestructive tire inspection device
JP2019049544A (en) * 2017-09-08 2019-03-28 住友化学株式会社 Inspection device and inspection method
WO2019069686A1 (en) * 2017-10-05 2019-04-11 東レ株式会社 Structure inspection device
WO2019176903A1 (en) * 2018-03-15 2019-09-19 東レ株式会社 Foreign body inspecting method, inspecting device, film roll, and method for manufacturing film roll
WO2020004435A1 (en) * 2018-06-27 2020-01-02 東レ株式会社 Radiation transmission inspection method and device, and method for manufacturing microporous film

Also Published As

Publication number Publication date
JPWO2022044418A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
CN111684269B (en) Foreign matter inspection method, inspection device, film roll, and film roll manufacturing method
JP6266574B2 (en) X-ray inspection method and X-ray inspection apparatus
US20210181125A1 (en) Radiation transmission inspection method and device, and method of manufacturing microporous film
KR102413873B1 (en) Defect inspection device, defect inspection method, and method for producing separator roll
KR102489513B1 (en) Defect inspection device, defect inspection method, method for producing separator roll, and separator roll
CN108693199B (en) Inspection device, inspection method, and method for manufacturing film roll
JPWO2019176903A5 (en)
EP1703274A1 (en) Defect inspecting method
WO2022044418A1 (en) Radiation transmission inspection device for film product reel, film product reel manufacturing method using same, and film product reel radiation transmission method
WO2003085391A1 (en) Method and device for x-ray inspection of tire
JP2004156975A (en) Lead position detecting method and detector
JP5674581B2 (en) Inspection apparatus and inspection method
KR102257982B1 (en) A Method for Investigating a Cylindrical Battery
JP2838248B2 (en) X-ray inspection method for power cable
JP7051847B2 (en) X-ray in-line inspection method and equipment
JP3290927B2 (en) Winding inspection device
JP3202311B2 (en) Defect inspection method for bearing parts
JP5094065B2 (en) Image forming apparatus provided with inspection apparatus using terahertz wave
JPWO2022044418A5 (en)
JP2004347542A (en) Sheet thickness measurement method and sheet thickness measurement device
JP2022024920A (en) Inspection device and control device, control method and control program therefor
JP2023047534A (en) Radiation inspection device
CN112666187A (en) Battery inspection method
JP2005337742A (en) Appearance inspection method of cylindrical body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021520438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860850

Country of ref document: EP

Kind code of ref document: A1