WO2022044062A1 - Molded article production method - Google Patents

Molded article production method Download PDF

Info

Publication number
WO2022044062A1
WO2022044062A1 PCT/JP2020/031761 JP2020031761W WO2022044062A1 WO 2022044062 A1 WO2022044062 A1 WO 2022044062A1 JP 2020031761 W JP2020031761 W JP 2020031761W WO 2022044062 A1 WO2022044062 A1 WO 2022044062A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
liquid
molded product
resin
pulverized
Prior art date
Application number
PCT/JP2020/031761
Other languages
French (fr)
Japanese (ja)
Inventor
宏紀 長谷川
Original Assignee
株式会社エイエムジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイエムジー filed Critical 株式会社エイエムジー
Priority to PCT/JP2020/031761 priority Critical patent/WO2022044062A1/en
Publication of WO2022044062A1 publication Critical patent/WO2022044062A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed

Definitions

  • Patent Document 1 a technique has been proposed in which a fragrance is adsorbed on a porous powder to be powdered and kneaded into a resin.
  • the present invention provides a method for producing a molded product in which the difference between the amount of liquid carried on the carrier and the amount of liquid contained in the final product is small.
  • a step of preparing a carrier for supporting a liquid a step of supporting the liquid on the carrier to generate a liquid carrier, and a step of forming a particle size of the liquid carrier as required.
  • Molding including a step of preparing a crushed carrier, a step of mixing the crushed carrier and a powdery resin to generate a mixed powder, and a step of applying heat to the mixed powder for molding. It is a manufacturing method of the product.
  • the step of kneading the pulverized carrier into the resin in the molding machine is unnecessary. Since the molding machine does not require a step of kneading the crushed carrier into the resin and is a powdery resin, the molding temperature is relatively low as compared with the case of using a pelletized resin. In addition, the molding time is relatively short. Therefore, since the amount of liquid that evaporates in the molding step is relatively small, the difference between the amount of liquid carried on the carrier and the amount of liquid contained in the final product is small.
  • the second invention is a method for producing a molded product in which the pulverized carrier and the powdery resin have substantially the same density in the configuration of the first invention.
  • the pulverized carrier and the powdery resin have substantially the same density, the pulverized carrier is uniformly dispersed in the powdery resin in the mixed powder.
  • the carrier is selected from an inorganic material containing porous calcium silicate or an organic material containing a resin or waxy substance. This is a method for manufacturing a molded product.
  • the manufacturing method of the molded product is as follows. First, as shown in FIG. 1, a step of preparing a carrier 10 for supporting a liquid is carried out.
  • the carrier 10 is porous calcium silicate. Specifically, it is a gyrolite-type calcium silicate having a petal-like structure.
  • Fluorite registered trademark manufactured by Tomita Pharmaceutical Co., Ltd. can be used.
  • the carrier 10 may use an inorganic porous material other than the porous calcium silicate.
  • a step of preparing the liquid 20 to be supported on the carrier 10 is carried out.
  • the liquid 20 is stored in the container 50.
  • the liquid 20 is a fragrance.
  • the liquid 20 is not limited to the fragrance, and may be a deodorant, a repellent, an insecticide, a fragrance oil, a machine oil or other liquid.
  • a deodorant e.g., a benzyl alcohol, a benzyl ether, a benzyl ether, a benzyl ether, a benzyl ether, a benzyl ether, a benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl, benzyl sulfate, benzyl sulfate, benzyl sulfate, benzyl sulfate, benzyl sulfate, benzyl sulfate, benzyl sulfate, benzyl sulfate,
  • a step of bringing the carrier 10 into contact with the liquid 20 and supporting the liquid 20 on the carrier 10 to generate the liquid carrier 12 is carried out.
  • the weight of the liquid 20 is 1.25 times or more and 4 times or less the weight of the carrier 10.
  • the particle size of the liquid carrier 12 is adjusted as necessary, and a step of producing the pulverized carrier 14 is carried out.
  • the particle size is adjusted, for example, by pulverizing the liquid carrier 12.
  • the pulverized carrier 14 is obtained by pulverizing the liquid carrier 12 to have a particle size smaller than that of the liquid carrier 12.
  • the particle size is sufficiently small without crushing the liquid carrier 12, so that the step of adjusting the particle size is It may be omitted.
