WO2022042013A1 - 一种dTOF传感模组、终端设备及测距方法 - Google Patents

一种dTOF传感模组、终端设备及测距方法 Download PDF

Info

Publication number
WO2022042013A1
WO2022042013A1 PCT/CN2021/103517 CN2021103517W WO2022042013A1 WO 2022042013 A1 WO2022042013 A1 WO 2022042013A1 CN 2021103517 W CN2021103517 W CN 2021103517W WO 2022042013 A1 WO2022042013 A1 WO 2022042013A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
gated
units
sensing module
unit
Prior art date
Application number
PCT/CN2021/103517
Other languages
English (en)
French (fr)
Inventor
周俊伟
杨兵
冯晓刚
庄开元
宋小刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023513834A priority Critical patent/JP7450809B2/ja
Priority to KR1020237009873A priority patent/KR20230053685A/ko
Priority to EP21859855.5A priority patent/EP4194892A4/en
Publication of WO2022042013A1 publication Critical patent/WO2022042013A1/zh
Priority to US18/174,963 priority patent/US20230280464A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present application relates to the technical field of sensing modules, and in particular, to a dTOF sensing module, a terminal device and a ranging method.
  • Three-dimensional (3D) sensing technology has become a research hotspot of a new generation of sensors.
  • technologies suitable for 3D sensors mainly include stereo imaging, structured light, time-of-flight (TOF), etc.
  • TOF has the advantages of long detection distance and high resolution, and is an important technology for next-generation 3D sensing. .
  • the direct time of flight (dTOF) method for ranging is to calculate the depth by directly measuring the flight time of ultrashort pulses at the transmitter and receiver.
  • the most commonly used method is to calculate the distance based on histogram statistics.
  • the image resolution formed is low.
  • time-division multiplexing of storage space is usually used in the prior art.
  • a plurality of light sources are arranged in an array, and one or more lines of them are driven to scan the entire field of view (FOV) in time-division to time-division multiplex the storage space, and then a complete field of view (FOV) is obtained by splicing.
  • FOV field of view
  • the stitching process is complicated and requires a long scanning time, and cannot be adapted to different detection scenarios.
  • the present application provides a dTOF sensing module, a terminal device and a ranging method, which are used to solve the problem that the dTOF sensing module in the prior art cannot be adapted to the requirements of different scenarios to a certain extent.
  • the present application provides a dTOF sensing module
  • the dTOF sensing module includes W photosensitive units, H histogram data storage units and processing control units, and each K photosensitive units in the W photosensitive units
  • the first storage space is shared, and the size of the first storage space is the size of the storage space corresponding to one histogram data storage unit
  • the processing control unit is used to control the gating of N photosensitive units, and allocate Q photosensitive units to each selected photosensitive unit Time slice container
  • the dTOF sensing module can work in the first mode or the second mode based on the gated N photosensitive units and the Q time slice containers assigned to each gated photosensitive unit
  • the first mode corresponds to The number N of the gated photosensitive cells is greater than the number N of the gated photosensitive cells corresponding to the second mode; and/or, the number Q of time slice containers allocated to each photosensitive cell corresponding to the first mode is smaller than that of the second mode
  • the dTOF sensing module can be made to work in different modes, that is, work in the first mode or second mode. Further, since the number of the gated photosensitive cells corresponding to the first mode is greater than the number of gated photosensitive cells corresponding to the second mode, and the greater the number of gated photosensitive cells, the higher the obtained resolution, Therefore, when the dTOF sensing module works in the first mode, the dTOF sensing module can be applied to scenarios with higher resolution requirements; when the dTOF sensing module works in the second mode, the dTOF sensing module Groups can be applied to scenes with lower resolution requirements.
  • the dTOF sensing module when the dTOF sensing module works in the first mode , the dTOF sensing module can be applied to a scene with a relatively short detection distance; when the dTOF sensing module works in the second mode, the dTOF sensing module can be applied to a scene with a relatively long detection distance. That is to say, by controlling the number of gated photosensitive cells and the number of time slice containers allocated to each gated photosensitive cell, the histogram data storage unit of the same size can store the histograms corresponding to different numbers of photosensitive cells.
  • the number of gated photosensitive cells can be flexibly controlled, and the number of time slice containers can be flexibly allocated to the gated photosensitive cells, so that the dTOF sensor module can be flexibly applied in different scenarios.
  • the first storage space includes M storage blocks, where M is a positive integer; the processing control unit is specifically configured to determine the first number of storage blocks occupied by each gated photosensitive unit; The number of time slice containers that can be stored and the first number are allocated to Q time slice containers for each gated photosensitive unit.
  • the first number of storage blocks occupied by each photosensitive unit can be further determined, which helps to accurately allocate the number of time slice containers to each photosensitive unit.
  • the first quantity is Among them, F represents the number of time slice containers that the storage block can store.
  • the storage block is used to store data generated when at least one photosensitive unit detects a first distance, where the first distance is a distance that the photosensitive unit can detect.
  • the storage block can store the maximum amount of data generated by at least one photosensitive unit. In this way, it can be ensured that all data generated by each photosensitive unit can be stored in the first storage space.
  • the first distance detected by the photosensitive unit is C/2 ⁇ T ⁇ Q; wherein, C is the speed of light, and T is the period of the time slice container.
  • the first storage space is provided by one of the H histogram data storage units; or; the first storage space is provided by at least two of the H histogram data storage units.
  • the corresponding photosensitive unit may store the generated data in each histogram data storage unit of the at least two histogram data storage units providing the first storage space in parallel unit, thereby helping to improve the storage efficiency of data.
  • the W photosensitive units are photosensitive unit arrays
  • the K photosensitive units are adjacent K units in a column of the photosensitive unit array, or adjacent K units in a row in the photosensitive unit array .
  • the W photosensitive units are gated L times, and L is determined according to K and N.
  • the manner of controlling the gating of each photosensitive unit in the N photosensitive units includes row enable control and column enable control, or row enable control, or column enable control.
  • the processing control unit is specifically configured to: receive a first instruction, and control gating N photosensitive units according to the first instruction, the first instruction is determined according to the target resolution; receive the second instruction, and allocate Q time slice containers to each gated photosensitive unit according to the second instruction, which is determined according to the target resolution and the target distance.
  • the processing control unit receives the first instruction and the second instruction, flexibly controls the number of gated photosensitive cells, and flexibly allocates the number of time slice containers to the gated photosensitive cells, so that the dTOF sensing module is flexibly applicable to different scenarios .
  • the first mode may be suitable for scenarios that require high-resolution, close-range detection
  • the second mode may be suitable for scenarios that do not require high resolution and long-distance detection.
  • the present application provides a terminal device, comprising a processor and any dTOF sensing module in the first aspect or the first aspect, the processor is configured to operate the dTOF sensing module in the first mode or The information obtained in the second mode is processed.
  • the present application provides a ranging method, the method comprising: controlling and gating N photosensitive units according to target resolution and target distance, and assigning Q time slice containers to each photosensitive unit that is selected, Among them, N photosensitive units occupy the first storage space, N photosensitive units are N among the K photosensitive units that share the first storage space, N is an integer less than or equal to K, and Q is a positive integer; The N photosensitive units and each gated photosensitive unit are assigned Q time slice containers, and distance detection is performed in the first mode or the second mode; wherein, the number N of the gated photosensitive units corresponding to the first mode is greater than the first mode.
  • the method can be applied to a direct time-of-flight dTOF sensing module.
  • the dTOF sensing module includes W photosensitive units, H histogram data storage units and processing control units, and K photosensitive units in the W photosensitive units share the first Storage space, the size of the first storage space is the size of the storage space corresponding to one histogram data storage unit, K is less than or equal to W, and W and H are both integers greater than or equal to 2.
  • the first storage space includes M storage blocks, where M is a positive integer; the first number of storage blocks occupied by each gated photosensitive unit can be determined; and the storage time of the storage blocks can be determined according to the The number of slice containers and the first quantity are assigned Q time slice containers for each gated photosensitive unit.
  • the first quantity is F represents the number of time slice containers that the memory block can store.
  • the storage block is used to store data generated when at least one photosensitive unit detects a first distance, where the first distance is a distance that can be detected by the photosensitive unit.
  • the first distance that the photosensitive unit can detect is C/2 ⁇ T ⁇ Q, where C is the speed of light, and T is the period of the time slice container.
  • the first storage space is provided by one of the H histogram data storage units; or; the first storage space is provided by at least two of the H histogram data storage units.
  • the W photosensitive units are photosensitive unit arrays
  • the K photosensitive units are adjacent K units in a column of the photosensitive unit array, or adjacent K units in a row in the photosensitive unit array .
  • the W photosensitive units are gated L times, and L is determined according to K and N.
  • the manner of controlling the gating of each photosensitive unit in the N photosensitive units includes row enable control and column enable control, or row enable control, or column enable control.
  • a first instruction can be received, and N photosensitive units are controlled to be gated according to the first instruction, the first instruction is determined according to the target resolution; and a second instruction is received, and according to the second instruction is Each gated photosensitive unit is allocated Q time slice containers, and the second command is determined according to the target resolution and the target distance.
  • the present application provides a terminal device, comprising the dTOF sensing module described in the first aspect or any one of the first aspects, a memory, and a processor; the memory is used to store programs or instructions; Invoking the program or instruction, the dTOF sensing module is controlled to execute the method in the third aspect or any possible implementation manner of the third aspect.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed by a terminal device, the terminal device is made to execute the third aspect or the third aspect above.
  • the method in any possible implementation manner of the three aspects.
  • the present application provides a computer program product, the computer program product includes a computer program or an instruction, when the computer program or instruction is executed by a terminal device, the terminal device is made to perform the above third aspect or any of the third aspects. methods in possible implementations.
  • FIG. 1a is a schematic structural diagram of a detector provided by the application.
  • Fig. 1b is a kind of Histogram schematic diagram that this application provides
  • FIG. 2 is a schematic diagram of the architecture of a laser ranging system provided by the present application.
  • FIG. 3 is a schematic structural diagram of a dTOF sensing module provided by the application.
  • FIG. 4 is a schematic structural diagram of a dTOF sensing module provided by the application.
  • 5a is a schematic diagram of a configuration relationship between a pixel and a first storage space provided by the application
  • 5b is a schematic diagram of the configuration relationship between another pixel and the first storage space provided by the application.
  • 6a is a schematic diagram of the relationship between a pixel array and gated pixels provided by the application;
  • 6b is a schematic diagram of the relationship between another pixel array provided by the application and the gated pixels;
  • 6c is a schematic diagram of the relationship between another pixel array provided by the application and the gated pixels;
  • 7a is a schematic diagram of the relationship between a pixel and a storage block occupied by a pixel provided by the application;
  • 7b is a schematic diagram of the relationship between another pixel and a memory block occupied by the pixel provided by the application;
  • 7c is a schematic diagram of the relationship between another pixel and a memory block occupied by the pixel provided by the application;
  • FIG. 8a is a schematic diagram of a pixel array provided by the present application.
  • 8b is a schematic diagram of another pixel array provided by the application.
  • 8c is a schematic diagram of another pixel array provided by the present application.
  • 8d is a schematic diagram of another pixel array provided by the present application.
  • 8e is a schematic diagram of another pixel array provided by the application.
  • 8f is a schematic diagram of another pixel array provided by the application.
  • 8g is a schematic diagram of another pixel array provided by the application.
  • 8h is a schematic diagram of another pixel array provided by the application.
  • 8i is a schematic diagram of a time-division gating pixel provided by the application.
  • 8j is a schematic diagram of another time-division gating pixel provided by the present application.
  • 8k is a schematic diagram of another time-division gating pixel provided by the present application.
  • 81 is a schematic diagram of another time-division gating pixel provided by the application.
  • 8m is a schematic diagram of another time-division gating pixel provided by the application.
  • FIG. 9 is a schematic flowchart of a method for ranging method provided by the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by this application.
  • a single-photon avalanche diode also called a single-photon detector, is a photodetection avalanche diode with single-photon detection capability.
  • SPAD has high sensitivity, it will be triggered when a photon is detected, and it usually takes a certain time (such as about 10ns) to recover to the initial state after triggering. Therefore, SPAD can be used to detect the presence or absence of photons. Typically, there will be multiple SPADs within each detector in the sensor. Referring to Fig. 1a, a schematic structural diagram of a possible detector is exemplarily shown.
  • the detector may include 5*3 SPAD arrays, that is, a schematic structural diagram of 5*3 SPAD arrays forming a detector.
  • the above-mentioned 5*3 SPADs can be gated all at once; in another possible situation, some of the 5*3 SPADs can also be gated at a time, as active in Figure 1a
  • the SPAD is the gated SPAD.
  • SPAD under reverse bias voltage, SPAD receives a photon and then generates carriers, which move under the action of the electric field, and collide with atoms in the semiconductor material to generate more carriers, and this reciprocation causes avalanches effect, a large number of carriers are generated, and a large current signal is formed. If the diode is broken down, a pulsed current output is formed for current detection.
  • one pixel may include one or more SPADs.
  • the time slice container refers to the smallest time unit in direct time of flight (dTOF) detection, usually represented by Bin. Among them, the smallest means that the time slice container can no longer be divided. For example, 250ps is a Bin; another example, 300ps is a Bin. Bin determines the minimum time resolution of the dTOF sensing module. Each Bin records the number of times it falls into the Bin. For example, add 1 to the Bin corresponding to the time when the pulse occurs.
  • dTOF direct time of flight
  • the maximum number of time slice containers refers to the maximum number of Bins that can be used in the histogram corresponding to one pixel (ie, one photosensitive unit) in dTOF detection.
  • the number of time slice containers that a memory block can store can be understood as the maximum number of time slice containers corresponding to a memory block. If a pixel occupies a memory block, the number of Bins that can be allocated to a pixel is BinNum. BinNum and the least significant bit (LSB) together determine the detection range in dTOF detection. That is to say, the three parameters BinNum, LSB and measurement range affect each other.
  • the LSB corresponds to the time unit, for example, the LSB is 250ps, indicating that the minimum time statistical unit is 250ps, that is, the period of one Bin is 250ps.
  • Histogram refers to the statistical histogram data obtained by counting the number of counts in each Bin with Bin as the time unit for time-correlated single photon counting (TCSPC) data in dTOF measurement.
  • the histogram data storage unit is used to store the Histogram.
  • the histogram data storage unit includes multiple storage blocks, and one storage block may store multiple Histograms.
  • the time slice container of a pixel refers to the number of Bins to which each gated (or called open or open) pixel is allocated.
  • each gated (opened) pixel can be assigned to one Bin; for another example, each gated (opened) pixel can be assigned to two or more Bins; (Open) pixels can be assigned to all Bins (ie BinNum).
