WO2022044098A1 - Movement control device and movement control method - Google Patents

Movement control device and movement control method Download PDF

Info

Publication number
WO2022044098A1
WO2022044098A1 PCT/JP2020/031922 JP2020031922W WO2022044098A1 WO 2022044098 A1 WO2022044098 A1 WO 2022044098A1 JP 2020031922 W JP2020031922 W JP 2020031922W WO 2022044098 A1 WO2022044098 A1 WO 2022044098A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
gravity
center
movement control
work
Prior art date
Application number
PCT/JP2020/031922
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 河尻
將 白石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022544916A priority Critical patent/JP7175430B2/en
Priority to PCT/JP2020/031922 priority patent/WO2022044098A1/en
Publication of WO2022044098A1 publication Critical patent/WO2022044098A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the disclosed technology relates to a movement control device and a movement control method.
  • the conventional movement control device there is a device in which a plurality of autonomously moving mobile bodies cooperate with each other to perform work over a predetermined area.
  • the work performed by the mobile body is typically cleaning work or monitoring work for defense, crime prevention, disaster prevention, and the like.
  • Non-Patent Document 1 describes a movement control technique in which mobile bodies are distributed and arranged in the entire area while maintaining a robust communication network between mobile bodies in which a communication range is set. There is.
  • the movement control device assumes three virtual forces for carrying out the work, and moves and controls each moving body in the resultant force direction.
  • This virtual force is a force for maintaining the connectivity of the network graph, a force for improving the robustness of the network graph, and a force for improving the degree of expansion into the area.
  • the network graph is a data structure based on a graph theory that abstracts a communication network composed of a plurality of mobile bodies with each mobile body as a vertex and a communication path between the mobile bodies as an edge.
  • the present disclosure technology is for solving the above-mentioned problems, and is a movement control device capable of moving so as to improve the degree of deployment of moving objects in the entire region under the constraint that network graphs are connected. It is intended to provide a movement control method.
  • the movement control device is a movement control device that controls each of the moving bodies so that a plurality of autonomously moving moving bodies perform work in cooperation with each other, and the movement is divided into all areas.
  • the allocated area is determined for each body, the center of gravity of the allocated area is determined, the distance between each moving body and the center of gravity of the allocated area is determined, and the distance from the center of gravity of the allocated area is reduced for each moving body.
  • the direction to be moved is calculated, the center of gravity of the moving body group, the center of gravity of the entire region, and the distance between the center of gravity of the moving body group and the center of gravity of the entire region are determined, and the center of gravity of the entire region is determined for each moving body.
  • the work execution vector calculation unit that calculates the direction to reduce the distance and linearly connects the two directions to calculate the work execution vector for each moving object, and the algebraic connection degree, which is an index showing the degree of connection of the network.
  • an algebraic connection degree calculation unit for calculating an algebraic connection degree gradient vector, and when the network is still connected even if the moving object moves in the direction of the work execution vector, the work execution is performed. If the moving object is controlled in the direction of the vector and the network is no longer connected after moving, select the direction in which the connection degree of the network does not change or increases and the distance from the center of gravity of the allocated area decreases. To control.
  • the movement control device divides the entire area, determines the allocated area for each moving body, determines the center of gravity of the allocated area, determines the distance between each moving body and the center of gravity of the allocated area, and determines the moving body.
  • the direction for reducing the distance from the center of gravity of the allocated area is calculated for each.
  • Moving all the moving objects to the center of gravity of the allocated area means moving so as to improve the degree of expansion of the moving objects in the entire area. That is, reducing the distance between the moving body and the center of gravity of the allocated area improves the degree of expansion of the moving body in the entire area.
  • the work execution vector is calculated based on the direction in which the distance between the moving body and the center of gravity of the allocated area is reduced.
  • the mobile control device controls the mobile body in the direction of the work execution vector if the mobile body is connected to the network, the degree of deployment of the mobile body in the entire area is improved.
  • the mobile unit goes out of the communication range, the one in which the distance from the center of gravity of the allocated area decreases from the direction in which the network connectivity does not change or increases, so the mobile unit in the entire area is selected.
  • the degree of development of is improving. Therefore, the present disclosure technology realizes a movement control device capable of moving so as to improve the degree of deployment of the moving body in the entire area under the constraint that the network graph is connected.
  • a block diagram showing an example of the configuration of the main part of the mobile coordination system according to the first embodiment A block diagram showing an example of the configuration of a main part of a moving body according to the first embodiment.
  • FIG. 1 is a configuration diagram showing an example of the configuration of a main part of the mobile coordination system 1 according to the first embodiment.
  • the mobile coordination system 1 includes a plurality of mobiles 10.
  • the mobile body 10 is a flying object such as a drone that moves autonomously, or a self-propelled robot that moves autonomously.
  • the mobile body cooperation system 1 includes five mobile bodies 10A, 10B, 10C, 10D, and 10E as a plurality of mobile bodies 10.
  • the number of mobile bodies 10 included in the mobile body cooperation system 1 is not limited to five, and may be any number as long as it is two or more.
  • each mobile body 10A, 10B, 10C, 10D, and 10E moves autonomously, and a predetermined work area (hereinafter, "all areas Q"). ”) Do the work.
  • the work is a work such as defense, disaster prevention, monitoring work such as security, or work such as cleaning, which is carried out in cooperation.
  • FIG. 2 is a block diagram showing an example of the configuration of the main part of the mobile body 10 according to the first embodiment.
  • the mobile body 10 includes a drive device 11, a position acquisition device 12, a communication device 13, and a movement control device 100.
  • the movement control device 100 outputs movement control information for moving the moving body 10.
  • the movement control device 100 will be described in detail below.
  • the drive device 11 acquires the movement control information output by the movement control device 100. Based on the movement control information acquired from the movement control device 100, the drive device 11 drives a motor, an actuator, or the like (not shown) to rotate and steer a wheel, a propeller, or the like (not shown) to steer the moving body 10. Move it.
  • the position acquisition device 12 generates and outputs position information indicating the position of the moving body 10. Specifically, for example, the position acquisition device 12 identifies the position of the moving body 10 by using a navigation system such as Global Navigation Satellite System (hereinafter referred to as “GNSS”), and outputs the specified position as position information.
  • GNSS Global Navigation Satellite System
  • the navigation system used by the position acquisition device 12 is not limited to GNSS, and may be an inertial navigation system or the like using a gyro sensor, a speed sensor, or the like.
  • the communication device 13 transmits / receives information between the mobile bodies 10. Specifically, the communication device 13 transmits / receives information between the mobile bodies 10 by a wireless communication method such as wireless LAN, Bluetooth (registered trademark), or infrared communication.
  • a wireless communication method such as wireless LAN, Bluetooth (registered trademark), or infrared communication.
  • FIG. 1 shows a communication range C10A, C10B, C10C, C10D, C10E as a communication range in which each of the five mobile bodies 10A, 10B, 10C, 10D, and 10E can directly transmit and receive information to and from each other.
  • the communication device 13 included in the mobile body 10A transmits / receives information to / from the mobile bodies 10B and 10E existing in the communication range C10A which is the communication range in which the communication device 13 included in the mobile body 10A can transmit / receive information.
  • the mobile body 10A also transmits / receives information to / from 10C and 10D, which are other mobile bodies connected to the communication network, by multi-hop communication.
  • the communication device 13 included in the mobile body 10A has the mobile body 10D and the mobile body 10C by multi-hop communication in addition to the position information transmitted by the mobile body 10B and the position information transmitted by the mobile body 10E. Receives location information.
  • the mobiles connected to the communication network other than the first mobile are collectively referred to as "other mobiles”.
  • FIG. 3 is a block diagram showing an example of the configuration of the main part of the movement control device 100 according to the first embodiment.
  • the movement control device 100 includes a first moving body position acquisition unit 110, another moving body position acquisition unit 120, a first moving body position output unit 130, a work execution vector calculation unit 140, an algebraic connectivity calculation unit 150, and movement control.
  • a planning unit 160 is provided.
  • the first moving body position acquisition unit 110 acquires the first moving body position information indicating the position of the first moving body which is the moving body 10. Specifically, for example, when the moving body 10A is the first moving body, the first moving body position acquisition unit 110 in the movement control device 100 included in the moving body 10A is the first moving body indicating the position of the moving body 10A. Get location information. More specifically, for example, the first moving body position acquisition unit 110 included in the movement control device 100 mounted on the moving body 10A acquires the position information output by the position acquiring device 12 mounted on the moving body 10A. Thereby, the first moving body position information indicating the position of the moving body 10A is acquired.
  • the other mobile position acquisition unit 120 acquires other mobile information from another mobile connected to the network, if necessary, using multi-hop communication.
  • the other moving body position acquisition unit 120 in the moving control device 100 included in the moving body 10A has its position from the moving body 10B and the moving body 10E existing in the communication range in which the communication device 13 can transmit and receive information. Get information.
  • the other mobile body position acquisition unit 120 acquires the position information from 10C and 10D by using multi-hop communication.
  • the first mobile body position output unit 130 outputs the first mobile body information. Further, when the multi-hop communication is adopted, the first mobile body position output unit 130 also outputs the acquired position information of the other mobile body.
  • the work execution vector calculation unit 140 is a work execution vector indicating the movement amount and the movement direction of the first moving body for the first moving body to carry out the work based on the position information of the first moving body and the position information of the other moving body. Calculate u1.
  • the work execution vector u1 is calculated for each moving body, but here, the first moving body will be described as a representative.
  • the work is performed together with the expansion of the moving object to the region, and the expansion can be formulated as a problem of minimizing the evaluation function J with the moving object position as a variable.
  • This evaluation function J is generally expressed by the following mathematical formula 1.
  • Q is the entire region
  • N is the total number of moving bodies
  • xi is the position of the i-th moving body
  • ⁇ (q) is the region.
  • a function representing the importance of the point q in, h () is a distance function between the points q and xi.
  • the movement control device 100 divides the entire area Q and determines the allocated area for each moving body.
  • the allocated area determined by the movement control device 100 is a Voronoi region divided by which of the moving bodies the other points on the whole area are close to, with the positions of the plurality of moving bodies arranged in the whole area as a mother point. A figure etc. can be considered.
  • the domain division for obtaining the Voronoi diagram is called Voronoi division.
  • the allocated area may be dynamically changed each time the moving body moves, or may be fixed according to the initial value of the moving body or the like. Further, the division of the entire region Q is not limited to the Voronoi division, and the entire region Q may be arbitrarily divided in advance to fix the boundary of the region.
  • the evaluation function J given by Equation 1 can be interpreted as follows when the distance function h is the squared distance (square of the norm of q-x i ). Simply put, the evaluation function J is determined by the distance between each moving object and the center of gravity of the allocated area. When all the moving objects are placed at the center of gravity of the allocated area, the evaluation function J takes the minimum value locally. Therefore, the evaluation function J represents the degree of expansion of the moving body in the entire region. The smaller the value of the evaluation function J, the better the degree of expansion of the moving object in the entire region.
