WO2022044110A1 - Communication control method and signal processing device - Google Patents

Communication control method and signal processing device Download PDF

Info

Publication number
WO2022044110A1
WO2022044110A1 PCT/JP2020/031970 JP2020031970W WO2022044110A1 WO 2022044110 A1 WO2022044110 A1 WO 2022044110A1 JP 2020031970 W JP2020031970 W JP 2020031970W WO 2022044110 A1 WO2022044110 A1 WO 2022044110A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
transmission
unit
timing
Prior art date
Application number
PCT/JP2020/031970
Other languages
French (fr)
Japanese (ja)
Inventor
和人 後藤
秀紀 俊長
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022544924A priority Critical patent/JPWO2022044110A1/ja
Priority to PCT/JP2020/031970 priority patent/WO2022044110A1/en
Publication of WO2022044110A1 publication Critical patent/WO2022044110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • H04W74/06Scheduled or contention-free access using polling

Definitions

  • the present invention relates to a communication control method and a signal processing device.
  • the millimeter wave band can use a wider radio band than the microwave band.
  • IEEE802.11ay is being discussed as a next-generation 60 GHz band wireless LAN (Local Area Network) standard (see, for example, Non-Patent Document 1).
  • FIG. 9 is a diagram showing a usage model of a millimeter-wave distributed network.
  • a relay network that replaces the optical fiber is constructed by a millimeter-wave distributed network.
  • the millimeter-wave distributed network is composed of millimeter-wave distributed nodes (mmWaveDistributionNode).
  • the feature of the millimeter wave distributed network is that the millimeter wave distributed node (corresponding to the base station) installed outdoors and the radio (mmWave Sector; equivalent to the terminal station) installed around the building are connected and they are millimeters.
  • the wave distribution node and the radio are fixedly installed.
  • (a) is an access using WTTH (Wireless To The Home)
  • (b) is an access using WTTB (Wireless To The Building)
  • (c) is Wi-Fi.
  • AP Access Point
  • Non-Patent Document 4 a method for solving this problem, a method has been proposed in which the signal processing unit and the antenna unit are separated by using radio on fiber (RoF), and the antenna unit is arranged as an overhanging station to expand the apparent coverage area.
  • RoF radio on fiber
  • this method by connecting a plurality of antenna units to one signal processing unit and installing a plurality of overhanging stations, it is possible to further expand the coverage area. Further, by separating the signal processing unit and the antenna unit, it is possible to simplify the configuration of the overhanging station and save power. Furthermore, by consolidating a plurality of overhanging stations into one signal processing unit, a cost advantage can be expected.
  • FIG. 10 is a diagram showing a collision avoidance mechanism proposed in Non-Patent Document 5. Although the details of this collision avoidance mechanism are omitted, frame collision is avoided by extending the NAV (Network Allocation Vector) period in which the terminal station not involved in reception is prohibited from transmitting according to the propagation delay time.
  • NAV Network Allocation Vector
  • FIG. 11 is a diagram showing a frame configuration proposed in Non-Patent Document 6.
  • the details of the MAC protocol are omitted, but in this protocol, the Central Office (CO; equivalent to the signal processing unit) assigns the optical wavelength to the Remote Antenna Unit (RAU; equivalent to the antenna unit) and to the Client (corresponding to the terminal station). Allocate wireless resources to centralized control. This efficiently controls both optical and wireless.
  • CO Central Office
  • RAU Remote Antenna Unit
  • the MAC protocol in the 60 GHz band wireless communication system to which RoF, which is another conventional technique, is applied applies simple polling control based on the round robin method, particularly in the control of wireless resources.
  • FIG. 12 shows the traffic amount and the propagation distance of each of the terminal stations # 1 to the terminal station # 3.
  • FIG. 13 is a diagram showing an outline of operations of a base station and radio stations # 1 to terminal station # 3 when radio resource control by the prior art is performed.
  • DL indicates a downlink and UL indicates an uplink. The downlink is from the base station to the terminal station, and the uplink is from the terminal station to the base station. Also.
  • the UL data signal from the terminal station # i Data i
  • the base station transmits a Poll signal to the terminal station to which each slot is assigned.
  • the terminal station that received the Poll signal transmits the UL data signal.
  • signal collision may occur due to simultaneous reception of uplink data signals from terminal stations having different transmission distances at the base station.
  • the base station receives the UL data signal D1 transmitted by the terminal station # 1 corresponding to the Poll signal P1 of the slot # 1, and then corresponds to the Poll signal P9 of the slot # 9.
  • the UL data signal D9 transmitted by the terminal station # 3 is received, none of the terminal stations can communicate due to the collision, and the radio band is wasted.
  • the longer the propagation delay the more free time in the radio band will occur.
  • the conventional radio resource control may not be able to prevent the occurrence of free time in the radio band due to the long delay.
  • an object of the present invention is to provide a communication control method and a signal processing device capable of improving the transmission efficiency of wireless communication.
  • One aspect of the present invention is an allocation step in which a signal processing device allocates a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which uplink data transmission is performed, and the signal processing device determines the transmission timing.
  • the reception timing calculation step of calculating the reception timing of the data signal transmitted by radio from the communication device corresponding to the data transmission poll signal transmitted by radio, and the reception timing calculated by the signal processing device.
  • the signal processing device includes an allocation step for assigning a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which the signal processing device performs uplink data transmission, and the signal processing device.
  • the reception timing calculation step for calculating the reception timing of the data signal transmitted wirelessly from the communication device corresponding to the data transmission poll signal transmitted wirelessly at the transmission timing, and the signal processing device calculated.
  • a determination step for determining the presence or absence of a collision of the data signal based on the reception timing, and a transmission timing of the data transmission poll signal corresponding to the data signal determined to be collided by the signal processing device in the determination step. It is a communication control method having a timing change step to be changed.
  • one aspect of the present invention includes an allocation unit that allocates a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which uplink data transmission is performed, and a data transmission unit that is wirelessly transmitted at the transmission timing.
  • a reception timing calculation unit that calculates the reception timing of a data signal wirelessly transmitted from the communication device in response to the polling signal, and a determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing.
  • a signal processing device including a destination changing unit for changing the communication device of the destination of the data transmission poll signal corresponding to the data signal determined to collide with the determination unit to another communication device.
  • one aspect of the present invention includes an allocation unit that allocates a transmission timing of a poll signal for data transmission addressed to each communication device in a time region in which uplink data transmission is performed, and a data transmission unit that is wirelessly transmitted at the transmission timing.
  • a reception timing calculation unit that calculates the reception timing of a data signal wirelessly transmitted from the communication device in response to the polling signal, and a determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing.
  • a signal processing device including a timing changing unit for changing the transmission timing of the data transmission poll signal corresponding to the data signal determined to collide with the determination unit.
  • the present embodiment relates to a communication control method and a signal processing device that efficiently utilize the band of a wireless communication system in a long delay environment.
  • the wireless communication system of this embodiment has a base station and a terminal station.
  • the base station wirelessly communicates with one or more terminal stations.
  • the wireless communication system of the present embodiment enhances the utilization efficiency of the UL (uplink) wireless band and improves the transmission efficiency by incorporating the control considering the propagation delay time difference into the centralized control type medium access control based on polling. do.
  • the wireless communication system of the present embodiment performs the following procedures 1 to 3.
  • the wireless communication system divides UL communication into a band request phase and a UL data transmission phase.
  • the band request phase is a time domain in which each terminal station makes a band request to the base station.
  • the UL data transmission phase is a time domain in which UL data transmission from a terminal station to a base station is carried out.
  • the wireless communication system implements the following procedures 2-1 to 2-3 as the operation of the band request phase.
  • the base station periodically broadcasts a polling signal for band request.
  • the polling signal for band request will be referred to as a poll signal for band request.
  • the terminal station randomly selects a Poll signal for band request to perform a response.
  • the terminal station transmits a response signal to the selected Poll signal for band request.
  • the terminal station sets the response signal with information about traffic in its own station in addition to the amount of data transmitted by UL communication. Information about traffic is, for example, traffic volume, packet generation interval, service type, priority, and the like. It should be noted that only the active terminal station may transmit the response. Active means that there is data to be transmitted by UL data transmission.
  • the wireless communication system implements the following procedures 3-1 to 3-4 as the operation of the UL data transmission phase.
  • the base station determines a terminal station to which a polling signal for UL data signal transmission is assigned based on a predetermined criterion.
  • the polling signal for UL data signal transmission will be referred to as a Poll signal for data transmission.
  • information on traffic, propagation distance, and the like can be used as the determination criteria, but the determination criteria are not limited thereto.
  • Information about traffic includes traffic volume, packet generation interval, service type, priority, and the like.
  • the base station determines the transmission timing of the data transmission Poll signal addressed to the terminal station whose allocation has been determined based on the traffic information. For example, the packet generation interval is used as the traffic information, but other information may be used.
  • the base station arranges UL data signals from each terminal station based on the determined transmission timing of the data transmission Poll signal.
  • Arranging the UL data signal means allocating a time interval for receiving the UL data signal at the base station.
  • the arrangement of the UL data signal is represented by the reception start timing and the reception end timing of the UL data signal in the base station.
  • the wireless communication system may perform the following procedure 3-4'instead of the procedure 3-4.
  • Procedure 3-4' When the arranged UL data signal collides with another UL data signal, the base station sets a guard time so that the collision can be avoided. Setting the guard time means changing the arrangement of the UL data signal to a later time than the current arrangement.
  • the base station when the arranged UL data signal collides with another UL data signal, the base station changes the terminal station to which the Poll signal for data transmission is assigned based on a predetermined criterion (procedure 3-4). ).
  • FIG. 1 is a diagram showing a configuration of a wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 has a base station 1 and a terminal station 5.
  • one base station 1 and one terminal station 5 are shown, but the number of base stations 1 and the number of terminal stations 5 communicating with the base station 1 are arbitrary.
  • the base station 1 is separated into a signal processing unit 2 having a signal processing function and an antenna unit 3 (overhanging station) having a wireless communication function by using RoF.
  • the base station 1 includes one or more antenna units 3.
  • the signal processing unit 2 and the antenna unit 3 are connected by an optical fiber 4.
  • the antenna unit 3 and the terminal station 5 are connected by a millimeter wave wireless communication system 6.
  • the signal processing unit 2 is fixedly installed in a station building or the like.
  • the antenna unit 3 is fixedly installed on a utility pole or the like located around the place where the terminal station 5 is installed.
  • the terminal station 5 is fixedly installed in a building such as a house or a building.
  • the signal processing unit 2 of the base station 1 includes a communication unit 21, an allocation unit 22, a transmission / reception unit 23, a propagation distance calculation unit 24, a destination determination unit 25, a reception time calculation unit 26, and a determination unit 27. Be prepared.
  • the communication unit 21 transmits and receives a signal to and from the antenna unit 3 via the optical fiber 4.
  • the allocation unit 22 allocates the transmission timing to the band request Poll signal so that the band request Poll signal is periodically transmitted in the band request phase.
  • the transmission timing is represented by a slot.
  • the transmission / reception unit 23 has a transmission unit 231 and a reception unit 232.
  • the transmission unit 231 encodes or modulates the data to generate a DL communication signal addressed to the terminal station 5, and outputs the signal to the communication unit 21.
  • the receiving unit 232 performs reception processing such as demodulation and decoding on the UL communication signal transmitted by the terminal station 5.
  • the propagation distance calculation unit 24 calculates the propagation delay time of communication between the base station 1 and the terminal station 5. Any prior art can be used to calculate the propagation delay time. As an example, the propagation distance calculation unit 24 calculates the propagation delay time based on the difference between the UL signal reception timing in the antenna unit 3 or the communication unit 21 and the transmission timing set in the UL signal by the terminal station 5. Further, the propagation distance calculation unit 24 calculates the propagation distance between the base station 1 and the terminal station 5 based on the calculated propagation delay time.
  • the destination determination unit 25 determines the terminal station 5 to which the Poll signal for data transmission is assigned based on a predetermined determination criterion.
  • the determination criteria for example, the traffic amount of the terminal station 5, the communication priority of the terminal station 5, the propagation distance of the terminal station 5, and the like are used. Further, as will be described later, when the determination unit 27 determines that there is a collision of UL data signals, the destination determination unit 25 changes the terminal station 5 to which the Poll signal for data transmission is assigned.
  • the reception time calculation unit 26 includes the propagation delay time of the terminal station 5 calculated by the propagation distance calculation unit 24, the processing time from the reception of the Poll signal for band request to the transmission of the UL data signal by the terminal station 5.
  • the UL data signal reception time at the base station 1 is calculated based on the signal processing time obtained from the signal length of the UL data signal.
  • the UL data signal reception time is a time interval from the reception start timing of the UL data signal transmitted from the terminal station 5 to the reception end timing of the UL data signal.
  • the reception start timing and reception end timing are represented by, for example, slots.
  • the determination unit 27 determines whether or not there is a UL data signal collision based on the UL data signal reception time calculated by the reception time calculation unit 26 for each terminal station 5.
  • the antenna unit 3 of the base station 1 includes a communication unit 31.
  • the communication unit 31 transmits and receives signals to and from the signal processing unit 2 via the optical fiber 4, and transmits and receives signals to and from the terminal station 5 via the millimeter-wave wireless communication system 6.
  • the communication unit 31 may directly communicate with the terminal station 5 by millimeter wave wireless communication.
  • the terminal station 5 includes a communication unit 51, a reception timing determination unit 52, a response signal allocation unit 53, a transmission / reception unit 54, and a UL data signal allocation unit 55.
  • the communication unit 51 transmits and receives signals to and from the antenna unit 3 via the millimeter-wave wireless communication system 6.
  • the communication unit 51 may directly communicate with the antenna unit 3 by millimeter wave wireless communication.
  • the reception timing determination unit 52 randomly determines the timing at which the band request Poll signal periodically transmitted from the base station 1 is received by the own station in the band request phase.
  • the response signal allocation unit 53 allocates the transmission timing of the response signal to the band request Poll signal after receiving the band request Poll signal.
  • the transmission / reception unit 54 has a transmission unit 541 and a reception unit 542.
  • the transmission unit 541 outputs a UL communication signal generated by encoding or modulation to the communication unit 51.
  • the receiving unit 542 performs reception processing such as demodulation and decoding on the DL communication signal received from the base station 1.
  • the UL data signal allocation unit 55 allocates the transmission timing of the UL data signal after the receiving unit 542 receives the data transmission Poll signal addressed to its own station in the UL data transmission phase.
  • FIG. 2 is a flow chart showing the processing of the wireless communication system 10 in the band request phase.
  • the process shown in FIG. 2 is executed by the base station 1 and the terminal station 5 of N units (N is an integer of 1 or more) that wirelessly communicates with the same antenna unit 3 of the base station 1.
  • the wireless communication system 10 sets the initial value of the variable i to 1, and processes the loop 1 for each value of the variable i in which the value of the variable i is incremented by 1 until the value of the variable i reaches the number of terminals N.
  • the variable i represents the i-th unit among the N terminal stations 5.
  • Loop 1 includes the processing of steps S110 to S115.
  • the i-th terminal station 5 (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
  • the reception timing determination unit 52 of the terminal station #i determines whether or not the Ac signal from the base station 1 has not been received (step S110).
  • This Ack signal is a signal transmitted by the base station 1 with respect to the response signal transmitted from the terminal station 5.
  • the reception timing determination unit 52 randomly selects the number of the Poll signal for band request to be received (step S115).
  • the number of the Poll signal for band request corresponds to the slot number.
  • the idea of binary backoff or the like may be adopted.
  • the response signal allocation unit 53 determines a slot for transmitting a response signal to the band request Poll signal based on the selected band request Poll signal number.
  • the reception timing determination unit 52 determines that the Ac signal has been received (step S110: NO)
  • the reception timing determination unit 52 does not perform the process of step S115.
  • the wireless communication system 10 sets the initial value of the variable j to 1 and sets the value of the variable j to the number of slots M included in the band request area. Until the value is reached, the loop 2 process is performed for the variable j of each value obtained by incrementing the value of the variable j by 1. (Step S120).
  • the variable j represents the slot number in the bandwidth request area.
  • the j-th slot is described as slot # j.
  • Loop 2 includes the process of step S125 and the process of loop 3.
  • the transmission unit 231 of the base station 1 generates a Poll # j which is a band requesting Poll signal of the slot number j, and outputs the Poll # j to the antenna unit 3 via the communication unit 21.
  • the communication unit 31 of the antenna unit 3 broadcasts Poll # j to the terminal station 5 in slot # j (step S125).
  • the wireless communication system 10 sets the initial value of the variable k to 1, and processes the loop 3 for each value of the variable k in which the value of the variable k is incremented by 1 until the value of the variable k reaches the number N of the terminal stations 5. (Step S130).
  • the variable k represents the kth of the N terminal stations 5.
  • the processing of the loop 3 includes the processing of steps S135 to S150.
  • the receiving unit 542 of the terminal station #k receives the Poll # j broadcast in step S125.
  • the reception timing determination unit 52 determines whether or not the received Poll # j is a signal to be received by the own station based on the band request Poll signal number selected in step S115 (step S135). When the reception timing determination unit 52 determines that Poll # j is not a signal to be received by its own station (step S135: NO), the terminal station 5 does not perform the process of step S140, and the base station 1 steps. The processing of S145 to S150 is not performed.
  • the transmission unit 541 of the terminal station #k When the reception timing determination unit 52 of the terminal station #k determines that the received Poll # j is a signal to be received by the own station (step S135: YES), the transmission unit 541 of the terminal station #k outputs a response signal. Generate and output to the communication unit 51.
  • the transmission unit 541 sets the Acc information, the amount of data to be transmitted by UL communication, and the information related to traffic in the response signal.
  • Information about traffic includes information such as traffic amount, traffic interval, service type, and priority.
  • the communication unit 51 wirelessly transmits the response signal in the slot assigned by the response signal allocation unit 53 (step S140).
  • the receiving unit 232 of the base station 1 determines whether or not the response signal from the terminal station #k has been normally received (step S145).
  • the transmitting unit 231 When the receiving unit 232 determines that the response signal has been normally received (step S145: YES), the transmitting unit 231 generates an Ac signal addressed to the terminal station #k and connects the antenna unit 3 to the antenna unit 3 via the communication unit 21. Send.
  • the antenna unit 3 wirelessly transmits an Ac signal addressed to the terminal station #k (step S150).
  • step S145: NO the base station 1 does not perform the process of step S150.
  • step S155 When the receiving unit 232 determines that there is a terminal station 5 that has not yet transmitted the Ac signal (step S155: NO), the wireless communication system 10 repeats the process from step S105. When it is determined that the receiving unit 232 has transmitted the Ack signal to all the terminal stations 5 (step S155: YES), the wireless communication system 10 completes the processing of the band request phase.
  • the terminal station 5 to be processed in FIG. 2 may be limited to the active terminal station 5 that stores UL data to be transmitted. Further, the propagation distance calculation unit 24 of the base station 1 calculates the propagation delay time and the propagation distance of each terminal station 5 based on the response signal received from the terminal station 5 or the signal of other UL communication.
  • FIG. 3 is a flow chart showing the processing of the wireless communication system 10 in the UL data transmission phase.
  • the process shown in FIG. 3 is executed by the base station 1, the same antenna unit 3 of the base station 1, and N terminal stations (N is an integer of 1 or more) that perform UL data transmission.
  • N in the process of FIG. 3 is the number of terminal stations 5 in which the base station 1 normally receives the response signal in the process of FIG.
  • the destination determination unit 25 of the base station 1 sorts the N terminal stations 5 based on a predetermined determination criterion (step S305). For example, the destination determination unit 25 sorts the terminal station 5 in descending order of the traffic amount. The traffic amount information is obtained from the information set in the response signal received from the terminal station 5. Alternatively, the destination determination unit 25 may sort the terminal stations 5 in the order of longest or shortest propagation distance calculated by the propagation distance calculation unit 24.
  • the terminal station 5 whose sort result rank is i-th (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
  • the destination determination unit 25 temporarily allocates the data transmission Poll signal to be transmitted to each terminal station 5 to the slot based on the traffic information (for example, the packet generation interval) received from each terminal station 5 (step S310). ).
  • the data transmission Poll signal is a Poll signal for permitting the destination terminal station 5 to transmit the UL data signal.
  • the destination determination unit 25 temporarily allocates the data transmission Poll signal to be transmitted to each terminal station 5 to the slot by the same round robin as in the prior art.
  • the traffic information is read from the response signal received from the terminal station 5.
  • the destination determination unit 25 sets the initial value 1 for the values of the variable i and the variable j (step S315), and sets the initial value 1 for the value of the variable k (step S320).
  • the variable j represents the order in the sort result of the terminal station 5, and the variable k is the slot number in the UL data transmission area.
  • the data transmission Poll signal to which the slot number k is assigned is referred to as Poll # k.
  • the destination determination unit 25 assigns the value of the variable i to the variable j (step S325).
  • the reception time calculation unit 26 calculates the UL data signal reception time based on the transmission timing of the Poll # k temporarily assigned to the terminal station #i (step S330).
  • the calculated UL data signal reception time is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1.
  • the UL data signal reception time may be represented by a slot.
  • the reception time calculation unit 26 determines the UL data signal reception time as the propagation delay time of the terminal station #i and the processing time from the reception of the Poll signal for band request by the terminal station #i to the transmission of the UL data signal. , Calculated based on the signal processing time obtained from the signal length of the UL data signal.
  • the determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station #i corresponding to Poll # k and another UL data signal (step S335). That is, the determination unit 27 allocates the UL data signal reception time to the UL data signal transmitted from the terminal station #i corresponding to Poll # k to the UL data transmitted from the terminal station 5 different from the terminal station #i. It is determined whether or not the signal overlaps with the UL data signal reception time of the signal. The determination unit 27 determines that a collision does not occur if they do not overlap, and determines that a collision occurs if they do overlap.
  • step S340 the destination determination unit 25 performs the process of step S340. That is, the destination determination unit 25 determines the allocation destination of Poll # k to the terminal station #i, and determines that the UL data signal from the terminal station #i is allocated to the UL data signal reception time calculated in step S330 (). Step S340). The destination determination unit 25 adds 1 to the value of the variable i and increments it (step S345). The destination determination unit 25 determines whether or not the value of the variable i exceeds the number of terminal stations N (step S350). When the destination determination unit 25 determines that the value of the variable i exceeds the number of terminal stations N (step S350: YES), the destination determination unit 25 sets the value of the variable i to 1 (step S355).
  • step S350 determines in step S350 that the value of the variable i does not exceed the number of terminal stations N (step S350: NO), or after the process of step S355, the destination determination unit 25 performs the process of step S360. That is, the destination determination unit 25 adds 1 to the value of the variable k and increments it (step S360).
  • the destination determination unit 25 determines whether or not the value of the variable k exceeds the number of slots K in the UL data transmission area (step S365).
  • step S365 determines that the value of the variable k does not exceed the number of slots K (step S365: NO)
  • the destination determination unit 25 repeats the processing from step S325. Then, when the destination determination unit 25 determines that the value of the variable k exceeds the number of slots K (step S365: YES), the destination determination unit 25 ends the process.
  • step S335 when the determination unit 27 determines that a collision between the UL data signal transmitted from the terminal station #i corresponding to the Variable # k and another UL data signal occurs (step S335: YES), the destination determination unit In 25, 1 is added to the value of the variable j and incremented (step S370). The destination determination unit 25 determines whether or not there is a terminal station 5 that has not yet been selected as a determination target for assigning a UL data signal to the slot # k (step S375).
  • the destination determination unit 25 determines whether or not the value of the variable j exceeds the number of terminal stations N (step S380). ). When the destination determination unit 25 determines that the value of the variable j exceeds the number of terminal stations N (step S380: YES), the destination determination unit 25 sets the value of the variable j to 1 (step S385).
  • step S380 NO
  • step S385 the temporary allocation destination of Poll # k is set to the terminal station #.
  • Update to j step S390.
  • the reception time calculation unit 26 calculates the UL data signal reception time allocated for receiving the UL data signal transmitted from the terminal station # j that received the Poll # k at the base station 1 by the same processing as in step S330. (Step S395). Similar to step S335, the determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station # j corresponding to Poll # k and another UL data signal (step). S400).
  • step S400 determines that a collision occurs (step S400: YES)
  • the base station 1 repeats the process from step S370.
  • step S400: NO the determination unit 27 determines that no collision occurs (step S400: NO)
  • the destination determination unit 25 determines the allocation destination of Poll # k to the terminal station # j, and the UL data calculated in step S395. It is determined that the UL data signal from the terminal station #j is assigned to the signal reception time (step S405).
  • step S375 determines that all the terminal stations 5 are the determination targets (step S375: NO)
  • FIG. 4 is a diagram showing an outline of operation in the UL data transmission phase of the wireless communication system 10 based on the result of the process of FIG.
  • FIG. 4 shows an example in which the terminal station 5 has three terminals # 1 to terminal station # 3. It is assumed that the traffic amount and the propagation distance of the terminal stations # 1 to the terminal station # 3 are the same as those in FIG. That is, the propagation distance of the terminal station # 1 ⁇ the propagation distance of the terminal station # 2 ⁇ the propagation distance of the terminal station # 3.
  • Poll i is a Poll signal for data transmission addressed to the terminal station # i
  • Data i is a UL data signal transmitted by the terminal station # i.
  • the description of the Ack signal to be returned when the base station 1 receives the UL data signal is omitted.
  • the destination determination unit 25 of the base station 1 allocates a Poll signal for data transmission to the terminal station # 1, the terminal station # 2, and the terminal station # 3 arranged in descending order of the traffic amount by round robin.
  • the reception time calculation unit 26 calculates the arrival time of the UL data signal transmitted by each of the terminal stations # 1 to the terminal station # 3 corresponding to each data transmission Poll signal.
  • the Poll signal for data transmission is assigned as in FIG. 13, and the arrival time of the UL data signal transmitted from each of the terminal stations # 1 to # 3, that is, the UL data signal reception time is calculated. .. As shown in FIG.
  • the UL data signal D4 transmitted by the terminal station # 1 collides.
  • the UL data signal D8 transmitted by the terminal station # 2 corresponding to P8 and the UL data signal D10 transmitted by the terminal station # 1 corresponding to the data transmission Poll signal P10 transmitted by the base station 1 in the slot # 10 collide.
  • the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in the slot # 4 is assigned according to the procedure shown in FIG.
  • the data transmission Poll signal in slot # 4 is a signal originally tentatively assigned to terminal station # 1. Although not shown in the figure, a collision occurs even if the data transmission Poll signal P4 in slot # 4 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the data transmission Poll signal in the slot # 4.
  • the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in the slot # 5 is assigned.
  • the data transmission Poll signal in slot # 5 is a signal originally tentatively assigned to terminal station # 2.
  • the destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P5'in the slot # 5 to the terminal station # 3.
  • Terminal station # 3 receives the data transmission Poll signal P5'and transmits the UL data signal D5'.
  • the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 6 is assigned.
  • the data transmission Poll signal in slot # 6 is a signal originally tentatively assigned to terminal station # 3.
  • the destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P6'of the slot # 6 to the terminal station # 1.
  • Terminal station # 1 receives the data transmission Poll signal P6'and transmits the UL data signal D6'.
  • the base station 1 considers the terminal station 5 to which the second polling signal to be transmitted in slot # 7 is assigned.
  • the data transmission Poll signal in slot # 7 is a signal originally tentatively assigned to terminal station # 1. A collision occurs even if the transmission polling signal of slot # 7 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the polling signal for transmission in slot # 7.
  • the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 8 is assigned.
  • the data transmission Poll signal in slot # 8 is a signal originally tentatively assigned to terminal station # 2.
  • the destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P8'in the slot # 8 to the terminal station # 3.
  • Terminal station # 3 receives the data transmission Poll signal P8'and transmits the UL data signal D8'.
  • the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 9 is assigned.
  • the data transmission Poll signal in slot # 9 is a signal originally tentatively assigned to terminal station # 3. A collision occurs even if the data transmission Poll signal of slot # 9 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the transmission polling signal P9.
  • the transmission of the two UL data signals transmitted by the terminal station # 1, the one UL data signal transmitted by the terminal station # 2, and the three UL data signals transmitted by the terminal station # 3 is transmitted. It can be seen that it was successful and a total of 6 UL data signals could be transmitted.
  • the base station 1 determines the time for allocating the polling signal based on the slot, but it is not limited to the slot and may allocate the timing of transmitting the polling signal.
  • the UL data signal length may be either a fixed length or a variable length.
  • the terminal station 5 transmits a response signal set with information regarding the UL data signal length to the base station 1 in the band request phase.
  • the base station 1 calculates the arrival time of the UL data signal transmitted by the terminal station 5, and determines whether or not the UL data signal collides.
  • the base station 1 determines that a collision occurs, the base station 1 avoids the collision by changing the terminal station 5 to which the Poll signal for UL data signal transmission is assigned.
  • the wireless communication system 10 can effectively utilize the free band of the wireless band due to the long delay to improve the transmission efficiency.
  • FIG. 5 is a diagram showing a configuration of a wireless communication system 10a according to the present embodiment.
  • FIG. 5 only the functional blocks related to the present embodiment are extracted and shown.
  • the same parts as those of the wireless communication system 10 according to the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the difference between the wireless communication system 10a and the wireless communication system 10 shown in FIG. 1 is that the wireless communication system 10a has a base station 1a instead of the base station 1.
  • the base station 1a is separated into a signal processing unit 2a having a signal processing function and an antenna unit 3 having a wireless communication function by using RoF.
  • the signal processing unit 2a is fixedly installed in a station building or the like, and the antenna unit 3 is fixedly installed in a utility pole or the like located around the place where the terminal station 5 is installed.
  • the signal processing unit 2a and the antenna unit 3 are connected by an optical fiber 4.
  • the antenna unit 3 and the terminal station 5 are connected by a millimeter wave wireless communication system 6.
  • the signal processing unit 2a differs from the signal processing unit 2 of the first embodiment shown in FIG. 1 in that it includes a destination determination unit 25a instead of the destination determination unit 25 and further includes an allocation time determination unit 28.
  • the destination determination unit 25a determines the terminal station 5 to which the Poll signal for data transmission is assigned based on a predetermined determination criterion in the UL data transmission phase. As the determination criteria, for example, the traffic amount, priority, transmission distance, and the like are used.
  • the destination determination unit 25a does not change the terminal station 5 to which the data transmission Poll signal is assigned even when the determination unit 27 determines that there is a collision.
  • the allocation time determination unit 28 changes the transmission timing of the data transmission Poll signal assigned to the terminal station 5.
  • the processing in the band request phase of the wireless communication system 10a is the same as the processing of the first embodiment shown in FIG.
  • FIG. 6 is a flow chart showing the processing of the wireless communication system 10a in the UL data transmission phase.
  • the process shown in FIG. 6 is executed by the base station 1a, the same antenna unit 3 of the base station 1a, and N terminal stations (N is an integer of 1 or more) that perform UL data transmission.
  • N in the process of FIG. 6 is the number of terminal stations 5 in which the base station 1a normally receives the response signal in the process of FIG.
  • the destination determination unit 25a of the base station 1a sorts the N terminal stations 5 based on a predetermined determination criterion in the same manner as in the process of step S305 of the first embodiment shown in FIG. 3 (step S505). ..
  • the terminal station 5 whose sort result rank is i-th (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
  • the destination determination unit 25a is for data transmission to be transmitted to each terminal station 5 based on the traffic information received from each terminal station 5, as in the process of step S310 of the first embodiment shown in FIG.
  • the Poll signal is provisionally assigned to the slot (step S510).
  • the destination determination unit 25a sets the initial value 1 in the value of the variable i (step S515), and sets the initial value 1 in the value of the variable k (step S520).
  • the variable k is a slot number in the UL data transmission area.
  • the data transmission Poll signal to which the slot number k is assigned is referred to as Poll # k.
  • the reception time calculation unit 26 calculates the UL data signal reception time based on the transmission timing of the Poll # k provisionally assigned to the terminal station #i, as in the process of step S330 of the first embodiment shown in FIG. (Step S525).
  • the calculated UL data signal reception time is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1a.
  • the determination unit 27 Similar to the process of step S335 of the first embodiment shown in FIG. 3, the determination unit 27 combines the UL data signal transmitted from the terminal station #i corresponding to Poll # k with another UL data signal. It is determined whether or not a collision occurs (step S530).
  • step S530 the destination determination unit 25a performs the process of step S535. That is, the destination determination unit 25a determines the allocation destination of Poll # k to the terminal station #i, and determines that the UL data signal from the terminal station #i is allocated to the UL data signal reception time calculated in step S525 (). Step S535).
  • the destination determination unit 25a adds 1 to each of the value of the variable i and the value of the variable k and increments them (step S540).
  • the destination determination unit 25a determines whether or not the value of the variable i exceeds the number of terminal stations N (step S545).
  • step S545: NO the destination determination unit 25a repeats the processing from step S525. Then, when it is determined that the value of the variable i exceeds the number of terminal stations N (step S545: YES), the destination determination unit 25a ends the process.
  • step S530 determines that a collision between the UL data signal transmitted from the terminal station #i corresponding to the Variable # k and another UL data signal occurs (step S530: YES).
  • the allocation time is determined.
  • the unit 28 adds 1 to the value of the variable k and increments it (step S550).
  • the allocation time determination unit 28 updates the data transmission Poll signal provisionally allocated to the terminal station #i to the Poll # k of the slot # k incremented in step S550 (step S555).
  • the reception time calculation unit 26 calculates the UL data signal reception time, which is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1a (step S560). ..
  • the determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station #i corresponding to Poll # k and another UL data signal (step S565). When the determination unit 27 determines that a collision occurs (step S565: YES), the base station 1a repeats the process from step S550.
  • step S565 NO
  • the allocation time determination unit 28 allocates Poll # k to the terminal station #i, and the UL data signal reception time calculated in step S560. It is determined that the UL data signal from the terminal station #i is assigned to (step S570).
  • the base station 1a performs the processing from step S540.
  • FIG. 7 is a diagram showing an outline of operation in the UL data transmission phase of the wireless communication system 10a based on the result of the process of FIG.
  • the terminal stations 5 are the three terminals # 1 to the terminal station # 3, and the traffic amount and the propagation distance of the terminal stations # 1 to the terminal station # 3 are the same as those in FIG.
  • the description of the Ack signal to be returned when the base station 1a receives the UL data signal is omitted.
  • the destination determination unit 25a of the base station 1a allocates a Poll signal for data transmission to the terminal station # 1, the terminal station # 2, and the terminal station # 3 arranged in descending order of the traffic amount by round robin.
  • the reception time calculation unit 26 calculates the arrival time of the UL data signal transmitted by each of the terminal stations # 1 to the terminal station # 3 corresponding to each data transmission Poll signal.
  • the Poll signal for data transmission is assigned as in FIG. 13, and the arrival time of the UL data signal from each of the terminal stations # 1 to the terminal station # 3 is calculated. That is, a total of two UL data signals, the UL data signal D1 transmitted by the terminal station # 1 and the UL data signal D9 transmitted by the terminal station # 3, can be transmitted.
  • the base station 1a examines the time for allocating the data transmission Poll signal P4 temporarily allocated to the slot # 4 to the terminal station # 1 according to the procedure shown in FIG. Although not shown in the figure, a collision occurs even if a data transmission Poll signal is assigned to any of the slots from slot # 4 to slot # 8, so that the allocation time determination unit 28 uses the terminal in slot # 9. Allocate a Poll signal P9 ”for data transmission addressed to station # 1.
  • the base station 1a examines the time for allocating the data transmission Poll signal P5 temporarily allocated to the slot # 5 to the terminal station # 2.
  • the allocation time determination unit 28 allocates the data transmission Poll signal P10 ”to the terminal station # 2 to the slot # 10 where the collision does not occur. In the flow shown in FIG. 6, it was originally allocated to the slot # 5.
  • the slot to which the Poll signal for data transmission is newly assigned is selected from the slots # 10 and later, but the slot may be selected from the slots after slot # 5.
  • the transmission of the two UL data signals transmitted by the terminal station # 1, the two UL data signals transmitted by the terminal station # 2, and the one UL data signal transmitted by the terminal station # 3 is transmitted. It can be seen that it was successful and a total of 5 UL data signals could be transmitted.
  • the base station 1a determines the time for allocating the Poll signal based on the slot, but the time is not limited to the slot, and the timing for transmitting the Poll signal may be allocated.
  • the UL data signal length may be either a fixed length or a variable length.
  • the terminal station 5 transmits a response signal set with information regarding the UL data signal length to the base station 1a in the band request phase.
  • the base station 1a calculates the arrival time of the UL data signal transmitted by the terminal station 5 and determines whether or not the UL data signal collides, as in the first embodiment.
  • the base station 1a determines that a collision occurs, the base station 1a avoids the collision by changing the transmission timing assigned to the Poll signal for UL data signal transmission. Therefore, the wireless communication system 10a can effectively utilize the free band of the wireless band due to the long delay to improve the transmission efficiency.
  • the above-described embodiment describes a wireless communication method applied to a millimeter-wave wireless communication system to which RoF is applied, it may be applied not only to RoF but also to a wireless communication system having a large propagation delay time.
  • the communication unit 31 of the antenna unit 3 and the communication unit 51 of the terminal station 5 may perform wireless communication by a wireless communication method different from the millimeter wave wireless communication.
  • the wireless communication method applied to the fixedly installed base station and the terminal station is described, but the wireless communication provided with a mechanism capable of acquiring the propagation distance between the base station and the terminal station. If it is a system, it may be applied to base stations and terminal stations that are not fixedly installed.
  • the uplink signal may collide or the wireless line may be used inefficiently due to the collision.
  • the wireless communication system of the present embodiment solves this problem within the framework of an existing protocol by transmitting polling signals having two different roles from a base station to a terminal station.
  • the band request Poll signal causes the base station to inquire how much uplink data the terminal station has. Based on the response to the inquiry, the base station determines the transmission timing of the data transmission Poll signal to be transmitted to each terminal station so that the reception timings of the UL data signals from each terminal do not overlap, taking into consideration the propagation delay. do.
  • the terminal station receives the data transmission Poll signal addressed to its own station from the base station, the terminal station transmits the UL data signal to the base station.
  • FIG. 8 is a device configuration diagram showing a hardware configuration example of the signal processing unit 2 signal processing unit 2a and the terminal station 5.
  • the signal processing unit 2, the signal processing unit 2a, and the terminal station 5 include a processor 71, a storage unit 72, a communication interface 73, and a user interface 74.
  • the processor 71 is a central processing unit that performs calculations and controls.
  • the processor 71 is, for example, a CPU (central processing unit).
  • the processor 71 reads a program from the storage unit 72 and executes it.
  • the storage unit 72 further has a work area for the processor 71 to execute various programs and the like.
  • the communication interface 73 is connected so as to be able to communicate with another device.
  • the user interface 74 is an input device such as a button, a keyboard, and a pointing device, and a display device such as a lamp and a display. An artificial operation is input by the user interface 74.
  • All or part of the functions of the allocation unit 22, the destination determination unit 25, the reception time calculation unit 26, and the determination unit 27 of the signal processing unit 2 are realized by the processor 71 reading a program from the storage unit 72 and executing the program. .. All or part of these functions may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the communication unit 21 and the transmission / reception unit 23 of the signal processing unit 2 are realized by the communication interface 73. Some functions of the communication unit 21 and the transmission / reception unit 23 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
  • the processor 71 reads a program from the storage unit 72 for all or part of the functions of the allocation unit 22, the destination determination unit 25a, the reception time calculation unit 26, the determination unit 27, and the allocation time determination unit 28. It is realized by executing it. In addition, all or a part of these functions may be realized by using hardware such as ASIC, PLD and FPGA.
  • the communication unit 21 and the transmission / reception unit 23 of the signal processing unit 2a are realized by the communication interface 73. Some functions of the communication unit 21 and the transmission / reception unit 23 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
  • all or part of the functions of the reception timing determination unit 52, the response signal allocation unit 53, and the UL data signal allocation unit 55 are realized by the processor 71 reading a program from the storage unit 72 and executing the program. To. In addition, all or a part of these functions may be realized by using hardware such as ASIC, PLD and FPGA.
  • the communication unit 51 and the transmission / reception unit 54 of the terminal station 5a are realized by the communication interface 73. Note that some functions of the communication unit 51 and the transmission / reception unit 54 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
  • the wireless communication system includes a signal processing device and a communication device.
  • the signal processing device is the base stations 1 and 1a of the embodiment, and the communication device is the terminal station 5 of the embodiment.
  • the signal processing device has an allocation unit, a reception timing calculation unit, a determination unit, and a destination change unit.
  • the allocation unit is the destination determination unit 25, 25a of the embodiment
  • the reception timing calculation unit is the reception time calculation unit 26 of the embodiment
  • the determination unit is the determination unit 27 of the embodiment, and the destination is changed.
  • the unit is the destination determination unit 25 of the embodiment.
  • the allocation unit allocates the transmission timing of the polling signal for data transmission addressed to each communication device in the time domain in which the uplink data transmission is performed.
  • the reception timing calculation unit calculates the reception timing of the data signal transmitted wirelessly from the communication device in response to the polling signal for data transmission transmitted wirelessly at the transmission timing assigned by the allocation unit.
  • the determination unit determines whether or not there is a collision of data signals based on the calculated reception timing.
  • the destination change unit changes the communication device of the destination of the data transmission polling signal corresponding to the data signal determined by the determination unit to collide with another communication device.
  • the signal processing device may have a timing changing unit instead of the destination changing unit.
  • the timing changing unit is the allocation time determination unit 28 of the embodiment.
  • the timing changing unit changes the transmission timing of the data transmission polling signal corresponding to the data signal determined by the determination unit to collide.
  • the signal processing device may have a transmission unit that broadcasts the band request polling signal to the communication device multiple times at different timings in the time domain in which the band request is executed.
  • the communication device further includes a transmission unit that returns a response to the band request poll signal selected from the band request poll signals transmitted at different timings.
  • the communication device may further have a timing determination unit that randomly selects the timing at which the own device receives the band request polling signal. The allocation unit allocates a transmission timing for transmitting a data transmission polling signal addressed to each communication device based on the information obtained from the response received from the communication device.

Abstract

This signal processing device allocates the transmission timing of a data-transmission polling signal that is addressed to each communication device in a time domain in which uplink data transmission is carried out. The signal processing device calculates the reception timing of a data signal that is transmitted wirelessly from a communication device in response to the data-transmission polling signal transmitted wirelessly with the allocated transmission timing. The signal processing device assesses, on the basis of the calculated reception timing, whether the data signal is colliding, and changes the communication device that is the destination of the data-transmission polling signal corresponding to the data signal for which it is assessed that collision is occurring to another communication device.

Description

通信制御方法及び信号処理装置Communication control method and signal processing device
 本発明は、通信制御方法及び信号処理装置に関する。 The present invention relates to a communication control method and a signal processing device.
 近年、無線通信の需要増加に応えるためミリ波帯の活用が注目されている。ミリ波帯は、マイクロ波帯に比べて広い無線帯域を利用可能である。例えば、次世代60GHz帯無線LAN(Local Area Network)規格として、IEEE802.11ayの議論が行われている(例えば、非特許文献1参照)。 In recent years, the use of millimeter wave bands has been attracting attention in order to meet the increasing demand for wireless communication. The millimeter wave band can use a wider radio band than the microwave band. For example, IEEE802.11ay is being discussed as a next-generation 60 GHz band wireless LAN (Local Area Network) standard (see, for example, Non-Patent Document 1).
 IEEE802.11ayでは様々なユーセージモデルが検討されている(例えば、非特許文献2及び非特許文献3参照)。このユーセージモデルには、「ミリ波分散ネットワーク」(mmWave Distribution Network)のモデルが追加されている。図9は、ミリ波分散ネットワークのユーセージモデルを示す図である。図9に示すユーセージモデルでは、光ファイバを代替する中継網を、ミリ波分散ネットワークにより構築している。ミリ波分散ネットワークは、ミリ波分散ノード(mmWave Distribution Node)により構成される。ミリ波分散ネットワークの特徴は、屋外に設置されたミリ波分散ノード(基地局に相当)と建物周辺に設置された無線機(mmWave Sector;端末局に相当)とが接続され、かつ、それらミリ波分散ノード及び無線機が固定設置されることである。なお、図9において、(a)は、WTTH(Wireless To The Home)を用いたアクセスを、(b)は、WTTB(Wireless To The Building)を用いたアクセスを、(c)は、Wi-Fi(登録商標) AP(Access Point)/スモールセルを用いたアクセスを示す。 Various usage models are being studied in IEEE802.11ay (see, for example, Non-Patent Document 2 and Non-Patent Document 3). A model of "mmWave Distribution Network" has been added to this usage model. FIG. 9 is a diagram showing a usage model of a millimeter-wave distributed network. In the usage model shown in FIG. 9, a relay network that replaces the optical fiber is constructed by a millimeter-wave distributed network. The millimeter-wave distributed network is composed of millimeter-wave distributed nodes (mmWaveDistributionNode). The feature of the millimeter wave distributed network is that the millimeter wave distributed node (corresponding to the base station) installed outdoors and the radio (mmWave Sector; equivalent to the terminal station) installed around the building are connected and they are millimeters. The wave distribution node and the radio are fixedly installed. In FIG. 9, (a) is an access using WTTH (Wireless To The Home), (b) is an access using WTTB (Wireless To The Building), and (c) is Wi-Fi. (Registered trademark) AP (Access Point) / Indicates access using a small cell.
 自由空間における伝搬損失は周波数に比例して増大するため、ミリ波帯通信の伝搬距離は短い。よって、ミリ波帯通信では、限られたエリアでしか通信を行うことができないという問題がある。通信エリアを拡張するためには、図9に示したように、複数のミリ波分散ノードを介してマルチホップさせる方法が考えられる。しかし、ホップ数が増えるたびに、伝送効率は劣化する。また、ホップ数の増加に伴い、ノード数が増えるため、コスト増にもつながる。 Since the propagation loss in free space increases in proportion to the frequency, the propagation distance of millimeter wave band communication is short. Therefore, in millimeter-wave band communication, there is a problem that communication can be performed only in a limited area. In order to expand the communication area, as shown in FIG. 9, a method of multi-hop via a plurality of millimeter-wave distributed nodes can be considered. However, as the number of hops increases, the transmission efficiency deteriorates. In addition, as the number of hops increases, the number of nodes increases, which leads to an increase in cost.
 この問題を解決する方法として、radio on fiber(RoF)を用いて信号処理部とアンテナ部を分離し、アンテナ部を張出局として配置することで、見かけ上のカバーエリアを拡張する方法が提案されている(例えば、非特許文献4参照)。この方法では、一つの信号処理部に複数のアンテナ部を接続し、複数の張出局を設置することにより、さらなるカバーエリアの拡張も可能となる。また、信号処理部とアンテナ部を分離することで、張出局の構成の簡易化や省電力化が可能となる。さらには、複数の張出局を一つの信号処理部に集約することで、コスト面でのメリットも期待できる。 As a method for solving this problem, a method has been proposed in which the signal processing unit and the antenna unit are separated by using radio on fiber (RoF), and the antenna unit is arranged as an overhanging station to expand the apparent coverage area. (See, for example, Non-Patent Document 4). In this method, by connecting a plurality of antenna units to one signal processing unit and installing a plurality of overhanging stations, it is possible to further expand the coverage area. Further, by separating the signal processing unit and the antenna unit, it is possible to simplify the configuration of the overhanging station and save power. Furthermore, by consolidating a plurality of overhanging stations into one signal processing unit, a cost advantage can be expected.
 RoFを用いたシステムでは、通常の無線システムと比較して伝搬距離が長くなることに起因する伝搬遅延が発生し、伝送効率が劣化する。そのため、長遅延環境下における伝送効率の劣化を解消する無線通信方法が求められている。 In a system using RoF, a propagation delay occurs due to a longer propagation distance as compared with a normal wireless system, and transmission efficiency deteriorates. Therefore, there is a demand for a wireless communication method that eliminates the deterioration of transmission efficiency in a long-delay environment.
 次に、長遅延環境下における無線通信方法に関する従来技術について説明する。RoFを適用した無線LANシステムにおいて、スループット特性を改善する無線通信方法が提案されている(例えば、非特許文献5参照)。図10は、非特許文献5において提案されている衝突回避メカニズムを示す図である。この衝突回避メカニズムの詳細は省略するが、伝搬遅延時間に応じて、受信に関与しない端末局が送信を禁止されるNAV(Network Allocation Vector)期間を延長することによりフレームの衝突を回避する。 Next, the prior art regarding the wireless communication method in a long delay environment will be described. In a wireless LAN system to which RoF is applied, a wireless communication method for improving throughput characteristics has been proposed (see, for example, Non-Patent Document 5). FIG. 10 is a diagram showing a collision avoidance mechanism proposed in Non-Patent Document 5. Although the details of this collision avoidance mechanism are omitted, frame collision is avoided by extending the NAV (Network Allocation Vector) period in which the terminal station not involved in reception is prohibited from transmitting according to the propagation delay time.
 また、RoFを適用した60GHz帯無線通信システムにおけるMAC(Medium Access Control)プロトコルの一例が提案されている(例えば、非特許文献6参照)。図11は、非特許文献6において提案されているフレーム構成を示す図である。MACプロトコルの詳細は省略するが、このプロトコルでは、Central Office(CO;信号処理部に相当)がRemote Antenna Unit(RAU;アンテナ部に相当)への光波長割当とClient(端末局に相当)への無線リソースの割当とを集中制御に一括して行う。これにより、光と無線の両方を効率的に制御する。 Further, an example of a MAC (Medium Access Control) protocol in a 60 GHz band wireless communication system to which RoF is applied has been proposed (see, for example, Non-Patent Document 6). FIG. 11 is a diagram showing a frame configuration proposed in Non-Patent Document 6. The details of the MAC protocol are omitted, but in this protocol, the Central Office (CO; equivalent to the signal processing unit) assigns the optical wavelength to the Remote Antenna Unit (RAU; equivalent to the antenna unit) and to the Client (corresponding to the terminal station). Allocate wireless resources to centralized control. This efficiently controls both optical and wireless.
 上述の通り、従来技術のRoFを適用した無線LANシステムにおける無線通信方法では、長遅延に起因するフレーム(信号)の衝突を回避することが可能である。しかしながら、図10に示したように、基地局-端末局間の通信中に、その他の端末局は送信を禁止されるため、長遅延に伴う無線帯域の空き時間を有効活用することはできない。 As described above, in the wireless communication method in the wireless LAN system to which the conventional RoF is applied, it is possible to avoid the collision of frames (signals) due to the long delay. However, as shown in FIG. 10, since transmission is prohibited for other terminal stations during communication between the base station and the terminal station, it is not possible to effectively utilize the free time of the radio band due to the long delay.
 また、もう一つの従来技術であるRoFを適用した60GHz帯無線通信システムにおけるMACプロトコルは、特に、無線リソースの制御において、ラウンドロビン方式に基づく単純なポーリング制御を適用している。例えば、基地局と3台の無線局#1~端末局#3とが通信する場合を想定する。図12は、端末局#1~端末局#3それぞれのトラヒック量及び伝搬距離を示す。図13は、従来技術による無線リソース制御を行ったときの基地局と無線局#1~端末局#3の動作概要を示す図である。DLはダウンリンク、ULはアップリンクを示す。ダウンリンクは、基地局から端末局の方向であり、アップリンクは端末局から基地局の方向である。また。端末局#i(i=1,2,3)宛てのポーリング信号をPoll、端末局#iからのULデータ信号をData、k番目(k=1,2,…)のスロットをSlot#kと記載している。また、以下では、ポーリング信号をPoll信号とも記載する。 Further, the MAC protocol in the 60 GHz band wireless communication system to which RoF, which is another conventional technique, is applied, applies simple polling control based on the round robin method, particularly in the control of wireless resources. For example, assume that the base station and the three radio stations # 1 to the terminal station # 3 communicate with each other. FIG. 12 shows the traffic amount and the propagation distance of each of the terminal stations # 1 to the terminal station # 3. FIG. 13 is a diagram showing an outline of operations of a base station and radio stations # 1 to terminal station # 3 when radio resource control by the prior art is performed. DL indicates a downlink and UL indicates an uplink. The downlink is from the base station to the terminal station, and the uplink is from the terminal station to the base station. Also. The poll signal addressed to the terminal station # i (i = 1, 2, 3) is Poll i , the UL data signal from the terminal station # i is Data i , and the kth (k = 1, 2, ...) Slot is Slot #. It is described as k. Further, in the following, the polling signal is also referred to as a Poll signal.
 図11のプロトコルに示すように基地局は各スロットを割当てられた端末局に対してPoll信号を送信する。Poll信号を受信した端末局は、ULデータ信号を送信する。しかし、図13に示すように、伝送距離が異なる端末局からのアップリンクのデータ信号を基地局において同時に受信することによる信号の衝突が発生することがある。図13の例の場合、基地局が、スロット#1のPoll信号P1に対応して端末局#1が送信したULデータ信号D1を受信してから、スロット#9のPoll信号P9に対応して端末局#3が送信したULデータ信号D9を受信するまでの間は、衝突のためにいずれの端末局も通信ができず無線帯域を浪費してしまう。特に、伝搬遅延が長いほど多くの無線帯域の空き時間が発生する。このように、従来の無線リソース制御では、長遅延に伴う無線帯域の空き時間の発生を防ぐことができない場合があった。 As shown in the protocol of FIG. 11, the base station transmits a Poll signal to the terminal station to which each slot is assigned. The terminal station that received the Poll signal transmits the UL data signal. However, as shown in FIG. 13, signal collision may occur due to simultaneous reception of uplink data signals from terminal stations having different transmission distances at the base station. In the case of the example of FIG. 13, the base station receives the UL data signal D1 transmitted by the terminal station # 1 corresponding to the Poll signal P1 of the slot # 1, and then corresponds to the Poll signal P9 of the slot # 9. Until the UL data signal D9 transmitted by the terminal station # 3 is received, none of the terminal stations can communicate due to the collision, and the radio band is wasted. In particular, the longer the propagation delay, the more free time in the radio band will occur. As described above, the conventional radio resource control may not be able to prevent the occurrence of free time in the radio band due to the long delay.
 上記事情に鑑み、本発明は、無線通信の伝送効率を改善することができる通信制御方法及び信号処理装置を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a communication control method and a signal processing device capable of improving the transmission efficiency of wireless communication.
 本発明の一態様は、信号処理装置が、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当ステップと、前記信号処理装置が、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出ステップと、前記信号処理装置が、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定ステップと、前記信号処理装置が、前記判定ステップにおいて衝突すると判定された前記データ信号に対応した前記データ伝送用ポーリング信号の宛先の前記通信装置を他の通信装置に変更する宛先変更ステップと、を有する通信制御方法である。 One aspect of the present invention is an allocation step in which a signal processing device allocates a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which uplink data transmission is performed, and the signal processing device determines the transmission timing. In the reception timing calculation step of calculating the reception timing of the data signal transmitted by radio from the communication device corresponding to the data transmission poll signal transmitted by radio, and the reception timing calculated by the signal processing device. A determination step for determining the presence or absence of collision of the data signal based on the above, and the communication device of the destination of the data transmission poll signal corresponding to the data signal determined to collide in the determination step. Is a communication control method having a destination change step of changing to another communication device.
 また、本発明の一態様は、信号処理装置が、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当ステップと、前記信号処理装置が、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出ステップと、前記信号処理装置が、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定ステップと、前記信号処理装置が、前記判定ステップにおいて衝突すると判定された前記データ信号に対応した前記データ伝送用ポーリング信号の送信タイミングを変更するタイミング変更ステップと、を有する通信制御方法である。 Further, in one aspect of the present invention, the signal processing device includes an allocation step for assigning a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which the signal processing device performs uplink data transmission, and the signal processing device. The reception timing calculation step for calculating the reception timing of the data signal transmitted wirelessly from the communication device corresponding to the data transmission poll signal transmitted wirelessly at the transmission timing, and the signal processing device calculated. A determination step for determining the presence or absence of a collision of the data signal based on the reception timing, and a transmission timing of the data transmission poll signal corresponding to the data signal determined to be collided by the signal processing device in the determination step. It is a communication control method having a timing change step to be changed.
 また、本発明の一態様は、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当部と、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出部と、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定部と、前記判定部が衝突すると判定した前記データ信号に対応した前記データ伝送用ポーリング信号の宛先の前記通信装置を他の通信装置に変更する宛先変更部と、を備える信号処理装置である。 Further, one aspect of the present invention includes an allocation unit that allocates a transmission timing of a data transmission poll signal addressed to each communication device in a time region in which uplink data transmission is performed, and a data transmission unit that is wirelessly transmitted at the transmission timing. A reception timing calculation unit that calculates the reception timing of a data signal wirelessly transmitted from the communication device in response to the polling signal, and a determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing. A signal processing device including a destination changing unit for changing the communication device of the destination of the data transmission poll signal corresponding to the data signal determined to collide with the determination unit to another communication device.
 また、本発明の一態様は、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当部と、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出部と、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定部と、前記判定部が衝突すると判定した前記データ信号に対応した前記データ伝送用ポーリング信号の送信タイミングを変更するタイミング変更部と、を備える信号処理装置である。 Further, one aspect of the present invention includes an allocation unit that allocates a transmission timing of a poll signal for data transmission addressed to each communication device in a time region in which uplink data transmission is performed, and a data transmission unit that is wirelessly transmitted at the transmission timing. A reception timing calculation unit that calculates the reception timing of a data signal wirelessly transmitted from the communication device in response to the polling signal, and a determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing. A signal processing device including a timing changing unit for changing the transmission timing of the data transmission poll signal corresponding to the data signal determined to collide with the determination unit.
 本発明により、無線通信の伝送効率を改善することが可能となる。 According to the present invention, it is possible to improve the transmission efficiency of wireless communication.
本発明の第1の実施形態による無線通信システムの構成を示す図である。It is a figure which shows the structure of the wireless communication system by 1st Embodiment of this invention. 同実施形態による帯域要求フェーズにおける無線通信システムの処理を示すフロー図である。It is a flow diagram which shows the processing of the wireless communication system in the band request phase by the same embodiment. 同実施形態によるULデータ伝送フェーズにおける無線通信システムの処理を示すフロー図である。It is a flow diagram which shows the processing of the wireless communication system in the UL data transmission phase by the same embodiment. 同実施形態による無線通信システムのULデータ伝送フェーズにおける動作概要を示す図である。It is a figure which shows the operation outline in the UL data transmission phase of the wireless communication system by the same embodiment. 第2の実施形態による無線通信システムの構成を示す図である。It is a figure which shows the structure of the wireless communication system by 2nd Embodiment. 同実施形態によるULデータ伝送フェーズにおける無線通信システムの処理を示すフロー図である。It is a flow diagram which shows the processing of the wireless communication system in the UL data transmission phase by the same embodiment. 同実施形態による無線通信システムのULデータ伝送フェーズにおける動作概要を示す図である。It is a figure which shows the operation outline in the UL data transmission phase of the wireless communication system by the same embodiment. 第1及び第2の実施形態による信号送受信部及び端末局のハードウェア構成を示す図である。It is a figure which shows the hardware composition of the signal transmission / reception part and the terminal station by 1st and 2nd Embodiment. ミリ波分散ネットワークのユーセージモデルを示す図である。It is a figure which shows the sage model of a millimeter wave distributed network. 無線LANシステムの衝突回避メカニズムを示す図である。It is a figure which shows the collision avoidance mechanism of a wireless LAN system. MACプロトコルのフレーム構成を示す図である。It is a figure which shows the frame structure of the MAC protocol. 端末局のトラヒック量と伝搬距離を示す図である。It is a figure which shows the traffic amount and propagation distance of a terminal station. 従来技術による無線通信システムの動作概要を示す図である。It is a figure which shows the operation outline of the wireless communication system by a prior art.
 以下、本発明の実施形態について図面を参照して説明する。本実施形態は、長遅延環境下における無線通信システムの帯域を効率的に活用する通信制御方法及び信号処理装置に関する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment relates to a communication control method and a signal processing device that efficiently utilize the band of a wireless communication system in a long delay environment.
 本実施形態の無線通信システムは、基地局と端末局とを有する。基地局は、1台以上の端末局と無線通信する。本実施形態の無線通信システムは、ポーリングに基づく集中制御型の媒体アクセス制御に伝搬遅延時間差を考慮した制御を組み込むことによって、UL(アップリンク)の無線帯域の利用効率を高め、伝送効率を改善する。本実施形態の無線通信システムは、以下の手順1~手順3を行う。 The wireless communication system of this embodiment has a base station and a terminal station. The base station wirelessly communicates with one or more terminal stations. The wireless communication system of the present embodiment enhances the utilization efficiency of the UL (uplink) wireless band and improves the transmission efficiency by incorporating the control considering the propagation delay time difference into the centralized control type medium access control based on polling. do. The wireless communication system of the present embodiment performs the following procedures 1 to 3.
[手順1] 無線通信システムは、UL通信を帯域要求フェーズとULデータ伝送フェーズとに分割して行う。帯域要求フェーズは、各端末局が基地局に帯域要求を実施する時間領域である。ULデータ伝送フェーズは、端末局から基地局へのULデータ伝送を実施する時間領域である。 [Procedure 1] The wireless communication system divides UL communication into a band request phase and a UL data transmission phase. The band request phase is a time domain in which each terminal station makes a band request to the base station. The UL data transmission phase is a time domain in which UL data transmission from a terminal station to a base station is carried out.
[手順2] 無線通信システムは、帯域要求フェーズの動作として以下の手順2-1~手順2-3を実施する。 [Procedure 2] The wireless communication system implements the following procedures 2-1 to 2-3 as the operation of the band request phase.
[手順2-1] 基地局は、帯域要求用のポーリング信号を定期的にブロードキャストする。以下では、帯域要求用のポーリング信号を帯域要求用Poll信号と記載する。
[手順2-2] 端末局は、応答を実施する帯域要求用Poll信号をランダムに選択する。
[手順2-3] 端末局は、選択した帯域要求用Poll信号に対する応答信号を送信する。端末局は、応答信号に、UL通信により送信するデータ量に加えて、自局におけるトラヒックに関する情報を設定する。トラヒックに関する情報は、例えば、トラヒック量、パケット発生間隔、サービスタイプ、優先度などである。なお、アクティブな端末局のみが応答を送信してもよい。アクティブとは、ULデータ伝送により送信すべきデータがあることを示す。
[Procedure 2-1] The base station periodically broadcasts a polling signal for band request. In the following, the polling signal for band request will be referred to as a poll signal for band request.
[Procedure 2-2] The terminal station randomly selects a Poll signal for band request to perform a response.
[Procedure 2-3] The terminal station transmits a response signal to the selected Poll signal for band request. The terminal station sets the response signal with information about traffic in its own station in addition to the amount of data transmitted by UL communication. Information about traffic is, for example, traffic volume, packet generation interval, service type, priority, and the like. It should be noted that only the active terminal station may transmit the response. Active means that there is data to be transmitted by UL data transmission.
[手順3] 無線通信システムは、ULデータ伝送フェーズの動作として以下の手順3-1~手順3-4を実施する。 [Procedure 3] The wireless communication system implements the following procedures 3-1 to 3-4 as the operation of the UL data transmission phase.
[手順3-1] 基地局は、所定の判定基準に基づいて、ULデータ信号伝送用のポーリング信号を割当てる端末局を決定する。以下では、ULデータ信号伝送用のポーリング信号を、データ伝送用Poll信号と記載する。判定基準には、例えば、トラヒックに関する情報や、伝搬距離などを用いることができるが、これらに限定されない。トラヒックに関する情報は、トラヒック量、パケット発生間隔、サービスタイプ、優先度などである。 [Procedure 3-1] The base station determines a terminal station to which a polling signal for UL data signal transmission is assigned based on a predetermined criterion. Hereinafter, the polling signal for UL data signal transmission will be referred to as a Poll signal for data transmission. For example, information on traffic, propagation distance, and the like can be used as the determination criteria, but the determination criteria are not limited thereto. Information about traffic includes traffic volume, packet generation interval, service type, priority, and the like.
[手順3-2] 基地局は、割当てを決定した端末局宛てのデータ伝送用Poll信号の送信タイミングを、トラヒック情報に基づき決定する。トラヒック情報として、例えば、パケット発生間隔を用いるが、他の情報を用いてもよい。 [Procedure 3-2] The base station determines the transmission timing of the data transmission Poll signal addressed to the terminal station whose allocation has been determined based on the traffic information. For example, the packet generation interval is used as the traffic information, but other information may be used.
[手順3-3] 基地局は、決定したデータ伝送用Poll信号の送信タイミングに基づき、各端末局からのULデータ信号を配置する。ULデータ信号を配置するとは、基地局においてULデータ信号を受信する時間区間を割当てることである。ULデータ信号の配置は、基地局におけるULデータ信号の受信開始タイミング及び受信終了タイミングにより表される。 [Procedure 3-3] The base station arranges UL data signals from each terminal station based on the determined transmission timing of the data transmission Poll signal. Arranging the UL data signal means allocating a time interval for receiving the UL data signal at the base station. The arrangement of the UL data signal is represented by the reception start timing and the reception end timing of the UL data signal in the base station.
[手順3-4] 基地局は、配置したULデータ信号が、別のULデータ信号と衝突する場合、データ伝送用Poll信号を割当てる端末局を所定の判定基準に基づいて変更する。 [Procedure 3-4] When the arranged UL data signal collides with another UL data signal, the base station changes the terminal station to which the Poll signal for data transmission is assigned based on a predetermined criterion.
 なお、無線通信システムは、手順3-4に代えて、以下の手順3-4’を行ってもよい。
[手順3-4’] 基地局は、配置したULデータ信号が別のULデータ信号と衝突する場合、衝突を回避できるようにガードタイムを設定する。ガードタイムを設定するとは、ULデータ信号の配置を、現在の配置よりも遅い時間に後ろ倒しに変更することである。
The wireless communication system may perform the following procedure 3-4'instead of the procedure 3-4.
[Procedure 3-4'] When the arranged UL data signal collides with another UL data signal, the base station sets a guard time so that the collision can be avoided. Setting the guard time means changing the arrangement of the UL data signal to a later time than the current arrangement.
 以下に、詳細な実施形態を説明する。 The detailed embodiment will be described below.
[第1の実施形態]
 本実施形態では、基地局は、配置したULデータ信号が別のULデータ信号と衝突する場合、所定の判定基準に基づいて、データ伝送用Poll信号を割当てる端末局を変更する(手順3-4)。
[First Embodiment]
In the present embodiment, when the arranged UL data signal collides with another UL data signal, the base station changes the terminal station to which the Poll signal for data transmission is assigned based on a predetermined criterion (procedure 3-4). ).
 図1は、本実施形態による無線通信システム10の構成を示す図である。図1には、本実施形態と関係する機能ブロックのみを抽出して示してある。無線通信システム10は、基地局1と、端末局5とを有する。同図では、基地局1及び端末局5をそれぞれ1台ずつ示しているが、基地局1の台数及び基地局1と通信する端末局5の台数は任意である。 FIG. 1 is a diagram showing a configuration of a wireless communication system 10 according to the present embodiment. In FIG. 1, only the functional blocks related to the present embodiment are extracted and shown. The wireless communication system 10 has a base station 1 and a terminal station 5. In the figure, one base station 1 and one terminal station 5 are shown, but the number of base stations 1 and the number of terminal stations 5 communicating with the base station 1 are arbitrary.
 無線通信システム10の背景として、以下のような状況を想定する。基地局1は、信号処理機能を有する信号処理部2と、無線通信機能を有するアンテナ部3(張出局)とに、RoFを用いて分離されている。基地局1は、アンテナ部3を1以上備える。信号処理部2とアンテナ部3とは、光ファイバ4により接続される。アンテナ部3と端末局5とはミリ波無線通信システム6により接続される。信号処理部2は、局舎などに固定設置される。アンテナ部3は、端末局5が設置されている場所の周辺に位置する電柱などに固定設置される。端末局5は、家屋やビルなど建物に固定設置される。 As the background of the wireless communication system 10, the following situations are assumed. The base station 1 is separated into a signal processing unit 2 having a signal processing function and an antenna unit 3 (overhanging station) having a wireless communication function by using RoF. The base station 1 includes one or more antenna units 3. The signal processing unit 2 and the antenna unit 3 are connected by an optical fiber 4. The antenna unit 3 and the terminal station 5 are connected by a millimeter wave wireless communication system 6. The signal processing unit 2 is fixedly installed in a station building or the like. The antenna unit 3 is fixedly installed on a utility pole or the like located around the place where the terminal station 5 is installed. The terminal station 5 is fixedly installed in a building such as a house or a building.
 基地局1の信号処理部2は、通信部21と、割当部22と、送受信部23と、伝搬距離算出部24と、宛先決定部25と、受信時間算出部26と、判定部27とを備える。 The signal processing unit 2 of the base station 1 includes a communication unit 21, an allocation unit 22, a transmission / reception unit 23, a propagation distance calculation unit 24, a destination determination unit 25, a reception time calculation unit 26, and a determination unit 27. Be prepared.
 通信部21は、光ファイバ4を介してアンテナ部3と信号を送受信する。割当部22は、帯域要求フェーズにおいて帯域要求用Poll信号を定期的に送信するように、帯域要求用Poll信号に送信タイミングを割当てる。例えば、送信タイミングは、スロットにより表される。 The communication unit 21 transmits and receives a signal to and from the antenna unit 3 via the optical fiber 4. The allocation unit 22 allocates the transmission timing to the band request Poll signal so that the band request Poll signal is periodically transmitted in the band request phase. For example, the transmission timing is represented by a slot.
 送受信部23は、送信部231と、受信部232とを有する。送信部231は、データの符号化や変調を行って端末局5宛てのDL通信の信号を生成して通信部21に出力する。受信部232は、端末局5が送信したUL通信の信号に対して復調や復号などの受信処理を行う。 The transmission / reception unit 23 has a transmission unit 231 and a reception unit 232. The transmission unit 231 encodes or modulates the data to generate a DL communication signal addressed to the terminal station 5, and outputs the signal to the communication unit 21. The receiving unit 232 performs reception processing such as demodulation and decoding on the UL communication signal transmitted by the terminal station 5.
 伝搬距離算出部24は、基地局1と端末局5との間の通信の伝搬遅延時間を算出する。伝搬遅延時間の算出には、任意の従来技術を用いることができる。一例として、伝搬距離算出部24は、アンテナ部3又は通信部21におけるUL信号の受信タイミングと、端末局5がそのUL信号に設定した送信タイミングとの差分に基づいて伝搬遅延時間を算出する。さらに、伝搬距離算出部24は、算出した伝搬遅延時間に基づいて基地局1と端末局5との間の伝搬距離を算出する。 The propagation distance calculation unit 24 calculates the propagation delay time of communication between the base station 1 and the terminal station 5. Any prior art can be used to calculate the propagation delay time. As an example, the propagation distance calculation unit 24 calculates the propagation delay time based on the difference between the UL signal reception timing in the antenna unit 3 or the communication unit 21 and the transmission timing set in the UL signal by the terminal station 5. Further, the propagation distance calculation unit 24 calculates the propagation distance between the base station 1 and the terminal station 5 based on the calculated propagation delay time.
 宛先決定部25は、ULデータ伝送フェーズにおいて、所定の判定基準に基づきデータ伝送用Poll信号を割当てる端末局5を決定する。判定基準として、例えば、端末局5のトラヒック量や、端末局5の通信の優先度、端末局5の伝搬距離などが用いられる。また、後述するように判定部27がULデータ信号の衝突有と判定した場合、宛先決定部25は、データ伝送用Poll信号を割当てる端末局5を変更する。 In the UL data transmission phase, the destination determination unit 25 determines the terminal station 5 to which the Poll signal for data transmission is assigned based on a predetermined determination criterion. As the determination criteria, for example, the traffic amount of the terminal station 5, the communication priority of the terminal station 5, the propagation distance of the terminal station 5, and the like are used. Further, as will be described later, when the determination unit 27 determines that there is a collision of UL data signals, the destination determination unit 25 changes the terminal station 5 to which the Poll signal for data transmission is assigned.
 受信時間算出部26は、伝搬距離算出部24が算出した端末局5の伝搬遅延時間と、端末局5が帯域要求用Poll信号を受信してからULデータ信号を送信するまでの処理時間と、そのULデータ信号の信号長から得られる信号処理時間とに基づいて、基地局1におけるULデータ信号受信時間を算出する。ULデータ信号受信時間は、端末局5から送信されたULデータ信号の受信開始タイミングから、そのULデータ信号の受信終了タイミングまでの時間区間である。受信開始タイミング及び受信終了タイミングは、例えば、スロットにより表される。 The reception time calculation unit 26 includes the propagation delay time of the terminal station 5 calculated by the propagation distance calculation unit 24, the processing time from the reception of the Poll signal for band request to the transmission of the UL data signal by the terminal station 5. The UL data signal reception time at the base station 1 is calculated based on the signal processing time obtained from the signal length of the UL data signal. The UL data signal reception time is a time interval from the reception start timing of the UL data signal transmitted from the terminal station 5 to the reception end timing of the UL data signal. The reception start timing and reception end timing are represented by, for example, slots.
 判定部27は、受信時間算出部26が各端末局5について算出したULデータ信号受信時間に基づいて、ULデータ信号の衝突の有無を判定する。 The determination unit 27 determines whether or not there is a UL data signal collision based on the UL data signal reception time calculated by the reception time calculation unit 26 for each terminal station 5.
 基地局1のアンテナ部3は通信部31を備える。通信部31は、光ファイバ4を介して信号処理部2と信号の送受信を行い、ミリ波無線通信システム6を介して端末局5と信号の送受信を行う。なお、通信部31は、ミリ波無線通信により端末局5と直接、無線通信してもよい。 The antenna unit 3 of the base station 1 includes a communication unit 31. The communication unit 31 transmits and receives signals to and from the signal processing unit 2 via the optical fiber 4, and transmits and receives signals to and from the terminal station 5 via the millimeter-wave wireless communication system 6. The communication unit 31 may directly communicate with the terminal station 5 by millimeter wave wireless communication.
 端末局5は通信部51と、受信タイミング決定部52と、応答信号割当部53と、送受信部54と、ULデータ信号割当部55とを備える。通信部51は、ミリ波無線通信システム6を介してアンテナ部3と信号を送受信する。なお、通信部51は、ミリ波無線通信によりアンテナ部3と直接、無線通信してもよい。 The terminal station 5 includes a communication unit 51, a reception timing determination unit 52, a response signal allocation unit 53, a transmission / reception unit 54, and a UL data signal allocation unit 55. The communication unit 51 transmits and receives signals to and from the antenna unit 3 via the millimeter-wave wireless communication system 6. The communication unit 51 may directly communicate with the antenna unit 3 by millimeter wave wireless communication.
 受信タイミング決定部52は、帯域要求フェーズにおいて基地局1から定期的に送信される帯域要求用Poll信号を自局において受信するタイミングをランダムに決定する。応答信号割当部53は、帯域要求フェーズにおいて、帯域要求用Poll信号を受信した後、帯域要求用Poll信号に対する応答信号の送信タイミングの割当を行う。 The reception timing determination unit 52 randomly determines the timing at which the band request Poll signal periodically transmitted from the base station 1 is received by the own station in the band request phase. In the band request phase, the response signal allocation unit 53 allocates the transmission timing of the response signal to the band request Poll signal after receiving the band request Poll signal.
 送受信部54は、送信部541及び受信部542を有する。送信部541は、符号化や変調を行って生成したUL通信の信号を通信部51に出力する。受信部542は、基地局1から受信したDL通信の信号に対して復調や復号などの受信処理を行う。 The transmission / reception unit 54 has a transmission unit 541 and a reception unit 542. The transmission unit 541 outputs a UL communication signal generated by encoding or modulation to the communication unit 51. The receiving unit 542 performs reception processing such as demodulation and decoding on the DL communication signal received from the base station 1.
 ULデータ信号割当部55は、ULデータ伝送フェーズにおいて、受信部542が自局宛てのデータ伝送用Poll信号を受信した後、ULデータ信号の送信タイミングの割当を行う。 The UL data signal allocation unit 55 allocates the transmission timing of the UL data signal after the receiving unit 542 receives the data transmission Poll signal addressed to its own station in the UL data transmission phase.
 図2は、帯域要求フェーズにおける無線通信システム10の処理を示すフロー図である。図2に示す処理は、基地局1と、当該基地局1の同じアンテナ部3と無線通信するN台(Nは1以上の整数)の端末局5とにおいて実行される。 FIG. 2 is a flow chart showing the processing of the wireless communication system 10 in the band request phase. The process shown in FIG. 2 is executed by the base station 1 and the terminal station 5 of N units (N is an integer of 1 or more) that wirelessly communicates with the same antenna unit 3 of the base station 1.
 まず、無線通信システム10は、変数iの初期値を1とし、変数iの値が端末局数Nに達するまで、変数iの値を1ずつインクリメントした各値の変数iについてループ1の処理を行う(ステップS105)。変数iは、N台の端末局5のうちi台目であることを表す。ループ1は、ステップS110~ステップS115の処理を含む。なお、N台の端末局5のうち、i台目(iは1以上N以下の整数)の端末局5を、端末局#iと記載する。 First, the wireless communication system 10 sets the initial value of the variable i to 1, and processes the loop 1 for each value of the variable i in which the value of the variable i is incremented by 1 until the value of the variable i reaches the number of terminals N. (Step S105). The variable i represents the i-th unit among the N terminal stations 5. Loop 1 includes the processing of steps S110 to S115. Of the N terminal stations 5, the i-th terminal station 5 (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
 端末局#iの受信タイミング決定部52は、基地局1からのAck信号を未受信であるか否かを判定する(ステップS110)。このAck信号は、端末局5から送信された応答信号に対して基地局1が送信する信号である。受信タイミング決定部52は、Ack信号を未受信であると判定した場合(ステップS110:YES)、受信する帯域要求用Poll信号の番号をランダムに選択する(ステップS115)。帯域要求用Poll信号の番号は、スロット番号に対応する。なお、受信する帯域要求用Poll信号の番号の選択方法は、2進バックオフの考え方などを採用してもよい。応答信号割当部53は、選択した帯域要求用Poll信号の番号に基づいて、帯域要求用Poll信号に対する応答信号を送信するスロットを決定する。なお、受信タイミング決定部52は、Ack信号を受信済みであると判定した場合(ステップS110:NO)、ステップS115の処理を行なわない。 The reception timing determination unit 52 of the terminal station #i determines whether or not the Ac signal from the base station 1 has not been received (step S110). This Ack signal is a signal transmitted by the base station 1 with respect to the response signal transmitted from the terminal station 5. When the reception timing determination unit 52 determines that the Ac signal has not been received (step S110: YES), the reception timing determination unit 52 randomly selects the number of the Poll signal for band request to be received (step S115). The number of the Poll signal for band request corresponds to the slot number. As a method of selecting the number of the Poll signal for band request to be received, the idea of binary backoff or the like may be adopted. The response signal allocation unit 53 determines a slot for transmitting a response signal to the band request Poll signal based on the selected band request Poll signal number. When the reception timing determination unit 52 determines that the Ac signal has been received (step S110: NO), the reception timing determination unit 52 does not perform the process of step S115.
 無線通信システム10は、端末局#1~端末局#Nのそれぞれについてループ1の処理を終了すると、変数jの初期値を1とし、変数jの値が帯域要求領域に含まれるスロット数Mに達するまで、変数jの値を1ずつインクリメントした各値の変数jについてループ2の処理を行う(ステップS120)。変数jは帯域要求領域におけるスロットの番号を表す。j番目のスロットをスロット#jと記載する。ループ2は、ステップS125の処理と、ループ3の処理とを含む。 When the processing of the loop 1 is completed for each of the terminal station # 1 to the terminal station # N, the wireless communication system 10 sets the initial value of the variable j to 1 and sets the value of the variable j to the number of slots M included in the band request area. Until the value is reached, the loop 2 process is performed for the variable j of each value obtained by incrementing the value of the variable j by 1. (Step S120). The variable j represents the slot number in the bandwidth request area. The j-th slot is described as slot # j. Loop 2 includes the process of step S125 and the process of loop 3.
 基地局1の送信部231は、スロット番号jの帯域要求用Poll信号であるPoll#jを生成し、通信部21を介してアンテナ部3に出力する。アンテナ部3の通信部31は、スロット#jにおいてPoll#jを端末局5にブロードキャスト送信する(ステップS125)。 The transmission unit 231 of the base station 1 generates a Poll # j which is a band requesting Poll signal of the slot number j, and outputs the Poll # j to the antenna unit 3 via the communication unit 21. The communication unit 31 of the antenna unit 3 broadcasts Poll # j to the terminal station 5 in slot # j (step S125).
 無線通信システム10は、変数kの初期値を1とし、変数kの値が端末局5の台数Nに達するまで、変数kの値を1ずつインクリメントした各値の変数kについてループ3の処理を行う(ステップS130)。変数kは、N台の端末局5のうちk台目であることを表す。ループ3の処理は、ステップS135~ステップS150の処理を含む。 The wireless communication system 10 sets the initial value of the variable k to 1, and processes the loop 3 for each value of the variable k in which the value of the variable k is incremented by 1 until the value of the variable k reaches the number N of the terminal stations 5. (Step S130). The variable k represents the kth of the N terminal stations 5. The processing of the loop 3 includes the processing of steps S135 to S150.
 端末局#kの受信部542は、ステップS125においてブロードキャストされたPoll#jを受信する。受信タイミング決定部52は、ステップS115において選択した帯域要求用Poll信号の番号に基づいて、受信したPoll#jは自局が受信すべき信号であるか否かを判定する(ステップS135)。受信タイミング決定部52が、Poll#jは自局が受信すべき信号ではないと判定した場合(ステップS135:NO)、端末局5は、ステップS140の処理を行わず、基地局1は、ステップS145~S150の処理を行わない。 The receiving unit 542 of the terminal station #k receives the Poll # j broadcast in step S125. The reception timing determination unit 52 determines whether or not the received Poll # j is a signal to be received by the own station based on the band request Poll signal number selected in step S115 (step S135). When the reception timing determination unit 52 determines that Poll # j is not a signal to be received by its own station (step S135: NO), the terminal station 5 does not perform the process of step S140, and the base station 1 steps. The processing of S145 to S150 is not performed.
 端末局#kの受信タイミング決定部52が、受信したPoll#jは自局が受信すべき信号であると判定した場合(ステップS135:YES)、端末局#kの送信部541は応答信号を生成して、通信部51に出力する。送信部541は、Ack情報と、UL通信により送信するデータのデータ量と、トラヒックに関する情報とを応答信号に設定する。トラヒックに関する情報は、トラヒック量、トラヒック発生間隔、サービスタイプ、優先度などの情報を含む。通信部51は、応答信号割当部53により割当てられたスロットにおいて応答信号を無線により送信する(ステップS140)。 When the reception timing determination unit 52 of the terminal station #k determines that the received Poll # j is a signal to be received by the own station (step S135: YES), the transmission unit 541 of the terminal station #k outputs a response signal. Generate and output to the communication unit 51. The transmission unit 541 sets the Acc information, the amount of data to be transmitted by UL communication, and the information related to traffic in the response signal. Information about traffic includes information such as traffic amount, traffic interval, service type, and priority. The communication unit 51 wirelessly transmits the response signal in the slot assigned by the response signal allocation unit 53 (step S140).
 基地局1の受信部232は、端末局#kからの応答信号を正常に受信したか否かを判定する(ステップS145)。受信部232が、応答信号を正常に受信したと判定した場合(ステップS145:YES)、送信部231は、端末局#k宛てのAck信号を生成し、通信部21を介してアンテナ部3に送信する。アンテナ部3は、端末局#k宛てのAck信号を無線により送信する(ステップS150)。 The receiving unit 232 of the base station 1 determines whether or not the response signal from the terminal station #k has been normally received (step S145). When the receiving unit 232 determines that the response signal has been normally received (step S145: YES), the transmitting unit 231 generates an Ac signal addressed to the terminal station #k and connects the antenna unit 3 to the antenna unit 3 via the communication unit 21. Send. The antenna unit 3 wirelessly transmits an Ac signal addressed to the terminal station #k (step S150).
 なお、端末局#kを含む複数の端末局5がPoll#jに対して応答信号を送信した場合、衝突が発生するために基地局1は応答信号を正常に受信できない。受信部232が応答信号を正常に受信しなかったと判定した場合(ステップS145:NO)、基地局1は、ステップS150の処理を行わない。 When a plurality of terminal stations 5 including the terminal station #k transmit a response signal to Poll # j, the base station 1 cannot normally receive the response signal due to a collision. When the receiving unit 232 determines that the response signal has not been normally received (step S145: NO), the base station 1 does not perform the process of step S150.
 変数kの値が端末局数Nに達し、無線通信システム10がループ3の処理を終えると、無線通信システム10は、現在の変数jの値に1を加算した値によりループ2の処理を行う。そして、変数jの値がスロット数Mに達し、無線通信システム10がループ2の処理を終えると、基地局1の受信部232は、全ての端末局5にAck信号を送信したか否かを判定する(ステップS155)。受信部232がまだAck信号を送信していない端末局5があると判定した場合(ステップS155:NO)、無線通信システム10は、ステップS105からの処理を繰り返す。受信部232が全ての端末局5へAck信号を送信したと判定した場合(ステップS155:YES)、無線通信システム10は帯域要求フェーズの処理を完了する。 When the value of the variable k reaches the number of terminals N and the wireless communication system 10 finishes the processing of the loop 3, the wireless communication system 10 performs the processing of the loop 2 by the value obtained by adding 1 to the current value of the variable j. .. Then, when the value of the variable j reaches the number of slots M and the wireless communication system 10 finishes the processing of the loop 2, the receiving unit 232 of the base station 1 determines whether or not the Ac signal is transmitted to all the terminal stations 5. Determination (step S155). When the receiving unit 232 determines that there is a terminal station 5 that has not yet transmitted the Ac signal (step S155: NO), the wireless communication system 10 repeats the process from step S105. When it is determined that the receiving unit 232 has transmitted the Ack signal to all the terminal stations 5 (step S155: YES), the wireless communication system 10 completes the processing of the band request phase.
 なお、図2の処理の対象とする端末局5を、送信すべきULデータを蓄積しているアクティブな端末局5に限定してもよい。また、基地局1の伝搬距離算出部24は、端末局5から受信した応答信号又は他のUL通信の信号に基づいて、各端末局5の伝搬遅延時間及び伝搬距離を算出しておく。 Note that the terminal station 5 to be processed in FIG. 2 may be limited to the active terminal station 5 that stores UL data to be transmitted. Further, the propagation distance calculation unit 24 of the base station 1 calculates the propagation delay time and the propagation distance of each terminal station 5 based on the response signal received from the terminal station 5 or the signal of other UL communication.
 図3は、ULデータ伝送フェーズにおける無線通信システム10の処理を示すフロー図である。図3に示す処理は、基地局1と、当該基地局1の同じアンテナ部3とULデータ伝送を行うN台(Nは1以上の整数)の端末局5とにおいて実行される。図3の処理におけるNは、図2の処理において基地局1が正常に応答信号を受信した端末局5の台数である。 FIG. 3 is a flow chart showing the processing of the wireless communication system 10 in the UL data transmission phase. The process shown in FIG. 3 is executed by the base station 1, the same antenna unit 3 of the base station 1, and N terminal stations (N is an integer of 1 or more) that perform UL data transmission. N in the process of FIG. 3 is the number of terminal stations 5 in which the base station 1 normally receives the response signal in the process of FIG.
 まず、基地局1の宛先決定部25は、N台の端末局5を所定の判定基準に基づいてソートする(ステップS305)。例えば、宛先決定部25は、端末局5をトラヒック量の降順にソートする。トラヒック量の情報は、端末局5から受信した応答信号に設定されている情報から得られる。あるいは、宛先決定部25は、伝搬距離算出部24が算出した伝搬距離が長い順又は短い順に端末局5をソートしてもよい。ソート結果の順位がi番目(iは1以上N以下の整数)の端末局5を、端末局#iと記載する。 First, the destination determination unit 25 of the base station 1 sorts the N terminal stations 5 based on a predetermined determination criterion (step S305). For example, the destination determination unit 25 sorts the terminal station 5 in descending order of the traffic amount. The traffic amount information is obtained from the information set in the response signal received from the terminal station 5. Alternatively, the destination determination unit 25 may sort the terminal stations 5 in the order of longest or shortest propagation distance calculated by the propagation distance calculation unit 24. The terminal station 5 whose sort result rank is i-th (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
 続いて、宛先決定部25は、各端末局5から受信したトラヒック情報(例えば、パケット発生間隔)に基づいて、各端末局5に送信するデータ伝送用Poll信号をスロットに仮割当てする(ステップS310)。データ伝送用Poll信号は、宛先の端末局5にULデータ信号の送信を許可するためのPoll信号である。例えば、宛先決定部25は、従来技術と同様のラウンドロビンにより、各端末局5に送信するデータ伝送用Poll信号をスロットに仮割当てする。なお、トラヒック情報は、端末局5から受信した応答信号から読み出される。 Subsequently, the destination determination unit 25 temporarily allocates the data transmission Poll signal to be transmitted to each terminal station 5 to the slot based on the traffic information (for example, the packet generation interval) received from each terminal station 5 (step S310). ). The data transmission Poll signal is a Poll signal for permitting the destination terminal station 5 to transmit the UL data signal. For example, the destination determination unit 25 temporarily allocates the data transmission Poll signal to be transmitted to each terminal station 5 to the slot by the same round robin as in the prior art. The traffic information is read from the response signal received from the terminal station 5.
 宛先決定部25は、変数i及び変数jの値に初期値1を設定し(ステップS315)、変数kの値に初期値1を設定する(ステップS320)。変数jは、端末局5のソートの結果における順位を表し、変数kは、ULデータ伝送領域におけるスロットの番号である。スロット番号kが割当てられたデータ伝送用Poll信号をPoll#kと記載する。 The destination determination unit 25 sets the initial value 1 for the values of the variable i and the variable j (step S315), and sets the initial value 1 for the value of the variable k (step S320). The variable j represents the order in the sort result of the terminal station 5, and the variable k is the slot number in the UL data transmission area. The data transmission Poll signal to which the slot number k is assigned is referred to as Poll # k.
 宛先決定部25は、変数jに変数iの値を代入する(ステップS325)。受信時間算出部26は、端末局#iに仮割当てされたPoll#kの送信タイミングに基づきULデータ信号受信時間を算出する(ステップS330)。算出されるULデータ信号受信時間は、Poll#kを受信した端末局#iから送信されるULデータ信号を基地局1において受信するために割当てる時間区間である。ULデータ信号受信時間は、スロットで表されてもよい。受信時間算出部26は、ULデータ信号受信時間を、端末局#iの伝搬遅延時間と、端末局#iが帯域要求用Poll信号を受信してからULデータ信号を送信するまでの処理時間と、そのULデータ信号の信号長から得られる信号処理時間とに基づいて算出する。 The destination determination unit 25 assigns the value of the variable i to the variable j (step S325). The reception time calculation unit 26 calculates the UL data signal reception time based on the transmission timing of the Poll # k temporarily assigned to the terminal station #i (step S330). The calculated UL data signal reception time is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1. The UL data signal reception time may be represented by a slot. The reception time calculation unit 26 determines the UL data signal reception time as the propagation delay time of the terminal station #i and the processing time from the reception of the Poll signal for band request by the terminal station #i to the transmission of the UL data signal. , Calculated based on the signal processing time obtained from the signal length of the UL data signal.
 判定部27は、Poll#kに対応して端末局#iから送信されるULデータ信号と、他のULデータ信号との衝突が発生するか否かを判定する(ステップS335)。すなわち、判定部27は、Poll#kに対応して端末局#iから送信されるULデータ信号に割当てるULデータ信号受信時間が、端末局#iとは異なる端末局5から送信されるULデータ信号のULデータ信号受信時間と重さなるか否かを判定する。判定部27は、重ならない場合は衝突が発生しないと判定し、重なる場合は衝突が発生すると判定する。 The determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station #i corresponding to Poll # k and another UL data signal (step S335). That is, the determination unit 27 allocates the UL data signal reception time to the UL data signal transmitted from the terminal station #i corresponding to Poll # k to the UL data transmitted from the terminal station 5 different from the terminal station #i. It is determined whether or not the signal overlaps with the UL data signal reception time of the signal. The determination unit 27 determines that a collision does not occur if they do not overlap, and determines that a collision occurs if they do overlap.
 判定部27が、衝突は発生しないと判定した場合(ステップS335:NO)、宛先決定部25は、ステップS340の処理を行う。すなわち、宛先決定部25は、Poll#kの割当て先を端末局#iに決定し、ステップS330において算出されたULデータ信号受信時間に端末局#iからのULデータ信号を割当てると決定する(ステップS340)。宛先決定部25は、変数iの値に1を加算してインクリメントする(ステップS345)。宛先決定部25は、変数iの値が端末局数Nを超えているか否かを判定する(ステップS350)。宛先決定部25は、変数iの値が端末局数Nを超えていると判定した場合(ステップS350:YES)、変数iの値に1を設定する(ステップS355)。 When the determination unit 27 determines that a collision does not occur (step S335: NO), the destination determination unit 25 performs the process of step S340. That is, the destination determination unit 25 determines the allocation destination of Poll # k to the terminal station #i, and determines that the UL data signal from the terminal station #i is allocated to the UL data signal reception time calculated in step S330 (). Step S340). The destination determination unit 25 adds 1 to the value of the variable i and increments it (step S345). The destination determination unit 25 determines whether or not the value of the variable i exceeds the number of terminal stations N (step S350). When the destination determination unit 25 determines that the value of the variable i exceeds the number of terminal stations N (step S350: YES), the destination determination unit 25 sets the value of the variable i to 1 (step S355).
 宛先決定部25は、ステップS350において変数iの値が端末局数Nを超えていないと判定した場合(ステップS350:NO)、又は、ステップS355の処理の後、ステップS360の処理を行う。すなわち、宛先決定部25は、変数kの値に1を加算してインクリメントする(ステップS360)。宛先決定部25は、変数kの値がULデータ伝送領域におけるスロット数Kを超えているか否かを判定する(ステップS365)。宛先決定部25は、変数kの値がスロット数Kを超えていないと判定した場合(ステップS365:NO)、ステップS325からの処理を繰り返す。そして、宛先決定部25は、変数kの値がスロット数Kを超えたと判定した場合(ステップS365:YES)、処理を終了する。 When the destination determination unit 25 determines in step S350 that the value of the variable i does not exceed the number of terminal stations N (step S350: NO), or after the process of step S355, the destination determination unit 25 performs the process of step S360. That is, the destination determination unit 25 adds 1 to the value of the variable k and increments it (step S360). The destination determination unit 25 determines whether or not the value of the variable k exceeds the number of slots K in the UL data transmission area (step S365). When the destination determination unit 25 determines that the value of the variable k does not exceed the number of slots K (step S365: NO), the destination determination unit 25 repeats the processing from step S325. Then, when the destination determination unit 25 determines that the value of the variable k exceeds the number of slots K (step S365: YES), the destination determination unit 25 ends the process.
 一方、Poll#kに対応して端末局#iから送信されるULデータ信号と、他のULデータ信号との衝突が発生すると判定部27が判定した場合(ステップS335:YES)、宛先決定部25は、変数jの値に1を加算してインクリメントする(ステップS370)。宛先決定部25は、スロット#kについてULデータ信号を割当てるかの判定対象としてまだ選択されていない端末局5があるか否かを判定する(ステップS375)。宛先決定部25は、判定対象として選択されていない端末局5があると判定した場合(ステップS375:YES)、変数jの値が端末局数Nを超えているか否かを判定する(ステップS380)。宛先決定部25は、変数jの値が端末局数Nを超えていると判定した場合(ステップS380:YES)、変数jの値に1を設定する(ステップS385)。 On the other hand, when the determination unit 27 determines that a collision between the UL data signal transmitted from the terminal station #i corresponding to the Variable # k and another UL data signal occurs (step S335: YES), the destination determination unit In 25, 1 is added to the value of the variable j and incremented (step S370). The destination determination unit 25 determines whether or not there is a terminal station 5 that has not yet been selected as a determination target for assigning a UL data signal to the slot # k (step S375). When the destination determination unit 25 determines that there is a terminal station 5 that has not been selected as the determination target (step S375: YES), the destination determination unit 25 determines whether or not the value of the variable j exceeds the number of terminal stations N (step S380). ). When the destination determination unit 25 determines that the value of the variable j exceeds the number of terminal stations N (step S380: YES), the destination determination unit 25 sets the value of the variable j to 1 (step S385).
 宛先決定部25は、変数jの値が端末局数Nを超えていないと判定した場合(ステップS380:NO)、又は、ステップS385の処理の後、Poll#kの仮割当先を端末局#jに更新する(ステップS390)。受信時間算出部26は、ステップS330と同様の処理により、Poll#kを受信した端末局#jから送信されるULデータ信号を基地局1において受信するために割当てるULデータ信号受信時間を算出する(ステップS395)。判定部27は、ステップS335と同様に、Poll#kに対応して端末局#jから送信されるULデータ信号と、他のULデータ信号との衝突が発生するか否かを判定する(ステップS400)。 When the destination determination unit 25 determines that the value of the variable j does not exceed the number of terminal stations N (step S380: NO), or after the processing of step S385, the temporary allocation destination of Poll # k is set to the terminal station #. Update to j (step S390). The reception time calculation unit 26 calculates the UL data signal reception time allocated for receiving the UL data signal transmitted from the terminal station # j that received the Poll # k at the base station 1 by the same processing as in step S330. (Step S395). Similar to step S335, the determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station # j corresponding to Poll # k and another UL data signal (step). S400).
 衝突が発生すると判定部27が判定した場合(ステップS400:YES)、基地局1は、ステップS370からの処理を繰り返す。一方、衝突が発生しないと判定部27が判定した場合(ステップS400:NO)、宛先決定部25は、Poll#kの割当て先を端末局#jに決定し、ステップS395において算出されたULデータ信号受信時間に端末局#jからのULデータ信号を割当てると決定する(ステップS405)。基地局1は、ステップS405の後、又は、ステップS375において宛先決定部25が全ての端末局5を判定対象としたと判定した場合(ステップS375:NO)、ステップS360からの処理を行う。 When the determination unit 27 determines that a collision occurs (step S400: YES), the base station 1 repeats the process from step S370. On the other hand, when the determination unit 27 determines that no collision occurs (step S400: NO), the destination determination unit 25 determines the allocation destination of Poll # k to the terminal station # j, and the UL data calculated in step S395. It is determined that the UL data signal from the terminal station #j is assigned to the signal reception time (step S405). After step S405, or when the destination determination unit 25 determines that all the terminal stations 5 are the determination targets (step S375: NO), the base station 1 performs the process from step S360.
 図4は、図3の処理の結果に基づく無線通信システム10のULデータ伝送フェーズにおける動作概要を示す図である。図4では、端末局5が端末局#1~端末局#3の3台の場合の例を示している。端末局#1~端末局#3のトラヒック量と伝搬距離は、図12と同様であるとする。すなわち、端末局#1の伝搬距離<端末局#2の伝搬距離<端末局#3の伝搬距離である。Pollは端末局#i宛てのデータ伝送用Poll信号、Dataは端末局#iが送信するULデータ信号を示している。なお、図4の例では、基地局1がULデータ信号を受信した場合に返送するAck信号の記載を省略している。 FIG. 4 is a diagram showing an outline of operation in the UL data transmission phase of the wireless communication system 10 based on the result of the process of FIG. FIG. 4 shows an example in which the terminal station 5 has three terminals # 1 to terminal station # 3. It is assumed that the traffic amount and the propagation distance of the terminal stations # 1 to the terminal station # 3 are the same as those in FIG. That is, the propagation distance of the terminal station # 1 <the propagation distance of the terminal station # 2 <the propagation distance of the terminal station # 3. Poll i is a Poll signal for data transmission addressed to the terminal station # i, and Data i is a UL data signal transmitted by the terminal station # i. In the example of FIG. 4, the description of the Ack signal to be returned when the base station 1 receives the UL data signal is omitted.
 まず、基地局1の宛先決定部25は、トラヒック量の降順に並べた端末局#1、端末局#2、端末局#3にラウンドロビンによりデータ伝送用Poll信号を割当てる。受信時間算出部26は、各データ伝送用Poll信号に対応して端末局#1~端末局#3それぞれが送信するULデータ信号の到着時間を算出する。ここでは、図13と同様にデータ伝送用Poll信号が割当てられ、端末局#1~端末局#3それぞれから送信されるULデータ信号の到着時間、すなわち、ULデータ信号受信時間が算出されたとする。図13に示すように、ULデータ信号の衝突が発生し、結果として、基地局1がスロット#1で送信したデータ伝送用Poll信号P1に対応して端末局#1が送信するULデータ信号D1と、基地局1がスロット#9で送信したデータ伝送用Poll信号P9に対応して端末局#3が送信するULデータ信号D9のみが送信に成功している。つまり、端末局#1~端末局#3全体で、合計2個のULデータ信号を送信できている。 First, the destination determination unit 25 of the base station 1 allocates a Poll signal for data transmission to the terminal station # 1, the terminal station # 2, and the terminal station # 3 arranged in descending order of the traffic amount by round robin. The reception time calculation unit 26 calculates the arrival time of the UL data signal transmitted by each of the terminal stations # 1 to the terminal station # 3 corresponding to each data transmission Poll signal. Here, it is assumed that the Poll signal for data transmission is assigned as in FIG. 13, and the arrival time of the UL data signal transmitted from each of the terminal stations # 1 to # 3, that is, the UL data signal reception time is calculated. .. As shown in FIG. 13, a collision of UL data signals occurs, and as a result, the UL data signal D1 transmitted by the terminal station # 1 corresponding to the data transmission Poll signal P1 transmitted by the base station 1 in slot # 1. And, only the UL data signal D9 transmitted by the terminal station # 3 corresponding to the data transmission Poll signal P9 transmitted by the base station 1 in the slot # 9 has succeeded in transmission. That is, a total of two UL data signals can be transmitted in the entire terminal station # 1 to terminal station # 3.
 基地局1がスロット#2で送信したデータ伝送用Poll信号P2に対応して端末局#2が送信するULデータ信号D2と、基地局1がスロット#4で送信したデータ伝送用Poll信号P4に対応して端末局#1が送信するULデータ信号D4は衝突する。また、基地局1がスロット#3で送信したデータ伝送用Poll信号P3に対応して端末局#3が送信するULデータ信号D3と、基地局1がスロット#5で送信したデータ伝送用Poll信号P5に対応して端末局#2が送信するULデータ信号D5と、基地局1がスロット#7で送信したデータ伝送用Poll信号P7に対応して端末局#1が送信するULデータ信号D7が衝突する。さらに、基地局1がスロット#6で送信したデータ伝送用Poll信号P6に対応して端末局#3が送信するULデータ信号D6と、基地局1がスロット#8で送信したデータ伝送用Poll信号P8に対応して端末局#2が送信するULデータ信号D8と、基地局1がスロット#10で送信したデータ伝送用Poll信号P10に対応して端末局#1が送信するULデータ信号D10が衝突する。 The UL data signal D2 transmitted by the terminal station # 2 corresponding to the data transmission Poll signal P2 transmitted by the base station 1 in the slot # 2, and the data transmission Poll signal P4 transmitted by the base station 1 in the slot # 4. Correspondingly, the UL data signal D4 transmitted by the terminal station # 1 collides. Further, the UL data signal D3 transmitted by the terminal station # 3 corresponding to the data transmission Poll signal P3 transmitted by the base station 1 in the slot # 3, and the data transmission Poll signal transmitted by the base station 1 in the slot # 5. The UL data signal D5 transmitted by the terminal station # 2 corresponding to P5 and the UL data signal D7 transmitted by the terminal station # 1 corresponding to the data transmission Poll signal P7 transmitted by the base station 1 in the slot # 7. collide. Further, the UL data signal D6 transmitted by the terminal station # 3 corresponding to the data transmission Poll signal P6 transmitted by the base station 1 in the slot # 6, and the data transmission Poll signal transmitted by the base station 1 in the slot # 8. The UL data signal D8 transmitted by the terminal station # 2 corresponding to P8 and the UL data signal D10 transmitted by the terminal station # 1 corresponding to the data transmission Poll signal P10 transmitted by the base station 1 in the slot # 10 collide.
 そこで、基地局1は図3に示した手順に従い、スロット#4で送信するデータ伝送用Poll信号を割当てる端末局5を検討する。スロット#4のデータ伝送用Poll信号は、元々は端末局#1に仮に割当てられた信号である。図中に記載はされていないが、端末局#1、端末局#2、端末局#3のいずれにスロット#4のデータ伝送用Poll信号P4を割当てても衝突が発生する。そのため、基地局1の宛先決定部25は、スロット#4のデータ伝送用Poll信号の割当てを見送る。 Therefore, the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in the slot # 4 is assigned according to the procedure shown in FIG. The data transmission Poll signal in slot # 4 is a signal originally tentatively assigned to terminal station # 1. Although not shown in the figure, a collision occurs even if the data transmission Poll signal P4 in slot # 4 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the data transmission Poll signal in the slot # 4.
 続いて、基地局1は、スロット#5で送信するデータ伝送用Poll信号を割当てる端末局5を検討する。スロット#5のデータ伝送用Poll信号は、元々は端末局#2に仮に割当てられた信号である。スロット#5のデータ伝送用Poll信号を端末局#1又は端末局#2に割当てた場合、衝突が発生する。そのため、基地局1の宛先決定部25は、スロット#5のデータ伝送用Poll信号P5’を端末局#3に割当てる。端末局#3は、データ伝送用Poll信号P5’を受信し、ULデータ信号D5’を送信する。 Subsequently, the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in the slot # 5 is assigned. The data transmission Poll signal in slot # 5 is a signal originally tentatively assigned to terminal station # 2. When the data transmission Poll signal in slot # 5 is assigned to terminal station # 1 or terminal station # 2, a collision occurs. Therefore, the destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P5'in the slot # 5 to the terminal station # 3. Terminal station # 3 receives the data transmission Poll signal P5'and transmits the UL data signal D5'.
 次に、基地局1は、スロット#6で送信するデータ伝送用Poll信号を割当てる端末局5を検討する。スロット#6のデータ伝送用Poll信号は、元々は端末局#3に仮に割当てられた信号である。基地局1の宛先決定部25は、スロット#6のデータ伝送用Poll信号P6’を端末局#1に割当てる。端末局#1は、データ伝送用Poll信号P6’を受信し、ULデータ信号D6’を送信する。 Next, the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 6 is assigned. The data transmission Poll signal in slot # 6 is a signal originally tentatively assigned to terminal station # 3. The destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P6'of the slot # 6 to the terminal station # 1. Terminal station # 1 receives the data transmission Poll signal P6'and transmits the UL data signal D6'.
 次に、基地局1は、スロット#7で送信する第二ポーリング信号を割当てる端末局5を検討する。スロット#7のデータ伝送用Poll信号は、元々は端末局#1に仮に割当てられた信号である。端末局#1、端末局#2、端末局#3のいずれにスロット#7の伝送用ポーリング信号を割当てても衝突が発生する。そのため、基地局1の宛先決定部25は、スロット#7の伝送用ポーリング信号の割当てを見送る。 Next, the base station 1 considers the terminal station 5 to which the second polling signal to be transmitted in slot # 7 is assigned. The data transmission Poll signal in slot # 7 is a signal originally tentatively assigned to terminal station # 1. A collision occurs even if the transmission polling signal of slot # 7 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the polling signal for transmission in slot # 7.
 次に、基地局1は、スロット#8で送信するデータ伝送用Poll信号を割当てる端末局5を検討する。スロット#8のデータ伝送用Poll信号は、元々は端末局#2に仮に割当てられた信号である。スロット#8のデータ伝送用Poll信号を端末局#1又は端末局#2に割当てた場合、衝突が発生する。そのため、基地局1の宛先決定部25は、スロット#8のデータ伝送用Poll信号P8’を端末局#3に割当てる。端末局#3は、データ伝送用Poll信号P8’を受信し、ULデータ信号D8’を送信する。 Next, the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 8 is assigned. The data transmission Poll signal in slot # 8 is a signal originally tentatively assigned to terminal station # 2. When the data transmission Poll signal in slot # 8 is assigned to terminal station # 1 or terminal station # 2, a collision occurs. Therefore, the destination determination unit 25 of the base station 1 allocates the data transmission Poll signal P8'in the slot # 8 to the terminal station # 3. Terminal station # 3 receives the data transmission Poll signal P8'and transmits the UL data signal D8'.
 次に、基地局1は、スロット#9で送信するデータ伝送用Poll信号を割当てる端末局5を検討する。スロット#9のデータ伝送用Poll信号は、元々は端末局#3に仮に割当てられた信号である。端末局#1、端末局#2、端末局#3のいずれにスロット#9のデータ伝送用Poll信号を割当てても衝突が発生する。そのため、基地局1の宛先決定部25は、伝送用ポーリング信号P9の割当てを見送る。 Next, the base station 1 considers the terminal station 5 to which the Poll signal for data transmission to be transmitted in slot # 9 is assigned. The data transmission Poll signal in slot # 9 is a signal originally tentatively assigned to terminal station # 3. A collision occurs even if the data transmission Poll signal of slot # 9 is assigned to any of terminal station # 1, terminal station # 2, and terminal station # 3. Therefore, the destination determination unit 25 of the base station 1 forgoes the allocation of the transmission polling signal P9.
 以上より、端末局#1が送信する2個のULデータ信号と、端末局#2が送信する1個のULデータ信号と、端末局#3が送信する3個のULデータ信号との送信が成功し、合計6個のULデータ信号を送信できていることが分かる。 From the above, the transmission of the two UL data signals transmitted by the terminal station # 1, the one UL data signal transmitted by the terminal station # 2, and the three UL data signals transmitted by the terminal station # 3 is transmitted. It can be seen that it was successful and a total of 6 UL data signals could be transmitted.
 なお、上記では、基地局1は、スロットに基づいてポーリング信号を割当てる時間を決定しているが、スロットに限定されずポーリング信号の送信のタイミングの割当てを行ってもよい。 In the above, the base station 1 determines the time for allocating the polling signal based on the slot, but it is not limited to the slot and may allocate the timing of transmitting the polling signal.
 また、本実施形態において、ULデータ信号長は、固定長と可変長とのいずれでもよい。ULデータ信号長が可変長の場合は、帯域要求フェーズにおいて、端末局5は、ULデータ信号長に関する情報を設定した応答信号を基地局1に送信する。 Further, in the present embodiment, the UL data signal length may be either a fixed length or a variable length. When the UL data signal length is variable, the terminal station 5 transmits a response signal set with information regarding the UL data signal length to the base station 1 in the band request phase.
 本実施形態によれば、基地局1は、端末局5が送信するULデータ信号の到着時間を算出し、ULデータ信号の衝突有無を判定する。基地局1は、衝突が発生すると判定した場合は、ULデータ信号伝送用のPoll信号を割当てる端末局5を変更することで、衝突を回避する。その結果、無線通信システム10は、長遅延に伴う無線帯域の空き帯域を有効に活用して、伝送効率を改善することができる。 According to the present embodiment, the base station 1 calculates the arrival time of the UL data signal transmitted by the terminal station 5, and determines whether or not the UL data signal collides. When the base station 1 determines that a collision occurs, the base station 1 avoids the collision by changing the terminal station 5 to which the Poll signal for UL data signal transmission is assigned. As a result, the wireless communication system 10 can effectively utilize the free band of the wireless band due to the long delay to improve the transmission efficiency.
[第2の実施形態]
 本実施形態では、配置したULデータ信号が別のULデータ信号と衝突する場合、データ伝送用Poll信号を割当てる時間を変更する。以下では、第1の実施形態との差分を中心に説明する。
[Second Embodiment]
In the present embodiment, when the arranged UL data signal collides with another UL data signal, the time for allocating the Poll signal for data transmission is changed. Hereinafter, the differences from the first embodiment will be mainly described.
 図5は、本実施形態による無線通信システム10aの構成を示す図である。図5には、本実施形態と関係する機能ブロックのみを抽出して示してある。同図において、図1に示す第1の実施形態による無線通信システム10と同一の部分には同一の符号を付し、その説明を省略する。無線通信システム10aが、図1に示す無線通信システム10と異なる点は、基地局1に代えて基地局1aを有する点である。 FIG. 5 is a diagram showing a configuration of a wireless communication system 10a according to the present embodiment. In FIG. 5, only the functional blocks related to the present embodiment are extracted and shown. In the figure, the same parts as those of the wireless communication system 10 according to the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The difference between the wireless communication system 10a and the wireless communication system 10 shown in FIG. 1 is that the wireless communication system 10a has a base station 1a instead of the base station 1.
 本実施形態では、第1の実施形態同様に、基地局1aは、信号処理機能を有する信号処理部2aと、無線通信機能を有するアンテナ部3とに、RoFを用いて分離されている。信号処理部2aは、局舎などに固定設置され、アンテナ部3は、端末局5が設置されている場所の周辺に位置する電柱などに固定設置される。信号処理部2aとアンテナ部3とは、光ファイバ4により接続される。アンテナ部3と端末局5とはミリ波無線通信システム6により接続される。 In the present embodiment, as in the first embodiment, the base station 1a is separated into a signal processing unit 2a having a signal processing function and an antenna unit 3 having a wireless communication function by using RoF. The signal processing unit 2a is fixedly installed in a station building or the like, and the antenna unit 3 is fixedly installed in a utility pole or the like located around the place where the terminal station 5 is installed. The signal processing unit 2a and the antenna unit 3 are connected by an optical fiber 4. The antenna unit 3 and the terminal station 5 are connected by a millimeter wave wireless communication system 6.
 信号処理部2aが、図1に示す第1の実施形態の信号処理部2と異なる点は、宛先決定部25に代えて宛先決定部25aを備える点と、割当時間決定部28をさらに備える点である。宛先決定部25aは、第1の実施形態と同様に、ULデータ伝送フェーズにおいて、所定の判定基準に基づきデータ伝送用Poll信号を割当てる端末局5を決定する。判定基準として、例えば、トラヒック量、優先度、伝送距離などが用いられる。ただし、宛先決定部25aは、第1の実施形態と異なり、判定部27が衝突有と判定した場合においても、データ伝送用Poll信号を割当てる端末局5を変更しない。割当時間決定部28は、判定部27が衝突有と判定した場合に、端末局5に割当てられたデータ伝送用Poll信号の送信タイミングを変更する。 The signal processing unit 2a differs from the signal processing unit 2 of the first embodiment shown in FIG. 1 in that it includes a destination determination unit 25a instead of the destination determination unit 25 and further includes an allocation time determination unit 28. Is. Similar to the first embodiment, the destination determination unit 25a determines the terminal station 5 to which the Poll signal for data transmission is assigned based on a predetermined determination criterion in the UL data transmission phase. As the determination criteria, for example, the traffic amount, priority, transmission distance, and the like are used. However, unlike the first embodiment, the destination determination unit 25a does not change the terminal station 5 to which the data transmission Poll signal is assigned even when the determination unit 27 determines that there is a collision. When the determination unit 27 determines that there is a collision, the allocation time determination unit 28 changes the transmission timing of the data transmission Poll signal assigned to the terminal station 5.
 無線通信システム10aの帯域要求フェーズにおける処理は、図2に示す第1の実施形態の処理と同じである。 The processing in the band request phase of the wireless communication system 10a is the same as the processing of the first embodiment shown in FIG.
 図6は、ULデータ伝送フェーズにおける無線通信システム10aの処理を示すフロー図である。図6に示す処理は、基地局1aと、当該基地局1aの同じアンテナ部3とULデータ伝送を行うN台(Nは1以上の整数)の端末局5とにおいて実行される。図6の処理におけるNは、図2の処理において基地局1aが正常に応答信号を受信した端末局5の台数である。 FIG. 6 is a flow chart showing the processing of the wireless communication system 10a in the UL data transmission phase. The process shown in FIG. 6 is executed by the base station 1a, the same antenna unit 3 of the base station 1a, and N terminal stations (N is an integer of 1 or more) that perform UL data transmission. N in the process of FIG. 6 is the number of terminal stations 5 in which the base station 1a normally receives the response signal in the process of FIG.
 まず、基地局1aの宛先決定部25aは、図3に示す第1の実施形態のステップS305の処理と同様に、N台の端末局5を所定の判定基準に基づいてソートする(ステップS505)。ソートの結果の順位がi番目(iは1以上N以下の整数)の端末局5を、端末局#iと記載する。 First, the destination determination unit 25a of the base station 1a sorts the N terminal stations 5 based on a predetermined determination criterion in the same manner as in the process of step S305 of the first embodiment shown in FIG. 3 (step S505). .. The terminal station 5 whose sort result rank is i-th (i is an integer of 1 or more and N or less) is referred to as terminal station #i.
 続いて、宛先決定部25aは、図3に示す第1の実施形態のステップS310の処理と同様に、各端末局5から受信したトラヒック情報に基づいて、各端末局5に送信するデータ伝送用Poll信号をスロットに仮割当てする(ステップS510)。宛先決定部25aは、変数iの値に初期値1を設定し(ステップS515)、変数kの値に初期値1を設定する(ステップS520)。変数kは、ULデータ伝送領域におけるスロットの番号である。スロット番号kが割当てられたデータ伝送用Poll信号をPoll#kと記載する。 Subsequently, the destination determination unit 25a is for data transmission to be transmitted to each terminal station 5 based on the traffic information received from each terminal station 5, as in the process of step S310 of the first embodiment shown in FIG. The Poll signal is provisionally assigned to the slot (step S510). The destination determination unit 25a sets the initial value 1 in the value of the variable i (step S515), and sets the initial value 1 in the value of the variable k (step S520). The variable k is a slot number in the UL data transmission area. The data transmission Poll signal to which the slot number k is assigned is referred to as Poll # k.
 受信時間算出部26は、図3に示す第1の実施形態のステップS330の処理と同様に、端末局#iに仮割当てされたPoll#kの送信タイミングに基づきULデータ信号受信時間を算出する(ステップS525)。算出されるULデータ信号受信時間は、Poll#kを受信した端末局#iから送信されるULデータ信号を基地局1aにおいて受信するために割当てる時間区間である。判定部27は、図3に示す第1の実施形態のステップS335の処理と同様に、Poll#kに対応して端末局#iから送信されるULデータ信号と、他のULデータ信号との衝突が発生するか否かを判定する(ステップS530)。 The reception time calculation unit 26 calculates the UL data signal reception time based on the transmission timing of the Poll # k provisionally assigned to the terminal station #i, as in the process of step S330 of the first embodiment shown in FIG. (Step S525). The calculated UL data signal reception time is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1a. Similar to the process of step S335 of the first embodiment shown in FIG. 3, the determination unit 27 combines the UL data signal transmitted from the terminal station #i corresponding to Poll # k with another UL data signal. It is determined whether or not a collision occurs (step S530).
 判定部27が、衝突は発生しないと判定した場合(ステップS530:NO)、宛先決定部25aは、ステップS535の処理を行う。すなわち、宛先決定部25aは、Poll#kの割当て先を端末局#iに決定し、ステップS525において算出されたULデータ信号受信時間に端末局#iからのULデータ信号を割当てると決定する(ステップS535)。宛先決定部25aは、変数iの値と変数kの値のそれぞれに1を加算してインクリメントする(ステップS540)。宛先決定部25aは、変数iの値が端末局数Nを超えているか否かを判定する(ステップS545)。宛先決定部25aは、変数iの値が端末局数Nを超えていないと判定した場合(ステップS545:NO)、ステップS525からの処理を繰り返す。そして、宛先決定部25aは、変数iの値が端末局数Nを超えたと判定した場合(ステップS545:YES)、処理を終了する。 When the determination unit 27 determines that a collision does not occur (step S530: NO), the destination determination unit 25a performs the process of step S535. That is, the destination determination unit 25a determines the allocation destination of Poll # k to the terminal station #i, and determines that the UL data signal from the terminal station #i is allocated to the UL data signal reception time calculated in step S525 (). Step S535). The destination determination unit 25a adds 1 to each of the value of the variable i and the value of the variable k and increments them (step S540). The destination determination unit 25a determines whether or not the value of the variable i exceeds the number of terminal stations N (step S545). When the destination determination unit 25a determines that the value of the variable i does not exceed the number of terminal stations N (step S545: NO), the destination determination unit 25a repeats the processing from step S525. Then, when it is determined that the value of the variable i exceeds the number of terminal stations N (step S545: YES), the destination determination unit 25a ends the process.
 一方、Poll#kに対応して端末局#iから送信されるULデータ信号と、他のULデータ信号との衝突が発生すると判定部27が判定した場合(ステップS530:YES)、割当時間決定部28は、変数kの値に1を加算してインクリメントする(ステップS550)。割当時間決定部28は、端末局#iに仮割当てしたデータ伝送用Poll信号を、ステップS550においてインクリメントされたスロット#kのPoll#kに更新する(ステップS555)。 On the other hand, when the determination unit 27 determines that a collision between the UL data signal transmitted from the terminal station #i corresponding to the Variable # k and another UL data signal occurs (step S530: YES), the allocation time is determined. The unit 28 adds 1 to the value of the variable k and increments it (step S550). The allocation time determination unit 28 updates the data transmission Poll signal provisionally allocated to the terminal station #i to the Poll # k of the slot # k incremented in step S550 (step S555).
 受信時間算出部26は、Poll#kを受信した端末局#iから送信されるULデータ信号を基地局1aにおいて受信するために割当てる時間区間であるULデータ信号受信時間を算出する(ステップS560)。判定部27は、Poll#kに対応して端末局#iから送信されるULデータ信号と、他のULデータ信号との衝突が発生するか否かを判定する(ステップS565)。衝突が発生すると判定部27が判定した場合(ステップS565:YES)、基地局1aは、ステップS550からの処理を繰り返す。 The reception time calculation unit 26 calculates the UL data signal reception time, which is a time interval allocated for receiving the UL data signal transmitted from the terminal station #i that has received Poll # k at the base station 1a (step S560). .. The determination unit 27 determines whether or not a collision occurs between the UL data signal transmitted from the terminal station #i corresponding to Poll # k and another UL data signal (step S565). When the determination unit 27 determines that a collision occurs (step S565: YES), the base station 1a repeats the process from step S550.
 一方、衝突が発生しないと判定部27が判定した場合(ステップS565:NO)、割当時間決定部28は、Poll#kを端末局#iに割当て、ステップS560において算出されたULデータ信号受信時間に端末局#iからのULデータ信号を割当てると決定する(ステップS570)。基地局1aは、ステップS540からの処理を行う。 On the other hand, when the determination unit 27 determines that no collision occurs (step S565: NO), the allocation time determination unit 28 allocates Poll # k to the terminal station #i, and the UL data signal reception time calculated in step S560. It is determined that the UL data signal from the terminal station #i is assigned to (step S570). The base station 1a performs the processing from step S540.
 図7は、図6の処理の結果に基づく無線通信システム10aのULデータ伝送フェーズにおける動作概要を示す図である。図7では、端末局5が端末局#1~端末局#3の3台であり、端末局#1~端末局#3のトラヒック量と伝搬距離は、図12と同様であるとする。なお、図7の例では、基地局1aがULデータ信号を受信した場合に返送するAck信号の記載を省略している。 FIG. 7 is a diagram showing an outline of operation in the UL data transmission phase of the wireless communication system 10a based on the result of the process of FIG. In FIG. 7, it is assumed that the terminal stations 5 are the three terminals # 1 to the terminal station # 3, and the traffic amount and the propagation distance of the terminal stations # 1 to the terminal station # 3 are the same as those in FIG. In the example of FIG. 7, the description of the Ack signal to be returned when the base station 1a receives the UL data signal is omitted.
 まず、基地局1aの宛先決定部25aは、トラヒック量の降順に並べた端末局#1、端末局#2、端末局#3にラウンドロビンによりデータ伝送用Poll信号を割当てる。受信時間算出部26は、各データ伝送用Poll信号に対応し、端末局#1~端末局#3それぞれが送信するULデータ信号の到着時間を算出する。ここでは、図13と同様にデータ伝送用Poll信号が割当てられ、端末局#1~端末局#3それぞれからのULデータ信号の到着時間が算出されたとする。すなわち、端末局#1が送信するULデータ信号D1と、端末局#3が送信するULデータ信号D9との合計2個のULデータ信号を送信できている。 First, the destination determination unit 25a of the base station 1a allocates a Poll signal for data transmission to the terminal station # 1, the terminal station # 2, and the terminal station # 3 arranged in descending order of the traffic amount by round robin. The reception time calculation unit 26 calculates the arrival time of the UL data signal transmitted by each of the terminal stations # 1 to the terminal station # 3 corresponding to each data transmission Poll signal. Here, it is assumed that the Poll signal for data transmission is assigned as in FIG. 13, and the arrival time of the UL data signal from each of the terminal stations # 1 to the terminal station # 3 is calculated. That is, a total of two UL data signals, the UL data signal D1 transmitted by the terminal station # 1 and the UL data signal D9 transmitted by the terminal station # 3, can be transmitted.
 そこで、基地局1aは、図6に示した手順に従い、スロット#4に仮割当てされたデータ伝送用Poll信号P4を、端末局#1に割当てる時間を検討する。図中に記載はされていないが、スロット#4からスロット#8までのいずれのスロットにデータ伝送用Poll信号を割当てても衝突が発生するため、割当時間決定部28は、スロット#9に端末局#1宛てのデータ伝送用Poll信号P9”を割当てる。 Therefore, the base station 1a examines the time for allocating the data transmission Poll signal P4 temporarily allocated to the slot # 4 to the terminal station # 1 according to the procedure shown in FIG. Although not shown in the figure, a collision occurs even if a data transmission Poll signal is assigned to any of the slots from slot # 4 to slot # 8, so that the allocation time determination unit 28 uses the terminal in slot # 9. Allocate a Poll signal P9 ”for data transmission addressed to station # 1.
 続いて、基地局1aは、スロット#5に仮割当てされたデータ伝送用Poll信号P5を、端末局#2に割当てる時間を検討する。割当時間決定部28は、衝突が発生しないスロット#10に、端末局#2宛てのデータ伝送用Poll信号P10”を割当てる。なお、図6に示すフローでは、元々スロット#5に割当てられていたデータ伝送用Poll信号を新たに割当てるスロットをスロット#10以降から選択することになるが、スロット#5以降のスロットから選択を行ってもよい。 Subsequently, the base station 1a examines the time for allocating the data transmission Poll signal P5 temporarily allocated to the slot # 5 to the terminal station # 2. The allocation time determination unit 28 allocates the data transmission Poll signal P10 ”to the terminal station # 2 to the slot # 10 where the collision does not occur. In the flow shown in FIG. 6, it was originally allocated to the slot # 5. The slot to which the Poll signal for data transmission is newly assigned is selected from the slots # 10 and later, but the slot may be selected from the slots after slot # 5.
 以上より、端末局#1が送信する2個のULデータ信号と、端末局#2が送信する2個のULデータ信号と、端末局#3が送信する1個のULデータ信号との送信が成功し、合計5個のULデータ信号を送信できていることが分かる。 From the above, the transmission of the two UL data signals transmitted by the terminal station # 1, the two UL data signals transmitted by the terminal station # 2, and the one UL data signal transmitted by the terminal station # 3 is transmitted. It can be seen that it was successful and a total of 5 UL data signals could be transmitted.
 なお、上記では、基地局1aは、スロットに基づいてPoll信号を割当てる時間を決定しているが、スロットに限定されずPoll信号の送信のタイミングの割当てを行ってもよい。 In the above, the base station 1a determines the time for allocating the Poll signal based on the slot, but the time is not limited to the slot, and the timing for transmitting the Poll signal may be allocated.
 また、本実施形態において、ULデータ信号長は、固定長と可変長とのいずれでもよい。ULデータ信号長が可変長の場合は、帯域要求フェーズにおいて、端末局5は、ULデータ信号長に関する情報を設定した応答信号を基地局1aに送信する。 Further, in the present embodiment, the UL data signal length may be either a fixed length or a variable length. When the UL data signal length is variable, the terminal station 5 transmits a response signal set with information regarding the UL data signal length to the base station 1a in the band request phase.
 本実施形態によれば、基地局1aは、第1の実施形態と同様に、端末局5が送信するULデータ信号の到着時間を算出し、ULデータ信号の衝突有無を判定する。基地局1aは、衝突が発生すると判定した場合は、ULデータ信号伝送用のPoll信号に割当てる送信タイミングを変更することにより衝突を回避する。したがって、無線通信システム10aは、長遅延に伴う無線帯域の空き帯域を有効に活用して、伝送効率を改善することができる。 According to the present embodiment, the base station 1a calculates the arrival time of the UL data signal transmitted by the terminal station 5 and determines whether or not the UL data signal collides, as in the first embodiment. When the base station 1a determines that a collision occurs, the base station 1a avoids the collision by changing the transmission timing assigned to the Poll signal for UL data signal transmission. Therefore, the wireless communication system 10a can effectively utilize the free band of the wireless band due to the long delay to improve the transmission efficiency.
 なお、上述した実施形態では、RoFを適用したミリ波無線通信システムに適用する無線通信方法について記述しているが、RoFに限らず、伝搬遅延時間が大きな無線通信システムに適用してもよい。このように、アンテナ部3の通信部31と、端末局5の通信部51とは、ミリ波無線通信とは異なる無線通信方式により無線通信を行ってもよい。 Although the above-described embodiment describes a wireless communication method applied to a millimeter-wave wireless communication system to which RoF is applied, it may be applied not only to RoF but also to a wireless communication system having a large propagation delay time. As described above, the communication unit 31 of the antenna unit 3 and the communication unit 51 of the terminal station 5 may perform wireless communication by a wireless communication method different from the millimeter wave wireless communication.
 また、上述した実施形態では、固定設置された基地局と端末局に適用する無線通信方法について記述しているが、基地局と端末局間の伝搬距離を取得できる仕組みを具備している無線通信システムであれば、固定設置されていない基地局と端末局に適用してもよい。 Further, in the above-described embodiment, the wireless communication method applied to the fixedly installed base station and the terminal station is described, but the wireless communication provided with a mechanism capable of acquiring the propagation distance between the base station and the terminal station. If it is a system, it may be applied to base stations and terminal stations that are not fixedly installed.
 従来のポーリング制御は、無線区間における伝送遅延を考慮していないために、上り信号が衝突したり、衝突のために無線回線が非効率的に利用されたりすることがあった。本実施形態の無線通信システムでは、2種類の異なる役割を持つポーリング信号を基地局から端末局へ送信することにより、既存のプロトコルの枠組み内でこの問題を解決する。具体的には、帯域要求用Poll信号によって、基地局は、端末局がアップリンクデータをどの程度持っているかを問い合わせる。基地局は、その問合せに対する応答に基づいて、伝搬遅延までも考慮して各端末からのULデータ信号の受信タイミングが重ならないように各端末局に送信するデータ伝送用Poll信号の送信タイミングを決定する。端末局は、自局宛てのデータ伝送用Poll信号を基地局から受信した場合に、ULデータ信号を基地局に送信する。 Since the conventional polling control does not consider the transmission delay in the wireless section, the uplink signal may collide or the wireless line may be used inefficiently due to the collision. The wireless communication system of the present embodiment solves this problem within the framework of an existing protocol by transmitting polling signals having two different roles from a base station to a terminal station. Specifically, the band request Poll signal causes the base station to inquire how much uplink data the terminal station has. Based on the response to the inquiry, the base station determines the transmission timing of the data transmission Poll signal to be transmitted to each terminal station so that the reception timings of the UL data signals from each terminal do not overlap, taking into consideration the propagation delay. do. When the terminal station receives the data transmission Poll signal addressed to its own station from the base station, the terminal station transmits the UL data signal to the base station.
 信号処理部2、信号処理部2a、及び端末局5のハードウェア構成例を説明する。図8は、信号処理部2信号処理部2a、及び端末局5のハードウェア構成例を示す装置構成図である。信号処理部2、信号処理部2a、及び端末局5は、プロセッサ71と、記憶部72と、通信インタフェース73と、ユーザインタフェース74とを備える。 A hardware configuration example of the signal processing unit 2, the signal processing unit 2a, and the terminal station 5 will be described. FIG. 8 is a device configuration diagram showing a hardware configuration example of the signal processing unit 2 signal processing unit 2a and the terminal station 5. The signal processing unit 2, the signal processing unit 2a, and the terminal station 5 include a processor 71, a storage unit 72, a communication interface 73, and a user interface 74.
 プロセッサ71は、演算や制御を行う中央演算装置である。プロセッサ71は、例えば、CPU(central processing unit)である。プロセッサ71は、記憶部72からプログラムを読み出して実行する。記憶部72は、さらに、プロセッサ71が各種プログラムを実行する際のワークエリアなどを有する。通信インタフェース73は、他装置と通信可能に接続するものである。ユーザインタフェース74は、ボタン、キーボード、ポインティングデバイスなどの入力装置や、ランプ、ディスプレイなどの表示装置である。ユーザインタフェース74により、人為的な操作が入力される。 The processor 71 is a central processing unit that performs calculations and controls. The processor 71 is, for example, a CPU (central processing unit). The processor 71 reads a program from the storage unit 72 and executes it. The storage unit 72 further has a work area for the processor 71 to execute various programs and the like. The communication interface 73 is connected so as to be able to communicate with another device. The user interface 74 is an input device such as a button, a keyboard, and a pointing device, and a display device such as a lamp and a display. An artificial operation is input by the user interface 74.
 信号処理部2の割当部22、宛先決定部25、受信時間算出部26及び判定部27の機能の全て又は一部は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現される。なお、これらの機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。信号処理部2の通信部21及び送受信部23は、通信インタフェース73により実現される。通信部21及び送受信部23の一部の機能は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現されてもよい。 All or part of the functions of the allocation unit 22, the destination determination unit 25, the reception time calculation unit 26, and the determination unit 27 of the signal processing unit 2 are realized by the processor 71 reading a program from the storage unit 72 and executing the program. .. All or part of these functions may be realized by using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). The communication unit 21 and the transmission / reception unit 23 of the signal processing unit 2 are realized by the communication interface 73. Some functions of the communication unit 21 and the transmission / reception unit 23 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
 信号処理部2aの場合、割当部22、宛先決定部25a、受信時間算出部26、判定部27及び割当時間決定部28の機能の全て又は一部は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現される。なお、これらの機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。信号処理部2aの通信部21及び送受信部23は、通信インタフェース73により実現される。通信部21及び送受信部23の一部の機能は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現されてもよい。 In the case of the signal processing unit 2a, the processor 71 reads a program from the storage unit 72 for all or part of the functions of the allocation unit 22, the destination determination unit 25a, the reception time calculation unit 26, the determination unit 27, and the allocation time determination unit 28. It is realized by executing it. In addition, all or a part of these functions may be realized by using hardware such as ASIC, PLD and FPGA. The communication unit 21 and the transmission / reception unit 23 of the signal processing unit 2a are realized by the communication interface 73. Some functions of the communication unit 21 and the transmission / reception unit 23 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
 端末局5の場合、受信タイミング決定部52、応答信号割当部53及びULデータ信号割当部55の機能の全て又は一部は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現される。なお、これらの機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。端末局5aの通信部51及び送受信部54は、通信インタフェース73により実現される。なお、通信部51及び送受信部54の一部の機能は、プロセッサ71が記憶部72からプログラムを読み出して実行することより実現されてもよい。 In the case of the terminal station 5, all or part of the functions of the reception timing determination unit 52, the response signal allocation unit 53, and the UL data signal allocation unit 55 are realized by the processor 71 reading a program from the storage unit 72 and executing the program. To. In addition, all or a part of these functions may be realized by using hardware such as ASIC, PLD and FPGA. The communication unit 51 and the transmission / reception unit 54 of the terminal station 5a are realized by the communication interface 73. Note that some functions of the communication unit 51 and the transmission / reception unit 54 may be realized by the processor 71 reading a program from the storage unit 72 and executing the program.
 以上説明した実施形態によれば、無線通信システムは、信号処理装置と、通信装置とを有する。例えば、信号処理装置は、実施形態の基地局1、1aであり、通信装置は、実施形態の端末局5である。信号処理装置は、割当部と、受信タイミング算出部と、判定部と、宛先変更部とを有する。例えば、割当部は、実施形態の宛先決定部25、25aであり、受信タイミング算出部は、実施形態の受信時間算出部26であり、判定部は、実施形態の判定部27であり、宛先変更部は実施形態の宛先決定部25である。 According to the embodiment described above, the wireless communication system includes a signal processing device and a communication device. For example, the signal processing device is the base stations 1 and 1a of the embodiment, and the communication device is the terminal station 5 of the embodiment. The signal processing device has an allocation unit, a reception timing calculation unit, a determination unit, and a destination change unit. For example, the allocation unit is the destination determination unit 25, 25a of the embodiment, the reception timing calculation unit is the reception time calculation unit 26 of the embodiment, and the determination unit is the determination unit 27 of the embodiment, and the destination is changed. The unit is the destination determination unit 25 of the embodiment.
 割当部は、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる。受信タイミング算出部は、割当部が割当てた送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して通信装置から無線により送信されるデータ信号の受信タイミングを算出する。判定部は、算出された受信タイミングに基づいてデータ信号の衝突の有無を判定する。宛先変更部は、判定部が衝突すると判定したデータ信号に対応したデータ伝送用ポーリング信号の宛先の通信装置を他の通信装置に変更する。 The allocation unit allocates the transmission timing of the polling signal for data transmission addressed to each communication device in the time domain in which the uplink data transmission is performed. The reception timing calculation unit calculates the reception timing of the data signal transmitted wirelessly from the communication device in response to the polling signal for data transmission transmitted wirelessly at the transmission timing assigned by the allocation unit. The determination unit determines whether or not there is a collision of data signals based on the calculated reception timing. The destination change unit changes the communication device of the destination of the data transmission polling signal corresponding to the data signal determined by the determination unit to collide with another communication device.
 信号処理装置は、宛先変更部に代えてタイミング変更部を有してもよい。例えば、タイミング変更部は、実施形態の割当時間決定部28である。タイミング変更部は、判定部が衝突すると判定したデータ信号に対応したデータ伝送用ポーリング信号の送信タイミングを変更する。 The signal processing device may have a timing changing unit instead of the destination changing unit. For example, the timing changing unit is the allocation time determination unit 28 of the embodiment. The timing changing unit changes the transmission timing of the data transmission polling signal corresponding to the data signal determined by the determination unit to collide.
 信号処理装置は、帯域要求を実施する時間領域において異なるタイミングにより複数回、帯域要求用ポーリング信号を通信装置にブロードキャストする送信部を有してもよい。この場合、通信装置は、異なるタイミングにより送信された帯域要求用ポーリング信号の中から選択した帯域要求用ポーリング信号に対して応答を返送する送信部をさらに有する。また、通信装置は、自装置が帯域要求用ポーリング信号を受信するタイミングをランダムに選択するタイミング決定部をさらに有してよい。割当部は、通信装置から受信した応答から得られる情報に基づいて、各通信装置宛てのデータ伝送用ポーリング信号を送信する送信タイミングを割当てる。 The signal processing device may have a transmission unit that broadcasts the band request polling signal to the communication device multiple times at different timings in the time domain in which the band request is executed. In this case, the communication device further includes a transmission unit that returns a response to the band request poll signal selected from the band request poll signals transmitted at different timings. Further, the communication device may further have a timing determination unit that randomly selects the timing at which the own device receives the band request polling signal. The allocation unit allocates a transmission timing for transmitting a data transmission polling signal addressed to each communication device based on the information obtained from the response received from the communication device.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.
1…基地局、1a…基地局、2…信号処理部、2a…信号処理部、3…アンテナ部、4…光ファイバ、5…端末局、6…ミリ波無線通信システム、10…無線通信システム、10a…無線通信システム、21…通信部、22…割当部、23…送受信部、24…伝搬距離算出部、25…宛先決定部、25a…宛先決定部、26…受信時間算出部、27…判定部、28…割当時間決定部、31…通信部、51…通信部、53…応答信号割当部、54…送受信部、55…ULデータ信号割当部、231…送信部、232…受信部、541…送信部、542…受信部 1 ... Base station, 1a ... Base station, 2 ... Signal processing unit, 2a ... Signal processing unit, 3 ... Antenna unit, 4 ... Optical fiber, 5 ... Terminal station, 6 ... Millimeter-wave wireless communication system, 10 ... Wireless communication system 10a ... wireless communication system, 21 ... communication unit, 22 ... allocation unit, 23 ... transmission / reception unit, 24 ... propagation distance calculation unit, 25 ... destination determination unit, 25a ... destination determination unit, 26 ... reception time calculation unit, 27 ... Judgment unit, 28 ... Allocation time determination unit, 31 ... Communication unit, 51 ... Communication unit, 53 ... Response signal allocation unit, 54 ... Transmission / reception unit, 55 ... UL data signal allocation unit, 231 ... Transmission unit, 232 ... Reception unit, 541 ... Transmitter, 542 ... Receiver

Claims (6)

  1.  信号処理装置が、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当ステップと、
     前記信号処理装置が、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出ステップと、
     前記信号処理装置が、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定ステップと、
     前記信号処理装置が、前記判定ステップにおいて衝突すると判定された前記データ信号に対応した前記データ伝送用ポーリング信号の宛先の前記通信装置を他の通信装置に変更する宛先変更ステップと、
     を有する通信制御方法。
    An allocation step in which the signal processing device allocates the transmission timing of the data transmission poll signal addressed to each communication device in the time domain in which the uplink data transmission is performed, and
    A reception timing calculation step in which the signal processing device calculates a reception timing of a data signal transmitted wirelessly from the communication device in response to a data transmission poll signal transmitted wirelessly at the transmission timing.
    A determination step in which the signal processing device determines the presence or absence of a collision of the data signal based on the calculated reception timing.
    A destination change step in which the signal processing device changes the communication device of the destination of the data transmission polling signal corresponding to the data signal determined to collide in the determination step to another communication device.
    Communication control method having.
  2.  信号処理装置が、アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当ステップと、
     前記信号処理装置が、前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出ステップと、
     前記信号処理装置が、算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定ステップと、
     前記信号処理装置が、前記判定ステップにおいて衝突すると判定された前記データ信号に対応した前記データ伝送用ポーリング信号の送信タイミングを変更するタイミング変更ステップと、
     を有する通信制御方法。
    An allocation step in which the signal processing device allocates the transmission timing of the data transmission poll signal addressed to each communication device in the time domain in which the uplink data transmission is performed, and
    A reception timing calculation step in which the signal processing device calculates a reception timing of a data signal transmitted wirelessly from the communication device in response to a data transmission poll signal transmitted wirelessly at the transmission timing.
    A determination step in which the signal processing device determines the presence or absence of a collision of the data signal based on the calculated reception timing.
    A timing change step in which the signal processing device changes the transmission timing of the data transmission polling signal corresponding to the data signal determined to collide in the determination step, and
    Communication control method having.
  3.  前記信号処理装置が、帯域要求を実施する時間領域において異なるタイミングにより複数回、帯域要求用ポーリング信号を前記通信装置にブロードキャストする送信ステップと、
     前記通信装置が、異なる前記タイミングにより送信された前記帯域要求用ポーリング信号の中から選択した帯域要求用ポーリング信号に対して応答を返送する応答ステップとをさらに有し、
     前記割当ステップにおいては、前記応答から得られる情報に基づいて各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる、
     請求項1又は請求項2に記載の通信制御方法。
    A transmission step in which the signal processing device broadcasts a band request polling signal to the communication device multiple times at different timings in the time domain in which the band request is executed.
    The communication device further includes a response step of returning a response to a band request poll signal selected from the band request poll signals transmitted at different timings.
    In the allocation step, the transmission timing of the polling signal for data transmission addressed to each communication device is allocated based on the information obtained from the response.
    The communication control method according to claim 1 or 2.
  4.  前記通信装置が、前記応答ステップにおいて自装置が前記帯域要求用ポーリング信号を受信するタイミングをランダムに選択するタイミング決定ステップをさらに有する、
     請求項3に記載の通信制御方法。
    The communication device further includes a timing determination step of randomly selecting the timing at which the own device receives the band request polling signal in the response step.
    The communication control method according to claim 3.
  5.  アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当部と、
     前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出部と、
     算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定部と、
     前記判定部が衝突すると判定した前記データ信号に対応した前記データ伝送用ポーリング信号の宛先の前記通信装置を他の通信装置に変更する宛先変更部と、
     を備える信号処理装置。
    An allocation unit that allocates the transmission timing of the polling signal for data transmission addressed to each communication device in the time domain in which uplink data transmission is performed, and an allocation unit.
    A reception timing calculation unit that calculates the reception timing of the data signal transmitted wirelessly from the communication device in response to the polling signal for data transmission transmitted wirelessly at the transmission timing.
    A determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing,
    A destination changing unit that changes the communication device of the destination of the data transmission polling signal corresponding to the data signal determined to collide with the determination unit to another communication device.
    A signal processing device.
  6.  アップリンクデータ伝送を実施する時間領域における各通信装置宛てのデータ伝送用ポーリング信号の送信タイミングを割当てる割当部と、
     前記送信タイミングにおいて無線により送信されるデータ伝送用ポーリング信号に対応して前記通信装置から無線により送信されるデータ信号の受信タイミングを算出する受信タイミング算出部と、
     算出された前記受信タイミングに基づいて前記データ信号の衝突の有無を判定する判定部と、
     前記判定部が衝突すると判定した前記データ信号に対応した前記データ伝送用ポーリング信号の送信タイミングを変更するタイミング変更部と、
     を備える信号処理装置。
    An allocation unit that allocates the transmission timing of the polling signal for data transmission addressed to each communication device in the time domain in which uplink data transmission is performed, and an allocation unit.
    A reception timing calculation unit that calculates the reception timing of the data signal transmitted wirelessly from the communication device in response to the polling signal for data transmission transmitted wirelessly at the transmission timing.
    A determination unit that determines the presence or absence of a collision of the data signal based on the calculated reception timing,
    A timing changing unit for changing the transmission timing of the data transmission polling signal corresponding to the data signal determined to collide with the determination unit, and a timing changing unit.
    A signal processing device.
PCT/JP2020/031970 2020-08-25 2020-08-25 Communication control method and signal processing device WO2022044110A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022544924A JPWO2022044110A1 (en) 2020-08-25 2020-08-25
PCT/JP2020/031970 WO2022044110A1 (en) 2020-08-25 2020-08-25 Communication control method and signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031970 WO2022044110A1 (en) 2020-08-25 2020-08-25 Communication control method and signal processing device

Publications (1)

Publication Number Publication Date
WO2022044110A1 true WO2022044110A1 (en) 2022-03-03

Family

ID=80354860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031970 WO2022044110A1 (en) 2020-08-25 2020-08-25 Communication control method and signal processing device

Country Status (2)

Country Link
JP (1) JPWO2022044110A1 (en)
WO (1) WO2022044110A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257274A (en) * 2003-10-15 2012-12-27 Qualcomm Inc High speed media access control and direct link protocol
JP5782083B2 (en) * 2004-08-12 2015-09-24 インターデイジタル テクノロジー コーポレーション Method and system for controlling access to a wireless communication medium
JP2016531496A (en) * 2013-08-04 2016-10-06 エルジー エレクトロニクス インコーポレイティド Channel access method and apparatus
JP2020102668A (en) * 2018-12-19 2020-07-02 日本電信電話株式会社 Radio communication system, access point apparatus, radio station apparatus and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257274A (en) * 2003-10-15 2012-12-27 Qualcomm Inc High speed media access control and direct link protocol
JP5782083B2 (en) * 2004-08-12 2015-09-24 インターデイジタル テクノロジー コーポレーション Method and system for controlling access to a wireless communication medium
JP2016531496A (en) * 2013-08-04 2016-10-06 エルジー エレクトロニクス インコーポレイティド Channel access method and apparatus
JP2020102668A (en) * 2018-12-19 2020-07-02 日本電信電話株式会社 Radio communication system, access point apparatus, radio station apparatus and radio communication method

Also Published As

Publication number Publication date
JPWO2022044110A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
Niu et al. Exploiting device-to-device communications in joint scheduling of access and backhaul for mmWave small cells
Son et al. On frame-based scheduling for directional mmWave WPANs
US8842532B2 (en) Method and device for transmission opportunity truncation
Kuran et al. A survey on emerging broadband wireless access technologies
US9974098B2 (en) Method and apparatus for space division multiple access for wireless local area network system
JP5695183B2 (en) Wireless communication system, wireless communication method thereof, and wireless station
CN107018551B (en) Time slot reservation method of TDMA frame structure based on directional multi-beam antenna
US8462695B2 (en) Apparatus and methods for multi-radio coordination of heterogeneous wireless networks
Wang et al. On directional neighbor discovery in mmwave networks
CN101965743A (en) Arrangements for association and re-association in a wireless network
US20200229086A1 (en) Coordinated target wake time (twt) service for localized wireless neighborhoods
Liu et al. Topology control for multi-channel multi-radio wireless mesh networks using directional antennas
CN105744641B (en) A kind of orientation time-division link scheduling method suitable for wireless mesh network
WO2008131659A1 (en) Medium access control method and equipment for supporting intelligent antenna application
US11057842B2 (en) Interference aware transmission power control method and device for IEEE 802.11 based wireless network with nodes having a directional antenna
De Rango et al. Exploiting frame aggregation and weighted round robin with beamforming smart antennas for directional MAC in MANET environments
Lee et al. NOMA-based uplink OFDMA collision reduction in 802.11 ax networks
Zhang et al. An OFDMA-based joint reservation and cooperation MAC protocol for the next generation WLAN
Ghazisaidi et al. Integration of WiFi and WiMAX-mesh networks
WO2022044110A1 (en) Communication control method and signal processing device
Riolo et al. A new centralized access control for mmWave D2D communications
Niu et al. A fully-distributed directional-to-directional MAC protocol for mobile ad hoc networks
Chang et al. Maximizing throughput by exploiting spatial reuse opportunities with smart antenna systems
Jawhar et al. Resource allocation in wireless networks using directional antennas
Chandra et al. Analysis of Fi-Wi indoor network architecture based on IEEE 802.15. 3c

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951365

Country of ref document: EP

Kind code of ref document: A1