WO2022042608A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022042608A1
WO2022042608A1 PCT/CN2021/114554 CN2021114554W WO2022042608A1 WO 2022042608 A1 WO2022042608 A1 WO 2022042608A1 CN 2021114554 W CN2021114554 W CN 2021114554W WO 2022042608 A1 WO2022042608 A1 WO 2022042608A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
frame
time resource
buffered data
data volume
Prior art date
Application number
PCT/CN2021/114554
Other languages
English (en)
French (fr)
Other versions
WO2022042608A9 (zh
Inventor
李云波
郭宇宸
淦明
黄国刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023512148A priority Critical patent/JP7513238B2/ja
Priority to AU2021334701A priority patent/AU2021334701B2/en
Priority to KR1020237008822A priority patent/KR20230051260A/ko
Priority to CA3192800A priority patent/CA3192800A1/en
Priority to MX2023002473A priority patent/MX2023002473A/es
Priority to EP21860443.7A priority patent/EP4199567A4/en
Publication of WO2022042608A1 publication Critical patent/WO2022042608A1/zh
Publication of WO2022042608A9 publication Critical patent/WO2022042608A9/zh
Priority to US18/176,263 priority patent/US20230209518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • the Institute of Electrical and Electronic Engineers (IEEE) 802.11be standard may support some special application scenarios, such as scheduling (Scheduled) peer-to-peer (Peer-to-Peer, P2P) Scenarios, coordinated time division multiple access (CO-TDMA) scenarios, etc.
  • scheduling Scheduled
  • peer-to-peer P2P
  • CO-TDMA coordinated time division multiple access
  • multiple stations are connected through P2P technology to form a small network, so that multiple STAs can communicate directly with each other.
  • An access point (access point) AP can allocate time resources to one STA, so that the STA can communicate with other STAs within the allocated time resources.
  • Two AP roles are defined in the CO-TDMA scenario: a sharing (sharing) AP and a shared (shared) AP.
  • the sharing AP obtains the TXOP, it can allocate a part of the time resource in the TXOP to the shared AP, so that the shared AP uses the time resource to communicate with the station associated with the shared AP.
  • the present application provides a communication method for implementing one type of radio frame to support different usage requirements of time resources in multiple application scenarios, so that the radio frame has universality.
  • a first aspect provides a communication method, the method includes: a first device generates a first frame, the first frame includes a first field and a second field, the first field is used to indicate the duration of the first time resource, and the second field
  • the purpose of the first time resource includes: the first time resource is used to transmit a single-user physical layer protocol data unit (PHY protocol data unit, PPDU), or the first time resource is used to perform Frame interaction; the first device sends the first frame to the second device.
  • PHY protocol data unit PHY protocol data unit
  • the first frame includes a first field and a second field.
  • the first field is used to indicate the duration of the first time resource
  • the second field may be used to indicate that the first time resource is used to transmit a single-user PPDU, or the first field is used to indicate the duration of the first time resource.
  • the second field is used to indicate that the first time resource is used for frame interaction.
  • the first frame can be applied to scenes with different uses of temporal resources, so that the first frame has generality.
  • the duration of the single-user PPDU is equal to the duration of the first time resource. This ensures that multi-link devices that do not support STR can align single-user PPDUs sent on different links.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for the cooperative device to perform frame interaction, and the cooperative device and the first device do not belong to the same basic service set ( basic service set, BSS); when the second field is set to a third preset value, the third field is used to determine that the first time resource is used for frame interaction between end-to-end stations.
  • the first frame further includes a trigger frame type field, and the value of the trigger frame type field is any one of 8-15.
  • the first frame is a basic type (basic) trigger frame
  • the B63 bit in the basic trigger frame is set to 1.
  • the first field and the second field are located in the common information field or the user information field of the first frame.
  • the first frame also includes an A-control (control) field
  • the A-control field includes a control identification field and a control information field
  • the value of the control identification field is any one of 7-14
  • the first The field and the second field are in the control information field.
  • the first frame also includes an A-control field using trigger response scheduling (TRS), the A-control field includes a TRS control field, and the TRS control field includes a first field and a second field,
  • TRS trigger response scheduling
  • the above communication method further includes: the first device receives a response frame sent by the second device, the response frame includes a third field, and the third field is used to indicate whether the second device accepts the first time resource.
  • the above-mentioned communication method further includes: the first device receives the first radio frame sent by the second device at the first time resource, and sends the modulation and coding strategy (modulation and coding scheme, MCS) used by the radio frame. Less than or equal to the maximum MCS supported by the first device. In this way, the first device can parse the first radio frame, so as to know that the second device accepts the first time resource.
  • MCS modulation and coding scheme
  • the above communication method further includes: the first device receives buffer status information sent by the second device, where the buffer status information is used to indicate the amount of buffered data. It should be understood that, by sending the cache status information to the first device, the second device can assist the first device in allocating time resources.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication method includes: a second device receives a first frame sent by a first device, the first frame includes a first field and a second field, and the first field is used to indicate a first time resource The second field is used to determine the purpose of the first time resource, and the purpose of the first time resource includes: the first time resource is used for transmitting a single-user physical layer protocol data unit PPDU, or the first time resource is used for frame Interaction; second device parses first frame.
  • the first frame includes a first field and a second field.
  • the first field is used to indicate the duration of the first time resource
  • the second field may be used to indicate that the first time resource is used to transmit a single-user PPDU, or the first field is used to indicate the duration of the first time resource.
  • the second field is used to indicate that the first time resource is used for frame interaction.
  • the first frame can be applied to scenes with different uses of temporal resources, so that the first frame has generality.
  • the duration of the single-user PPDU is equal to the duration of the first time resource. This ensures that multi-link devices that do not support STR can align single-user PPDUs sent on different links.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction by the cooperating device, and the cooperating device and the first device do not belong to the same basic service or, when the second field is set to a third preset value, the third field is used to determine that the first time resource is used for the end-to-end station to perform frame interaction.
  • the first frame further includes a trigger frame type field, and the value of the trigger frame type field is any one of 8-15.
  • the first frame is a basic type basic trigger frame
  • the B63 bit in the basic trigger frame is set to 1.
  • the first field and the second field are located in the common information field or the user information field of the first frame.
  • the first frame also includes an A-control control field
  • the A-control field includes a control identification field and a control information field
  • the value of the control identification field is any one of 7-14
  • the first field and The second field is in the control information field.
  • the first frame also includes the A-control control field using the trigger response scheduling type TRS, the A-control field includes the TRS control field, the TRS control field includes the first field and the second field, and in the TRS control field The reserved bit is set to 1.
  • the above communication method further includes: the second device sends a response frame to the first device, the response frame includes a third field, and the third field is used to indicate whether the second device accepts the first time resource.
  • the above communication method further includes: the second device sends the first radio frame in the first time resource, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the above communication method further includes: buffer status information sent by the second device to the first device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication method comprising: a first device generating a second frame carrying a command and status (command and status, CAS) control field, where the CAS control field includes a fourth field and a fifth field, and the fourth The field is used to determine whether to transfer the remaining time of the transmission opportunity (TXOP) to the second device, so that the second device can communicate with the first device within the remaining time of the TXOP; the fifth field is used to determine whether to transfer the TXOP The remaining time is transferred to the second device, so that the second device and the third device communicate within the remaining time of the TXOP, and the third device does not include the first device; the first device sends the first device carrying the CAS control field to the second device. Two frames.
  • TXOP transmission opportunity
  • the fourth field can support the usage setting of the remaining time of TXOP in one type of application scenario
  • the fifth field can support the usage setting of the remaining time of TXOP in another type of application scenario. Therefore, based on the fourth field and the fifth field, the second frame can be applied to application scenarios with different arrangements for the remaining time of the TXOP, such as a scenario applying the RDG mechanism, a Scheduled P2P scenario, or a CO-TDMA scenario.
  • the second frame has generality.
  • the fourth field when the fourth field is set to a fourth preset value, the fourth field is used to determine to transfer the remaining time of the transmission opportunity TXOP to the second device, so that the second device and the first device are in the TXOP. or, when the fourth field is set to a fifth preset value, the fourth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fifth field when the fifth field is set to the fourth preset value, the fifth field is used to indicate that the remaining time of the TXOP is determined to be transferred to the second device, so that the second device and the third device are in the TXOP period. Perform communication within the remaining time; or, when the fifth field is set to a fifth preset value, the fifth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fourth field and the fifth field cannot be set to the fourth preset value at the same time.
  • the CAS control field further includes a sixth field, and the sixth field is used to indicate whether the type of the data frame sent by the second device within the remaining time of the TXOP is limited.
  • the CAS control field further includes a seventh field, and the seventh field is used to indicate whether the second device is allowed to transfer the remaining time of the TXOP to other devices except the first device.
  • the above communication method further includes: the first device receives a response frame sent by the second device, the response frame includes an eighth field, and the eighth field is used for whether the second device accepts the remaining time of the TXOP.
  • the above communication method further includes: the first device receives the first radio frame sent by the second device within the remaining time of the TXOP, and the MCS used for sending the radio frame is less than or equal to the maximum value supported by the first device. MCS.
  • the above communication method further includes: the first device receives buffer status information sent by the second device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device
  • the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication method comprising: the second device receiving a second frame that carries a CAS control field sent by the first device, the CAS control field includes a fourth field and a fifth field, and the fourth field is used to determine Whether to transfer the remaining time of the TXOP to the second device, so that the second device communicates with the first device within the remaining time of the TXOP; the fifth field is used to determine whether to transfer the remaining time of the TXOP to the second device, so that The second device communicates with the third device within the remaining time of the TXOP, and the third device does not include the first device; the second device parses the second frame carrying the CAS control field.
  • the fourth field can support the usage setting of the remaining time of TXOP in one type of application scenario
  • the fifth field can support the usage setting of the remaining time of TXOP in another type of application scenario. Therefore, based on the fourth field and the fifth field, the second frame can be applied to application scenarios with different arrangements for the remaining time of the TXOP, such as a scenario applying the RDG mechanism, a Scheduled P2P scenario, or a CO-TDMA scenario.
  • the second frame has generality.
  • the fourth field when the fourth field is set to a fourth preset value, the fourth field is used to determine to transfer the remaining time of the transmission opportunity TXOP to the second device, so that the second device and the first device are in the TXOP. or, when the fourth field is set to a fifth preset value, the fourth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fifth field when the fifth field is set to the fourth preset value, the fifth field is used to indicate that the remaining time of the TXOP is determined to be transferred to the second device, so that the second device and the third device are in the TXOP period. Perform communication within the remaining time; or, when the fifth field is set to a fifth preset value, the fifth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fourth field and the fifth field cannot be set to the fourth preset value at the same time.
  • the CAS control field further includes a sixth field, and the sixth field is used to indicate whether the type of the data frame sent by the second device within the remaining time of the TXOP is limited.
  • the CAS control field further includes a seventh field, and the seventh field is used to indicate whether the second device is allowed to transfer the remaining time of the TXOP to other devices except the first device.
  • the above communication method further includes: the second device sends a response frame to the first device, the response frame includes an eighth field, and the eighth field is used for whether the second device accepts the remaining time of the TXOP.
  • the above communication method further includes: the second device sends the first radio frame within the remaining time of the TXOP, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the above communication method further includes: buffer status information sent by the second device to the first device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication device including a processing module and a communication module.
  • a processing module configured to generate a first frame, the first frame includes a first field and a second field, the first field is used to indicate the duration of the first time resource, the second field is used to determine the purpose of the first time resource, the first
  • the purposes of the time resource include: the first time resource is used for transmitting a single-user PPDU, or the first time resource is used for frame interaction.
  • the communication module is used for sending the first frame to the second device.
  • the duration of the single-user PPDU is equal to the duration of the first time resource.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for the cooperative device to perform frame interaction, and the cooperative device and the first device do not belong to the same basic service set; When the second field is set to a third preset value, the third field is used to determine that the first time resource is used for the end-to-end station to perform frame interaction.
  • the first frame further includes a trigger frame type field, and the value of the trigger frame type field is any one of 8-15.
  • the first frame is a basic trigger frame
  • the B63 bit in the basic trigger frame is set to 1.
  • the first field and the second field are located in the common information field or the user information field of the first frame.
  • the first frame also includes an A-control field
  • the A-control field includes a control identification field and a control information field
  • the value of the control identification field is any one of 7-14
  • the first field and the first field are The second field is in the control information field.
  • the first frame also includes the A-control field using TRS
  • the A-control field includes the TRS control field
  • the TRS control field includes the first field and the second field
  • the reserved bits in the TRS control field are set is 1.
  • the communication module is further configured to receive a response frame sent by the second device, the response frame includes a third field, and the third field is used to indicate whether the second device accepts the first time resource.
  • the communication module is further configured to receive the first radio frame sent by the second device in the first time resource, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the communication module is further configured to receive buffer status information sent by the second device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication device including a processing module and a communication module.
  • a communication module configured to receive the first frame sent by the first device, the first frame includes a first field and a second field, the first field is used to indicate the duration of the first time resource, and the second field is used to determine the first time
  • the usage of the resource, the usage of the first time resource includes: the first time resource is used for transmitting a single-user physical layer protocol data unit PPDU, or the first time resource is used for frame interaction.
  • Processing module for parsing the first frame.
  • the duration of the single-user PPDU is equal to the duration of the first time resource.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction.
  • the second field is used to determine the purpose of the first time resource, including the following situations: when the second field is set to a first preset value, the second field is used to determine that the first time resource is used for transmission A single-user PPDU; or, when the second field is set to a second preset value, the second field is used to determine that the first time resource is used for frame interaction by the cooperating device, and the cooperating device and the first device do not belong to the same basic service or, when the second field is set to a third preset value, the third field is used to determine that the first time resource is used for the end-to-end station to perform frame interaction.
  • the first frame further includes a trigger frame type field, and the value of the trigger frame type field is any one of 8-15.
  • the first frame is a basic type basic trigger frame
  • the B63 bit in the basic trigger frame is set to 1.
  • the first field and the second field are located in the common information field or the user information field of the first frame.
  • the first frame also includes an A-control field
  • the A-control field includes a control identification field and a control information field
  • the value of the control identification field is any one of 7-14
  • the first field and the first field are The second field is in the control information field.
  • the first frame also includes the A-control field that uses the trigger TRS, the A-control field includes the TRS control field, the TRS control field includes the first field and the second field, and the reserved bits in the TRS control field Set to 1.
  • the communication module is further configured to send a response frame to the first device, where the response frame includes a third field, and the third field is used to indicate whether the second device accepts the first time resource.
  • the communication module is further configured to send the first radio frame in the first time resource, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the communication module is further configured to send buffer status information to the first device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the sum of the amount of upstream buffer data wherein, the total uplink buffer data volume is the sum of the uplink buffer data volume of one or more sites associated with the second device, and the downlink total buffer data volume is the downlink buffer data volume of one or more sites associated with the second device.
  • the sum of the amount of cached data is the sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication device including a processing module and a communication module.
  • the processing module is used to generate the second frame carrying the command and status CAS control control field, the CAS control field includes a fourth field and a fifth field, and the fourth field is used to determine whether to transfer the remaining time of the transmission opportunity TXOP to the second device , so that the second device and the first device communicate within the remaining time of the TXOP; the fifth field is used to determine whether to transfer the remaining time of the TXOP to the second device, so that the second device and the third device can communicate with the third device during the remaining time of the TXOP.
  • the third device does not include the first device.
  • a communication module configured to send the second frame carrying the CAS control field to the second device.
  • the fourth field when the fourth field is set to a fourth preset value, the fourth field is used to determine to transfer the remaining time of the transmission opportunity TXOP to the second device, so that the second device and the first device are in the TXOP. or, when the fourth field is set to a fifth preset value, the fourth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fifth field when the fifth field is set to the fourth preset value, the fifth field is used to indicate that the remaining time of the TXOP is determined to be transferred to the second device, so that the second device and the third device are in the TXOP period. Perform communication within the remaining time; or, when the fifth field is set to a fifth preset value, the fifth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fourth field and the fifth field cannot be set to the fourth preset value at the same time.
  • the CAS control field further includes a sixth field, and the sixth field is used to indicate whether the type of the data frame sent by the second device within the remaining time of the TXOP is limited.
  • the CAS control field further includes a seventh field, and the seventh field is used to indicate whether the second device is allowed to transfer the remaining time of the TXOP to other devices except the first device.
  • the communication module is further configured to receive a response frame sent by the second device, the response frame includes an eighth field, and the eighth field is used for whether the second device accepts the remaining time of the TXOP.
  • the communication module is further configured to receive the first radio frame sent by the second device within the remaining time of the TXOP, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the communication module is further configured to receive buffer status information sent by the second device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication device including a processing module and a communication module.
  • the communication module is used for receiving the second frame carrying the CAS control field sent by the first device, the CAS control field includes a fourth field and a fifth field, and the fourth field is used to determine whether to transfer the remaining time of the transmission opportunity TXOP to the second frame device, so that the second device and the first device communicate within the remaining time of the TXOP; the fifth field is used to determine whether to transfer the remaining time of the TXOP to the second device, so that the second device and the third device can communicate with the third device within the remaining time of the TXOP. During the remaining time to communicate, the third device does not include the first device.
  • the processing module is used to parse the second frame carrying the CAS control field.
  • the fourth field when the fourth field is set to a fourth preset value, the fourth field is used to determine to transfer the remaining time of the transmission opportunity TXOP to the second device, so that the second device and the first device are in the TXOP. or, when the fourth field is set to a fifth preset value, the fourth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fifth field when the fifth field is set to the fourth preset value, the fifth field is used to indicate that the remaining time of the TXOP is determined to be transferred to the second device, so that the second device and the third device are in the TXOP period. Perform communication within the remaining time; or, when the fifth field is set to a fifth preset value, the fifth field is used to determine not to transfer the remaining time of the transmission opportunity TXOP to the second device.
  • the fourth field and the fifth field cannot be set to the fourth preset value at the same time.
  • the CAS control field further includes a sixth field, and the sixth field is used to indicate whether the type of the data frame sent by the second device within the remaining time of the TXOP is limited.
  • the CAS control field further includes a seventh field, and the seventh field is used to indicate whether the second device is allowed to transfer the remaining time of the TXOP to other devices except the first device.
  • the communication module is further configured to send a response frame to the first device, the response frame includes an eighth field, and the eighth field is used for whether the second device accepts the remaining time of the TXOP.
  • the communication module is further configured to send the first radio frame within the remaining time of the TXOP, and the MCS used for sending the radio frame is less than or equal to the maximum MCS supported by the first device.
  • the communication module is further configured to send buffer status information to the first device, where the buffer status information is used to indicate the amount of buffered data.
  • the buffered data volume includes one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the total uplink buffered data volume and the total downlink buffered data volume.
  • the total amount of upstream buffered data is the sum of the upstream buffered data volume of one or more sites associated with the second device, and the total downlink buffered data volume is the downlink buffered data volume of one or more sites associated with the second device. The sum of the amount of cached data.
  • the amount of buffered data is the sum of the amount of buffered data on one or more P2P links established by the second device.
  • a communication device in a ninth aspect, includes a processor and a transceiver, and the processor and the transceiver are configured to implement any one of the methods provided in any one of the first to fourth aspects above.
  • the processor is used for executing the processing action in the corresponding method
  • the transceiver is used for executing the action of receiving/transmitting in the corresponding method.
  • a computer-readable storage medium stores computer instructions, and when the computer instructions are executed on a computer, causes the computer to execute any one of the first to fourth aspects. any method.
  • An eleventh aspect provides a computer program product comprising computer instructions, which, when the computer instructions are executed on a computer, cause the computer to perform any one of the methods provided in any one of the first to fourth aspects.
  • a twelfth aspect provides a chip, comprising: a processing circuit and a transceiver pin, where the processing circuit and the transceiver pin are used to implement any one of the methods provided in any one of the foregoing first to fourth aspects.
  • the processing circuit is used for executing the processing action in the corresponding method
  • the transceiver pin is used for executing the receiving/transmitting action in the corresponding method.
  • the technical effect brought by any one of the designs in the fifth aspect to the twelfth aspect can refer to the technical effect brought by the corresponding design in the first aspect to the fourth aspect, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a frame structure of a trigger frame
  • FIG. 2 is a schematic diagram of a common information field in a trigger frame
  • FIG. 3 is a schematic diagram of a user information field in a trigger frame
  • Fig. 4 (a) is a kind of schematic diagram of A-control field
  • Figure 4(b) is a schematic diagram of a TRS control field
  • FIG. 5 is a schematic diagram of a communication scenario between an AP multi-link device and a STA multi-link device according to an embodiment of the present application
  • Figure 6 (a) and Figure 6 (b) are schematic structural diagrams of AP multi-link devices and STA multi-link devices participating in communication;
  • FIG. 7 is a schematic diagram of applying a radio frame #1 to a multi-link scenario according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a Scheduled P2P scenario provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a CO-TDMA scenario provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of applying a radio frame #2 to a Scheduled P2P scenario according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of applying a radio frame #2 to a CO-TDMA scenario according to an embodiment of the present application.
  • 16 is a schematic diagram of a CAS control field provided by an embodiment of the present application.
  • FIG. 17 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 18 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 19 is a flowchart of another communication method provided by an embodiment of the present application.
  • 21 is a schematic structural diagram of a cache state information provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another cache state information provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of another cache state information provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of another cache state information provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the technical solutions provided in this application can be applied to various communication systems, for example, systems using the IEEE 802.11 standard.
  • the IEEE 802.11 standard includes, but is not limited to, the 802.11be standard, or the next-generation 802.11 standard.
  • the applicable scenarios of the technical solution of the present application include: communication between AP and STA, communication between AP and AP, and communication between STA and STA.
  • the STAs involved in this application may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions, wherein the user terminals may include various A handheld device, vehicle-mounted device, wearable device, computing device, or other processing device connected to a wireless modem with wireless communication capabilities, as well as various forms of user equipment (UE), mobile station (MS) , terminal, terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device or any other suitable device configured to communicate via a wireless medium over a network equipment, etc.
  • UE user equipment
  • MS mobile station
  • terminal equipment terminal equipment
  • portable communication device handset
  • portable computing device portable computing device
  • entertainment device gaming device or system
  • gaming device or system global positioning system device
  • the access point AP involved in this application is a device deployed in a wireless communication network to provide wireless communication functions to its associated STA.
  • the access point AP can be used as the center of the communication system, and can be a base station, a router , gateway, repeater, communication server, switch or bridge and other communication equipment, wherein the base station may include various forms of macro base station, micro base station, relay station and so on.
  • the devices mentioned above are collectively referred to as access points AP.
  • BSS is used to describe a group of devices that can communicate with each other in wireless local area networks (WLAN).
  • a WLAN may include multiple BSSs.
  • Each BSS has a unique identification called Basic Service Set Identifier (BSSID).
  • BSSID Basic Service Set Identifier
  • one BSS may include one AP and multiple STAs associated with the AP.
  • TXOP is the basic unit of wireless channel access.
  • TXOP consists of an initial time and a maximum duration (TXOP limit).
  • TXOP limit The station that obtains the TXOP can no longer compete for the channel again within the TXOP limit time, and continuously use the channel to transmit multiple data frames.
  • TXOP can be obtained through competition or distribution by a hybrid coordinator (HC). Among them, the TXOP obtained through competition may be called an enhanced distributed channel access (EDCA) TXOP. The TXOP obtained via HC allocation may be referred to as a hybrid coordination function controlled channel access (HCCA) TXOP.
  • HCCA hybrid coordination function controlled channel access
  • a trigger frame In the process of uplink transmission or downlink transmission, a trigger frame needs to be used to realize information exchange between multi-user communications.
  • FIG. 1 shows a schematic diagram of a frame structure of a trigger frame.
  • the trigger frame includes: a frame control (frame control) field, a duration (duration) field, a receiving address (RA) field, a transmitting address (TA) field, and a common information (common info) field. field, a user info list field, a padding field, and a frame check sequence (FCS) field.
  • frame control frame control
  • RA receiving address
  • TA transmitting address
  • FCS frame check sequence
  • the public information field contains public information that all sites need to read.
  • the common information fields include: trigger frame type (trigger type) subfield, uplink length (UL length) subfield, more trigger frame (more TF) subfield, and carrier sense required (CS required) subfield field, uplink bandwidth (UL bandwidth) subfield, guard interval and HE long training sequence type (GI and HE-LTF type) subfield, mode (MU-MIMO HE-LTF mode) subfield, HE-LTF number and middle Code period (number of HE-LTF symbols and Midamble periodicity) subfield, uplink space-time block coding (UL STBC) subfield, LDPC extra symbol segment (LDPC extra symbol segment) subfield, AP transmit power (AP TX power) subfield field, Pre-FEC padding factor subfield, PE disambiguilty subfield, UL spatial reuse subfield, Doppler subfield field, uplink HE-SIG-A2 Reserved (UL HE-SIG-A2 Reserved) sub
  • the trigger frame type subfield occupies 4 bits and is used to indicate the type of trigger frame.
  • Table 1 For the correspondence between the value of the trigger frame type subfield and the type of the trigger frame, reference may be made to Table 1.
  • the user information list field of the trigger frame may include a plurality of user information fields.
  • the structure of the user information field may be as shown in Figure 3.
  • User information fields may include: AID subfield, resource block allocation (RU allocation) field, uplink forward error correction coding type (UL FEC coding type) field, uplink modulation and coding strategy (UL HE-MCS) field, uplink dual carrier Modulation (UL DCM) field, spatial stream allocation/random access RU information (SS allocation/RA-RU information) field, uplink target received signal strength indication (UL target RSSI) field, reserved field, and trigger-based Frame type user information (trigger dependent user info) field.
  • AID subfield resource block allocation (RU allocation) field, uplink forward error correction coding type (UL FEC coding type) field, uplink modulation and coding strategy (UL HE-MCS) field, uplink dual carrier Modulation (UL DCM) field, spatial stream allocation/random access RU information (SS allocation/RA-RU information) field, uplink target received signal strength
  • 802.11ax adds four new PPDU types on the physical layer, namely: single user (signal user, SU) PPDU, extended range (extended range) PPDU, multi user (multi user, MU) PPDU, and trigger-based (TB) PPDU.
  • the single-user PPDU is mainly used in a single-user scenario.
  • Extended-range PPDUs are mainly used in single-user scenarios that are far away from APs, such as outdoor scenarios.
  • Multi-user PPDU is mainly used in multi-user scenarios, and can transmit one or more times to one or more users at the same time.
  • TB PPDUs are used to echo trigger frames.
  • TB PPDUs are mainly transmitted in uplink orthogonal frequency division multiple access (OFDMA) or uplink MU-multiple in multiple out (MIMO) scenarios.
  • OFDMA orthogonal frequency division multiple access
  • MIMO multiple in multiple out
  • the A-control field includes a control ID (control ID) field and a control information (control information) field.
  • control ID control ID
  • control information control information
  • the control ID field occupies 4 bits. The number of bits occupied by the control information field varies according to the value of the control ID field.
  • control information field in the A-control field is the BSR control field.
  • the control information field in the A-control field is used as the CAS control field.
  • the control information field in the A-control field is used as the TRS control field.
  • the TRS control field in the prior art includes: an uplink data symbol (UL data symbols) field, a resource block allocation (RU allocation) field, an access point transmit power (AP TX power) field, a UL target RSSI field, UL HE-MCS field and reserved field.
  • UL data symbols uplink data symbol
  • RU allocation resource block allocation
  • AP TX power access point transmit power
  • UL target RSSI UL target RSSI field
  • UL HE-MCS field reserved field.
  • the bits occupied by the TRS control field are ordered from low to high, and can be numbered as B0-B25 bits.
  • the UL data symbols field occupies B0-B4 bits
  • the RU allocation field occupies B5-B12 bits
  • the AP TX power field occupies B13-B17 bits
  • the UL target RSSI field occupies B18-B22 bits
  • the UL HE-MCS field occupies B23-B24 bits bits
  • the reserved field occupies B25 bits.
  • the current IEEE 802.11 next-generation Wireless Fidelity (WiFi) protocol Extremely high throughput (EHT) devices support multiple streams, multiple frequency bands (eg, 2.4GHz, 5GHz, and 6GHz bands), and On the same frequency band, the peak throughput can be improved through the cooperation of multiple channels, and the delay of service transmission can be reduced.
  • the multiple frequency bands or multiple channels may be collectively referred to as multiple links.
  • a multi-link device includes one or more subordinate sites, and the subordinate sites may be logical sites or physical sites.
  • a multi-link device includes a subordinate station may be briefly described as “a multi-link device includes a station”.
  • the affiliated station may be an access point (access point, AP) or a non-access point station (non-access point station, non-AP STA).
  • access point access point
  • non-access point station non-access point station
  • a multi-link device whose subordinate site is an AP may be referred to as a multi-link AP, or an AP MLD, or a multi-link AP device; the subordinate site may be a multi-link device of a STA. It is called multi-link STA, or multi-link STA device, or STA MLD, or non-AP MLD.
  • Multi-link devices can implement wireless communication following the 802.11 system protocol.
  • the 802.11 system protocol may be the 802.11ax protocol, the 802.11be protocol, and the next-generation 802.11 protocol, and the embodiment of the present application is not limited thereto.
  • Multilink devices can communicate with other devices.
  • other devices may be multi-link devices or may not be multi-link devices.
  • FIG. 5 is a schematic diagram of a communication scenario between an AP multi-link device and a STA multi-link device.
  • an AP multi-link device can associate with multiple STA multi-link devices and single-link STAs.
  • the AP multilink device 100 is associated with the STA multilink device 200 , the STA multilink device 300 , and the STA400 .
  • multiple APs in the AP multi-link device work on multiple links respectively
  • multiple STAs in the STA multi-link device work on multiple links respectively
  • one STA in the STA multi-link device works on multiple links respectively.
  • a single-link STA associates with an AP in the AP multi-link device on its working link.
  • FIG. 6(a) and FIG. 6(b) are schematic structural diagrams of AP multi-link devices and STA multi-link devices participating in communication.
  • the 802.11 standard focuses on the 802.11 Physical layer (PHY) and Media Access Control (MAC) layers in AP multi-link devices and STA multi-link devices (such as mobile phones and laptops).
  • PHY Physical layer
  • MAC Media Access Control
  • the multiple APs included in the AP multi-link device are independent of each other at the low MAC (low MAC) layer and the PHY layer, and are also independent of each other at the high MAC (high MAC) layer.
  • the multiple STAs included in the STA multi-link device are independent of each other at the low MAC layer and PHY layer, and are also independent of each other at the high MAC layer.
  • multiple APs included in the AP multi-link device are independent of each other in the low MAC layer and the PHY layer, and share the high MAC (High MAC) layer.
  • the multiple STAs included in the STA multi-link device are independent of each other at the Low MAC (Low MAC) layer and the PHY layer, and share the High MAC (High MAC) layer.
  • the STA multi-link device may adopt a structure in which the high MAC layers are independent of each other, while the AP multi-link device adopts a structure shared by the high MAC layers.
  • the STA multi-link device adopts a structure shared by the upper MAC layers, and the AP multi-link device adopts a structure where the higher MAC layers are independent of each other.
  • both the high MAC layer and the low MAC layer may be implemented by a processor in a chip system of a multi-link device, and may also be implemented by different processing modules in a chip system respectively.
  • the frequency band in which the multi-link device works may include, but is not limited to: sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • a multi-link device may support simultaneous transmit and receive (STR) data, or a multi-link device may not support simultaneous transmission and reception of data.
  • supporting the simultaneous sending and receiving of data means that: in the process of sending data on one link, the multi-link device can receive data on another link.
  • Not supporting simultaneous transmission and reception of data means that a multi-link device cannot receive data on another link during the process of sending data on one link.
  • the radio frame sent by the multi-link device AP on multiple links ends at the end
  • the response frames sent by the STA multi-link device on multiple links are aligned at the start time and end time.
  • a radio frame is required to control the length of the response frame to ensure that the response frames transmitted on different links can be aligned.
  • multi-link scenario For the convenience of description, the "communication scenario of a multi-link device that does not support STR" is hereinafter referred to as “multi-link scenario” for short.
  • the trigger frame defined in the current standard is not suitable for application in the multi-link scenario described above.
  • the reason is:
  • the existing trigger frame is designed for multiple users to simultaneously transmit uplink TB PPDUs. Therefore, the existing trigger frame needs to indicate MCS, RU, transmission power and other information, so the existing trigger frame will cause unnecessary system overhead.
  • the existing trigger frame can only trigger TB PPDU.
  • the radio frame used to control the length of the response frame only needs to be used to trigger a station to respond accordingly, so the station does not need to use TB PPDUs, but can use single-user PPDUs.
  • Single-user PDDU has more advantages than TB PPDU: 1) Single-user PPDU can perform better channel protection. Because the third-party site can parse the content of the single-user PDDU, but cannot parse the content of the TB PPDU. 2) Single-user PPDU has less overhead in the frame header of the physical layer than TB PPDU.
  • the radio frame #1 can trigger a station to respond in a single-user PPDU manner.
  • the radio frame #1 includes an assigned time duration field.
  • the set duration field is used to indicate the length of the single-user PPDU fed back by the station.
  • radio frame #1 may be referred to as a single-user trigger frame. It should be understood that radio frame #1 may be aggregated or carried in downlink data.
  • FIG. 7 shows an application example of radio frame #1 in a multi-link scenario.
  • the transmitter sends data (data)1 and radio frame #1 to the receiver on link 1, and sends data2 and radio frame #1 to the receiver on link 2.
  • the receiver sends a block ack (BA) frame 1 on link 1 and a BA frame 2 on the link according to the instruction of the single-user trigger frame.
  • BA1 frame 1 and BA frame 2 are both aligned in the time domain.
  • the radio frame #1 is represented by "Tr".
  • IEEE802.11be standard also supports Scheduled P2P mechanism and CO-TDMA mechanism.
  • FIG. 8 shows a schematic diagram of a Scheduled P2P scenario.
  • the AP is associated with STA1; the AP and STA2 may be associated or not.
  • a P2P link is established between STA1 and STA2.
  • the AP may allocate time resources to STA1, so that STA1 communicates with STA2 through a P2P link in the allocated time resources.
  • FIG. 9 shows a schematic diagram of a CO-TDMA scenario.
  • AP1 is associated with STA1
  • AP2 is associated with STA2.
  • AP1 may allocate the time resource of the TXOP to AP2.
  • AP2 can use this time resource to communicate with STA2.
  • the present application provides a radio frame #2, which is used for allocating time resources.
  • FIG. 10 is a schematic diagram illustrating that radio frame #2 is applied to a Scheduled P2P scenario.
  • the AP sends a radio frame #2 to STA1, and the radio frame #2 allocates a time resource #1 for STA1.
  • time resource #1 STA1 can send a PPDU to STA2, and STA2 can send an ACK frame of the PPDU to STA1.
  • FIG. 11 is a schematic diagram of the application of radio frame #2 to a CO-TDMA scenario.
  • AP1 is the owner of the TXOP.
  • AP1 may send one radio frame #2 to AP2 to allocate one time resource #1 to AP2.
  • time resource #1 AP2 communicates with one or more of its associated STAs.
  • the above-mentioned radio frame #1 applied in the multi-link scenario is not common to the radio frame #2 applied in the Scheduled P2P scenario or the CO-TDMA scenario. Therefore, in order for the device to recognize whether one radio frame is the radio frame #1 or the radio frame #2, the radio frame #1 and the radio frame #2 need to have respective frame types, complicating the communication protocol.
  • an embodiment of the present application provides a first frame.
  • the first frame includes a first field and a second field.
  • the first field is used to indicate the duration of the first time resource.
  • the second field is used to indicate the usage of the first time resource.
  • the above-mentioned time resource may have other names, such as time period, time domain resource, time, etc., which are not limited in this embodiment of the present application.
  • the first field is different from the duration field further included in the first frame, and the duration field is used to reserve a period of use of the medium.
  • the first field may have other names, such as an assigned time duration field; the second field may have other names, such as an assigned type field. This embodiment of the present application does not limit this.
  • the purposes of the first-time resource include:
  • Use 1 The first time resource is used to transmit a single-user PPDU.
  • the duration of the first time resource may be the length of a single-user PPDU.
  • the duration of the first time resource may be equal to the sum of the length of the single-user PPDU, the inter-frame space (SIFS), and the length of the traditional physical layer preamble.
  • the usage of the first time resource is usage 1, it means that the first frame is used in a first type of scenario, and the first type of scenario includes but is not limited to: a multi-link scenario.
  • Use 2 The first time resource is used for frame interaction.
  • the start time of the first time resource is the time when the receiver receives the first frame.
  • the purpose of the first time resource is purpose 2
  • the first frame is applied to the second type of scene
  • the second type of scene includes but is not limited to: Scheduled P2P scene or CO-TDMA scene.
  • the second field is used to indicate the usage of the first time resource, including one of the following situations:
  • the second field is used to indicate that the first time resource is used for transmitting a single-user PPDU.
  • the second field is used to indicate that the first time resource is used for frame interaction.
  • the second field occupies 1 bit
  • the first preset value may be 0, and the second preset value may be 1.
  • the second field is used to indicate the usage of the first time resource, including one of the following situations:
  • the second field is used to indicate that the first time resource is used for the cooperation device to perform frame interaction.
  • the cooperation device and the first device do not belong to the same BSS.
  • the cooperative device may be a shared AP in a CO-TDMA scenario.
  • the second field is used to indicate that the first time resource is used for the P2P station to perform frame interaction.
  • the second field occupies 2 bits
  • the first preset value is 0, the second preset value is 1, and the third preset value is 2.
  • the design method of the first frame is described below. It should be understood that the first frame may adopt any one of the following design manners.
  • the first frame is a new type of trigger frame. That is, the first frame includes a trigger frame type field whose value is a first value, and the first value is any one of 8-15.
  • the first frame is an improvement based on the basic trigger frame. That is, the first frame includes a trigger frame type field with a value of 0. And, the B63 bit of the first frame is set to 1 to indicate that the basic trigger frame is the first frame.
  • the B63 bit of the basic trigger frame in the current standard is a reserved bit.
  • the first field and the second field may be located in the public information field or the user information field of the first frame.
  • the first field and the second field are located in the common information field of the first frame
  • the first field may be the UL length field
  • the second field may multiplex other fields in the common information field except the UL length field.
  • Design mode 3 The first trigger frame includes an A-control field using a new control type. That is, the first frame includes an A-control field, the value of the control identification field in the A-control field is a second value, and the second value is any one of 7-14.
  • the first field and the second field may be located in the control information field of the A-control field.
  • Design method 4 The first frame is based on improving the TRS control type in the existing A-control field.
  • the first frame is a radio frame carrying the A-control field.
  • the control ID field in the A-control field takes the value 0, and the A-control field includes the TRS control field.
  • the B25 bit in the TRS control field is set to 1, and all or some of the bits in the B0-B24 bits in the TRS control field are used to carry the first field and the second field.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • a first device generates a first frame.
  • the first device may be an AP or a STA.
  • the first device may determine the duration of the first time resource according to the actual situation. For example, the first device may determine the duration of the first time resource according to the cache status information reported by the second device.
  • the first device sends the first frame to the second device.
  • the second device receives the trigger frame sent by the first device.
  • the second device parses the first frame.
  • the second device uses the first time resource indicated by the first field according to the second field in the first frame.
  • the second device determines, according to the second field in the first frame, that the first time resource is used to transmit a single-user PPDU. In this case, the second device sends a single-user PPDU to the first device.
  • the second device determines, according to the second field in the first frame, that the first time resource is used for frame interaction. If the second device is an AP, the second device performs frame interaction with other devices associated with the second device within the first time resource according to the CO-TDMA mechanism. If the second device is a STA, the second device performs frame interaction with other P2P sites according to the Scheduled P2P mechanism.
  • the first frame includes a first field and a second field, the first field is used to indicate the duration of the first time resource, and the second field can be used to indicate that the first time resource is used to transmit a single user PPDU, or the second field is used to indicate that the first time resource is used for frame interaction.
  • the first frame can be applied to scenes with different uses of temporal resources, so that the first frame has generality.
  • FIG. 13 is a flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 13, the communication method includes the following steps:
  • the second device generates a first response frame.
  • the first response frame includes a third field.
  • the third field is used to instruct the second device to accept or reject the first time resource.
  • the third field is used to indicate whether the second device accepts the first time resource.
  • the third field when the third field is set to 0, the third field is used to indicate that the second device accepts the first time resource.
  • the third field is used to instruct the second device to reject the first time resource.
  • the third field when the third field is set to 1, the third field is used to indicate that the second device accepts the first time resource.
  • the third field is used to instruct the second device to reject the first time resource.
  • the second device sends a first response frame to the first device.
  • the first device receives the first response frame sent by the second device.
  • the first device can learn that the second device has correctly received the first frame.
  • the first device may consider that the second device has not correctly received the first frame.
  • the first device can know whether the second device has correctly received the first frame according to whether it has received the first response frame. On the other hand, the first device may determine whether the second device accepts the first time resource according to the third field in the first response frame, so that if the second device rejects the first time resource, the first device may again send the The first time resources are allocated to other devices to avoid waste of time resources.
  • the second device may not feed back a response frame to the first device. , but directly interact with other devices in frames.
  • the second device may use the embodiment shown in FIG. 14 to make the first device know that the second device accepts the first time resource allocated by the first device.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the second device sends the first radio frame within the first time resource.
  • the receiving address of the above-mentioned wireless frame is not the MAC address of the first device.
  • the frame format adopted by the first radio frame sent by the second device is a frame format that can be supported by the first device.
  • the physical layer parameter used for sending the radio frame is a physical layer parameter that the first device can support.
  • the physical layer parameters include, but are not limited to, the number of spatial streams and MCS.
  • the MCS used for sending the radio frame is less than or equal to the first MCS, and the first MCS is the maximum MCS supported by the first device.
  • the MCS used for sending the radio frame is less than or equal to the target MCS.
  • the target MCS is the minimum value of the first MCS and the second MCS.
  • the second MCS is the maximum MCS that the first device is expected to be able to resolve under current channel conditions.
  • the first device receives the first radio frame sent by the second device within the first time resource.
  • the first device can parse the the radio frame, so as to know that the second device accepts the first time resource.
  • the first device may consider that the second device has not correctly received the first frame, or the first device may consider that the second device rejects the first frame.
  • radio frames such as the second radio frame, the third radio frame, etc.
  • the frame format used by other radio frames may not be a frame format supported by the first device
  • the physical layer parameters used in sending other radio frames may not be the physical layer parameters supported by the first device.
  • RDG reverse direction grant
  • the RDG initiator initiator
  • the RDG responder can transfer the remaining time of the TXOP held by the RDG initiator to the RDG responder (responder).
  • the RDG responder uses single-user PPDUs to communicate with the RDG initiator; alternatively, the RDG responder uses downstream multi-user PPDUs or trigger frames to communicate with multiple devices, which must include the RDG initiator.
  • the sender can send RDG indication information to the receiver, so that the receiver can know whether the sender transfers the remaining time of the TXOP held by the sender to the receiver. It should be understood that when the sender transfers the remaining time of the TXOP held by it to the receiver, the sender is the RDG initiator, and the receiver is the RDG responder.
  • the RDG indication information is carried in the CAS control field in the A-control field.
  • the existing CAS control field includes an AC constraint (constraint) field, an RDG/more PPDU field, a parameterized spatial reuse transmission (PSRT) PPDU field, and 5 reserved bits.
  • the AC constraint field, the RDG/more PPDU field, and the PSRT PPDU field all occupy 1 bit.
  • the RDG/more PPDU field is used as RDG indication information. Specifically, when the RDG/more PPDU field is set to 1, it means that the sender transfers the remaining time of the TXOP held by it to the receiver. When the RDG/more PPDU field is set to 0, it means that the sender does not transfer the remaining time of the TXOP it holds to the receiver.
  • the AC constraint field is used to indicate whether there is a restriction on the type of data frame sent by the RDG responder within the remaining time of the TXOP. Specifically, when the AC constraint field is set to 0, it means that there is no restriction on the type of data frame sent by the RDG responder within the remaining time of the TXOP. When the AC constraint field is set to 1, it means that the type of data frame sent by the RDG responder in the remaining time of the TXOP is limited.
  • the type of data frame sent by the RDG responder is limited, specifically, the RDG responder can only send data of the main access category (AC) corresponding to the TXOP.
  • AC main access category
  • the PSRT PPDU field is used to indicate that the current PPDU is a spatial multiplexing PPDU that is sent under the conditions of parameter spatial multiplexing transmission.
  • IEEE802.11be standard may also support Scheduled P2P mechanism and CO-TDMA mechanism.
  • the first AP may also need to transfer the remaining time of the TXOP held by it to the STA associated with the first AP.
  • the first AP may also need to transfer the remaining time of the TXOP it holds to the second AP.
  • the above RDG mechanism cannot be applied to other application scenarios (such as Scheduled P2P scenarios or CO-TDMA scenarios). communication.
  • the device that accepts the remaining time of the TXOP communicates with other devices, and the other devices do not include the holder of the TXOP.
  • the embodiment of the present application provides a second frame.
  • the second frame includes an A-control field, the A-control field includes a CAS control field, and the CAS control field includes a fourth field and a fifth field.
  • the second frame is a data frame, such as a quality of service (quality of service, QoS) frame or a QoS null (null) frame.
  • QoS quality of service
  • QoS null null
  • the fourth field is used to indicate whether to transfer the remaining time of the TXOP to the second device, so that the second device communicates with the first device during the remaining time of the TXOP.
  • the fourth field is used to indicate whether to transfer the remaining time of the TXOP to the RDG responder.
  • the fourth field may have other names, such as the RDG/more PPDU field.
  • the fourth field when the fourth field is set to a fourth preset value, the fourth field is used to indicate that the remaining time of the TXOP is transferred to the second device, so that the second device can perform a communication with the first device within the remaining time of the TXOP. communication.
  • the fourth field is set to the fifth preset value, the fourth field is used to indicate that the remaining time of the TXOP is not to be transferred to the second device.
  • the fourth preset value is different from the fifth preset value.
  • the communication between the second device and the first device during the remaining time of the TXOP may be: the second device uses a single-user PPDU to communicate with the first device during the remaining time of the TXOP; Use downlink multi-user PPDU or trigger frame to communicate with multiple devices including the first device within the remaining time of the device.
  • This embodiment of the present application does not limit the values of the fourth preset value and the fifth preset value.
  • the fourth preset value is 1, and the fifth preset value is 0.
  • the fifth field is used to indicate whether to transfer the remaining time of the TXOP to the second device, so that the second device communicates with the third device within the remaining time of the TXOP, and the third device does not include the first device.
  • the fifth field is used to indicate whether to transfer the remaining time of the TXOP to the cooperating device or the P2P STA.
  • the fifth field when the fifth field is set to the fourth preset value, the fifth field is used to indicate that the remaining time of the TXOP is transferred to the second device, so that the second device and the third device are in the remaining time of the TXOP. communication.
  • the fifth field is used to indicate that the remaining time of the TXOP is not to be transferred to the second device.
  • the third device may be one or more.
  • the fifth field is used to indicate that the remaining time of the TXOP is transferred to the second device so that the second device communicates with the third device during the remaining time of the TXOP, the second device will not communicate with the third device during the remaining time of the TXOP.
  • the first device communicates.
  • the fifth field may have other names, such as a time sharing field.
  • the fourth field and the fifth field cannot be set to the fourth preset value at the same time.
  • the second frame further includes a duration field, and the duration field may be used to determine the duration of the remaining time of the TXOP.
  • the CAS control field further includes a sixth field, where the sixth field is used to indicate whether the type of the data frame sent by the second device within the remaining time of the TXOP is limited. Specifically, when the sixth field is set to 0, the sixth field is used to indicate that the type of the data frame sent by the second device within the remaining time of the TXOP is not limited. When the sixth field is set to 1, the sixth field is used to indicate that the type of the data frame sent by the second device within the remaining time of the TXOP is limited.
  • the sixth field may have other names, such as the AC constraint field.
  • the CAS control field further includes a seventh field.
  • the seventh field is used to indicate whether the second device is allowed to transfer the remaining time of the TXOP to other devices. Specifically, when the seventh field is set to the sixth preset value, the seventh field is used to indicate that the second device is not allowed to transfer the remaining time of the TXOP to other devices. When the seventh field is set to the seventh preset value, the seventh field is used to indicate that the second device is allowed to transfer the remaining time of the TXOP to other devices.
  • the seventh field may have other names, such as the Further grant field.
  • the CAS control field may also include other fields, such as the PSRT PPDU field.
  • FIG. 16 shows a schematic diagram of a CAS control field in a second frame provided by an embodiment of the present application.
  • the CAS control field may include a fourth field, a fifth field, a sixth field, a seventh field, a PSRT PPDU field, and 3 reserved bits.
  • the fourth field, the fifth field, the sixth field, the seventh field, and the PSRT PPDU field all occupy 1 bit.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the first device generates a second frame.
  • the first device sends the second frame to the second device.
  • the second device receives the second frame sent by the first device.
  • the second device parses the second frame.
  • the second device When the fourth field in the CAS control field of the second frame is set to the fourth preset value, the second device communicates with the first device within the remaining time of the TXOP. Or, when the fifth field in the CAS control field of the second frame is set to the fifth preset value, the second device communicates with the third device within the remaining time of the TXOP.
  • the third device may be determined according to a specific application scenario.
  • the third device may be a site associated with the second device.
  • the third device may be a site that establishes a P2P link with the second device.
  • the second frame carries a CAS control field
  • the CAS control field includes a fourth field and a fifth field.
  • the fourth field is used to indicate that the remaining time of the TXOP is transferred to the second device, so that the second device communicates with the first device during the remaining time of the TXOP.
  • the fifth field is used to indicate whether to transfer the remaining time of the TXOP to the second device, so that the second device communicates with the third device within the remaining time of the TXOP, and the third device does not include the first device.
  • the second frame can be applied to application scenarios with different arrangements for the remaining time of the TXOP, such as a scenario applying the RDG mechanism, a Scheduled P2P scenario, or a CO-TDMA scenario.
  • the second frame has generality.
  • the remaining time of the TXOP transferred by the first device to the second device through the second frame may be simply referred to as the second time resource.
  • the remaining time of the second time resource may be simply referred to as the third time resource.
  • the second device may return the third time resource to the first device through any one of the following operations.
  • the second device sends the second frame carrying the CAS control field to the first device, and the fifth field in the CAS control field is set to the fifth preset value.
  • Operation 2 The second device sends a radio frame that does not carry the CAS control field to the first device.
  • FIG. 18 is a flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 18, the communication method includes the following steps:
  • the second device generates a second response frame.
  • the second response frame is used to respond to the second frame.
  • the second response frame includes an eighth field. The eighth field is used to indicate whether the second device accepts the remaining time of the TXOP.
  • the eighth field when the eighth field is set to 0, the eighth field is used to indicate the remaining time for the second device to accept the TXOP.
  • the eighth field when the eighth field is set to 1, the eighth field is used to indicate the remaining time for the second device to reject the TXOP.
  • the eighth field when the eighth field is set to 1, the eighth field is used to indicate the remaining time for the second device to accept the TXOP.
  • the eighth field when the eighth field is set to 0, the eighth field is used to indicate the remaining time for the second device to reject the TXOP.
  • the second device sends a second response frame to the first device.
  • the first device receives the second response frame sent by the second device.
  • the first device can know whether the second device has correctly received the second frame according to whether the second response frame is received. On the other hand, the first device can determine whether the second device accepts the remaining time of the TXOP according to the eighth field in the second response frame, so that in the case that the second device rejects the remaining time of the TXOP, the first device can again The remaining time of TXOP is allocated to other devices to avoid waste of time resources.
  • the second device may not feed back a response frame to the first device, but directly communicate with the first device. Frame interaction with other devices.
  • the second device adopts the embodiment shown in FIG. 19 to make the first device know the remaining time for the second device to accept the TXOP allocated by the first device.
  • the second device sends the first radio frame during the remaining time of the TXOP.
  • the receiving address of the above-mentioned wireless frame is not the MAC address of the first device.
  • the frame format adopted by the first radio frame sent by the second device is a frame format that can be supported by the first device.
  • the physical layer parameter used for sending the radio frame is a physical layer parameter that the first device can support.
  • the physical layer parameters include, but are not limited to, the number of spatial streams and MCS.
  • the MCS used for sending the radio frame is less than or equal to the first MCS, and the first MCS is the maximum MCS supported by the first device.
  • the first device receives the first radio frame sent by the second device within the remaining time of the TXOP.
  • the first device can parse the the radio frame, so as to know the remaining time for the second device to accept the TXOP.
  • the first device may consider that the second device has not correctly received the second frame, or the first device may consider that the second device rejects the TXOP remaining time. In this case, the first device can transfer the remaining time of the TXOP to other devices.
  • radio frames such as the second radio frame, the third radio frame, etc.
  • the frame format used by other radio frames may not be a frame format supported by the first device
  • the physical layer parameters used in sending other radio frames may not be the physical layer parameters supported by the first device.
  • the second device needs to report cache status information to the first device in advance, so as to assist the first device in allocating time resources to the second device.
  • a communication method provided by an embodiment of the present application includes the following steps:
  • the second device generates cache state information.
  • the cache status information is used to indicate the amount of cached data.
  • the buffered data volume may be one or more of the following: the total uplink buffered data volume, the total downlink buffered data volume, or the sum of the total uplink buffered data volume and the total downlink buffered data volume.
  • the total uplink buffered data volume is the sum of the data volumes to be sent by each target site to the second device.
  • the total downlink buffered data volume is the sum of the data volumes to be sent by the second device to each target site.
  • the target site is one of the following:
  • the target site is any site associated with the second device.
  • the selection of the associated site is not limited by location.
  • the target site is a site associated with the second device, and the target site is a site that receives the capability indication information.
  • the capability indication information is used to instruct the station to participate in CO-TDMA.
  • the target site is a site associated with the second device, and the target site meets the selection condition of the second device.
  • the selection condition of the second device includes conditions in terms of location, channel state information, and the like.
  • the selection condition of the second device in terms of location is: the distance between the target site and the second device is less than or equal to the first preset value.
  • the amount of buffered data may be the sum of the amount of buffered data on K P2P links established by the second device, and K is a positive integer.
  • the amount of buffered data may be the amount of buffered data on a P2P link, and the buffer status information may also include an identifier of the P2P link.
  • the amount of cached data indicated by the above cached status information is all ACs or The sum of the cached data volumes for all TIDs.
  • the cache status information is used to indicate the amount of cached data, which may include the following implementations :
  • the cache status information is used to indicate the amount of cached data corresponding to one or more ACs.
  • the cache status information may be used to indicate the amount of cached data corresponding to one or more TIDs.
  • the buffer status information may include a plurality of cells, each cell is used to carry the identifier of an AC and the buffered data volume corresponding to the AC; or, each cell is used to carry the identifier of a TID and the TID. The corresponding amount of cached data.
  • the cache status information is used to indicate the amount of cached data corresponding to the primary AC.
  • Implementation Mode 3 The cache status information is used to indicate the amount of cached data corresponding to the AC combination. Or, the buffer status information is used to indicate the buffer data amount corresponding to the TID combination.
  • the AC combination includes one or more ACs.
  • the buffered data volume corresponding to the AC combination is the sum of the buffered data volumes corresponding to each AC in the AC combination.
  • AC combination 1 includes AC1 and AC2
  • the buffered data volume corresponding to AC combination 1 is the sum of the buffered data volume corresponding to AC1 and the buffered data volume corresponding to AC2.
  • a TID combination includes one or more TIDs.
  • the buffered data volume corresponding to the TID combination is the sum of the buffered data volume corresponding to each TID in the TID combination.
  • TID combination 1 includes TID1 and TID2, and the buffered data volume corresponding to TID combination 1 is the sum of the buffered data volume corresponding to TID1 and the buffered data volume corresponding to TID2.
  • the second device sends cache status information to the first device.
  • the first device receives the cache status information sent by the second device.
  • the buffer status information may be carried in the radio frame.
  • the radio frame includes an A-control field, and the A-control field includes buffer status information.
  • the value of the control ID field in the A-control field is 3, and the cache status report field in the A-control field is equivalent to the cache status information.
  • the radio frame carrying the buffer status information is a public action (Public Action) frame.
  • Public Action a public action (Public Action) frame.
  • the buffer status information may adopt the frame structure shown in FIG. 21 or FIG. 22 .
  • the buffer status information may include a feedback type (Report Type) field, a scaling factor (scaling factor) field, a total downlink buffered data volume field, an uplink total buffered data volume field, and reserved bits.
  • Report Type Report Type
  • scaling factor scaling factor
  • the zoom factor field is used to indicate the zoom factor. It should be understood that, in the frame structure shown in FIG. 21 , the product of the scaling factor indicated by the scaling factor field and the data amount indicated by the total downlink buffered data volume field is the total downlink buffered data volume. The product of the scaling factor indicated by the scaling factor field and the data amount indicated by the total uplink buffered data volume field is the total uplink buffered data volume. In this way, by setting the scaling factor field in the cache status information, the indication of the data amount within a larger value range can be implemented with a smaller number of bits.
  • the zoom factor is an optional field. If the buffer status information does not include the scaling factor field, the total downlink buffered data volume field is used to indicate the total downlink buffered data volume, and the uplink total buffered data volume field is used to indicate the uplink total buffered data volume.
  • the field of total downlink buffered data volume may also have other names, such as the BSS downlink queue size (queue size BSS DL) field.
  • the upstream total buffered data volume field may also have other names, such as the BSS upstream queue size (queue size BSS UL) field.
  • the buffer status information may include: a feedback type field, a scaling factor field, a total buffered data amount field, and reserved bits.
  • the product of the scaling factor indicated by the scaling factor field and the data volume indicated by the total buffered data volume field is the sum of the total upstream buffered data volume and the total downstream buffered data volume.
  • the zoom factor is an optional field. If the buffer status information does not include the scaling factor field, the total buffered data volume field is used to indicate the sum of the uplink total buffered data volume and the downlink total buffered data volume.
  • the total cache data volume field can have other names, such as the queue size BSS DL+UL field.
  • the cache status information may adopt the frame structure shown in FIG. 23 or FIG. 24 .
  • the cache status information includes a report type field, a scaling factor field, a P2P cache data amount field, and reserved bits.
  • the product of the scaling factor indicated by the scaling factor field and the data amount indicated by the P2P buffered data volume field is the sum of buffered data on the K P2P links established by the second device.
  • the zoom factor is an optional field. If the buffer status information does not include the scaling factor field, the P2P buffer data amount field is used to indicate the sum of buffer data on the K P2P links established by the second device.
  • the cache status information includes a report type field, a scaling factor field, a P2P cache data amount field, a P2P side field, and reserved bits.
  • the P2P side field is used for the identification of the P2P link.
  • the product between the scaling factor indicated by the scaling factor field and the data amount indicated by the P2P buffered data amount field is the sum of the buffered data on the P2P link indicated by the P2P side field.
  • the zoom factor is an optional field.
  • reserved bits are optional. That is, the buffer status information may not include reserved bits.
  • the feedback type field is used to indicate a feedback type, and the feedback type includes a first feedback type and a second feedback type.
  • the first feedback type is used to describe that the cache state information is used in a multi-AP cooperation scenario.
  • the second feedback type is used to illustrate that the cache status information is used in a P2P scenario.
  • the multi-AP cooperation scenario includes a CO-TDMA scenario.
  • the first feedback type may be recorded as multi-AP, and the second feedback type may be recorded as P2P.
  • the feedback type field is an optional field.
  • the first device may learn the feedback type of the buffer status information in any one of the following manners.
  • the first device determines the feedback type of the cache status information according to the role of the second device. For example, when the second device is an AP, the first device may determine that the feedback type of the buffer status information is the first feedback type. When the second device is a STA, the first device may determine that the feedback type of the buffer status information is the second feedback type.
  • the first device may carry the frame type of the radio frame of the buffer status information to determine the feedback type of the buffer status information. For example, when the frame type of the radio frame carrying the buffer status information is the first frame type, the first device may determine that the feedback type of the buffer status information is the first feedback type. When the frame type of the radio frame carrying the buffer status information is the second frame type, the first device may determine that the feedback type of the buffer status information is the second feedback type.
  • the second device sends cache status information to the first device, so that the first device knows the amount of cached data related to the second device. Furthermore, the first device can reasonably allocate time resources to the second device, so that the buffered data related to the second device can be transmitted within the allocated time resources.
  • FIG. 20 may be combined with the embodiment shown in the foregoing FIG. 12 or FIG. 17 .
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one functional module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and other division methods may be used in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • a communication device provided by an embodiment of the present application includes: a processing module 101 and a communication module 102 .
  • the processing module 101 is configured to perform step S101 in FIG. 12 and/or step S401 in FIG. 17 .
  • the communication module 102 is configured to perform step S102 in FIG. 12 , step S202 in FIG. 13 , step S302 in FIG. 14 , step S402 in FIG. 17 , step S502 in FIG. 18 , step S602 in FIG. 19 , and/ or step S702 in FIG. 20 .
  • the processing module 101 is configured to execute step S103 in FIG. 12 , step S201 in FIG. 13 , step S403 in FIG. 17 , and steps in FIG. 18 S501, and/or step S701 in FIG. 20 .
  • the communication module 102 is configured to perform step S102 in FIG. 12 , step S202 in FIG. 13 , step S301 in FIG. 14 , step S402 in FIG. 17 , step S502 in FIG. 18 , step S601 in FIG. 19 , and/ or step S702 in FIG. 20 .
  • FIG. 26 is a structural diagram of a possible product form of the communication device according to the embodiment of the present application.
  • the communication apparatus described in this embodiment of the present application may be the above-mentioned first device, where the first device includes a processor 201 and a transceiver 202 .
  • the communication device further includes a storage medium 203 .
  • the processor 201 is configured to execute step S101 in FIG. 12 and/or step S401 in FIG. 17 .
  • the transceiver 202 is configured to perform step S102 in FIG. 12 , step S202 in FIG. 13 , step S302 in FIG. 14 , step S402 in FIG. 17 , step S502 in FIG. 18 , step S602 in FIG. 19 , and/or or step S702 in FIG. 20 .
  • the communication apparatus described in this embodiment of the present application may be the above-mentioned second device, where the second device includes a processor 201 and a transceiver 202 .
  • the communication device further includes a storage medium 203 .
  • the processor 201 is configured to execute step S103 in FIG. 12 , step S201 in FIG. 13 , step S403 in FIG. 17 , step S501 in FIG. 18 , and/or step S701 in FIG. 20 .
  • the transceiver 202 is configured to perform step S102 in FIG. 12 , step S202 in FIG. 13 , step S301 in FIG. 14 , step S402 in FIG. 17 , step S502 in FIG. 18 , step S601 in FIG. 19 , and/ or step S702 in FIG. 20 .
  • the communication device described in the embodiments of the present application may also be implemented by a chip.
  • the chip includes: a processing circuit 201 and a transceiver pin 202 .
  • the chip may further include a storage medium 203 .
  • the communication apparatus described in the embodiments of the present application may also be implemented by using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic A programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic A programmable logic device
  • state machine gate logic
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the computer instructions are executed on a computer, causes the computer to execute the communication methods in the foregoing method embodiments. .
  • the embodiments of the present application further provide a computer program product including computer instructions, when the computer instructions are executed on the computer, the computer can execute the communication method in the foregoing method embodiments.
  • the computer instructions can be stored in a computer readable storage medium or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server Or the data center transmits to another website site, computer, server or data center by wired (eg coaxial cable, optical fiber, digital subscriber line) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state drives), and the like.
  • the apparatuses and methods disclosed in the several embodiments provided in this application may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,涉及通信技术领域,提供一种类型的无线帧来支持多种应用场景下对时间资源的不同使用需求,使得无线帧具有通用性。该通信方法包括:第一设备生成第一帧,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段用于指示第一时间资源的用途。第一时间资源的用途包括:第一时间资源用于传输单用户PPDU,或者第一时间资源用于进行帧交互。第一设备向第二设备发送第一帧。

Description

通信方法及装置
本申请要求于2020年8月28日提交国家知识产权局、申请号为202010889093.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及通信方法及装置。
背景技术
为了满足用户的特定需求,电气与电子工程师协会(institute of electrical and electronic engineers,IEEE)802.11be标准可能支持一些特殊的应用场景,例如调度(Scheduled)端对端(Peer-to-Peer,P2P)场景、协作时分多址(coordinated time division multiple access,CO-TDMA)场景等。
其中,在Scheduled P2P场景中,多个站点(station,STA)通过P2P技术连接以构成一个小型网络,从而多个STA之间可以相互直接通信。接入点(access point)AP可以向一个STA分配时间资源,以使得该STA在分配到的时间资源内与其他STA进行通信。
CO-TDMA场景中定义了两种AP角色:共享(sharing)AP和被共享(shared)AP。Sharing AP在获得TXOP之后,可以将TXOP中的一部分时间资源分配给shared AP,以使得shared AP使用该时间资源与shared AP关联的站点进行通信。
可见,当前通信系统中多种应用场景对时间资源具有不同的使用需求。但是,针对不同应用场景,采用不同帧类型的无线帧实现对时间资源的使用需求,则会引入多种帧类型指示信息,导致通信协议复杂化。因此,如何以一种类型的无线帧来支持多种应用场景下对时间资源的不同使用需求,使得无线帧具有通用性,是亟待解决的技术问题。
发明内容
本申请提供一种通信方法,用于实现以一种类型的无线帧来支持多种应用场景下对时间资源的不同使用需求,使得无线帧具有通用性。
第一方面,提供一种通信方法,该方法包括:第一设备生成第一帧,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段用于确定第一时间资源的用途,第一时间资源的用途包括:第一时间资源用于传输一个单用户物理层协议数据单元(PHY protocol data unit,PPDU),或者第一时间资源用于进行帧交互;第一设备向第二设备发送第一帧。
基于上述技术方案,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段可以用于指示第一时间资源用于传输单用户PPDU,或者第二字段用于指示第一时间资源用于进行帧交互。第一帧可以应用于对时间资源具有不同用途的场景,从而第一帧具有通用性。
一种可能的设计中,当第一时间资源用于传输一个单用户PPDU时,单用户PPDU的时长等于第一时间资源的时长。这样一来,保证不支持STR的多链路设备可以对齐不同链路上发送的单用户PPDU。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于进行帧交互。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于协作设备进行帧交互,协作设备与第一设备不属于同一个基本服务集(basic service set,BSS);当第二字段设置为第三预设值时,第三字段用于确定第一时间资源用于端对端站点进行帧交互。
一种可能的设计中,第一帧还包括触发帧类型字段,触发帧类型字段的取值为8-15中的任意一个。
一种可能的设计中,第一帧为基本类型(basic)触发帧,basic触发帧中的B63比特设置为1。
一种可能的设计中,第一字段和第二字段位于第一帧的公共信息字段或者用户信息字段中。
一种可能的设计中,第一帧还包括A-控制(control)字段,A-control字段包括控制标识字段和控制信息字段,控制标识字段的取值为7-14中的任意一个,第一字段和第二字段位于控制信息字段中。
一种可能的设计中,第一帧还包括使用触发响应调度(triggered response scheduling,TRS)的A-control字段,A-control字段包括TRS control字段,TRS control字段包括第一字段和第二字段,TRS control字段中的预留比特设置为1。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备发送的响应帧,响应帧包括第三字段,第三字段用于指示第二设备是否接受第一时间资源。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备在第一时间资源发送的第一个无线帧,发送无线帧使用的调制与编码策略(modulation and coding scheme,MCS)小于或等于第一设备所支持的最大MCS。这样一来,第一设备可以解析该第一个无线帧,从而获知第二设备接受第一时间资源。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。应理解,第二设备通过向第一设备发送缓存状态信息,可以辅助第一设备分配时间资源。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第二方面,提供一种通信方法,该方法包括:第二设备接收第一设备发送的接收第一帧,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段用于确定第一时间资源的用途,第一时间资源的用途包括:第一时间资源用于传输一个单用户物理层协议数据单元PPDU,或者第一时间资源用于进行帧交互;第二设备解析第一帧。
基于上述技术方案,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段可以用于指示第一时间资源用于传输单用户PPDU,或者第二字段用于指示第一时间资源用于进行帧交互。第一帧可以应用于对时间资源具有不同用途的场景,从而第一帧具有通用性。
一种可能的设计中,当第一时间资源用于传输一个单用户PPDU时,单用户PPDU的时长等于第一时间资源的时长。这样一来,保证不支持STR的多链路设备可以对齐不同链路上发送的单用户PPDU。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于进行帧交互。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于协作设备进行帧交互,协作设备与第一设备不属于同一个基本服务集;或者,当第二字段设置为第三预设值时,第三字段用于确定第一时间资源用于端对端站点进行帧交互。
一种可能的设计中,第一帧还包括触发帧类型字段,触发帧类型字段的取值为8-15中的任意一个。
一种可能的设计中,第一帧为基本类型basic触发帧,basic触发帧中的B63比特设置为1。
一种可能的设计中,第一字段和第二字段位于第一帧的公共信息字段或者用户信息字段中。
一种可能的设计中,第一帧还包括A-控制control字段,A-control字段包括控制标识字段和控制信息字段,控制标识字段的取值为7-14中的任意一个,第一字段和第二字段位于控制信息字段中。
一种可能的设计中,第一帧还包括使用触发响应调度类型TRS的A-控制control字段,A-control字段包括TRS control字段,TRS control字段包括第一字段和第二字段,TRS control字段中的预留比特设置为1。
一种可能的设计中,上述通信方法还包括:第二设备向第一设备发送响应帧,响应帧包括第三字段,第三字段用于指示第二设备是否接受第一时间资源。
一种可能的设计中,上述通信方法还包括:第二设备在第一时间资源发送第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,上述通信方法还包括:第二设备向第一设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第三方面,提供一种通信方法,该方法包括:第一设备生成携带命令与状态(command and status,CAS)control字段的第二帧,CAS control字段包括第四字段和第五字段,第四字段用于确定是否将传输机会(transmission opportunity,TXOP)的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;第五字段用于确定是否将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信,第三设备不包括第一设备;第一设备向第二设备发送携带CAS control字段的第二帧。
基于上述技术方案,上述第四字段能够支持一种类型的应用场景下对TXOP的剩余时间的使用设置,第五字段能够支持另一种类型的应用场景下对TXOP的剩余时间的使用设置。因此,基于第四字段和第五字段,第二帧可以应用于对TXOP的剩余时间具有不同安排的应用场景,例如应用RDG机制的场景、Scheduled P2P场景或者CO-TDMA场景。从而,第二帧具有通用性。
一种可能的设计中,当第四字段设置为第四预设值时,第四字段用于确定将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;或者,当第四字段设置为第五预设值时,第四字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,当第五字段设置为第四预设值时,第五字段用于指示确定将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信;或者,当第五字段设置为第五预设值时,第五字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,第四字段和第五字段不能同时设置为第四预设值。
一种可能的设计中,CAS control字段还包括第六字段,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型是否存在限定。
一种可能的设计中,CAS control字段还包括第七字段,第七字段用于指示是否允许第二设备将TXOP的剩余时间转让给除了第一设备之外的其他设备。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备发送的响应帧,响应帧包括第八字段,第八字段用于是否第二设备是否接受TXOP的剩余时间。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备在TXOP的剩余时间内发送的第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,上述通信方法还包括:第一设备接收第二设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项: 上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第四方面,提供一种通信方法,该方法包括:第二设备接收第一设备发送的携带CAS control字段的第二帧,CAS control字段包括第四字段和第五字段,第四字段用于确定是否将TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;第五字段用于确定是否将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信,第三设备不包括第一设备;第二设备解析携带CAS control字段的第二帧。
基于上述技术方案,上述第四字段能够支持一种类型的应用场景下对TXOP的剩余时间的使用设置,第五字段能够支持另一种类型的应用场景下对TXOP的剩余时间的使用设置。因此,基于第四字段和第五字段,第二帧可以应用于对TXOP的剩余时间具有不同安排的应用场景,例如应用RDG机制的场景、Scheduled P2P场景或者CO-TDMA场景。从而,第二帧具有通用性。
一种可能的设计中,当第四字段设置为第四预设值时,第四字段用于确定将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;或者,当第四字段设置为第五预设值时,第四字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,当第五字段设置为第四预设值时,第五字段用于指示确定将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信;或者,当第五字段设置为第五预设值时,第五字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,第四字段和第五字段不能同时设置为第四预设值。
一种可能的设计中,CAS control字段还包括第六字段,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型是否存在限定。
一种可能的设计中,CAS control字段还包括第七字段,第七字段用于指示是否允许第二设备将TXOP的剩余时间转让给除了第一设备之外的其他设备。
一种可能的设计中,上述通信方法还包括:第二设备向第一设备发送响应帧,响应帧包括第八字段,第八字段用于是否第二设备是否接受TXOP的剩余时间。
一种可能的设计中,上述通信方法还包括:第二设备在TXOP的剩余时间内发送第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,上述通信方法还包括:第二设备向第一设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第五方面,提供一种通信装置,包括处理模块和通信模块。处理模块,用于生成第一帧,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段用于确定第一时间资源的用途,第一时间资源的用途包括:第一时间资源用于传输一个单用户PPDU,或者第一时间资源用于进行帧交互。通信模块,用于向第二设备发送第一帧。
一种可能的设计中,当第一时间资源用于传输一个单用户PPDU时,单用户PPDU的时长等于第一时间资源的时长。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于进行帧交互。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于协作设备进行帧交互,协作设备与第一设备不属于同一个基本服务集;当第二字段设置为第三预设值时,第三字段用于确定第一时间资源用于端对端站点进行帧交互。
一种可能的设计中,第一帧还包括触发帧类型字段,触发帧类型字段的取值为8-15中的任意一个。
一种可能的设计中,第一帧为basic触发帧,basic触发帧中的B63比特设置为1。
一种可能的设计中,第一字段和第二字段位于第一帧的公共信息字段或者用户信息字段中。
一种可能的设计中,第一帧还包括A-control字段,A-control字段包括控制标识字段和控制信息字段,控制标识字段的取值为7-14中的任意一个,第一字段和第二字段位于控制信息字段中。
一种可能的设计中,第一帧还包括使用TRS的A-control字段,A-control字段包括TRS control字段,TRS control字段包括第一字段和第二字段,TRS control字段中的预留比特设置为1。
一种可能的设计中,通信模块,还用于接收第二设备发送的响应帧,响应帧包括第三字段,第三字段用于指示第二设备是否接受第一时间资源。
一种可能的设计中,通信模块,还用于接收第二设备在第一时间资源发送的第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,通信模块,还用于接收第二设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第六方面,提供一种通信装置,包括处理模块和通信模块。通信模块,用于接收第一设备发送的接收第一帧,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段用于确定第一时间资源的用途,第一时间资源的用途包括:第一时间资源用于传输一个单用户物理层协议数据单元PPDU,或者第一时间资源用于进行帧交互。处理模块,用于解析第一帧。
一种可能的设计中,当第一时间资源用于传输一个单用户PPDU时,单用户PPDU的时长等于第一时间资源的时长。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于进行帧交互。
一种可能的设计中,第二字段用于确定第一时间资源的用途,包括以下情形:当第二字段设置为第一预设值时,第二字段用于确定第一时间资源用于传输一个单用户PPDU;或者,当第二字段设置为第二预设值时,第二字段用于确定第一时间资源用于协作设备进行帧交互,协作设备与第一设备不属于同一个基本服务集;或者,当第二字段设置为第三预设值时,第三字段用于确定第一时间资源用于端对端站点进行帧交互。
一种可能的设计中,第一帧还包括触发帧类型字段,触发帧类型字段的取值为8-15中的任意一个。
一种可能的设计中,第一帧为基本类型basic触发帧,basic触发帧中的B63比特设置为1。
一种可能的设计中,第一字段和第二字段位于第一帧的公共信息字段或者用户信息字段中。
一种可能的设计中,第一帧还包括A-control字段,A-control字段包括控制标识字段和控制信息字段,控制标识字段的取值为7-14中的任意一个,第一字段和第二字段位于控制信息字段中。
一种可能的设计中,第一帧还包括使用触发TRS的A-control字段,A-control字段包括TRS control字段,TRS control字段包括第一字段和第二字段,TRS control字段中的预留比特设置为1。
一种可能的设计中,通信模块,还用于向第一设备发送响应帧,响应帧包括第三字段,第三字段用于指示第二设备是否接受第一时间资源。
一种可能的设计中,通信模块,还用于在第一时间资源发送第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,通信模块,还用于向第一设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和, 下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第七方面,提供一种通信装置,包括处理模块和通信模块。处理模块,用于生成携带命令与状态CAS控制control字段的第二帧,CAS control字段包括第四字段和第五字段,第四字段用于确定是否将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;第五字段用于确定是否将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信,第三设备不包括第一设备。通信模块,用于向第二设备发送携带CAS control字段的第二帧。
一种可能的设计中,当第四字段设置为第四预设值时,第四字段用于确定将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;或者,当第四字段设置为第五预设值时,第四字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,当第五字段设置为第四预设值时,第五字段用于指示确定将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信;或者,当第五字段设置为第五预设值时,第五字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,第四字段和第五字段不能同时设置为第四预设值。
一种可能的设计中,CAS control字段还包括第六字段,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型是否存在限定。
一种可能的设计中,CAS control字段还包括第七字段,第七字段用于指示是否允许第二设备将TXOP的剩余时间转让给除了第一设备之外的其他设备。
一种可能的设计中,通信模块,还用于接收第二设备发送的响应帧,响应帧包括第八字段,第八字段用于是否第二设备是否接受TXOP的剩余时间。
一种可能的设计中,通信模块,还用于接收第二设备在TXOP的剩余时间内发送的第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,通信模块,还用于接收第二设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第八方面,提供一种通信装置,包括处理模块和通信模块。通信模块,用于接收第一设备发送的携带CAS control字段的第二帧,CAS control字段包括第四字段和第五字段,第四字段用于确定是否将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;第五字段用于确定是否将TXOP的剩 余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信,第三设备不包括第一设备。处理模块,用于解析携带CAS control字段的第二帧。
一种可能的设计中,当第四字段设置为第四预设值时,第四字段用于确定将传输机会TXOP的剩余时间转让给第二设备,以使得第二设备与第一设备在TXOP的剩余时间内进行通信;或者,当第四字段设置为第五预设值时,第四字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,当第五字段设置为第四预设值时,第五字段用于指示确定将TXOP的剩余时间转让给第二设备,以使得第二设备与第三设备在TXOP的剩余时间内进行通信;或者,当第五字段设置为第五预设值时,第五字段用于确定不将传输机会TXOP的剩余时间转让给第二设备。
一种可能的设计中,第四字段和第五字段不能同时设置为第四预设值。
一种可能的设计中,CAS control字段还包括第六字段,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型是否存在限定。
一种可能的设计中,CAS control字段还包括第七字段,第七字段用于指示是否允许第二设备将TXOP的剩余时间转让给除了第一设备之外的其他设备。
一种可能的设计中,通信模块,还用于向第一设备发送响应帧,响应帧包括第八字段,第八字段用于是否第二设备是否接受TXOP的剩余时间。
一种可能的设计中,通信模块,还用于在TXOP的剩余时间内发送第一个无线帧,发送无线帧使用的MCS小于或等于第一设备所支持的最大MCS。
一种可能的设计中,通信模块,还用于向第一设备发送的缓存状态信息,缓存状态信息用于指示缓存数据量。
一种可能的设计中,当第二设备为协作设备时,缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,上行总缓存数据量为第二设备所关联的一个或多个站点的上行缓存数据量之和,下行总缓存数据量为第二设备所关联的一个或多个站点的下缓存数据量之和。
一种可能的设计中,当第二设备为P2P站点时,缓存数据量为第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
第九方面,提供一种通信装置,所述通信装置包括处理器和收发器,处理器和收发器用于实现上述第一方面至第四方面中任一方面提供的任意一种方法。其中,处理器用于执行相应方法中的处理动作,收发器用于执行相应方法中的接收/发送的动作。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行第一方面至第四方面中任一方面提供的任意一种方法。
第十一方面,提供一种包含计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行第一方面至第四方面中任一方面提供的任意一种方法。
第十二方面,提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述第一方面至第四方面中任一方面提供的任意一种方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
需要说明的是,上述第五方面至第十二方面中任一种设计所带来的技术效果可以参 见第一方面至第四方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为一种触发帧的帧结构示意图;
图2为一种触发帧中公共信息字段的示意图;
图3为一种触发帧中用户信息字段的示意图;
图4(a)为一种A-control字段的示意图;
图4(b)为一种TRS control字段的示意图;
图5为本申请实施例提供的一种AP多链路设备与STA多链路设备的通信场景示意图;
图6(a)和图6(b)为参与通信的AP多链路设备和STA多链路设备的结构示意图;
图7为本申请实施例提供的一种无线帧#1应用于多链路场景的示意图;
图8为本申请实施例提供的一种Scheduled P2P场景的示意图;
图9为本申请实施例提供的一种CO-TDMA场景的示意图;
图10为本申请实施例提供的一种无线帧#2应用于Scheduled P2P场景的示意图;
图11为本申请实施例提供的一种无线帧#2应用于CO-TDMA场景的示意图;
图12为本申请实施例提供的一种通信方法的流程图;
图13为本申请实施例提供的另一种通信方法的流程图;
图14为本申请实施例提供的另一种通信方法的流程图;
图15为现有技术中一种CAS control字段的示意图;
图16为本申请实施例提供的一种CAS control字段的示意图;
图17为本申请实施例提供的另一种通信方法的流程图;
图18为本申请实施例提供的另一种通信方法的流程图;
图19为本申请实施例提供的另一种通信方法的流程图;
图20为本申请实施例提供的另一种通信方法的流程图;
图21为本申请实施例提供的一种缓存状态信息的结构示意图;
图22为本申请实施例提供的另一种缓存状态信息的结构示意图;
图23为本申请实施例提供的另一种缓存状态信息的结构示意图;
图24为本申请实施例提供的另一种缓存状态信息的结构示意图;
图25为本申请实施例提供的一种通信装置的结构示意图;
图26为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描 述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请提供的技术方案可以应用于各种通信系统,例如采用IEEE 802.11标准的系统。示例性的,IEEE 802.11标准包括但不限于:802.11be标准、或者更下一代的802.11标准。本申请的技术方案适用的场景包括:AP与STA之间的通信、AP与AP之间的通信、以及STA与STA之间的通信等。
本申请涉及到的STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等。在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请所涉及到的接入点AP是一种部署在无线通信网络中为其关联的STA提供无线通信功能的装置,该接入点AP可用作该通信系统的中枢,可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等通信设备,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此,为了描述方便,上面提到的设备统称为接入点AP。
下面先对本申请实施例所涉及的技术术语进行简单介绍,以便于理解本申请的技术方案。
1、BSS
BSS用于描述无线局域网(wireless local area networks,WLAN)中一组能够相互通信的设备。WLAN中可以包括多个BSS。每一个BSS具有唯一的标识,称为基本服务集标识符(BSSID)。可选的,一个BSS可以包含一个AP和多个关联该AP的STA。
2、TXOP
TXOP是无线信道接入的基本单元。TXOP由初始时间和最大持续时间(TXOP limit)组成。获得TXOP的站点在TXOP limit时间内可以不再重新竞争信道、连续使用信道传输多个数据帧。
TXOP可以经由竞争或者混合协调器(hybrid coordinator,HC)分配两种方式获得。其中,经由竞争获得的TXOP可以被称为增强的分布式信道访问(enhanced distributed channel access,EDCA)TXOP。经由HC分配获得的TXOP可以被称为混合式协调功能控制信道访问(hybrid coordination function controlled channel access,HCCA)TXOP。
应理解,本申请不涉及TXOP的获取,TXOP的获取方式的具体细节可以参考现有技术。
3、触发帧
在上行传输或者下行传输的过程中,需要利用触发帧来实现多用户通信间的信息交互。
示例性的,图1示出一种触发帧的帧结构的示意图。如图1所示,触发帧包括:帧控制(frame control)字段、时长(duration)字段、接收地址(receiving address,RA)字段、发送地址(transmitting address,TA)字段、公共信息(common info)字段、用户信息列表(user info list)字段、以及填充(padding)字段、以及帧效验序列(frame check sequence,FCS)字段。
其中,公共信息字段包含所有站点都需要读取的公共信息。如图2所示,公共信息字段包括:触发帧类型(trigger type)子字段、上行长度(UL length)子字段、更多触发帧(more TF)子字段、需要载波侦听(CS required)子字段、上行带宽(UL bandwidth)子字段、保护间隔和HE长训练序列类型(GI and HE-LTF type)子字段、模式(MU-MIMO HE-LTF mode)子字段、HE-LTF个数与中间码周期(number of HE-LTF symbols and Midamble peridicity)子字段、上行空时块编码(UL STBC)子字段、LDPC额外符号部分(LDPC extra symbol segment)子字段、AP发送功率(AP TX power)子字段、前向纠错码前的填充因子(Pre-FEC padding factor)子字段、包拓展模糊(PE disambiguilty)子字段、上行空间复用(UL spatial reuse)子字段、多普勒(Doppler)子字段、上行HE-SIG-A2预留(UL HE-SIG-A2 Reserved)子字段、预留(reserved)子字段、基于触发帧类型的公共信息(trigger dependent Common info)字段。
触发帧类型子字段占用4个比特,用于指示触发帧的类型。现有技术中,触发帧类型子字段的取值与触发帧的类型之间的对应关系,可以参考表1。
表1
Figure PCTCN2021114554-appb-000001
触发帧的用户信息列表字段可以包括多个用户信息字段。802.11ax标准中,用户信息字段的结构可以如图3所示。用户信息字段可以包括:AID子字段、资源块分配(RU allocation)字段、上行前向纠错编码类型(UL FEC coding type)字段、上行调制与编码策略(UL HE-MCS)字段、上行双载波调制(UL DCM)字段、空间流分配/随机接入RU信息(SS allocation/RA-RU information)字段、上行目标接收信号强度指示(UL target RSSI)字段、预留(reserved)字段、以及基于触发帧类型的用户信息(trigger dependent user info)字段。
4、PPDU类型
为了适应不同的传输场景,802.11ax在物理层上新增了四种PPDU类型,分别为:单用户(signal user,SU)PPDU、增程(extended range)PPDU、多用户(multi user,MU)PPDU、以及基于触发帧(trigger-based,TB)PPDU。
其中,单用户PPDU主要应用于单用户场景中。
增程PPDU主要应用于远离AP的单用户场景中,例如室外场景。
多用户PPDU主要用于多用户场景中,可以同时对一个或多个用户进行一次或者多次的 传输。
TB PPDU用于回应触发帧。TB PPDU主要在上行正交频分多址(orthogonal frequency division multiple access,OFDMA)或者上行MU-多输入多输出(multiple in multiple out,MIMO)场景中进行传输。
5、A-control字段
如图4(a)所示,A-control字段包括控制标识(control ID)字段和控制信息(control information)字段。其中,control ID字段占用4个比特。control information字段占用的比特数目是根据control ID字段的取值(value)而变化的。
当前,control ID字段的取值与含义(meaning)之间的对应关系可以参考表2。
表2
Figure PCTCN2021114554-appb-000002
示例性的,结合表2进行说明,在A-control字段中的control ID字段取值为3时,A-control字段中的control information字段即作为BSR control字段。
在A-control字段中的control ID字段取值为6时,A-control字段中的control information字段即作为CAS control字段。
在A-control字段中的control ID字段取值为8时,A-control字段中的control information字段即作为TRS control字段。
如图4(b)所示,现有技术中TRS control字段包括:上行数据符号(UL data symbols) 字段、资源块分配(RU allocation)字段、接入点发送功率(AP TX power)字段、UL target RSSI字段、UL HE-MCS字段以及预留字段。
在图4(b)中,TRS control字段所占用的比特从低位到高位依次排序,可以编号为B0-B25比特。其中,UL data symbols字段占用B0-B4比特,RU allocation字段占用B5-B12比特,AP TX power字段占用B13-B17比特,UL target RSSI字段占用B18-B22比特,UL HE-MCS字段占用B23-B24比特,预留字段占用B25比特。
以上是对本申请实施例所涉及的术语的介绍,以下不再赘述。
目前IEEE 802.11下一代无线保真(Wireless Fidelity,WiFi)协议极高吞吐量(Extremely high throughput,EHT)设备支持通过多个流数、多个频段(例如,2.4GHz,5GHz和6GHz频段),以及同一频段上通过多个信道的合作等方式提高峰值吞吐量,降低业务传输的时延。该多频段或多信道可以统称为多链路。
多链路设备包括一个或多个隶属的站点,隶属的站点可以是逻辑上的站点,也可以是物理上的站点。在本申请实施例中,“多链路设备包括隶属的站点”可以简要描述为“多链路设备包括站点”。
其中,隶属站点可以为接入点(access point,AP)或者非接入点站点(non-access point station,non-AP STA)。为描述方便,本申请实施例可以将隶属的站点为AP的多链路设备称为多链路AP,或者AP MLD,或者多链路AP设备;可以将隶属的站点为STA的多链路设备称为多链路STA,或者多链路STA设备,或者STA MLD,或者non-AP MLD。
多链路设备可以遵循802.11系统协议实现无线通信。示例性的,802.11系统协议可以为802.11ax协议、802.11be协议、以及下一代802.11协议,本申请实施例不限于此。
多链路设备可以与其他设备通信。本申请实施例中,其他设备可以是多链路设备,也可以不是多链路设备。
示例性的,图5为AP多链路设备与STA多链路设备的通信场景示意图。如图5所示,一个AP多链路设备可以关联多个STA多链路设备以及单链路STA。例如,AP多链路设备100关联STA多链路设备200、STA多链路设备300、以及STA400。应理解,AP多链路设备中的多个AP分别工作在多个链路上,STA多链路设备中的多个STA分别工作在多个链路上,STA多链路设备中的一个STA关联其工作链路上AP多链路设备中的一个AP。单链路STA关联其工作链路上AP多链路设备中的一个AP。
图6(a)、图6(b)示出了参与通信的AP多链路设备和STA多链路设备的结构示意图。802.11标准关注AP多链路设备和STA多链路设备(如手机、笔记本电脑)中的802.11物理层(Physical layer,PHY)和媒体接入控制(Media Access Control,MAC)层部分。
如图6(a)所示,AP多链路设备包括的多个AP在低MAC(low MAC)层和PHY层互相独立,在高MAC(high MAC)层也互相独立。STA多链路设备包括的多个STA在low MAC层和PHY层互相独立,在high MAC层也互相独立。
如图6(b)所示,AP多链路设备中包括的多个AP在低MAC层和PHY层互相独立,共用高MAC(High MAC)层。STA多链路设备中包括的多个STA在低MAC(Low MAC)层和PHY层互相独立,共用高MAC(High MAC)层。
当然,STA多链路设备可以是采用高MAC层相互独立的结构,而AP多链路设备采用高MAC层共用的结构。或者,STA多链路设备采用高MAC层共用的结构,AP多链路设备采 用高MAC层相互独立的结构。示例性的,该高MAC层或低MAC层都可以由多链路设备的芯片系统中的一个处理器实现,还可以分别由一个芯片系统中的不同处理模块实现。
多链路设备工作的频段可以包括但不限于:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz。
多链路设备可以支持同时收发(simultaneously transmit and receive,STR)数据,或者,多链路设备可以不支持同时收发数据。其中,支持同时收发数据是指:多链路设备在一条链路上发送数据的过程中,可以另一条链路上接收到数据。不支持同时收发数据是指:多链路设备在一条链路上发送数据的过程中,不能在另一条链路上接收到数据。
当STA多链路设备不支持同时收发数据时,在STA多链路设备与AP多链路设备之间的数据传输过程中,多链路设备AP在多个链路上发送的无线帧在结尾对齐,同时STA多链路设备在多个链路上发送的响应帧在开始时间和结束时间均对齐。
在不支持STR的多链路设备的通信场景中,需要一个无线帧来控制响应帧的长度,以保证不同链路上传输的响应帧能够对齐。
为了便于描述,下文中将“不支持STR的多链路设备的通信场景”,简称为“多链路场景”。
当前标准中定义的触发帧不适合应用于上文所描述的多链路场景。其原因在于:
(1)现有的触发帧是为了多用户同时进行上行TB PPDU发送来设计的,因此现有的触发帧需要指示MCS、RU、发送功率等信息,从而现有的触发帧会造成不必要的系统开销。
(2)现有的触发帧只能触发TB PPDU。而在多链路场景中,用于控制响应帧长度的无线帧仅需用于触发一个站点进行相应的响应,从而该站点不必要使用TB PPDU,而可以使用单用户PPDU。单用户PDDU比TB PPDU有更多的好处:1)单用户PPDU可以更好地进行信道保护。因为第三方站点可以解析单用户PDDU的内容,而不能够解析TB PPDU的内容。2)单用户PPDU比TB PPDU在物理层帧头的开销较小。
为了解决这一技术问题,提出一种应用于多链路场景的无线帧#1,该无线帧#1可以触发一个站点使用单用户PPDU方式进行响应。该无线帧#1包括一个设置时长(assigned time duration)字段。该设置时长字段用于指示站点反馈的单用户PPDU的长度。
上述无线帧#1可以被称为单用户触发帧。应理解,无线帧#1可以聚合或者携带在下行数据中。
示例性的,图7示出无线帧#1在多链路场景中的应用示例。发送端在链路上1上向接收端发送数据(data)1和无线帧#1,在链路上2向接收端发送data2和无线帧#1。接收端根据单用户触发帧的指示,在链路1上发送块确认(block ack,BA)帧1,在链路上发送BA帧2。其中,BA1帧1和BA帧2在时域上均对齐。图7中以“Tr”表示无线帧#1。
进一步的,IEEE802.11be标准还支持Scheduled P2P机制和CO-TDMA机制。
示例性的,图8示出一种Scheduled P2P的场景示意图。如图8所示,AP与STA1相关联;AP与STA2之间可以关联或者不关联。STA1与STA2之间建立P2P链路。AP可以向STA1分配时间资源,以使得STA1在分配到的时间资源中与STA2之间通过P2P链路进行通信。
示例性的,图9示出一种CO-TDMA场景的示意图。如图9所示,AP1与STA1关联,AP2与STA2关联。在AP1获得TXOP之后,AP1可以将TXOP的时间资源分配给AP2。从而,AP2可以使用该时间资源与STA2进行通信。
为了支持Scheduled P2P场景和CO-TDMA场景下的时间资源的分配,本申请提供一种无线帧#2,该无线帧#2用于分配时间资源。
示例性的,图10为无线帧#2应用于Scheduled P2P场景的示意图。如图10所示,在AP所获得的TXOP中,AP向STA1发送无线帧#2,该无线帧#2为STA1分配一个时间资源#1。从而,在时间资源#1中,STA1可以向STA2发送PPDU,STA2可以向STA1发送PPDU的ACK帧。
示例性的,图11为无线帧#2应用于CO-TDMA场景的示意图。如图11所示,AP1为TXOP是所有者。在TXOP中,AP1可以向AP2发送一个无线帧#2,以向AP2分配一个时间资源#1。在时间资源#1中,AP2和其关联的一个或多个STA进行通信。
当前,上述应用于多链路场景的无线帧#1与应用于Scheduled P2P场景或CO-TDMA场景的无线帧#2并不通用。因此,为了使设备识别一个无线帧是无线帧#1还是无线帧#2,无线帧#1和无线帧#2需要具有各自的帧类型,使得通信协议复杂化。
为了解决这一技术问题,本申请实施例提供一种第一帧。其中,第一帧包括第一字段和第二字段。第一字段用于指示第一时间资源的时长。第二字段用于指示第一时间资源的用途。上述时间资源可以有其他名称,例如时间段、时域资源、时间等,本申请实施例对此不作限定。
应理解,第一字段不同于第一帧还包括的duration字段,duration字段用于预定一段媒介的使用时间。
示例性的,第一字段可以有其他名称,例如assigned time duration字段;第二字段可以有其他名称,例如分配类型(assigned type)字段。本申请实施例对此不作限定。
可选的,第一时间资源的用途包括:
用途1:第一时间资源用于传输一个单用户PPDU。
可选的,第一时间资源的时长可以为单用户PPDU的长度。
可选的,第一时间资源的时长可以等于单用户PPDU的长度、帧间间隔(SIFS)、以及传统物理层前导码的长度之和。
应理解,第一时间资源的用途为用途1时,说明该第一帧应用于第一类型场景中,第一类型场景包括但不限于:多链路场景。
用途2:第一时间资源用于进行帧交互。
基于用途2,第一时间资源的起始时间即为接收端接收到第一帧的时间。
应理解,第一时间资源的用途为用途2时,说明该第一帧应用于第二类型场景,第二类型场景包括但不限于:Scheduled P2P场景或CO-TDMA场景。
一种可能的设计中,第二字段用于指示第一时间资源的用途,包括以下情形之一:
情形1-1、当第二字段的取值为第一预设值时,第二字段用于指示第一时间资源用于传输一个单用户PPDU。
情形1-2、当第二字段的取值为第二预设值时,第二字段用于指示第一时间资源用于进行帧交互。
示例性的,第二字段占用1个比特,第一预设值可以为0,第二预设值可以为1。
另一种可能的设计中,第二字段用于指示第一时间资源的用途,包括以下情形之一:
情形2-1、当第二字段的取值为第一预设值时,第二字段用于指示第一时间资源用于传输 一个单用户PPDU。
情形2-2、当第二字段的取值为第二预设值时,第二字段用于指示第一时间资源用于协作设备进行帧交互。
其中,协作设备与第一设备不属于同一个BSS。示例性的,协作设备可以为CO-TDMA场景中的shared AP。
情形2-3、当第二字段的取值为第三预设值时,第二字段用于指示第一时间资源用于P2P站点进行帧交互。
示例性的,第二字段占用2个比特,第一预设值为0,第二预设值为1,第三预设值为2。
下面对第一帧的设计方式进行介绍。应理解,第一帧可以采用以下设计方式中的任意一种。
设计方式一、第一帧为一种新类型的触发帧。也即,第一帧包括取值为第一数值的触发帧类型字段,第一数值为8-15中的任意一个。
设计方式二、第一帧是基于basic触发帧的改进。也即,第一帧包括取值为0的触发帧类型字段。并且,第一帧的B63比特设置为1,以表示该basic触发帧为第一帧。
应理解,当前标准中basic触发帧的B63比特为保留比特。
可选的,基于设计方式一或设计方式二,第一字段和第二字段可以位于第一帧的公共信息字段或者用户信息字段中。
示例性的,当第一字段和第二字段位于第一帧的公共信息字段时,第一字段可以是UL length字段,第二字段可以复用公共信息字段中除UL length字段之外的其他字段。
设计方式三、第一触发帧包括使用一种新的control类型的A-control字段。也即,第一帧包括A-control字段,A-control字段中的控制标识字段的取值为第二数值,第二数值为7-14中的任意一个。
基于设计方式三,第一字段和第二字段可以位于A-control字段的control information字段中。
设计方式四、第一帧是基于对现有的A-control字段中的TRS control类型进行改进。
具体的,第一帧是携带A-control字段的无线帧。A-control字段中的control ID字段取值为0,A-control字段包括TRS control字段。TRS control字段中的B25比特设置为1,TRS control字段中的B0-B24比特中的全部或者部分比特用于承载第一字段和第二字段。
以上是对本申请实施例提供的第一帧的介绍,在此统一说明,以下不再赘述。
如图12所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S101、第一设备生成第一帧。
其中,第一设备可以为AP或者STA。
应理解,第一设备可以根据实际情况,确定第一时间资源的时长。例如,第一设备可以根据第二设备上报的缓存状态信息,确定第一时间资源的时长。
S102、第一设备向第二设备发送第一帧。相应的,第二设备接收第一设备发送的触发帧。
S103、第二设备解析第一帧。
可选的,在第二设备解析第一帧之后,第二设备根据第一帧中第二字段,使用第一字段所指示的第一时间资源。
示例性的,第二设备根据第一帧中的第二字段,确定第一时间资源用于传输一个单用户 PPDU。这种情况下,第二设备向第一设备发送一个单用户PPDU。
示例性的,当第二设备根据第一帧中的第二字段,确定第一时间资源用于进行帧交互。若第二设备为AP,则第二设备根据CO-TDMA机制,在第一时间资源内与第二设备所关联的其他设备进行帧交互。若第二设备为STA,则第二设备根据Scheduled P2P机制,与其他P2P站点进行帧交互。
基于图12所示的技术方案,第一帧包括第一字段和第二字段,第一字段用于指示第一时间资源的时长,第二字段可以用于指示第一时间资源用于传输单用户PPDU,或者第二字段用于指示第一时间资源用于进行帧交互。第一帧可以应用于对时间资源具有不同用途的场景,从而第一帧具有通用性。
可选的,第二设备在接收到第一帧之后,第二设备可以采用图13所示的实施例来反馈第一响应帧。图13为本申请实施例提供的一种通信方法的流程图。如图13所示,该通信方法包括以下步骤:
S201、第二设备生成第一响应帧。
其中,第一响应帧包括第三字段。第三字段用于指示第二设备接受或者拒绝第一时间资源。或者说,第三字段用于指示第二设备是否接受第一时间资源。
一个示例,当第三字段设置为0时,第三字段用于指示第二设备接受第一时间资源。或者,当第三字段设置为1时,第三字段用于指示第二设备拒绝第一时间资源。
另一个示例,当第三字段设置为1时,第三字段用于指示第二设备接受第一时间资源。或者,当第三字段设置为0时,第三字段用于指示第二设备拒绝第一时间资源。
S202、第二设备向第一设备发送第一响应帧。相应的,第一设备接收第二设备发送的第一响应帧。
应理解,第一设备在接收到第一响应帧之后,可以获知第二设备正确接收了第一帧。相应的,若第一设备未接收到第一响应帧,第一设备可以认为第二设备未正确接收第一帧。
基于图13所示的实施例,一方面,第一设备可以根据是否接收到第一响应帧,可以获知第二设备是否正确接收了第一帧。另一方面,第一设备可以根据第一响应帧中的第三字段,确定第二设备是否接受第一时间资源,从而在第二设备拒绝第一时间资源的情况下,第一设备可以再次将第一时间资源分配给其他设备,避免时间资源的浪费。
可选的,当第一帧中的第二字段用于指示第一时间资源用于进行帧交互时,在第二设备接收到第一帧之后,第二设备可以不向第一设备反馈响应帧,而是直接与其他设备进行帧交互。这种情况下,第二设备可以采用图14所示的实施例,来使得第一设备获知第二设备接受第一设备所分配的第一时间资源。
如图14所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S301、第二设备在第一时间资源内发送第一个无线帧。
可选的,上述无线帧的接收地址不是第一设备的MAC地址。
在本申请实施例中,第二设备发送的第一个无线帧采用的帧格式是第一设备能够支持的帧格式。并且,发送该无线帧所采用的物理层参数是第一设备能够支持的物理层参数。
示例性的,物理层参数包括但不限于:空间流数、MCS。
可选的,发送该无线帧所采用的MCS小于或等于第一MCS,第一MCS为第一设备所支持的最大MCS。
可选的,发送该无线帧所采用的MCS小于或等于目标MCS。目标MCS是第一MCS和第二MCS中的最小值。第二MCS是在当前信道条件下预期第一设备能够解析的最大MCS。
S302、第一设备在第一时间资源内接收第二设备发送的第一个无线帧。
基于图14所示的实施例,由于第二设备在第一时间资源内发送第一个无线帧所采用的帧格式以及物理层参数均考虑了第一设备的解析能力,因此第一设备可以解析该无线帧,从而获知第二设备接受第一时间资源。
可选的,若第一设备在预设时长内未接收到第二设备发送的无线帧,第一设备可以认为第二设备未正确接收第一帧,或者第一设备可以认为第二设备拒绝第一帧中第一字段所指示的第一时间资源。这种情况下,第一设备可以向其他设备分配时间资源。
应理解,第二设备在第一时间资源上发送的除了第一个无线帧之外的其他无线帧(例如第二个无线帧、第三个无线帧等),可以不用考虑第一设备的解析能力。也即,其他无线帧采用的帧格式可以不是第一设备能够支持的帧格式,发送其他无线帧所采用的物理层参数可以不是第一设备能够支持的物理层参数。
现有标准中支持一种反向授权(reverse direction grant,RDG)机制。在RDG机制中,RDG发起者(initiator)可以将RDG initiator所持有的TXOP的剩余时间转让给RDG响应者(responder)。之后,RDG responder使用单用户PPDU来与RDG initiator进行通信;或者,RDG responder使用下行多用户PPDU或者触发帧来与多个设备进行通信,这多个设备必须包括RDG initiator。
基于RDG机制,发送端可以向接收端发送RDG指示信息,以使得接收端获知发送端是否将发送端所持有的TXOP的剩余时间转让给接收端。应理解,当发送端将其持有的TXOP的剩余时间转让给接收端时,发送端即为RDG initiator,接收端即为RDG responder。
目前,RDG指示信息承载于A-control字段中的CAS control字段中。如图15所示,现有的CAS control字段包括AC约束(constraint)字段、RDG/more PPDU字段、参数化空间复用传输(parameterized spatial reuse transmission,PSRT)PPDU字段以及5个预留比特。其中,AC constraint字段、RDG/more PPDU字段、以及PSRT PPDU字段均占用1个比特。
RDG/more PPDU字段用于作为RDG指示信息。具体的,当RDG/more PPDU字段设置为1时,表示发送端将其持有的TXOP的剩余时间转让给接收端。当RDG/more PPDU字段设置为0时,表示发送端未将其持有的TXOP的剩余时间转让给接收端。
AC constraint字段用于指示在TXOP的剩余时间内RDG responder发送的数据帧的类型是否存在限定。具体的,当AC constraint字段设置为0时,代表在TXOP的剩余时间内RDG responder发送的数据帧的类型不存在限定。当AC constraint字段设置为1时,代表在TXOP的剩余时间内RDG responder发送的数据帧的类型存在限定。
其中,RDG responder发送的数据帧的类型存在限定,具体是指RDG responder只能发送TXOP对应的主接入类型(access category,AC)的数据。
PSRT PPDU字段用于指示当前PPDU是满足参数空间复用传输条件下发送的空间复用PPDU。
IEEE802.11be标准还可能支持Scheduled P2P机制和CO-TDMA机制。在Scheduled P2P场景中,第一AP也可能需要将其持有的TXOP的剩余时间转让给第一AP关联的STA。在CO-TDMA场景中,第一AP也可能需要将其持有的TXOP的剩余时间转让给第二AP。
但是,上述RDG机制不能适用于另一些应用场景中(例如Scheduled P2P场景或者CO-TDMA场景),其原因在于:基于RDG机制,RDG responder在接受TXOP的剩余时间的情况下,需要与RDG initiator进行通信。但是,在Scheduled P2P场景或者CO-TDMA场景中,接受TXOP的剩余时间的设备与其他设备进行通信,而其他设备不包括TXOP的持有者。
如果为上述Scheduled P2P场景或者CO-TDMA场景,提供一种新类型的无线帧,则会使通信协议复杂化。
因此,为了避免通信协议复杂化,本申请实施例提供一种第二帧。第二帧包括A-control字段,A-control字段包括CAS control字段,CAS control字段包括第四字段和第五字段。
可选的,第二帧为数据帧,例如服务质量(quality of service,QoS)帧或者QoS空(null)帧。
其中,第四字段用于指示是否将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第一设备进行通信。或者说,第四字段用于指示是否将TXOP的剩余时间转让给RDG responder。
应理解,第四字段可以有其他名称,例如RDG/more PPDU字段。
可选的,当第四字段设置为第四预设值时,第四字段用于指示将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第一设备进行通信。当第四字段设置为第五预设值时,第四字段用于指示不将TXOP的剩余时间转让给第二设备。其中,第四预设值不同于第五预设值。
应理解,上述第二设备在TXOP的剩余时间内与第一设备进行通信,可以为:第二设备在TXOP的剩余时间内使用单用户PPDU与第一设备进行通信;或者,第二设备在TXOP的剩余时间内使用下行多用户PPDU或者触发帧来与包括第一设备在内的多个设备进行通信。
本申请实施例不对第四预设值和第五预设值的取值进行限定。示例性的,第四预设值为1,第五预设值为0。
第五字段用于指示是否将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第三设备进行通信,第三设备不包括第一设备。或者说,第五字段用于指示是否将TXOP的剩余时间转让给协作设备或者P2P STA。
可选的,当第五字段设置为第四预设值时,第五字段用于指示将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第三设备进行通信。当第五字段设置为第五预设值时,第五字段用于指示不将TXOP的剩余时间转让给第二设备。
其中,第三设备可以是一个或多个。
应理解,当五字段用于指示将TXOP的剩余时间转让给第二设备以使得第二设备在TXOP的剩余时间内与第三设备进行通信时,第二设备在TXOP的剩余时间内不会与第一设备进行通信。
应理解,第五字段可以有其他名称,例如时间分享(time sharing)字段。
在本申请实施例中,第四字段和第五字段不能同时设置为第四预设值。
需要说明的是,第二帧还包括duration字段,duration字段可以用于确定TXOP的剩余时间的时长。
可选的,CAS control字段还包括第六字段,第六字段用于指示第二设备在TXOP的剩余 时间内发送的数据帧的类型是否存在限定。具体的,当第六字段设置为0时,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型不存在限定。当第六字段设置为1时,第六字段用于指示第二设备在TXOP的剩余时间内发送的数据帧的类型存在限定。
应理解,第六字段可以有其他名称,例如AC constraint字段。
可选的,CAS control字段还包括第七字段。第七字段用于指示是否允许第二设备将TXOP的剩余时间转让给其他设备。具体的,当第七字段设置为第六预设值时,第七字段用于指示不允许第二设备将TXOP的剩余时间转让给其他设备。当第七字段设置为第七预设值时,第七字段用于指示允许第二设备将TXOP的剩余时间转让给其他设备。
应理解,第七字段可以有其他名称,例如Further grant字段。
可选的,除了上述字段之外,CAS control字段还可以包括其他字段,例如PSRT PPDU字段。
示例性的,图16示出本申请实施例提供的一种第二帧中的CAS control字段的示意图。CAS control字段可以包括第四字段、第五字段、第六字段、第七字段、PSRT PPDU字段以及3个预留比特。第四字段、第五字段、第六字段、第七字段、以及PSRT PPDU字段均占用1个比特。
如图17所示,为本申请实施例提供的一种通信方法,该方法包括以下步骤:
S401、第一设备生成第二帧。
S402、第一设备向第二设备发送第二帧。相应的,第二设备接收到第一设备发送的第二帧。
S403、第二设备解析第二帧。
当第二帧的CAS control字段中的第四字段设置为第四预设值时,第二设备在TXOP的剩余时间内与第一设备进行通信。或者,当第二帧的CAS control字段中的第五字段设置为第五预设值时,第二设备在TXOP的剩余时间内与第三设备进行通信。
应理解,第三设备可以根据具体应用场景来确定。
示例性的,在CO-TDMA场景中,第三设备可以为与第二设备关联的站点。
示例性的,在Scheduled P2P场景中,第三设备可以为与第二设备建立P2P链路的站点。
基于图17所示的实施例,第二帧携带CAS control字段,CAS control字段包括第四字段和第五字段。其中,第四字段用于指示将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第一设备进行通信。第五字段用于指示是否将TXOP的剩余时间转让给第二设备,以使得第二设备在TXOP的剩余时间内与第三设备进行通信,第三设备不包括第一设备。因此,基于第四字段和第五字段,第二帧可以应用于对TXOP的剩余时间具有不同安排的应用场景,例如应用RDG机制的场景、Scheduled P2P场景或者CO-TDMA场景。从而,第二帧具有通用性。
为了便于描述,第一设备通过第二帧向第二设备转让的TXOP的剩余时间可以被简称为第二时间资源。在第二设备使用第二时间资源之后,第二时间资源的剩余时间可以被简称为第三时间资源。
可选的,第二设备可以通过以下操作中的任意一项将第三时间资源归还给第一设备。
操作一、第二设备向第一设备发送携带CAS control字段的第二帧,该CAS control字段中的第五字段设置为第五预设值。
操作二、第二设备向第一设备发送未携带CAS control字段的无线帧。
可选的,在第二设备接收到第二帧之后,第二设备可以采用图18所示的实施例来反馈第二响应帧。图18为本申请实施例提供的一种通信方法的流程图。如图18所示,该通信方法包括以下步骤:
S501、第二设备生成第二响应帧。
其中,第二响应帧用于响应第二帧。第二响应帧包括第八字段。第八字段用于指示第二设备是否接受TXOP的剩余时间。
一个示例,当第八字段设置为0时,第八字段用于指示第二设备接受TXOP的剩余时间。或者,当第八字段设置为1时,第八字段用于指示第二设备拒绝TXOP的剩余时间。
另一个示例,当第八字段设置为1时,第八字段用于指示第二设备接受TXOP的剩余时间。或者,当第八字段设置为0时,第八字段用于指示第二设备拒绝TXOP的剩余时间。
S502、第二设备向第一设备发送第二响应帧。相应的,第一设备接收第二设备发送的第二响应帧。
基于图18所示的实施例,一方面,第一设备可以根据是否接收到第二响应帧,可以获知第二设备是否正确接收了第二帧。另一方面,第一设备可以根据第二响应帧中的第八字段,确定第二设备是否接受TXOP的剩余时间,从而在第二设备拒绝TXOP的剩余时间的情况下,第一设备可以再次将TXOP的剩余时间分配给其他设备,避免时间资源的浪费。
可选的,当第二帧中的第五字段设置为第四预设值时,在第二设备接收到第二帧之后,第二设备可以不向第一设备反馈响应帧,而是直接与其他设备进行帧交互。这种情况下,第二设备采用图19所示的实施例,来使得第一设备获知第二设备接受第一设备所分配的TXOP的剩余时间。
S601、第二设备在TXOP的剩余时间上发送第一个无线帧。
可选的,上述无线帧的接收地址不是第一设备的MAC地址。
在本申请实施例中,第二设备发送的第一个无线帧采用的帧格式是第一设备能够支持的帧格式。并且,发送该无线帧所采用的物理层参数是第一设备能够支持的物理层参数。
示例性的,物理层参数包括但不限于:空间流数、MCS。
可选的,发送该无线帧所采用的MCS小于或等于第一MCS,第一MCS为第一设备所支持的最大MCS。
S602、第一设备在TXOP的剩余时间内接收第二设备发送的第一个无线帧。
基于图19所示的实施例,由于第二设备在TXOP的剩余时间内发送第一个无线帧所采用的帧格式以及物理层参数均考虑了第一设备的解析能力,因此第一设备可以解析该无线帧,从而获知第二设备接受TXOP的剩余时间。
可选的,若第一设备在预设时长内未接收到第二设备发送的无线帧,第一设备可以认为第二设备未正确接收第二帧,或者第一设备可以认为第二设备拒绝TXOP的剩余时间。这种情况下,第一设备可以向其他设备转让TXOP的剩余时间。
应理解,第二设备在TXOP的剩余时间上发送的除了第一个无线帧之外的其他无线帧(例如第二个无线帧、第三个无线帧等),可以不用考虑第一设备的解析能力。也即,其他无线帧采用的帧格式可以不是第一设备能够支持的帧格式,发送其他无线帧所采用的物理层参数可以不是第一设备能够支持的物理层参数。
在一些应用场景(例如Scheduled P2P场景或者CO-TDMA场景)中,第二设备需要提前向第一设备上报缓存状态信息,以便于辅助第一设备为第二设备分配时间资源。
基于此,如图20所示,为本申请实施例提供的一种通信方法,该通信方法包括以下步骤:
S701、第二设备生成缓存状态信息。
其中,缓存状态信息用于指示缓存数据量。
在第二设备为协作设备时,缓存数据量可以为以下一项或者多项:上行总缓存数据量、下行总缓存数据量、或者上行总缓存数据量和下行总缓存数据量之和。
其中,上行总缓存数据量为各个目标站点待发送给第二设备的数据量之和。下行总缓存数据量为第二设备待发送给各个目标站点的数据量之和。
可选的,目标站点为以下情形之一:
(1)目标站点即为任意一个与第二设备关联的站点。
也即,第二设备在被分配的时间资源内与其关联站点通信的时候,对于关联站点的选择是没有位置限定的。
(2)目标站点为与第二设备关联的站点,并且目标站点为接收到能力指示信息的站点。其中,该能力指示信息用于指示站点参与CO-TDMA。
(3)目标站点为与第二设备关联的站点,并且目标站点符合第二设备的选择条件。其中,第二设备的选择条件包括位置、信道状态信息等方面的条件。例如,第二设备在位置方面的选择条件为:目标站点与第二设备之间的距离小于或等于第一预设值。
在第二设备为P2P STA时,缓存数据量可以为第二设备所建立的K个P2P链路上的缓存数据量之和,K为正整数。或者,缓存数据量可以为一个P2P链路上的缓存数据量,同时缓存状态信息还可以包括该P2P链路的标识。
一种可能的设计中,在不考虑缓存数据的接入类型(access category,AC)或者业务标识(traffic identifier,TID)的情况下,上述缓存状态信息所指示的缓存数据量即为所有AC或者所有TID的缓存数据量的总和。
另一种可能的设计中,在考虑缓存数据的接入类型(access category,AC)或者业务标识(traffic identifier,TID)的情况下,缓存状态信息用于指示缓存数据量,可以包括以下实现方式:
实现方式1、缓存状态信息用于指示一个或多个AC对应的缓存数据量。或者,缓存状态信息可以用于指示一个或多个TID对应的缓存数据量。
示例性的,缓存状态信息可以包括多个信元,每一信元用于承载一个AC的标识以及该AC对应的缓存数据量;或者,每一个信元用于承载一个TID的标识以及该TID对应的缓存数据量。
实现方式2、缓存状态信息用于指示主AC对应的缓存数据量。
应理解,当前EDCA中,针对每一个AC有一个缓存队列和退避计数器,当对应的退避计数器退避到0之后,可以进行该AC的数据的发送。对应地,竞争到TXOP的AC称为该TXOP的主AC。
实现方式3、缓存状态信息用于指示AC组合对应的缓存数据量。或者,缓存状态信息用于指示TID组合对应的缓存数据量。
其中,AC组合包括一个或多个AC。相应的,AC组合对应的缓存数据量即为AC组合 中各个AC对应的缓存数据量之和。举例来说,AC组合1包括AC1和AC2,AC组合1对应的缓存数据量即为AC1对应的缓存数据量与AC2对应的缓存数据量之和。
TID组合包括一个或多个TID。相应的,TID组合对应的缓存数据量即为TID组合中各个TID对应的缓存数据量之和。举例来说,TID组合1包括TID1和TID2,TID组合1对应的缓存数据量即为TID1对应的缓存数据量与TID2对应的缓存数据量之和。
S702、第二设备向第一设备发送缓存状态信息。相应的,第一设备接收第二设备发送的缓存状态信息。
应理解,缓存状态信息可以承载于无线帧中。
可选的,在Scheduled P2P场景中,无线帧包括A-control字段,A-control字段包括缓存状态信息。应理解,这种情况下,A-control字段中control ID字段的取值为3,A-control字段中的缓存状态报告字段即相当于缓存状态信息。
可选的,在CO-TDMA场景中,携带缓存状态信息的无线帧为公共动作(Public Action)帧。
示例性的,在CO-TDMA场景中,缓存状态信息可以采用图21或图22所示的帧结构。
如图21所示,缓存状态信息可以包括反馈类型(Report Type)字段、缩放倍数(scaling factor)字段、下行总缓存数据量字段、上行总缓存数据量字段、以及预留比特。
缩放倍数字段用于指示缩放倍数。应理解,在图21所示的帧结构中,缩放倍数字段所指示的缩放倍数与下行总缓存数据量字段所指示的数据量之间的乘积即为下行总缓存数据量。缩放倍数字段所指示的缩放倍数与上行总缓存数据量字段所指示的数据量之间的乘积即为上行总缓存数据量。这样一来,通过在缓存状态信息中设置缩放倍数字段,从而能够以较少的比特数目来实现对数据量在较大取值范围内的指示。
应理解,在图21所示的帧结构中,缩放倍数是可选的字段。若缓存状态信息不包括缩放倍数字段,下行总缓存数据量字段用于指示下行总缓存数据量,上行总缓存数据量字段用于指示上行总缓存数据量。
其中,下行总缓存数据量字段还可以有其他名称,例如BSS下行队列大小(queue size BSS DL)字段。上行总缓存数据量字段还可以有其他名称,例如BSS上行队列大小(queue size BSS UL)字段。
如图22所示,缓存状态信息可以包括:反馈类型字段、缩放倍数字段、总缓存数据量字段、以及预留比特。
在图22所示的帧结构中,缩放倍数字段所指示的缩放倍数与总缓存数据量字段所指示的数据量之间的乘积即为上行总缓存数据量和下行总缓存数据量之和。
应理解,在图22所示的帧结构中,缩放倍数是可选的字段。若缓存状态信息不包括缩放倍数字段,总缓存数据量字段用于指示上行总缓存数据量和下行总缓存数据量之和。
总缓存数据量字段可以有其他名称,例如queue size BSS DL+UL字段。
示例性的,在Scheduled P2P场景中,缓存状态信息可以采用图23或图24所示的帧结构。
如图23所示,缓存状态信息包括报告类型字段、缩放倍数字段、P2P缓存数据量字段、以及预留比特。
应理解,缩放倍数字段所指示的缩放倍数与P2P缓存数据量字段所指示的数据量之间的乘积,即为第二设备所建立的K个P2P链路上的缓存数据之和。
应理解,在图23所示的帧结构中,缩放倍数是可选的字段。若缓存状态信息不包括缩放倍数字段,P2P缓存数据量字段用于指示第二设备所建立的K个P2P链路上的缓存数据之和。
如图24所示,缓存状态信息包括报告类型字段、缩放倍数字段、P2P缓存数据量字段、P2P端字段、以及预留比特。
应理解,P2P端字段用于P2P链路的标识。缩放倍数字段所指示的缩放倍数与P2P缓存数据量字段所指示的数据量之间的乘积,即为P2P端字段所指示的P2P链路上的缓存数据之和。
应理解,在图24所示的帧结构中,缩放倍数是可选的字段。
可选的,在图21-图24所示的帧结构中,预留比特是可选的。也即,缓存状态信息也可以不包括预留比特。
可选的,在图21-图24所示的帧结构中,反馈类型字段用于指示反馈类型,反馈类型包括第一反馈类型和第二反馈类型。第一反馈类型用于说明缓存状态信息用于多AP协作场景中。第二反馈类型用于说明缓存状态信息用于P2P场景中。
应理解,多AP协作场景包括CO-TDMA场景。
示例性的,在通信协议中,第一反馈类型可以记为多AP,第二反馈类型可以记为P2P。
可选的,在图21-图24所示的帧结构中,反馈类型字段为可选的字段。
当缓存状态信息不包括反馈类型字段时,第一设备可以通过以下方式中的任意一项获知缓存状态信息的反馈类型。
方式一、第一设备根据第二设备的角色,确定缓存状态信息的反馈类型。例如,当第二设备为AP时,第一设备可以确定缓存状态信息的反馈类型为第一反馈类型。当第二设备为STA时,第一设备可以确定缓存状态信息的反馈类型为第二反馈类型。
方式二、第一设备可以携带缓存状态信息的无线帧的帧类型,确定缓存状态信息的反馈类型。例如,当携带缓存状态信息的无线帧的帧类型为第一帧类型时,第一设备可以确定缓存状态信息的反馈类型为第一反馈类型。当携带缓存状态信息的无线帧的帧类型为第二帧类型时,第一设备可以确定缓存状态信息的反馈类型为第二反馈类型。
基于图20所示的实施例,第二设备向第一设备发送缓存状态信息,从而使得第一设备获知与第二设备相关的缓存数据量。进而,第一设备可以合理地为第二设备分配时间资源,以便于与第二设备相关的缓存数据能够在分配的时间资源内传输完毕。
应理解,图20所示的实施例可以和前文中的图12或图17所示的实施例相结合。
上述主要从通信装置(例如第一设备、第二设备)的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个功能模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施 例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图25所示,为本申请实施例提供的一种通信装置,该通信装置包括:处理模块101和通信模块102。
一种可能的设计中,当该通信装置作为第一设备时,处理模块101用于执行图12中的步骤S101,和/或图17中的步骤S401。通信模块102用于执行图12中的步骤S102,图13中的步骤S202,图14中的步骤S302,图17中的步骤S402,图18中的步骤S502,图19中的步骤S602,和/或图20中的步骤S702。
另一种可能的设计中,当该通信装置作为第二设备时,处理模块101用于执行图12中的步骤S103,图13中的步骤S201,图17中的步骤S403,图18中的步骤S501,和/或图20中的步骤S701。通信模块102用于执行图12中的步骤S102,图13中的步骤S202,图14中的步骤S301,图17中的步骤S402,图18中的步骤S502,图19中的步骤S601,和/或图20中的步骤S702。
图26是本申请实施例所述的通信装置可能的产品形态的结构图。
作为一种可能的产品形态,本申请实施例所述的通信装置可以为上述第一设备,所述第一设备包括处理器201和收发器202。可选的,所述通信设备还包括存储介质203。
处理器201用于执行图12中的步骤S101,和/或图17中的步骤S401。收发器202用于执行图12中的步骤S102,图13中的步骤S202,图14中的步骤S302,图17中的步骤S402,图18中的步骤S502,图19中的步骤S602,和/或图20中的步骤S702。
作为另一种可能的产品形态,本申请实施例所述的通信装置可以为上述第二设备,所述第二设备包括处理器201和收发器202。可选的,所述通信设备还包括存储介质203。
处理器201用于执行图12中的步骤S103,图13中的步骤S201,图17中的步骤S403,图18中的步骤S501,和/或图20中的步骤S701。收发器202用于执行图12中的步骤S102,图13中的步骤S202,图14中的步骤S301,图17中的步骤S402,图18中的步骤S502,图19中的步骤S601,和/或图20中的步骤S702。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以由芯片来实现。该芯片包括:处理电路201和收发管脚202。可选的,该芯片还可以包括存储介质203。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行前述方法实施例中的通信方法。
可选的,本申请实施例还提供一种包含计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行前述方法实施例中的通信方法。
应理解,所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红 外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘)等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
应该理解到,在本申请所提供的几个实施例中所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备生成第一帧,所述第一帧包括第一字段和第二字段,所述第一字段用于指示第一时间资源的时长,所述第二字段用于确定所述第一时间资源的用途,所述第一时间资源的用途包括:所述第一时间资源用于传输一个单用户物理层协议数据单元PPDU,或者所述第一时间资源用于进行帧交互;
    所述第一设备向所述第二设备发送所述第一帧。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一时间资源用于传输一个单用户PPDU时,所述单用户PPDU的时长等于所述第一时间资源的时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二字段用于确定所述第一时间资源的用途,包括以下情形:
    当所述第二字段设置为第一预设值时,所述第二字段用于确定所述第一时间资源用于传输一个单用户PPDU;或者,
    当所述第二字段设置为第二预设值时,所述第二字段用于确定所述第一时间资源用于进行帧交互。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二字段用于确定所述第一时间资源的用途,包括以下情形:
    当所述第二字段设置为第一预设值时,所述第二字段用于确定所述第一时间资源用于传输一个单用户PPDU;或者,
    当所述第二字段设置为第二预设值时,所述第二字段用于确定所述第一时间资源用于协作设备进行帧交互,所述协作设备与所述第一设备不属于同一个基本服务集;或者,
    当所述第二字段设置为第三预设值时,所述第三字段用于确定所述第一时间资源用于端对端站点进行帧交互。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一帧还包括触发帧类型字段,所述触发帧类型字段的取值为8-15中的任意一个。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一帧为基本类型basic触发帧,所述basic触发帧中的B63比特设置为1。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一字段和所述第二字段位于所述第一帧的公共信息字段或者用户信息字段中。
  8. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一帧还包括A-控制control字段,所述A-control字段包括控制标识字段和控制信息字段,所述控制标识字段的取值为7-14中的任意一个,所述第一字段和所述第二字段位于所述控制信息字段中。
  9. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一帧还包括使用触发响应调度类型TRS的A-控制control字段,所述A-control字段包括TRS control字段,所述TRS control字段包括所述第一字段和所述第二字段,所述TRS control字段中的预留比特设置为1。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的响应帧,所述响应帧包括第三字段,所述第三字段用于指示所述第二设备是否接受所述第一时间资源。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备在所述第一时间资源发送的第一个无线帧,发送所述无线帧使用的调制与编码策略MCS小于或等于所述第一设备所支持的最大MCS。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的缓存状态信息,所述缓存状态信息用于指示缓存数据量。
  13. 根据权利要求12所述的方法,其特征在于,当所述第二设备为协作设备时,所述缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,所述上行总缓存数据量为所述第二设备所关联的一个或多个站点的上行缓存数据量之和,所述下行总缓存数据量为所述第二设备所关联的一个或多个站点的下缓存数据量之和。
  14. 根据权利要求12所述的方法,其特征在于,当所述第二设备为端对端站点时,所述缓存数据量为所述第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
  15. 一种通信方法,其特征在于,所述方法包括:
    第二设备接收第一设备发送的接收第一帧,所述第一帧包括第一字段和第二字段,所述第一字段用于指示第一时间资源的时长,所述第二字段用于确定所述第一时间资源的用途,所述第一时间资源的用途包括:所述第一时间资源用于传输一个单用户物理层协议数据单元PPDU,或者所述第一时间资源用于进行帧交互;
    所述第二设备解析所述第一帧。
  16. 根据权利要求15所述的方法,其特征在于,当所述第一时间资源用于传输一个单用户PPDU时,所述单用户PPDU的时长等于所述第一时间资源的时长。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第二字段用于确定所述第一时间资源的用途,包括以下情形:
    当所述第二字段设置为第一预设值时,所述第二字段用于确定所述第一时间资源用于传输一个单用户PPDU;或者,
    当所述第二字段设置为第二预设值时,所述第二字段用于确定所述第一时间资源用于进行帧交互。
  18. 根据权利要求15或16所述的方法,其特征在于,所述第二字段用于确定所述第一时间资源的用途,包括以下情形:
    当所述第二字段设置为第一预设值时,所述第二字段用于确定所述第一时间资源用于传输一个单用户PPDU;或者,
    当所述第二字段设置为第二预设值时,所述第二字段用于确定所述第一时间资源用于协作设备进行帧交互,所述协作设备与所述第一设备不属于同一个基本服务集;或者,
    当所述第二字段设置为第三预设值时,所述第三字段用于确定所述第一时间资源用于端对端站点进行帧交互。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,所述第一帧还包括触发帧类型字段,所述触发帧类型字段的取值为8-15中的任意一个。
  20. 根据权利要求15至18任一项所述的方法,其特征在于,所述第一帧为基本类型basic触发帧,所述basic触发帧中的B63比特设置为1。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一字段和所述第二字段位于所述第一帧的公共信息字段或者用户信息字段中。
  22. 根据权利要求15至18任一项所述的方法,其特征在于,所述第一帧还包括A-控制control字段,所述A-control字段包括控制标识字段和控制信息字段,所述控制标识字段的取值为7-14中的任意一个,所述第一字段和所述第二字段位于所述控制信息字段中。
  23. 根据权利要求15至18任一项所述的方法,其特征在于,所述第一帧还包括使用触发响应调度类型TRS的A-控制control字段,所述A-control字段包括TRS control字段,所述TRS control字段包括所述第一字段和所述第二字段,所述TRS control字段中的预留比特设置为1。
  24. 根据权利要求15至23任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送响应帧,所述响应帧包括第三字段,所述第三字段用于指示所述第二设备是否接受所述第一时间资源。
  25. 根据权利要求15至23任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述第一时间资源发送第一个无线帧,发送所述无线帧使用的MCS小于或等于所述第一设备所支持的最大MCS。
  26. 根据权利要求15至25任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送的缓存状态信息,所述缓存状态信息用于指示缓存数据量。
  27. 根据权利要求26所述的方法,其特征在于,当所述第二设备为协作设备时,所述缓存数据量包括以下一项或多项:上行总缓存数据量、下行总缓存数据量、或上行总缓存数据量和下行总缓存数据量之和;其中,所述上行总缓存数据量为所述第二设备所关联的一个或多个站点的上行缓存数据量之和,所述下行总缓存数据量为所述第二设备所关联的一个或多个站点的下缓存数据量之和。
  28. 根据权利要求26所述的方法,其特征在于,当所述第二设备为端对端站点时,所述缓存数据量为所述第二设备所建立的一个或多个P2P链路上的缓存数据量之和。
  29. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1至28中任一项所涉及的方法中的各个步骤的单元。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行权利要求1至28任一项所述的方法。
  31. 一种芯片,其特征在于,所述芯片包括处理单元和收发管脚;所述处理单元用于执行权利要求1至28中任一项所涉及的方法中的处理操作,所述收发管脚用于执行权利要求1至28中任一项所涉及的方法中的通信操作。
PCT/CN2021/114554 2020-08-28 2021-08-25 通信方法及装置 WO2022042608A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023512148A JP7513238B2 (ja) 2020-08-28 2021-08-25 通信方法及び装置
AU2021334701A AU2021334701B2 (en) 2020-08-28 2021-08-25 Communication method and apparatus
KR1020237008822A KR20230051260A (ko) 2020-08-28 2021-08-25 통신 방법 및 장치
CA3192800A CA3192800A1 (en) 2020-08-28 2021-08-25 Communication method and apparatus
MX2023002473A MX2023002473A (es) 2020-08-28 2021-08-25 Metodo y aparato de comunicacion.
EP21860443.7A EP4199567A4 (en) 2020-08-28 2021-08-25 COMMUNICATION METHOD AND DEVICE
US18/176,263 US20230209518A1 (en) 2020-08-28 2023-02-28 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010889093.3 2020-08-28
CN202010889093.3A CN114125854A (zh) 2020-08-28 2020-08-28 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/176,263 Continuation US20230209518A1 (en) 2020-08-28 2023-02-28 Communication method and apparatus

Publications (2)

Publication Number Publication Date
WO2022042608A1 true WO2022042608A1 (zh) 2022-03-03
WO2022042608A9 WO2022042608A9 (zh) 2022-04-07

Family

ID=80354666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114554 WO2022042608A1 (zh) 2020-08-28 2021-08-25 通信方法及装置

Country Status (9)

Country Link
US (1) US20230209518A1 (zh)
EP (1) EP4199567A4 (zh)
JP (1) JP7513238B2 (zh)
KR (1) KR20230051260A (zh)
CN (1) CN114125854A (zh)
AU (1) AU2021334701B2 (zh)
CA (1) CA3192800A1 (zh)
MX (1) MX2023002473A (zh)
WO (1) WO2022042608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2024000223A (es) * 2021-07-01 2024-01-30 Huawei Tech Co Ltd Metodo y aparato para informar datos en memoria intermedia.
CN118786640A (zh) * 2023-02-03 2024-10-15 北京小米移动软件有限公司 通信方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211452A (zh) * 2015-01-09 2017-09-26 交互数字专利控股公司 用于支持无线局域网(wlan)系统的多用户传输的方法、装置和系统
US20180124806A1 (en) * 2016-10-24 2018-05-03 Lg Electronics Inc. Method of transmitting or receiving frame in wireless lan system and apparatus therefor
US20180310330A1 (en) * 2014-12-05 2018-10-25 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN109121190A (zh) * 2017-06-26 2019-01-01 珠海市魅族科技有限公司 无线局域网的通信方法、装置、接入点设备和站点设备
CN109245851A (zh) * 2017-07-11 2019-01-18 中兴通讯股份有限公司 一种无线帧传输的方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991995B2 (en) * 2014-10-06 2018-06-05 Newracom, Inc. Multiuser signaling and access request mechanisms
US10153820B2 (en) * 2015-11-25 2018-12-11 Newracom, Inc. Receiver address field for multi-user transmissions in WLAN systems
JP7086925B2 (ja) * 2016-07-22 2022-06-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、送信方法および集積回路
CN110730050A (zh) * 2018-07-17 2020-01-24 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180310330A1 (en) * 2014-12-05 2018-10-25 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN107211452A (zh) * 2015-01-09 2017-09-26 交互数字专利控股公司 用于支持无线局域网(wlan)系统的多用户传输的方法、装置和系统
US20180124806A1 (en) * 2016-10-24 2018-05-03 Lg Electronics Inc. Method of transmitting or receiving frame in wireless lan system and apparatus therefor
CN109121190A (zh) * 2017-06-26 2019-01-01 珠海市魅族科技有限公司 无线局域网的通信方法、装置、接入点设备和站点设备
CN109245851A (zh) * 2017-07-11 2019-01-18 中兴通讯股份有限公司 一种无线帧传输的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199567A4

Also Published As

Publication number Publication date
CA3192800A1 (en) 2022-03-03
EP4199567A4 (en) 2024-02-07
KR20230051260A (ko) 2023-04-17
US20230209518A1 (en) 2023-06-29
EP4199567A1 (en) 2023-06-21
AU2021334701B2 (en) 2024-07-18
WO2022042608A9 (zh) 2022-04-07
MX2023002473A (es) 2023-05-17
CN114125854A (zh) 2022-03-01
JP2023539129A (ja) 2023-09-13
JP7513238B2 (ja) 2024-07-09
AU2021334701A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US10206070B2 (en) Space division multiple access for wireless LAN, and channel estimation for the same
CN113411831B (zh) 数据传输的方法和装置
JP5639470B2 (ja) 改善されたマルチユーザ伝送
US8594007B2 (en) Sequential ACK for multi-user transmissions
JP2022111242A (ja) 通信装置、通信方法および集積回路
KR20110043501A (ko) 고용량 무선 통신 시스템에서의 자원 관리 방법
TW201349815A (zh) 在wlan系統中多使用者並行頻道存取
WO2022012560A1 (zh) 数据传输方法及装置
US20230209518A1 (en) Communication method and apparatus
CN108476476B (zh) 功率指示系统和方法
EP3391700B1 (en) Aparatuses and methods for indicating periodic allocations
Fodor Radio Resource Management for OFDM Systems and Long Term Evolution (LTE)–Part II

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512148

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3192800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202347013270

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003707

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237008822

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021334701

Country of ref document: AU

Date of ref document: 20210825

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860443

Country of ref document: EP

Effective date: 20230316

ENP Entry into the national phase

Ref document number: 112023003707

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230228