  • the liquid carrier 12 becomes the pulverized carrier 14 as it is.
  • the maximum value (d50) of the particle size distribution of the pulverized carrier 14 is used as the size of the pulverized carrier 14.
  • the diameter corresponding to d50 is defined as the size of the pulverized carrier 14.
  • the definition of diameter is the equivalent diameter of a sphere.
  • the diameter is measured using, for example, a laser diffraction type particle size distribution measuring device.
  • the diameter may be an average particle diameter.
  • the diameter of the pulverized carrier 14 is defined in a predetermined range, for example, 10 micrometers ( ⁇ m) or more and less than 100 micrometers, preferably 10 micrometers or more and less than 80 micrometers, and more preferably. It is 10 micrometers or more and 40 micrometers or less, and more preferably 10 micrometers or more and 20 micrometers or less.
  • the particle size distribution of the powdery resin 30 is not limited, but in the present embodiment, it is substantially the same as the particle size distribution of the pulverized carrier 14.
  • the resin 30 has a relatively small molecular weight and a melting point of 40 degrees or higher.
  • polyethylene glycol and polypropylene glycol are examples of polyethylene glycol and polypropylene glycol.
  • a step of mixing the pulverized carrier 14 and the powdery resin 30 to produce the mixed powder 40 is carried out.
  • the pulverized carrier 14 is uniformly dispersed in the resin 30.
  • the mixed powder 40 is put into an injection molding machine to manufacture the molded product 100 shown in FIG.
  • the mixed powder 40 since the pulverized carrier 14 is uniformly dispersed in the resin 30, it is not necessary to uniformly disperse the pulverized carrier 14 in the resin 30 in the injection molding step.
  • the mixed powder 40 is a powder having a diameter smaller than the general diameter of the resin pellets, the melting time is short. Therefore, the number of contacts with the screw in the injection molding machine and the molding time are significantly shorter than in the case of using the pellet-shaped resin. As a result, the difference between the amount of the added fragrance 20 (see FIG. 3) and the amount of the fragrance 20 contained in the molded product 100 is small.
  • FIG. 9 is an enlarged conceptual diagram of the wall 100a of the molded product 100. As shown in FIG. 9, in the molded product 100, the pulverized carrier 14 is uniformly dispersed in the resin 30.
  • FIG. 10 is an experimental result for confirming the amount of fragrance added and the amount of fragrance in the molded product.
  • Comparative Example 1 when only polypropylene glycol (PP) is molded (hereinafter referred to as "Comparative Example 1"), when polypropylene glycol (PP) and calcium silicate (Calcium silicate) are molded (hereinafter, “Comparative Example”). 2 ”) indicates the input weight and the weight of the molded product.
  • Comparative Example 1 the increase in average weight is 0.03% (%).
  • Comparative Example 2 the increase in average weight is ⁇ 0.7% (%). That is, in Comparative Examples 1 and 2, the increase / decrease in the average weight is less than 1%.
  • the pulverized carrier 14 and the powdery resin 30 may be configured as having substantially the same density. Thereby, in the mixed powder 40, the dispersion of the pulverized carrier 14 can be more easily made uniform.
  • the carrier may be selected from organic materials containing a resin or a waxy substance. In the case of a carrier composed of an organic material, the liquid is blended in an amount of 1 times or less based on the weight of the carrier.
  • the method for producing a molded product of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • each of the above embodiments can be appropriately combined as long as there is no technical contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Fats And Perfumes (AREA)

Abstract

The present invention provides a molded article production method with which there is only a small discrepancy between the amount of liquid held in a holding body and the amount of the liquid contained in the final product. This molded article production method comprises the step of preparing a holding body 10 for holding the liquid 20, the step of causing the holding body 10 to hold the liquid 20 to generate a liquid-holding body 12, the step of adjusting as needed the particle diameter of the liquid-holding body 12 to generate a crushed holding body 14, the step of mixing the crushed holding body 14 with a resin 30 in powder form to generate a mixed powder 40, and the step of subjecting the mixed powder 40 to heating and forming.

Description

成形品の製造方法Manufacturing method of molded products
 香料などの液体を含む成形品の製造方法に関する。 Regarding the manufacturing method of molded products containing liquids such as fragrances.
 従来、香料を多孔質粉体に吸着させて粉末化し、樹脂に練り込む技術が提案されている(例えば、特許文献1)。 Conventionally, a technique has been proposed in which a fragrance is adsorbed on a porous powder to be powdered and kneaded into a resin (for example, Patent Document 1).
特開平10-179707号公報Japanese Unexamined Patent Publication No. 10-179707
 上述の技術においては、香料を構成する単品香料について、数多くの単品香料の中から比較的蒸気圧が低く、成形時の加熱による揮散や変化の影響の少ない耐熱性の優れた単品香料を選ぶという工夫がなされている。しかし、上記の技術においては、投入した香料の量に対して、最終的な成形品に含まれる香料の量が不十分である。このため、上記特許文献1においては、投入した香料の量に対して、最終的な成形品に含まれる香料の量についての記載はない。 In the above-mentioned technology, for the single fragrances that make up the fragrance, a single fragrance with relatively low vapor pressure and excellent heat resistance that is less affected by volatilization and changes due to heating during molding is selected from among many single fragrances. It has been devised. However, in the above technique, the amount of fragrance contained in the final molded product is insufficient with respect to the amount of fragrance added. Therefore, in Patent Document 1, there is no description about the amount of fragrance contained in the final molded product with respect to the amount of fragrance added.
 本発明は、上記を踏まえて、担持体に担持させた液体の量と、最終的な製品に含まれる液体の量の相違が小さい成形品の製造方法を提供するものである。 Based on the above, the present invention provides a method for producing a molded product in which the difference between the amount of liquid carried on the carrier and the amount of liquid contained in the final product is small.
 第一の発明は、液体を担持するための担持体を準備する工程と、前記担持体に前記液体を担持させ、液体担持体を生成する工程と、前記液体担持体の粒子径を必要に応じて調整し、粉砕担持体を準備する工程と、前記粉砕担持体と粉末状の樹脂を混合し、混合粉を生成する工程と、前記混合紛に熱を加えて成形する工程と、を有する成形品の製造方法である。 In the first invention, a step of preparing a carrier for supporting a liquid, a step of supporting the liquid on the carrier to generate a liquid carrier, and a step of forming a particle size of the liquid carrier as required. Molding including a step of preparing a crushed carrier, a step of mixing the crushed carrier and a powdery resin to generate a mixed powder, and a step of applying heat to the mixed powder for molding. It is a manufacturing method of the product.
 第一の発明の構成によれば、粉砕担持体と粉末状の樹脂を混合して混合紛を生成するから、成形機の中において、樹脂中に粉砕担持体を練り込む工程が不要である。成形機は、樹脂中に粉砕担持体を練り込む工程が不要であり、また、粉末状の樹脂であるから、ペレット状の樹脂を使用する場合に比べて、成形温度は相対的に低温で足り、また、成形時間も相対的に短時間で足りる。このため、成形工程において蒸発する液体の量が相対的に少ないから、担持体に担持させた液体の量と、最終的な製品に含まれる液体の量の相違が小さい。 According to the configuration of the first invention, since the pulverized carrier and the powdery resin are mixed to generate a mixed powder, the step of kneading the pulverized carrier into the resin in the molding machine is unnecessary. Since the molding machine does not require a step of kneading the crushed carrier into the resin and is a powdery resin, the molding temperature is relatively low as compared with the case of using a pelletized resin. In addition, the molding time is relatively short. Therefore, since the amount of liquid that evaporates in the molding step is relatively small, the difference between the amount of liquid carried on the carrier and the amount of liquid contained in the final product is small.
 第二の発明は、第一の発明の構成において、前記粉砕担持体と前記粉末状の樹脂とは、密度が実質的に等しい、成形品の製造方法である。 The second invention is a method for producing a molded product in which the pulverized carrier and the powdery resin have substantially the same density in the configuration of the first invention.
 第二の発明の構成によれば、前記粉砕担持体と前記粉末状の樹脂とは、密度が実質的に等しいから、混合紛において、粉砕担持体が粉末状の樹脂に均一に分散する。 According to the configuration of the second invention, since the pulverized carrier and the powdery resin have substantially the same density, the pulverized carrier is uniformly dispersed in the powdery resin in the mixed powder.
 第三の発明は、第一の発明または第二の発明の構成において、前記担持体は、多孔質ケイ酸カルシシウムを含む無機材料、または、樹脂または蝋質物質を含む有機材料から選択される、成形品の製造方法である。 A third aspect of the invention, in the configuration of the first invention or the second invention, the carrier is selected from an inorganic material containing porous calcium silicate or an organic material containing a resin or waxy substance. This is a method for manufacturing a molded product.
 本発明によれば、担持体に担持させた液体の量と、最終的な製品に含まれる液体の量の相違が小さい成形品の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a molded product in which the difference between the amount of liquid carried on the carrier and the amount of liquid contained in the final product is small.
本発明の実施形態にかかる成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of the molded article which concerns on embodiment of this invention. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の製造方法を概念的に示す図である。It is a figure which conceptually shows the manufacturing method of a molded article. 成形品の一例を示す概略図である。It is a schematic diagram which shows an example of a molded product. 成形品の構成を示す拡大概念図である。It is an enlarged conceptual diagram which shows the structure of a molded product. 実験結果を示す図である。It is a figure which shows the experimental result.
 以下、図面に基づき本発明の好適な実施形態を説明する。なお、当業者が適宜実施できる構成については説明を省略し、本発明の基本的な構成についてのみ説明する。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. The configuration that can be appropriately implemented by those skilled in the art will be omitted, and only the basic configuration of the present invention will be described.
 本実施形態において、成形品の製造方法は以下の通りである。まず、図1に示すように、液体を担持するための担持体10を準備する工程を実施する。担持体10は、多孔質ケイ酸カルシシウムである。具体的には、花弁状構造を持つジャイロライト型ケイ酸カルシウムである。例えば、富田製薬株式会社製のフローライト(FLORITE)(登録商標)を使用することができる。 In this embodiment, the manufacturing method of the molded product is as follows. First, as shown in FIG. 1, a step of preparing a carrier 10 for supporting a liquid is carried out. The carrier 10 is porous calcium silicate. Specifically, it is a gyrolite-type calcium silicate having a petal-like structure. For example, Fluorite (registered trademark) manufactured by Tomita Pharmaceutical Co., Ltd. can be used.
 なお、本実施形態とは異なり、担持体10は、多孔質ケイ酸カルシシウム以外の無機系の多孔質材料を使用してもよい。 Note that, unlike the present embodiment, the carrier 10 may use an inorganic porous material other than the porous calcium silicate.
 次に、図2に示すように、担持体10に担持させるための液体20を準備する工程を実施する。液体20は、容器50に格納されている。本実施形態において、液体20は、香料である。 Next, as shown in FIG. 2, a step of preparing the liquid 20 to be supported on the carrier 10 is carried out. The liquid 20 is stored in the container 50. In this embodiment, the liquid 20 is a fragrance.
 なお、液体20は、香料に限定されず、消臭剤、忌避剤、殺虫剤、香油、機械油その他の液体であってもよい。本実施形態の製造方法においては、液体の蒸気圧に制限はなく、常温常圧で液体であれば、どのようなものであっても適用可能である。 The liquid 20 is not limited to the fragrance, and may be a deodorant, a repellent, an insecticide, a fragrance oil, a machine oil or other liquid. In the production method of the present embodiment, there is no limitation on the vapor pressure of the liquid, and any liquid can be applied as long as it is a liquid at normal temperature and pressure.
 次に、図3に示すように、液体20に担持体10を接触させ、担持体10に液体20を担持させ、液体担持体12(図4参照)を生成する工程を実施する。液体20の重量は、担持体10の重量の1.25倍以上4倍以下である。 Next, as shown in FIG. 3, a step of bringing the carrier 10 into contact with the liquid 20 and supporting the liquid 20 on the carrier 10 to generate the liquid carrier 12 (see FIG. 4) is carried out. The weight of the liquid 20 is 1.25 times or more and 4 times or less the weight of the carrier 10.
 次に、図5に示すように、液体担持体12の粒子径を必要に応じて調整し、粉砕担持体14を生成する工程を実施する。粒子径の調整は、例えば、液体担持体12を粉砕することによって実施する。粉砕担持体14は、液体担持体12を粉砕して、液体担持体12よりも小さな粒子径にしたものである。 Next, as shown in FIG. 5, the particle size of the liquid carrier 12 is adjusted as necessary, and a step of producing the pulverized carrier 14 is carried out. The particle size is adjusted, for example, by pulverizing the liquid carrier 12. The pulverized carrier 14 is obtained by pulverizing the liquid carrier 12 to have a particle size smaller than that of the liquid carrier 12.
 なお、担持体10として、上述のフローライト(FLORITE)(登録商標)を使用する場合には、液体担持体12を粉砕しなくても十分に粒子径が小さいから、粒子径を調整する工程は省略してもよい。この場合、液体担持体12がそのまま粉砕担持体14となる。 When the above-mentioned Fluorite (registered trademark) is used as the carrier 10, the particle size is sufficiently small without crushing the liquid carrier 12, so that the step of adjusting the particle size is It may be omitted. In this case, the liquid carrier 12 becomes the pulverized carrier 14 as it is.
 粉砕担持体14の大きさとして、例えば、粉砕担持体14の粒度分布の極大値(d50)を使用する。d50に相当する直径を粉砕担持体14の大きさとする。直径の定義は球相当径とする。直径は、例えば、レーザ回折式粒度分布測定装置を使用して測定する。なお、本実施形態とは異なり、直径は平均粒子径としてもよい。 As the size of the pulverized carrier 14, for example, the maximum value (d50) of the particle size distribution of the pulverized carrier 14 is used. The diameter corresponding to d50 is defined as the size of the pulverized carrier 14. The definition of diameter is the equivalent diameter of a sphere. The diameter is measured using, for example, a laser diffraction type particle size distribution measuring device. In addition, unlike this embodiment, the diameter may be an average particle diameter.
 粉砕担持体14の直径は、所定範囲に規定されており、例えば、10マイクロメートル(μm)以上100マイクロメートル未満であり、望ましくは、10マイクロメートル以上80マイクロメートル未満であり、より望ましくは、10マイクロメートル以上40マイクロメートル以下であり、より望ましくは、10マイクロメートル以上20マイクロメートル以下である。 The diameter of the pulverized carrier 14 is defined in a predetermined range, for example, 10 micrometers (μm) or more and less than 100 micrometers, preferably 10 micrometers or more and less than 80 micrometers, and more preferably. It is 10 micrometers or more and 40 micrometers or less, and more preferably 10 micrometers or more and 20 micrometers or less.
 次に、図6に示すように、粉末状の樹脂30を準備する工程を実施する。粉末状の樹脂30の粒度分布に限定はないが、本実施形態においては、粉砕担持体14の粒度分布と実質的に等しい。樹脂30は、分子量が相対的に小さく、融点が40度以上のものを使用する。例えば、ポリエチレングリコール、ポリプロピレングリコールである。 Next, as shown in FIG. 6, a step of preparing the powdery resin 30 is carried out. The particle size distribution of the powdery resin 30 is not limited, but in the present embodiment, it is substantially the same as the particle size distribution of the pulverized carrier 14. The resin 30 has a relatively small molecular weight and a melting point of 40 degrees or higher. For example, polyethylene glycol and polypropylene glycol.
 次に、図7に示すように、粉砕担持体14と粉末状の樹脂30を混合し、混合粉40を生成する工程を実施する。混合紛40において、粉砕担持体14は、樹脂30に均一に分散している。 Next, as shown in FIG. 7, a step of mixing the pulverized carrier 14 and the powdery resin 30 to produce the mixed powder 40 is carried out. In the mixed powder 40, the pulverized carrier 14 is uniformly dispersed in the resin 30.
 次に、混合紛40に熱を加えて成形する工程を実施する。具体的には、混合紛40を射出成形機に投入し、図8に示す成形品100を製造する。ここで、混合粉40において、粉砕担持体14は樹脂30に均一に分散しているから、射出成形の工程において、粉砕担持体14を樹脂30に均一に分散させる必要なない。また、混合粉40は、樹脂ペレットの一般的な直径よりも小さな直径を有する粉であるから、溶融時間が短い。このため、ペレット状の樹脂を使用する場合に比べて、射出成型機内におけるスクリューとの接触回数、及び、成形時間は大幅に短い。これにより、投入した香料20(図3参照)の量と、成形品100に含まれる香料20の量の相違は小さい。 Next, a step of applying heat to the mixed powder 40 to form the mixture is carried out. Specifically, the mixed powder 40 is put into an injection molding machine to manufacture the molded product 100 shown in FIG. Here, in the mixed powder 40, since the pulverized carrier 14 is uniformly dispersed in the resin 30, it is not necessary to uniformly disperse the pulverized carrier 14 in the resin 30 in the injection molding step. Further, since the mixed powder 40 is a powder having a diameter smaller than the general diameter of the resin pellets, the melting time is short. Therefore, the number of contacts with the screw in the injection molding machine and the molding time are significantly shorter than in the case of using the pellet-shaped resin. As a result, the difference between the amount of the added fragrance 20 (see FIG. 3) and the amount of the fragrance 20 contained in the molded product 100 is small.
 図9は、成形品100の壁100aの拡大概念図である。図9に示すように、成形品100において、粉砕担持体14は、樹脂30に均一に分散している。 FIG. 9 is an enlarged conceptual diagram of the wall 100a of the molded product 100. As shown in FIG. 9, in the molded product 100, the pulverized carrier 14 is uniformly dispersed in the resin 30.
 図10は、投入した香料の量と成形品における香料の量を確認するための実験結果である。比較のために、ポリプロピレングリコール(PP)のみを成形した場合(以下、「比較例1」という。)、ポリプロピレングリコール(PP)及びケイ酸カルシウム(Calsium silicate)を成形した場合(以下、「比較例2」という。)の投入重量と成形品の重量を示す。図10に示すように、比較例1においては、平均の重量の増加が0.03パーセント(%)である。比較例2においては、平均の重量の増加が-0.7パーセント(%)である。すなわち、比較例1及び2において、平均重量の増減は1パーセント未満である。これに対して、ポリプロピレングリコール(PP)及びケイ酸カルシウム(Calsium silicate)に香料を加えた本実施例においては、平均重量の増加は-5.5%である。比較例1及び2と本実施例を総合的に評価すると、本実施例における重量の減少のほとんどは香料の減少である。そこで、平均重量の減少がすべて香料の減少であると仮定すると、投入した香料に対して、成形品における香料は、27.7%減少している。そして、成形品における香料の比率は15.3%である。例えば、特開昭56-20055号公報の技術においては、成形品における香料の割合は最大でも3%であるから、本実施例における成形品中の香料の割合は各段に大きいことがわかる。 FIG. 10 is an experimental result for confirming the amount of fragrance added and the amount of fragrance in the molded product. For comparison, when only polypropylene glycol (PP) is molded (hereinafter referred to as "Comparative Example 1"), when polypropylene glycol (PP) and calcium silicate (Calcium silicate) are molded (hereinafter, "Comparative Example"). 2 ”) indicates the input weight and the weight of the molded product. As shown in FIG. 10, in Comparative Example 1, the increase in average weight is 0.03% (%). In Comparative Example 2, the increase in average weight is −0.7% (%). That is, in Comparative Examples 1 and 2, the increase / decrease in the average weight is less than 1%. On the other hand, in this example in which fragrance was added to polypropylene glycol (PP) and calcium silicate (Calcium silicate), the increase in average weight was −5.5%. Comprehensively evaluating Comparative Examples 1 and 2 and this example, most of the weight loss in this example is a decrease in fragrance. Therefore, assuming that the decrease in average weight is all the decrease in fragrance, the fragrance in the molded product is reduced by 27.7% with respect to the added fragrance. The ratio of fragrance in the molded product is 15.3%. For example, in the technique of Japanese Patent Application Laid-Open No. 56-20055, the ratio of the fragrance in the molded product is 3% at the maximum, so that it can be seen that the ratio of the fragrance in the molded product in this example is extremely large.
 なお、本実施形態とは異なり、粉砕担持体14と粉末状の樹脂30とは、密度が実質的に等しいものとして構成してもよい。これにより、混合紛40において、粉砕担持体14の分散がより容易に均一化することができる。さらに、担持体として、樹脂または蝋質物質を含む有機材料から選択してもよい。有機材料で構成する担持体の場合には、液体は担持体の重量に対して1倍以下で配合する。 Note that, unlike the present embodiment, the pulverized carrier 14 and the powdery resin 30 may be configured as having substantially the same density. Thereby, in the mixed powder 40, the dispersion of the pulverized carrier 14 can be more easily made uniform. Further, the carrier may be selected from organic materials containing a resin or a waxy substance. In the case of a carrier composed of an organic material, the liquid is blended in an amount of 1 times or less based on the weight of the carrier.
 なお、本発明の成形品の製造方法は、上記実施形態に限らず、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。また、各上記実施形態は、技術的に矛盾を生じない限り、適宜、組み合わせることができる。 The method for producing a molded product of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. In addition, each of the above embodiments can be appropriately combined as long as there is no technical contradiction.
100  成形品
10 担持体
12 液体担持体
14 粉砕担持体
20 液体
30 樹脂
40 混合紛

 
100 Molded product 10 Carrier 12 Liquid carrier 14 Crushed carrier 20 Liquid 30 Resin 40 Mixed powder

Claims (3)

  1.  液体を担持するための担持体を準備する工程と、
     前記担持体に前記液体を担持させ、液体担持体を生成する工程と、
     前記液体担持体の粒子径を必要に応じて調整し、粉砕担持体を準備する工程と、
     前記粉砕担持体と粉末状の樹脂を混合し、混合粉を生成する工程と、
     前記混合紛に熱を加えて成形する工程と、
    を有する成形品の製造方法。
    The process of preparing a carrier for supporting a liquid, and
    A step of supporting the liquid on the carrier to generate a liquid carrier, and
    The step of adjusting the particle size of the liquid carrier as necessary to prepare the pulverized carrier, and
    The step of mixing the pulverized carrier and the powdery resin to generate a mixed powder, and
    The process of applying heat to the mixed powder to form the mixture,
    A method for manufacturing a molded product having.
  2.  前記粉砕担持体と前記粉末状の樹脂とは、密度が実質的に等しい、請求項1に記載の成形品の製造方法。 The method for producing a molded product according to claim 1, wherein the pulverized carrier and the powdery resin have substantially the same density.
  3.  前記担持体は、多孔質ケイ酸カルシシウムを含む無機材料、または、樹脂または蝋質物質を含む有機材料から選択される、
    請求項1または請求項2に記載の成形品の製造方法。

     
    The carrier is selected from an inorganic material containing porous calcium silicate or an organic material containing a resin or waxy substance.
    The method for manufacturing a molded product according to claim 1 or 2.

PCT/JP2020/031761 2020-08-24 2020-08-24 Molded article production method WO2022044062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031761 WO2022044062A1 (en) 2020-08-24 2020-08-24 Molded article production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031761 WO2022044062A1 (en) 2020-08-24 2020-08-24 Molded article production method

Publications (1)

Publication Number Publication Date
WO2022044062A1 true WO2022044062A1 (en) 2022-03-03

Family

ID=80352889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031761 WO2022044062A1 (en) 2020-08-24 2020-08-24 Molded article production method

Country Status (1)

Country Link
WO (1) WO2022044062A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241422A (en) * 1996-03-08 1997-09-16 Asahi Chem Ind Co Ltd Production of resin composition containing liquid additive
JP2010241996A (en) * 2009-04-08 2010-10-28 Kaneka Corp Powder for powder molding and molding obtained therefrom
JP2011020355A (en) * 2009-07-16 2011-02-03 Tokai Kogyo Co Ltd Chip molding and method of manufacturing the same
JP2018165331A (en) * 2017-03-28 2018-10-25 クオドラントポリペンコジャパン株式会社 Resin molding and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241422A (en) * 1996-03-08 1997-09-16 Asahi Chem Ind Co Ltd Production of resin composition containing liquid additive
JP2010241996A (en) * 2009-04-08 2010-10-28 Kaneka Corp Powder for powder molding and molding obtained therefrom
JP2011020355A (en) * 2009-07-16 2011-02-03 Tokai Kogyo Co Ltd Chip molding and method of manufacturing the same
JP2018165331A (en) * 2017-03-28 2018-10-25 クオドラントポリペンコジャパン株式会社 Resin molding and method for producing the same

Similar Documents

Publication Publication Date Title
Alison et al. 3D printing of sacrificial templates into hierarchical porous materials
Badruddoza et al. Core–shell composite hydrogels for controlled nanocrystal formation and release of hydrophobic active pharmaceutical ingredients
Jain et al. Fabrication of Polyethylene Glycol‐Based Hydrogel Microspheres Through Electrospraying
EP1396520B1 (en) Process for producing foamed article and the foamed article
WO2002042364A2 (en) Plastic films containing a fragrance and an odor barrier material
CN101861361A (en) Glass-containing molding composition and process for production of the same
Bai et al. Processing and characterization of a polylactic acid/nanoclay composite for laser sintering
US20200345882A1 (en) Aerogel carrying active material and composite of hydrogel and the aerogel
WO2022044062A1 (en) Molded article production method
Geisendorfer et al. Effect of polymer binder on the synthesis and properties of 3D-printable particle-based liquid materials and resulting structures
Ouyang et al. Preparation and properties of poly (MMA-co-TMPTA)/fragrance microcapsules
Zhou et al. Tuning the Morphology of Spray‐Dried Supraparticles: Effects of Building Block Size and Concentration
Angastiniotis et al. Controlling the optical properties of nanostructured oxide-based polymer films
Scicolone et al. Effect of liquid addition on the bulk and flow properties of fine and coarse glass beads
JP2018500087A (en) How to freshen the air
Canziani et al. Biodegradable polylactide supraparticle powders with functional additives for biomedical additive manufacturing
Ippolito et al. Influence of calcium carbonate on polyamide 12 regarding melting, formability and crystallization properties
Haghtalab et al. Viscoelastic properties of nanosilica‐filled polypropylene in the molten state: Effect of particle size
Li et al. Double emulsions of immiscible polymer blends stabilized by interfacially active nanoparticles
Sa'ude et al. Effect of powder loading and binder materials on mechanical properties in Iron-ABS injection molding process
Hanemann Nanoparticle surface polarity influence on the flow behavior of polymer matrix composites
JP3684463B2 (en) Zeolite powder masterbatch and method for producing the same
KR101644606B1 (en) Method for preparing film radiating far infrared rays
JPH1135077A (en) Deodorizing film material
KR102655854B1 (en) Composition for foaming tray including chaff powders and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP