WO2022044280A1 - Laser beam generation device and laser machining device - Google Patents

Laser beam generation device and laser machining device Download PDF

Info

Publication number
WO2022044280A1
WO2022044280A1 PCT/JP2020/032693 JP2020032693W WO2022044280A1 WO 2022044280 A1 WO2022044280 A1 WO 2022044280A1 JP 2020032693 W JP2020032693 W JP 2020032693W WO 2022044280 A1 WO2022044280 A1 WO 2022044280A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
circuit
inductance value
node
current
Prior art date
Application number
PCT/JP2020/032693
Other languages
French (fr)
Japanese (ja)
Inventor
周治 若生
弘 五十嵐
真吾 津田
義一 角田
秀康 町井
勇一 五十嵐
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/032693 priority Critical patent/WO2022044280A1/en
Priority to JP2022545216A priority patent/JP7399302B2/en
Publication of WO2022044280A1 publication Critical patent/WO2022044280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters

Definitions

  • This disclosure relates to a laser light generator and a laser processing device.
  • gas laser devices such as CO2 lasers or solid-state laser devices such as YAG (Yttrium Aluminum Garnet) lasers that are excited by lamps have been used in the past.
  • the LD is a current drive type element
  • a constant current source that supplies the LD with a constant drive current required to obtain a desired laser light output. It is common.
  • a reactor is generally used to obtain a stable laser beam output. The response speed of the output current slows down due to the storage of electromagnetic energy in the reactor. As a result, there is a problem that a desired laser light output cannot be obtained even if an attempt is made to output a laser according to the processing conditions.
  • the LD drive current can be started up at a high speed up to a set current value. It is characterized by that.
  • This laser drive power supply includes a constant current source circuit for supplying a desired constant current to the load circuit, a secondary smoothing reactor connected between the constant current source circuit and the LD, and a constant current source circuit.
  • the first switching element connected in series with the secondary smoothing reactor and connected in parallel with the LD, and the first switching element kept in the ON state while the LD is not made to emit light, and the LD is made to emit light. It has an LD drive control unit that holds the first switching element in the off state when the current is turned off.
  • the switching type LD drive power supply device described in Patent Document 1 can raise the LD drive current to a certain set current value at high speed, but cannot change the set current value.
  • the inductance value of the smoothing reactor is set to a large value in order to alleviate the ripple current when outputting a current drive waveform having a high pulse drive frequency.
  • the switching element connected in parallel to the LD module is turned on, and the energy stored in the smoothing reactor returns the closed circuit between the smoothing reactor and the switching element.
  • the inductance value of the smoothing reactor is large, it takes time to change to the desired current value and a high peak is achieved. There is a problem that it is difficult to obtain the current output to have.
  • an object of the present disclosure is to provide a laser beam generator and a laser processing apparatus capable of stabilizing the output of a laser beam at high speed and outputting a laser beam having a high peak.
  • the laser light generator of the present disclosure includes a laser diode, a power supply that supplies a current, a reactor circuit that is connected to the power supply and has a variable inductance value, and whether or not to supply the current output from the reactor circuit to the laser diode. It is provided with a current path switching circuit configured to switch between the two, and a control unit that controls the current path switching circuit and sets the inductance value of the reactor circuit.
  • the output of the laser beam can be stabilized at high speed, and the laser beam having a high peak can be output.
  • FIG. (A) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 10 ⁇ H.
  • (B) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 1 ⁇ H.
  • (C) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 0.1 ⁇ H. It is a figure which shows the structure of the reactor circuit 30c of Embodiment 2. It is a figure which shows the structure of the reactor circuit 30d of Embodiment 3. It is a figure which shows the structure of the reactor circuit 30e of Embodiment 4. It is a figure which shows the structure of the laser light generator 200a of Embodiment 5. It is a figure which shows the structure of the laser light generator 200b of Embodiment 6.
  • (A) and (b) are diagrams for explaining the first method of mechanically changing the inductance value of a reactor.
  • (C) and (d) are diagrams for explaining a second method of mechanically changing the inductance value of the reactor.
  • (E) and (f) are diagrams for explaining a third method of mechanically changing the inductance value of the reactor. It is a figure which shows the change of the inductance value with respect to the length of an air core coil. It is a figure which shows the structure of the laser processing apparatus of Embodiment 8. It is a figure which shows the structure of the control device 13 when the control device 13 is realized by software and general-purpose hardware.
  • FIG. 1 is a diagram showing the configuration of the laser light generator 200 of the first embodiment.
  • the laser light generator 200 includes an LD drive power supply device 100, an LD 20, a processing head 53, and a condensing unit 52.
  • the LD drive power supply device may be simply referred to as a “power supply device”.
  • the LD20 is arranged between the node ND6 and the node ND4 (ground power supply or reference power supply of the LD20).
  • the LD 20 emits a laser by a current supplied from the LD drive power supply device 100.
  • LD20 includes at least one LD alone.
  • the plurality of LD units are connected in series in the forward direction, connected in parallel, or connected in series and in parallel between the anode terminal and the cathode terminal of the LD 20.
  • at least one LD20 is used for high power laser devices.
  • the light collecting unit 52 collects the laser light of the LD 20 and transmits it to the processing head 53.
  • an optical fiber, a prism, a mirror, an optical coupling element, or an optical amplifier can be used as the light collecting unit 52.
  • the power supply device 100 includes a power supply 10, a smoothing circuit 104, a current path switching circuit 105, and a control device 13.
  • the power supply 10 converts the AC power supplied from the AC power supply 400 into DC power and supplies a constant current to the LD 20.
  • the AC power supply 400 supplies, for example, an AC voltage of 100V to 480V to the power supply 10.
  • the AC power supply 400 is, for example, a three-phase AC power supply or a single-phase AC power supply.
  • the AC power source 400 is, for example, a commercial AC power source or a private power generator.
  • the current detector 11 is arranged between the node ND5 and the node ND6, or between the node ND8 and the node ND4.
  • the current detector 11 detects the current flowing from the power supply device 100 to the LD 20.
  • a series resistance element shunt resistance element
  • a CT Current Transformer
  • a Hall current sensor or the like can be used.
  • an IC Integrated Circuit
  • the power supply 10 includes a rectifying unit 101, a conversion unit 102, and a rectifying circuit 103.
  • the rectifying unit 101 rectifies the AC power supplied from the AC power supply 400.
  • the rectifying unit 101 includes a rectifying circuit 1 and a smoothing capacitor 2.
  • the rectifier circuit 1 is arranged between the node ND1 and the node ND2.
  • the rectifier circuit 1 rectifies the AC power supplied from the AC power supply 400.
  • the rectifying unit 101 may be a power factor improving circuit capable of improving the power factor.
  • the smoothing capacitor 2 is arranged between the node ND1 and the node ND2.
  • the smoothing capacitor 2 is connected in parallel to the rectifier circuit 1.
  • the conversion unit 102 converts the power output from the rectifying unit 101 into AC power by operating the full bridge inverter.
  • the conversion unit 102 is an isolated power conversion unit.
  • the conversion unit 102 includes a voltage conversion circuit 3 and a transformer 4.
  • the voltage conversion circuit 3 is arranged between the node ND1 and the node ND2.
  • the voltage conversion circuit 3 converts the voltage rectified by the rectifying unit 101 into an AC voltage based on the drive signal DR output from the control device 13.
  • the voltage conversion circuit 3 is composed of, for example, a full bridge circuit. Instead of the full bridge circuit, the voltage conversion circuit 3 is a general DC-DC converter system such as a forward system, a flyback system, a push-pull system, or a half-bridge system, depending on the amount of conversion power.
  • the circuit may be of the type that optimizes efficiency and cost.
  • the voltage conversion circuit 3 may be a composite form of these circuit methods.
  • the conversion unit 102 may include both an isolated power conversion circuit and a non-isolated power conversion circuit such as a chopper system, and may use them in combination. When used in combination, it may be easier to adjust the boost ratio.
  • the voltage conversion circuit 3 includes a plurality of switching elements.
  • the transformer 4 converts the AC voltage converted by the voltage conversion circuit 3 into a voltage having a specific value corresponding to the winding ratio. The output current of the transformer 4 is adjusted by the ratio of the on-time to the switching cycle of the plurality of switching elements constituting the voltage conversion circuit 3.
  • the rectifier circuit 103 is arranged between the node ND3 (first output terminal of the power supply 10) and the node ND7 (second output terminal of the power supply 10).
  • the rectifier circuit 103 rectifies the AC voltage output from the conversion unit 102.
  • the rectifier circuit 103 is, for example, a full-wave rectifier circuit composed of four diodes.
  • the configuration of the rectifier circuit 103 is not limited to that shown in FIG.
  • the rectifier circuit 103 may be configured by a switching element capable of reducing loss instead of the diode.
  • a non-isolated DC-DC converter such as a chopper circuit system may be used for the conversion unit 102 and the rectifier circuit 103.
  • the non-isolated DC-DC converter can realize high-efficiency conversion at low cost as compared with the isolated DC-DC converter.
  • the smoothing circuit 104 smoothes the voltage rectified by the rectifier circuit 103.
  • the smoothing circuit 104 includes a reactor circuit 30 and a smoothing capacitor 6.
  • the reactor circuit 30 is arranged between the node ND3 (first output terminal of the power supply 10) and the node ND5 (output terminal of the reactor circuit 30).
  • the reactor circuit 30 is connected to the power supply 10.
  • the inductance value of the reactor circuit 30 When the inductance value of the reactor circuit 30 is large, the amount of current ripple to the LD 20 can be reduced, so that the fluctuation of the output amount of the laser beam becomes small. As a result, a stable laser beam output can be obtained. However, since the inductance value of the reactor circuit 30 is large, it takes time to change to a desired current value, so that the rise time and the fall time of the current become long. For example, in a laser device including a laser processing machine, there is a case where it is desired to change the amount of laser light output instantaneously by turning on or off the laser light output. When the inductance value of the reactor circuit 30 is large, the laser beam output amount cannot be changed instantaneously.
  • the inductance value of the reactor circuit 30 When the inductance value of the reactor circuit 30 is small, the amount of current ripple to the LD 20 becomes large, so that a stable laser beam output cannot be obtained. However, since the inductance value is small, a desired laser beam output can be obtained in a short time. When the inductance value of the reactor circuit 30 is small, the amount of current ripple to the LD 20 becomes large, but by controlling the current path switching circuit 105 so that only the current when it becomes large flows to the LD 20, a large pulsed laser is used. Light output can be obtained. As a result, for example, in a laser processing machine or the like, high-precision processing becomes possible.
  • the reactor circuit 30 has a variable inductance value in order to take advantage of the magnitude of the inductance of the reactor circuit 30 described above. If you want to obtain a stable laser beam output, increase the inductance value. On the other hand, when it is desired to obtain a high-output laser beam with a short pulse, or when it is desired to obtain a laser beam output with a high-speed rising edge, the inductance value is reduced.
  • the reactor core in the reactor circuit 30 may be an air core or a magnetic material such as ferrite.
  • an edgewise coil or an entirely molded reactor may be used.
  • An edgewise coil is a coil in which a flat wire is wound in the edgewise direction. Since the edgewise coil has a one-layer structure, the winding has a high heat dissipation property as compared with a reactor having a round winding structure and a multi-layer structure. Since the entire molded reactor can dissipate heat from the molded portion, it has higher heat dissipation than the unmolded reactor. By using an edgewise coil or a reactor molded entirely, it is possible to suppress the temperature rise of each reactor.
  • the cooling mechanism for example, heat dissipation fins, water cooling mechanism, etc.
  • the cooling method for example, from forced air cooling to natural air cooling
  • FIG. 2 is a diagram showing the configuration of the reactor circuit 30 of the first embodiment.
  • the reactor circuit 30 includes two types of reactors 5a and 5b having different inductance values from each other, and an inductance value switching switch 14.
  • the reactor 5b connected in series and the inductance value switching switch 14 are arranged between the node ND3 and the node ND5.
  • the reactor 5a is arranged between the node ND3 and the node ND5.
  • the inductance value of the reactor 5a is larger than the inductance value of the reactor 5b.
  • the reactor 5b may be only wiring. This is because the wiring has a parasitic inductance component. Which of the reactor 5b and the inductance value switching switch 14 may be arranged on the node ND3 side or the node ND5 side.
  • the inductance value switching switch 14 is turned on / off by the gate drive signal GT2 from the control device 13.
  • the inductance value switching switch 14 is turned off, only the reactor 5a is connected between the node ND3 and the node ND5, so that the inductance value of the reactor circuit 30 becomes large.
  • the inductance value switching switch 14 is on, the reactor 5a and the reactor 5b are connected in parallel between the node ND3 and the node ND5, so that the inductance value of the reactor circuit 30 becomes small.
  • the smoothing capacitor 6 is arranged between the node ND5 and the node ND7.
  • the current path switching circuit 105 is arranged between the nodes ND5 and ND8 and the LD20.
  • the current path switching circuit 105 is configured to switch whether or not to supply the current output from the reactor circuit 30 to the LD 20.
  • FIG. 3 is a diagram showing the configuration of the current path switching circuit 105.
  • the current path switching circuit 105 includes a path switching switch 12 connected in parallel to the LD 20.
  • the route switching switch 12 is, for example, an N-type MOSFET.
  • the route switching switch 12 is turned on / off by the gate drive signal GT1 from the control device 13.
  • the path switching switch 12 When the path switching switch 12 is off, the current output from the reactor circuit 30 flows through the LD 20.
  • the path switching switch 12 is on, the current output from the reactor circuit 30 does not flow through the LD 20 but flows through the path switching switch 12. That is, in the power supply device 100, the current path through which the output current of the reactor circuit 30 flows is switched by turning on / off the path switching switch 12 when the laser pulse is driven. By instantly switching the current path, the current to the LD 20 can be turned down or up at high speed.
  • FIG. 4 is a diagram showing another configuration of the current path switching circuit 105. As shown in FIG. 4, the route switching switch 12 is connected in series to the LD 20.
  • the route switching switch 12 is, for example, an N-type MOSFET.
  • the route switching switch 12 is turned on / off by the gate drive signal GT1 from the control device 13.
  • the path switching switch 12 When the path switching switch 12 is on, the current output from the reactor circuit 30 flows through the LD 20.
  • the path switching switch 12 is off, no current flows from the reactor circuit 30. That is, in the power supply device 100, a current can be passed to the LD 20 by turning on / off the path switching switch 12 when the laser pulse is driven. Further, by adjusting the gate applied voltage amount of the path switching switch 12, it is possible to adjust the resistance value of the path switching switch 12 and change the amount of current flowing through the LD 20.
  • a snubber circuit may be connected to the path switching switch 12 in order to suppress the surge voltage generated when the path switching switch 12 is turned on / off.
  • a circuit or a Zener diode that starts when the voltage exceeds a certain value may be provided.
  • a resistance element for power consumption or current limiting may be connected in series with the path switching switch 12.
  • a smoothing capacitor may be provided in parallel with the path switching switch 12. By providing the smoothing capacitor, the rising and falling speeds of the drive current of the LD20 are lowered, so that the response speed of the laser beam output of the LD20 may be lowered. However, since the current output from the power supply 10 can be smoothed, the current supplied to the LD 20 can be smoothed and the laser light output of the LD 20 can be further stabilized. Therefore, if the response speed of the laser beam output is not required, it is better to provide a smoothing capacitor. In order to further smooth the current output from the power supply 10, it is necessary to increase the capacity of the smoothing capacitor.
  • the control device 13 controls the on / off of the path switching switch 12 by the gate drive signal GT1 to output the output from the reactor circuit 30. It is possible to decide whether or not to pass the current through the LD20.
  • the current path switching circuit 105 raises or lowers the drive current of the LD 20 according to the gate drive signal GT1.
  • a snubber circuit may be provided in parallel with the path switching switch 12 in order to suppress the surge voltage generated when the path switching switch 12 is turned off.
  • the snubber circuit for example, an RCD snubber circuit configured by connecting a diode in series to a resistance element and a capacitor connected in parallel may be used.
  • the current path switching circuit 105 and the LD 20 are often separated from each other.
  • the wiring between the current path switching circuit 105 and the LD 20 becomes long, and it may be difficult to appropriately control the drive current of the LD 20 due to the parasitic inductance of the wiring.
  • a current path switching circuit 105 is installed near the LD20 so that the wiring between the current path switching circuit 105 and LD20 is shortened. You may. Further, wiring may be performed so that the loop area of the wiring between the current path switching circuit 105 and the LD 20 is minimized so that the effect of canceling the mutual inductance of the wiring is large.
  • the laser is emitted from the LD 20 by supplying a current from the power supply device 100 to the LD 20.
  • the laser emitted from the LD 20 is transmitted to the processing head 53 by the condensing unit 52 and the like, and is condensed on the work 300 by the lens 54 in the processing head 53.
  • the work 300 is cut. Since it is necessary to move the laser condensing position on the work 300 when processing the work 300, the work 300 is installed on a work moving mechanism (not shown) for moving the work 300, or the work 300 is processed by the laser light generator 200. It is assumed that a head moving mechanism (not shown) for moving the head 53 is provided.
  • the switch used in the conversion unit 102, the smoothing circuit 104, and the current path switching circuit 105 it is preferable to use a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the switching element may be made of a material of Si (Silicon).
  • SiC Silicon Carbide
  • GaN GaN
  • switching loss and conduction loss can be suppressed, so that the efficiency of the power supply device 100 can be improved and lowered. Loss can be achieved.
  • the switch may be configured by a relay or an analog switch. In this case, there is an advantage that an elaborate gate drive circuit becomes unnecessary.
  • the control device 13 includes a machining command output unit 81, a switch control unit 82, and a current control unit 83.
  • the machining command output unit 81 outputs a current command value ID, which is a machining command.
  • the switch control unit 82 controls the on / off of the gate drive signal GT1 for controlling the on / off of the path switching switch 12 in the current path switching circuit 105 and the inductance value switching switch 14 in the reactor circuit 30.
  • the drive signal GT2 is output.
  • the current control unit 83 generates a drive signal DR for controlling the operation of the voltage conversion circuit 3 so that the current I supplied to the LD 20 indicated by the detection signal of the current detector 11 matches the current command value ID. do.
  • the on / off duty ratio of the drive signal DR is controlled so that there is no deviation between the current I and the current command value ID.
  • the control device 13 further includes a communication circuit (not shown).
  • the communication circuit sends and receives signals to and from other components via the communication line.
  • FIG. 5 is a timing chart showing the operation of the laser light generator 200 of the first embodiment.
  • the current command value ID input to the current control unit 83
  • the gate drive signal GT1 of the path switching switch 12 the reactor current in which the energy stored in the reactor 5a is released, and the inductance value switching.
  • the gate drive signal GT2 of the switch 14 the inductance current in which the energy stored in the reactor 5b is released, and the drive current of the LD 20 are shown.
  • the mode of the laser light generator 200 is set to mode A, and the laser light generator 200 operates as follows.
  • the switch control unit 82 sets the gate drive signal GT1 to a high level and the gate drive signal GT2 to a low level. Since the gate drive signal GT1 is set to a high level, the route switching switch 12 is turned on. As a result, no current flows through the LD20. Since the gate drive signal GT2 is set to the low level, the inductance value switching switch 14 is turned off. As a result, in the reactor circuit 30, a current flows only in the reactor 5a, so that a constant current ripple occurs. However, since the inductance value of the reactor 5a is large, the current ripple amount of the output current of the reactor 5a is small.
  • the mode of the laser light generator 200 is set to mode B, and the laser light generator 200 operates as follows.
  • the machining command output unit 81 sets the current command value ID to Ia.
  • the switch control unit 82 sets the gate drive signal GT1 at the low level and maintains the gate drive signal GT2 at the low level. Since the gate drive signal GT1 is set to the low level, the route switching switch 12 is turned off. As a result, a current flows through the LD 20. When a stable constant current is required, the mode of the laser beam generator 200 is maintained in mode B.
  • the mode of the laser light generator 200 is set to mode C, and the laser light generator 200 operates as follows.
  • the switch control unit 82 sets the gate drive signal GT1 to a high level. Since the gate drive signal GT1 is set to a high level, the route switching switch 12 is turned on. As a result, no current flows through the LD20.
  • the mode of the laser light generator 200 is set to mode D, and the laser light generator 200 operates as follows.
  • the switch control unit 82 sets the gate drive signal GT2 to a high level. Since the gate drive signal GT2 is set to a high level, the inductance value switching switch 14 is turned on. As a result, in the reactor circuit 30, a current flows through the reactor 5a and the reactor 5b. Since the inductance value of the reactor 5b is set smaller than the inductance value of the reactor 5a, the current ripple amount of the output current of the reactor 5b is large and the current peak value is high.
  • the machining command output unit 81 sets the current command value ID to Ib.
  • the switch control unit 82 sets the gate drive signal GT1 to a low level. Since the gate drive signal GT1 is set to the low level, the route switching switch 12 is turned off. As a result, a current flows through the LD 20.
  • the section (e) is a period in which the sum of the output current of the reactor 5a and the output current of the reactor 5b, which is the current output from the reactor circuit 30, is equal to or more than the specified value TH. This period is the time at which the output current of the reactor 5b peaks and the time near that time. As a result, the current can be passed through the LD 20 only during the period when the current output from the reactor circuit 30 is large.
  • a laser beam output with a high peak can be obtained from the LD20 with a short pulse. Since it is a short pulse, the heat generation of the LD 20 can be suppressed.
  • the heat load on the work side increases. As a result, there are cases where the laser processing accuracy deteriorates and the processing state of the laser processing cut surface deteriorates.
  • the heat load on the work can be locally applied by the laser light output having a high peak with a short pulse, so that the above problem can be reduced.
  • FIG. 6A is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 10 ⁇ H.
  • the peak value of the current flowing through the LD 20 is 254 A. Assuming that the difference between the maximum and minimum currents is the ripple amount, the ripple amount at this time is ⁇ 7A.
  • FIG. 6B is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 1 ⁇ H.
  • the peak value of the current flowing through the LD 20 is 282A.
  • the amount of ripple is ⁇ 66A.
  • FIG. 6C is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 0.1 ⁇ H.
  • the peak value of the current flowing through the LD 20 is 498 A.
  • the amount of ripple is ⁇ 488A.
  • the current peak value can be doubled as compared with the case where the inductance value is 10 ⁇ H. In this way, when it is desired to obtain a stable laser beam output, the inductance value of the reactor circuit 30 may be increased. On the other hand, when it is desired to obtain a laser beam output having a high peak, the inductance value of the reactor circuit 30 may be reduced. Further, the current path switching circuit 105 may be used to control the path switching switch 12 by the gate drive signal GT1 so that the current flows to the LD 20 only during the high peak current period.
  • FIG. 7 is a diagram showing the configuration of the reactor circuit 30c according to the second embodiment.
  • the reactor circuit 30c includes two reactors 5a and 5c having the same inductance value and one inductance value switching switch 14.
  • a reactor 5c connected in series and an inductance value switching switch 14 are arranged between the node ND3 and the node ND5.
  • a reactor 5a is arranged between the node ND3 and the node ND5.
  • the switch control unit 82 can increase the inductance value of the reactor circuit 30a by turning off the inductance value switching switch 14 so that the current flows only through the reactor 5a.
  • the switch control unit 82 can reduce the inductance value of the reactor circuit 30c by turning on the inductance value switching switch 14 so that a current flows through the reactor 5a and the reactor 5c.
  • the number of types of parts can be reduced by using two reactors having the same inductance value.
  • Either the reactor 5c or the inductance value switching switch 14 may be arranged on the node ND3 side or the node ND5 side.
  • FIG. 8 is a diagram showing the configuration of the reactor circuit 30d according to the third embodiment.
  • the reactor circuit 30d includes a reactor 5c and an inductance value switching switch 14.
  • the midpoint of the reactor 5c branches and is connected to the inductance value switching switch 14.
  • the switch control unit 82 can change the inductance value of the reactor circuit 30d by controlling the on / off of the inductance value switching switch 14.
  • the number of reactors in the reactor circuit 30d can be one.
  • FIG. 9 is a diagram showing the configuration of the reactor circuit 30e according to the fourth embodiment.
  • the reactor circuit 30e includes two reactors 5a and 5b having different inductance values and two inductance value switching switches 14a and 14b.
  • the magnitude of the inductance value of the reactors 5a and 5b may be either.
  • a reactor 5b and an inductance value switching switch 14b connected in series are arranged between the node ND3 and the node ND5.
  • a reactor 5a connected in series and an inductance value switching switch 14a are arranged between the node ND3 and the node ND5.
  • the switch control unit 82 controls the on / off of the inductance value switching switch 14a by the gate drive signal GT2.
  • the switch control unit 82 controls the on / off of the inductance value switching switch 14b by the gate drive signal GT3. Since both current paths of the reactors 5a and 5b can be turned off by the inductance value switching switches 14a and 14b, it is possible to control the LD20 on / off. Either the reactors 5a and 5b and the inductance value switching switches 14a and 14b may be arranged on the node ND3 side or the node ND5 side.
  • FIG. 10 is a diagram showing the configuration of the laser light generator 200a according to the fifth embodiment.
  • the difference between the laser light generator 200a of the fifth embodiment and the laser light generator 200 of the first embodiment is that the laser light generator 200a of the fifth embodiment replaces the smoothing circuit 104 with the smoothing circuit 104a. It is a point to prepare.
  • the smoothing circuit 104a includes a reactor circuit 30a having an overvoltage prevention function and a smoothing capacitor 6 similar to that of the first embodiment.
  • the reactor circuit 30a includes a reactor 5b, a reactor 5a, an inductance value switching switch 14, and an overvoltage prevention circuit 15.
  • the reactor 5b connected in series and the inductance value switching switch 14 are arranged between the node ND3 and the node ND5. Similar to the first embodiment, the reactor 5a is arranged between the node ND3 and the node ND5.
  • the overvoltage prevention circuit 15 is arranged between the node ND8 between the reactor 5b and the inductance value switching switch 14 and the node ND7.
  • the overvoltage protection circuit 15 is composed of a Zener diode or a switching element. If an overcurrent flows only with the switching element, a resistance element may be directly connected to the switching element.
  • the overvoltage prevention circuit 15 When the voltage across the inductance value switching switch 14 exceeds a certain voltage VT, the overvoltage prevention circuit 15 is turned on. As a result, the electric charge accumulated in the reactor 5b can be released. As a result, the voltage applied across the inductance value switching switch 14 can be suppressed to the withstand voltage or less, so that the failure of the inductance value switching switch 14 can be prevented.
  • the overvoltage prevention circuit 15 is arranged between the inductance value switching switch 14 and the reactor 5b. Thereby, the voltage applied to both ends of the inductance value switching switch 14 can be suppressed to the withstand voltage or less.
  • FIG. 11 is a diagram showing the configuration of the laser light generator 200b according to the sixth embodiment.
  • the difference between the laser light generator 200b of the sixth embodiment and the laser light generator 200 of the first embodiment is that the laser light generator 200b of the fifth embodiment replaces the smoothing circuit 104 with the smoothing circuit 104b. It is a point to prepare.
  • the smoothing circuit 104b includes a reactor circuit 30b, a smoothing capacitor 6a, and a smoothing capacitor 6b.
  • the reactor circuit 30b includes a reactor 5a, a reactor 5b, an inductance value switching switch 14a, an inductance value switching switch 14b, an overvoltage prevention circuit 15a, and an overvoltage prevention circuit 15b.
  • the smoothing capacitor 6a is arranged between the node ND 9 and the node ND 7.
  • the smoothing capacitor 6b is arranged between the node ND8 and the node ND7.
  • the reactor 5b is arranged between the node ND3 and the node ND8.
  • the reactor 5a is arranged between the node ND3 and the node ND9.
  • the inductance value switching switch 14b is arranged between the node ND8 and the node ND5.
  • the inductance value switching switch 14a is arranged between the node ND 9 and the node ND 5.
  • the overvoltage prevention circuit 15b is arranged between the node ND8 and the node ND7.
  • the overvoltage prevention circuit 15a is arranged between the node ND 9 and the node ND 7.
  • the overvoltage prevention circuits 15a and 15b are configured by a switching element, a Zener diode, or the like.
  • the inductance value of the reactor 5a can be made larger than the inductance value of the reactor 5b, and the capacity of the smoothing capacitor 6a can be made larger than the capacity of the smoothing capacitor 6b.
  • the inductance value switching switch 14a is turned on and a current is passed through the reactor 5a. In this case, the current ripple of the output current can be suppressed.
  • the node ND8 between the reactor 5b and the inductance value switching switch 14b and the node ND9 between the reactor 5a and the inductance value switching switch 14a are provided with overvoltage prevention circuits 15b and 15a for overvoltage prevention, respectively.
  • the overvoltage prevention circuit 15a When the voltage across the inductance value switching switch 14a becomes a certain voltage VT or higher, the overvoltage prevention circuit 15a is turned on.
  • the overvoltage prevention circuit 15b is turned on. This makes it possible to prevent the inductance value switching switches 14b and 14a from being destroyed.
  • the overvoltage prevention circuit 15 is arranged between the inductance value switching switch 14 and the reactor 5. , The voltage applied to both ends of the inductance value switching switch 14 can be suppressed to the withstand voltage or less.
  • Embodiment 7 The inductance value L of the reactor is expressed by the following equation.
  • K K ⁇ ⁇ ⁇ ⁇ ⁇ a 2 ⁇ n 2 / b ...
  • K is the Nagaoka coefficient
  • is the magnetic permeability
  • a is the reactor radius
  • b is the reactor length
  • n is the number of turns of the reactor.
  • FIGS. 12A and 12B are diagrams for explaining the first method of mechanically changing the inductance value of the reactor. From the equation (2), the inductance value can be changed by changing the length b of the reactor RT. As shown in FIGS. 12A and 12B, the inductance value can be changed by mechanically changing the length b of the reactor RT. For example, both ends of the reactor RT are fixed with insulators 251a and 251b, and the distance between the insulators 251a and 251b at both ends is mechanically adjusted by using a ball screw 253 and a motor 254 (stepping motor, etc.) to set the length b of the reactor RT. Can be changed.
  • FIGS. 12 (c) and 12 (d) are diagrams for explaining a second method of mechanically changing the inductance value of the reactor. As shown in FIGS. 12 (c) and 12 (d), the inductance value can be changed by fixing one end of the reactor RT and changing the position of the other end.
  • FIGS. 12 (e) and 12 (f) are diagrams for explaining a third method of mechanically changing the inductance value of the reactor.
  • the inductance value can be changed by changing the distance between the respective subreactors RTa and RTb. This is due to the influence of each leakage flux.
  • the inductance value is changed by changing the positions of the bases 261a and 261b fixing the subreactors RTa and RTb by the motor 254 and the ball screw 253.
  • FIG. 13 is a diagram showing a change in the inductance value with respect to the length of the air core coil.
  • FIG. 13 shows the coil length dependence of the inductance value when the coil radius is 50 mm and the number of turns is 10 turns. By increasing the length of the coil to 8 times from 50 mm to 400 mm, the inductance value of the coil can be increased from 10 ⁇ H to 2.3 ⁇ H.
  • the above method of mechanically changing the inductance value of the reactor can be used even when the inductance value of the reactor needs to be adjusted accurately. For example, it is necessary to adjust the inductance value of the reactor in order to match the current value accurately, but in the usual reactor manufacturing method, the inductance variation is ⁇ 5% or more. In such a case, it is possible to reduce the variation in the inductance value at the time of mass production by manually adjusting the length of the reactor and the distance between the reactors at the time of manufacturing instead of the motor 254.
  • the reactor is not limited to the air core and may be made of a magnetic material such as ferrite. In this case, a large inductance value can be obtained.
  • the inductance switching of the reactor circuit 30 by the inductance value switching switch 14 and the inductance switching of the reactor circuit 30 by mechanical means as shown in FIGS. 12A to 12F are used in combination, the inductance becomes higher.
  • the range of values can be expanded.
  • the inductance value switching switch 14 switches the inductance of the reactor circuit 30. Thereby, the range of the inductance value can be expanded.
  • FIG. 14 is a diagram showing the configuration of the laser processing apparatus of the eighth embodiment.
  • the laser processing device includes a laser light generator 51, a condensing unit 52, a processing head 53, a lens 54, and a positioning device 55.
  • As the light collecting unit 52 an optical fiber, a prism, a mirror, an optical coupling element, or an optical amplifier can be used.
  • the laser light generator 51 is one of the laser light generators of the above-described first to eighth embodiments.
  • the laser light generator 51 outputs the laser light ⁇ having a small ripple.
  • the condensing unit 52 transmits the laser light ⁇ output from the laser light generator 51 to the processing head 53.
  • the processing head 53 vertically irradiates the surface of the object 56 with the laser beam ⁇ .
  • the lens 54 is provided between the processing head 53 and the object 56. The lens 54 is focused on the surface of the object 56.
  • the object 56 is mounted on the positioning device 55. By moving the object 56 in the horizontal and vertical directions, the positioning device 55 can focus the workpiece position on the surface of the object 56 on the lens 54.
  • the laser light ⁇ emitted from the laser light generator 51 is irradiated to the processed position of the object 56 via the condensing unit 52, the processing head 53, and the lens 54, and the object 56 is processed.
  • the ripple amount required at the time of laser processing can be controlled.
  • the object 56 can be irradiated with a stable laser beam ⁇ having a small ripple.
  • the object 56 can be irradiated with a short pulse laser at a high peak, it is possible to suppress processing burrs and the like during laser processing.
  • control device 13 is realized by dedicated hardware such as a dedicated processing circuit, or is realized by software and general-purpose hardware.
  • the dedicated processing circuit includes a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable). Gate Array) or a combination of these is applicable.
  • FIG. 15 is a diagram showing the configuration of the control device 13 when the control device 13 is realized by software and general-purpose hardware.
  • the control device 13 is composed of a processor 131 and a storage device 132 connected to the bus 133.
  • Each function of the control device 13 is realized by software, firmware, or a combination thereof.
  • the software or firmware is written as a program and stored in the storage device 132.
  • the processor 131 reads and executes the program stored in the storage device 132. It can be said that these programs cause the computer to execute the procedure and the method for realizing each function of the control device 13.
  • the storage device 132 corresponds to a semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory (registered trademark)). do.
  • the semiconductor memory may be a non-volatile memory or a volatile memory.
  • the storage device includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Disc).

Abstract

This laser beam generation device (200) comprises: a laser diode (20); a power supply (10) which supplies current; a reactor circuit (30) which is connected to the power supply (10) and has a variable inductance value; a current path switching circuit (105) configured to switch whether to supply the current output from the reactor circuit (30) to the laser diode; and a control device (13) which controls the current path switching circuit (105) and sets the inductance value of the reactor circuit (30).

Description

レーザ光発生装置およびレーザ加工装置Laser light generator and laser processing equipment
 本開示は、レーザ光発生装置およびレーザ加工装置に関する。 This disclosure relates to a laser light generator and a laser processing device.
 金属の溶接、金属の切断、または金属のマーキング等の加工分野では、従来CO2レーザ等の気体レーザ装置、またはYAG(Yttrium Aluminum Garnet)レーザ等のランプ励起による固体レーザ装置が使用されてきた。 In the processing fields such as metal welding, metal cutting, and metal marking, gas laser devices such as CO2 lasers or solid-state laser devices such as YAG (Yttrium Aluminum Garnet) lasers that are excited by lamps have been used in the past.
 しかしながら、近年では、ファイバーレーザ等のレーザダイオード(以下「LD(Laser Diode)」と称する。)励起による固体レーザ装置、およびレーザ光を直接出力するダイレクトダイオードレーザ装置の高出力化が進んでいる。これにより、上記の加工分野では、CO2レーザ等の気体レーザまたはYAGレーザ等のランプ励起による固体レーザ装置から、ファイバーレーザ等のLD励起による固体レーザ装置またはダイレクトダイオードレーザ装置への置き換えが進んでいる。 However, in recent years, the output of solid-state laser devices excited by laser diodes (hereinafter referred to as "LD (Laser Diode)") such as fiber lasers and direct diode laser devices that directly output laser light has been increasing. As a result, in the above-mentioned processing field, the replacement of a solid-state laser device by lamp excitation such as a gas laser such as a CO2 laser or a YAG laser with a solid-state laser device or a direct diode laser device by LD excitation such as a fiber laser is progressing. ..
 LDは電流駆動型の素子であるので、LDを用いたレーザ光発生装置においては、所望のレーザ光出力を得るのに必要な一定の駆動電流をLDに供給する定電流源を使用することが一般的である。定電流源を使用する場合には、安定なレーザ光出力を得るために一般的にリアクトルが使用される。リアクトルに電磁エネルギーが蓄えられることによって出力電流の応答速度が遅くなる。その結果、加工条件に合わせてレーザを出力しようとしても、所望のレーザ光出力を得ることができないという問題がある。 Since the LD is a current drive type element, in a laser light generator using the LD, it is possible to use a constant current source that supplies the LD with a constant drive current required to obtain a desired laser light output. It is common. When using a constant current source, a reactor is generally used to obtain a stable laser beam output. The response speed of the output current slows down due to the storage of electromagnetic energy in the reactor. As a result, there is a problem that a desired laser light output cannot be obtained even if an attempt is made to output a laser according to the processing conditions.
 このような問題を解決するため、たとえば特開2009-123833号公報(特許文献1)に開示されるレギュレータ方式のレーザダイオード駆動用電源装置は、LD駆動電流を設定電流値まで高速に立ち上げられることを特徴としている。このレーザ駆動用電源装置は、負荷回路に所望の定電流を供給するための定電流源回路と、定電流源回路とLDとの間に接続される2次側平滑リアクトルと、定電流源回路に対して2次側平滑リアクトルと直列に接続され、かつLDと並列に接続される第1のスイッチング素子と、LDを発光させない間は第1のスイッチング素子をオン状態に保持し、LDを発光させる時は第1のスイッチング素子をオフ状態に保持するLD駆動制御部とを有する。 In order to solve such a problem, for example, in the regulator type laser diode driving power supply device disclosed in Japanese Patent Application Laid-Open No. 2009-123833 (Patent Document 1), the LD drive current can be started up at a high speed up to a set current value. It is characterized by that. This laser drive power supply includes a constant current source circuit for supplying a desired constant current to the load circuit, a secondary smoothing reactor connected between the constant current source circuit and the LD, and a constant current source circuit. The first switching element connected in series with the secondary smoothing reactor and connected in parallel with the LD, and the first switching element kept in the ON state while the LD is not made to emit light, and the LD is made to emit light. It has an LD drive control unit that holds the first switching element in the off state when the current is turned off.
特開2009-123833号公報Japanese Unexamined Patent Publication No. 2009-123833
 特許文献1に記載のスイッチング方式のLD駆動用電源装置は、LD駆動電流をある一定の設定電流値まで高速に立ち上げることができるが、その設定電流値を変化させることはできない。近年、レーザ加工機などにおいては、加工面の形状に応じて設定電流値を変化させることによって、加工面の精度を向上させるととともに、様々な加工に特化したレーザ光出力が必要となっている。 The switching type LD drive power supply device described in Patent Document 1 can raise the LD drive current to a certain set current value at high speed, but cannot change the set current value. In recent years, in laser processing machines and the like, it has become necessary to improve the accuracy of the machined surface by changing the set current value according to the shape of the machined surface, and to have a laser beam output specialized for various types of processing. There is.
 さらに、特許文献1に記載のスイッチング方式のLD駆動用電源装置では、パルス駆動周波数が高い電流駆動波形を出力する際のリップル電流を緩和するため、平滑リアクトルのインダクタンス値が大きな値に設定されている。電流指令値がゼロの期間では、LDモジュールに並列接続されたスイッチング素子がオンとなり、平滑リアクトルに蓄積されたエネルギーが平滑リアクトルとスイッチング素子との閉回路を還流する。LD駆動用電源装置では、加工面の形状に合わせてレーザ光出力を変化させる必要があるが、平滑リアクトルのインダクタンス値が大きいため、所望の電流値への変更に時間を要するともに、高いピークを有する電流出力を得ることが難しいという課題があった。 Further, in the switching type LD drive power supply device described in Patent Document 1, the inductance value of the smoothing reactor is set to a large value in order to alleviate the ripple current when outputting a current drive waveform having a high pulse drive frequency. There is. During the period when the current command value is zero, the switching element connected in parallel to the LD module is turned on, and the energy stored in the smoothing reactor returns the closed circuit between the smoothing reactor and the switching element. In the LD drive power supply, it is necessary to change the laser beam output according to the shape of the machined surface, but since the inductance value of the smoothing reactor is large, it takes time to change to the desired current value and a high peak is achieved. There is a problem that it is difficult to obtain the current output to have.
 それゆえに、本開示の目的は、レーザ光の出力を高速に安定化することができるとともに、高いピークのレーザ光を出力することができるレーザ光発生装置およびレーザ加工装置を提供することである。 Therefore, an object of the present disclosure is to provide a laser beam generator and a laser processing apparatus capable of stabilizing the output of a laser beam at high speed and outputting a laser beam having a high peak.
 本開示のレーザ光発生装置は、レーザダイオードと、電流を供給する電源と、電源と接続され、可変のインダクタンス値を有するリアクトル回路と、リアクトル回路から出力される電流をレーザダイオードに供給するか否かを切り替えるように構成された電流経路切替回路と、電流経路切替回路を制御し、かつリアクトル回路のインダクタンス値を設定する制御部とを備える。 The laser light generator of the present disclosure includes a laser diode, a power supply that supplies a current, a reactor circuit that is connected to the power supply and has a variable inductance value, and whether or not to supply the current output from the reactor circuit to the laser diode. It is provided with a current path switching circuit configured to switch between the two, and a control unit that controls the current path switching circuit and sets the inductance value of the reactor circuit.
 本開示によれば、レーザ光の出力を高速に安定化することができるとともに、高いピークのレーザ光を出力することができる。 According to the present disclosure, the output of the laser beam can be stabilized at high speed, and the laser beam having a high peak can be output.
実施の形態1のレーザ光発生装置200の構成を表わす図である。It is a figure which shows the structure of the laser light generator 200 of Embodiment 1. FIG. 実施の形態1のリアクトル回路30の構成を表わす図である。It is a figure which shows the structure of the reactor circuit 30 of Embodiment 1. 実施の形態1の電流経路切替回路105の構成を表わす図である。It is a figure which shows the structure of the current path switching circuit 105 of Embodiment 1. FIG. 実施の形態1の電流経路切替回路105の別の構成を表わす図である。It is a figure which shows another structure of the current path switching circuit 105 of Embodiment 1. FIG. 実施の形態1のレーザ光発生装置200の動作を示すタイミングチャートである。It is a timing chart which shows the operation of the laser light generator 200 of Embodiment 1. FIG. (a)は、リアクトル回路30のインダクタンス値が10μHのときのLD20へ流れる電流を示す図である。(b)は、リアクトル回路30のインダクタンス値が1μHのときのLD20へ流れる電流を示す図である。(c)は、リアクトル回路30のインダクタンス値が0.1μHのときのLD20へ流れる電流を示す図である。(A) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 10 μH. (B) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 1 μH. (C) is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 0.1 μH. 実施の形態2のリアクトル回路30cの構成を表わす図である。It is a figure which shows the structure of the reactor circuit 30c of Embodiment 2. 実施の形態3のリアクトル回路30dの構成を表わす図である。It is a figure which shows the structure of the reactor circuit 30d of Embodiment 3. 実施の形態4のリアクトル回路30eの構成を表わす図である。It is a figure which shows the structure of the reactor circuit 30e of Embodiment 4. 実施の形態5のレーザ光発生装置200aの構成を表わす図である。It is a figure which shows the structure of the laser light generator 200a of Embodiment 5. 実施の形態6のレーザ光発生装置200bの構成を表わす図である。It is a figure which shows the structure of the laser light generator 200b of Embodiment 6. (a)および(b)は、機械的にリアクトルのインダクタンス値を変える第1の方法を説明するための図である。(c)および(d)は、機械的にリアクトルのインダクタンス値を変える第2の方法を説明するための図である。(e)および(f)は、機械的にリアクトルのインダクタンス値を変える第3の方法を説明するための図である。(A) and (b) are diagrams for explaining the first method of mechanically changing the inductance value of a reactor. (C) and (d) are diagrams for explaining a second method of mechanically changing the inductance value of the reactor. (E) and (f) are diagrams for explaining a third method of mechanically changing the inductance value of the reactor. 空芯コイルの長さに対するインダクタンス値の変化を表わす図である。It is a figure which shows the change of the inductance value with respect to the length of an air core coil. 実施の形態8のレーザ加工装置の構成を示す図である。It is a figure which shows the structure of the laser processing apparatus of Embodiment 8. 制御装置13がソフトウェアと汎用のハードウェアによって実現される場合の制御装置13の構成を表わす図である。It is a figure which shows the structure of the control device 13 when the control device 13 is realized by software and general-purpose hardware.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1のレーザ光発生装置200の構成を表わす図である。レーザ光発生装置200は、LD駆動用電源装置100と、LD20と、加工ヘッド53と、集光部52とを備える。以下では、LD駆動用電源装置を単に「電源装置」と称する場合がある。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of the laser light generator 200 of the first embodiment. The laser light generator 200 includes an LD drive power supply device 100, an LD 20, a processing head 53, and a condensing unit 52. Hereinafter, the LD drive power supply device may be simply referred to as a “power supply device”.
 LD20は、ノードND6とノードND4(接地電源もしくはLD20の基準電源)との間に配置される。LD20は、LD駆動用電源装置100から供給される電流によりレーザを出射する。LD20は、少なくとも1つのLD単体を含む。LD20が複数のLD単体を含む場合、複数のLD単体は、LD20のアノード端子およびカソード端子間に順方向に直列接続され、並列接続され、または直列および並列接続される。高出力のレーザ装置では、少なくとも1つのLD20が使用される。 The LD20 is arranged between the node ND6 and the node ND4 (ground power supply or reference power supply of the LD20). The LD 20 emits a laser by a current supplied from the LD drive power supply device 100. LD20 includes at least one LD alone. When the LD 20 includes a plurality of LD units, the plurality of LD units are connected in series in the forward direction, connected in parallel, or connected in series and in parallel between the anode terminal and the cathode terminal of the LD 20. For high power laser devices, at least one LD20 is used.
 集光部52は、LD20のレーザ光を集光して、加工ヘッド53に伝送する。集光部52としては、光ファイバ、プリズム、ミラー、光結合素子、または光増幅器を用いることができる。 The light collecting unit 52 collects the laser light of the LD 20 and transmits it to the processing head 53. As the light collecting unit 52, an optical fiber, a prism, a mirror, an optical coupling element, or an optical amplifier can be used.
 電源装置100は、電源10と、平滑回路104と、電流経路切替回路105と、制御装置13とを備える。 The power supply device 100 includes a power supply 10, a smoothing circuit 104, a current path switching circuit 105, and a control device 13.
 電源10は、交流電源400から供給される交流電力を直流電力に変換して、一定の電流をLD20へ供給する。交流電源400は、たとえば100V~480Vの交流電圧を電源10に供給する。交流電源400は、たとえば、三相交流電源または単相交流電源である。交流電源400は、たとえば、商用交流電源または自家用発電機である。 The power supply 10 converts the AC power supplied from the AC power supply 400 into DC power and supplies a constant current to the LD 20. The AC power supply 400 supplies, for example, an AC voltage of 100V to 480V to the power supply 10. The AC power supply 400 is, for example, a three-phase AC power supply or a single-phase AC power supply. The AC power source 400 is, for example, a commercial AC power source or a private power generator.
 電流検出器11は、ノードND5とノードND6の間、またはノードND8とノードND4との間に配置される。電流検出器11は、電源装置100からLD20に流れる電流を検出する。電流検出器11として、直列抵抗素子(シャント抵抗素子)、CT(Current Transformer)、ホール電流センサ等を用いることができる。電流検出器11として、電流検出用のIC(Integrated Circuit)を使用してもよい。電流検出器11として、汎用的な部品を使うことによって、コストを低減することが可能である。 The current detector 11 is arranged between the node ND5 and the node ND6, or between the node ND8 and the node ND4. The current detector 11 detects the current flowing from the power supply device 100 to the LD 20. As the current detector 11, a series resistance element (shunt resistance element), a CT (Current Transformer), a Hall current sensor, or the like can be used. As the current detector 11, an IC (Integrated Circuit) for current detection may be used. By using a general-purpose component as the current detector 11, it is possible to reduce the cost.
 電源10は、整流部101と、変換部102と、整流回路103とを備える。
 整流部101は、交流電源400から供給される交流電力を整流する。整流部101は、整流回路1と、平滑コンデンサ2とを備える。整流回路1は、ノードND1とノードND2との間に配置される。整流回路1は、交流電源400から供給される交流電力を整流する。整流部101は、力率を改善することができる力率改善回路であってもよい。平滑コンデンサ2は、ノードND1とノードND2との間に配置される。平滑コンデンサ2は、整流回路1に並列に接続される。
The power supply 10 includes a rectifying unit 101, a conversion unit 102, and a rectifying circuit 103.
The rectifying unit 101 rectifies the AC power supplied from the AC power supply 400. The rectifying unit 101 includes a rectifying circuit 1 and a smoothing capacitor 2. The rectifier circuit 1 is arranged between the node ND1 and the node ND2. The rectifier circuit 1 rectifies the AC power supplied from the AC power supply 400. The rectifying unit 101 may be a power factor improving circuit capable of improving the power factor. The smoothing capacitor 2 is arranged between the node ND1 and the node ND2. The smoothing capacitor 2 is connected in parallel to the rectifier circuit 1.
 変換部102は、フルブリッジインバータ動作をすることによって、整流部101から出力される電力を交流電力に変換する。変換部102は、絶縁型の電力変換部である。変換部102は、電圧変換回路3と、トランス4とを備える。電圧変換回路3は、ノードND1とノードND2との間に配置される。電圧変換回路3は、制御装置13から出力される駆動信号DRに基づき、整流部101で整流された電圧を交流電圧に変換する。電圧変換回路3は、たとえばフルブリッジ回路で構成される。電圧変換回路3は、フルブリッジ回路に代えて、一般的なDC-DCコンバータの方式であるフォワード方式、フライバック方式、プッシュプル方式、またはハーフブリッジ方式などのように、変換電力量に応じて効率およびコストが最適となる方式の回路であってもよい。電圧変換回路3は、これらの回路方式の複合形であってもよい。変換部102は、絶縁型の電力変換回路と、たとえばチョッパ方式などの非絶縁型の電力変換回路との両方を備え、それらを併用するものとしてもよい。併用することによって、昇圧比率などを調整しやすくなる場合もある。電圧変換回路3は、複数のスイッチング素子を含む。トランス4は、電圧変換回路3で変換された交流電圧を巻線比に対応した特定の値の電圧に変換する。トランス4の出力電流は電圧変換回路3を構成する複数のスイッチング素子のスイッチング周期に対するオン時間の割合で調整される。 The conversion unit 102 converts the power output from the rectifying unit 101 into AC power by operating the full bridge inverter. The conversion unit 102 is an isolated power conversion unit. The conversion unit 102 includes a voltage conversion circuit 3 and a transformer 4. The voltage conversion circuit 3 is arranged between the node ND1 and the node ND2. The voltage conversion circuit 3 converts the voltage rectified by the rectifying unit 101 into an AC voltage based on the drive signal DR output from the control device 13. The voltage conversion circuit 3 is composed of, for example, a full bridge circuit. Instead of the full bridge circuit, the voltage conversion circuit 3 is a general DC-DC converter system such as a forward system, a flyback system, a push-pull system, or a half-bridge system, depending on the amount of conversion power. The circuit may be of the type that optimizes efficiency and cost. The voltage conversion circuit 3 may be a composite form of these circuit methods. The conversion unit 102 may include both an isolated power conversion circuit and a non-isolated power conversion circuit such as a chopper system, and may use them in combination. When used in combination, it may be easier to adjust the boost ratio. The voltage conversion circuit 3 includes a plurality of switching elements. The transformer 4 converts the AC voltage converted by the voltage conversion circuit 3 into a voltage having a specific value corresponding to the winding ratio. The output current of the transformer 4 is adjusted by the ratio of the on-time to the switching cycle of the plurality of switching elements constituting the voltage conversion circuit 3.
 整流回路103は、ノードND3(電源10の第1の出力端子)とノードND7(電源10の第2の出力端子)との間に配置される。整流回路103は、変換部102から出力された交流電圧を整流する。整流回路103は、たとえば、4つのダイオードで構成される全波整流回路である。整流回路103の構成は、図1に示されるものに限定されるものではない。整流回路103は、ダイオードの代わりに低損失化が可能なスイッチング素子によって構成されてもよい。 The rectifier circuit 103 is arranged between the node ND3 (first output terminal of the power supply 10) and the node ND7 (second output terminal of the power supply 10). The rectifier circuit 103 rectifies the AC voltage output from the conversion unit 102. The rectifier circuit 103 is, for example, a full-wave rectifier circuit composed of four diodes. The configuration of the rectifier circuit 103 is not limited to that shown in FIG. The rectifier circuit 103 may be configured by a switching element capable of reducing loss instead of the diode.
 変換部102と整流回路103とは、チョッパ回路方式などの非絶縁DC-DCコンバータを用いても良い。非絶縁DC-DCコンバータは、絶縁DC-DCコンバータよりも高効率な変換を低コストで実現できる。 A non-isolated DC-DC converter such as a chopper circuit system may be used for the conversion unit 102 and the rectifier circuit 103. The non-isolated DC-DC converter can realize high-efficiency conversion at low cost as compared with the isolated DC-DC converter.
 平滑回路104は、整流回路103で整流された電圧を平滑する。平滑回路104は、リアクトル回路30と、平滑コンデンサ6とを備える。 The smoothing circuit 104 smoothes the voltage rectified by the rectifier circuit 103. The smoothing circuit 104 includes a reactor circuit 30 and a smoothing capacitor 6.
 リアクトル回路30は、ノードND3(電源10の第1の出力端子)とノードND5(リアクトル回路30の出力端子)との間に配置される。リアクトル回路30は、電源10と接続される。 The reactor circuit 30 is arranged between the node ND3 (first output terminal of the power supply 10) and the node ND5 (output terminal of the reactor circuit 30). The reactor circuit 30 is connected to the power supply 10.
 リアクトル回路30のインダクタンス値が大きい場合、LD20への電流リップル量を小さくできるので、レーザ光の出力量の変動が小さくなる。その結果、安定したレーザ光出力を得ることができる。しかしながら、リアクトル回路30のインダクタンス値が大きいので、所望の電流値へ変更するのに時間を要するため、電流の立ち上がり時間および立ち下り時間が長くなる。例えば、レーザ加工機などを含むレーザ機器では、レーザ光出力をオンまたはオフすることによって、レーザ光出力量を瞬時に変更したい場合がある。リアクトル回路30のインダクタンス値が大きい場合には、レーザ光出力量を瞬時に変更できない。 When the inductance value of the reactor circuit 30 is large, the amount of current ripple to the LD 20 can be reduced, so that the fluctuation of the output amount of the laser beam becomes small. As a result, a stable laser beam output can be obtained. However, since the inductance value of the reactor circuit 30 is large, it takes time to change to a desired current value, so that the rise time and the fall time of the current become long. For example, in a laser device including a laser processing machine, there is a case where it is desired to change the amount of laser light output instantaneously by turning on or off the laser light output. When the inductance value of the reactor circuit 30 is large, the laser beam output amount cannot be changed instantaneously.
 リアクトル回路30のインダクタンス値が小さい場合、LD20への電流リップル量が大きくなるので、安定したレーザ光出力を得ることができない。しかしながら、インダクタンス値が小さいので、所望のレーザ光出力を短時間に得ることができる。リアクトル回路30のインダクタンス値が小さい場合、LD20への電流リップル量は大きくなるが、大きくなったときの電流だけをLD20へ流れるように電流経路切替回路105を制御することによって、パルス状の大きいレーザ光出力を得ることができる。これによって、例えば、レーザ加工機などにおいては、高精度の加工が可能となる。 When the inductance value of the reactor circuit 30 is small, the amount of current ripple to the LD 20 becomes large, so that a stable laser beam output cannot be obtained. However, since the inductance value is small, a desired laser beam output can be obtained in a short time. When the inductance value of the reactor circuit 30 is small, the amount of current ripple to the LD 20 becomes large, but by controlling the current path switching circuit 105 so that only the current when it becomes large flows to the LD 20, a large pulsed laser is used. Light output can be obtained. As a result, for example, in a laser processing machine or the like, high-precision processing becomes possible.
 本実施の形態では、上述したリアクトル回路30のインダクタンスの大小のメリットを生かすために、リアクトル回路30は、可変のインダクタンス値を有する。安定したレーザ光出力を得たい場合には、インダクタンス値を大きくする。一方、短パルスの高出力のレーザ光を得たい場合、または高速な立ち上がりでレーザ光出力を得たい場合には、インダクタンス値を小さくする。 In the present embodiment, the reactor circuit 30 has a variable inductance value in order to take advantage of the magnitude of the inductance of the reactor circuit 30 described above. If you want to obtain a stable laser beam output, increase the inductance value. On the other hand, when it is desired to obtain a high-output laser beam with a short pulse, or when it is desired to obtain a laser beam output with a high-speed rising edge, the inductance value is reduced.
 リアクトル回路30の中にあるリアクトルのコアは、空芯でもよいし、フェライトなどの磁性体でもよい。リアクトル回路30の中にあるリアクトルに大きな電流が流れる場合、エッジワイズコイル、あるいは全体をモールドしたリアクトルを用いてもよい。エッジワイズコイルとは、平角線がエッジワイズ方向に巻回されたコイルのことをいう。エッジワイズコイルは、巻線が1層構造であるため巻線が丸型で多層構造であるリアクトルと比べて、高い放熱性を有する。全体をモールドしたリアクトルは、モールド部から放熱することができるため、モールドしていないリアクトルと比べて放熱性が高い。エッジワイズコイル、または全体をモールドしたリアクトルを用いることによって、各々のリアクトルの温度上昇を抑えることが可能となる。そのため、リアクトルを放熱するために必要な冷却機構(たとえば放熱フィン、水冷機構等)の小型化、および冷却方式の簡素化(たとえば、強制空冷から自然空冷)が可能となるので、冷却部材を減らすことができる。 The reactor core in the reactor circuit 30 may be an air core or a magnetic material such as ferrite. When a large current flows through the reactor in the reactor circuit 30, an edgewise coil or an entirely molded reactor may be used. An edgewise coil is a coil in which a flat wire is wound in the edgewise direction. Since the edgewise coil has a one-layer structure, the winding has a high heat dissipation property as compared with a reactor having a round winding structure and a multi-layer structure. Since the entire molded reactor can dissipate heat from the molded portion, it has higher heat dissipation than the unmolded reactor. By using an edgewise coil or a reactor molded entirely, it is possible to suppress the temperature rise of each reactor. Therefore, it is possible to reduce the size of the cooling mechanism (for example, heat dissipation fins, water cooling mechanism, etc.) required to dissipate heat from the reactor, and to simplify the cooling method (for example, from forced air cooling to natural air cooling), thus reducing the number of cooling members. be able to.
 図2は、実施の形態1のリアクトル回路30の構成を表わす図である。リアクトル回路30は、インダクタンス値が互いに異なる2種類のリアクトル5a、5bと、インダクタンス値切替用スイッチ14とを備える。 FIG. 2 is a diagram showing the configuration of the reactor circuit 30 of the first embodiment. The reactor circuit 30 includes two types of reactors 5a and 5b having different inductance values from each other, and an inductance value switching switch 14.
 直列接続されたリアクトル5bとインダクタンス値切替用スイッチ14とが、ノードND3とノードND5との間に配置される。リアクトル5aが、ノードND3とノードND5との間に配置される。 The reactor 5b connected in series and the inductance value switching switch 14 are arranged between the node ND3 and the node ND5. The reactor 5a is arranged between the node ND3 and the node ND5.
 リアクトル5aのインダクタンス値が、リアクトル5bのインダクタンス値よりも大きい。リアクトル5bは、配線だけであってもよい。配線は寄生のインダクタンス成分を有するためである。リアクトル5bとインダクタンス値切替用スイッチ14とは、どちらがノードND3側もしくはノードND5側に配置されてもよい。 The inductance value of the reactor 5a is larger than the inductance value of the reactor 5b. The reactor 5b may be only wiring. This is because the wiring has a parasitic inductance component. Which of the reactor 5b and the inductance value switching switch 14 may be arranged on the node ND3 side or the node ND5 side.
 制御装置13からのゲート駆動信号GT2によってインダクタンス値切替用スイッチ14がオン/オフする。インダクタンス値切替用スイッチ14をオフのときには、ノードND3とノードND5の間にリアクトル5aのみが接続されるのでリアクトル回路30のインダクタンス値が大きくなる。インダクタンス値切替用スイッチ14がオンのときには、ノードND3とノードND5との間にリアクトル5aとリアクトル5bとが並列に接続されるので、リアクトル回路30のインダクタンス値が小さくなる。 The inductance value switching switch 14 is turned on / off by the gate drive signal GT2 from the control device 13. When the inductance value switching switch 14 is turned off, only the reactor 5a is connected between the node ND3 and the node ND5, so that the inductance value of the reactor circuit 30 becomes large. When the inductance value switching switch 14 is on, the reactor 5a and the reactor 5b are connected in parallel between the node ND3 and the node ND5, so that the inductance value of the reactor circuit 30 becomes small.
 再び、図1を参照して、平滑コンデンサ6は、ノードND5とノードND7との間に配置される。 Again, referring to FIG. 1, the smoothing capacitor 6 is arranged between the node ND5 and the node ND7.
 電流経路切替回路105は、ノードND5およびノードND8と、LD20との間に配置される。電流経路切替回路105は、リアクトル回路30から出力される電流をLD20に供給するか否かを切り替えるように構成される。 The current path switching circuit 105 is arranged between the nodes ND5 and ND8 and the LD20. The current path switching circuit 105 is configured to switch whether or not to supply the current output from the reactor circuit 30 to the LD 20.
 図3は、電流経路切替回路105の構成を表わす図である。
 図3に示すように、電流経路切替回路105は、LD20に並列接続された経路切替用スイッチ12を含む。経路切替用スイッチ12は、たとえばN型MOSFETである。
FIG. 3 is a diagram showing the configuration of the current path switching circuit 105.
As shown in FIG. 3, the current path switching circuit 105 includes a path switching switch 12 connected in parallel to the LD 20. The route switching switch 12 is, for example, an N-type MOSFET.
 制御装置13からのゲート駆動信号GT1によって経路切替用スイッチ12がオン/オフする。経路切替用スイッチ12がオフのときには、リアクトル回路30から出力された電流がLD20に流れる。経路切替用スイッチ12がオンのときには、リアクトル回路30から出力された電流がLD20に電流が流れずに、経路切替用スイッチ12に流れる。すなわち、電源装置100において、レーザのパルス駆動時には経路切替用スイッチ12のオン/オフによって、リアクトル回路30の出力電流が流れる電流経路が切替えられる。電流経路が瞬時に切替えられることによってLD20への電流を高速に立ち下げ又は立ち上げることができる。 The route switching switch 12 is turned on / off by the gate drive signal GT1 from the control device 13. When the path switching switch 12 is off, the current output from the reactor circuit 30 flows through the LD 20. When the path switching switch 12 is on, the current output from the reactor circuit 30 does not flow through the LD 20 but flows through the path switching switch 12. That is, in the power supply device 100, the current path through which the output current of the reactor circuit 30 flows is switched by turning on / off the path switching switch 12 when the laser pulse is driven. By instantly switching the current path, the current to the LD 20 can be turned down or up at high speed.
 図4は、電流経路切替回路105の別の構成を表わす図である。
 図4に示すように、経路切替用スイッチ12がLD20に直列接続される。経路切替用スイッチ12は、たとえばN型MOSFETである。
FIG. 4 is a diagram showing another configuration of the current path switching circuit 105.
As shown in FIG. 4, the route switching switch 12 is connected in series to the LD 20. The route switching switch 12 is, for example, an N-type MOSFET.
 制御装置13からのゲート駆動信号GT1によって経路切替用スイッチ12がオン/オフする。経路切替用スイッチ12がオンのときには、リアクトル回路30から出力された電流がLD20に流れる。経路切替用スイッチ12がオフのときには、リアクトル回路30から電流は流れない。すなわち、電源装置100において、レーザのパルス駆動時には経路切替用スイッチ12のオン/オフによって、LD20への電流を流すことができる。また経路切替用スイッチ12のゲート印可電圧量を調整することにより、経路切替用スイッチ12の抵抗値を調整し、LD20に流れる電流量を変化させることも可能となる。 The route switching switch 12 is turned on / off by the gate drive signal GT1 from the control device 13. When the path switching switch 12 is on, the current output from the reactor circuit 30 flows through the LD 20. When the path switching switch 12 is off, no current flows from the reactor circuit 30. That is, in the power supply device 100, a current can be passed to the LD 20 by turning on / off the path switching switch 12 when the laser pulse is driven. Further, by adjusting the gate applied voltage amount of the path switching switch 12, it is possible to adjust the resistance value of the path switching switch 12 and change the amount of current flowing through the LD 20.
 LD20の駆動電流が大きい場合には、経路切替用スイッチ12をオン・オフする際に生ずるサージ電圧を抑制するために経路切替用スイッチ12にスナバ回路を接続してもよい。スナバ回路に代えて、電圧が一定値以上になると起動するような回路またはツェナーダイオードなどを設けてもよい。電力消費用または電流制限用の抵抗素子が経路切替用スイッチ12に直列に接続されていてもよい。 When the drive current of the LD 20 is large, a snubber circuit may be connected to the path switching switch 12 in order to suppress the surge voltage generated when the path switching switch 12 is turned on / off. Instead of the snubber circuit, a circuit or a Zener diode that starts when the voltage exceeds a certain value may be provided. A resistance element for power consumption or current limiting may be connected in series with the path switching switch 12.
 経路切替用スイッチ12に並列に平滑コンデンサを設けてもよい。平滑コンデンサを設けることによって、LD20の駆動電流の立ち上がりおよび立ち下がりの速度が低下するため、LD20のレーザ光出力の応答速度が低下する恐れがある。しかしながら、電源10から出力される電流を平滑化できるため、LD20に供給される電流を平滑化し、LD20のレーザ光出力をより安定化させることができる。よって、レーザ光出力の応答速度の速さが要求されない場合は、平滑コンデンサを設けた方がよい。電源10から出力される電流をより平滑化するためには、平滑コンデンサの容量を大きくする必要がある。平滑コンデンサの容量を大きくするには、平滑コンデンサの単体の容量を大きくする、あるいは並列接続された複数の平滑コンデンサを使用する方法などが考えられる。但し、レーザ光出力の応答速度の速さを求める場合は、平滑コンデンサの容量を大きくし過ぎると、リアクトル回路30の可変インダクタンス値を最小としても、平滑コンデンサの容量が大きいためレーザ光出力の応答速度を速くすることができない。平滑化、すなわち電流リップルを小さくするには、平滑コンデンサの容量は最小限として、リアクトル回路30の可変インダクタンス値の最大値を大きくすることが望ましい。 A smoothing capacitor may be provided in parallel with the path switching switch 12. By providing the smoothing capacitor, the rising and falling speeds of the drive current of the LD20 are lowered, so that the response speed of the laser beam output of the LD20 may be lowered. However, since the current output from the power supply 10 can be smoothed, the current supplied to the LD 20 can be smoothed and the laser light output of the LD 20 can be further stabilized. Therefore, if the response speed of the laser beam output is not required, it is better to provide a smoothing capacitor. In order to further smooth the current output from the power supply 10, it is necessary to increase the capacity of the smoothing capacitor. To increase the capacity of the smoothing capacitor, it is conceivable to increase the capacity of a single smoothing capacitor or to use a plurality of smoothing capacitors connected in parallel. However, when the response speed of the laser light output is to be obtained, if the capacity of the smoothing capacitor is made too large, the response of the laser light output is large because the capacity of the smoothing capacitor is large even if the variable inductance value of the reactor circuit 30 is minimized. The speed cannot be increased. In order to smooth, that is, to reduce the current ripple, it is desirable to minimize the capacity of the smoothing capacitor and increase the maximum value of the variable inductance value of the reactor circuit 30.
 次に、電流経路切替回路105の動作について説明する。
 電源10が駆動していて、リアクトル回路30に電流が流れている状態において、制御装置13がゲート駆動信号GT1によって経路切替用スイッチ12のオン/オフを制御することによって、リアクトル回路30から出力される電流をLD20に流すかを決めることが出来る。電流経路切替回路105は、ゲート駆動信号GT1に応じてLD20の駆動電流の立ち上げまたは立ち下げを行なう。
Next, the operation of the current path switching circuit 105 will be described.
When the power supply 10 is being driven and a current is flowing through the reactor circuit 30, the control device 13 controls the on / off of the path switching switch 12 by the gate drive signal GT1 to output the output from the reactor circuit 30. It is possible to decide whether or not to pass the current through the LD20. The current path switching circuit 105 raises or lowers the drive current of the LD 20 according to the gate drive signal GT1.
 LD20の駆動電流が大きい場合、経路切替用スイッチ12をオフする際に生じるサージ電圧を抑制するために、経路切替用スイッチ12に対して並列にスナバ回路を設けてもよい。スナバ回路としては、たとえば並列に接続された抵抗素子およびコンデンサに、ダイオードを直列に接続することによって構成されるRCDスナバ回路等を使用してもよい。 When the drive current of the LD 20 is large, a snubber circuit may be provided in parallel with the path switching switch 12 in order to suppress the surge voltage generated when the path switching switch 12 is turned off. As the snubber circuit, for example, an RCD snubber circuit configured by connecting a diode in series to a resistance element and a capacitor connected in parallel may be used.
 レーザ加工装置のような大型の装置では、電流経路切替回路105とLD20とが離れている場合が多い。このような場合、電流経路切替回路105とLD20との間の配線が長くなり、配線の寄生インダクタンスによって、LD20の駆動電流を好適に制御することが困難になる恐れがある。電流経路切替回路105とLD20との間の配線の寄生インダクタンス値を小さくするために、電流経路切替回路105とLD20との間の配線が短くなるようにLD20の近傍に電流経路切替回路105を設置してもよい。また、配線の相互インダクタンスの打ち消し効果が大きくなるように、電流経路切替回路105とLD20との間の配線のループ面積が最小となるように配線してもよい。 In a large device such as a laser processing device, the current path switching circuit 105 and the LD 20 are often separated from each other. In such a case, the wiring between the current path switching circuit 105 and the LD 20 becomes long, and it may be difficult to appropriately control the drive current of the LD 20 due to the parasitic inductance of the wiring. In order to reduce the parasitic inductance value of the wiring between the current path switching circuit 105 and LD20, a current path switching circuit 105 is installed near the LD20 so that the wiring between the current path switching circuit 105 and LD20 is shortened. You may. Further, wiring may be performed so that the loop area of the wiring between the current path switching circuit 105 and the LD 20 is minimized so that the effect of canceling the mutual inductance of the wiring is large.
 このように構成されたレーザ光発生装置200では、電源装置100からLD20に電流が供給されることにより、LD20からレーザが出射される。LD20から出射されたレーザは、集光部52などによって加工ヘッド53まで伝送され、加工ヘッド53内のレンズ54によりワーク300上に集光される。これによりワーク300の切断加工が行われる。ワーク300の加工時には、レーザの集光位置をワーク300上で移動させる必要があるため、ワーク300を移動させる不図示のワーク移動機構上にワーク300が設置され、又はレーザ光発生装置200に加工ヘッド53を移動させる不図示のヘッド移動機構が設けられるものとする。 In the laser light generator 200 configured in this way, the laser is emitted from the LD 20 by supplying a current from the power supply device 100 to the LD 20. The laser emitted from the LD 20 is transmitted to the processing head 53 by the condensing unit 52 and the like, and is condensed on the work 300 by the lens 54 in the processing head 53. As a result, the work 300 is cut. Since it is necessary to move the laser condensing position on the work 300 when processing the work 300, the work 300 is installed on a work moving mechanism (not shown) for moving the work 300, or the work 300 is processed by the laser light generator 200. It is assumed that a head moving mechanism (not shown) for moving the head 53 is provided.
 変換部102、平滑回路104、および電流経路切替回路105において使用されるスイッチとしては、IGBT(Insulated Gate Bipolar Transistor)、またはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のスイッチング素子を用いるとよい。スイッチング素子は、Si(Silicon)の材料で構成されるものとしてもよい。一方、スイッチング素子が、SiC(Silicon Carbide)またはGaN(Gallium Nitride)の材料で構成さている場合には、スイッチング損失、および導通損失を抑えることができるので、電源装置100の高効率化、および低損失化が可能となる。スイッチは、リレーまたはアナログスイッチによって構成されるものとしてもよい。この場合は、精巧なゲート駆動回路が不要となるメリットがある。 As the switch used in the conversion unit 102, the smoothing circuit 104, and the current path switching circuit 105, it is preferable to use a switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The switching element may be made of a material of Si (Silicon). On the other hand, when the switching element is made of a material of SiC (Silicon Carbide) or GaN (Gallium Nitride), switching loss and conduction loss can be suppressed, so that the efficiency of the power supply device 100 can be improved and lowered. Loss can be achieved. The switch may be configured by a relay or an analog switch. In this case, there is an advantage that an elaborate gate drive circuit becomes unnecessary.
 制御装置13は、加工指令出力部81と、スイッチ制御部82と、電流制御部83とを備える。 The control device 13 includes a machining command output unit 81, a switch control unit 82, and a current control unit 83.
 加工指令出力部81は、加工指令である電流指令値IDを出力する。
 スイッチ制御部82は、電流経路切替回路105内の経路切替用スイッチ12のオン/オフを制御するゲート駆動信号GT1、およびリアクトル回路30内のインダクタンス値切替用スイッチ14のオン/オフを制御するゲート駆動信号GT2を出力する。
The machining command output unit 81 outputs a current command value ID, which is a machining command.
The switch control unit 82 controls the on / off of the gate drive signal GT1 for controlling the on / off of the path switching switch 12 in the current path switching circuit 105 and the inductance value switching switch 14 in the reactor circuit 30. The drive signal GT2 is output.
 電流制御部83は、電流検出器11の検出信号によって示されるLD20に供給される電流Iが電流指令値IDと一致するように、電圧変換回路3の動作を制御するための駆動信号DRを生成する。駆動信号DRのオン・オフのデューティ比は、電流Iと電流指令値IDの偏差がなくなるように制御される。 The current control unit 83 generates a drive signal DR for controlling the operation of the voltage conversion circuit 3 so that the current I supplied to the LD 20 indicated by the detection signal of the current detector 11 matches the current command value ID. do. The on / off duty ratio of the drive signal DR is controlled so that there is no deviation between the current I and the current command value ID.
 制御装置13は、さらに、図示しない通信回路を備える。通信回路は、通信回線を介して他の構成要素との間で信号を授受する。 The control device 13 further includes a communication circuit (not shown). The communication circuit sends and receives signals to and from other components via the communication line.
 図5は、実施の形態1のレーザ光発生装置200の動作を示すタイミングチャートである。図5において、上から順に、電流制御部83に入力される電流指令値ID、経路切替用スイッチ12のゲート駆動信号GT1、リアクトル5aに蓄えられたエネルギーが放出されるリアクトル電流と、インダクタンス値切替用スイッチ14のゲート駆動信号GT2、リアクトル5bに蓄えられたエネルギーが放出されるリアクトル電流と、LD20の駆動電流が示される。 FIG. 5 is a timing chart showing the operation of the laser light generator 200 of the first embodiment. In FIG. 5, in order from the top, the current command value ID input to the current control unit 83, the gate drive signal GT1 of the path switching switch 12, the reactor current in which the energy stored in the reactor 5a is released, and the inductance value switching. The gate drive signal GT2 of the switch 14, the inductance current in which the energy stored in the reactor 5b is released, and the drive current of the LD 20 are shown.
 図5における時間軸において、(a)の区間では、レーザ光発生装置200のモードがモードAに設定され、レーザ光発生装置200は、以下のように動作する。 On the time axis in FIG. 5, in the section (a), the mode of the laser light generator 200 is set to mode A, and the laser light generator 200 operates as follows.
 スイッチ制御部82は、ゲート駆動信号GT1をハイレベルに設定し、ゲート駆動信号GT2をロウレベルに設定する。ゲート駆動信号GT1がハイレベルに設定されるので、経路切替用スイッチ12がオンになる。これによって、LD20に電流が流れない。ゲート駆動信号GT2がロウレベルに設定されるので、インダクタンス値切替用スイッチ14がオフとなる。これによって、リアクトル回路30内では、リアクトル5aのみに電流が流れるので、一定の電流リップルを生じるが、リアクトル5aのインダクタンス値が大きいので、リアクトル5aの出力電流の電流リップル量は小さい。 The switch control unit 82 sets the gate drive signal GT1 to a high level and the gate drive signal GT2 to a low level. Since the gate drive signal GT1 is set to a high level, the route switching switch 12 is turned on. As a result, no current flows through the LD20. Since the gate drive signal GT2 is set to the low level, the inductance value switching switch 14 is turned off. As a result, in the reactor circuit 30, a current flows only in the reactor 5a, so that a constant current ripple occurs. However, since the inductance value of the reactor 5a is large, the current ripple amount of the output current of the reactor 5a is small.
 (b)の区間では、レーザ光発生装置200のモードがモードBに設定され、レーザ光発生装置200は、以下のように動作する。 In the section (b), the mode of the laser light generator 200 is set to mode B, and the laser light generator 200 operates as follows.
 加工指令出力部81は、電流指令値IDをIaに設定する。スイッチ制御部82は、ゲート駆動信号GT1をロウレベルに設定し、ゲート駆動信号GT2をロウレベルに維持する。ゲート駆動信号GT1がロウレベルに設定されるので、経路切替用スイッチ12がオフになる。これによって、LD20に電流が流れる。安定した一定電流を必要とする場合は、レーザ光発生装置200のモードがモードBに維持される。 The machining command output unit 81 sets the current command value ID to Ia. The switch control unit 82 sets the gate drive signal GT1 at the low level and maintains the gate drive signal GT2 at the low level. Since the gate drive signal GT1 is set to the low level, the route switching switch 12 is turned off. As a result, a current flows through the LD 20. When a stable constant current is required, the mode of the laser beam generator 200 is maintained in mode B.
 (c)の区間では、レーザ光発生装置200のモードがモードCに設定され、レーザ光発生装置200は、以下のように動作する。 In the section (c), the mode of the laser light generator 200 is set to mode C, and the laser light generator 200 operates as follows.
 スイッチ制御部82は、ゲート駆動信号GT1をハイレベルに設定する。ゲート駆動信号GT1がハイレベルに設定されるので、経路切替用スイッチ12がオンになる。これによって、LD20に電流が流れない。 The switch control unit 82 sets the gate drive signal GT1 to a high level. Since the gate drive signal GT1 is set to a high level, the route switching switch 12 is turned on. As a result, no current flows through the LD20.
 (d)の区間では、レーザ光発生装置200のモードがモードDに設定され、レーザ光発生装置200は、以下のように動作する。 In the section (d), the mode of the laser light generator 200 is set to mode D, and the laser light generator 200 operates as follows.
 スイッチ制御部82は、ゲート駆動信号GT2をハイレベルに設定する。ゲート駆動信号GT2がハイレベルに設定されるので、インダクタンス値切替用スイッチ14がオンとなる。これによって、リアクトル回路30内では、リアクトル5aとリアクトル5bに電流が流れる。リアクトル5bのインダクタンス値は、リアクトル5aのインダクタンス値に比べて小さく設定されているため、リアクトル5bの出力電流の電流リップル量は大きく、電流ピーク値は高くなる。 The switch control unit 82 sets the gate drive signal GT2 to a high level. Since the gate drive signal GT2 is set to a high level, the inductance value switching switch 14 is turned on. As a result, in the reactor circuit 30, a current flows through the reactor 5a and the reactor 5b. Since the inductance value of the reactor 5b is set smaller than the inductance value of the reactor 5a, the current ripple amount of the output current of the reactor 5b is large and the current peak value is high.
 (e)の区間では、加工指令出力部81は、電流指令値IDをIbに設定する。スイッチ制御部82は、ゲート駆動信号GT1をロウレベルに設定する。ゲート駆動信号GT1がロウレベルに設定されるので、経路切替用スイッチ12がオフになる。これによって、LD20に電流が流れる。(e)の区間は、リアクトル回路30から出力される電流であるリアクトル5aの出力電流とリアクトル5bの出力電流との和が規定値TH以上となる期間である。この期間は、リアクトル5bの出力電流がピークとなる時点およびその時点の付近の時間である。これによって、リアクトル回路30から出力される電流が大きい期間に限り、LD20に電流を流すことが可能となる。 In the section (e), the machining command output unit 81 sets the current command value ID to Ib. The switch control unit 82 sets the gate drive signal GT1 to a low level. Since the gate drive signal GT1 is set to the low level, the route switching switch 12 is turned off. As a result, a current flows through the LD 20. The section (e) is a period in which the sum of the output current of the reactor 5a and the output current of the reactor 5b, which is the current output from the reactor circuit 30, is equal to or more than the specified value TH. This period is the time at which the output current of the reactor 5b peaks and the time near that time. As a result, the current can be passed through the LD 20 only during the period when the current output from the reactor circuit 30 is large.
 以上のように、(e)の期間では、LD20から短パルスで高いピークのレーザ光出力を得ることができる。短パルスであるために、LD20の発熱を抑えることができる。従来ではレーザが長時間ワークに照射されることによって、ワーク側への熱負荷が高くなる。その結果、レーザ加工精度の悪化する場合、およびレーザ加工切断面の加工状態が悪化する場合があった。本実施の形態では、短パルスで高いピークのレーザ光出力によって、ワークへの熱負荷を局所的にできるので、上記問題を低減することができる。 As described above, during the period (e), a laser beam output with a high peak can be obtained from the LD20 with a short pulse. Since it is a short pulse, the heat generation of the LD 20 can be suppressed. Conventionally, when the laser irradiates the work for a long time, the heat load on the work side increases. As a result, there are cases where the laser processing accuracy deteriorates and the processing state of the laser processing cut surface deteriorates. In the present embodiment, the heat load on the work can be locally applied by the laser light output having a high peak with a short pulse, so that the above problem can be reduced.
 次に、リアクトル回路30のインダクタンス値とLD20へ流れる電流との関係を表わすシミュレーション結果を説明する。 Next, a simulation result showing the relationship between the inductance value of the reactor circuit 30 and the current flowing through the LD 20 will be described.
 図6(a)は、リアクトル回路30のインダクタンス値が10μHのときのLD20へ流れる電流を示す図である。LD20へ流れる電流ピーク値は、254Aである。最大と最小の電流の差をリップル量とすると、このときのリップル量はΔ7Aである。 FIG. 6A is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 10 μH. The peak value of the current flowing through the LD 20 is 254 A. Assuming that the difference between the maximum and minimum currents is the ripple amount, the ripple amount at this time is Δ7A.
 図6(b)は、リアクトル回路30のインダクタンス値が1μHのときのLD20へ流れる電流を示す図である。LD20へ流れる電流ピーク値は、282Aである。リップル量はΔ66Aである。 FIG. 6B is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 1 μH. The peak value of the current flowing through the LD 20 is 282A. The amount of ripple is Δ66A.
 図6(c)は、リアクトル回路30のインダクタンス値が0.1μHのときのLD20へ流れる電流を示す図である。LD20へ流れる電流ピーク値は、498Aである。リップル量はΔ488Aである。 FIG. 6C is a diagram showing the current flowing through the LD 20 when the inductance value of the reactor circuit 30 is 0.1 μH. The peak value of the current flowing through the LD 20 is 498 A. The amount of ripple is Δ488A.
 リアクトル回路30のインダクタンス値が10μHの時と比べて、0.1μHの時は、電流ピーク値を約2倍にすることが可能となることが分かる。このように、安定したレーザ光出力を得たい場合は、リアクトル回路30のインダクタンス値を大きくすればよい。一方、高いピークのレーザ光出力を得たい場合は、リアクトル回路30のインダクタンス値を小さくすればよい。さらに、電流経路切替回路105を使用して、高いピークの電流期間のみLD20へ電流を流すように経路切替用スイッチ12をゲート駆動信号GT1によって制御すればよい。 It can be seen that when the inductance value of the reactor circuit 30 is 0.1 μH, the current peak value can be doubled as compared with the case where the inductance value is 10 μH. In this way, when it is desired to obtain a stable laser beam output, the inductance value of the reactor circuit 30 may be increased. On the other hand, when it is desired to obtain a laser beam output having a high peak, the inductance value of the reactor circuit 30 may be reduced. Further, the current path switching circuit 105 may be used to control the path switching switch 12 by the gate drive signal GT1 so that the current flows to the LD 20 only during the high peak current period.
 実施の形態2.
 図7は、実施の形態2のリアクトル回路30cの構成を表わす図である。
Embodiment 2.
FIG. 7 is a diagram showing the configuration of the reactor circuit 30c according to the second embodiment.
 リアクトル回路30cは、インダクタンス値が同じ2個のリアクトル5a,5cと、1個のインダクタンス値切替用スイッチ14とを備える。 The reactor circuit 30c includes two reactors 5a and 5c having the same inductance value and one inductance value switching switch 14.
 ノードND3とノードND5との間に、直列接続されたリアクトル5cとインダクタンス値切替用スイッチ14とが配置される。ノードND3とノードND5との間に、リアクトル5aが配置される。スイッチ制御部82が、インダクタンス値切替用スイッチ14をオフにして、リアクトル5aのみを電流が流れるようにすることによって、リアクトル回路30aのインダクタンス値を大きくすることができる。スイッチ制御部82は、インダクタンス値切替用スイッチ14をオンにして、リアクトル5aとリアクトル5cとに電流が流れるようにすることによって、リアクトル回路30cのインダクタンス値を小さくすることができる。 A reactor 5c connected in series and an inductance value switching switch 14 are arranged between the node ND3 and the node ND5. A reactor 5a is arranged between the node ND3 and the node ND5. The switch control unit 82 can increase the inductance value of the reactor circuit 30a by turning off the inductance value switching switch 14 so that the current flows only through the reactor 5a. The switch control unit 82 can reduce the inductance value of the reactor circuit 30c by turning on the inductance value switching switch 14 so that a current flows through the reactor 5a and the reactor 5c.
 本実施の形態では、同じインダクタンス値の2つのリアクトルを使用することによって、部品の種類の数を減らすことができる。なお、リアクトル5cとインダクタンス値切替用スイッチ14とは、どちらがノードND3側もしくはノードND5側に配置されてもよい。 In the present embodiment, the number of types of parts can be reduced by using two reactors having the same inductance value. Either the reactor 5c or the inductance value switching switch 14 may be arranged on the node ND3 side or the node ND5 side.
 実施の形態3.
 図8は、実施の形態3のリアクトル回路30dの構成を表わす図である。
Embodiment 3.
FIG. 8 is a diagram showing the configuration of the reactor circuit 30d according to the third embodiment.
 リアクトル回路30dは、リアクトル5cとインダクタンス値切替用スイッチ14とを備える。リアクトル5cの中点が分岐して、インダクタンス値切替用スイッチ14に接続される。スイッチ制御部82が、インダクタンス値切替用スイッチ14のオン/オフを制御することによって、リアクトル回路30dのインダクタンス値を変えることができる。 The reactor circuit 30d includes a reactor 5c and an inductance value switching switch 14. The midpoint of the reactor 5c branches and is connected to the inductance value switching switch 14. The switch control unit 82 can change the inductance value of the reactor circuit 30d by controlling the on / off of the inductance value switching switch 14.
 本実施の形態では、リアクトル回路30d内のリアクトルの個数を1個とすることができる。 In the present embodiment, the number of reactors in the reactor circuit 30d can be one.
 実施の形態4.
 図9は、実施の形態4のリアクトル回路30eの構成を表わす図である。
Embodiment 4.
FIG. 9 is a diagram showing the configuration of the reactor circuit 30e according to the fourth embodiment.
 リアクトル回路30eは、インダクタンス値が相違する2個のリアクトル5a,5bと、2個のインダクタンス値切替用スイッチ14a,14bとを備える。リアクトル5a,5bのインダクタンス値の大小は、どちらでもよい。 The reactor circuit 30e includes two reactors 5a and 5b having different inductance values and two inductance value switching switches 14a and 14b. The magnitude of the inductance value of the reactors 5a and 5b may be either.
 ノードND3とノードND5との間に、直列接続されたリアクトル5bとインダクタンス値切替用スイッチ14bとが配置される。ノードND3とノードND5との間に、直列接続されたリアクトル5aとインダクタンス値切替用スイッチ14aとが配置される。スイッチ制御部82が、ゲート駆動信号GT2によってインダクタンス値切替用スイッチ14aのオン/オフを制御する。スイッチ制御部82が、ゲート駆動信号GT3によってインダクタンス値切替用スイッチ14bのオン/オフを制御する。リアクトル5a、5bのどちらの電流経路も、インダクタンス値切替用スイッチ14a,14bによって、オフにすることができるため、LD20のオン/オフの制御も可能となる。なお、リアクトル5a,5bとインダクタンス値切替用スイッチ14a,14bとは、どちらがノードND3側もしくはノードND5側に配置されてもよい。 A reactor 5b and an inductance value switching switch 14b connected in series are arranged between the node ND3 and the node ND5. A reactor 5a connected in series and an inductance value switching switch 14a are arranged between the node ND3 and the node ND5. The switch control unit 82 controls the on / off of the inductance value switching switch 14a by the gate drive signal GT2. The switch control unit 82 controls the on / off of the inductance value switching switch 14b by the gate drive signal GT3. Since both current paths of the reactors 5a and 5b can be turned off by the inductance value switching switches 14a and 14b, it is possible to control the LD20 on / off. Either the reactors 5a and 5b and the inductance value switching switches 14a and 14b may be arranged on the node ND3 side or the node ND5 side.
 実施の形態5.
 図10は、実施の形態5のレーザ光発生装置200aの構成を表わす図である。実施の形態5のレーザ光発生装置200aが、実施の形態1のレーザ光発生装置200と相違する点は、実施の形態5のレーザ光発生装置200aが、平滑回路104に代えて、平滑回路104aを備える点である。
Embodiment 5.
FIG. 10 is a diagram showing the configuration of the laser light generator 200a according to the fifth embodiment. The difference between the laser light generator 200a of the fifth embodiment and the laser light generator 200 of the first embodiment is that the laser light generator 200a of the fifth embodiment replaces the smoothing circuit 104 with the smoothing circuit 104a. It is a point to prepare.
 平滑回路104aは、過電圧防止機能を有するリアクトル回路30aと、実施の形態1と同様の平滑コンデンサ6とを備える。 The smoothing circuit 104a includes a reactor circuit 30a having an overvoltage prevention function and a smoothing capacitor 6 similar to that of the first embodiment.
 リアクトル回路30aは、リアクトル5bと、リアクトル5aと、インダクタンス値切替用スイッチ14と、過電圧防止回路15とを備える。 The reactor circuit 30a includes a reactor 5b, a reactor 5a, an inductance value switching switch 14, and an overvoltage prevention circuit 15.
 実施の形態1と同様に、直列接続されたリアクトル5bと、インダクタンス値切替用スイッチ14とが、ノードND3とノードND5との間に配置される。実施の形態1と同様に、リアクトル5aがノードND3とノードND5との間に配置される。 Similar to the first embodiment, the reactor 5b connected in series and the inductance value switching switch 14 are arranged between the node ND3 and the node ND5. Similar to the first embodiment, the reactor 5a is arranged between the node ND3 and the node ND5.
 過電圧防止回路15が、リアクトル5bとインダクタンス値切替用スイッチ14との間のノードND8と、ノードND7との間に配置される。過電圧防止回路15は、ツェナーダイオードまたはスイッチング素子によって構成される。スイッチング素子だけでは、過電流が流れてしまう場合は、スイッチング素子に抵抗素子を直接接続してもよい。 The overvoltage prevention circuit 15 is arranged between the node ND8 between the reactor 5b and the inductance value switching switch 14 and the node ND7. The overvoltage protection circuit 15 is composed of a Zener diode or a switching element. If an overcurrent flows only with the switching element, a resistance element may be directly connected to the switching element.
 インダクタンス値切替用スイッチ14の両端の電圧が、ある電圧VT以上となると、過電圧防止回路15はオンとなる。これによって、リアクトル5bに蓄積された電荷を放出することができる。その結果、インダクタンス値切替用スイッチ14の両端にかかる電圧を耐圧以下に抑えることができるので、インダクタンス値切替用スイッチ14の故障を防ぐことができる。 When the voltage across the inductance value switching switch 14 exceeds a certain voltage VT, the overvoltage prevention circuit 15 is turned on. As a result, the electric charge accumulated in the reactor 5b can be released. As a result, the voltage applied across the inductance value switching switch 14 can be suppressed to the withstand voltage or less, so that the failure of the inductance value switching switch 14 can be prevented.
 ノードND3側にインダクタンス値切替用スイッチ14が配置され、リアクトル5bがノードND5側に配置されるときも同様に、インダクタンス値切替用スイッチ14とリアクトル5bとの間に過電圧防止回路15が配置されることによって、インダクタンス値切替用スイッチ14の両端にかかる電圧を耐圧以下に抑えることができる。 Similarly, when the inductance value switching switch 14 is arranged on the node ND3 side and the reactor 5b is arranged on the node ND5 side, the overvoltage prevention circuit 15 is arranged between the inductance value switching switch 14 and the reactor 5b. Thereby, the voltage applied to both ends of the inductance value switching switch 14 can be suppressed to the withstand voltage or less.
 実施の形態6.
 図11は、実施の形態6のレーザ光発生装置200bの構成を表わす図である。実施の形態6のレーザ光発生装置200bが、実施の形態1のレーザ光発生装置200と相違する点は、実施の形態5のレーザ光発生装置200bが、平滑回路104に代えて、平滑回路104bを備える点である。
Embodiment 6.
FIG. 11 is a diagram showing the configuration of the laser light generator 200b according to the sixth embodiment. The difference between the laser light generator 200b of the sixth embodiment and the laser light generator 200 of the first embodiment is that the laser light generator 200b of the fifth embodiment replaces the smoothing circuit 104 with the smoothing circuit 104b. It is a point to prepare.
 平滑回路104bは、リアクトル回路30bと、平滑コンデンサ6aと、平滑コンデンサ6bとを備える。 The smoothing circuit 104b includes a reactor circuit 30b, a smoothing capacitor 6a, and a smoothing capacitor 6b.
 リアクトル回路30bは、リアクトル5aと、リアクトル5bと、インダクタンス値切替用スイッチ14aと、インダクタンス値切替用スイッチ14bと、過電圧防止回路15aと、過電圧防止回路15bとを備える。 The reactor circuit 30b includes a reactor 5a, a reactor 5b, an inductance value switching switch 14a, an inductance value switching switch 14b, an overvoltage prevention circuit 15a, and an overvoltage prevention circuit 15b.
 平滑コンデンサ6aは、ノードND9とノードND7との間に配置される。平滑コンデンサ6bは、ノードND8とノードND7との間に配置される。リアクトル5bは、ノードND3とノードND8との間に配置される。リアクトル5aは、ノードND3とノードND9との間に配置される。インダクタンス値切替用スイッチ14bは、ノードND8とノードND5との間に配置される。インダクタンス値切替用スイッチ14aは、ノードND9とノードND5との間に配置される。過電圧防止回路15bは、ノードND8とノードND7との間に配置される。過電圧防止回路15aは、ノードND9とノードND7との間に配置される。過電圧防止回路15a,15bは、スイッチング素子またはツェナーダイオードなどによって構成される。 The smoothing capacitor 6a is arranged between the node ND 9 and the node ND 7. The smoothing capacitor 6b is arranged between the node ND8 and the node ND7. The reactor 5b is arranged between the node ND3 and the node ND8. The reactor 5a is arranged between the node ND3 and the node ND9. The inductance value switching switch 14b is arranged between the node ND8 and the node ND5. The inductance value switching switch 14a is arranged between the node ND 9 and the node ND 5. The overvoltage prevention circuit 15b is arranged between the node ND8 and the node ND7. The overvoltage prevention circuit 15a is arranged between the node ND 9 and the node ND 7. The overvoltage prevention circuits 15a and 15b are configured by a switching element, a Zener diode, or the like.
 このようにリアクトルと平滑コンデンサとスイッチのセットが2個以上設けられている場合に、電流リップル量が小さい安定した電流を供給することができるとともに、ピークの電流値を高くすることができる。 When two or more sets of a reactor, a smoothing capacitor, and a switch are provided in this way, it is possible to supply a stable current with a small amount of current ripple and to increase the peak current value.
 例えば、リアクトル5aのインダクタンス値をリアクトル5bのインダクタンス値よりも大きくし、平滑コンデンサ6aの容量を平滑コンデンサ6bの容量よりも大きくすることができる。 For example, the inductance value of the reactor 5a can be made larger than the inductance value of the reactor 5b, and the capacity of the smoothing capacitor 6a can be made larger than the capacity of the smoothing capacitor 6b.
 電流の急峻な立ち上りが所望する場合は、インダクタンス値切替用スイッチ14bをオンにして、リアクトル5bに電流を流す。この場合には、平滑コンデンサ6bの容量は小さいので、短い充電時間で出力電流を所望の値まで増加させることができる。 If a steep rise of the current is desired, turn on the inductance value switching switch 14b and let the current flow through the reactor 5b. In this case, since the capacity of the smoothing capacitor 6b is small, the output current can be increased to a desired value in a short charging time.
 一方、通常運転時の安定した出力電流を所望するときは、インダクタンス値切替用スイッチ14aをオンにして、リアクトル5aに電流を流す。この場合には、出力電流の電流リップルを抑制することができる。 On the other hand, when a stable output current during normal operation is desired, the inductance value switching switch 14a is turned on and a current is passed through the reactor 5a. In this case, the current ripple of the output current can be suppressed.
 リアクトル5bとインダクタンス値切替用スイッチ14bとの間のノードND8、リアクトル5aとインダクタンス値切替用スイッチ14aとの間のノードND9に、それぞれ過電圧防止のための過電圧防止回路15b、15aを設けられる。インダクタンス値切替用スイッチ14aの両端の電圧がある電圧VT以上となると、過電圧防止回路15aはオンとなる。インダクタンス値切替用スイッチ14bの両端の電圧がある電圧VT以上となると、過電圧防止回路15bはオンとなる。これによって、インダクタンス値切替用スイッチ14b、14aの破壊を防止することができる。 The node ND8 between the reactor 5b and the inductance value switching switch 14b and the node ND9 between the reactor 5a and the inductance value switching switch 14a are provided with overvoltage prevention circuits 15b and 15a for overvoltage prevention, respectively. When the voltage across the inductance value switching switch 14a becomes a certain voltage VT or higher, the overvoltage prevention circuit 15a is turned on. When the voltage across the inductance value switching switch 14b becomes a certain voltage VT or higher, the overvoltage prevention circuit 15b is turned on. This makes it possible to prevent the inductance value switching switches 14b and 14a from being destroyed.
 ノードND3側にインダクタンス値切替用スイッチ14が配置され、リアクトル5がノードND5側に配置されるときも同様に、インダクタンス値切替用スイッチ14とリアクトル5の間に過電圧防止回路15を配置することによって、インダクタンス値切替用スイッチ14の両端にかかる電圧を耐圧以下に抑えることができる。 Similarly, when the inductance value switching switch 14 is arranged on the node ND3 side and the reactor 5 is arranged on the node ND5 side, the overvoltage prevention circuit 15 is arranged between the inductance value switching switch 14 and the reactor 5. , The voltage applied to both ends of the inductance value switching switch 14 can be suppressed to the withstand voltage or less.
 実施の形態7.
 リアクトルのインダクタンス値Lは、以下の式で表される。
Embodiment 7.
The inductance value L of the reactor is expressed by the following equation.
 L=K×μ×π×a2×n2/b・・・(2)
 Kは長岡係数、μは透磁率、aはリアクトル半径、bはリアクトルの長さ、nはリアクトルの巻数を示す。
L = K × μ × π × a 2 × n 2 / b ... (2)
K is the Nagaoka coefficient, μ is the magnetic permeability, a is the reactor radius, b is the reactor length, and n is the number of turns of the reactor.
 図12(a)および(b)は、機械的にリアクトルのインダクタンス値を変える第1の方法を説明するための図である。式(2)から、リアクトルRTの長さbを変えることにより、インダクタンス値を変えることができる。図12(a)、(b)に示すように、リアクトルRTの長さbを機械的に変えることによってインダクタンス値を変更することができる。例えば、リアクトルRTの両端を絶縁物251a,251bで固定して、両端の絶縁物251a,251bの距離をボールねじ253とモータ254(ステッピングモータなど)により、リアクトルRTの長さbを機械的に変えることができる。 12 (a) and 12 (b) are diagrams for explaining the first method of mechanically changing the inductance value of the reactor. From the equation (2), the inductance value can be changed by changing the length b of the reactor RT. As shown in FIGS. 12A and 12B, the inductance value can be changed by mechanically changing the length b of the reactor RT. For example, both ends of the reactor RT are fixed with insulators 251a and 251b, and the distance between the insulators 251a and 251b at both ends is mechanically adjusted by using a ball screw 253 and a motor 254 (stepping motor, etc.) to set the length b of the reactor RT. Can be changed.
 図12(c)および(d)は、機械的にリアクトルのインダクタンス値を変える第2の方法を説明するための図である。図12(c)および(d)に示すように、リアクトルRTの一端を固定して、他端の位置を変更させることにより、インダクタンス値を変更することもできる。 FIGS. 12 (c) and 12 (d) are diagrams for explaining a second method of mechanically changing the inductance value of the reactor. As shown in FIGS. 12 (c) and 12 (d), the inductance value can be changed by fixing one end of the reactor RT and changing the position of the other end.
 図12(e)および(f)は、機械的にリアクトルのインダクタンス値を変える第3の方法を説明するための図である。リアクトルが2つのサブリアクトルRTa,RTbによって構成されている場合、それぞれのサブリアクトルRTa、RTbの間の距離を変えることによって、インダクタンス値を変えることもできる。それぞれの漏れ磁束の影響によるものである。図12(e)、(f)では、サブリアクトルRTa、RTbを固定している台261a,261bの位置をモータ254とボールねじ253とによって変化させることによって、インダクタンス値を変更している。 FIGS. 12 (e) and 12 (f) are diagrams for explaining a third method of mechanically changing the inductance value of the reactor. When the reactor is composed of two subreactors RTa and RTb, the inductance value can be changed by changing the distance between the respective subreactors RTa and RTb. This is due to the influence of each leakage flux. In FIGS. 12 (e) and 12 (f), the inductance value is changed by changing the positions of the bases 261a and 261b fixing the subreactors RTa and RTb by the motor 254 and the ball screw 253.
 図13は、空芯コイルの長さに対するインダクタンス値の変化を表わす図である。図13には、コイル半径が50mmで巻き数を10ターンとした場合のインダクタンス値のコイル長依存性が示されている。コイルの長さを50mmから400mmの8倍にすることによって、コイルのインダクタンス値が10μHから2.3μHにできる。 FIG. 13 is a diagram showing a change in the inductance value with respect to the length of the air core coil. FIG. 13 shows the coil length dependence of the inductance value when the coil radius is 50 mm and the number of turns is 10 turns. By increasing the length of the coil to 8 times from 50 mm to 400 mm, the inductance value of the coil can be increased from 10 μH to 2.3 μH.
 上記のような機械的にリアクトルのインダクタンス値を変える方法は、リアクトルのインダクタンス値を精度よく調整が必要な場合にも使用することができる。例えば、電流値を精度よく合わせるためにはリアクトルのインダクタンス値の調整が必要となるが、通常のリアクトルの製造手法ではインダクタンスのばらつきが±5%以上となる。このような場合は、モータ254ではなく、製造時に手動でリアクトルの長さ、およびリアクトル同士の距離を調整することによって、量産時のインダクタンス値のばらつきを低減することも可能となる。 The above method of mechanically changing the inductance value of the reactor can be used even when the inductance value of the reactor needs to be adjusted accurately. For example, it is necessary to adjust the inductance value of the reactor in order to match the current value accurately, but in the usual reactor manufacturing method, the inductance variation is ± 5% or more. In such a case, it is possible to reduce the variation in the inductance value at the time of mass production by manually adjusting the length of the reactor and the distance between the reactors at the time of manufacturing instead of the motor 254.
 図12(a)~(f)には、空芯リアクトルが示されているが、リアクトルは、空芯に限らずフェライトなどの磁性体材料によって構成されてもよい。この場合には、大きなインダクタンス値を得ることができる。 Although the air core reactor is shown in FIGS. 12 (a) to 12 (f), the reactor is not limited to the air core and may be made of a magnetic material such as ferrite. In this case, a large inductance value can be obtained.
 インダクタンス値切替用スイッチ14によるリアクトル回路30のインダクタンスの切替と、図12(a)~(f)に示すような機械的な手段によるリアクトル回路30のインダクタンスの切替えとを組み合わせて使用すると、よりインダクタンス値の範囲を広げることができる。 When the inductance switching of the reactor circuit 30 by the inductance value switching switch 14 and the inductance switching of the reactor circuit 30 by mechanical means as shown in FIGS. 12A to 12F are used in combination, the inductance becomes higher. The range of values can be expanded.
 なお、手動によって、リアクトルの長さ、およびリアクトル同士の距離を調整することによって、リアクトル回路30のインダクタンスを初期設定した後に、インダクタンス値切替用スイッチ14によって、リアクトル回路30のインダクタンスの切替を実行することによって、インダクタンス値の範囲を広げることができる。 After initializing the inductance of the reactor circuit 30 by manually adjusting the length of the reactor and the distance between the reactors, the inductance value switching switch 14 switches the inductance of the reactor circuit 30. Thereby, the range of the inductance value can be expanded.
 実施の形態8.
 図14は、実施の形態8のレーザ加工装置の構成を示す図である。レーザ加工装置は、レーザ光発生装置51、集光部52、加工ヘッド53、レンズ54、および位置決め装置55を備える。集光部52としては、光ファイバ、プリズム、ミラー、光結合素子、または光増幅器を用いることができる。
Embodiment 8.
FIG. 14 is a diagram showing the configuration of the laser processing apparatus of the eighth embodiment. The laser processing device includes a laser light generator 51, a condensing unit 52, a processing head 53, a lens 54, and a positioning device 55. As the light collecting unit 52, an optical fiber, a prism, a mirror, an optical coupling element, or an optical amplifier can be used.
 レーザ光発生装置51は、上記の実施の形態1~8のレーザ光発生装置のいずれかである。レーザ光発生装置51は、リップルの小さなレーザ光βを出力する。 The laser light generator 51 is one of the laser light generators of the above-described first to eighth embodiments. The laser light generator 51 outputs the laser light β having a small ripple.
 集光部52は、レーザ光発生装置51から出力されたレーザ光βを加工ヘッド53に伝送する。 The condensing unit 52 transmits the laser light β output from the laser light generator 51 to the processing head 53.
 加工ヘッド53は、対象物56の表面にレーザ光βを垂直に照射する。
 レンズ54は、加工ヘッド53と対象物56の間に設けられる。レンズ54の焦点は対象物56の表面に合わせられている。
The processing head 53 vertically irradiates the surface of the object 56 with the laser beam β.
The lens 54 is provided between the processing head 53 and the object 56. The lens 54 is focused on the surface of the object 56.
 対象物56は、位置決め装置55に搭載される。位置決め装置55は、対象物56を水平および垂直方向に移動させることによって、対象物56の表面の被加工位置をレンズ54の焦点に合わせることができる。レーザ光発生装置51から出射されたレーザ光βは、集光部52、加工ヘッド53、およびレンズ54を介して対象物56の被加工位置に照射されて、対象物56が加工される。 The object 56 is mounted on the positioning device 55. By moving the object 56 in the horizontal and vertical directions, the positioning device 55 can focus the workpiece position on the surface of the object 56 on the lens 54. The laser light β emitted from the laser light generator 51 is irradiated to the processed position of the object 56 via the condensing unit 52, the processing head 53, and the lens 54, and the object 56 is processed.
 実施の形態8では、上述の実施形態1~7のレーザ光発生装置が用いられるので、レーザ加工時に要求するリップル量を制御することができる。これによって、リップルが小さな安定したレーザ光βを対象物56に照射することができる。その結果、レーザ加工時の加工断面の平坦精度の向上を図ることができる。また、高いピークで短パルスのレーザを対象物56に照射することができるので、レーザ加工時の加工のバリなどを抑制したりすることができる。 In the eighth embodiment, since the laser light generators of the above-mentioned embodiments 1 to 7 are used, the ripple amount required at the time of laser processing can be controlled. As a result, the object 56 can be irradiated with a stable laser beam β having a small ripple. As a result, it is possible to improve the flatness accuracy of the machined cross section during laser machining. Further, since the object 56 can be irradiated with a short pulse laser at a high peak, it is possible to suppress processing burrs and the like during laser processing.
 実施の形態9.
 制御装置13は、専用処理回路のような専用のハードウェアによって実現されるか、あるいはソフトウェアと汎用のハードウェアとによって実現される。
Embodiment 9.
The control device 13 is realized by dedicated hardware such as a dedicated processing circuit, or is realized by software and general-purpose hardware.
 制御装置13が専用のハードウェアによって構成される場合に、専用処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。 When the control device 13 is configured by dedicated hardware, the dedicated processing circuit includes a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field Programmable). Gate Array) or a combination of these is applicable.
 図15は、制御装置13がソフトウェアと汎用のハードウェアによって実現される場合の制御装置13の構成を表わす図である。 FIG. 15 is a diagram showing the configuration of the control device 13 when the control device 13 is realized by software and general-purpose hardware.
 制御装置13は、バス133に接続されたプロセッサ131および記憶装置132によって構成される。 The control device 13 is composed of a processor 131 and a storage device 132 connected to the bus 133.
 制御装置13の各機能は、ソフトウェア、ファームウェアまたはこれらの組合せにより実現される。ソフトウェアまたはファームウェアは、プログラムとして記述され、記憶装置132に記憶される。プロセッサ131は、記憶装置132に記憶されたプログラムを読み出して実行する。これらのプログラムは、制御装置13の各機能を実現する手順および方法をコンピュータに実行させるものであるとも言える。 Each function of the control device 13 is realized by software, firmware, or a combination thereof. The software or firmware is written as a program and stored in the storage device 132. The processor 131 reads and executes the program stored in the storage device 132. It can be said that these programs cause the computer to execute the procedure and the method for realizing each function of the control device 13.
 記憶装置132は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、またはEEPROM(Electrically Erasable Programmable Read Only Memory(登録商標))といった半導体メモリが該当する。半導体メモリは、不揮発性メモリでもよいし揮発性メモリでもよい。また、記憶装置は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)が該当する。 The storage device 132 corresponds to a semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory (registered trademark)). do. The semiconductor memory may be a non-volatile memory or a volatile memory. In addition to semiconductor memory, the storage device includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versatile Disc).
 今回開示された各実施の形態は、技術的に矛盾しない範囲で適宜組み合わせて実施することも予定されている。そして、今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 It is also planned that the embodiments disclosed this time will be appropriately combined and implemented within a technically consistent range. And it should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1,103 整流回路、2,6,6a,6b 平滑コンデンサ、3 電圧変換回路、4 トランス、5a,5b,5c,RT リアクトル、10 電源、11 電流検出器、12,12a 経路切替用スイッチ、13 制御装置、14,14a,14b インダクタンス値切替用スイッチ、15,15a,15b 過電圧防止回路、30,30a,30b,30c,30d,30e リアクトル回路、51,200,200a,200b,200c レーザ光発生装置、52 集光部、53 加工ヘッド、54 レンズ、55 位置決め装置、56 対象物、81 加工指令出力部、82 スイッチ制御部、83 電流制御部、100 LD駆動用電源装置、101 整流部、102 変換部、104,104a,104b 平滑回路、105,105a 電流経路切替回路、131 プロセッサ、132 記憶装置、133 バス、251a,251b 絶縁物、253 ボールねじ、254 モータ、261a,261b 台、300 ワーク、400 交流電源、RTa,RTb サブリアクトル。 1,103 rectifier circuit, 2,6,6a, 6b smoothing capacitor, 3 voltage conversion circuit, 4 transformer, 5a, 5b, 5c, RT reactor, 10 power supply, 11 current detector, 12, 12a path switching switch, 13 Control device, 14, 14a, 14b Invertance value changeover switch, 15, 15a, 15b Overvoltage prevention circuit, 30, 30a, 30b, 30c, 30d, 30e reactor circuit, 51, 200, 200a, 200b, 200c Laser light generator , 52 Condensing unit, 53 processing head, 54 lens, 55 positioning device, 56 object, 81 processing command output unit, 82 switch control unit, 83 current control unit, 100 LD drive power supply unit, 101 rectifier unit, 102 conversion Unit, 104,104a, 104b smoothing circuit, 105,105a current path switching circuit, 131 processor, 132 storage device, 133 bus, 251a, 251b insulator, 253 ball screw, 254 motor, 261a, 261b stand, 300 work, 400 AC power supply, RTa, RTb subreactor.

Claims (14)

  1.  レーザダイオードと、
     電流を供給する電源と、
     前記電源と接続され、可変のインダクタンス値を有するリアクトル回路と、
     前記リアクトル回路から出力される電流を前記レーザダイオードに供給するか否かを切り替えるように構成された電流経路切替回路と、
     前記電流経路切替回路を制御し、かつ前記リアクトル回路のインダクタンス値を設定する制御装置とを備えた、レーザ光発生装置。
    With a laser diode
    A power supply that supplies current,
    A reactor circuit that is connected to the power supply and has a variable inductance value,
    A current path switching circuit configured to switch whether or not to supply the current output from the reactor circuit to the laser diode, and a current path switching circuit.
    A laser light generator including a control device for controlling the current path switching circuit and setting an inductance value of the reactor circuit.
  2.  前記制御装置は、前記レーザ光発生装置のモードが第1のモードにおいて、前記リアクトル回路のインダクタンス値を小さく設定し、かつ前記リアクトル回路から出力された電流が前記レーザダイオードに流れるように電流経路切替回路を制御する、請求項1記載のレーザ光発生装置。 In the control device, when the mode of the laser light generator is the first mode, the inductance value of the reactor circuit is set small, and the current path is switched so that the current output from the reactor circuit flows to the laser diode. The laser light generator according to claim 1, which controls a circuit.
  3.  前記制御装置は、前記レーザ光発生装置のモードが第2のモードにおいて、前記リアクトル回路のインダクタンス値を大きく設定し、かつ前記リアクトル回路から出力される電流が規定値以上となる期間にのみ前記リアクトル回路から出力された電流が前記レーザダイオードに流れるように電流経路切替回路を制御する、請求項1記載のレーザ光発生装置。 In the control device, when the mode of the laser light generator is the second mode, the inductance value of the reactor circuit is set large, and the reactor is used only during the period when the current output from the reactor circuit becomes a specified value or more. The laser light generator according to claim 1, wherein the current path switching circuit is controlled so that the current output from the circuit flows through the laser diode.
  4.  前記リアクトル回路は、
     前記電源の第1の出力端子である第1のノードと、前記リアクトル回路の出力端子である第2のノードとの間に直列に接続された第1のリアクトルおよびインダクタンス値切替用スイッチと、
     前記第1のノードと前記第2のノードとの間に配置された第2のリアクトルとを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。
    The reactor circuit is
    A first reactor and an inductance value switching switch connected in series between a first node which is a first output terminal of the power supply and a second node which is an output terminal of the reactor circuit.
    The laser light generator according to any one of claims 1 to 3, further comprising a second reactor disposed between the first node and the second node.
  5.  前記リアクトル回路は、さらに、
     前記第1のリアクトルと前記インダクタンス値切替用スイッチとの間の第3のノードと、前記レーザダイオードの基準電源との間に配置された過電圧保護回路を含む、請求項4記載のレーザ光発生装置。
    The reactor circuit further
    The laser light generator according to claim 4, further comprising an overvoltage protection circuit arranged between the third node between the first reactor and the inductance value switching switch and the reference power supply of the laser diode. ..
  6.  前記第1のリアクトルのインダクタンス値は、前記第2のリアクトルのインダクタンス値よりも小さい、請求項4~5のいずれか1項に記載のレーザ光発生装置。 The laser light generator according to any one of claims 4 to 5, wherein the inductance value of the first reactor is smaller than the inductance value of the second reactor.
  7.  前記第1のリアクトルのインダクタンス値は、前記第2のリアクトルのインダクタンス値と等しい、請求項4~5のいずれか1項に記載のレーザ光発生装置。 The laser light generator according to any one of claims 4 to 5, wherein the inductance value of the first reactor is equal to the inductance value of the second reactor.
  8.  前記リアクトル回路は、
     前記電源の第1の出力端子である第1のノードと、前記リアクトル回路の出力端子である第2のノードとの間に直列に接続された第1のリアクトルおよび第1のインダクタンス値切替用スイッチと、
     前記第1のノードと前記第2のノードとの間に配置された第2のリアクトルおよび第2のインダクタンス値切替用スイッチとを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。
    The reactor circuit is
    A first reactor and a first inductance value switching switch connected in series between a first node which is a first output terminal of the power supply and a second node which is an output terminal of the reactor circuit. When,
    The laser beam according to any one of claims 1 to 3, further comprising a second reactor and a second inductance value switching switch arranged between the first node and the second node. Generator.
  9.  前記リアクトル回路は、さらに、
     前記第1のリアクトルと前記第1のインダクタンス値切替用スイッチとの間の第3のノードと、前記レーザダイオードの基準電源との間に配置された第1の過電圧保護用スイッチと、
     前記第2のリアクトルと前記第2のインダクタンス値切替用スイッチとの間の第4のノードと、前記基準電源との間に配置された第2の過電圧保護用スイッチとを含む、請求項8記載のレーザ光発生装置。
    The reactor circuit further
    A third node between the first reactor and the first inductance value switching switch, and a first overvoltage protection switch arranged between the reference power supply of the laser diode.
    8. The eighth aspect of the present invention, which includes a fourth node between the second reactor and the second inductance value switching switch, and a second overvoltage protection switch arranged between the reference power supply and the reference power supply. Laser light generator.
  10.  前記リアクトル回路は、
     前記電源の第1の出力端子である第1のノードと、前記リアクトル回路の出力端子である第2のノードとの間に配置されたリアクトルと、
     前記リアクトルの中点と、前記第2のノードとの間に配置されたインダクタンス値切替用スイッチとを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。
    The reactor circuit is
    A reactor arranged between the first node, which is the first output terminal of the power supply, and the second node, which is the output terminal of the reactor circuit,
    The laser light generator according to any one of claims 1 to 3, further comprising an inductance value switching switch arranged between the midpoint of the reactor and the second node.
  11.  前記リアクトル回路は、
     リアクトルと、
     前記リアクトルの長さを変化させるためのモータとを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。
    The reactor circuit is
    With the reactor,
    The laser light generator according to any one of claims 1 to 3, further comprising a motor for changing the length of the reactor.
  12.  前記電流経路切替回路は、前記レーザダイオードに並列に接続される経路切替用スイッチを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。 The laser light generator according to any one of claims 1 to 3, wherein the current path switching circuit includes a path switching switch connected in parallel to the laser diode.
  13.  前記電流経路切替回路は、前記レーザダイオードに直列に接続される経路切替用スイッチを含む、請求項1~3のいずれか1項に記載のレーザ光発生装置。 The laser light generator according to any one of claims 1 to 3, wherein the current path switching circuit includes a path switching switch connected in series with the laser diode.
  14.  請求項1~13のいずれか1項に記載のレーザ光発生装置と、
     前記レーザ光発生装置から出力されるレーザ光を対象物の表面に照射する加工ヘッドとを備えるレーザ加工装置。
    The laser light generator according to any one of claims 1 to 13.
    A laser processing apparatus including a processing head that irradiates the surface of an object with a laser beam output from the laser beam generator.
PCT/JP2020/032693 2020-08-28 2020-08-28 Laser beam generation device and laser machining device WO2022044280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/032693 WO2022044280A1 (en) 2020-08-28 2020-08-28 Laser beam generation device and laser machining device
JP2022545216A JP7399302B2 (en) 2020-08-28 2020-08-28 Laser light generator and laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032693 WO2022044280A1 (en) 2020-08-28 2020-08-28 Laser beam generation device and laser machining device

Publications (1)

Publication Number Publication Date
WO2022044280A1 true WO2022044280A1 (en) 2022-03-03

Family

ID=80352911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032693 WO2022044280A1 (en) 2020-08-28 2020-08-28 Laser beam generation device and laser machining device

Country Status (2)

Country Link
JP (1) JP7399302B2 (en)
WO (1) WO2022044280A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121534A (en) * 1995-10-26 1997-05-06 Matsushita Electric Ind Co Ltd Dc-dc converter
JPH09246051A (en) * 1996-03-13 1997-09-19 Nissin High Voltage Co Ltd Variable reactor
JP2003078201A (en) * 2001-05-31 2003-03-14 Pentax Corp Semiconductor laser drive device and laser scanning device
JP2009123833A (en) * 2007-11-13 2009-06-04 Miyachi Technos Corp Laser diode power supply device for laser beam machine
JP2015156777A (en) * 2014-02-21 2015-08-27 三菱電機株式会社 Switching power supply device
WO2016167019A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Power supply device for driving laser diodes
US20160372888A1 (en) * 2015-06-22 2016-12-22 Maxim Integrated Products, Inc. Driver for high speed laser diode
WO2018150459A1 (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Laser diode driving power source and laser machining device
WO2018193506A1 (en) * 2017-04-17 2018-10-25 三菱電機株式会社 Laser diode driving power source device and laser machining apparatus
JP2019068584A (en) * 2017-09-29 2019-04-25 サンケン電気株式会社 Power conditioner
US20190386460A1 (en) * 2015-09-22 2019-12-19 Analog Devices, Inc. Pulsed laser diode driver

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121534A (en) * 1995-10-26 1997-05-06 Matsushita Electric Ind Co Ltd Dc-dc converter
JPH09246051A (en) * 1996-03-13 1997-09-19 Nissin High Voltage Co Ltd Variable reactor
JP2003078201A (en) * 2001-05-31 2003-03-14 Pentax Corp Semiconductor laser drive device and laser scanning device
JP2009123833A (en) * 2007-11-13 2009-06-04 Miyachi Technos Corp Laser diode power supply device for laser beam machine
JP2015156777A (en) * 2014-02-21 2015-08-27 三菱電機株式会社 Switching power supply device
WO2016167019A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Power supply device for driving laser diodes
US20160372888A1 (en) * 2015-06-22 2016-12-22 Maxim Integrated Products, Inc. Driver for high speed laser diode
US20190386460A1 (en) * 2015-09-22 2019-12-19 Analog Devices, Inc. Pulsed laser diode driver
WO2018150459A1 (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Laser diode driving power source and laser machining device
WO2018193506A1 (en) * 2017-04-17 2018-10-25 三菱電機株式会社 Laser diode driving power source device and laser machining apparatus
JP2019068584A (en) * 2017-09-29 2019-04-25 サンケン電気株式会社 Power conditioner

Also Published As

Publication number Publication date
JP7399302B2 (en) 2023-12-15
JPWO2022044280A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US8638074B2 (en) Controllable universal supply with reactive power management
EP3367519B1 (en) System for driving a pulsed laser diode pump
JP6272438B1 (en) Power converter
EP3658324B1 (en) Methods and apparatus to provide welding power
US20220200236A1 (en) Laser beam generation device and laser processing apparatus including the same
WO2022044280A1 (en) Laser beam generation device and laser machining device
JP6257869B1 (en) Power supply device for laser diode drive and laser processing device
JP2005176535A (en) Switching power supply unit
JP6091324B2 (en) DC power supply
JP6853929B2 (en) LED drive power supply
JP6963510B2 (en) Switching power supply for three-phase AC
WO2018193505A1 (en) Power supply device for driving laser diode, and laser processing device
EP4235742A1 (en) High power generator and method of supplying high power pulses
EP4235733A1 (en) High power generator and method of supplying high power pulses
EP4235734A1 (en) High power generator and method of supplying high power pulses
EP4235739A1 (en) High power generator and method of supplying high power pulses
EP4235736A1 (en) High power generator and method of supplying high power pulses
EP4235740A1 (en) High power generator and method of supplying high power pulses
EP4235741A1 (en) High power generator and method of supplying high power pulses
EP4235738A1 (en) High power generator and method of supplying high power pulses
WO2022215611A1 (en) Laser oscillator and laser processing apparatus including same
KR102346445B1 (en) Power transforming apparatus and air conditioner including the same
WO2021181847A1 (en) Laser oscillator, and laser processing apparatus comprising same
WO2023161521A1 (en) High power generator and method of supplying high power pulses
WO2023161502A1 (en) High power generator and method of supplying high power pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951530

Country of ref document: EP

Kind code of ref document: A1