  • a gated pixel means that the state of the logic switch of the pixel is controlled by an electrical signal to be OFF.
  • the photosensitive element utilizes the photoelectric conversion function of the photoelectric device.
  • the optical signal on the photosensitive surface is converted into an electrical signal proportional to the optical signal.
  • the photosensitive unit can be, for example, a photon detector (PD), a high-speed photodiode, a charge coupled device (CCD), a complementary metal-oxide-semiconductor (CMOS) phototransistor, a single photon Avalanche diodes, etc.
  • PD photon detector
  • CCD charge coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the dTOF sensing module can be applied to terminal equipment, such as mobile phones; or can also be applied to lidar, such as vehicle lidar or airborne lidar.
  • FIG. 2 is a schematic structural diagram of an applicable laser ranging system of the present application.
  • the laser ranging system includes a transmitter and a receiver.
  • the transmitting end mainly includes lasers and transmitting optical components, and the receiving end mainly includes sensors and receiving optical components.
  • the laser is used as a light source to emit a laser beam, and the laser beam from the laser is directed to the target area through the transmitting optical component; after the laser beam is directed to the target area (the laser beam directed to the target area can be called an emission beam), There may be a target object, the laser beam is reflected by the target object in the target area, and the echo light signal (or called the receiving beam) is obtained, and the echo optical signal is propagated to the sensor through the receiving optical component, and the sensor is used to receive the echo light according to the received light. Signal to determine the distance between the laser ranging system and the target object.
  • s C ⁇ t/2
  • s represents the distance between the laser ranging system and the target object
  • C represents the speed of light
  • t represents the distance between the light beam from the transmitting end to the target object, and then from the target object to the receiving end. elapsed time.
  • dTOF direct time of flight
  • the dTOF sensing module may include a pixel array, a time to digital converter (TDC) array, and a histogram data storage unit.
  • the pixel array can be a 5 ⁇ 5 array
  • the TDC array can also be a 5 ⁇ 5 array, that is, a 5 ⁇ 5 pixel array corresponds to a 5 ⁇ 5 TDC array one-to-one.
  • one TDC may also correspond to multiple pixels, that is, one TDC may also be used to record the number of occurrences of avalanche signals for multiple pixels.
  • each pixel in the pixel array is used for light-sensing and generating an avalanche signal; each TDC in the TDC array is used to record the number of occurrences in the Bin corresponding to the occurrence time according to the occurrence time of the avalanche signal, and in the corresponding Bin Adding 1 to the count in 1 can also be used to count the number of avalanche signals that occur in different Bins to obtain the Histogram, and the Histogram is used as the output to the histogram data storage unit; the histogram data storage unit is used to store the Histogram of each pixel; It can also be understood that there are multiple histograms stored in the histogram data storage unit.
  • the ranging process of dTOF is: when a photon enters the active area of the pixel array, there is a certain probability of generating carriers and causing avalanche breakdown, resulting in an instantaneous pulse current; TDC detects the pulse current After that, according to the moment when the pulse occurs, add 1 to the corresponding Bin to complete the count. The avalanche breakdown signals caused by photons arriving at different times fall on different Bins, and the corresponding Bins are counted by 1. Finally, the Histogram is obtained by statistics. Based on the Histogram, high-precision depth information can be obtained.
  • the physical storage space available for storing the Histogram data is limited, and the transmission bandwidth of the memory is also limited.
  • a dTOF sensing module provided by the present application, the dTOF sensing module can control the number of gated photosensitive cells and the number of time slice containers allocated to the gated photosensitive cells, so that the histograms of the same size can be
  • the image data storage unit stores the histogram data corresponding to different numbers of photosensitive units, so that the dTOF sensing module is flexibly applicable to different scenarios.
  • the sensing module 400 includes W photosensitive units 401, H histogram data storage units 402, and a processing control unit 403.
  • Each K photosensitive units in the W photosensitive units share a first storage space, and the first The size of the storage space is the size of the storage space corresponding to one histogram data storage unit, K is less than or equal to W, and both W and H are integers greater than or equal to 2.
  • the processing control unit is used to control the gating of N photosensitive units, and allocate Q time slice containers to each of the photosensitive units that are selected.
  • the N photosensitive units occupy the first storage space, and the N photosensitive units occupy the first storage space.
  • the dTOF sensing module can work in the first mode or the second mode based on the gated N photosensitive units and the Q time slice containers assigned to each gated photosensitive unit; the first mode The number N of the gated photosensitive units corresponding to the mode is greater than the number N of the gated photosensitive units corresponding to the second mode; the number Q of the time slice containers allocated to each photosensitive unit corresponding to the first mode is smaller than the The number Q of time slice containers allocated to each photosensitive unit corresponding to the second mode.
  • the processing control unit controls the gated N photosensitive units within a fixed time period
  • the value of Q can be related to the time slice.
  • the amount of time of the container is inversely proportional, that is, when the quantity Q is larger, the amount of time of the time slice container is smaller.
  • the processing control unit controls the gated N photosensitive units to be gated within a fixed time period of 1 second.
  • the processing control unit allocates 10 time slice containers to each gated photosensitive unit, then Each time slice container is 0.1 second.
  • the processing control unit allocates 20 time slice containers to each gated photosensitive unit, and each time slice container is 0.05 second.
  • the K photosensitive units 401 share the first storage space, which can be understood as: the first storage space can be occupied by K photosensitive units at most.
  • the K photosensitive units sharing the first storage space may not all be gated, and it is the gated N photosensitive cells that actually occupy the first storage space.
  • the processing control unit may be a processor, a field programmable gate array (FPGA), a signal data processing (digital signal processing, DSP) circuit, an application specific integrated circuit (ASIC) ), or other programmable logic devices, which are not limited in this application, it is possible to control the gated photosensitive cells and allocate a certain number of time slice containers to these gated photosensitive cells.
  • FPGA field programmable gate array
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • controlling the number of gated photosensitive cells and the number of time slice containers allocated to each gated photosensitive cell can make the dTOF sensing module work in different modes, that is, work in the first mode or second mode. Further, since the number of the gated photosensitive cells corresponding to the first mode is greater than the number of gated photosensitive cells corresponding to the second mode, and the greater the number of gated photosensitive cells, the higher the obtained resolution, Therefore, when the dTOF sensing module works in the first mode, the dTOF sensing module can be applied to scenarios with higher resolution requirements; when the dTOF sensing module works in the second mode, the dTOF sensing module Groups can be applied to scenes with lower resolution requirements.
  • the dTOF sensing module when the dTOF sensing module works in the first mode , the dTOF sensing module can be applied to a scene with a relatively short detection distance; when the dTOF sensing module works in the second mode, the dTOF sensing module can be applied to a scene with a relatively long detection distance. That is to say, by controlling the number of gated photosensitive cells and the number of time slice containers allocated to each gated photosensitive cell, the histogram data storage unit of the same size can store the histograms corresponding to different numbers of photosensitive cells.
  • the number of gated photosensitive cells can be flexibly controlled, and the number of time slice containers can be flexibly allocated to the gated photosensitive cells, so that the dTOF sensor module can be flexibly applied in different scenarios.
  • the number of photosensitive units that can be controlled to be gated is large, and the number of time slice containers allocated to each photosensitive unit is small;
  • the sensing module is used in scenes with low resolution and long detection distance, the number of photosensitive units that can be controlled to be gated is small, and the number of time slice containers allocated to each photosensitive unit is relatively large.
  • the number of gated pixels and the number of time slice containers allocated to each gated pixel can be flexibly adjusted to meet the needs of different scenarios.
  • seven possible application scenarios of the dTOF sensing module are exemplarily shown.
  • Scenario 1 requires long-distance detection. For example, outdoor navigation, target positioning, object detection, etc. In long-range detection, a larger number of time slice containers needs to be allocated for each pixel.
  • Scenario 2 requires close-range detection. For example, face modeling, small object modeling, etc.
  • close-proximity detection the number of time slice bins that need to be allocated per pixel is small.
  • Scenario 3 requires higher resolution. For example, face modeling, small object modeling. When the resolution requirement is higher, the number of pixels to be gated is larger.
  • Scenario 4 requires lower resolution, etc. For example, detecting ranging from a target. At lower resolutions, the number of gated pixels is lower.
  • Scenario 5 requires long-distance detection and low resolution requirements.
  • the number of pixels to be gated is relatively small, and the number of time slice containers allocated to each pixel is relatively large. It should be understood that, in long-distance detection, the resolution requirements are generally lower, the precision is lower, and the frame rate is higher.
  • Scenario 6 requires close-range detection and requires high resolution.
  • the number of pixels to be gated is large, and the number of time slice containers allocated to each pixel is small. It should be understood that in short-range detection, generally higher resolution requirements, higher accuracy and lower frame rate are required.
  • Scenario 7 requires long-distance detection and high resolution requirements.
  • the number of pixels to be gated is large, and the number of time slice containers allocated to each pixel is large.
  • N K/m, where m may be referred to as a gating coefficient.
  • the processing control unit may receive a first instruction from an upper layer (eg, an application layer), and control the gating of K/m photosensitive units to share the first storage space according to the first instruction.
  • m 2, indicating that K/2 photosensitive units are gated, and at this time, the gated K/2 photosensitive cells occupy the first storage space.
  • m 4, indicating that K/4 photosensitive units are gated, and at this time, the gated K/4 photosensitive units occupy the first storage space.
  • the first instruction may be generated by the upper layer according to the requirements of resolution and/or ranging.
  • the value of m may be 1, that is, all W photosensitive units are gated.
  • the processing control unit may receive the second instruction from the upper layer, and control the number Q of time slice containers allocated to each gated photosensitive unit according to the second instruction. For example, if the detection distance is required to be long, the value of Q is relatively large; for another example, if the detection distance is required to be relatively short, the value of Q is relatively small.
  • the second instruction may be determined by the upper layer according to the resolution and the detection distance. For example, if the resolution is required to be high, and the distance to be detected is relatively long, the value of m can be set to be small, and the value of n can be set to be small. For another example, if the resolution requirement is relatively low, the value of m can be set larger, and the value of n can be set larger. For another example, when the value of n is the same, the larger the value of m, the smaller the resolution and the larger the detection distance. Please refer to the introduction of the following specific example.
  • the W photosensitive units may be an array of photosensitive units.
  • each pixel may correspond to a switch, wherein the switch refers to a logical switch.
  • CMOS complementary metal-oxide semiconductor
  • CMOS complementary metal-oxide semiconductor
  • a column includes N*K pixels, and the N*K pixels may share the corresponding N histogram data storage units. That is to say, at most K pixels in a column may share the first storage space, and there may be one or multiple histogram data storage units providing the first storage space for these K pixels. If multiple histogram data storage units provide a shared first storage space for K pixels, the ratios provided by the multiple histogram data storage units can be randomly set. Further, optionally, each histogram data storage unit corresponds to a group of buses, the N histogram data storage units correspond to N groups of buses, and each pixel can be connected to the histogram data storage unit through the bus.
  • the K pixels may be connected to one histogram data storage unit, or may be connected to multiple histograms.
  • whether the pixel is connected to the histogram data storage unit can be controlled by a switch.
  • a switch can be connected to a histogram data storage unit through a bus, and K pixels are connected to a switch. When the switch is turned off, the K pixels connected to the switch can be connected to the histogram data storage unit corresponding to the switch through a bus. unit.
  • adjacent K pixels in a column may be connected to one switch, or K pixels at intervals may be connected to one switch, which is not limited in this application.
  • the adjacent K pixels may start from the first one in the column, or may start from the second one, which is not limited in this application.
  • the histogram data storage unit 1 and/or the histogram data storage unit 2 may provide the first storage space.
  • Each pixel can be connected to two histogram data storage units via a switch and bus.
  • the first 4 pixels can be connected to the histogram data storage unit 1 through switch 11 and bus 1, and can be connected to the histogram data storage unit 2 through switch 12 and bus 2; the last 4 pixels can be connected through switches 21 and 2.
  • the bus 1 is connected to the histogram data storage unit 1, and can be connected to the histogram data storage unit 2 through the switch 22 and the bus 2. That is, the first four pixels can be connected to the switch 11 and also connected to the switch 12 ; the last four pixels can be connected to the switch 21 and connected to the switch 22 .
  • a histogram data storage unit provides the first storage space for K pixels, in conjunction with the above-mentioned FIG. 5a, the first four pixels connected to the switch 11 can be connected to the histogram data storage unit 1 through the bus 1 by closing the switch 11; By closing the switch 22 , the last four pixels connected to the switch 22 are connected to the histogram data storage unit 2 through the bus 2 .
  • the first four pixels connected to switch 12 are connected to histogram data storage unit 2 through bus 2; by closing switch 21, the last four pixels connected to switch 21 are connected to histogram through bus 1.
  • Data storage unit 1 is connected.
  • the four pixels in the interval connected to the switch 11 can be connected to the histogram data storage unit 1 through the bus 1;
  • the pixels are connected to the histogram data storage unit 2 through the bus 2 .
  • the 4 pixels in the interval connected with the switch 21 are connected to the histogram data storage unit 1 through the bus 1; by closing the switch 12, the other 4 pixels connected with the switch 12 are connected through the bus 2. Connect to the histogram data storage unit 2.
  • the first four pixels connected to switch 11 can be stored with the histogram data through bus 1
  • the unit 1 is connected, and these 4 pixels are connected to the histogram data storage unit 2 through the bus 2; by closing the switch 21 and the switch 22, the last 4 pixels connected to the switch 21 are connected to the histogram data storage unit 1 through the bus 1
  • the last four pixels connected to the switch 22 are connected to the histogram data storage unit 2 through the bus 2 .
  • the dTOF sensing module at least includes M*N histogram data storage units.
  • N K/m
  • m the number of gated pixels
  • the K pixels sharing the first storage space may not be all gated, but actually K/m gated pixels occupy the first storage space.
  • the unselected pixels are connected to the corresponding histogram data storage unit, they do not occupy the storage space provided by the histogram data storage unit. It should be understood that the number of pixels for each strobe is an integer, that is, K/m is an integer.
  • FIG. 6b for a column, 2 of the 4 pixels connected to a switch are gated.
  • K/2 pixels when gating K/2 pixels, one can be gating every other pixel (as shown in Figure 6b); or it can be K/2 pixels before gating; or K/2 pixels after gating ; or it can also be randomly selected K/2 from K, which is not limited in this application.
  • the gated K/4 pixels may also be gated every three pixels (as shown in Figure 6c); or it may be K/4 before gated; or it may be K/4 after gated 4; or K/4 randomly selected from K, which is not limited in this application.
  • PixelBins time slice bins
  • K/m gated pixels occupy the first storage space, and n/m pixels occupy one storage block, that is, each pixel may occupy m/n storage blocks.
  • one storage block is configured with one BinNum. That is to say, the number of time slice containers that a storage block can store is the maximum number of time slice containers corresponding to the storage block.
  • PixelBin to which each gated pixel can be assigned BinNum ⁇ (m/n), and the PixelBin allocated to each gated pixel can be controlled by adjusting n (for PixelBin, please refer to the introduction of the aforementioned term 7, which is not mentioned here. repeat again).
  • the present application exemplarily shows the relationship between the number of gated pixels and the memory block occupied by each pixel when m takes different values.
  • n can be an integer multiple of m, a common divisor of K, and n ⁇ K.
  • FIG. 7a a schematic diagram of the relationship between a pixel and a memory block occupied by a pixel is provided in the present application.
  • Figure 7a shows an example in which the first storage space is provided by one histogram data storage unit.
  • the storage block may be further divided, that is, the storage block is divided into 4 sub-storage blocks.
  • a gated pixel occupies m/n storage blocks.
  • the four gated pixels are respectively connected to one sub-memory block.
  • FIG. 7b a schematic diagram of the relationship between a pixel and a memory block occupied by a pixel is provided by the present application.
  • Figure 7b takes an example in which the first storage space is provided by one histogram data storage unit.
  • the address decoder may connect the first and third sub-blocks of block 1 with a gated pixel, and the first and third sub-blocks of block 2 with another A gated pixel connection.
  • the address decoder can also connect the second sub-memory block and the fourth sub-memory block of memory block 1 with one pixel, and connect the second sub-memory block and the fourth sub-memory block of memory block 2 with another strobe
  • the address decoder may connect the first and second sub-blocks of block 1 with a gated pixel, and the third and fourth sub-blocks of block 1 to another gated pixel; alternatively, the address decoder may connect the first sub-memory block of block 1 and any of the four sub-memory blocks of memory block 2 to another gated pixel , connect the second sub-memory block of memory block 1 and any sub-memory block of the four sub-memory blocks of memory block 2 to another gated pixel; and so on.
  • FIG. 7c a schematic diagram of the relationship between a pixel and a memory block occupied by a pixel is provided by the present application.
  • Figure 7c shows an example in which the first storage space is provided by one histogram data storage unit.
  • the gated pixel is connected to the 4 sub-memory blocks of one memory block through the address decoder; or, the gated pixel can be connected to the 4 sub-memory blocks of the 4 memory blocks through the address decoder respectively; or , the gated pixel can be respectively connected to 2 sub-memory blocks in each of the 2 memory blocks through the address decoder; and so on.
  • n is an example for introduction. In different application scenarios, the value of n may also be different, which is not limited in this application. In addition, when m is constant, the smaller n is, the larger the detectable distance of each gated pixel is.
  • the histogram data storage units of the same size can store histograms corresponding to different numbers of pixels.
  • the maximum distance that each pixel can detect is relatively large, which is suitable for long-distance detection.
  • the maximum distance detectable by each pixel is relatively small, that is, it is suitable for short-range detection.
  • the higher the number of gated pixels the higher the resolution.
  • the resolution is 320*240; for another example, if the number of gated pixels is 160*120, the resolution is 160*120; for another example, the number of gated pixels is 80*60, the resolution is 80*60. That is to say, when the number of gated pixels is small, it is suitable for scenes with a large ranging range but low resolution requirements; when the number of gated pixels is large, it is suitable for a small ranging range, but the resolution requires higher scene.
  • the following exemplarily shows three ways of gating a pixel.
  • each pixel has row enable (X_Enable) control and column enable (Y_Enable) control, and control row enable and column enable at the same time, the pixel is gated, and the gated pixel is in a working state.
  • the processing control unit can control the row enable and column enable of each pixel through electrical signals. For example, when a high level (such as 1) electrical signal is passed to both the row and column of the pixel, the pixel can be gated; when there is a low level (such as 0) in the electrical signal communicated to the row and column of the pixel ), the pixel is not gated.
  • a high level such as 1
  • a low level such as 0
  • each pixel has a line enable (X_Enable) control, and the control line enables the pixel to be gated, and the gated pixel is in a working state.
  • X_Enable line enable
  • processing control unit can control the row function of each pixel through electrical signals.
  • each pixel is controlled by a column enable (Y_Enable), and the pixel is gated by controlling the column enable, and the gated pixel is in a working state.
  • processing control unit may control the column enable of each pixel through an electrical signal.
  • the following describes how to select the pixels in the pixel array by taking the pixel array included in the dTOF sensing module as an example of 8 rows and 8 columns in combination with the above three pixel gating methods.
  • each pixel is jointly controlled by row enable and column enable.
  • FIG. 8a exemplarily shows a schematic diagram of a pixel array.
  • the pixels in the pixel array are all gated. Based on the gated pixel array, the available resolution is 8*8 (the horizontal resolution is enlarged by 40 times, and the vertical resolution is enlarged by 30 times, so that the resolution is 320*240).
  • the surface scanning method can be used for the reconstruction of objects or scenes, and has high requirements on the integrity of the objects or scenes.
  • full FOV coverage can be achieved without losing the frame rate, that is, one frame of image with full FOV can be obtained in one scan.
  • a higher resolution can be obtained.
  • FIG. 8b exemplarily shows a schematic diagram of another pixel array.
  • K/2 pixels are gated in one column of the pixel array, and the gated pixels can be seen in the shaded part in Figure 8b.
  • the available resolution is 4*4 (the lateral resolution is enlarged by 40 times)
  • the vertical resolution is enlarged by 30 times
  • the resolution is 160*120).
  • FIG. 8c exemplarily shows a schematic diagram of another pixel array.
  • the pixel array gates K/4 pixels in one column, and the gated pixels can be referred to the shaded part in Fig. 8b.
  • the available resolution is 2*2 (the horizontal resolution is enlarged by 40 times, and the vertical resolution is enlarged by 30 times, so that the resolution is 80*60).
  • each pixel is controlled by the row enable (X_Enable), which can be understood as that each pixel can be independently controlled by the row enable.
  • FIG. 8d exemplarily shows a schematic diagram of another pixel array.
  • K/2 pixels are gated in one column of the pixel array.
  • the available resolution is 8*4 (the lateral resolution is enlarged by 40 times)
  • the vertical resolution is enlarged by 30 times
  • the resolution is 320*120).
  • FIG. 8f exemplarily shows a schematic diagram of another pixel array.
  • the pixel array gates K/4 pixels in one column, and the gated pixels can be referred to the shaded part in FIG. 8f.
  • the available resolution is 8*2 (the horizontal resolution is enlarged by 40 times, and the vertical resolution is enlarged by 30 times, so that the resolution is 320*60).
  • each pixel is controlled by the column enable (X_Enable), which can be understood as that each pixel can be independently controlled by the column enable.
  • FIG. 8e exemplarily shows a schematic diagram of another pixel array.
  • K/2 pixels are gated in one column of the pixel array, and the gated pixels can be seen in the shaded part in Figure 8e.
  • the available resolution is 4*8 (the lateral resolution is enlarged by 40 times)
  • the vertical resolution is enlarged by 30 times
  • the resolution is 160*240).
  • FIG. 8g exemplarily shows a schematic diagram of another pixel array.
  • the pixel array gates K/4 pixels in one column, and the gated pixels can be referred to the shaded part in FIG. 8g.
  • the available resolution is 2*8 (the horizontal resolution is enlarged by 40 times, and the vertical resolution is enlarged by 30 times, so that the resolution is 80*240).
  • Strip scan mode can be achieved when pixels are switched on and off by row enable control or column enable control.
  • the strip scanning mode can be used for target detection, such as detecting whether there is a target in a certain area, and the requirements for the integrity of the target are low.
  • the dTOF sensing module can realize long-distance detection, but the resolution is relatively low. In order to achieve high-resolution depth, all pixels can be gated through time division. .
  • control row and column are enabled at the same time, and the pixel can be gated.
  • the frame rate is set to be 16x when all gates are performed at one time, in the first example, the frame rate is 4x.
  • the frame rate is set to 16x when all gates are performed at one time, then in the second example, the frame rate is x.
  • the pixel can be gated.
  • the frame rate is set to 16x when all gates are performed at one time, in the first example, the frame rate is 2x.
  • the light sources in the light source array and the pixels in the pixel array are in one-to-one correspondence, that is, one pixel corresponds to one light source. If 1/2 of the pixels are gated each time, the corresponding 1/2 of the light source can be turned on (or called lighting or gating or electrifying). If 1/4 of the pixels are gated each time, the corresponding 1/4 of the light source can be turned on. If 1/16 of the pixels are gated each time, the corresponding 1/16 of the light source can be turned on.
  • the light sources in the light source array may be vertical cavity surface emitting lasers (VCSELs), or edge emitting lasers (edge emitting lasers, EELs).
  • VCSELs vertical cavity surface emitting lasers
  • EELs edge emitting lasers
  • the light source of the EEL can realize independent addressing, and the so-called independent addressing means that it can be independently selected.
  • the ranging method can be applied to the dTOF sensing module shown in any of the above-mentioned embodiments in FIG. 2 to FIG. 8m.
  • the dTOF sensing module includes W photosensitive units, H histogram data storage units and processing control units, and K photosensitive units in the W photosensitive units share a first storage space, and the size of the first storage space is The size of the storage space corresponding to one histogram data storage unit, the K is less than or equal to W, and both W and H are integers greater than or equal to 2.
  • the ranging method includes the following steps:
  • Step 901 according to the target resolution and the target distance, control to select N photosensitive units, and allocate Q time slice containers to each of the photosensitive units that are selected.
  • the gated N photosensitive units occupy the first storage space
  • the N photosensitive units are N of the K photosensitive units that share the first storage space
  • N is an integer less than or equal to K
  • Q is a positive integer
  • the K photosensitive units sharing the first storage space may not all be gated, but actually the gated N photosensitive cells
  • the photosensitive units occupy the first storage space, and the photosensitive units that are not selected do not occupy the first storage space. It should be understood that the number of photosensitive units for each gate is an integer, that is, N is an integer.
  • the first instruction may be generated according to the target resolution and/or the distance of the target, and the first instruction is used to instruct to select N photosensitive units.
  • a second instruction may be generated according to the target resolution and the distance of the target, where the second instruction is used to indicate the number of time slice containers allocated to each gated photosensitive unit.
  • the target resolution may refer to the required resolution
  • the target distance may refer to the required detection distance.
  • the dTOF sensing module can control the gated photosensitive units in a larger number, which is the number of photosensitive units for each photosensitive unit.
  • the number of time slice containers allocated by the unit is small; when the required resolution (that is, the target resolution) is low and the detection distance (that is, the target distance) is long, the dTOF sensing module can control the number of photosensitive units to be gated Fewer, the greater the number of time slice containers allocated to each photosensitive unit.
  • the target resolution is high and the detection distance is short; if the resolution is 80*60 and the detection distance is 1152m, it is The target resolution is lower and the detection distance is longer.
  • the first storage space includes M storage blocks, and the first number of storage blocks occupied by each gated photosensitive unit can be determined first; then according to the number of time slice containers that the storage block can store and the first number, Q time slice containers are allocated to each gated photosensitive cell.
  • step 901 may be performed by the processing control unit, and the specific process may refer to the foregoing related description, which will not be repeated here.
  • Step 902 according to the gated N photosensitive units and the allocation of Q time slice containers to each of the gated photosensitive units, the distance detection is performed in the first mode or the second mode.
  • the number N of the gated photosensitive cells corresponding to the first mode is greater than the number N of the gated photosensitive cells corresponding to the second mode; or, each photosensitive cell corresponding to the first mode is allocated
  • the number Q of time slice containers is less than the number Q of time slice containers allocated to each photosensitive unit corresponding to the second mode; or, the number N of the gated photosensitive units corresponding to the first mode is greater than the first mode.
  • the number N of gated photosensitive units corresponding to the two modes, and the number Q of time slice containers allocated to each photosensitive unit corresponding to the first mode is smaller than the time allocated to each photosensitive unit corresponding to the second mode
  • the number Q of tablet containers is used to the number Q of tablet containers.
  • N photosensitive units can be controlled to be gated according to the target resolution and target distance, and Q time slice containers are allocated to each gated photosensitive unit.
  • the histogram data storage units of the same size can store the histogram data corresponding to different numbers of photosensitive units, so that the dTOF sensing module works in the first mode or the second mode, so as to be flexibly applicable to different scenarios.
  • the number of photosensitive units that can be controlled to be gated is large, and the number of time slice containers allocated to each photosensitive unit is small;
  • the sensing module is used in a scene with low resolution and a long detection distance, the number of photosensitive units that can be controlled to be gated is small, and the number of time slice containers allocated to each photosensitive unit is relatively large.
  • the present application also provides a terminal device, which may include the above-mentioned dTOF sensing module and a processor, wherein the processor is used to The imaging information obtained by the dTOF sensing module is processed.
  • the terminal device may also include other components, such as memory, wireless communication means, sensors, touch screen and display screen, and the like.
  • the terminal device may be a mobile phone, a tablet computer, a wearable device (such as a smart watch), and the like.
  • Exemplary embodiments of the terminal device include but are not limited to carrying Or terminal devices of other operating systems.
  • FIG. 10 it is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 100 may include a processor 1001, a dTOF sensing module 1002, a display screen 1003, and the like.
  • the hardware structure shown in FIG. 10 is only an example.
  • the terminal device to which the present application applies may have more or fewer components than the terminal device 100 shown in FIG. 10 , may combine two or more components, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 1001 may include one or more processing units.
  • the processor 1001 may include an application processor (application processor, AP), a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), a controller, a digital signal processor (digital signal processor) processor, DSP), etc.
  • application processor application processor
  • GPU graphics processor
  • ISP image signal processor
  • DSP digital signal processor
  • different processing units may be independent devices, or may be integrated in one or more processors.
  • the display screen 1003 may be used to display images and the like.
  • the display screen 1003 may include a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode, or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed
  • quantum dot light-emitting diode quantum dot light emitting diodes, QLED
  • the terminal device 100 may include one or P display screens 1003 , where P is a positive integer greater than one.
  • multiple applications may be installed in the above-mentioned terminal device, and each application may be used in different scenarios.
  • each application may be used in different scenarios.
  • the first application in response to a user operation, after the first application is started, the first application can send the relevant parameters of the detection scene (such as target resolution and target distance) to the intermediate layer or the control layer, and the intermediate layer or The control layer can generate the first instruction and the second instruction based on the relevant parameters of the detection scene, and send the first instruction and the second instruction to the dTOF sensing module 1002 respectively, and the dTOF sensing module 1002 receives the first instruction according to the first instruction. , gating N pixels; and according to the second instruction, allocating Q time slice containers to each of the N gating pixels.
  • the relevant parameters of the detection scene such as target resolution and target distance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种直接飞行时间dTOF传感模组、终端设备及测距方法,用于在一定程度上解决现有技术中dTOF传感模组无法适配不同探测场景的问题。该dTOF传感模组包括的W个感光单元(401)中每K个感光单元(401)共享第一存储空间,处理控制单元(403)用于控制选通N个感光单元(401),选通的N个感光单元(401)占用第一存储空间,为每个选通的感光单元(401)分配Q个时间片容器,使dTOF传感模组工作于第一模式或第二模式;第一模式对应的选通的感光单元(401)的数量大于第二模式对应的选通的感光单元(401)的数量,和/或,第一模式对应的每个感光单元(401)被分配的时间片容器的数量小于第二模式对应的每个感光单元(401)被分配的时间片容器的数量,从而使dTOF传感模组灵活适用于不同的探测场景。

Description

一种dTOF传感模组、终端设备及测距方法
相关申请的交叉引用
本申请要求在2020年08月31日提交中国专利局、申请号为202010899620.9、申请名称为“一种dTOF传感模组、终端设备及测距方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传感模组技术领域,尤其涉及一种dTOF传感模组、终端设备及测距方法。
背景技术
三维(three dimensional,3D)传感技术成为新一代传感器的研究热点。目前,适用于3D传感器的技术主要包括立体成像、结构光、飞行时间(time-of-flight,TOF)等,其中TOF具有探测距离长,分辨率高等优点,是下一代3D传感的重要技术。
直接飞行时间(direct time of flight,dTOF)法测距是通过直接测量超短脉冲在发射端和接收端的飞行时间来计算深度的。常用的是基于直方图(histogram)统计的方式计算距离的方法。现有技术的dTOF测量中,由于探测器的存储空间的限制,形成的图像分辨率较低。
为了形成较高的图像分辨率,现有技术中通常采用分时复用存储空间。例如,多个光源排列成阵列,分时驱动其中的一行或多行扫描整个视场(field of view,FOV),以分时复用存储空间,之后通过拼接得到完整的视场(FOV)。对于这种扫描方式中,拼接过程复杂且需要的扫描时间较长,而且无法适配不同的探测场景。
发明内容
本申请提供一种dTOF传感模组、终端设备及测距方法,用于一定程度上解决现有技术中dTOF传感模组无法适用于不同场景需求的问题。
第一方面,本申请提供一种dTOF传感模组,该dTOF传感模组包括W个感光单元、H个直方图数据存储单元和处理控制单元,W个感光单元中的每K个感光单元共享第一存储空间,第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小;处理控制单元用于控制选通N个感光单元,为每个选通的感光单元分配Q个时间片容器;dTOF传感模组可基于选通的N个感光单元和每个选通的感光单元被分配的所述Q个时间片容器工作于第一模式或第二模式;第一模式对应的选通的感光单元的数量N大于第二模式对应的选通的感光单元的数量N;和/或,第一模式对应的每个感光单元被分配的时间片容器的数量Q小于第二模式对应的每个感光单元被分配的时间片容器的数量Q;N个感光单元占用第一存储空间,N个感光单元为共享第一存储空间的K个感光单元中的N个,K小于或等于W,W和H均为大于或等于2的整数,N为小于或等于K的整数,Q为正整数。
基于该方案,通过控制选通的感光单元的数量、以及控制为每个选通的感光单元分配的时间片容器的数量,可以使得dTOF传感模组工作于不同的模式,即工作于第一模式或 第二模式。进一步,由于所述第一模式对应的选通的感光单元的数量大于所述第二模式对应的选通的感光单元的数量,且选通的感光单元数量越多,得到的分辨率越高,因此,当dTOF传感模组工作于第一模式时,该dTOF传感模组可应用于分辨率要求较高的场景;当dTOF传感模组工作于第二模式时,该dTOF传感模组可应用于分辨率要求较低的场景。由于第一模式对应的每个感光单元被分配的时间片容器的数量小于所述第二模式对应的每个感光单元被分配的时间片容器的数量,当dTOF传感模组工作于第一模式时,该dTOF传感模组可应用于探测距离较近的场景;当dTOF传感模组工作于第二模式时,该dTOF传感模组可应用于探测距离较远的场景。也就是说,通过控制选通的感光单元的数量以及为每个选通的感光单元分配时间片容器的数量,可以使得相同大小的直方图数据存储单元存储不同数量的感光单元对应的直方图的数据,即可以在不改变直方图数据存储单元的存储空间下,灵活控制选通感光单元的数量、以及灵活为选通的感光单元分配时间片容器的数量,从而使dTOF传感模组灵活适用于不同的场景。
在一种可能的实现方式中,第一存储空间包括M个存储块,M为正整数;处理控制单元具体用于确定每个选通的感光单元占用的存储块的第一数量;根据存储块能够存储的时间片容器的数量和第一数量,为每个选通的感光单元分配Q个时间片容器。
通过将第一存储空间划分为M个存储块,从而可进一步确定出每个感光单元占用的存储块的第一数量,有助于精确的为每个感光单元分配时间片容器的数量。
在一种可能的实现方式中,第一数量为
Figure PCTCN2021103517-appb-000001
其中,F表示存储块能够存储的时间片容器的数量。
在一种可能的实现方式中,存储块用于存储至少一个感光单元在探测第一距离时产生的数据,第一距离为感光单元能够探测的距离。
存储块可存储至少一个感光产生的最大量的数据,如此,可以保证每个感光单元产生的全部数据均可以被存储于第一存储空间。
进一步,可选地,感光单元探测的第一距离为C/2×T×Q;其中,C为光速,T为时间片容器的周期。
在一种可能的实现方式中,第一存储空间是由H个直方图数据存储单元中的一个提供;或者;第一存储空间由H个直方图数据存储单元中的至少两个提供。
当第一存储空间由至少两个直方图数据存储单元提供时,对应的感光单元可以并行将产生的数据存储于提供第一存储空间的至少两个直方图数据存储单元的每个直方图数据存储单元,从而有助于提高数据的存储效率。
在一种可能的实现方式中,W个感光单元为感光单元阵列,K个感光单元为感光单元阵列中的一列中相邻的K个,或为感光单元阵列中的一行中相邻的K个。
通过选通感光单元阵列中的一列或一行中相邻的K个,有助于降低感光单元与总线之间的连线的复杂度。
在一种可能的实现方式中,当N小于K时,分L次选通W个感光单元,L是根据K和N确定的。
通过分L次选通全部的W个感光单元,可以实现覆盖全分辨率。也就是说,当探测的距离较远时,通过分时选通感光单元,也可以获得较高的分辨率。
在一种可能的实现方式中,控制所述N个感光单元中的每个感光单元选通的方式包括 行使能控制和列使能控制,或者,行使能控制,或者,列使能控制。
在一种可能的实现方式中,处理控制单元具体用于:接收第一指令,并根据第一指令控制选通N个感光单元,第一指令是根据目标分辨率确定的;接收第二指令,并根据第二指令为每个选通的感光单元分配Q个时间片容器,第二指令是根据目标分辨率和目标距离确定的。
通过处理控制单元接收第一指令和第二指令,灵活控制选通感光单元的数量、以及灵活为选通的感光单元分配时间片容器的数量,从而使dTOF传感模组灵活适用于不同的场景。例如,第一模式可适用于需要高分辨率、近距离探测的场景,第二模式可适用于对分辨率要求不高、远距离探测的场景。
第二方面,本申请提供一种终端设备,包括处理器、以及上述第一方面或第一方面中的任一dTOF传感模组,处理器用于对dTOF传感模组工作于第一模式或第二模式得到的信息进行处理。
第三方面,本申请提供一种测距方法,该方法包括:可根据目标分辨率和目标距离,控制选通N个感光单元,并为每个选通的感光单元分配Q个时间片容器,其中,N个感光单元占用第一存储空间,N个感光单元为共享第一存储空间的K个感光单元中的N个,N为小于或等于K的整数,Q为正整数;可根据选通的N个感光单元和每个选通的感光单元被分配Q个时间片容器,在第一模式或第二模式进行距离探测;其中,第一模式对应的选通的感光单元的数量N大于第二模式对应的选通的感光单元的数量N;第一模式对应的每个感光单元被分配的时间片容器的数量Q小于第二模式对应的每个感光单元被分配的时间片容器的数量Q。
该方法可应用于直接飞行时间dTOF传感模组,dTOF传感模组包括W个感光单元、H个直方图数据存储单元和处理控制单元,W个感光单元中的K个感光单元共享第一存储空间,第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小,K小于或等于W,W和H均为大于或等于2的整数。
在一种可能的实现方式中,第一存储空间包括M个存储块,M为正整数;可确定每个选通的感光单元占用的存储块的第一数量;并根据存储块能够存储的时间片容器的数量和第一数量,为每个选通的感光单元分配Q个时间片容器。
在一种可能的实现方式中,第一数量为
Figure PCTCN2021103517-appb-000002
F表示存储块能够存储的时间片容器的数量。
在一种可能的实现方式中,存储块用于存储至少一个感光单元在探测第一距离时产生的数据,所述第一距离为所述感光单元能够探测的距离。
在一种可能的实现方式中,感光单元能够探测的第一距离为C/2×T×Q;其中,C为光速,T为时间片容器的周期。
在一种可能的实现方式中,第一存储空间是由H个直方图数据存储单元中的一个提供;或者;第一存储空间由H个直方图数据存储单元中的至少两个提供。
在一种可能的实现方式中,W个感光单元为感光单元阵列,K个感光单元为感光单元阵列中的一列中相邻的K个,或为感光单元阵列中的一行中相邻的K个。
在一种可能的实现方式中,当N小于K时,分L次选通W个感光单元,L是根据K和N确定的。
在一种可能的实现方式中,控制所述N个感光单元中的每个感光单元选通的方式包括行使能控制和列使能控制,或者,行使能控制,或者,列使能控制。
在一种可能的实现方式中,可接收第一指令,并根据第一指令控制选通N个感光单元,第一指令是根据目标分辨率确定的;并接收第二指令,根据第二指令为每个选通的感光单元分配Q个时间片容器,第二指令是根据目标分辨率和目标距离确定的。
第四方面,本申请提供一种终端设备,包括第一方面或第一方面任一所述的dTOF传感模组、存储器和处理器;所述存储器用于存储程序或指令;所述处理器用于调用所述程序或指令,控制所述dTOF传感模组执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第五方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被终端设备执行时,使得该终端设备执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被终端设备执行时,使得该终端设备执行上述第三方面或第三方面的任意可能的实现方式中的方法。
上述第二方面至第六方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
附图说明
图1a为本申请提供的一种探测器的结构示意图;
图1b为本申请提供的一种Histogram示意图;
图2为本申请提供的一种激光测距系统的架构示意图;
图3为本申请提供的一种dTOF传感模组的结构示意图;
图4为本申请提供的一种dTOF传感模组的结构示意图;
图5a为本申请提供的一种像素与第一存储空间的配置关系示意图;
图5b为本申请提供的另一种像素与第一存储空间的配置关系示意图;
图6a为本申请提供的一种像素阵列与选通的像素之间的关系示意图;
图6b为本申请提供的另一种像素阵列与选通的像素之间的关系示意图;
图6c为本申请提供的另一种像素阵列与选通的像素之间的关系示意图;
图7a为本申请提供的一种像素与像素占用的存储块的关系示意图;
图7b为本申请提供的另一种像素与像素占用的存储块的关系示意图;
图7c为本申请提供的另一种像素与像素占用的存储块的关系示意图;
图8a为本申请提供的一种像素阵列的示意图;
图8b为本申请提供的另一种像素阵列的示意图;
图8c为本申请提供的另一种像素阵列的示意图;
图8d为本申请提供的另一种像素阵列的示意图;
图8e为本申请提供的另一种像素阵列的示意图;
图8f为本申请提供的另一种像素阵列的示意图;
图8g为本申请提供的另一种像素阵列的示意图;
图8h为本申请提供的另一种像素阵列的示意图;
图8i为本申请提供的一种分时选通像素的示意图;
图8j为本申请提供的另一种分时选通像素的示意图;
图8k为本申请提供的另一种分时选通像素的示意图;
图8l为本申请提供的另一种分时选通像素的示意图;
图8m为本申请提供的另一种分时选通像素的示意图;
图9为本申请提供的一种测距方法的方法流程示意图;
图10为本申请提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
一、单光子雪崩二极管(single-photon avalanche diode,SPAD)
单光子雪崩二极管也称为单光子探测器,是一种具有单光子探测能力的光电探测雪崩二极管。SPAD具有较高的灵敏度,检测到一个光子即会被触发,触发之后通常需要一定的时间(如10ns左右)恢复至初始状态。因此,SPAD可用于检测有无光子。通常,传感器中的每个探测器内会有多个SPAD。参考图1a,示例性地的示出了一种可能的探测器的结构示意图。该探测器可包括5*3个SPAD阵列,即5*3个SPAD阵列可组成一个探测器的结构示意图。在一种可能的情形中,上述5*3个SPAD可以一次全部选通;在另一种可能的情形中,也可以一次选通5*3个SPAD中的某几个,如图1a中活跃的SPAD即为选通的SPAD。
SPAD特性是:在反偏电压下,SPAD接收到一个光子进而产生载流子,载流子在电场作用下运动,和半导体材料中的原子碰撞产生出更多的载流子,如此往复引发雪崩效应,产生大量的载流子,形成大电流信号。如果二极管被击穿,形成脉冲电流输出,用于电流检测。本申请中,一个像素可以包括一个或者多个SPAD。
二、时间片容器
时间片容器是指在直接飞行时间法测距(direct time of flight,dTOF)探测中的最小时间单位,通常用Bin表示。其中,最小指的是该时间片容器不能再被分割。例如,250ps为一个Bin;再比如,300ps为一个Bin。Bin可决定dTOF传感模组的最小时间分辨率。每个Bin中记录着落入该Bin中计的次数,例如,在脉冲发生的时间对应的Bin中加1。
三、时间片容器的比特
时间片容器的比特(用BinBit表示,即Bin的Bit数)是指在dTOF探测中,每个Bin可用于计数的最大二进制位数,例如Bin Bit=8,表示每个Bin最多可保存2的8次方(即256)个计数。Bin Bit决定Bin可存储的信息量。也可以理解为,一个Bin可存储的信息量用Bin Bit表示。
四、时间片容器的最大数量
时间片容器的最大数量(可用BinNum表示)是指在dTOF探测中,一个像素(Pixel)(即一个感光单元)对应的直方图中能使用的Bin的最大数量。一个存储块能够存储的时间片容器的数量,可以理解为一个存储块对应的时间片容器的最大数量,若一个像素占用一个存储块,则一个像素可被分配的Bin数量即为BinNum。BinNum与最低有效位(least significant bit,LSB)共同决定dTOF探测中探测量程。也就是说,BinNum、LSB和测量量程三个参数相互影响。在本申请中,LSB对应时间单位,例如LSB为250ps,说明最小 时间统计单位为250ps,即一个Bin的周期为250ps。
五、直方图(Histogram)
直方图是指在dTOF测量中,对时间相关计数(time-correlated single photon counting,TCSPC)数据,以Bin为时间单位统计每个Bin中计数次数所得到统计直方图数据。如图1b所示,为本申请提供的一种Histogram示意图。其中,横坐标表示时间,以Bin为单位;光子在SPAD上触发雪崩产生信号的时刻落入对应的Bin;纵坐标表示计数次数(即计数值)。该Histogram中BinNum=5。应理解,图1b即为一个像素输出的Histogram。基于获取到的直方图,可通过质心法、峰值法等,确定出哪个Bin作为截止时间,根据截止时间,可确定出与目标的距离。
六、直方图数据存储单元
直方图数据存储单元用于存储Histogram,直方图数据存储单元包括多个存储块,一个存储块可能存储多个Histogram。本申请中,直方图数据存储单元包括的存储块的数量小于或等于像素的数量,一个存储块对应一个BinNum,每个存储块可存储的信息量的大小=BinNum×BinBit,每个存储块可满足一个像素达到的最大探测距离所需存储数据的空间。
七、像素的时间片容器
像素的时间片容器(可用PixelBin表示)指每个选通(或称为打开或开启)的像素被分配到的Bin个数。例如,每个选通(打开)的像素可被分配到一个Bin;再比如,每个选通(打开)的像素可被分配到两个或两个以上的Bin;再比如,每个选通(打开)的像素可被分配到全部的Bin(即BinNum)。应理解,选通的像素是指通过电信号控制像素的逻辑开关的状态为关。
八、感光单元
感光元件是利用光电器件的光电转换功能。将感光面上的光信号转换为与光信号成相应比例关系的电信号。感光单元例如可以是光电探测器(photon detector,PD)、高速光电二极管、电荷耦合器件(charge coupled device,CCD)、互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管、单光子雪崩二极管等。
本申请中,dTOF传感模组可以应用于终端设备,例如手机;或者也可应用于激光雷达,例如车载激光雷达或机载激光雷达等。
dTOF传感模组可用于距离测量,即可用于探测距离。图2是本申请的可应用的一种激光测距系统的架构示意图。该激光测距系统包括发射端和接收端。发射端主要包括激光器和发射光学组件,接收端主要包括传感器和接收光学组件。激光器作为光源,用于发射激光束,经发射光学组件将来自激光器的激光束射向目标区域;激光束射向目标区域后(射向目标区域的激光束可称为发射光束),目标区域中可能存在目标对象,激光束被目标区域中的目标对象反射,得到回波光信号(或称为接收光束),经接收光学组件将回波光学信号传播至传感器,传感器用于根据接收到的回波光信号,确定激光测距系统与目标对象之间的距离。示例性地,s=C×t/2,s表示激光测距系统与目标对象之间的距离,C表示光速,t表示光束从发射端到目标对象,再从目标对象到接收端之间所经过的时长。
需要说明的是,本申请所描述的系统架构和应用场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定。
如下,以传感器为直接飞行时间法测距(direct time of flight,dTOF)传感模组为例, 详细介绍dTOF测距的过程。
如图3所示,为本申请提供的一种dTOF传感模组的结构示意图。dTOF传感模组的可包括像素(Pixel)阵列、时间数字转换器(time to digital convert,TDC)阵列和直方图数据存储单元。例如,像素阵列可为5×5的阵列,TDC阵列也可为5×5的阵列,即5×5的像素阵列与5×5的TDC阵列一一对应。应理解,一个TDC也可以与多个像素对应,即一个TDC也可以用于记录多个像素发生雪崩信号的次数。其中,像素阵列中的每个像素用于感光并产生雪崩信号;TDC阵列中的每个TDC用于根据雪崩信号发生的时间,将发生的次数记录于发生时间对应的Bin中,在对应的Bin中的计数加1,还可用于统计在不同Bin内雪崩信号发生的个数,得到Histogram,并将Histogram作为输出至直方图数据存储单元;直方图数据存储单元用于存储每个像素的Histogram;也可以理解为,直方图数据存储单元中存储有多个Histogram。
结合上述图3,dTOF的测距过程为:当一个光子进入像素阵列的活跃区域(Active area),有一定概率产生载流子并引发雪崩击穿,产生瞬时脉冲电流;TDC检测到该脉冲电流后,根据脉冲发生的时刻在对应的Bin中计数加1,完成计数。不同时间到达的光子引发的雪崩击穿信号落在不同的Bin上,相应的Bin被加1计数,最终统计得到Histogram,基于Histogram可获取到高精度的深度信息。
在dTOF传感模组中,可用于存储Histogram的数据的物理存储空间有限,而且存储器的传输带宽也有限。若dTOF传感模组包括的像素阵列为240*160,即分辨率为240*160,假设一个像素需要存储的信息量为BinNum×BinBit=256×8,则整个像素阵列需要的存储空间为256×8×240×160=78.6Mb,但是存储空间较大时,对数据传输的带宽要求均比较高,是数字电路部分的设计瓶颈。
鉴于此,本申请提供的一种dTOF传感模组,该dTOF传感模组可通过控制选通感光单元的数量以及为选通的感光单元分配时间片容器的数量,可以使得相同大小的直方图数据存储单元存储不同数量的感光单元对应的直方图的数据,从而使dTOF传感模组灵活适用于不同的场景。
如图4所示,为本申请提供一种dTOF传感模组的结构示意图。该传感模组400包括W个感光单元401、H个直方图数据存储单元402和处理控制单元403,所述W个感光单元中的每K个感光单元共享第一存储空间,所述第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小,K小于或等于W,W和H均为大于或等于2的整数。所述处理控制单元用于控制选通N个感光单元,为每个选通的感光单元分配Q个时间片容器,所述N个感光单元占用所述第一存储空间,所述N个感光单元为共享所述第一存储空间的所述K个感光单元中的N个,所述N为小于或等于K的整数,所述Q为正整数。所述dTOF传感模组可基于选通的所述N个感光单元和每个选通的感光单元被分配的所述Q个时间片容器工作在第一模式或第二模式;所述第一模式对应的选通的感光单元的数量N大于所述第二模式对应的选通的感光单元的数量N;所述第一模式对应的每个感光单元被分配的时间片容器的数量Q小于所述第二模式对应的每个感光单元被分配的时间片容器的数量Q。
可以理解的是,在一种可能的实现方式中,时间片容器和Q存在对应的关系,当处理控制单元在一个固定时间段内控制选通的N个感光单元,Q的值可以和时间片容器的时间量成反比,即当数量Q越大,时间片容器的时间量就越小。例如处理控制单元控制选通N 个感光单元在一个固定时间段1秒内选通,在一种可能的实现方式中,处理控制单元为每个选通的感光单元分配10个时间片容器,那每个时间片容器就是0.1秒,在另一种可能的实现方式中,处理控制单元为每个选通的感光单元分配20个时间片容器,那每个时间片容器就是0.05秒。
需要说明的是,K个感光单元401共享第一存储空间,可以理解为:第一存储空间最多可被K个感光单元占用。换言之,共享第一存储空间的K个感光单元可能不会被全部选通,实际占用第一存储空间的是选通的N个感光单元。
本申请中,处理控制单元可为处理器、现场可编程门阵列(field programmable gate array,FPGA)、信号数据处理(digital signal processing,DSP)电路、专门应用的集成电路(application specific integrated circuit,ASIC)、或者其他可编程逻辑器件,本申请对此不做限定,可以实现控制选通感光单元,并为这些选通的感光单元分配一定数量的时间片容器即可。
基于上述方案,控制选通的感光单元的数量、以及控制为每个选通的感光单元分配的时间片容器的数量,可以使得dTOF传感模组工作于不同的模式,即工作于第一模式或第二模式。进一步,由于所述第一模式对应的选通的感光单元的数量大于所述第二模式对应的选通的感光单元的数量,且选通的感光单元数量越多,得到的分辨率越高,因此,当dTOF传感模组工作于第一模式时,该dTOF传感模组可应用于分辨率要求较高的场景;当dTOF传感模组工作于第二模式时,该dTOF传感模组可应用于分辨率要求较低的场景。由于第一模式对应的每个感光单元被分配的时间片容器的数量小于所述第二模式对应的每个感光单元被分配的时间片容器的数量,当dTOF传感模组工作于第一模式时,该dTOF传感模组可应用于探测距离较近的场景;当dTOF传感模组工作于第二模式时,该dTOF传感模组可应用于探测距离较远的场景。也就是说,通过控制选通的感光单元的数量以及为每个选通的感光单元分配时间片容器的数量,可以使得相同大小的直方图数据存储单元存储不同数量的感光单元对应的直方图的数据,即可以在不改变直方图数据存储单元的存储空间下,灵活控制选通感光单元的数量、以及灵活为选通的感光单元分配时间片容器的数量,从而使dTOF传感模组灵活适用于不同的场景。例如,当dTOF传感模组用于高分辨率、探测距离较近的场景时,可控制选通的感光单元数量较多,为每个感光单元分配的时间片容器的数量较少;当dTOF传感模组用于低分辨率、探测距离较远的场景时,可控制选通的感光单元数量较少,为每个感光单元分配的时间片容器的数量较多。
结合dTOF传感模组的应用场景,可灵活调整选通的像素的数量和为每个选通的像素分配的时间片容器的数量,以满足不同场景的需求。如下,示例性的示出了七种dTOF传感模组可能的应用场景。
场景一,需要进行远距离探测。例如,室外导航、目标定位、物体探测等。在远距离探测,需要为每个像素分配的时间片容器的数量较多。
场景二,需要进行近距离探测。例如,人脸建模、小物体建模等。在近距离探测中,需要为每个像素分配的时间片容器的数量较少。
场景三,对分辨率要求较高。例如,人脸建模、小物体建模。在分辨率要求较高时,需要选通的像素的数量较多。
场景四,对分辨率要求较低等。例如,探测与目标的测距。在对分辨率较低时,选通的像素的数量较少。
场景五,需要进行远距离探测且对分辨率要求较低。在该场景五中,需要选通的像素数量较少,且为每个像素分配的时间片容器的数量较多。应理解,在远距离探测中,通常对分辨率要求较低,精度较低,帧率较高。
场景六,需要进行近距离探测且对分辨率要求较高。在该场景六中,需要选通的像素数量较多,且为每个像素分配的时间片容器的数量较少。应理解,在近距离探测中,通常对分辨率要求较高,精度较高,帧率较低。
场景七,需要进行远距离探测且对分辨率要求高。在该场景七中,需要选通的像素数量较多,且为每个像素分配的时间片容器的数量较多。
应理解,本申请也适用于相同有探测距离下,实现不同的分辨率;或者,相同分辨率下,探测不同的距离。
在一种可能的实现方式中,N=K/m,其中,m可称为选通系数。处理控制单元可接收来自上层(例如应用层)的第一指令,并根据第一指令控制选通K/m个感光单元共享第一存储空间。例如,m=1,表示选通K个感光单元,此时,选通的K个感光单元占用第一存储空间。再比如,m=2,表示选通K/2个感光单元,此时,选通的K/2个感光单元占用第一存储空间。再比如,m=4,表示选通K/4个感光单元,此时,选通的K/4个感光单元占用第一存储空间。
进一步,可选地,第一指令可以是上层根据分辨率和/或测距的需求生成的。例如,对分辨率要求较高,则m的取值可为1,即选通全部的W个感光单元。再比如,对分辨率要求比较低,则m的取值可以设置的较大,如m=4等。
在一种可能的实现方式中,处理控制单元可接收来自上层的第二指令,并根据第二指令控制为每个选通的感光单元分配的时间片容器的数量Q。例如,需要探测距离较远,Q的取值较大;再比如,需要探测距离较近,Q的取值较小。
进一步,可选地,第二指令可以是上层根据分辨率和探测距离的远近确定的。例如,对分辨率要求较高,且需要探测的距离比较远,则m的取值可设置较小,且n的取值可设置的较小。再比如,对分辨率要求比较低,则m的取值可以设置的较大,且n的取值设置的较大。再比如,n的取值相同的情况下,m的取值越大,分辨率越小,探测距离越大,可参见下述具体示例的介绍。
在一种可能的实现方式中,W个感光单元可以是感光单元阵列。
在下文的介绍中,以感光单元为像素为例,以dTOF传感模组包括的像素阵列中的一列像素为例,该列像素与N个直方图数据存储单元对应,即可配置该列像素共享这N个直方图数据存储单元。另外,每个像素可对应一个开关,其中,开关指逻辑开关。例如,金属氧化物半导体元件(complementary metal-oxide semiconductor,CMOS)中的逻辑电路开关,可通过电信号控制每个像素处于开或关。为了便于说明,如下以连接到一个总线的像素用一个开关表示进行示例。应理解,以像素阵列的行为例与以列为例的处理逻辑是相同的。
如下,示例性是出了像素与直方图数据存储单元的可能的连接方式。
在一种可能的实现方式中,一列包括N*K个像素,这N*K个像素可共享对应的N个直方图数据存储单元。也就是说,一列最多可有K个像素共享第一存储空间,为这K个像 素提供第一存储空间的直方图数据存储单元可以是一个,也可以是多个。若是多个直方图数据存储单元为K个像素提供共享的第一存储空间,这多个直方图数据存储单元所提供的比例可随机设置。进一步,可选地,每个直方图数据存储单元对应一组总线,N个直方图数据存储单元对应N组总线,每个像素可通过总线连接到直方图数据存储单元。
在一种可能的实现方式中,K个像素可与一个直方图数据存储单元连接,也可以与多个直方图连接。示例性地,可通过开关控制像素与直方图数据存储单元是否连接。例如,一个开关可通过总线与一个直方图数据存储单元,K个像素与一个开关连接,当开关关闭时,可将与该开关连接的K个像素通过总线连接到该开关对应的直方图数据存储单元。
需要说明的是,可以是一列中相邻的K个像素与一个开关连接,也可以是间隔的K个像素与一个开关连接,本申请对此不做限定。另外,相邻的K个像素可以是从该列中的第一个开始,也可以是从第二个开始,本申请对此也不做限定。
如图5a和图5b所示的,以N*K=2×4为例,即一列包括8个像素(即像素1-8),最多4个像素共享第一存储空间,直方图数据存储单元1和/或直方图数据存储单元2可提供第一存储空间。每个像素均可通过一个开关和总线连接到两个直方图数据存储单元。如图5a,前4个像素可通过开关11和总线1与直方图数据存储单元1连接,可通过开关12和总线2与直方图数据存储单元2连接;后的4个像素可通过开关21和总线1与直方图数据存储单元1连接,可通过开关22和总线2与直方图数据存储单元2连接。也就是说,前4个像素可与开关11连接,且与开关12也连接;后4个像素可与开关21连接,且与开关22连接。
若一个直方图数据存储单元为K个像素提供第一存储空间,结合上述图5a,可通过关闭开关11,将与开关11连接的前4个像素通过总线1与直方图数据存储单元1连接;通过关闭开关22,将与开关22连接的后4个像素通过总线2与直方图数据存储单元2连接。或者,通过关闭开关12,将与开关12连接的前4个像素通过总线2与直方图数据存储单元2连接;通过关闭开关21,将与开关21连接的后4个像素通过总线1与直方图数据存储单元1连接。结合上述图5b,可通过关闭开关11,将与开关11连接的间隔的4个像素通过总线1与直方图数据存储单元1连接;通过关闭开关22,将与开关22连接的另外间隔的4个像素通过总线2与直方图数据存储单元2连接。或者,通过关闭开关21,将与开关21连接的间隔的4个像素通过总线1与直方图数据存储单元1连接;通过关闭开关12,将与开关12连接的另外间隔的4个像素通过总线2与直方图数据存储单元2连接。
若两个直方图数据存储单元为K个像素提供第一存储空间,结合上述图5a,可通过关闭开关11和开关12,将与开关11连接的前4个像素通过总线1与直方图数据存储单元1连接,且将这4个像素通过总线2与直方图数据存储单元2连接;通过关闭开关21和开关22,将与开关21连接的后4个像素通过总线1与直方图数据存储单元1连接、且将与开关22连接的这后4个像素通过总线2与直方图数据存储单元2连接。
应理解,若dTOF传感模组包括的像素阵列为M*(N*K),则dTOF传感模组至少包括M*N个直方图数据存储单元。
下面示例性地的介绍选通系数m取不同值时,选通的像素数量(N=K/m)与第一存储空间的关系。
本申请中,最多有K个像素共享第一存储空间,在实际使用时,共享第一存储空间的 这K个像素可能未全部选通,实际是选通的K/m个像素占用第一存储空间,未选通的像素虽然连接到了对应的直方图数据存储单元,但并不占用该直方图数据存储单元所提供的存储空间。应理解,每次选通的像素数量为整数,即K/m为整数。
当选通系数m=1时,选通K/m=K个像素,结合上述图5a,共享第一存储空间的4个像素全部选通,此时,选通的这4个像素占用第一存储空间。参阅图6a,一列中的8个像素全部选通。需要说明的是,当选通系数m=1时,该dTOF传感模组可应用于上述场景三或场景六中。
当选通系数m=2时,选通K/2个像素,结合上述图5a,从共享第一存储空间的4个像素中选通其中的K/2=4/2=2个。此时,选通的2个像素占用第一存储空间。参阅图6b,针对一列,从与一个开关连接的4个像素中选通其中的2个。
需要说明的是,选通K/2个像素,可以是每间隔一个像素选通一个(如图6b);或者也可以是选通前K/2个;或者也可以选通后K/2个;或者也可以是从K个中随机的选通K/2个,本申请对此不做限定。
当选通系数m=4时,选通K/4个像素,结合上述图5a,从共享第一存储空间的4个像素选通其中的K/4=4/4=1个。此时,选通的1个占用第一存储空间。参阅图6c,针对一列,从与一个开关连接的4个像素中选通其中的1个。需要说明的是,当选通系数m=4时,该dTOF传感模组可应用于上述场景四或场景五中。
需要说明的是,选通K/4个像素也可以是每间隔三个像素选通一个(如图6c);或者也可以是选通前K/4个;或者也可以是选通后K/4个;或者也可以是从K个中随机的选通K/4个,本申请对此不做限定。
基于上述选通的像素,如下详细介绍为每个选通的像素分配时间片容器(可称为PixelBin)的数量Q可能的实现方式。
在一种可能的实现方式中,第一存储空间包括M个存储块,每个存储块能够存储的时间片容器的数量F,其中,M=K/n,N=K/m,
Figure PCTCN2021103517-appb-000003
Figure PCTCN2021103517-appb-000004
其中,n可称为占用系数,F即为BinNum。其中,最多K个像素共享第一存储空间,选通的K/m个像素占用第一存储空间,则n/m个像素占用一个存储块,即每个像素可占用m/n个存储块。
进一步,可选地,一个存储块配置一个BinNum。也就是说,一个存储块能够存储的时间片容器的数量即为该存储块对应的时间片容器的最大数量。每个选通的像素可被分配到的PixelBin=BinNum×(m/n),通过调整n可控制分配给每个选通的像素的PixelBin(关于PixelBin可参见前述术语七的介绍,此处不再重复赘述)。每个选通的像素能够探测的距离即为该像素可探测的最大距离,或者说,能够探测的距离的极限值称为第一距离,第一距离为C/2×PixelBin×LSB=C/2×Q×T,其中,LSB表示每个Bin的周期,C为光速,Q为选通的像素分配的时间片容器的数量。应理解,m一定的情况下,n越小,为每个像素分配的Q越大,每个选通的像素可探测的距离越大。
当选通系数m=1时,共享第一存储空间的K个像素全部选通,即选通的K个像素占用第一存储空间,即n个像素占用一个存储块,每个像素占用1/n个存储块。可确定每个 选通的像素可被分配到的PixelBin=BinNum×(1/n),即每个选通的像素可探测的最大距离=C/2×PixelBin×LSB=C/2×BinNum×(1/n)×LSB。
当选通系数m=2时,从共享第一存储空间的K个像素中选通K/2个,即选通的K/2个像素占用第一存储空间,n/2个像素占用一个存储块,即每个像素占用2/n个存储块。进一步,每个选通的像素可被分配到的PixelBin=BinNum×(2/n),即每个选通的像素可探测的最大距离=C/2×PixelBin×LSB=C/2×BinNum×(2/n)×LSB。
当选通系数m=4时,从共享第一存储空间的K个像素中选通K/4个,即选通的K/4个像素占用第一存储空间,n/4个像素占用一个存储块,即每个像素占用4/n个存储块。进一步,可选地,每个选通的像素可被分配到的PixelBin=BinNum×(4/n),每个选通的像素可探测的最大距离=C/2×PixelBin×LSB=C/2×BinNum×(4/n)×LSB。
如表1所示,为本申请示例性的示出了m取不同值时,选通的像素数量与每个像素占用的存储块关系。
m的取值 选通的像素数量 每个像素占用的存储块的大小
1 K m/n=1/n
2 K/2 m/n=2/n
4 K/4 m/n=4/n
为了可以充分利用直方图数据存储单元,n的取值可为m的整数倍、K的公约数,且n≤K。
当m取1时,如图7a所示,为本申请提供的一种像素与像素占用的存储块的关系示意图。图7a以第一存储空间由一个直方图数据存储单元提供的示例。在该示例中,还可以进一步对存储块进行划分,即存储块被划分为4子存储块。一个选通的像素占用m/n个存储块,当n=4时,一个选通的像素占用1/4个存储块,即一个选通的像素占用一个子存储块,可通过地址解码器将4个选通的像素分别与一个子存储块接通。
当m取2时,如图7b所示,为本申请提供的一种像素与像素占用的存储块的关系示意图。图7b以第一存储空间由一个直方图数据存储单元提供的示例。当n=4时,一个选通的像素占用m/n=2/4=1/2个存储块,即一个选通的像素占用2个子存储块,可通过地址解码器将每个选通的像素与2个子存储块连接。例如,地址解码器可将存储块1的第一个子存储块与第三个子存储块与一个选通的像素连接,将存储块2的第一个子存储块与第三个子存储块与另一个选通的像素连接。当然,地址解码器可也可将存储块1的第二个子存储块和第四个子存储块与一个像素连接,将存储块2的第二个子存储块与第四个子存储块与另一个选通的像素连接;或者,地址解码器可将存储块1的第一个子存储块与第二个子存储块与一个选通像素连接,将存储块1的第三个子存储块和第四个子存储块与另一个选通的像素连接;或者,地址解码器可将存储块1的第一个子存储块与存储块2的四个子存储块中的任一子存储块与另一个选通的像素连接,将存储块1的第二子存储块与存储块2的四子存储块中的任一子存储块与另一个选通的像素连接;等等。
当m取4时,如图7c所示,为本申请提供的一种像素与像素占用的存储块的关系示意图。图7c以第一存储空间由一个直方图数据存储单元提供的示例。一个选通的像素占用m/n个存储块,当n=4时,一个选通的像素占用m/n=4/4=1个存储块,即一个选通的像素占用一个存储块,可通过地址解码器将该选通的像素分别一个存储块的4个子存储块接通;或者,可通过地址解码器将该选通的像素分别与4个存储块的4个子存储块接通;或者, 可通过地址解码器将该选通的像素分别与2个存储块的每个存储块中的2个子存储块接通;等等。
需要说明的是,上述是以n的取值相同为例进行介绍的,在不同的应用场景中,n的取值也可以是不同的,本申请对此不做限定。另外,m一定的情况下,n越小,每个选通的像素可探测的距离越大。
基于上述选通系数m和占用系统n,示例性地,若LSB=300ps,BinNum=256,表2示例性地的示出了m取1、2和4,且n=4时,每个像素可探测的最大距离和对应的分辨率。
m的取值 每个像素可探测的最大距离 分辨率
1 C/2×PixelBin×LSB=C/2*LSB*64=288cm 320*240
2 C/2×PixelBin×LSB=C/2*LSB*128=576cm 160*120
4 C/2×PixelBin×LSB=C/2*LSB*256=1152cm 80*60
基于上述内容可以看出,通过控制m和n,可以使得相同大小的直方图数据存储单元存储不同数量的像素对应的直方图。当选通的像素数量较少时,每个像素可探测的最大距离比较大,适用于远距离探测。当选通的像素数量较多时,每个像素可探测的最大距离比较小,即适用于近距离探测。进一步,选通的像素数量越多,分辨率也越高。例如,选通的像素数量为320*240,则分辨率为320*240;再比如,选通的像素数量为160*120,则分辨率为160*120;再比如,选通的像素数量为80*60,则分辨率为80*60。也就是说,选通的像素数量较少时,适用于测距范围较大,但分辨率要求较低的场景;选通的像素数量较多时,适用于测距范围较小,但分辨率要求较高的场景。
如下示例性地的示出了像素三种选通方式。
方式一,每个像素均有行使能(X_Enable)控制和列使能(Y_Enable)控制,同时控制行使能和列使能,像素被选通,被选通的像素处于工作状态。
也可以理解为,处理控制单元可通过电信号控制每个像素的行使能和列使能。例如,当向像素的行和列均通入高电平(如1)的电信号,可使得该像素选通;当向像素的行和列中通信的电信号中存在低电平(如0)时,该像素未被选通。
方式二,每个像素有行使能(X_Enable)控制,控制行使能即可选通该像素,被选通的像素处于工作状态。
也可以理解为,处理控制单元可通过电信号控制每个像素的行使能。
方式三,每个像素有列使能(Y_Enable)控制,控制列使能即可选通该像素,被选通的像素处于工作状态。
也可以理解为,处理控制单元可通过电信号控制每个像素的列使能。
下面结合上述三种像素的选通方式,以dTOF传感模组包括的像素阵列为8行8列为例,介绍如何选通像素阵列中像素。
基于上述方式一,每个像素由行使能和列使能共同控制。
结合上述图6a的选通方式,图8a示例性地的示出了一种像素阵列的示意图。该像素阵列中的像素全部被选通。基于选通的像素阵列,可得到的分辨率为8*8(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为320*240)。
需要说明的是,一次选通像素阵列中的全部像素,全部的像素同时工作,该方式也可 称为面扫描方式。面扫描方式可用于对物体或场景的重建,对物体或场景的完整性要求较高。
通过一次选通像素阵列中的全部像素,可以在不损失帧率的情况下实现全FOV覆盖,即一次扫描即可得到全FOV的一帧图像。选通像素阵列中的全部像素,可得到的分辨率较高。
结合上述图6b的选通方式,图8b示例性地的示出了另一种像素阵列的示意图。该像素阵列中一列选通K/2个像素,选通的像素可参见图8b中的阴影部分,基于该选通的像素阵列,可得到的分辨率为4*4(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为160*120)。
结合上述图6c的选通方式,图8c示例性地的示出了另一种像素阵列的示意图。该像素阵列一列选通K/4个像素,选通的像素可参见图8b中的阴影部分。基于该选通的像素阵列,可得到的分辨率为2*2(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为80*60)。
应理解,由于像素阵列中的每个像素需要同时控制行使能和列使能才可被选通,因此,选通一列中的K/m个像素,当m=2时,每间隔一列,选通一列中的K/m个像素。当m=4时,每间隔三列,选通一列中的K/m个像素。
基于上述方式二,每个像素由行使能(X_Enable)控制,可以理解为,每个像素可通过行使能独立控制。
结合上述图6b的选通方式,图8d示例性地的示出了另一种像素阵列的示意图。该像素阵列中一列选通K/2个像素,选通的像素可参见图8d中的阴影部分,基于该选通的像素阵列,可得到的分辨率为8*4(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为320*120)。
结合上述图6c的选通方式,图8f示例性地的示出了另一种像素阵列的示意图。该像素阵列一列选通K/4个像素,选通的像素可参见图8f中的阴影部分。基于该选通的像素阵列,可得到的分辨率为8*2(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为320*60)。
基于上述方式三,每个像素由列使能(X_Enable)控制,可以理解为,每个像素可通过列使能独立控制。
结合上述图6b的选通方式,图8e示例性地的示出了另一种像素阵列的示意图。该像素阵列中一列选通K/2个像素,选通的像素可参见图8e中的阴影部分,基于该选通的像素阵列,可得到的分辨率为4*8(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为160*240)。
结合上述图6c的选通方式,图8g示例性地的示出了另一种像素阵列的示意图。该像素阵列一列选通K/4个像素,选通的像素可参见图8g中的阴影部分。基于该选通的像素阵列,可得到的分辨率为2*8(横向分辨率扩大40倍,纵向分辨率扩大30倍,即可得到分辨率为80*240)。
当像素通过行使能控制或列使能控制实现开关时,可以实现条扫描模式。条扫描模式可用于对目标的探测,比如探测某一区域内是否存在目标,对目标的完整性要求较低。
本申请中,对于m大于1(即N小于K)的场景,dTOF传感模组可以实现远距离探 测,但分辨率比较低,为了实现高分辨率的深度,可通过分时选通全部像素。
在一种可能的实现方式中,可分L次选通全部的W个感光单元,L是根据K和N(N=K/m)确定的。进一步,可选地,L还与每个像素的选通方式相关。
如下,结合上述三种像素的选通方式,示例性地的示出了分时选通全部像素,以实现全分辨率覆盖。
基于上述方式一,同时控制行使能和列使能,像素可被选通。
当m取2时,结合上述图8b,通过分时控制,每次选通1/4的像素,可覆盖1/4的分辨率,分4次选通像素阵列中的全部像素,从而可实现覆盖全分辨率。请参阅图8h,相同的填充表示同一次选通。
应理解,若一次全部选通时的帧率设为16x,则该示例一中,帧率为4x。
当m取4时,结合上述图8c,通过分时控制,每次选通1/16的像素,可覆盖1/16的分辨率,分16次选通像素阵列中的全部像素,从而可覆盖全分辨率。请参阅图8i,相同的填充表示同一次选通。
应理解,若一次全部选通时的帧率设为16x,则该示例二中,帧率为x。
基于上述方式二或方式三,控制行使能或列使能中任一个,像素可被选通。
当m取2时,结合上述图8d或图8e,通过分时控制,每次选通1/2的像素,即每次可覆盖1/2的分辨率,分2次选通像素阵列中的全部像素,从而可实现全分辨率。请参阅图8j或图8k,相同的填充表示同一次选通。
应理解,若一次全部选通时的帧率设为16x,则该示例一中,帧率为2x。
当m取4时,结合上述图8f或图8g,通过分时控制,每次选通1/4的像素,即每次可覆盖1/4的分辨率,分4次选通全部的像素,从而可实现全分辨率。请参阅图8l或图8m,相同的填充表示同一次选通。
需要说明的是,通常,光源阵列中的光源与像素阵列中的像素是一一对应的,即一个像素对应一个光源。若每次选通1/2的像素,可打开(或称为点亮或选通或通电)对应的1/2的光源。若每次选通1/4的像素,可打开对应的1/4的光源。若每次选通1/16的像素,可打开对应的1/16的光源。
在一种可能的实现方式中,光源阵列中的光源可以是垂直腔面发射激光器(vertical cavity surface emitting laser,VCSEL),或边缘发射激光器(edge emitting laser,EEL)。其中,EEL的光源可实现独立寻址,所谓独立寻址是指可独立选通。
基于上述内容和相同的构思,本申请提供一种测距方法,请参阅图9的介绍。该测距方法可应用于上述图2至图8m任一实施例所示的dTOF传感模组。dTOF传感模组包括W个感光单元、H个直方图数据存储单元和处理控制单元,所述W个感光单元中的K个感光单元共享第一存储空间,所述第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小,所述K小于或等于W,W和H均为大于或等于2的整数。
如图9所示,该测距方法包括以下步骤:
步骤901,根据目标分辨率和目标距离,控制选通N个感光单元,为每个选通的感光单元分配Q个时间片容器。
其中,选通的N个感光单元占用第一存储空间,N个感光单元为共享第一存储空间的K个感光单元中的N个,N为小于或等于K的整数,Q为正整数。
在一种可能的实现方式,最多有K个感光单元占用第一存储空间,即在实际使用时,共享第一存储空间的这K个感光单元可能未全部选通,实际是选通的N个感光单元占用第一存储空间,未选通的感光单元并不占用该第一存储空间。应理解,每次选通的感光单元数量为整数,即N为整数。
进一步,可选地,可以是根据目标分辨率和/或目标距离的远近生成第一指令,第一指令用于指示选通N个感光单元。进一步,可以是据目标分辨率和目标距离的远近生成第二指令,第二指令用于指示为每个选通的感光单元分配的时间片容器的数量。应理解,目标分辨率可指需要的分辨率,目标距离可指需要探测的距离。
示例性地,当需要的分辨率(即目标分辨率)较高、需要探测距离(即目标距离)较近时,dTOF传感模组可控制选通的感光单元数量较多,为每个感光单元分配的时间片容器的数量较少;当需要的分辨率(即目标分辨率)较低、需要探测距离(即目标距离)较远时,dTOF传感模组可控制选通的感光单元数量较少,为每个感光单元分配的时间片容器的数量较多。
结合上述表2,若需要的分辨率为320*240,探测距离为288m时,即为目标分辨率较高,探测距离较近;若分辨率为80*60,探测距离为1152m时,即为目标分辨率较低,探测距离较远。
此处,第一存储空间包括M个存储块,可先确定每个选通的感光单元占用的存储块的第一数量;再根据存储块能够存储的时间片容器的数量的和第一数量,为每个选通的感光单元分配Q个时间片容器。
上述步骤901可由处理控制单元执行,具体过程可参见上述相关描述,此处不再重复赘述。
步骤902,根据选通的N个感光单元和每个选通的感光单元被分配Q个时间片容器,在第一模式或第二模式进行距离探测。
此处,所述第一模式对应的选通的感光单元的数量N大于所述第二模式对应的选通的感光单元的数量N;或者,所述第一模式对应的每个感光单元被分配的时间片容器的数量Q小于所述第二模式对应的每个感光单元被分配的时间片容器的数量Q;或者,所述第一模式对应的选通的感光单元的数量N大于所述第二模式对应的选通的感光单元的数量N、且所述第一模式对应的每个感光单元被分配的时间片容器的数量Q小于所述第二模式对应的每个感光单元被分配的时间片容器的数量Q。
通过上述步骤901和步骤902可以看出,可根据目标分辨率和目标距离,控制选通N个感光单元,并为每个选通的感光单元分配Q个时间片容器。可以使得相同大小的直方图数据存储单元存储不同数量的感光单元对应的直方图的数据,从而使dTOF传感模组工作于第一模式或第二模式,以灵活适用于不同的场景。例如,当dTOF传感模组用于高分辨率、探测距离较近的场景时,可控制选通的感光单元数量较多,为每个感光单元分配的时间片容器的数量较少;当dTOF传感模组用于低分辨率、探测距离较远的场景时,可控制选通的感光单元数量较少,为每个感光单元分配的时间片容器的数量较多。
基于上述描述的dTOF传感模组的结构和功能原理,本申请还提供了一种终端设备,该终端设备可包括上述dTOF传感模组和处理器,其中,所述处理器用于对所述dTOF传感模组获取的成像信息进行处理。当然,该终端设备还可包括其它组件,例如存储器、无 线通信装置、传感器、触摸屏和显示屏等。
本申请中,终端设备可以是手机、平板电脑、可穿戴设备(如智能手表)等。该终端设备的示例性实施例包括但不限于搭载
Figure PCTCN2021103517-appb-000005
或者其它操作系统的终端设备。
如图10所示,为本申请实施例的一种终端设备的结构示意图。该终端设备100可包括处理器1001、dTOF传感模组1002和显示屏1003等。应理解,图10所示的硬件结构仅是一个示例。本申请所适用的终端设备可以具有比图10中所示终端设备100更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
其中,处理器1001可以包括一个或多个处理单元。例如:处理器1001可以包括应用处理器(application processor,AP)、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、数字信号处理器(digital signal processor,DSP)、等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
dTOF传感模组1002可参见上述描述,此处不再赘述。
显示屏1003可以用于显示图像等。显示屏1003可以包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED)、柔性发光二极管(flex light-emitting diode,FLED)、Miniled、MicroLed、Micro-oLed、量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端设备100可以包括1个或P个显示屏1003,P为大于1的正整数。
进一步,可选地,上述终端设备中可安装有多个应用,各应用可用于不同的场景,可应用的场景可参见上述七种可能场景的介绍,此处不再重复赘述。
如下以第一应用为例,响应于用户操作,启动该第一应用后,该第一应用可向中间层或控制层发送探测场景的相关参数(例如目标分辨率和目标距离),中间层或控制层可基于探测场景的相关参数,生成第一指令和第二指令,并向dTOF传感模组1002分别发送第一指令和第二指令,dTOF传感模组1002根据接收到的第一指令,选通N个像素;并根据第二指令,为选通的N个像素中的每个像素分配Q个时间片容器。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。可以理解,本申请中,“均匀”不是指绝对的均匀,可以允许有一定工程上的误差。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等是用于区别类似的对 象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种直接飞行时间dTOF传感模组,其特征在于,包括W个感光单元、H个直方图数据存储单元和处理控制单元,所述W个感光单元中的每K个感光单元共享第一存储空间,所述第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小,K小于或等于W,W和H均为大于或等于2的整数;
    所述处理控制单元,用于控制选通N个感光单元,所述N个感光单元占用所述第一存储空间,所述N个感光单元为共享所述第一存储空间的所述K个感光单元中的N个,所述N为小于或等于K的整数;
    所述处理控制单元,还用于为每个选通的感光单元分配Q个时间片容器,所述Q为正整数;
    其中,选通的所述N个感光单元和每个选通的感光单元被分配的所述Q个时间片容器用于所述dTOF传感模组工作于第一模式或第二模式;所述第一模式对应的选通的感光单元的数量N大于所述第二模式对应的选通的感光单元的数量N;和/或,所述第一模式对应的每个感光单元被分配的时间片容器的数量Q小于所述第二模式对应的每个感光单元被分配的时间片容器的数量Q。
  2. 如权利要求1所述的传感模组,其特征在于,所述第一存储空间包括M个存储块,所述M为正整数;
    所述处理控制单元,具体用于:
    确定每个选通的感光单元占用的存储块的第一数量;
    根据所述存储块能够存储的时间片容器的数量和所述第一数量,为每个选通的感光单元分配所述Q个时间片容器。
  3. 如权利要求2所述的传感模组,其特征在于,所述第一数量为
    Figure PCTCN2021103517-appb-100001
    所述
    Figure PCTCN2021103517-appb-100002
    其中,所述F表示所述存储块能够存储的时间片容器的数量。
  4. 如权利要求2或3所述的传感模组,其特征在于,所述存储块用于存储至少一个感光单元在探测第一距离时产生的数据,所述第一距离为所述感光单元能够探测的距离。
  5. 如权利要求4所述的传感模组,其特征在于,所述第一距离为C/2×T×Q;其中,所述C为光速,所述T为所述时间片容器的周期。
  6. 如权利要求1至5任一项所述的传感模组,其特征在于,所述第一存储空间是由所述H个直方图数据存储单元中的一个提供;或者;
    所述第一存储空间由所述H个直方图数据存储单元中的至少两个提供。
  7. 如权利要求1至6任一项所述的传感模组,其特征在于,所述W个感光单元为感光单元阵列;
    所述K个感光单元为所述感光单元阵列中的一列中相邻的K个,或为所述感光单元阵列中的一行中相邻的K个。
  8. 如权利要求1至7任一项所述的传感模组,其特征在于,当所述N小于所述K时,分L次选通所述W个感光单元,所述L是根据所述K和所述N确定的。
  9. 如权利要求1至8任一项所述的传感模组,其特征在于,控制所述N个感光单元中的每个感光单元选通的方式包括以下任一项:
    行使能控制和列使能控制;或者,
    行使能控制;或者,
    列使能控制。
  10. 如权利要求1至9任一项所述的传感模组,其特征在于,所述处理控制单元,具体用于:
    接收第一指令,并根据所述第一指令控制选通所述N个感光单元,所述第一指令是根据目标分辨率确定的;
    接收第二指令,并根据所述第二指令为每个选通的感光单元分配所述Q个时间片容器,所述第二指令是根据所述目标分辨率和目标距离确定的。
  11. 一种终端设备,其特征在于,包括处理器、以及如权利要求1~10任一项所述的直接飞行时间dTOF传感模组,所述处理器用于对所述dTOF传感模组工作于第一模式或第二模式得到的信息进行处理。
  12. 一种测距方法,其特征在于,应用于直接飞行时间dTOF传感模组,所述dTOF传感模组包括W个感光单元、H个直方图数据存储单元和处理控制单元,所述W个感光单元中的K个感光单元共享第一存储空间,所述第一存储空间的大小为一个直方图数据存储单元对应的存储空间的大小,K小于或等于W,W和H均为大于或等于2的整数;
    所述方法包括:
    根据目标分辨率和目标距离,控制选通N个感光单元,并为每个选通的感光单元分配Q个时间片容器,其中,所述N个感光单元占用所述第一存储空间,所述N个感光单元为共享所述第一存储空间的所述K个感光单元中的N个,所述N为小于或等于K的整数,Q为正整数;
    根据选通的所述N个感光单元和每个选通的感光单元被分配所述Q个时间片容器,在第一模式或第二模式进行距离探测;其中,所述第一模式对应的选通的感光单元的数量N大于所述第二模式对应的选通的感光单元的数量N;所述第一模式对应的每个感光单元被分配的时间片容器的数量Q小于所述第二模式对应的每个感光单元被分配的时间片容器的数量Q。
  13. 如权利要求12所述的方法,其特征在于,所述第一存储空间包括M个存储块,所述M为正整数;
    所述为每个选通的感光单元分配Q个时间片容器,包括:
    确定每个选通的感光单元占用的存储块的第一数量;
    根据所述存储块能够存储的时间片容器的数量和所述第一数量,为每个选通的感光单元分配所述Q个时间片容器。
  14. 如权利要求13所述的方法,其特征在于,所述第一数量为
    Figure PCTCN2021103517-appb-100003
    所述
    Figure PCTCN2021103517-appb-100004
    其中,所述F表示所述存储块能够存储的时间片容器的数量。
  15. 如权利要求13或14所述的方法,其特征在于,所述存储块用于存储至少一个感光单元在探测第一距离时产生的数据,所述第一距离为所述感光单元能够探测的距离。
  16. 如权利要求15所述的方法,其特征在于,所述第一距离为C/2×T×Q;其中,所述C为光速,所述T为所述时间片容器的周期。
  17. 如权利要求12至16任一项所述的方法,其特征在于,所述第一存储空间是由所述 H个直方图数据存储单元中的一个提供;或者;
    所述第一存储空间由所述H个直方图数据存储单元中的至少两个提供。
  18. 如权利要求12至17任一项所述的方法,其特征在于,所述W个感光单元为感光单元阵列;
    所述K个感光单元为所述感光单元阵列中的一列中相邻的K个,或为所述感光单元阵列中的一行中相邻的K个。
  19. 如权利要求12至18任一项所述的方法,其特征在于,当所述N小于所述K时,分L次选通所述W个感光单元,所述L是根据所述K和所述N确定的。
  20. 如权利要求12至19任一项所述的方法,其特征在于,控制所述N个感光单元中的每个感光单元选通的方式包括以下任一项:
    行使能控制和列使能控制;或者,
    行使能控制;或者,
    列使能控制。
  21. 如权利要求12至20任一项所述的方法,其特征在于,所述根据目标分辨率和目标距离,控制选通N个感光单元,包括:
    接收第一指令,并根据所述第一指令控制选通所述N个感光单元,所述第一指令是根据目标分辨率确定的;
    接收第二指令,并根据所述第二指令为每个选通的感光单元分配所述Q个时间片容器,所述第二指令是根据所述目标分辨率和目标距离确定的。
  22. 一种终端设备,其特征在于,包括如权利要求1~10任一项所述的直接飞行时间dTOF传感模组、存储器和处理器;
    所述存储器,用于存储程序或指令;
    所述处理器,用于调用所述程序或指令,控制所述dTOF传感模组执行如权利要求12至21任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被终端设备执行时,使得所述终端设备执行如权利要求12至21中任一项所述的方法。
PCT/CN2021/103517 2020-08-31 2021-06-30 一种dTOF传感模组、终端设备及测距方法 WO2022042013A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023513834A JP7450809B2 (ja) 2020-08-31 2021-06-30 Dtof検知モジュール、端末デバイス、および測距方法
KR1020237009873A KR20230053685A (ko) 2020-08-31 2021-06-30 Dtof 감지 모듈, 단말 디바이스, 및 거리 측정 방법
EP21859855.5A EP4194892A4 (en) 2020-08-31 2021-06-30 DTOF DETECTION MODULE, TERMINAL DEVICE AND DISTANCE MEASUREMENT METHOD
US18/174,963 US20230280464A1 (en) 2020-08-31 2023-02-27 Dtof sensing module, terminal device, and ranging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010899620.9 2020-08-31
CN202010899620.9A CN114200479A (zh) 2020-08-31 2020-08-31 一种dTOF传感模组、终端设备及测距方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/174,963 Continuation US20230280464A1 (en) 2020-08-31 2023-02-27 Dtof sensing module, terminal device, and ranging method

Publications (1)

Publication Number Publication Date
WO2022042013A1 true WO2022042013A1 (zh) 2022-03-03

Family

ID=80352557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103517 WO2022042013A1 (zh) 2020-08-31 2021-06-30 一种dTOF传感模组、终端设备及测距方法

Country Status (6)

Country Link
US (1) US20230280464A1 (zh)
EP (1) EP4194892A4 (zh)
JP (1) JP7450809B2 (zh)
KR (1) KR20230053685A (zh)
CN (1) CN114200479A (zh)
WO (1) WO2022042013A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865377B (zh) * 2023-02-16 2023-05-02 长沙驰芯半导体科技有限公司 一种基于时间片的用于超宽带的测距调度方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490506C (zh) * 2000-02-22 2009-05-20 派克西姆公司 采用多次取样通过时间-索引实现宽动态范围的图象传感器
CN102597693A (zh) * 2009-11-13 2012-07-18 富士胶片株式会社 测距装置、测距方法、测距程序及测距系统以及拍摄装置
CN110073244A (zh) * 2016-12-12 2019-07-30 森斯尔科技有限公司 用于确定光子的飞行时间的直方图读出方法和电路
CN110312945A (zh) * 2016-12-30 2019-10-08 爱丁堡大学董事会 光子传感器装置
US20200137373A1 (en) * 2017-04-28 2020-04-30 Sharp Kabushiki Kaisha Three-dimensional image sensor, optical radar apparatus, and processing apparatus
WO2020116039A1 (ja) * 2018-12-03 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 測距装置及び測距方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952323B2 (en) 2014-04-07 2018-04-24 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor
JP6983628B2 (ja) 2017-11-17 2021-12-17 シャープ株式会社 発光素子駆動回路、および携帯型電子機器
JP2020112443A (ja) 2019-01-11 2020-07-27 ソニーセミコンダクタソリューションズ株式会社 距離測定装置及び距離測定方法
CN110596722B (zh) 2019-09-19 2022-10-04 深圳奥锐达科技有限公司 直方图可调的飞行时间距离测量系统及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490506C (zh) * 2000-02-22 2009-05-20 派克西姆公司 采用多次取样通过时间-索引实现宽动态范围的图象传感器
CN102597693A (zh) * 2009-11-13 2012-07-18 富士胶片株式会社 测距装置、测距方法、测距程序及测距系统以及拍摄装置
CN110073244A (zh) * 2016-12-12 2019-07-30 森斯尔科技有限公司 用于确定光子的飞行时间的直方图读出方法和电路
CN110312945A (zh) * 2016-12-30 2019-10-08 爱丁堡大学董事会 光子传感器装置
US20200137373A1 (en) * 2017-04-28 2020-04-30 Sharp Kabushiki Kaisha Three-dimensional image sensor, optical radar apparatus, and processing apparatus
WO2020116039A1 (ja) * 2018-12-03 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 測距装置及び測距方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194892A4 *

Also Published As

Publication number Publication date
US20230280464A1 (en) 2023-09-07
JP7450809B2 (ja) 2024-03-15
CN114200479A (zh) 2022-03-18
KR20230053685A (ko) 2023-04-21
EP4194892A4 (en) 2024-01-24
EP4194892A1 (en) 2023-06-14
JP2023539316A (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
KR102409952B1 (ko) 고해상도, 고프레임률, 저전력 이미지 센서
US10928492B2 (en) Management of histogram memory for a single-photon avalanche diode detector
CN109596091A (zh) 测距传感器
KR20200085297A (ko) 방출기들의 어드레스가능 어레이를 사용하는 비행 시간 감지
EP4034909A1 (en) Strobing flash lidar with full frame utilization
US20210215807A1 (en) Pipelined histogram pixel
JP2021520498A (ja) Lidar測定システムのセンサ素子の制御方法
US20230280464A1 (en) Dtof sensing module, terminal device, and ranging method
CN112292610A (zh) 执行测量过程的方法
WO2023284318A1 (zh) 激光雷达的探测方法、发射单元以及激光雷达
US20230324522A1 (en) Clocked active quench/recharge and gain cell memory pixel
WO2022110947A1 (zh) 电子装置的控制方法、电子装置及计算机可读存储介质
EP4070125A1 (en) Time of flight sensing method
US11815393B2 (en) Image sensor including photodiode array comprising a first transistor coupled to a photodiode to receive a column enable signal and a second transistor coupled to the photodiode to receive a column disable signal
CN112105944A (zh) 具有使用短脉冲和长脉冲的多模式操作的光学测距系统
WO2023278547A1 (en) Highly parallel large memory histogramming pixel for direct time of flight lidar
US20210223372A1 (en) Lidar system with dynamic resolution
WO2023061386A1 (zh) 激光雷达、接收系统、发射系统以及控制方法
US11849229B2 (en) Image capturing apparatus having photon detection and control method therefor
US20230262360A1 (en) Photoelectric conversion apparatus, control method of photoelectric conversion apparatus, program storage medium, and image capturing apparatus
JP2023174180A (ja) 距離画像生成装置及び距離画像生成方法
US20220236387A1 (en) Time of flight sensing
JP2023172507A (ja) 測距装置
JP2024038655A (ja) 光電変換装置
CN113296103A (zh) 一种飞行时间测量方法和飞行时间传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513834

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021859855

Country of ref document: EP

Effective date: 20230306

ENP Entry into the national phase

Ref document number: 20237009873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE