WO2022044154A1 - Multiple-type hydraulic-wedge rock splitting method - Google Patents

Multiple-type hydraulic-wedge rock splitting method Download PDF

Info

Publication number
WO2022044154A1
WO2022044154A1 PCT/JP2020/032152 JP2020032152W WO2022044154A1 WO 2022044154 A1 WO2022044154 A1 WO 2022044154A1 JP 2020032152 W JP2020032152 W JP 2020032152W WO 2022044154 A1 WO2022044154 A1 WO 2022044154A1
Authority
WO
WIPO (PCT)
Prior art keywords
bigger
rock
hydraulic
drilling
wedge
Prior art date
Application number
PCT/JP2020/032152
Other languages
French (fr)
Japanese (ja)
Inventor
明久 石本
哲也 飯田
時寛 金田
Original Assignee
株式会社石本建設
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石本建設 filed Critical 株式会社石本建設
Priority to PCT/JP2020/032152 priority Critical patent/WO2022044154A1/en
Priority to JP2021571962A priority patent/JP7176139B2/en
Publication of WO2022044154A1 publication Critical patent/WO2022044154A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/02Other methods or devices for dislodging with or without loading by wedges

Definitions

  • the present invention relates to a hydraulic bigger split rock construction method, and particularly to a multiple hydraulic bigger split rock construction method for improving the construction efficiency by using a plurality of biggers at the same time.
  • a Bigger rock splitting method using a Bigger rock breaking machine (see FIG. 4 (2)) in which a wedge-shaped wedge liner is inserted and spread by a wedge to generate cracks around the perforation is known.
  • the Bigger split rock method is often adopted instead of the blasting method. ..
  • This type of rock splitting method has conventionally been carried out by sequentially repeating a process consisting of a bedrock measurement process, a drilling process, a Bigger split rock process, secondary crushing and removal of crushed rock to a predetermined depth, and in particular, the Bigger split rock process. Then, a single bigger is used as shown in (a) to (c) of FIG. 4 (2) to gradually break the bigger hole along the free surface side. Therefore, in order to improve work efficiency, ultra-large hydraulic rock breaking machines (Bigger HRB1000 and Bigger HRB1700) have been used.
  • the conventional rock breaking method has technical problems described below. That is, in the conventional split rock construction method, the above-mentioned process is repeated, but even if the drilling is performed to a predetermined depth in the first drilling step, the crushed rock enters the drilling and is deposited at the bottom of the drilling. It became difficult to remove the crushed rock, and if it was left as it was, the subsequent wedge split rock would not be formed, so drilling was performed each time before the Bigger split rock.
  • such a method has a problem that the work is mixed, the construction efficiency is lowered, and the construction cost is high.
  • a drilling process of forming a drilling of a predetermined depth in a hard material such as bedrock or concrete, and a rust are placed in the drilling.
  • the Bigger split rock process that causes cracks around the perforation, the secondary crushing step that crushes the area around the cracked perforation with a crusher such as a ripping or breaker, and the crushing that is crushed by the secondary crushing step.
  • the removal treatment step of removing the substance is performed, the sedimentation of the crushed material is prevented and suspended in the perforation before the Bigger split rock step, or the sedimentation of the crushed material is predetermined.
  • Patent Document 1 A method of filling a highly viscous fluid that blocks time is proposed (Patent Document 1).
  • the working surface of the wedge liner is divided in the longitudinal direction, and the wall thickness of each working division is devised. It has been proposed that the wedge liner is less likely to be bent or broken (Patent Document 2).
  • a drilling process of forming a plurality of drillings of a predetermined depth at a predetermined location on a bedrock with a drilling machine such as a crawler drill, and a bigger wedge liner inserted into the drilling are expanded by pushing a hydraulic wedge.
  • the hole spacing (D) and / or the resistance line (W) of the standard drilling distribution is set to a dimension of 1.5 times or more and drilled.
  • a plurality of Biggers are used at the same time, and a Bigger wedge liner is inserted into at least a pair of perforations adjacent to each other on the Bigger free surface (slit) side, and the spreading direction thereof is set to a free surface. Adjusting to be perpendicular to each other, pushing each wedge at the same time or substantially at the same time with a driving force such as hydraulic pressure, and simultaneously spreading the wedge liner in the adjacent drilling to generate cracks between the adjacent drilling. It is in the featured multiple hydraulic bigger split rock construction method.
  • a wedge liner of a bigger is inserted into at least a pair of perforations adjacent to each other on the free surface (slit) side of the bigger, and the spreading direction thereof is adjusted so as to be perpendicular to the free surface, and a plurality of biggers are used. Since the rocks are split at the same time or substantially at the same time, the cracks from the drilling are likely to cooperate and exert a synergistic effect. Therefore, the perforation distribution can be 1.5 times or more, preferably 2.0 times or more the standard perforation spacing (D) and / or resistance line (W), even if the perforation depth is the same. Work efficiency more than double can be easily obtained.
  • the hole spacing (D) of the predetermined drilling distribution is 0.5 m for the Bigger HRB1000 alone, the holes are formed in the Bigger HRB1000 dual system (see FIGS. 5 and 6) as in the present invention.
  • the interval (D) can be doubled 1.0 m or tripled 1.5 m. Therefore, according to the construction method of the present invention, the floor area ratio of rock drilling can be simply increased to at least 2 times or 3 times.
  • the timing of spreading the wedge liner “substantially at the same time” means that when at least a pair of biggers are used, the progress of the cracking process of one bigger is observed and the other bigger is used. It means that the cracking process may be delayed, and it also includes the case where the adjacent rock breaking processes cooperate to adjust the time difference so that the cracks run.
  • the slit hole is split before the bigger hole is split to secure a slit (free surface), but efficient work efficiency can be obtained by combining with the multiple hydraulic bigger split rock construction method of the present invention.
  • the construction method of the present invention is preferably carried out by using a multiple hydraulic rock breaking device in which a plurality of biggers are arranged in a row at the tip of an operating arm of an excavator such as a hydraulic excavator.
  • a rock breaking device balances a horizontal hanger 20 attached to the tip of an operation arm such as a hydraulic excavator 10 and the horizontal hanger 20 at equal distances to the left and right from the suspension center 21.
  • a bigger 30 is attached to a plurality of pairs of biggers 30 and 30, a twist reduction bar 24 attached in parallel to a connecting portion between the tip of the operation arm 11 and the horizontal hanger 20, and a horizontal hanger 20.
  • a rotatable mounting bracket 25 such as a swivel that rotatably attaches around the bigger axis
  • an operation handle 26 that adjusts the spreading direction of the tip wedge liner 31 of the bigger 30 with respect to the free end face, and is provided on both wings of the horizontal hanger 20.
  • the lower ends of the paired Biggers 30 and 30 attached in a well-balanced manner are guided to the adjacent Bigger holes drilled in parallel with the free end face of the split rock, and the wedge liner 31 of each Bigger 30 is guided by the operation handle 26. It is possible to insert the wedges in a control so that the spreading direction is substantially perpendicular to the free end face, push each wedge at the same time by hydraulic pressure, and push the wedge liner in the adjacent Bigger hole in parallel.
  • FIG. 8 (b) (a) split rock state, (b) 10th split rock depth interval, (c) drilling interval, and (d) 20th split rock depth interval in the Bigger method using the HRB1000 Bigger device for split rock. It is a photograph showing the measurement state.
  • FIG. 8 (b) (a) split rock state, (b) 10th split rock depth interval, (c) drilling interval, and (d) 20th split rock depth interval in the Bigger method using the HRB1000 Bigger device for split rock. It is a photograph showing the measurement state.
  • FIG. 8 (c) shows (a) 10th split rock depth, (b) 20th split rock depth, (c) split rock condition, and (d) secondary crushing status in the Super Bigger method using the HRB1700 Bigger device for split rock. It is a photograph.
  • FIG. 8 (d) Multiple-type HRB1000 Bigger device for split rocks (a) Drilling interval, (b) Split rock state (1.5 m interval), (c) Crack state (1) in the multiple-type Bigger method. It is a photograph showing the measurement state of (.5 m interval) and (d) the split rock depth of 1.0 m (1.5 m interval).
  • It is a table which shows the test result of the super bigger method of FIG. 11 is a table showing the results of the first test of the multiple-type bigger method according to the present invention in FIG. 11.
  • 11 is a table showing the results of the second test of the multiple-type bigger method according to the present invention in FIG. 11.
  • a rock breaking capacity test was conducted.
  • the rock splitting step (b) the single HRB1000 and the single HRB1700 were compared with the HRB10002 series in the present invention.
  • the debris removal step (c) a large breaker was used to remove the debris and confirm the cracked rock depth.
  • (1) drilling step drilling is performed at a pitch and a drilling depth determined in the measured area.
  • the standard drilling diameter and hole length for the HBR-1000 is ⁇ 100 mm x 1.5 m, and for the HBR-1700, ⁇ 125 mm x 2.5 m (see Fig. 4 (1) (a)).
  • the standard arrangement of drilling is staggered (see Fig. 4 (1) (b)), and the intervals are set appropriately according to the quality and hardness of the bedrock.
  • the hole spacing (D) and / or the resistance wire (W) is set to 1.5 times or more, preferably 2.0 times or more and 3.0 times, particularly the hole spacing (D).
  • FIG. 5 is a perspective view of a specific example of the multiple hydraulic bigger breaking rock device according to the present invention, in which a pair of HBR-1000 biggers 30 and 30 are placed at the tip of an operation arm 11 of a large hydraulic excavator 10 via a horizontal hanger 20. Shows a well-balanced suspended state.
  • a pair of biggers 30 and 30 are attached to the tip of the hydraulic operation arm 11 of the hydraulic excavator 10, and the wedge liner 31 of the bigger is simultaneously inserted at a predetermined position of the bedrock by a drilling machine such as a crawler drill. It is inserted into a perforation of a predetermined depth formed in.
  • the operation of the operation arm 11 of the hydraulic excavator 10 is guided to the adjacent drilling by an assistant (not shown) grasping the operation handle 32 attached to the body of the bigger 30. Then, the wedge liner in the perforation is expanded by pushing the wedge under hydraulic pressure to generate cracks (primary crushing) around the perforation.
  • the horizontal hanger 20 is swingably attached to the tip of the operation arm 1 of the hydraulic excavator 10.
  • the horizontal hanger 20 is composed of a pair of wing portions 21a and 21a, and the wing portions have a plurality of mounting holes 21b extending at both ends at intervals of 100 mm from the center.
  • the pair of biggers 30 and 30 are hung and attached via the swivel 22 while being balanced equidistant to the left and right from the hanging center 21 of the horizontal hanger via the bolt-tightened attachment 21c.
  • the center of the horizontal hanger 20 is attached to the tip of the operating arm of the hydraulic excavator 10 via the arm attachment 23, but the center of the arm attachment 23 and the horizontal hanger 20 is supported by a twist reducing lever 24 having a bent portion 24a. Will be done.
  • the middle abdomen of the biggers 30 and 30 is maintained at a predetermined interval by a collision prevention lever 40 that can be adjusted to the drilling interval.
  • the pair of Biggers 30 and 30 can relatively easily insert the respective wedge liners 31 into the adjacent Bigger holes without being greatly twisted.
  • the wedge liners in the adjacent Bigger holes are simultaneously controlled to be pushed vertically with respect to the free surface of the bedrock. That is, the plurality of biggers 30 and 30 are suspended from the operation arm 11 of the hydraulic excavator via the horizontal hanger 20 in a well-balanced manner, but the horizontal hanger 20 is suspended from the operation arm via the connector 24 while preventing twisting.
  • the tip of the wedge liner 31 can be inserted into the bigger hole at the entrance of the predetermined bigger hole by operating the hydraulic excavator.
  • the pair of biggers 30 and 30 are rotatably suspended around the bigger axis with respect to the horizontal hanger 20 via the swivel 22, the pair of biggers 30 and 30 push the wedge liner in the spreading direction with respect to the free end face.
  • the directions are set to be vertical and spread parallel to each other. Therefore, the wedge liner 31 is adjusted so that the cracks cooperate with each other in the adjacent Bigger holes.
  • the rock breaking capacity test (a) was performed in the first stage and the construction capacity test (b) was performed in the second stage.
  • the cracking capacity test (a) drilling was performed at 0.7m, 1.0m and 1.5m pitches in the crawler drill drilling (preceding drilling), and then in the cracking capacity test, the state of cracks at each pitch was confirmed. At the same time, the width of the crack was confirmed, and it was confirmed whether the crack was connected to the adjacent hole. Then, the debris was removed and the depth of the split rock was finally confirmed.
  • "area measurement" is first performed.
  • the approximate quantity of the split rock target quantity (m3) is grasped (10m ⁇ 3.0m ⁇ 30m3).
  • "drilling time measurement” is performed. Perform the required drilling in the area and measure the drilling completion time.
  • the drilling completion area is broken and the breaking rock completion time is measured.
  • the crushed quantity of the degree of rock crushing removal is confirmed.
  • FIG. 8 shows the crawler drill (a), which is a drilling device used in the rockwell capacity test (first stage), the Bigger HRB-1000 (b), the Super Bigger HRB-1700 (c), and the multiple-type bigger, which are various rockwell devices.
  • a photograph of HRB-1000 ⁇ 2 (d) is shown, and FIG. 9 shows a test description when a Bigger HRB-1000 (FIG. 8 (b)) is used.
  • FIG. 10 shows a test description when the Super Bigger HRB-1700 (FIG. 8 (c)) is used, and
  • FIG. 11 shows a test description when the multiple type Bigger HRB-1000 ⁇ 2 (FIG. 8 (d)) is used.
  • FIG. 12 shows the results using the Super Bigger HRB-1700 (FIG. 8 (c)) of FIG. 10, and FIGS. 13 and 14 show the multiple hydraulic bigger HRB-1000 ⁇ 2 according to the present invention (FIG. 8 (FIG. 8). d)) shows the result when using).
  • the construction ability and construction cost of both were compared by conducting the construction ability test with the following contents.
  • Drilling time measurement The time required to drill a hole in the construction range determined by the drilling interval was measured, which was commensurate with the rock splitting capacity confirmed in the previous process.
  • Breaking rock time measurement After the drilling was completed, the time required to crack the rock at all drilling points was measured with a rock breaking machine.
  • the case where the Bigger HRB-1000 pair is used is shown for comparison, but it is of course possible to use the Super Bigger as a pair.
  • a pair of Bigger HRBs are mounted on one excavator, one or more excavators may be used at the same time for one excavator, or a plurality of excavators equipped with a pair of Biggers may be used in parallel. It may be used at the same time.
  • the hydraulic type is taken as an example of the rock breaking machine, but it may be driven by compressed air or electricity.
  • the wedge-shaped expander is used as a wedge, and if the gist is to use two or more wedge liners at the same time, the wedge liner is not limited to the Bigger HRB.
  • a construction method for example, a method of filling a highly viscous fluid that prevents the sedimentation of crushed rock for a predetermined time can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Earth Drilling (AREA)

Abstract

[Problem] To provide a hydraulic-wedge rock splitting method by which at least double the work efficiency can be achieved. [Solution] This multiple-type hydraulic-wedge rock splitting method includes a boring step in which bores are made with the resistance line (W) and/or the inter-hole distance (D) of standard boring distribution set to at least 1.5 times the dimension on the basis of measurement of bedrock structure strength. Then, in a hydraulic-wedge rock splitting step: a plurality of hydraulic wedges 30, 30 are set in parallel, and used simultaneously, on a horizontal hanger 20 for hydraulic wedge attachment, the hanger 20 being attached to an operating arm tip of an excavator such as a hydraulic shovel 10; wedge liners 31 of the hydraulic wedges are inserted respectively into at least a pair of bores among adjacent bores, on a free-face (slit) side with respect to the hydraulic wedges; the wedges are pressed thereinto substantially at the same time by hydraulic pressure; and the wedge liners 31, 31 within the adjacent bores are pushed apart at the same time, or substantially at the same time, in a direction perpendicular to a free face of bedrock so that cracks are produced in a coordinated manner between the adjacent bores. This makes it possible to achieve at least twice the construction efficiency of conventional hydraulic-wedge rock splitting methods.

Description

多連式油圧ビッガー割岩工法Multiple hydraulic bigger split rock construction method
 この発明は、油圧ビッガー割岩工法に関し、特に、複数のビッガーを同時に用いてその施工能率の改善を図る多連式油圧ビッガー割岩工法に関するものである。 The present invention relates to a hydraulic bigger split rock construction method, and particularly to a multiple hydraulic bigger split rock construction method for improving the construction efficiency by using a plurality of biggers at the same time.
 ダムやトンネル工事における岩盤破砕や、コンクリート用骨材の石材採取などにおける岩破砕においては、爆薬の爆発エネルギーを利用する発破工法や、ピストンの衝撃力を利用するブレイカー工法、さらには、穿孔内にクサビ状のウエッジライナーを挿入してそれをウエッジで押し広げ、穿孔の周辺にひび割れを発生させるビッガー割岩機(図4(2)参照)を利用するビッガー割岩工法などが知られている。 For rock crushing in dam and tunnel construction, rock crushing in concrete aggregate stone collection, etc., blasting method using explosive explosive energy, breaker method using piston impact force, and even in drilling A Bigger rock splitting method using a Bigger rock breaking machine (see FIG. 4 (2)) in which a wedge-shaped wedge liner is inserted and spread by a wedge to generate cracks around the perforation is known.
 このような岩盤破砕において、施工場所によっては、振動,騒音の発生に配慮しなければならない場合があり、このような場合には、発破工法に代わり、前記ビッガー割岩工法が採用されることが多い。この種の割岩工法は、従来、岩盤計測工程、穿孔工程,ビッガー割岩工程,二次破砕および破砕岩の除去からなる工程を、所定の深度まで順次繰り返すことで施工が行われ、特にビッガー割岩工程では単一のビッガーを図4(2)の(a)~(c)に示すように使って自由面側に沿ってビッガー孔を徐々に割岩するようにしている。したがって、作業効率の向上のため、超大型油圧式割岩機(ビッガーHRB1000およびビッガーHRB1700)が使用されるにいたっている。 In such rock crushing, it may be necessary to consider the generation of vibration and noise depending on the construction site. In such a case, the Bigger split rock method is often adopted instead of the blasting method. .. This type of rock splitting method has conventionally been carried out by sequentially repeating a process consisting of a bedrock measurement process, a drilling process, a Bigger split rock process, secondary crushing and removal of crushed rock to a predetermined depth, and in particular, the Bigger split rock process. Then, a single bigger is used as shown in (a) to (c) of FIG. 4 (2) to gradually break the bigger hole along the free surface side. Therefore, in order to improve work efficiency, ultra-large hydraulic rock breaking machines (Bigger HRB1000 and Bigger HRB1700) have been used.
 しかしながら、このような超大型油圧式割岩機(ビッガーHRB1000およびビッガーHRB1700)を使用しても従来の割岩工法には、以下に説明する技術的な課題があった。
 すなわち、従来の割岩工法では、前述した工程の繰り返しになるが、最初の穿孔工程で、穿孔を所定の深度まで行ったとしても、破砕した岩が穿孔内に入り込んで、穿孔の底部に堆積して破砕岩の除去が難しくなり、これをそのまま放置しておくと、その後のクサビ割岩ができなくなるので、ビッガー割岩の前に、そのつど穿孔を行っていた。ところが、このような方法では、作業が交錯し、施工能率が低下し、また、施工コストがかかるという問題があった。
 そこで、施工能率の向上と、施工コストの低減が可能になる割岩工法として、岩盤やコンクリートなどの硬質物質に所定深さの穿孔を形成する穿孔工程と、前記穿孔内にクサビを打設して、前記穿孔の周囲にひび割れを発生させるビッガー割岩工程と、ひび割れが発生した前記穿孔の周辺をリッピング,ブレイカーなどの破砕機により破砕する二次破砕工程と、前記二次破砕工程により破砕された破砕物の除去を行う除去処理工程とを行う割岩工法において、前記ビッガー割岩工程の前に、前記穿孔内に、前記破砕物の沈降を阻止して浮遊させるか、または、前記破砕物の沈降を所定時間阻止する高粘性流体を充填するようにした方法が提案される(特許文献1)。また、下穴全体にわたって一度に圧壊できるように、ウエッジライナーの間隔を広げることにより岩盤を圧壊するビッガー割岩機において、ウエッジライナーの作用面を長手方向に区分し、各作用区分の肉厚を工夫することによりウエッジライナーの曲がりや折損事故が生じにくくする提案がなされている(特許文献2)。
However, even if such an ultra-large hydraulic rock breaking machine (Bigger HRB1000 and Bigger HRB1700) is used, the conventional rock breaking method has technical problems described below.
That is, in the conventional split rock construction method, the above-mentioned process is repeated, but even if the drilling is performed to a predetermined depth in the first drilling step, the crushed rock enters the drilling and is deposited at the bottom of the drilling. It became difficult to remove the crushed rock, and if it was left as it was, the subsequent wedge split rock would not be formed, so drilling was performed each time before the Bigger split rock. However, such a method has a problem that the work is mixed, the construction efficiency is lowered, and the construction cost is high.
Therefore, as a split rock construction method that can improve the construction efficiency and reduce the construction cost, a drilling process of forming a drilling of a predetermined depth in a hard material such as bedrock or concrete, and a rust are placed in the drilling. The Bigger split rock process that causes cracks around the perforation, the secondary crushing step that crushes the area around the cracked perforation with a crusher such as a ripping or breaker, and the crushing that is crushed by the secondary crushing step. In the split rock construction method in which the removal treatment step of removing the substance is performed, the sedimentation of the crushed material is prevented and suspended in the perforation before the Bigger split rock step, or the sedimentation of the crushed material is predetermined. A method of filling a highly viscous fluid that blocks time is proposed (Patent Document 1). In addition, in the Bigger rock breaking machine that crushes the bedrock by widening the spacing of the wedge liners so that the entire pilot hole can be crushed at once, the working surface of the wedge liner is divided in the longitudinal direction, and the wall thickness of each working division is devised. It has been proposed that the wedge liner is less likely to be bent or broken (Patent Document 2).
特2002-147160号Special 2002-147160 特開2004-92117号Japanese Unexamined Patent Publication No. 2004-92117
 しかしながら、いずれのビッガー割岩工法も部分的改善であって、抜本的でなく、作業効率を倍増、200%以上に向上させることは困難であった。そこで、本発明者らはビッガー割岩工法を詳細に検討すると、ビッガー割岩工法においては発破工法と比べ、割れ方向をコントロールすることができ、穿孔からの岩盤に入る亀裂を考慮すると、隣接する孔からも同時に亀裂が走ると、その相乗効果により亀裂しやすさ及び長さが2倍以上となることを見出した。本発明は、かかる知見に基づき、倍以上の作業効率を可能とする多連式油圧ビッガー割岩工法を提供することを課題とする。 However, all of the Bigger split rock construction methods were partial improvements and were not drastic, and it was difficult to double the work efficiency and improve it to 200% or more. Therefore, when the inventors of the present invention examined the Bigger split rock method in detail, the crack direction can be controlled in the Bigger split rock method as compared with the blasting method, and considering the cracks entering the bedrock from the drilling, from the adjacent holes. It was also found that when cracks run at the same time, the easiness of cracking and the length are more than doubled due to the synergistic effect. Based on this finding, it is an object of the present invention to provide a multiple hydraulic bigger split rock construction method that enables work efficiency more than double.
 本発明にかかる割岩工法では、割岩対象の岩盤構造強度を測定し、岩盤への穿孔の孔間隔(D)及び抵抗線(W)の分布又は配置を決定する工程と、該穿孔設計に基づき、クローラドリル等の穿孔機で岩盤の所定箇所に所定深さの穿孔を複数個形成する穿孔工程と、前記穿孔内に挿入されるビッガーのウエッジライナーを、油圧でのウエッジを押し込みにより押し広げて、前記穿孔の周囲にひび割れ(一次破砕)を発生させるビッガー割岩工程を含む工法において、
 前記穿孔工程において、岩盤構造強度の測定に基づき、標準穿孔分布の孔間隔(D)及び/又は抵抗線(W)を1.5倍以上の寸法に設定して穿孔し、
 次いで前記ビッガー割岩工程において、複数のビッガーを同時使用し、ビッガー自由面(スリット)側で隣接する穿孔の少なくとも一対の穿孔内にそれぞれビッガーのウエッジライナーを挿入してその押し広げ方向を自由面に対し垂直をなすように調整し、油圧等の駆動力で同時に又は実質的に同時にそれぞれのウエッジを押し込み、隣接する穿孔内のウエッジライナーを同時に押し広げて隣接する穿孔間にひび割れを発生させることを特徴とする多連式油圧ビッガー割岩工法にある。
In the split rock construction method according to the present invention, the step of measuring the rock structure strength of the split rock target and determining the distribution or arrangement of the hole spacing (D) and the resistance line (W) of the drilling in the rock, and based on the drilling design. A drilling process of forming a plurality of drillings of a predetermined depth at a predetermined location on a bedrock with a drilling machine such as a crawler drill, and a bigger wedge liner inserted into the drilling are expanded by pushing a hydraulic wedge. In a construction method including a Bigger split rock process that causes cracks (primary crushing) around the perforation.
In the drilling step, based on the measurement of the rock structure strength, the hole spacing (D) and / or the resistance line (W) of the standard drilling distribution is set to a dimension of 1.5 times or more and drilled.
Next, in the Bigger split rock process, a plurality of Biggers are used at the same time, and a Bigger wedge liner is inserted into at least a pair of perforations adjacent to each other on the Bigger free surface (slit) side, and the spreading direction thereof is set to a free surface. Adjusting to be perpendicular to each other, pushing each wedge at the same time or substantially at the same time with a driving force such as hydraulic pressure, and simultaneously spreading the wedge liner in the adjacent drilling to generate cracks between the adjacent drilling. It is in the featured multiple hydraulic bigger split rock construction method.
発明の作用効果Action and effect of the invention
 本発明によれば、ビッガー自由面(スリット)側で隣接する少なくとも一対の穿孔にそれぞれビッガーのウエッジライナーを挿入してその押し広げ方向を自由面に対し垂直をなすように調整し、複数のビッガーを同時に又は実質的に同時に作動させて割岩するので、穿孔からの亀裂が協働して相乗効果を発揮しやすい。そのため、穿孔分布が標準の孔間隔(D)及び/又は抵抗線(W)の1.5倍以上、好ましくは2.0倍以上の間隔とすることができ、同一穿孔深さであっても容易に2倍以上の作業効率を得ることができる。例えば、所定穿孔分布の孔間隔(D)が、ビッガーHRB1000単独で0.5mの時の岩盤に対し、本発明のように、ビッガーHRB1000の2連式(図5及び6参照)とすると、孔間隔(D)は2倍の1.0m又は3倍の1.5mの間隔を採択することができる。よって、本発明工法によれば、削岩容積率は単純に少なくとも2倍又は3倍とすることができる。なお、本発明において、ウエッジライナーの押し広げのタイミングについて、「実質的に同時に」とは、少なくとも一対のビッガーを使用する場合に、一方のビッガーの割岩工程の進行を見ながら、他方のビッガーの割岩工程を遅れて進行させる場合であってもよいという意味で、隣接する割岩工程が協働して亀裂が走るように時間差を調整する場合も含むという意味である。 According to the present invention, a wedge liner of a bigger is inserted into at least a pair of perforations adjacent to each other on the free surface (slit) side of the bigger, and the spreading direction thereof is adjusted so as to be perpendicular to the free surface, and a plurality of biggers are used. Since the rocks are split at the same time or substantially at the same time, the cracks from the drilling are likely to cooperate and exert a synergistic effect. Therefore, the perforation distribution can be 1.5 times or more, preferably 2.0 times or more the standard perforation spacing (D) and / or resistance line (W), even if the perforation depth is the same. Work efficiency more than double can be easily obtained. For example, when the hole spacing (D) of the predetermined drilling distribution is 0.5 m for the Bigger HRB1000 alone, the holes are formed in the Bigger HRB1000 dual system (see FIGS. 5 and 6) as in the present invention. The interval (D) can be doubled 1.0 m or tripled 1.5 m. Therefore, according to the construction method of the present invention, the floor area ratio of rock drilling can be simply increased to at least 2 times or 3 times. In the present invention, regarding the timing of spreading the wedge liner, "substantially at the same time" means that when at least a pair of biggers are used, the progress of the cracking process of one bigger is observed and the other bigger is used. It means that the cracking process may be delayed, and it also includes the case where the adjacent rock breaking processes cooperate to adjust the time difference so that the cracks run.
 通常、ビッガー孔を割岩する前にスリット孔を割岩し、スリット(自由面)を確保するが、本発明の多連式油圧ビッガー割岩工法と組み合わせることにより効率の良い作業能率を得ることができる。 Normally, the slit hole is split before the bigger hole is split to secure a slit (free surface), but efficient work efficiency can be obtained by combining with the multiple hydraulic bigger split rock construction method of the present invention.
 本発明工法は、油圧ショベル等の掘削機の操作アーム先端に複数のビッガーを一列に併設してなる多連式油圧割岩装置を用いて行われるのがよい。かかる割岩装置は、図5及び6に例示されるように、油圧ショベル10等の操作アーム先端に取り付けた水平ハンガー20と、該水平ハンガー20にその吊り下げ中心21から左右等距離にバランスをとって吊り下げる複数の対をなすビッガー30、30と、前記操作アーム11の先端と前記水平ハンガー20との連結部に平行して取り付けられる捩れ低減バー24と、水平ハンガー20に、ビッガー30をそのビッガー軸線周りに回転自在に取り付けるスイベル等の回転自在取付け金具25と、自由端面に対しビッガー30の先端ウエッジライナー31の押し広げ方向を調整する操作ハンドル26と、を備え、水平ハンガー20の両翼にバランスよく取り付けた、対をなすビッガー30、30の下端を、割岩の自由端面に平行して穿設された隣接するビッガー孔に誘導し、それぞれのビッガー30のウエッジライナー31を操作ハンドル26でその押し広げ方向が自由端面に対し実質的に垂直をなすようにコントロールして挿入し、油圧でそれぞれのウエッジを同時に押し込み、隣接するビッガー孔内のウエッジライナーを平行して押し広げ可能である。 The construction method of the present invention is preferably carried out by using a multiple hydraulic rock breaking device in which a plurality of biggers are arranged in a row at the tip of an operating arm of an excavator such as a hydraulic excavator. As illustrated in FIGS. 5 and 6, such a rock breaking device balances a horizontal hanger 20 attached to the tip of an operation arm such as a hydraulic excavator 10 and the horizontal hanger 20 at equal distances to the left and right from the suspension center 21. A bigger 30 is attached to a plurality of pairs of biggers 30 and 30, a twist reduction bar 24 attached in parallel to a connecting portion between the tip of the operation arm 11 and the horizontal hanger 20, and a horizontal hanger 20. It is equipped with a rotatable mounting bracket 25 such as a swivel that rotatably attaches around the bigger axis, and an operation handle 26 that adjusts the spreading direction of the tip wedge liner 31 of the bigger 30 with respect to the free end face, and is provided on both wings of the horizontal hanger 20. The lower ends of the paired Biggers 30 and 30 attached in a well-balanced manner are guided to the adjacent Bigger holes drilled in parallel with the free end face of the split rock, and the wedge liner 31 of each Bigger 30 is guided by the operation handle 26. It is possible to insert the wedges in a control so that the spreading direction is substantially perpendicular to the free end face, push each wedge at the same time by hydraulic pressure, and push the wedge liner in the adjacent Bigger hole in parallel.
第1工程の岩盤判定の試験装置である(a)簡易弾性波速度測定器、(b)ロックシュミット、(c)ピックハンマーを示す写真である。It is a photograph showing (a) a simple elastic wave velocity measuring instrument, (b) Rockschmidt, and (c) a pick hammer, which are test devices for determining rock mass in the first step. 測定状況写真(a)亀裂間隔確認、(b)ピックハンマーによる判定、(c)ロックシュミット測定、(d)簡易弾性波測定の写真である。Photographs of measurement status (a) Confirmation of crack spacing, (b) Judgment by pick hammer, (c) Rock Schmidt measurement, (d) Simple elastic wave measurement. 図1での測定結果に基づき分類される岩盤分類表である。It is a bedrock classification table classified based on the measurement result in FIG. 第1工程の岩盤判定工程に基づき行われる割岩能力試験での(a) クローラドリルでの先行削孔試験、(b)割岩試験、(c)破砕片除去試験工程を示す。The steps of (a) prior drilling test with a crawler drill, (b) cracking rock test, and (c) debris removal test in the rock breaking capacity test performed based on the bedrock determination step of the first step are shown. 図1の岩盤判定試験、図3の割岩能力試験に基づいて行われる施工能力試験での(1)穿孔施工試験に標準穿孔配置の(a)断面図、(b)平面図、(2)各種ビッガーによる単列式及び多連式割岩試験の初期(a),中期(b)及び終期(c)の割岩状態を示す断面図、(3)二次破砕試験を示す。(1) Cross-sectional view, (b) plan view, (2) various types of standard drilling arrangement in (1) drilling construction test in the construction capacity test conducted based on the bedrock judgment test of FIG. 1 and the split rock capacity test of FIG. A cross-sectional view showing the initial (a), middle (b) and final (c) rock splitting states of the single-row and multiple rock splitting tests by Bigger, and (3) secondary crushing test are shown. 本発明の具体例の一つの二連式油圧ビッガー割岩装置の斜視図である。It is a perspective view of the double hydraulic bigger rock breaking apparatus which is one of the specific examples of this invention. 本発明の多連式油圧ビッガー割岩装置の多連式油圧ビッガー及びその取り付け構造を示す(a)正面図、 (b)一部拡大図及び(c)側面図を示す。(A) A front view, (b) a partially enlarged view, and (c) a side view showing a multiple hydraulic bigger and its mounting structure of the multiple hydraulic bigger split rock device of the present invention are shown. 本発明方法の試験施工の作業フローを示す(a)割岩能力試験工程図、(b)施工能力試験工程図である。It is (a) split rock capacity test process diagram and (b) construction capacity test process diagram which show the work flow of the test construction of this invention method. 割岩能力試験で用いる(a)穿孔用クローラドリル、(b)割岩用HRB1000ビッガー装置、(c)割岩用HRB1700スーパービッガー装置及び(d)本発明の割岩用多連式ビッガー装置の概要を示す写真である。An outline of (a) a crawler drill for drilling, (b) an HRB1000 bigger device for cracking rocks, (c) an HRB1700 super bigger device for cracking rocks, and (d) a multiple-type bigger device for splitting rocks used in a rock breaking capacity test is shown. It is a photograph. 図8(b)割岩用HRB1000ビッガー装置を用いたビッガー工法での(a)割岩状態、(b)第1割岩深度の間隔、(c)削孔間隔、(d)第2割岩深度の間隔の計測状態を示す写真である。FIG. 8 (b) (a) split rock state, (b) 10th split rock depth interval, (c) drilling interval, and (d) 20th split rock depth interval in the Bigger method using the HRB1000 Bigger device for split rock. It is a photograph showing the measurement state. 図8(c)割岩用HRB1700ビッガー装置を用いたスーパービッガー工法での(a)第1割岩深度、(b)第2割岩深度、(c)割岩状況、(d)2次破砕状況を示す写真である。FIG. 8 (c) shows (a) 10th split rock depth, (b) 20th split rock depth, (c) split rock condition, and (d) secondary crushing status in the Super Bigger method using the HRB1700 Bigger device for split rock. It is a photograph. 図8(d)割岩用多連式HRB1000ビッガー装置を用いた多連式ビッガー工法での(a)削孔間隔、(b) 割岩状態(1.5m間隔)、(c) クラックの状態(1.5m間隔)、(d)割岩深度1.0m(1.5m間隔)の計測状態を示す写真である。FIG. 8 (d) Multiple-type HRB1000 Bigger device for split rocks (a) Drilling interval, (b) Split rock state (1.5 m interval), (c) Crack state (1) in the multiple-type Bigger method. It is a photograph showing the measurement state of (.5 m interval) and (d) the split rock depth of 1.0 m (1.5 m interval). 図10のスーパービッガー工法の試験結果を示す表である。It is a table which shows the test result of the super bigger method of FIG. 図11の本発明に係る多連式ビッガー工法の第1試験結果を示す表である。11 is a table showing the results of the first test of the multiple-type bigger method according to the present invention in FIG. 11. 図11の本発明に係る多連式ビッガー工法の第2試験結果を示す表である。11 is a table showing the results of the second test of the multiple-type bigger method according to the present invention in FIG. 11.
 以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。
(岩盤判定試験)
 本実施例の割岩工法では、図1に示すように、まず、ロックシュミット、簡易弾性波試験、ピックハンマーによる目視等による岩盤判定試験を行う。各項目において岩盤判定試験を実施した結果、ロックハンマーによる非破壊検査では、平均値で75、換算値による一軸圧縮強度「496N/m2」と硬度はかなりの数値を示しており、弾性波速度も平均値で3909m/秒と、図2に示す岩盤分類表では硬岩を示す数値が得られた。また、目視等による判定は風化もなく亀裂間隔も1m以内で相当の密着が見られた。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(Rock judgment test)
In the rock splitting method of this embodiment, as shown in FIG. 1, first, a rock schmidt, a simple elastic wave test, a rock mass judgment test by visual inspection with a pick hammer, etc. are performed. As a result of conducting a bedrock judgment test for each item, in the non-destructive inspection with a rock hammer, the average value is 75, the uniaxial compressive strength "496N / m2" by the converted value, and the hardness shows a considerable numerical value, and the elastic wave velocity is also. The average value was 3909 m / sec, and the rock classification table shown in FIG. 2 gave a numerical value indicating hard rock. In addition, the judgment by visual inspection showed that there was no weathering and the crack spacing was within 1 m, and considerable adhesion was observed.
(割岩能力試験)
 そこで、第1段階では図3に示すように、割岩能力試験を行った。穿孔工程(a)は、クローラドリルを用いて削孔作業をHRB1000では孔径0.7m、1.0m、1.5、高さ(H)=1.5mとし、HRB1700では孔径0.7m、1.0m、1.5、高さ(H)=2.0mとした。
割岩工程(b)では、単一HRB1000、単一HRB1700に対し、本発明ではHRB10002連式とした。
破砕片除去工程(c)では大型ブレイカーを用い、破砕片を除去し、割岩深度を確認した。
(Split rock ability test)
Therefore, in the first stage, as shown in FIG. 3, a rock breaking capacity test was conducted. In the drilling step (a), the drilling work using a crawler drill is set to have a hole diameter of 0.7 m, 1.0 m, 1.5 and a height (H) = 1.5 m in the HRB1000, and a hole diameter of 0.7 m in the HRB1700. It was set to 0.0 m, 1.5, and height (H) = 2.0 m.
In the rock splitting step (b), the single HRB1000 and the single HRB1700 were compared with the HRB10002 series in the present invention.
In the debris removal step (c), a large breaker was used to remove the debris and confirm the cracked rock depth.
 第2段階では、図4に示すように、(1)穿孔工程:測定したエリア内で決められたピッチ、削孔深で穿孔削孔する。大型クローラドリルを用い、割岩孔口径と孔長は、HBR-1000用ではΦ100mm×1.5m、HBR-1700用ではΦ125mm×2.5mを標準に穿孔し(図4(1)(a)参照)、穿孔配置は千鳥配置を標準とし(図4(1)(b)参照)、岩盤の質や硬さの度合いにより適切な間隔に設定する。本発明の多連式ビッガー工法では孔間隔(D)及び/又は抵抗線(W)を、特に孔間隔(D)を1.5倍以上、好ましくは2.0倍以上3.0倍とすることができることが立証されている。
次いで(2)割岩工程:穿孔した孔にビッガーのウエッジライナーを挿入し、油圧でウエッジを押し込み、ウエッジライナーを押し広げて岩を破砕する(一次破砕)。ビッガーは通常、汎用の油圧ショベルに搭載して使用するが、油圧操作を行える昇降装置であればこれに変えることができる。通常、ビッガーでは1回目は約半分程度挿入して割岩し、2回目は3/4程度挿入して割岩し、3回目はできるだけ全部挿入して割岩するのが通常であるが、本発明の多連式油圧ビッガー装置を使用すると、削孔時間、割岩時間の短縮が顕著である。隣接する孔からの割岩作用が協働して相乗効果を発揮するものと思われる(図12と図13、14の比較対象)。
 最後に、ビッガーで一次破砕したクラックに沿って、大型ブレイカー又はリッパー等により順次二次破砕をする。
In the second stage, as shown in FIG. 4, (1) drilling step: drilling is performed at a pitch and a drilling depth determined in the measured area. Using a large crawler drill, the standard drilling diameter and hole length for the HBR-1000 is Φ100 mm x 1.5 m, and for the HBR-1700, Φ125 mm x 2.5 m (see Fig. 4 (1) (a)). ), The standard arrangement of drilling is staggered (see Fig. 4 (1) (b)), and the intervals are set appropriately according to the quality and hardness of the bedrock. In the multiple-type bigger method of the present invention, the hole spacing (D) and / or the resistance wire (W) is set to 1.5 times or more, preferably 2.0 times or more and 3.0 times, particularly the hole spacing (D). It has been proven that it can be done.
Next, (2) split rock step: A bigger wedge liner is inserted into the perforated hole, the wedge is pushed in hydraulically, and the wedge liner is expanded to crush the rock (primary crushing). The bigger is usually mounted on a general-purpose hydraulic excavator and used, but it can be changed to any lifting device that can operate hydraulically. Normally, in Bigger, it is usual to insert about half of the rock in the first time, insert about 3/4 of the rock in the second time, and insert as much as possible in the third time to break the rock. When the continuous hydraulic bigger device is used, the drilling time and rock breaking time are remarkably shortened. It is considered that the rock splitting action from the adjacent holes cooperates to exert a synergistic effect (comparison target of FIGS. 12 and 13 and 14).
Finally, along the cracks primary crushed by Bigger, secondary crushing is sequentially performed by a large breaker, a ripper or the like.
 図5は本発明に係る多連式油圧ビッガー割岩装置の具体例の斜視図で、大型油圧ショベル10の操作アーム11の先端に一対のHBR-1000のビッガー30、30が水平ハンガー20を介してバランスよく吊り下げられた状態を示す。本発明においては、ビッガー割岩装置は、油圧ショベル10の油圧操作アーム11の先端に一対のビッガー30,30を取り付け、そのビッガーのウエッジライナー31を同時に、クローラドリル等の穿孔機で岩盤の所定箇所に形成した所定深さの穿孔内に挿入する。この際、油圧ショベル10の操作アーム11の作動をビッガー30の胴部に取り付けた操作ハンドル32を図示しない補助員が把持して隣接した穿孔に誘導するのがよい。その後、穿孔内のウエッジライナーを油圧でのウエッジを押し込みにより押し広げて、前記穿孔の周囲にひび割れ(一次破砕)を発生させる。
 詳しくは、油圧ショベル10の操作アーム1の先端に水平ハンガー20が揺動可能に取り付けられる。この水平ハンガー20は一対の翼部21a, 21aからなり、翼部は中心から100mm間隔で両端に広がる複数の取り付け孔21bを有する。そして、ボルト締めされる取り付け具21cを介して水平ハンガーの吊り下げ中心21から左右等距離にバランスを取って、スイベル22を介して一対のビッガー30、30を垂下して取り付ける。他方、水平ハンガー20の中央はアーム取り付け具23を介して前記油圧ショベル10の操作アーム先端に取り付けられるが、アーム取り付け具23と水平ハンガー20の中心は屈曲部24aを有する捩れ低減レバー24で支持される。また、ビッガー30,30の中腹部は穿孔間隔に調整可能な、衝突防止レバー40で所定の間隔を保持している。したがって、一対のビッガー30、30は大きく捩れることなく、比較的容易に隣接するビッガー孔にそれぞれのウエッジライナー31を挿入できる。このウエッジライナー31内のウエッジを、油圧で実質的に同時に押し込むと、隣接するビッガー孔内のウエッジライナーは同時に岩盤の自由面に対し垂直方向に押し広げるようにコントロールされる。即ち、複数のビッガー30,30は水平ハンガー20を介して油圧ショベルの操作アーム11に対しバランスよく吊り下げるが、水平ハンガー20は連結具24を介して捩れを防止しつつ操作アームに吊り下げられるので、補助員がビッガー30の操作ハンドル32を保持して補助すれば、油圧ショベルの操作によって所定のビッガー孔の入り口にウエッジライナー31の先端をビッガー孔に挿入することができる。他方、一対のビッガー30、30は水平ハンガー20に対しスイベル22を介してビッガー軸周りに回転可能に吊り下げられるので、一対のビッガー30、30はそのウエッジライナーの押し広げ方向を自由端面に対し垂直にかつ互いに押し広げ方向を平行に設定される。そのため、ウエッジライナー31は、隣接するビッガー孔に対し互いに亀裂が協働するように調整される。そこで、複数のビッガー30、30を同時使用し、ビッガー自由面(スリット)に対し平行に設けた隣接する穿孔内のウエッジライナー31,31を同時に押し広げて隣接する穿孔間にひび割れを発生させることができ、2倍以上の施工能率を得る。
FIG. 5 is a perspective view of a specific example of the multiple hydraulic bigger breaking rock device according to the present invention, in which a pair of HBR-1000 biggers 30 and 30 are placed at the tip of an operation arm 11 of a large hydraulic excavator 10 via a horizontal hanger 20. Shows a well-balanced suspended state. In the present invention, in the bigger rock breaking device, a pair of biggers 30 and 30 are attached to the tip of the hydraulic operation arm 11 of the hydraulic excavator 10, and the wedge liner 31 of the bigger is simultaneously inserted at a predetermined position of the bedrock by a drilling machine such as a crawler drill. It is inserted into a perforation of a predetermined depth formed in. At this time, it is preferable that the operation of the operation arm 11 of the hydraulic excavator 10 is guided to the adjacent drilling by an assistant (not shown) grasping the operation handle 32 attached to the body of the bigger 30. Then, the wedge liner in the perforation is expanded by pushing the wedge under hydraulic pressure to generate cracks (primary crushing) around the perforation.
Specifically, the horizontal hanger 20 is swingably attached to the tip of the operation arm 1 of the hydraulic excavator 10. The horizontal hanger 20 is composed of a pair of wing portions 21a and 21a, and the wing portions have a plurality of mounting holes 21b extending at both ends at intervals of 100 mm from the center. Then, the pair of biggers 30 and 30 are hung and attached via the swivel 22 while being balanced equidistant to the left and right from the hanging center 21 of the horizontal hanger via the bolt-tightened attachment 21c. On the other hand, the center of the horizontal hanger 20 is attached to the tip of the operating arm of the hydraulic excavator 10 via the arm attachment 23, but the center of the arm attachment 23 and the horizontal hanger 20 is supported by a twist reducing lever 24 having a bent portion 24a. Will be done. Further, the middle abdomen of the biggers 30 and 30 is maintained at a predetermined interval by a collision prevention lever 40 that can be adjusted to the drilling interval. Therefore, the pair of Biggers 30 and 30 can relatively easily insert the respective wedge liners 31 into the adjacent Bigger holes without being greatly twisted. When the wedges in the wedge liner 31 are pushed in substantially simultaneously by hydraulic pressure, the wedge liners in the adjacent Bigger holes are simultaneously controlled to be pushed vertically with respect to the free surface of the bedrock. That is, the plurality of biggers 30 and 30 are suspended from the operation arm 11 of the hydraulic excavator via the horizontal hanger 20 in a well-balanced manner, but the horizontal hanger 20 is suspended from the operation arm via the connector 24 while preventing twisting. Therefore, if the assistant holds and assists the operation handle 32 of the bigger 30, the tip of the wedge liner 31 can be inserted into the bigger hole at the entrance of the predetermined bigger hole by operating the hydraulic excavator. On the other hand, since the pair of biggers 30 and 30 are rotatably suspended around the bigger axis with respect to the horizontal hanger 20 via the swivel 22, the pair of biggers 30 and 30 push the wedge liner in the spreading direction with respect to the free end face. The directions are set to be vertical and spread parallel to each other. Therefore, the wedge liner 31 is adjusted so that the cracks cooperate with each other in the adjacent Bigger holes. Therefore, a plurality of biggers 30 and 30 are used at the same time, and the wedge liners 31 and 31 in the adjacent perforations provided parallel to the bigger free surface (slit) are simultaneously expanded to generate cracks between the adjacent perforations. It is possible to obtain more than double the construction efficiency.
(実施例)
 図7に示す試験施工の作業フローに基づき、第1段階で割岩能力試験(a)と第2段階で施工能力試験(b)とを行った。
 割岩能力試験(a)ではクローラドリル削孔(先行削孔)では0.7m、1.0m及び1.5mピッチで削孔を行った後、割岩能力試験では各ピッチでのひび割れの状態を確認するとともに、ひび割れ幅を確認し、隣の孔とひび割れがつながっているかを確認した。そして、破砕片を除去し、割岩深さを最後に確認した。
 施工能力試験(b)では、まず「エリア計測」を行う。この計測により、割岩対象数量(m3)概算数量を把握する(10m×3.0m≒30m3)。次いで、「削孔時間計測」を行う。
 エリア内で必要な削孔を行い、その削孔完了時間を測定する。次いで、「割岩時間計測」では削孔完了エリアを割岩し、割岩完了時間を測定する。最後に、「割岩数量計測」では岩砕撤去度の破砕数量を確認する。
(Example)
Based on the work flow of the test construction shown in FIG. 7, the rock breaking capacity test (a) was performed in the first stage and the construction capacity test (b) was performed in the second stage.
In the cracking capacity test (a), drilling was performed at 0.7m, 1.0m and 1.5m pitches in the crawler drill drilling (preceding drilling), and then in the cracking capacity test, the state of cracks at each pitch was confirmed. At the same time, the width of the crack was confirmed, and it was confirmed whether the crack was connected to the adjacent hole. Then, the debris was removed and the depth of the split rock was finally confirmed.
In the construction ability test (b), "area measurement" is first performed. By this measurement, the approximate quantity of the split rock target quantity (m3) is grasped (10m × 3.0m≈30m3). Next, "drilling time measurement" is performed.
Perform the required drilling in the area and measure the drilling completion time. Next, in the "breaking rock time measurement", the drilling completion area is broken and the breaking rock completion time is measured. Finally, in "Measurement of split rock quantity", the crushed quantity of the degree of rock crushing removal is confirmed.
 図8は割岩能力試験(第1段階)で用いる穿孔装置であるクローラドリル(a)、各種割岩装置であるビッガーHRB-1000(b)、スーパービッガーHRB-1700(c)及び多連式ビッガーHRB-1000×2(d)の写真を示し、以下、図9ではビッガーHRB-1000(図8(b))を使った場合の試験説明を示す。他方、図10ではスーパービッガーHRB-1700(図8(c))、図11では多連式ビッガーHRB-1000×2(図8(d)) を使った場合の試験説明を示す。 FIG. 8 shows the crawler drill (a), which is a drilling device used in the rockwell capacity test (first stage), the Bigger HRB-1000 (b), the Super Bigger HRB-1700 (c), and the multiple-type bigger, which are various rockwell devices. A photograph of HRB-1000 × 2 (d) is shown, and FIG. 9 shows a test description when a Bigger HRB-1000 (FIG. 8 (b)) is used. On the other hand, FIG. 10 shows a test description when the Super Bigger HRB-1700 (FIG. 8 (c)) is used, and FIG. 11 shows a test description when the multiple type Bigger HRB-1000 × 2 (FIG. 8 (d)) is used.
(施工能力比較)
 図12は図10のスーパービッガーHRB-1700(図8(c))を使った結果を示し、図13及び図14は本発明に係る多連式油圧ビッガーHRB-1000×2(図8(d)) を使った場合の結果を示す。両者の施工能力、施工歩掛を下記の内容の施工能力試験を実施して比較した。
   (1)削孔時間計測:
   前工程で確認した割岩能力に見合った、削孔間隔で決められた施工範囲を削孔する時間を計測した。
   (2)割岩時間測定:
   削孔完了後、割岩機で全ての削孔箇所で割岩を行う時間を計測した。
   (3)数量計測:
 (1)及び(2)の作業完了後、破砕片を除去し、施工範囲(約5.0m×5.0=25.0m2)での割岩数量を計測した。
 以上の結果より、本発明の多連式ビッガー割岩工法の施工能力はスーパービッガーを用いる場合より、2倍を超える割岩能力があることが証明される。即ち、単独でビッガー割岩するより、多連で行うと相乗効果が生まれることが立証された。この結果より、多連式ビッガー割岩工法の削孔間隔は中硬岩では1.5~1.2m以上、硬岩では1.2~1.0m以上が適当といえる。削孔間隔を大きくすることで削孔時間の短縮が図れ、1台のベースマシンで多孔を同時に割岩できるということは、施工単価をより安価にでき、なおかつ工期短縮につながることになる。
(Comparison of construction capacity)
FIG. 12 shows the results using the Super Bigger HRB-1700 (FIG. 8 (c)) of FIG. 10, and FIGS. 13 and 14 show the multiple hydraulic bigger HRB-1000 × 2 according to the present invention (FIG. 8 (FIG. 8). d)) shows the result when using). The construction ability and construction cost of both were compared by conducting the construction ability test with the following contents.
(1) Drilling time measurement:
The time required to drill a hole in the construction range determined by the drilling interval was measured, which was commensurate with the rock splitting capacity confirmed in the previous process.
(2) Breaking rock time measurement:
After the drilling was completed, the time required to crack the rock at all drilling points was measured with a rock breaking machine.
(3) Quantity measurement:
After the work of (1) and (2) was completed, the crushed pieces were removed, and the number of split rocks in the construction range (about 5.0 m × 5.0 = 25.0 m2) was measured.
From the above results, it is proved that the construction capacity of the multiple-type bigger split rock construction method of the present invention is more than twice that of the case of using the super bigger. In other words, it was proved that a synergistic effect is produced by performing multiple rocks rather than splitting the bigger rock alone. From this result, it can be said that the drilling interval of the multiple Bigger split rock method is 1.5 to 1.2 m or more for medium hard rock and 1.2 to 1.0 m or more for hard rock. By increasing the drilling interval, the drilling time can be shortened, and the fact that the perforations can be split at the same time with one base machine can reduce the construction unit price and shorten the construction period.
 なお、上記実施例では比較のため、ビッガーHRB-1000一対を使用した場合を示したが、スーパービッガーを対にして用いることもできるのはもちろんである。また、ビッガーHRBを一対とし、1台の掘削機に搭載したが、1台の掘削機に一対以上を同時に用いるようにしてもよいし、一対のビッガーを搭載した掘削機を並列して複数台同時に用いるようにしてもよい。 In the above embodiment, the case where the Bigger HRB-1000 pair is used is shown for comparison, but it is of course possible to use the Super Bigger as a pair. In addition, although a pair of Bigger HRBs are mounted on one excavator, one or more excavators may be used at the same time for one excavator, or a plurality of excavators equipped with a pair of Biggers may be used in parallel. It may be used at the same time.
 上記実施例では割岩機としては、油圧式を例にしたが、圧縮空気や電気を駆動源とするものであってよい。本発明においてはクサビ状拡開具をウエッジとし、ウエッジライナーを押し広げる形式のものを同時に二台以上使用することを要旨とするものであれば、よく、ビッガーHRBに限るものでない。さらに、従来例として工法、例えば破砕岩の沈降を所定時間阻止する高粘性流体を充填する方法も本発明の要旨を逸脱することなく採用できるのはいうまでもない。 In the above embodiment, the hydraulic type is taken as an example of the rock breaking machine, but it may be driven by compressed air or electricity. In the present invention, the wedge-shaped expander is used as a wedge, and if the gist is to use two or more wedge liners at the same time, the wedge liner is not limited to the Bigger HRB. Further, it goes without saying that, as a conventional example, a construction method, for example, a method of filling a highly viscous fluid that prevents the sedimentation of crushed rock for a predetermined time can be adopted without departing from the gist of the present invention.
10          油圧ショベル
2 0        水平ハンガー
30         ビッガーHRB
40          衝突防止レバー
 
10 Hydraulic excavator 20 Horizontal hanger 30 Bigger HRB
40 Collision prevention lever

Claims (7)

  1.  割岩対象の岩盤構造強度を測定し、岩盤への穿孔の孔間隔(D)及び抵抗線(W)の分布又は配置を決定する工程と、該穿孔設計に基づき、クローラドリル等の穿孔機で岩盤の所定箇所に所定深さの穿孔を複数個形成する穿孔工程と、前記穿孔内に挿入されるビッガーのウエッジライナーを、油圧でのウエッジを押し込みにより押し広げて、前記穿孔の 周囲にひび割れ(一次破砕)を発生させるビッガー割岩工程を含む工法において、
    前記穿孔工程において、岩盤構造強度の測定に基づき、標準穿孔分布の孔間隔(D)及び/又は抵抗線(W)を1.5倍以上の寸法に設定して穿孔し、
     次いで前記ビッガー割岩工程において、複数のビッガーを同時使用し、ビッガー自由面(スリット)側で隣接する穿孔の少なくとも一対の穿孔内にそれぞれビッガーのウエッジライナーを挿入してその押し広げ方向を自由面に対し垂直をなすように調整し、油圧で実質的に同時に又は実質的に同時にそれぞれのウエッジを押し込み、隣接する穿孔内のウエッジライナーを押し広げて隣接する穿孔間に協働してひび割れを発生させることを特徴とする多連式油圧ビッガー割岩工法。
    Based on the process of measuring the rock structure strength of the rock split target and determining the distribution or arrangement of the hole spacing (D) and resistance line (W) for drilling in the rock, and the drilling design, the rock with a drilling machine such as a crawler drill. The drilling process of forming a plurality of drillings of a predetermined depth at a predetermined location and the bigger wedge liner inserted in the drilling are spread by pushing the wedge with hydraulic pressure, and cracks (primary) are formed around the drilling. In a construction method that includes a Bigger split rock process that causes crushing)
    In the drilling step, based on the measurement of the rock structure strength, the hole spacing (D) and / or the resistance line (W) of the standard drilling distribution is set to a dimension of 1.5 times or more and drilled.
    Next, in the Bigger split rock process, a plurality of Biggers are used at the same time, and a Bigger wedge liner is inserted into at least a pair of perforations adjacent to each other on the Bigger free surface (slit) side, and the spreading direction thereof is set to a free surface. Adjusted to be perpendicular to each other, hydraulically push in each wedge substantially simultaneously or substantially simultaneously, spreading the wedge liner in the adjacent perforations and cooperating between the adjacent perforations to generate cracks. Multiple hydraulic bigger split rock construction method characterized by this.
  2.  所定穿孔分布が標準の孔間隔(D)の2.0倍以上の間隔である請求項1記載の多連式油圧ビッガー割岩工法。 The multiple hydraulic bigger split rock method according to claim 1, wherein the predetermined drilling distribution is 2.0 times or more the standard hole spacing (D).
  3.  所定穿孔分布の孔間隔(D)が、ビッガーHRB1000単独で標準0.5mの時の岩盤に対し、ビッガーHRB1000の2連式で2倍の1.0m又は3倍の1.5mの孔間隔(D)を採択する請求項1記載の多連式油圧ビッガー工法。 The hole spacing (D) of the predetermined drilling distribution is 1.0 m, which is doubled or 1.5 m, which is tripled with the double type of Bigger HRB1000, compared to the bedrock when the hole spacing (D) of the Bigger HRB1000 alone is 0.5 m. The multiple hydraulic bigger method according to claim 1, wherein D) is adopted.
  4.  ビッガー孔を割岩する前にスリット孔を割岩し、スリット(自由面)を確保する請求項1から3のいずれかに記載の多連式油圧ビッガー割岩工法。 The multiple hydraulic bigger split rock method according to any one of claims 1 to 3, wherein the slit hole is split before the bigger hole is split to secure a slit (free surface).
  5.  さらに、前記穿孔の周辺を破砕機により破砕する二次破砕工程と、前記二次破砕工程により破砕された破砕物の除去を行う除去処理工程とを備える請求項1から3のいずれかに記載の多連式油圧ビッガー割岩工法。 The invention according to any one of claims 1 to 3, further comprising a secondary crushing step of crushing the periphery of the perforation with a crusher and a removal treatment step of removing the crushed material crushed by the secondary crushing step. Multiple hydraulic bigger split rock construction method.
  6.  前記ビッガー割岩工程において、油圧ショベル等の掘削機の操作アーム先端に複数のビッガーを一列に併設してなる多連式油圧割岩装置を使用するにあたり、該多連式油圧割岩装置が、油圧ショベル10等の掘削機の操作アーム先端に取り付けたビッガー取付け用水平ハンガー20と、該水平ハンガー20にその吊り下げ中心21から左右等距離に設けられ、バランスをとって吊り下げ複数の対をなすビッガー30、30と、前記操作アーム11の先端と前記水平ハンガー20との連結部に平行して取り付けられる水平ハンガーの捩れ低減バー24と、前記水平ハンガー20に、ビッガー30の上端を取り付けて吊り下げ、そのビッガー軸線周りに回転自在に取り付けるスイベル等の回転自在金具25と、前記ビッガーの胴部に取り付けられ、岩盤自由端面に対し平行して穿設されたビッガー孔に対しビッガー30の先端ウエッジライナーをその押し広げ方向を調整する操作ハンドル26とを備え、
     対をなすビッガー30、30の上端を水平ハンガー20の両翼にバランスよく取り付け、割岩の自由端面に平行して穿設された隣接するビッガー孔にそれぞれのビッガー30のウエッジライナー31をその押し広げ方向が自由端面に対し実質的に垂直をなすように操作ハンドル26で挿入し、油圧でそれぞれのウエッジを同時に押し込み、隣接するビッガー孔内のウエッジライナーを平行して押し広げる前記請求項1記載の多連式油圧ビッガー割岩工法。
    In the bigger rock breaking process, when using a multiple hydraulic rock breaking device in which a plurality of biggers are arranged in a row at the tip of an operation arm of an excavator such as a hydraulic excavator, the multiple hydraulic excavator 10 is used. A horizontal hanger 20 for mounting a bigger attached to the tip of the operation arm of an excavator such as, etc. , 30 and the twist reduction bar 24 of the horizontal hanger attached in parallel with the connecting portion between the tip of the operation arm 11 and the horizontal hanger 20, and the horizontal hanger 20 with the upper end of the bigger 30 attached and suspended. A rotatable metal fitting 25 such as a swivel that is rotatably attached around the bigger axis, and a tip wedge liner of the bigger 30 are attached to the bigger hole attached to the body of the bigger and parallel to the free end face of the bedrock. It is equipped with an operation handle 26 that adjusts the spreading direction.
    The upper ends of the paired biggers 30 and 30 are attached to both wings of the horizontal hanger 20 in a well-balanced manner, and the wedge liner 31 of each bigger 30 is spread in the adjacent bigger holes formed in parallel with the free end face of the split rock. 2. Continuous hydraulic bigger split rock construction method.
  7.  さらに、前記多連式油圧ビッガー割岩装置が前記対をなすビッガー30.30を操作ハンドル26の近傍で連結する衝突防止バー40を備える請求項1記載の多連式油圧ビッガー割岩工法。
     
     
    The multiple hydraulic bigger breaking method according to claim 1, further comprising a collision prevention bar 40 in which the multiple hydraulic bigger breaking device connects the paired bigger 30.30 in the vicinity of the operation handle 26.

PCT/JP2020/032152 2020-08-26 2020-08-26 Multiple-type hydraulic-wedge rock splitting method WO2022044154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/032152 WO2022044154A1 (en) 2020-08-26 2020-08-26 Multiple-type hydraulic-wedge rock splitting method
JP2021571962A JP7176139B2 (en) 2020-08-26 2020-08-26 Multiple Hydraulic Bigger Rock Splitting Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032152 WO2022044154A1 (en) 2020-08-26 2020-08-26 Multiple-type hydraulic-wedge rock splitting method

Publications (1)

Publication Number Publication Date
WO2022044154A1 true WO2022044154A1 (en) 2022-03-03

Family

ID=80352884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032152 WO2022044154A1 (en) 2020-08-26 2020-08-26 Multiple-type hydraulic-wedge rock splitting method

Country Status (2)

Country Link
JP (1) JP7176139B2 (en)
WO (1) WO2022044154A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095096A (en) * 1983-10-28 1985-05-28 古河機械金属株式会社 Hole drilling system in bench cut method
JPS61242262A (en) * 1985-04-16 1986-10-28 三菱重工業株式会社 Surface delamination of structure
JPS635092U (en) * 1986-06-27 1988-01-13
JP2007083177A (en) * 2005-09-22 2007-04-05 High Frequency Heattreat Co Ltd Crushing method and crushing tool
KR20160067649A (en) * 2014-12-04 2016-06-14 박재현 Non-vibration and rock splitting type constructing tunnel method for shortening of the construction time
JP2018193678A (en) * 2017-05-12 2018-12-06 株式会社増岡組 Tunnel drilling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095096B2 (en) 2012-10-01 2017-03-15 愛知時計電機株式会社 Ultrasonic flow meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095096A (en) * 1983-10-28 1985-05-28 古河機械金属株式会社 Hole drilling system in bench cut method
JPS61242262A (en) * 1985-04-16 1986-10-28 三菱重工業株式会社 Surface delamination of structure
JPS635092U (en) * 1986-06-27 1988-01-13
JP2007083177A (en) * 2005-09-22 2007-04-05 High Frequency Heattreat Co Ltd Crushing method and crushing tool
KR20160067649A (en) * 2014-12-04 2016-06-14 박재현 Non-vibration and rock splitting type constructing tunnel method for shortening of the construction time
JP2018193678A (en) * 2017-05-12 2018-12-06 株式会社増岡組 Tunnel drilling method

Also Published As

Publication number Publication date
JPWO2022044154A1 (en) 2022-03-03
JP7176139B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
Haimson Fracture-like borehole breakouts in high-porosity sandstone: are they caused by compaction bands?
Zhukov et al. About creation of machines for rock destruction with formation of apertures of various cross-sections
WO2022044154A1 (en) Multiple-type hydraulic-wedge rock splitting method
WO2022044153A1 (en) Multiple hydraulic wedge rock-splitting device
Olsson et al. Surface degradation mechanisms of cemented carbide drill buttons in iron ore rock drilling
Iungemeister et al. Choice of materials and justification of the parameters for the over-bit hammer
Ghamgosar et al. A numerical study on oscillating disc cutting (ODC) technology for hard rock cutting
KR101400797B1 (en) Low vibration blasting method by making a plurality of free surface
Majeed et al. Block extraction of Himalayan rock salt by applying conventional dimension stone quarrying techniques
DE202010007996U1 (en) Cutting wheel for processing of hard rock
JPWO2022044154A5 (en)
Tambovtsev Estimation of main fracture initiation energy in separating stone blocks from rock mass by impact on plastic material in drillhole
Wang et al. Experimental investigation and field application of deep hard rock fragmentation using conical pick
Deliac et al. Theoretical and practical investigations of improved hard rock cutting systems
Lyle Experience with large diameter raise boring in the hard rock of the Canadian Shield
Hagan Some aspects of the application of high pressure water jets to rock cutting
RU2167293C1 (en) Method of rocks breakage
JP3066195U (en) Rock free surface drilling tool
SZWEDZICKI The effect of mining geometry on stability of rock mass around underground excavations
RU2093644C1 (en) Method for making trenches in frozen ground
RU1793063C (en) Method of vibration-borehole action on rock mass to reduce risk of outburst
JPH0313686A (en) Excavating method for vertical shaft
JP7061853B2 (en) A method of manufacturing materials by collecting excavated materials from excavated parts of rocks as materials.
Prakash et al. An Approach to Assess Influence of Rock Properties on the Operating Parameters of Surface Miner
Subahan et al. Optimization of Design Parameters of Opencast Mines

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951408

Country of ref document: EP

Kind code of ref document: A1