  • the center of gravity of the allocated area determined by the movement control device 100 may be calculated by weighting each point on the allocated area.
  • ⁇ (q) appearing in the evaluation function J is a function representing the importance of the point q in the region, and multiplying this function corresponds to weighting and calculation.
  • This weighting has different weights depending on whether or not each point on the allocated area is a point to carry out the work, and if each of the above points is a point to carry out the work, the work has already been performed or has not been performed yet. It can have different weights depending on whether it is present or not.
  • the weight is set to 1 at the place where the work should be performed.
  • the weight of the part where the work is originally unnecessary is set to 0.
  • the weight of the place where the work is completed is set to 0.
  • the weight of the uncleaned portion is 2
  • the weight of the portion cleaned once is 1
  • the weight of the portion completed twice cleaning is 0.
  • the work execution vector u1 in the prior art is disclosed to be obtained by the steepest descent method.
  • the work execution vector u1 is obtained by partially differentiating the evaluation function J with respect to x1 to obtain the slope, and multiplying it by a constant.
  • the work execution vector u1' is obtained in consideration of the following factors. That is, in the present disclosure technique, the distance between the center of gravity of the moving body group and the center of gravity of the entire region Q is taken into consideration, and this squared distance is set as the element L of the new evaluation function.
  • the work execution vector u1 according to the first embodiment is a vector obtained by adding the evaluation function J partially differentiated by x1 and multiplied by a constant k1 and the element L of the evaluation function partially differentiated by x1 and multiplied by a constant k2. Is.
  • the entire region Q is divided into a mobile body 10-1 and a mobile body 10-2.
  • the allocated area is given by dividing the entire area Q into Voronoi.
  • the Voronoi division is equivalent to dividing by the bisector between the moving bodies.
  • the moving body does not move after the arrangement as shown in FIG. 4A.
  • the reason will be clarified in the following explanation.
  • the position of the moving body 10-1 coincides with the center of gravity of the allocated area, and the size of the work execution vector u1 becomes zero and does not move.
  • the communication with the mobile body 10-1 is interrupted and the network graph is not connected, so that the mobile body 10-2 cannot move in this direction. Therefore, neither the moving body 10-1 nor the moving body 10-2 moves any more. It is not preferable from the viewpoint of cleaning work or monitoring work, which is the original purpose of the moving body, that each moving body is stopped in the arrangement as shown in FIG. 4A.
  • the arrangement in FIG. 4B is an arrangement in which the moving objects are dispersed and expanded as compared with FIG. 4A, in fact, even if the values of the evaluation function J are compared, the arrangement in FIG. 4B may be smaller.
  • the reason why such a phenomenon occurs is due to the limit of the steepest descent method.
  • the steepest descent method may stop the solution candidates at the local minimum. It is effective to add the gradient of L to the work execution vector u1 so that the solution candidates do not stop at the local minimum as shown in FIG. 4A.
  • the evaluation function J may be replaced with the evaluation function J'and the work execution vector u1 may be replaced with the work execution vector u1'.
  • the center of gravity of the mobile group can be the position information of the first mobile body and the position information of the mobile body existing within the communication range of the first mobile body by using the average agreement estimator even when multi-hop communication is not performed. Hereinafter, it can be obtained only from "local information”).
  • the average consensus estimator estimates the average value over all moving objects from local information, and the center of gravity of the moving object group is the average value of the moving object positions itself.
  • the evaluation function J is intended to disperse and arrange the moving objects in the entire region Q, that is, to improve the degree of expansion.
  • the evaluation function J is not limited to this. Any other evaluation function J may be used as long as the degree of work can be evaluated by another evaluation function J with the moving body position as a variable and the work execution vector u1 can be calculated based on the evaluation function J.
  • the algebraic connectivity calculation unit 150 calculates an algebraic connectivity index, which is an index indicating the connection degree of the network, and a gradient vector of the algebraic connectivity based on the first moving body information and the other moving body position information. ,Output.
  • the algebraic connectivity calculation unit 150 can calculate the algebraic connectivity and its gradient vector only from the local information even when the multi-hop communication is not performed.
  • the movement control planning unit 160 calculates a vector obtained by normalizing the gradient vector of the algebraic connectivity based on the work execution vector, the algebraic connectivity, and the gradient vector of the algebraic connectivity, and transfers the vector to the normalized vector. Calculate the projection of the work execution vector.
  • the movement control planning unit 160 determines the movement control content of the first moving body based on the composite vector obtained by synthesizing the projection multiplied by a constant and the work execution vector. Then, the movement control planning unit 160 outputs the determined movement control content as movement control information.
  • the first mobile body moves based on the synthetic vector u shown in the following equation 2.
  • u1 is a work execution vector
  • n is a gradient vector of normalized algebraic connectivity
  • ⁇ 2 is an algebraic connectivity.
  • ⁇ A, b> means the inner product of the vectors a and b.
  • FIGS. 5A and 5B are explanatory views showing the movement direction of the movement control planning unit included in the movement control device according to the first embodiment.
  • the meaning of Equation 2 is clarified by FIGS. 5A and 5B.
  • Formula 2 can be explained as follows.
  • ⁇ 2 is larger than the threshold value ⁇ , or when ⁇ 2 can be increased by u1, u1 is used as a control input. Since u1 is, for example, the steepest descent vector, the evaluation function J can be reduced by using this as a control input.
  • ⁇ 2 is equal to or less than the threshold value and ⁇ 2 decreases by inputting u1, “u1, n> n, which is a projection of u1 onto n, is used so that ⁇ 2 moves in the direction in which ⁇ 2 does not change.
  • the u1- ⁇ u1, n> n which is the projection of u1 in the direction orthogonal to n, is used as the control input. If the algebraic connectivity ⁇ 2 is larger than 0, the network graph is connected, and communication between mobiles is guaranteed.
  • the movement control device 100 controls the moving body in the direction of the work execution vector u1 when the network is still connected even if the moving body moves in the direction of the work execution vector u1. Further, when the mobile body moves in the direction of the work execution vector u1 and the network is not connected, the movement control device 100 determines that the center of gravity of the mobile body and the allocated area is in the direction in which the connection degree of the network does not change or increases. Select and control the one that reduces the distance of.
  • Such a movement method is nothing but solving the problem of minimizing the evaluation function J under the constraint of ⁇ 2 ⁇ ⁇ . Therefore, by adopting this control method, the movement control device 100 can reduce the evaluation function J while maintaining the connectivity of the network.
  • the movement control device 100 may devise the formula 2 and switch the control input step by step. The following is just one example.
  • FIG. 6 shows an example of ⁇ .
  • the movement control device 100 can carry out the work that is the purpose of the mobile body under the constraint of maintaining the connectivity of the network.
  • the mobile control device 100 is composed of a computer, which has a processor 501 and a memory 502.
  • the memory 502 functions as the computer as a first mobile body position acquisition unit 110, another mobile body position acquisition unit 120, a first mobile body position output unit 130, a work execution vector calculation unit 140, and a movement control planning unit 160.
  • the program to make it is stored.
  • the processor 501 reads out and executes the program stored in the memory 502, the first moving body position acquisition unit 110, the other moving body position acquisition unit 120, the first moving body position output unit 130, and the work execution vector calculation unit.
  • an algebraic connectivity calculation unit 150, and a movement control planning unit 160 are realized.
  • the movement control device 100 may be configured by the processing circuit 503.
  • the first moving body position acquisition unit 110, the other moving body position acquisition unit 120, the first moving body position output unit 130, the work execution vector calculation unit 140, the algebraic connectivity calculation unit 150, and the movement control planning unit 160 The function of may be realized by the processing circuit 503.
  • the mobile control device 100 may be composed of a processor 501, a memory 502, and a processing circuit 503.
  • Some of the functions may be realized by the processor 501 and the memory 502, and the remaining functions may be realized by the processing circuit 503.
  • the processor 501 uses, for example, a CPU, GPU, microprocessor, microcontroller, or DSP.
  • the memory 502 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 502 uses a RAM, ROM, flash memory, EPROM, EEPROM, SSD, HDD, or the like.
  • the processing circuit 503 uses, for example, an ASIC, PLD, FPGA, SoC, or a system LSI.
  • FIG. 8 is a flowchart illustrating an example of processing of the movement control device 100 according to the first embodiment.
  • the movement control device 100 repeatedly executes the process of the flowchart.
  • the first moving body position acquisition unit 110 acquires the first moving body position information.
  • the other moving body position acquisition unit 120 acquires the other moving body position information.
  • the first mobile body position output unit 130 outputs the first mobile body information.
  • the work execution vector calculation unit 140 outputs the work execution vector.
  • the algebraic connectivity calculation unit 150 outputs the algebraic connectivity and its gradient vector.
  • the movement control planning unit 160 outputs the movement control information.
  • step ST606 the movement control device 100 ends the processing of the flowchart, returns to step ST601, and repeats the processing of the flowchart.
  • the movement control device 100 is a movement control device 100 mounted on each moving body 10 in the moving body cooperation system 1 in which a plurality of autonomously moving moving bodies 10 cooperate to perform work.
  • the first moving body position acquisition unit 110 that acquires the position information of the first moving body indicating the position of the first moving body, which is the moving body 10, and the first moving body existing in the network to which the first moving body belongs.
  • the other moving body position acquisition unit 120 that acquires position information from the other moving body, the first moving body position output unit 130, the work execution vector calculation unit 140, the algebraic connection degree calculation unit 150, and the movement control planning unit. With 160.
  • the mobile control device 100 can perform work under the constraint of maintaining network connectivity.
  • the movement control device according to the present disclosure technology can be applied to a mobile coordination system.
  • 1 mobile coordination system 10,10-1, 10-2, 10A-10E mobile, 11 drive device, 12 position acquisition device, 13 communication device, 100 move control device, 110 first mobile body position acquisition unit, 120 Other moving body position acquisition unit, 130 first moving body position output unit, 140 work execution vector calculation unit, 150 algebraic connectivity calculation unit, 160 movement control planning unit, 501 processor, 502 memory, 503 processing circuit, Q area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided is a movement control device that controls each of a plurality of moving objects that move autonomously such that the moving objects cooperate to execute work, the movement control device comprising: a work execution vector computation unit that determines an assigned region for each moving object by dividing up an entire region, determines a center of gravity of each assigned region, determines a distance between each moving object and the center of gravity of the assigned region, computes a direction of decreasing distance to the center of gravity of the assigned region for each moving object, determines a center of gravity of a moving object group, a center of gravity of the entire region, and the distance between the center of gravity of the moving object group and the center of gravity of the entire region, computes a direction of decreasing distance to the center of gravity of the entire region for each moving object, and computes, for each moving object, a work execution vector obtained as a linear combination of the two directions; and an algebraic connectivity computation unit that computes the algebraic connectivity, which is an indicator of the degree of connectivity of a network, and a gradient vector of the algebraic connectivity. In the case where a moving object would remain within communication range even after moving in the direction of the work execution vector, the movement control device controls the moving object in the direction of the work execution vector, whereas in the case where a moving object would go out of communication range by moving, the movement control device selects a direction of decreasing the distance to the center of gravity of the assigned region from among directions for which the connectivity of the network is invariant or increases and controls the moving object toward the selected direction.

Description

移動制御装置及び移動制御方法Movement control device and movement control method
 本開示技術は、移動制御装置及び移動制御方法に関する。 The disclosed technology relates to a movement control device and a movement control method.
 従来の移動制御装置には、複数の自律的に移動する移動体がそれぞれが互いに協調して、予め定められた領域全体に亘って作業を遂行させるものがある。移動体が行う作業は、清掃作業、又は、防衛、防犯、若しくは、防災等のための監視作業が代表的なものである。 In the conventional movement control device, there is a device in which a plurality of autonomously moving mobile bodies cooperate with each other to perform work over a predetermined area. The work performed by the mobile body is typically cleaning work or monitoring work for defense, crime prevention, disaster prevention, and the like.
 従来技術の一例として、非特許文献1は、通信範囲が設定されている移動体間のロバストな通信ネットワークを維持しつつ、全領域内へ移動体を分散させて配置する移動制御技術について述べている。 As an example of the prior art, Non-Patent Document 1 describes a movement control technique in which mobile bodies are distributed and arranged in the entire area while maintaining a robust communication network between mobile bodies in which a communication range is set. There is.
 具体的には、非特許文献1に係る移動制御装置は、作業を遂行するための3つの仮想力を想定し、その合力方向に各移動体を移動制御している。この仮想力は、ネットワークグラフの連結性を維持するための力、ネットワークグラフのロバスト性を向上させるための力、及び、領域への展開度合を向上させるための力、である。ここで、ネットワークグラフとは、複数の移動体から構成される通信ネットワークを、各移動体を頂点とし、移動体同士の通信路を辺として抽象化するグラフ理論に基づくデータ構造である。 Specifically, the movement control device according to Non-Patent Document 1 assumes three virtual forces for carrying out the work, and moves and controls each moving body in the resultant force direction. This virtual force is a force for maintaining the connectivity of the network graph, a force for improving the robustness of the network graph, and a force for improving the degree of expansion into the area. Here, the network graph is a data structure based on a graph theory that abstracts a communication network composed of a plurality of mobile bodies with each mobile body as a vertex and a communication path between the mobile bodies as an edge.
 複数の移動体が協調して予め与えられた作業を遂行するためには、移動体同士の通信を保証することが重要である一方で、全領域内へ移動体を分散させて配置すること、すなわち展開度合を向上させることが重要である。ネットワークグラフのロバスト性を向上させることは、言い換えればできるだけ移動体同士を近くに配置することである。すなわち、ネットワークグラフのロバスト性を向上させることと、領域への展開度合を向上させることは、矛盾した逆向きの方向である。従来技術においては、領域への展開度合を向上させるための力を考慮してはいるものの、他の2つの仮想力と合わせた合力の方向が領域への展開度合を向上させているとは限らない、という課題があった。 While it is important to ensure communication between mobiles in order for multiple mobiles to cooperate and perform a given task, disperse and arrange the mobiles within the entire area. That is, it is important to improve the degree of deployment. To improve the robustness of the network graph is, in other words, to place the moving objects as close to each other as possible. That is, improving the robustness of the network graph and improving the degree of expansion into the region are contradictory opposite directions. In the prior art, although the force for improving the degree of expansion to the area is taken into consideration, the direction of the resultant force combined with the other two virtual forces does not always improve the degree of expansion to the area. There was a problem that there was no such thing.
 本開示技術は、上記の問題を解決するためのもので、ネットワークグラフが連結であるという制約の下で、全領域内の移動体の展開度合を向上させるように移動が可能な移動制御装置及び移動制御方法を提供することを目的としている。 The present disclosure technology is for solving the above-mentioned problems, and is a movement control device capable of moving so as to improve the degree of deployment of moving objects in the entire region under the constraint that network graphs are connected. It is intended to provide a movement control method.
 本開示技術に係る移動制御装置は、複数の自律的に移動する移動体が協調して作業を遂行するように前記各移動体を制御する移動制御装置であって、全領域を分けて前記移動体ごとに割当領域を決定し、前記割当領域の重心を決定し、前記各移動体と前記割当領域の重心との距離を決定し、前記移動体ごとに前記割当領域の重心との距離を減少させる方向を算出し、移動体群の重心、前記全領域の重心、及び前記移動体群の重心と前記全領域の重心との距離を決定し、前記移動体ごとに前記全領域の重心との距離を減少させる方向を算出し、前記二つの方向を線形結合してなる作業遂行ベクトルを前記移動体ごとに算出する作業遂行ベクトル算出部と、ネットワークの連結度合いを示す指標である代数的連結度と、代数的連結度の勾配ベクトルとを算出する代数的連結度算出部と、を備え、前記移動体が前記作業遂行ベクトルの方向に移動してもまだネットワークが連結である場合、当該作業遂行ベクトルの方向に前記移動体を制御し、移動したらネットワークが連結でなくなってしまう場合、ネットワークの連結度が不変若しくは増加する方向のうち、前記割当領域の重心との距離が減少するものを選択して制御する。 The movement control device according to the present disclosure technique is a movement control device that controls each of the moving bodies so that a plurality of autonomously moving moving bodies perform work in cooperation with each other, and the movement is divided into all areas. The allocated area is determined for each body, the center of gravity of the allocated area is determined, the distance between each moving body and the center of gravity of the allocated area is determined, and the distance from the center of gravity of the allocated area is reduced for each moving body. The direction to be moved is calculated, the center of gravity of the moving body group, the center of gravity of the entire region, and the distance between the center of gravity of the moving body group and the center of gravity of the entire region are determined, and the center of gravity of the entire region is determined for each moving body. The work execution vector calculation unit that calculates the direction to reduce the distance and linearly connects the two directions to calculate the work execution vector for each moving object, and the algebraic connection degree, which is an index showing the degree of connection of the network. And an algebraic connection degree calculation unit for calculating an algebraic connection degree gradient vector, and when the network is still connected even if the moving object moves in the direction of the work execution vector, the work execution is performed. If the moving object is controlled in the direction of the vector and the network is no longer connected after moving, select the direction in which the connection degree of the network does not change or increases and the distance from the center of gravity of the allocated area decreases. To control.
 本開示技術に係る移動制御装置は、全領域を分けて移動体ごとに割当領域を決定し、割当領域の重心を決定し、各移動体と割当領域の重心との距離を決定し、移動体ごとに割当領域の重心との距離を減少させる方向を算出している。すべての移動体が割り当てられた割当領域の重心へ移動することは、全領域内の移動体の展開度合を向上させるように移動することになる。つまり、移動体と割当領域の重心との距離を減少させることは、全領域内の移動体の展開度合を向上させることになる。本開示技術において、作業遂行ベクトルは、この移動体と割当領域の重心との距離を減少させる方向に基づいて算出している。 The movement control device according to the present disclosure technology divides the entire area, determines the allocated area for each moving body, determines the center of gravity of the allocated area, determines the distance between each moving body and the center of gravity of the allocated area, and determines the moving body. The direction for reducing the distance from the center of gravity of the allocated area is calculated for each. Moving all the moving objects to the center of gravity of the allocated area means moving so as to improve the degree of expansion of the moving objects in the entire area. That is, reducing the distance between the moving body and the center of gravity of the allocated area improves the degree of expansion of the moving body in the entire area. In the present disclosure technique, the work execution vector is calculated based on the direction in which the distance between the moving body and the center of gravity of the allocated area is reduced.
 本開示技術に係る移動制御装置は、移動体がネットワークが連結であれば作業遂行ベクトルの方向に移動体を制御しているため、全領域内の移動体の展開度合を向上させている。また、移動体が通信範囲を出てしまう場合でもネットワークの連結度が不変若しくは増加する方向のうち、割当領域の重心との距離が減少するものを選択しているため、全領域内の移動体の展開度合を向上させいる。よって、本開示技術は、ネットワークグラフが連結であるという制約の下で、全領域内の移動体の展開度合を向上させるように移動が可能となる移動制御装置を実現する。 Since the mobile control device according to the present disclosure technology controls the mobile body in the direction of the work execution vector if the mobile body is connected to the network, the degree of deployment of the mobile body in the entire area is improved. In addition, even if the mobile unit goes out of the communication range, the one in which the distance from the center of gravity of the allocated area decreases from the direction in which the network connectivity does not change or increases, so the mobile unit in the entire area is selected. The degree of development of is improving. Therefore, the present disclosure technology realizes a movement control device capable of moving so as to improve the degree of deployment of the moving body in the entire area under the constraint that the network graph is connected.
実施の形態1に係る移動体協調システムの要部の構成の一例を示す構成図A block diagram showing an example of the configuration of the main part of the mobile coordination system according to the first embodiment. 実施の形態1に係る移動体の要部の構成の一例を示すブロック図A block diagram showing an example of the configuration of a main part of a moving body according to the first embodiment. 実施の形態1に係る移動制御装置の要部の構成の一例を示すブロック図A block diagram showing an example of the configuration of a main part of the movement control device according to the first embodiment. 遂行ベクトル部の与え方によって移動体の配置が変化することを示す説明図Explanatory diagram showing that the arrangement of the moving body changes depending on how the execution vector part is given. 実施の形態1に係る移動制御装置が備える移動制御計画部の移動方向を示す説明図An explanatory diagram showing the movement direction of the movement control planning unit included in the movement control device according to the first embodiment. 代数的連結度の勾配ベクトルを正規化したベクトルへの作業遂行ベクトルの射影の係数を示す説明図An explanatory diagram showing the coefficients of the projection of the work execution vector onto the vector obtained by normalizing the gradient vector of algebraic connectivity. 実施の形態1に係る移動制御装置の要部のハードウェア構成の一例を示す図The figure which shows an example of the hardware composition of the main part of the movement control apparatus which concerns on Embodiment 1. 実施の形態1に係る移動制御装置の処理の一例を説明するフローチャートA flowchart illustrating an example of processing of the movement control device according to the first embodiment.
 本開示技術の実施の形態の説明は、以下に示す図面に沿って行われる。 The embodiment of the disclosed technology will be described with reference to the drawings shown below.
実施の形態1.
 図1は、実施の形態1に係る移動体協調システム1の要部の構成の一例を示す構成図である。移動体協調システム1は、複数の移動体10を備える。移動体10は、自律的に移動するドローン等の飛行体、又は、自律的に移動する自走式のロボット等である。
Embodiment 1.
FIG. 1 is a configuration diagram showing an example of the configuration of a main part of the mobile coordination system 1 according to the first embodiment. The mobile coordination system 1 includes a plurality of mobiles 10. The mobile body 10 is a flying object such as a drone that moves autonomously, or a self-propelled robot that moves autonomously.
 移動体協調システム1は、一例として、複数の移動体10として5個の移動体10A,10B,10C,10D,10Eを備えたものである。移動体協調システム1が備える移動体10の個数は、5個に限定されるものではなく、2個以上であれば何個でもよい。 As an example, the mobile body cooperation system 1 includes five mobile bodies 10A, 10B, 10C, 10D, and 10E as a plurality of mobile bodies 10. The number of mobile bodies 10 included in the mobile body cooperation system 1 is not limited to five, and may be any number as long as it is two or more.
 5個の移動体10A,10B,10C,10D,10Eは、各移動体10A,10B,10C,10D,10Eが自律的に移動し、予め定められた作業用の領域(以下、「全領域Q」)の作業を行う。ここで作業とは、防衛、防災、若しくは、セキュリティ等の監視作業、又は、清掃等の作業であり、これを協調して遂行する。 In the five mobile bodies 10A, 10B, 10C, 10D, and 10E, each mobile body 10A, 10B, 10C, 10D, and 10E moves autonomously, and a predetermined work area (hereinafter, "all areas Q"). ”) Do the work. Here, the work is a work such as defense, disaster prevention, monitoring work such as security, or work such as cleaning, which is carried out in cooperation.
 図2は、実施の形態1に係る移動体10の要部の構成の一例を示すブロック図である。移動体10は、駆動装置11、位置取得装置12、通信装置13、及び移動制御装置100を備える。 FIG. 2 is a block diagram showing an example of the configuration of the main part of the mobile body 10 according to the first embodiment. The mobile body 10 includes a drive device 11, a position acquisition device 12, a communication device 13, and a movement control device 100.
 移動制御装置100は、移動体10を移動させるための移動制御情報を出力する。移動制御装置100は、以降の詳細な説明により明らかにされる。 The movement control device 100 outputs movement control information for moving the moving body 10. The movement control device 100 will be described in detail below.
 駆動装置11は、移動制御装置100が出力する移動制御情報を取得する。駆動装置11は、移動制御装置100から取得した移動制御情報に基づいて、不図示のモータ及びアクチュエータ等を駆動させ、不図示の車輪又はプロペラ等を回転させるとともに操舵することにより、移動体10を移動させる。 The drive device 11 acquires the movement control information output by the movement control device 100. Based on the movement control information acquired from the movement control device 100, the drive device 11 drives a motor, an actuator, or the like (not shown) to rotate and steer a wheel, a propeller, or the like (not shown) to steer the moving body 10. Move it.
 位置取得装置12は、移動体10の位置を示す位置情報を生成して出力する。具体的には、例えば、位置取得装置12は、Global Navigation Satellite System(以下「GNSS」)等の航法システムを用いて移動体10の位置を特定し、特定した位置を位置情報として出力する。位置取得装置12が用いる航法システムは、GNSSに限定されるものではなく、ジャイロセンサ及び速度センサ等を用いた慣性航法システム等であってもよい。 The position acquisition device 12 generates and outputs position information indicating the position of the moving body 10. Specifically, for example, the position acquisition device 12 identifies the position of the moving body 10 by using a navigation system such as Global Navigation Satellite System (hereinafter referred to as “GNSS”), and outputs the specified position as position information. The navigation system used by the position acquisition device 12 is not limited to GNSS, and may be an inertial navigation system or the like using a gyro sensor, a speed sensor, or the like.
 通信装置13は、移動体10間において情報を送受信する。具体的には、通信装置13は、無線LAN、Bluetooth(登録商標)、又は赤外線通信等の無線通信方法により、移動体10間において情報を送受信する。 The communication device 13 transmits / receives information between the mobile bodies 10. Specifically, the communication device 13 transmits / receives information between the mobile bodies 10 by a wireless communication method such as wireless LAN, Bluetooth (registered trademark), or infrared communication.
 図1は、5個の移動体10A,10B,10C,10D,10Eのそれぞれが相互に情報を直接送受信可能な通信範囲として、通信範囲C10A,C10B,C10C,C10D,C10Eを示している。例えば、移動体10Aが備える通信装置13は、移動体10Aが備える通信装置13が情報を送受信可能な通信範囲である通信範囲C10Aに存在する移動体10B,10Eとの間において情報を送受信する。 FIG. 1 shows a communication range C10A, C10B, C10C, C10D, C10E as a communication range in which each of the five mobile bodies 10A, 10B, 10C, 10D, and 10E can directly transmit and receive information to and from each other. For example, the communication device 13 included in the mobile body 10A transmits / receives information to / from the mobile bodies 10B and 10E existing in the communication range C10A which is the communication range in which the communication device 13 included in the mobile body 10A can transmit / receive information.
 また、移動体10Aは、マルチホップ通信によって、通信ネットワークに接続されている他の移動体である10C,10Dとも情報を送受信する。具体的には、例えば、移動体10Aが備える通信装置13は、移動体10Bが送信する位置情報と、移動体10Eが送信する位置情報に加えて、マルチホップ通信によって移動体10D、移動体10Cの位置情報を受信する。以降、第1移動体以外の通信ネットワークに接続されている移動体は、総称して「他移動体」と呼ぶ。 Further, the mobile body 10A also transmits / receives information to / from 10C and 10D, which are other mobile bodies connected to the communication network, by multi-hop communication. Specifically, for example, the communication device 13 included in the mobile body 10A has the mobile body 10D and the mobile body 10C by multi-hop communication in addition to the position information transmitted by the mobile body 10B and the position information transmitted by the mobile body 10E. Receives location information. Hereinafter, the mobiles connected to the communication network other than the first mobile are collectively referred to as "other mobiles".
 図3は、実施の形態1に係る移動制御装置100の要部の構成の一例を示すブロック図である。移動制御装置100は、第1移動体位置取得部110、他移動体位置取得部120、第1移動体位置出力部130、作業遂行ベクトル算出部140、代数的連結度算出部150、及び移動制御計画部160を備える。 FIG. 3 is a block diagram showing an example of the configuration of the main part of the movement control device 100 according to the first embodiment. The movement control device 100 includes a first moving body position acquisition unit 110, another moving body position acquisition unit 120, a first moving body position output unit 130, a work execution vector calculation unit 140, an algebraic connectivity calculation unit 150, and movement control. A planning unit 160 is provided.
 第1移動体位置取得部110は、移動体10である第1移動体の位置を示す第1移動体位置情報を取得する。具体的には、例えば、移動体10Aが第1移動体である場合、移動体10Aが備える移動制御装置100における第1移動体位置取得部110は、移動体10Aの位置を示す第1移動体位置情報を取得する。より具体的には、例えば、移動体10Aに搭載された移動制御装置100が備える第1移動体位置取得部110は、移動体10Aに搭載された位置取得装置12が出力する位置情報を取得することにより、移動体10Aの位置を示す第1移動体位置情報を取得する。 The first moving body position acquisition unit 110 acquires the first moving body position information indicating the position of the first moving body which is the moving body 10. Specifically, for example, when the moving body 10A is the first moving body, the first moving body position acquisition unit 110 in the movement control device 100 included in the moving body 10A is the first moving body indicating the position of the moving body 10A. Get location information. More specifically, for example, the first moving body position acquisition unit 110 included in the movement control device 100 mounted on the moving body 10A acquires the position information output by the position acquiring device 12 mounted on the moving body 10A. Thereby, the first moving body position information indicating the position of the moving body 10A is acquired.
 他移動体位置取得部120は、ネットワークに接続している他移動体から、要すればマルチホップ通信を用いて他移動体情報を取得する。具体的には、例えば、移動体10Aが備える移動制御装置100における他移動体位置取得部120は、通信装置13が情報を送受信可能な通信範囲に存在する移動体10B及び移動体10Eからその位置情報を取得する。加えて、他移動体位置取得部120は、10C,10Dからはマルチホップ通信を用いてその位置情報を取得する。 The other mobile position acquisition unit 120 acquires other mobile information from another mobile connected to the network, if necessary, using multi-hop communication. Specifically, for example, the other moving body position acquisition unit 120 in the moving control device 100 included in the moving body 10A has its position from the moving body 10B and the moving body 10E existing in the communication range in which the communication device 13 can transmit and receive information. Get information. In addition, the other mobile body position acquisition unit 120 acquires the position information from 10C and 10D by using multi-hop communication.
 第1移動体位置出力部130は、第1移動体情報を出力する。また、マルチホップ通信を採用している場合、第1移動体位置出力部130は、取得した他移動体の位置情報もあわせて出力する。 The first mobile body position output unit 130 outputs the first mobile body information. Further, when the multi-hop communication is adopted, the first mobile body position output unit 130 also outputs the acquired position information of the other mobile body.
 作業遂行ベクトル算出部140は、第1移動体位置情報、他移動体位置情報に基づいて、第1移動体が作業を遂行するための第1移動体の移動量及び移動方向を示す作業遂行ベクトルu1を算出する。作業遂行ベクトルu1は、移動体ごとに算出するが、ここでは代表して第1移動体で説明する。領域への移動体の展開とともに作業を行うが、展開は、移動体位置を変数とした評価関数Jを最小化する問題として定式化できる。この評価関数Jは一般には以下の数式1により表される。 The work execution vector calculation unit 140 is a work execution vector indicating the movement amount and the movement direction of the first moving body for the first moving body to carry out the work based on the position information of the first moving body and the position information of the other moving body. Calculate u1. The work execution vector u1 is calculated for each moving body, but here, the first moving body will be described as a representative. The work is performed together with the expansion of the moving object to the region, and the expansion can be formulated as a problem of minimizing the evaluation function J with the moving object position as a variable. This evaluation function J is generally expressed by the following mathematical formula 1.
Figure JPOXMLDOC01-appb-M000001
ここで、Qは全領域、V={1,2,3、…N}は移動体のインデックス集合、Nは移動体の総数、xiはi番目の移動体の位置、φ(q)は領域中の点qの重要度を表す関数、h()は点qとxiとの間の距離関数である。また、移動制御装置100は全領域Qを分けて移動体ごとに割当領域を決定する。
Figure JPOXMLDOC01-appb-M000001
Here, Q is the entire region, V = {1, 2, 3, ... N} is the index set of the moving body, N is the total number of moving bodies, xi is the position of the i-th moving body, and φ (q) is the region. A function representing the importance of the point q in, h () is a distance function between the points q and xi. Further, the movement control device 100 divides the entire area Q and determines the allocated area for each moving body.
 移動制御装置100が決定する割当領域は、全領域に配置された複数の前記移動体の位置を母点として、全領域上の他の点がどの前記移動体に近いかによって領域分けされたボロノイ図などが考えられる。ボロノイ図を得るための領域分割はボロノイ分割と呼ばれる。割当領域は、移動体が移動することに伴い、その都度動的に変化させてもよいし、移動体の初期値などによって固定してもよい。さらに、全領域Qの分割は、ボロノイ分割に限定せず、あらかじめ全領域Qを任意に分割して、領域の境界を固定してもよい。 The allocated area determined by the movement control device 100 is a Voronoi region divided by which of the moving bodies the other points on the whole area are close to, with the positions of the plurality of moving bodies arranged in the whole area as a mother point. A figure etc. can be considered. The domain division for obtaining the Voronoi diagram is called Voronoi division. The allocated area may be dynamically changed each time the moving body moves, or may be fixed according to the initial value of the moving body or the like. Further, the division of the entire region Q is not limited to the Voronoi division, and the entire region Q may be arbitrarily divided in advance to fix the boundary of the region.
 数式1で与えられた評価関数Jは、距離関数hが二乗距離(q-xのノルムの二乗)のときには以下のように解釈できる。簡単にいえば、評価関数Jは、各移動体と割当領域の重心との距離によって決まるものである。すべての移動体が割り当てられた割当領域の重心に配置されると、評価関数Jは局所的に最小値をとる。よって、評価関数Jは、全領域内の移動体の展開度合を表したものである。評価関数Jはその値が小さくなるほど、全領域内の移動体の展開度合は向上する。 The evaluation function J given by Equation 1 can be interpreted as follows when the distance function h is the squared distance (square of the norm of q-x i ). Simply put, the evaluation function J is determined by the distance between each moving object and the center of gravity of the allocated area. When all the moving objects are placed at the center of gravity of the allocated area, the evaluation function J takes the minimum value locally. Therefore, the evaluation function J represents the degree of expansion of the moving body in the entire region. The smaller the value of the evaluation function J, the better the degree of expansion of the moving object in the entire region.
 移動制御装置100が決定する割当領域の重心は、割当領域上の各点に対して重付けをして計算することが考えられる。評価関数Jに現れるφ(q)は領域中の点qの重要度を表す関数であり、これを乗ずることが重付けをして計算することに該当する。この重付けは、割当領域上の各点が作業を実施する点であるか否かで異なった重みとし、さらに前記各点が作業を実施する点である場合、作業を既に行ったかまだ行っていないかによっても異なった重みとすることができる。一例として、作業を行うべき箇所は重みを1とする。もともと作業が不要な箇所の重みは0とする。また作業が完了した箇所の重みは0とする。別の例として、2度清掃が必要とする作業の場合、未清掃の箇所の重みは2、1度清掃した箇所の重みは1、2度清掃を完了した箇所の重みは0とする。 The center of gravity of the allocated area determined by the movement control device 100 may be calculated by weighting each point on the allocated area. Φ (q) appearing in the evaluation function J is a function representing the importance of the point q in the region, and multiplying this function corresponds to weighting and calculation. This weighting has different weights depending on whether or not each point on the allocated area is a point to carry out the work, and if each of the above points is a point to carry out the work, the work has already been performed or has not been performed yet. It can have different weights depending on whether it is present or not. As an example, the weight is set to 1 at the place where the work should be performed. The weight of the part where the work is originally unnecessary is set to 0. The weight of the place where the work is completed is set to 0. As another example, in the case of work requiring cleaning twice, the weight of the uncleaned portion is 2, the weight of the portion cleaned once is 1, and the weight of the portion completed twice cleaning is 0.
 従来技術における作業遂行ベクトルu1は、最急降下法により求めるものが開示されている。第1移動体に関していえば、作業遂行ベクトルu1は評価関数Jをx1で偏微分して傾きを求め、定数倍するものである。 The work execution vector u1 in the prior art is disclosed to be obtained by the steepest descent method. Regarding the first mobile body, the work execution vector u1 is obtained by partially differentiating the evaluation function J with respect to x1 to obtain the slope, and multiplying it by a constant.
 本開示技術においては、以下の要素も考慮に入れて作業遂行ベクトルu1’を求める。すなわち、本開示技術は、移動体群の重心と全領域Qの重心との距離を考慮に入れて、この二乗距離を新たな評価関数の要素Lとおく。実施の形態1に係る作業遂行ベクトルu1は、評価関数Jをx1で偏微分し定数k1倍したものに、評価関数の要素Lをx1で偏微分し定数k2倍したものを加えて得たベクトルである。言い換えれば、実施の形態1に係る開示技術は、J’=k1×J+k2×Lの線形結合で与えられるあらたな評価関数J’を考慮していることと等価である。なお、全領域Qの重心は、上記の割当領域の重心を求めたときと同じように、全領域Q内の各点に重付けをして求めることが考えられる。また、移動体群の重心を求める場合も、移動体ごとに重付けをしてもよい。例えば、移動体の個性に着目して、作業効率が高い移動体の重みを重くする、などとしてもよい。 In the present disclosed technology, the work execution vector u1'is obtained in consideration of the following factors. That is, in the present disclosure technique, the distance between the center of gravity of the moving body group and the center of gravity of the entire region Q is taken into consideration, and this squared distance is set as the element L of the new evaluation function. The work execution vector u1 according to the first embodiment is a vector obtained by adding the evaluation function J partially differentiated by x1 and multiplied by a constant k1 and the element L of the evaluation function partially differentiated by x1 and multiplied by a constant k2. Is. In other words, the disclosure technique according to the first embodiment is equivalent to considering a new evaluation function J'given by a linear combination of J'= k1 × J + k2 × L. It is conceivable that the center of gravity of the entire region Q is obtained by weighting each point in the entire region Q in the same manner as when the center of gravity of the allotted region is obtained. Further, when the center of gravity of the moving body group is obtained, it may be weighted for each moving body. For example, paying attention to the individuality of the moving body, the weight of the moving body having high work efficiency may be increased.
 新たな評価関数J’を用いることの効果は、図4A,4Bを用いて説明していく。まず、全領域Qは移動体10-1と移動体10-2とに分けて割り当てられる。割当領域は、全領域Qをボロノイ分割することによって与えられる。今回の場合、移動体が2個しかないので、ボロノイ分割は、移動体間の二等分線で分割することと等価となる。 The effect of using the new evaluation function J'will be explained using FIGS. 4A and 4B. First, the entire region Q is divided into a mobile body 10-1 and a mobile body 10-2. The allocated area is given by dividing the entire area Q into Voronoi. In this case, since there are only two moving bodies, the Voronoi division is equivalent to dividing by the bisector between the moving bodies.
 従来の評価関数Jを用いた方法では、図4Aのような配置になった後は、移動体は移動しない。理由は、以下の説明で明らかにされる。移動体10-1は、自機位置が割当領域の重心と一致しており作業遂行ベクトルu1の大きさがゼロとなり動かない。また、移動体10-2は、作業遂行ベクトルu1によって移動すると、移動体10-1と通信が途絶し、ネットワークグラフが非連結になるため、この方向には移動できない。よって、移動体10-1も移動体10-2も、これ以上は動かない。図4Aのような配置で各移動体が止まってしまうことは、移動体の本来の目的である清掃作業若しくは監視作業の観点からは、好ましくない。 In the method using the conventional evaluation function J, the moving body does not move after the arrangement as shown in FIG. 4A. The reason will be clarified in the following explanation. The position of the moving body 10-1 coincides with the center of gravity of the allocated area, and the size of the work execution vector u1 becomes zero and does not move. Further, when the mobile body 10-2 is moved by the work execution vector u1, the communication with the mobile body 10-1 is interrupted and the network graph is not connected, so that the mobile body 10-2 cannot move in this direction. Therefore, neither the moving body 10-1 nor the moving body 10-2 moves any more. It is not preferable from the viewpoint of cleaning work or monitoring work, which is the original purpose of the moving body, that each moving body is stopped in the arrangement as shown in FIG. 4A.
 他方、作業遂行ベクトルu1’をu1’=-k1×∂J/∂x-k2×∂L/∂xとすれば、図4Bのように、移動体群の重心と領域の重心との距離を縮めることができる。 On the other hand, if the work execution vector u1'is u1'= −k1 × ∂J / ∂x-k2 × ∂L / ∂x, the distance between the center of gravity of the moving body group and the center of gravity of the region is as shown in FIG. 4B. Can be shrunk.
 図4Bの配置は、図4Aよりも移動体を分散して展開している配置であるため、実は評価関数Jの値を比較しても図4Bの方が小さくなる場合がある。このような現象が起きてしまう理由は、最急降下法による限界からである。通信範囲内という制約条件付きの最小化問題において、最急降下法はローカルミニマムに解の候補が止まってしまうことがある。図4A配置のようなローカルミニマムに解の候補が止まらないようにするため、Lの勾配を作業遂行ベクトルu1に加えることは有効である。 Since the arrangement in FIG. 4B is an arrangement in which the moving objects are dispersed and expanded as compared with FIG. 4A, in fact, even if the values of the evaluation function J are compared, the arrangement in FIG. 4B may be smaller. The reason why such a phenomenon occurs is due to the limit of the steepest descent method. In the constrained minimization problem of being within the communication range, the steepest descent method may stop the solution candidates at the local minimum. It is effective to add the gradient of L to the work execution vector u1 so that the solution candidates do not stop at the local minimum as shown in FIG. 4A.
 よって、以降は、評価関数Jに基づいた作業遂行ベクトルu1を前提に説明がなされるが、評価関数Jは評価関数J’に、作業遂行ベクトルu1は作業遂行ベクトルu1’と置き換えてもよい。 Therefore, although the explanation will be made on the premise of the work execution vector u1 based on the evaluation function J, the evaluation function J may be replaced with the evaluation function J'and the work execution vector u1 may be replaced with the work execution vector u1'.
 移動体群の重心は、マルチホップ通信を行わない場合でも、平均合意推定器を使うことにより、第1移動体位置情報及び、第1移動体の通信範囲内に存在する移動体の位置情報(以下、「局所情報」という)のみから求めることができる。平均合意推定器とは、全移動体にわたる平均値を局所情報から推定するものであり、移動体群の重心は移動体位置の平均値そのものである。 The center of gravity of the mobile group can be the position information of the first mobile body and the position information of the mobile body existing within the communication range of the first mobile body by using the average agreement estimator even when multi-hop communication is not performed. Hereinafter, it can be obtained only from "local information"). The average consensus estimator estimates the average value over all moving objects from local information, and the center of gravity of the moving object group is the average value of the moving object positions itself.
 上記において評価関数Jは、全領域Qへ移動体を分散させて配置すること、すなわち展開度合を向上させること、を目的としたものである。しかし、評価関数Jはこれに限定するものではない。移動体位置を変数とした別の評価関数Jにより作業の程度が評価できて、その評価関数Jを基に作業遂行ベクトルu1を計算できるものであれば、他のものでもよい。 In the above, the evaluation function J is intended to disperse and arrange the moving objects in the entire region Q, that is, to improve the degree of expansion. However, the evaluation function J is not limited to this. Any other evaluation function J may be used as long as the degree of work can be evaluated by another evaluation function J with the moving body position as a variable and the work execution vector u1 can be calculated based on the evaluation function J.
 代数的連結度算出部150は、第1移動体情報、他移動体位置情報に基づいて、ネットワークの連結度合いを示す指標である代数的連結度と、代数的連結度の勾配ベクトルとを算出し、出力する。なお、代数的連結度算出部150は、マルチホップ通信を行わない場合でも、局所情報のみから代数的連結度と、その勾配ベクトルを算出可能である。 The algebraic connectivity calculation unit 150 calculates an algebraic connectivity index, which is an index indicating the connection degree of the network, and a gradient vector of the algebraic connectivity based on the first moving body information and the other moving body position information. ,Output. The algebraic connectivity calculation unit 150 can calculate the algebraic connectivity and its gradient vector only from the local information even when the multi-hop communication is not performed.
 移動制御計画部160は、作業遂行ベクトル、代数的連結度、代数的連結度の勾配ベクトルに基づいて、代数的連結度の勾配ベクトルを正規化したベクトルを算出し、この正規化したベクトルへの作業遂行ベクトルの射影を算出する。移動制御計画部160は、前記射影を定数倍したものと、作業遂行ベクトルとを合成して得た合成ベクトルに基づいて、第1移動体の移動制御内容を決定する。そして、移動制御計画部160は、決定した移動制御内容を移動制御情報として出力する。第1移動体は以下の数式2に示す合成ベクトルuに基づいて移動する。 The movement control planning unit 160 calculates a vector obtained by normalizing the gradient vector of the algebraic connectivity based on the work execution vector, the algebraic connectivity, and the gradient vector of the algebraic connectivity, and transfers the vector to the normalized vector. Calculate the projection of the work execution vector. The movement control planning unit 160 determines the movement control content of the first moving body based on the composite vector obtained by synthesizing the projection multiplied by a constant and the work execution vector. Then, the movement control planning unit 160 outputs the determined movement control content as movement control information. The first mobile body moves based on the synthetic vector u shown in the following equation 2.
Figure JPOXMLDOC01-appb-M000002
ここでu1は作業遂行ベクトル、nは正規化された代数的連結度の勾配ベクトル、λ2は代数的連結度である。<a,b>はベクトルaとbの内積を意味する。
Figure JPOXMLDOC01-appb-M000002
Here, u1 is a work execution vector, n is a gradient vector of normalized algebraic connectivity, and λ2 is an algebraic connectivity. <A, b> means the inner product of the vectors a and b.
 図5A及び図5Bは、実施の形態1に係る移動制御装置が備える移動制御計画部の移動方向を示す説明図である。数式2の意味は、図5A及び図5Bによって明らかになる。 5A and 5B are explanatory views showing the movement direction of the movement control planning unit included in the movement control device according to the first embodiment. The meaning of Equation 2 is clarified by FIGS. 5A and 5B.
 数式2は、以下のように説明できる。λ2が閾値εより大きい場合、あるいはu1によってλ2を増加可能な場合、u1を制御入力とする。u1は例えば最急降下ベクトルであるから、これを制御入力とすることで評価関数Jを減少させられる。一方、λ2が閾値以下かつ、u1を入力することでλ2が減少する場合には、λ2が変化しない方向に移動するよう、u1のnへの射影である<u1,n>nを基に「nに直交する方向へのu1の射影」であるu1-<u1,n>nを制御入力とする。なお、代数的連結度λ2が0より大きければネットワークグラフは連結であり、移動体同士の通信は保証される。 Formula 2 can be explained as follows. When λ2 is larger than the threshold value ε, or when λ2 can be increased by u1, u1 is used as a control input. Since u1 is, for example, the steepest descent vector, the evaluation function J can be reduced by using this as a control input. On the other hand, when λ2 is equal to or less than the threshold value and λ2 decreases by inputting u1, “u1, n> n, which is a projection of u1 onto n, is used so that λ2 moves in the direction in which λ2 does not change. The u1- <u1, n> n, which is the projection of u1 in the direction orthogonal to n, is used as the control input. If the algebraic connectivity λ2 is larger than 0, the network graph is connected, and communication between mobiles is guaranteed.
 言い換えれば、移動制御装置100は、移動体が作業遂行ベクトルu1の方向に移動してもまだネットワークが連結である場合、当該作業遂行ベクトルu1の方向に移動体を制御する。また、移動制御装置100は、移動体が作業遂行ベクトルu1の方向に移動したらネットワークが連結でなくなってしまう場合、ネットワークの連結度が不変若しくは増加する方向のうち、移動体と割当領域の重心との距離が減少するものを選択して制御する。 In other words, the movement control device 100 controls the moving body in the direction of the work execution vector u1 when the network is still connected even if the moving body moves in the direction of the work execution vector u1. Further, when the mobile body moves in the direction of the work execution vector u1 and the network is not connected, the movement control device 100 determines that the center of gravity of the mobile body and the allocated area is in the direction in which the connection degree of the network does not change or increases. Select and control the one that reduces the distance of.
 以降の説明は、上記制御則によって移動体がどのように制御されるのかを明らかにする。今、制御周期が十分に短く、かつ、初期状態でλ2>εと仮定する。このとき、まずu1が制御入力となり評価関数Jを減少させる方向へ第1移動体が図5Aのように移動する。そしてλ2=εとなった瞬間から制御入力がu1-<u1,n>nに切り替わり、λ2=εを保ったまま、評価関数Jを減少させる方向へ図5Bのように移動する。したがって、上記仮定が満たされていれば、上記の合成ベクトルに基づいて移動することで通信ネットワークを維持しつつ評価関数Jを最小化できる。 The following explanation will clarify how the moving body is controlled by the above control rule. Now, it is assumed that the control cycle is sufficiently short and λ2> ε in the initial state. At this time, first, u1 becomes a control input and the first moving body moves in the direction of decreasing the evaluation function J as shown in FIG. 5A. Then, from the moment when λ2 = ε, the control input is switched to u1- <u1, n> n, and while maintaining λ2 = ε, the control input moves in the direction of decreasing the evaluation function J as shown in FIG. 5B. Therefore, if the above assumption is satisfied, the evaluation function J can be minimized while maintaining the communication network by moving based on the above synthesis vector.
 このような移動方式は、評価関数Jを、λ2≧εという制約のもとで最小化する問題を解いていることに他ならない。よって、移動制御装置100は、この制御方式を採用することで、ネットワークの連結性を保ちつつ評価関数Jを減少させることができる。 Such a movement method is nothing but solving the problem of minimizing the evaluation function J under the constraint of λ2 ≧ ε. Therefore, by adopting this control method, the movement control device 100 can reduce the evaluation function J while maintaining the connectivity of the network.
 移動制御装置100は、制御周期が大きくネットワークが非連結となってしまう場合、数式2に工夫をし、段階的に制御入力を切り替えればよい。以下は、ほんの一例である。 When the control cycle is large and the network is not connected, the movement control device 100 may devise the formula 2 and switch the control input step by step. The following is just one example.
Figure JPOXMLDOC01-appb-M000003
 ここで、αは以下の数式4などが考えられる。
Figure JPOXMLDOC01-appb-M000003
Here, the following mathematical formula 4 or the like can be considered for α.
Figure JPOXMLDOC01-appb-M000004
 図6は、αの例を示している。
Figure JPOXMLDOC01-appb-M000004
FIG. 6 shows an example of α.
 移動制御装置100は、以上のような方法をとることにより、ネットワークの連結性を保つという制約の下で、移動体の目的である作業の実施をすることができる。 By adopting the above method, the movement control device 100 can carry out the work that is the purpose of the mobile body under the constraint of maintaining the connectivity of the network.
 図7A及び図7Bは、実施の形態1に係る移動制御装置100の要部のハードウェア構成の一例を示す図である。図7Aに示すように、移動制御装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ501及びメモリ502を有している。メモリ502には、当該コンピュータを、第1移動体位置取得部110、他移動体位置取得部120、第1移動体位置出力部130、作業遂行ベクトル算出部140、及び移動制御計画部160として機能させるためのプログラムが記憶されている。メモリ502に記憶されているプログラムをプロセッサ501が読み出して遂行することにより、第1移動体位置取得部110、他移動体位置取得部120、第1移動体位置出力部130、作業遂行ベクトル算出部140、代数的連結度算出部150、及び移動制御計画部160が実現される。 7A and 7B are diagrams showing an example of the hardware configuration of the main part of the movement control device 100 according to the first embodiment. As shown in FIG. 7A, the mobile control device 100 is composed of a computer, which has a processor 501 and a memory 502. The memory 502 functions as the computer as a first mobile body position acquisition unit 110, another mobile body position acquisition unit 120, a first mobile body position output unit 130, a work execution vector calculation unit 140, and a movement control planning unit 160. The program to make it is stored. When the processor 501 reads out and executes the program stored in the memory 502, the first moving body position acquisition unit 110, the other moving body position acquisition unit 120, the first moving body position output unit 130, and the work execution vector calculation unit. 140, an algebraic connectivity calculation unit 150, and a movement control planning unit 160 are realized.
 また、図7Bに示すように、移動制御装置100は処理回路503により構成されても良い。この場合、第1移動体位置取得部110、他移動体位置取得部120、第1移動体位置出力部130、作業遂行ベクトル算出部140、代数的連結度算出部150、及び移動制御計画部160の機能が処理回路503により実現されても良い。さらに、移動制御装置100はプロセッサ501、メモリ502及び処理回路503により構成されても良い。この場合、第1移動体位置取得部110、他移動体位置取得部120、第1移動体位置出力部130、作業遂行ベクトル算出部140、代数的連結度算出部150、及び移動制御計画部160のうちの一部の機能がプロセッサ501及びメモリ502により実現されて、残余の機能が処理回路503により実現されるものであっても良い。 Further, as shown in FIG. 7B, the movement control device 100 may be configured by the processing circuit 503. In this case, the first moving body position acquisition unit 110, the other moving body position acquisition unit 120, the first moving body position output unit 130, the work execution vector calculation unit 140, the algebraic connectivity calculation unit 150, and the movement control planning unit 160. The function of may be realized by the processing circuit 503. Further, the mobile control device 100 may be composed of a processor 501, a memory 502, and a processing circuit 503. In this case, the first moving body position acquisition unit 110, the other moving body position acquisition unit 120, the first moving body position output unit 130, the work execution vector calculation unit 140, the algebraic connectivity calculation unit 150, and the movement control planning unit 160. Some of the functions may be realized by the processor 501 and the memory 502, and the remaining functions may be realized by the processing circuit 503.
 プロセッサ501は、例えば、CPU、GPU、マイクロプロセッサ、マイクロコントローラ、又はDSPを用いたものである。 The processor 501 uses, for example, a CPU, GPU, microprocessor, microcontroller, or DSP.
 メモリ502は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ502は、RAM、ROM、フラッシュメモリ、EPROM、EEPROM、SSD、又はHDDなどを用いたものである。 The memory 502 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 502 uses a RAM, ROM, flash memory, EPROM, EEPROM, SSD, HDD, or the like.
 処理回路503は、例えば、ASIC、PLD、FPGA、SoC、又はシステムLSIを用いたものである。 The processing circuit 503 uses, for example, an ASIC, PLD, FPGA, SoC, or a system LSI.
 図8は、実施の形態1に係る移動制御装置100の処理の一例を説明するフローチャートである。移動制御装置100は、当該フローチャートの処理を繰り返して遂行する。まず、ステップST601にて、第1移動体位置取得部110は、第1移動体位置情報を取得する。次に、ステップST602にて、他移動体位置取得部120は、他移動体位置情報を取得する。次に、ステップST603にて、第1移動体位置出力部130は、第1移動体情報を出力する。次に、ステップST604にて、作業遂行ベクトル算出部140は、作業遂行ベクトルを出力する。次に、ステップST605にて、代数的連結度算出部150は、代数的連結度とその勾配ベクトルを出力する。次に、ステップST606にて、移動制御計画部160は、移動制御情報を出力する。 FIG. 8 is a flowchart illustrating an example of processing of the movement control device 100 according to the first embodiment. The movement control device 100 repeatedly executes the process of the flowchart. First, in step ST601, the first moving body position acquisition unit 110 acquires the first moving body position information. Next, in step ST602, the other moving body position acquisition unit 120 acquires the other moving body position information. Next, in step ST603, the first mobile body position output unit 130 outputs the first mobile body information. Next, in step ST604, the work execution vector calculation unit 140 outputs the work execution vector. Next, in step ST605, the algebraic connectivity calculation unit 150 outputs the algebraic connectivity and its gradient vector. Next, in step ST606, the movement control planning unit 160 outputs the movement control information.
 移動制御装置100は、ステップST606の後、当該フローチャートの処理を終了し、ステップST601に戻って当該フローチャートの処理を繰り返して遂行する。 After step ST606, the movement control device 100 ends the processing of the flowchart, returns to step ST601, and repeats the processing of the flowchart.
 以上のように、移動制御装置100は、複数の自律的に移動する移動体10が協調して作業を遂行する移動体協調システム1における各移動体10に搭載される移動制御装置100であって、移動体10である第1移動体の位置を示す第1移動体位置情報を取得する第1移動体位置取得部110と、第1移動体が所属するネットワークに存在する、第1移動体以外の他移動体から位置情報を取得する他移動体位置取得部120と、第1移動体位置出力部130と、作業遂行ベクトル算出部140と、代数的連結度算出部150と、移動制御計画部160と、を備えた。 As described above, the movement control device 100 is a movement control device 100 mounted on each moving body 10 in the moving body cooperation system 1 in which a plurality of autonomously moving moving bodies 10 cooperate to perform work. , Other than the first moving body position acquisition unit 110 that acquires the position information of the first moving body indicating the position of the first moving body, which is the moving body 10, and the first moving body existing in the network to which the first moving body belongs. The other moving body position acquisition unit 120 that acquires position information from the other moving body, the first moving body position output unit 130, the work execution vector calculation unit 140, the algebraic connection degree calculation unit 150, and the movement control planning unit. With 160.
 このように構成することにより、移動制御装置100は、ネットワークの連結性を保つという制約の下で作業を実施することができる。 With this configuration, the mobile control device 100 can perform work under the constraint of maintaining network connectivity.
 なお、本開示は、本開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the present disclosure, the present disclosure allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component in each embodiment. be.
 本開示技術に係る移動制御装置は、移動体協調システムに適用することができる。 The movement control device according to the present disclosure technology can be applied to a mobile coordination system.
 1 移動体協調システム、10、10-1、10-2、10A~10E 移動体、11 駆動装置、12 位置取得装置、13 通信装置、100 移動制御装置、110 第1移動体位置取得部、120 他移動体位置取得部、130 第1移動体位置出力部、140 作業遂行ベクトル算出部、150 代数的連結度算出部、160 移動制御計画部、501 プロセッサ、502 メモリ、503 処理回路、Q 領域。 1 mobile coordination system, 10,10-1, 10-2, 10A-10E mobile, 11 drive device, 12 position acquisition device, 13 communication device, 100 move control device, 110 first mobile body position acquisition unit, 120 Other moving body position acquisition unit, 130 first moving body position output unit, 140 work execution vector calculation unit, 150 algebraic connectivity calculation unit, 160 movement control planning unit, 501 processor, 502 memory, 503 processing circuit, Q area.

Claims (9)

  1.  複数の自律的に移動する移動体が協調して作業を遂行するように前記各移動体を制御する移動制御装置であって、
     全領域を分けて前記移動体ごとに割当領域を決定し、前記割当領域の重心を決定し、前記各移動体と前記割当領域の重心との距離を決定し、前記移動体ごとに前記割当領域の重心との距離を減少させる方向を算出し、
     移動体群の重心、前記全領域の重心、及び前記移動体群の重心と前記全領域の重心との距離を決定し、前記移動体ごとに前記全領域の重心との距離を減少させる方向を算出し、
     前記二つの方向を線形結合してなる作業遂行ベクトルを前記移動体ごとに算出する作業遂行ベクトル算出部と、
     ネットワークの連結度合いを示す指標である代数的連結度と、代数的連結度の勾配ベクトルとを算出する代数的連結度算出部と、を備え、
     前記移動体が前記作業遂行ベクトルの方向に移動してもまだネットワークが連結である場合、当該作業遂行ベクトルの方向に前記移動体を制御し、移動したらネットワークが連結でなくなってしまう場合、ネットワークの連結度が不変若しくは増加する方向のうち、前記割当領域の重心との距離が減少するものを選択して制御することを特徴とする移動制御装置。
    A movement control device that controls each of the moving bodies so that a plurality of autonomously moving moving bodies perform work in cooperation with each other.
    All areas are divided, the allocated area is determined for each moving body, the center of gravity of the allocated area is determined, the distance between each moving body and the center of gravity of the allocated area is determined, and the allocated area is determined for each moving body. Calculate the direction to reduce the distance from the center of gravity of
    The direction in which the center of gravity of the moving body group, the center of gravity of the entire region, and the distance between the center of gravity of the moving body group and the center of gravity of the entire region are determined, and the distance from the center of gravity of the entire region is reduced for each moving body is determined. Calculate and
    A work execution vector calculation unit that calculates a work execution vector formed by linearly combining the two directions for each moving body, and a work execution vector calculation unit.
    It is equipped with an algebraic connectivity calculation unit that calculates an algebraic connectivity index that indicates the degree of network connectivity and an algebraic connectivity gradient vector.
    If the moving body moves in the direction of the work performance vector but the network is still connected, the moving body is controlled in the direction of the work performance vector, and if the moving body is moved, the network is no longer connected. A movement control device, characterized in that, among the directions in which the degree of connection does not change or increases, the one in which the distance from the center of gravity of the allocated area decreases is selected and controlled.
  2.  前記割当領域は、前記全領域に配置された複数の前記移動体の位置を母点として、前記全領域上の他の点がどの前記移動体に近いかによって領域分けされたボロノイ図であることを特徴とする請求項1に記載の移動制御装置。 The allocated area is a Voronoi diagram in which the positions of a plurality of the moving bodies arranged in the entire area are used as a mother point and the other points on the entire area are divided into areas according to which of the moving bodies is close to. The movement control device according to claim 1.
  3.  前記割当領域は、前記移動体が移動すると動的に変化する前記ボロノイ図であることを特徴とする請求項2に記載の移動制御装置。 The movement control device according to claim 2, wherein the allocated area is the Voronoi diagram that dynamically changes when the moving body moves.
  4.  前記割当領域の重心は、前記割当領域上の各点に対して重付けをして計算する重心であって、
     前記重付けは、前記各点が作業を実施する点であるか否かで異なった重みとし、さらに前記各点が作業を実施する点である場合、作業を既に行ったかまだ行っていないかによっても異なった重みとすることを特徴とする請求項1に記載の移動制御装置。
    The center of gravity of the allocated area is a center of gravity calculated by weighting each point on the allocated area.
    The weighting has different weights depending on whether or not each of the points is a point where the work is performed, and when each of the points is a point where the work is performed, it depends on whether the work has already been performed or has not been performed yet. The movement control device according to claim 1, wherein the weights are different from each other.
  5.  前記全領域の重心は、前記全領域上の各点に対して重付けをして計算する重心であって、
     前記重付けは、前記各点が作業を実施する点であるか否かで異なった重みとし、さらに前記各点が作業を実施する点である場合、作業を既に行ったかまだ行っていないかによっても異なった重みとすることを特徴とする請求項1に記載の移動制御装置。
    The center of gravity of the entire region is a center of gravity calculated by weighting each point on the entire region.
    The weighting has different weights depending on whether or not each of the points is a point where the work is performed, and when each of the points is a point where the work is performed, it depends on whether the work has already been performed or has not been performed yet. The movement control device according to claim 1, wherein the weights are different from each other.
  6.  前記移動体ごとに算出する前記作業遂行ベクトルが、数式1で表される評価関数Jの減少を目的とするベクトルを構成要素として含むことを特徴とする請求項1記載の移動制御装置。 The movement control device according to claim 1, wherein the work execution vector calculated for each moving body includes a vector for the purpose of reducing the evaluation function J represented by the mathematical formula 1 as a component.
  7.  前記移動体ごとに算出する前記作業遂行ベクトルが、数式1で表される評価関数Jを当該移動体の位置で偏微分したものを構成要素として含むことを特徴とする請求項1記載の移動制御装置。 The movement control according to claim 1, wherein the work execution vector calculated for each moving body includes the evaluation function J represented by the mathematical expression 1 partially differentiated with respect to the position of the moving body as a component. Device.
  8.  前記移動体ごとに算出する前記作業遂行ベクトルが、前記全領域の重心を始点として、前記移動体群の重心を指すベクトルの定数倍を構成要素として含むことを特徴とする請求項1記載の移動制御装置。 The movement according to claim 1, wherein the work execution vector calculated for each moving body includes, starting from the center of gravity of the entire region, a constant multiple of a vector pointing to the center of gravity of the moving body group as a component. Control device.
  9.  複数の自律的に移動する移動体が協調して作業を遂行するように各移動体を制御する移動制御装置の移動制御方法であって、前記移動制御装置は、
     全領域を分けて前記移動体ごとに割当領域を決定し、前記割当領域の重心を決定し、前記各移動体と前記割当領域の重心との距離を決定し、前記移動体ごとに前記割当領域の重心との距離を減少させる方向を算出し、
     移動体群の重心、前記全領域の重心、及び前記移動体群の重心と前記全領域の重心との距離を決定し、前記移動体ごとに前記全領域の重心との距離を減少させる方向を算出し、
     前記二つの方向を線形結合してなる作業遂行ベクトルを前記移動体ごとに算出し、
     前記移動体が前記作業遂行ベクトルの方向に移動してもまだネットワークが連結である場合、当該作業遂行ベクトルの方向に前記移動体を制御し、移動したらネットワークが連結でなくなってしまう場合、ネットワークの連結度が不変若しくは増加する方向のうち、前記割当領域の重心との距離が減少するものを選択して制御することを特徴とする移動制御方法。
    A movement control method for a movement control device that controls each moving body so that a plurality of autonomously moving moving bodies perform work in cooperation with each other.
    All areas are divided, the allocated area is determined for each moving body, the center of gravity of the allocated area is determined, the distance between each moving body and the center of gravity of the allocated area is determined, and the allocated area is determined for each moving body. Calculate the direction to reduce the distance from the center of gravity of
    The direction in which the center of gravity of the moving body group, the center of gravity of the entire region, and the distance between the center of gravity of the moving body group and the center of gravity of the entire region are determined, and the distance from the center of gravity of the entire region is reduced for each moving body is determined. Calculate and
    A work execution vector formed by linearly combining the two directions is calculated for each moving body.
    If the moving body moves in the direction of the work performance vector but the network is still connected, the moving body is controlled in the direction of the work performance vector, and if the moving body is moved, the network is no longer connected. A movement control method comprising selecting and controlling a direction in which the degree of connection does not change or increases and the distance from the center of gravity of the allocated area decreases.
PCT/JP2020/031922 2020-08-25 2020-08-25 Movement control device and movement control method WO2022044098A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022544916A JP7175430B2 (en) 2020-08-25 2020-08-25 MOVEMENT CONTROL DEVICE AND MOVEMENT CONTROL METHOD
PCT/JP2020/031922 WO2022044098A1 (en) 2020-08-25 2020-08-25 Movement control device and movement control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031922 WO2022044098A1 (en) 2020-08-25 2020-08-25 Movement control device and movement control method

Publications (1)

Publication Number Publication Date
WO2022044098A1 true WO2022044098A1 (en) 2022-03-03

Family

ID=80354825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031922 WO2022044098A1 (en) 2020-08-25 2020-08-25 Movement control device and movement control method

Country Status (2)

Country Link
JP (1) JP7175430B2 (en)
WO (1) WO2022044098A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193578A1 (en) * 2017-04-20 2018-10-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path establishment method, information processing device, program and recording medium
JP2019074918A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Control device, moving body, and distribution control program for moving body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193578A1 (en) * 2017-04-20 2018-10-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Flight path establishment method, information processing device, program and recording medium
JP2019074918A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Control device, moving body, and distribution control program for moving body

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BULLO F., CORTES J., KARATAS T., MARTINEZ S.: "Coverage Control for Mobile Sensing Networks", IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, IEEE INC, NEW YORK., US, vol. 20, no. 2, 1 April 2004 (2004-04-01), US , pages 243 - 255, XP011110433, ISSN: 1042-296X, DOI: 10.1109/TRA.2004.824698 *
SHOTA KAWAJIRI, KAZUKI HIROSHIMA, MASASHI SHIRAISHI: "A-10-3 Distributed Control by Virtual Force for Search and Tracking under Communication Constraint", PROCEEDINGS OF THE 2019 IEICE ENGINEERING SCIENCES SOCIETY/NOLTA SOCIETY CONFERENCE, 10 September 2019 (2019-09-10) - 13 September 2019 (2019-09-13), JP , pages 73, XP009534944, ISSN: 2189-700X *
SILIGARDI LUCA; PANERATI JACOPO; KAUFMANN MARCEL; MINELLI MARCO; GHEDINI CINARA; BELTRAME GIOVANNI; SABATTINI LORENZO: "Robust Area Coverage with Connectivity Maintenance", 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE, 20 May 2019 (2019-05-20), pages 2202 - 2208, XP033593523, DOI: 10.1109/ICRA.2019.8793555 *
STERGIOPOULOS YIANNIS, KANTAROS YIANNIS, TZES ANTHONY: "Distributed Control of Mobile Sensor Networks under RF Connectivity Constraints", INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, vol. 8, no. 6, 1 June 2012 (2012-06-01), pages 741821, XP055910327, ISSN: 1550-1477, DOI: 10.1155/2012/741821 *
YUAN WANMAI, GANGANATH NUWAN, CHENG CHI-TSUN, QING GUO, LAU FRANCIS C. M.: "Semi-Flocking-Controlled Mobile Sensor Networks for Dynamic Area Coverage and Multiple Target Tracking", IEEE SENSORS JOURNAL, IEEE, USA, vol. 18, no. 21, 1 November 2018 (2018-11-01), USA, pages 8883 - 8892, XP055910325, ISSN: 1530-437X, DOI: 10.1109/JSEN.2018.2863051 *

Also Published As

Publication number Publication date
JP7175430B2 (en) 2022-11-18
JPWO2022044098A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
Chen et al. Formation tracking and attitude synchronization control of underactuated ships along closed orbits
WO2018105599A1 (en) Control device, control method, and program recording medium
CN109241552A (en) A kind of underwater robot motion planning method based on multiple constraint target
JP6321905B2 (en) Joint system control method, storage medium, and control system
Wang et al. Improved quantum particle swarm optimization algorithm for offline path planning in AUVs
CN110673649A (en) Unmanned aerial vehicle formation consistency control method, system and device under time-varying channel based on topology optimization and storage medium
Cai et al. An integrated localization and control framework for multi-agent formation
Slotine et al. Robust robot control with bounded input torques
CN107856035A (en) A kind of robustness dynamic motion method based on intensified learning and whole body controller
Sverdrup-Thygeson et al. Kinematic singularity avoidance for robot manipulators using set-based manipulability tasks
WO2022044098A1 (en) Movement control device and movement control method
WO2022199059A1 (en) Control method and apparatus for robotic arm, and operation control device and readable storage medium
Hu et al. Optimal path planning for mobile manipulator based on manipulability and localizability
Pham et al. A multi-robot, cooperative, and active slam algorithm for exploration
KR101297607B1 (en) Method and system for robust adaptive control of multiple robots for moving target tracking and capturing
Lv et al. A collision-free planning and control framework for a biomimetic underwater vehicle in dynamic environments
WO2021205521A1 (en) Movement control device and movement control method
Nieuwenhuisen et al. Local multiresolution path planning in soccer games based on projected intentions
CN116027796A (en) Multi-autonomous underwater robot formation control system and method
JP4281473B2 (en) Target tracking device
JP2019084665A (en) Robot control device, robot, robot system and program
Steffens et al. Multiresolution path planning in dynamic environments for the standard platform league
Saito et al. Performance evaluation of a DQN-based autonomous aerial vehicle mobility control method in an indoor single-path environment with a staircase
JP2007071600A (en) Track generation system, its error covariance matrix initial value setting device, track generation method, and its error covariance matrix initial value setting method
Hoeller et al. Offroad navigation using adaptable motion patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951353

Country of ref document: EP

Kind code of ref document: A1