WO2022041756A1 - 一种平衡检测辅助站立轮椅及方法 - Google Patents

一种平衡检测辅助站立轮椅及方法 Download PDF

Info

Publication number
WO2022041756A1
WO2022041756A1 PCT/CN2021/087023 CN2021087023W WO2022041756A1 WO 2022041756 A1 WO2022041756 A1 WO 2022041756A1 CN 2021087023 W CN2021087023 W CN 2021087023W WO 2022041756 A1 WO2022041756 A1 WO 2022041756A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
resistor
wheelchair
sound wave
standing
Prior art date
Application number
PCT/CN2021/087023
Other languages
English (en)
French (fr)
Inventor
莫军
吴静海
Original Assignee
南京汉尔斯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京汉尔斯生物科技有限公司 filed Critical 南京汉尔斯生物科技有限公司
Publication of WO2022041756A1 publication Critical patent/WO2022041756A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/14Standing-up or sitting-down aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining unbalance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only

Definitions

  • the invention relates to a balance detection auxiliary standing wheelchair and a method, and belongs to the field of sound wave detection.
  • assisted standing wheelchairs There are many assisted standing wheelchairs on the market. They can not only be used as wheelchairs to help some elderly people and people with handicapped legs and feet to move, but also can be used to assist standing. Users with inconvenient legs and feet need to pass through some special areas. help. Assisted standing wheelchairs are used by some patients who have injured legs and feet and need rehabilitation. At present, China's rehabilitation training is still in its infancy, and many people do not pay enough attention to it. However, with the development of the economy and medical level, the gap in the market will be getting bigger. Such dual-purpose assisted standing wheelchairs will be more and more in demand in the market.
  • assisted standing wheelchair When the assisted standing wheelchair is used in a standing position, due to user habits and structural design problems, it will cause an unbalanced state in long-term use, that is, one side is lower than the other side. This situation will bring safety hazards to the user, and also It will be detrimental to rehabilitation due to uneven stress.
  • the current assisted standing wheelchair does not take into account coping methods.
  • a balance detection assisting standing wheelchair and method are provided to solve the above problems.
  • a balance detection auxiliary standing wheelchair comprising a sound wave ranging unit, a standing adjustment unit, a balance judgment unit and a signal transmission unit;
  • the sonic ranging unit including the sonic transmitter set at the same level of the wheelchair seat cushion, emits sonic waves to the ground, the sonic receiver is connected to the sonic transmitter, receives the sonic waves reflected from the ground, and calculates the height of the sonic transmitter from the ground;
  • the standing adjustment unit including the sound wave receiver set at the same level of the wheel axis of the wheelchair, receives the sound wave emitted by the sound wave transmitter, and calculates the distance between the sound wave transmitter and the sound wave transmitter;
  • the balance judgment unit judges the balance of the wheelchair according to the distance between the wheelchair cushion and the ground;
  • Signal transmission unit output signal to the set smart terminal.
  • the acoustic wave ranging unit further includes an acoustic wave transmitting circuit, including a capacitor C1, a capacitor C2, a capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, a capacitor C8, a capacitor C9, and a capacitor C10 , capacitor C11, resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, diode D1, transistor Q1, transistor Q2, inductor L1 and inductor L2;
  • an acoustic wave transmitting circuit including a capacitor C1, a capacitor C2, a capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, a capacitor C8, a capacitor C9, and a capacitor C10 , capacitor C11, resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, diode D1, transistor Q1, transistor Q2, inductor L1 and in
  • One end of the capacitor C1 is respectively connected to one end of the capacitor C2 and one end of the resistor R1, the other end of the capacitor C2 is grounded, and the other end of the resistor R1 is connected to one end of the resistor R2 and one end of the resistor R1 respectively.
  • One end of the capacitor C3 and one end of the resistor R3 are connected to the base of the transistor Q1, the other end of the capacitor C3 is grounded, and the other end of the resistor R2 is connected to one end of the inductor L1 and the resistor R5.
  • One end of the inductor L2, one end of the capacitor C10 and one end of the capacitor C11 are all connected to the power supply voltage, the other end of the capacitor C10 is grounded, the other end of the capacitor C11 is grounded, and the resistor R3
  • the other end of the diode D1 is connected to the anode of the diode D1, the cathode of the diode D1 is grounded, the collector of the transistor Q1 is connected to the other end of the inductor L1 and one end of the capacitor C4, respectively.
  • the emitter is respectively connected to one end of the resistor R4, the other end of the capacitor C4, one end of the capacitor C5 and one end of the capacitor C6, the other end of the resistor R4 is grounded, and the other end of the capacitor C5 Grounding, the other end of the capacitor C6 is respectively connected to the other end of the resistor R5, one end of the resistor R6 and the base of the transistor Q2, the other end of the resistor R6 is grounded, and the collector of the transistor Q2
  • the electrodes are respectively connected to the other end of the inductor L2 and one end of the capacitor C8, the other end of the capacitor C8 and one end of the capacitor C9 are both connected to the acoustic wave emission output signal, and the other end of the capacitor C9 is grounded, so the The emitter of the transistor Q2 is respectively connected to one end of the resistor R7 and one end of the capacitor C7, the other end of the resistor R7 is grounded, and the other end of the capacitor C7 is grounded.
  • the standing adjustment unit further includes a sound wave receiving circuit, including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, a transistor Q4, a transistor Q5, Resistor R8, Resistor R9, Resistor R10, Resistor R11, Resistor R12, Resistor R13, Resistor R14, Resistor R15, Resistor R16, Potentiometer RV1, Rheostat VR1, Op-amp U1:A, Op-amp U1:B, Diode D2 and Diode D3;
  • a sound wave receiving circuit including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, a transistor Q4, a transistor Q5, Resistor R8, Resistor R9, Resistor R10, Resistor R11, Res
  • the emitter of the triode Q3 is connected to one end of the resistor R8, the other end of the resistor R8 is grounded, and the collector of the triode Q3 is respectively connected to one end of the inductor L3 and one end of the capacitor C12, so The base of the transistor Q3 is respectively connected with the other end of the capacitor C12 and the third pin of the potentiometer RV1, the second pin of the potentiometer RV1 is grounded, and the first pin of the potentiometer RV1 Connect to one end of the resistor R9, and the other end of the resistor R9 is connected to one end of the resistor R10, one end of the capacitor C13, one end of the resistor R11, one end of the capacitor C15 and the other end of the resistor R13.
  • One end is connected to the power supply voltage, the other end of the capacitor C15 is grounded, the other end of the resistor R10 is respectively connected to the other end of the inductor L3, the other end of the capacitor C13 and one end of the capacitor C14, the The other end of the capacitor C14 is respectively connected to the other end of the resistor R12 and the base of the transistor Q4, and the emitter of the transistor Q4 is grounded to one end of the capacitor C16 and one end of the resistor R14.
  • the collector of the transistor Q4 is respectively connected with the other end of the resistor R12, the other end of the resistor R11, the other end of the capacitor C16, the inverting input end of the operational amplifier U1:A and the operational amplifier U1 :
  • the non-inverting input terminal of B is connected, the non-inverting input terminal of the operational amplifier U1:A is respectively connected to the other end of the resistor R13 and one end of the varistor VR1, and the inverting input terminal of the operational amplifier U1:B is respectively is connected to the other end of the resistor R14 and the other end of the varistor VR1,
  • the output end of the operational amplifier U1:A is connected to the anode of the diode D2
  • the output end of the operational amplifier U1:B is connected to the
  • the anode of the diode D3 is connected, the cathode of the diode D2 is respectively connected to the cathode of the diode D3, one end of the resistor R15, and one end
  • the emitter of the transistor Q5 is connected, the other end of the resistor R16 is connected to the other end of the capacitor C17 and the base of the transistor Q5, and the collector of the transistor Q5 is connected to the acoustic wave to receive the output signal.
  • the stance adjustment unit including the sound wave receiver, is arranged at the same level of the wheel axle center of the wheelchair, and receives the sound wave emitted by the sound wave transmitter of the sound wave ranging unit.
  • the wheelchair changes from the seat state In the standing assist state, the distance between the sound wave transmitter and the sound wave receiver on the wheel axis is increased, and the increased distance is set as the safe range for wheelchair standing adjustment.
  • the signal transmission unit further includes a WiFi module and a Bluetooth module. After establishing a connection with the intelligent terminal, the intelligent terminal can be bound, and data is transmitted to the intelligent terminal through network signals or Bluetooth.
  • the signal sending unit further includes a WiFi module, which sends a signal to the set intelligent terminal through the network after obtaining the judgment that the wheelchair is in an unbalanced state.
  • a balance detection method for an assisted standing wheelchair which is judged by accumulating data, and the specific steps include:
  • Step 1 Download the APP on the smart terminal to bind the assisted standing wheelchair, and establish a connection between the smart terminal and the assisted standing wheelchair;
  • Step 2 When the assisted standing wheelchair is converted into a standing state, the height of the seat cushion detected by the sound wave transmitter and sound wave receiver at the seat cushion of the wheelchair increases, judges that the wheelchair enters the standing state, and starts balance detection;
  • Step 3 Compare the detected standing heights on both sides of the seat cushion through the sound wave receivers on the wheel axles on both sides of the assisted standing wheelchair;
  • Step 4 When it is detected for seven consecutive days that there is a height difference on both sides of the assisted standing wheelchair, and the height of one side is greater than the other side, it is judged that the assisted standing wheelchair is in an unbalanced state;
  • Step 5 Send the unbalanced signal of the assisted standing wheelchair to the bound smart terminal.
  • the invention judges whether the assisted standing wheelchair is out of balance in the standing state through sound wave distance measurement; avoids misjudgment by setting the detection safety range; and uses long-term data accumulation as the judgment basis, and the result is more accurate.
  • FIG. 1 is a system block diagram of the balance detection assisting standing wheelchair of the present invention.
  • FIG. 2 is a schematic diagram of the acoustic wave transmitting circuit of the present invention.
  • FIG. 3 is a schematic diagram of the acoustic wave receiving circuit of the present invention.
  • the assisted standing wheelchair may appear unbalanced in the standing state, that is, there is a height difference between the two sides of the wheelchair, the height difference of the device is difficult to detect with the naked eye, and the user cannot accurately feel it.
  • a balance detection system has been added to the assisted standing wheelchair.
  • a balance detection auxiliary standing wheelchair includes a sound wave ranging unit, a standing adjustment unit, a balance judgment unit and a signal transmission unit;
  • the sonic ranging unit including the sonic transmitter set at the same level of the wheelchair seat cushion, emits sonic waves to the ground, the sonic receiver is connected to the sonic transmitter, receives the sonic waves reflected from the ground, and calculates the height of the sonic transmitter from the ground;
  • the standing adjustment unit including the sound wave receiver set at the same level of the wheel axis of the wheelchair, receives the sound wave emitted by the sound wave transmitter, and calculates the distance between the sound wave transmitter and the sound wave transmitter;
  • the balance judgment unit judges the balance of the wheelchair according to the distance between the wheelchair cushion and the ground;
  • Signal transmission unit output signal to the set smart terminal.
  • the sound wave transmitter installed at the seat of the wheelchair transmits the sound wave
  • the sound wave receiver receives the sound wave to obtain the propagation time of the sound wave in the air.
  • the acoustic wave ranging unit further includes an acoustic wave transmitting circuit, including a capacitor C1, a capacitor C2, a capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8. , capacitor C9, capacitor C10, capacitor C11, resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, diode D1, transistor Q1, transistor Q2, inductor L1 and inductor L2;
  • One end of the capacitor C1 is respectively connected to one end of the capacitor C2 and one end of the resistor R1, the other end of the capacitor C2 is grounded, and the other end of the resistor R1 is connected to one end of the resistor R2 and one end of the resistor R1 respectively.
  • One end of the capacitor C3 and one end of the resistor R3 are connected to the base of the transistor Q1, the other end of the capacitor C3 is grounded, and the other end of the resistor R2 is connected to one end of the inductor L1 and the resistor R5.
  • One end of the inductor L2, one end of the capacitor C10 and one end of the capacitor C11 are all connected to the power supply voltage, the other end of the capacitor C10 is grounded, the other end of the capacitor C11 is grounded, and the resistor R3
  • the other end of the diode D1 is connected to the anode of the diode D1, the cathode of the diode D1 is grounded, the collector of the transistor Q1 is connected to the other end of the inductor L1 and one end of the capacitor C4, respectively.
  • the emitter is respectively connected to one end of the resistor R4, the other end of the capacitor C4, one end of the capacitor C5 and one end of the capacitor C6, the other end of the resistor R4 is grounded, and the other end of the capacitor C5 Grounding, the other end of the capacitor C6 is respectively connected to the other end of the resistor R5, one end of the resistor R6 and the base of the transistor Q2, the other end of the resistor R6 is grounded, and the collector of the transistor Q2
  • the electrodes are respectively connected to the other end of the inductor L2 and one end of the capacitor C8, the other end of the capacitor C8 and one end of the capacitor C9 are both connected to the acoustic wave emission output signal, and the other end of the capacitor C9 is grounded, so the The emitter of the transistor Q2 is respectively connected to one end of the resistor R7 and one end of the capacitor C7, the other end of the resistor R7 is grounded, and the other end of the capacitor C7 is grounded.
  • the use of infrared ranging was originally considered.
  • infrared ranging is prone to misjudgment, which will cause too many factors, so it is changed to acoustic ranging, and the detection results are accurate and the misjudgment rate is low.
  • the frequency is changed by using a modulating signal to change the base bias of the transistor Q1 and the transistor Q2 so as to change the inter-electrode capacitance.
  • the capacities of the capacitor C4 and the capacitor C5 are reduced.
  • the inductance of the inductor L1 is set to 0.3 ⁇ H.
  • the standing adjustment unit further includes a sound wave receiving circuit, including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, Transistor Q4, Transistor Q5, Resistor R8, Resistor R9, Resistor R10, Resistor R11, Resistor R12, Resistor R13, Resistor R14, Resistor R15, Resistor R16, Potentiometer RV1, Rheostat VR1, Operational Amplifier U1:A, Operational Amplifier U1: B, diode D2 and diode D3;
  • a sound wave receiving circuit including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, Transistor Q4, Transistor Q5, Resistor R8, Resistor R9, Resistor R10
  • the emitter of the triode Q3 is connected to one end of the resistor R8, the other end of the resistor R8 is grounded, and the collector of the triode Q3 is respectively connected to one end of the inductor L3 and one end of the capacitor C12, so The base of the transistor Q3 is respectively connected with the other end of the capacitor C12 and the third pin of the potentiometer RV1, the second pin of the potentiometer RV1 is grounded, and the first pin of the potentiometer RV1 Connect to one end of the resistor R9, and the other end of the resistor R9 is connected to one end of the resistor R10, one end of the capacitor C13, one end of the resistor R11, one end of the capacitor C15 and the other end of the resistor R13.
  • One end is connected to the power supply voltage, the other end of the capacitor C15 is grounded, the other end of the resistor R10 is respectively connected to the other end of the inductor L3, the other end of the capacitor C13 and one end of the capacitor C14, the The other end of the capacitor C14 is respectively connected to the other end of the resistor R12 and the base of the transistor Q4, and the emitter of the transistor Q4 is grounded to one end of the capacitor C16 and one end of the resistor R14.
  • the collector of the transistor Q4 is respectively connected with the other end of the resistor R12, the other end of the resistor R11, the other end of the capacitor C16, the inverting input end of the operational amplifier U1:A and the operational amplifier U1 :
  • the non-inverting input terminal of B is connected, the non-inverting input terminal of the operational amplifier U1:A is respectively connected to the other end of the resistor R13 and one end of the varistor VR1, and the inverting input terminal of the operational amplifier U1:B is respectively is connected to the other end of the resistor R14 and the other end of the varistor VR1,
  • the output end of the operational amplifier U1:A is connected to the anode of the diode D2
  • the output end of the operational amplifier U1:B is connected to the
  • the anode of the diode D3 is connected, the cathode of the diode D2 is respectively connected to the cathode of the diode D3, one end of the resistor R15, and one end
  • the emitter of the transistor Q5 is connected, the other end of the resistor R16 is connected to the other end of the capacitor C17 and the base of the transistor Q5, and the collector of the transistor Q5 is connected to the acoustic wave to receive the output signal.
  • the triode Q3 generates self-excited oscillation under the action of the positive feedback of the capacitor C12.
  • the emitted sound wave changes the amplitude and frequency of the self-excited oscillation of the triode Q3, these changes are caused by the
  • the integrating circuit composed of the resistor R10 and the capacitor C14 becomes a voltage that fluctuates with the movement of the object.
  • a voltage change of 2.5-6.7V can be generated on the collector of the transistor Q4.
  • This changed voltage is sent to the double-limited voltage comparator composed of the operational amplifier U1:A and the operational amplifier U1:B, whether the collector of the transistor Q4 is sent to the operational amplifier U1:A
  • the potential of the inverting input terminal is lower than the non-inverting input terminal of the operational amplifier U1:A, or the potential of the collector of the transistor Q4 sent to the non-inverting input terminal of the operational amplifier U1:B is higher than that of the operational amplifier U1:B
  • the inverting input terminal of , the output terminal of the operational amplifier U1:A and the output terminal of the operational amplifier U1:B will output a high level, and the two high levels are passed through the diode D2 and the diode D3 respectively. After rectification, it is added to the base of the transistor Q5 to make it conduct.
  • the sound wave transmitter is arranged on both sides of the seat cushion of the standing assist wheelchair.
  • the sound wave emitted by the sound wave transmitter is received by the sound wave receiver located at the center of the wheel axle of the standing assist wheelchair. to get the height data on both sides of the assisted standing wheelchair.
  • the height data on both sides are compared and recorded, the comparison data accumulated in seven consecutive days is used as the basis, individual deviation data is excluded, and the conclusion that one side is higher than the other side in the standing state of the assisted standing wheelchair is obtained. After that, send an unbalanced signal to the bound smart terminal to make a prompt.
  • a balance detection auxiliary standing wheelchair includes a sound wave ranging unit, a standing adjustment unit, a balance judgment unit and a signal transmission unit;
  • the sonic ranging unit including the sonic transmitter set at the same level of the wheelchair seat cushion, emits sonic waves to the ground, the sonic receiver is connected to the sonic transmitter, receives the sonic waves reflected from the ground, and calculates the height of the sonic transmitter from the ground;
  • the standing adjustment unit including the sound wave receiver set at the same level of the wheel axis of the wheelchair, receives the sound wave emitted by the sound wave transmitter, and calculates the distance between the sound wave transmitter and the sound wave transmitter;
  • the balance judgment unit judges the balance of the wheelchair according to the distance between the wheelchair cushion and the ground;
  • Signal transmission unit output signal to the set smart terminal.
  • the sound wave transmitter installed at the seat of the wheelchair transmits the sound wave
  • the sound wave receiver receives the sound wave to obtain the propagation time of the sound wave in the air.
  • the acoustic wave ranging unit further includes an acoustic wave transmitting circuit, including a capacitor C1, a capacitor C2, a capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, and a capacitor C8. , capacitor C9, capacitor C10, capacitor C11, resistor R1, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, resistor R7, diode D1, transistor Q1, transistor Q2, inductor L1 and inductor L2;
  • One end of the capacitor C1 is respectively connected to one end of the capacitor C2 and one end of the resistor R1, the other end of the capacitor C2 is grounded, and the other end of the resistor R1 is connected to one end of the resistor R2 and one end of the resistor R1 respectively.
  • One end of the capacitor C3 and one end of the resistor R3 are connected to the base of the transistor Q1, the other end of the capacitor C3 is grounded, and the other end of the resistor R2 is connected to one end of the inductor L1 and the resistor R5.
  • One end of the inductor L2, one end of the capacitor C10 and one end of the capacitor C11 are all connected to the power supply voltage, the other end of the capacitor C10 is grounded, the other end of the capacitor C11 is grounded, and the resistor R3
  • the other end of the diode D1 is connected to the anode of the diode D1, the cathode of the diode D1 is grounded, the collector of the transistor Q1 is connected to the other end of the inductor L1 and one end of the capacitor C4, respectively.
  • the emitter is respectively connected to one end of the resistor R4, the other end of the capacitor C4, one end of the capacitor C5 and one end of the capacitor C6, the other end of the resistor R4 is grounded, and the other end of the capacitor C5 Grounding, the other end of the capacitor C6 is respectively connected to the other end of the resistor R5, one end of the resistor R6 and the base of the transistor Q2, the other end of the resistor R6 is grounded, and the collector of the transistor Q2
  • the electrodes are respectively connected to the other end of the inductor L2 and one end of the capacitor C8, the other end of the capacitor C8 and one end of the capacitor C9 are both connected to the acoustic wave emission output signal, and the other end of the capacitor C9 is grounded, so the The emitter of the transistor Q2 is respectively connected to one end of the resistor R7 and one end of the capacitor C7, the other end of the resistor R7 is grounded, and the other end of the capacitor C7 is grounded.
  • the use of infrared ranging was originally considered.
  • infrared ranging is prone to misjudgment, which will cause too many factors, so it is changed to acoustic ranging, and the detection results are accurate and the misjudgment rate is low.
  • the frequency is changed by using a modulating signal to change the base bias of the transistor Q1 and the transistor Q2 so as to change the inter-electrode capacitance.
  • the capacities of the capacitor C4 and the capacitor C5 are reduced.
  • the inductance of the inductor L1 is set to 0.3 ⁇ H.
  • the standing adjustment unit further includes a sound wave receiving circuit, including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, Transistor Q4, Transistor Q5, Resistor R8, Resistor R9, Resistor R10, Resistor R11, Resistor R12, Resistor R13, Resistor R14, Resistor R15, Resistor R16, Potentiometer RV1, Rheostat VR1, Operational Amplifier U1:A, Operational Amplifier U1: B, diode D2 and diode D3;
  • a sound wave receiving circuit including an inductor L3, a capacitor C12, a capacitor C13, a capacitor C14, a capacitor C15, a capacitor C16, a capacitor C17, a transistor Q3, Transistor Q4, Transistor Q5, Resistor R8, Resistor R9, Resistor R10
  • the emitter of the triode Q3 is connected to one end of the resistor R8, the other end of the resistor R8 is grounded, and the collector of the triode Q3 is respectively connected to one end of the inductor L3 and one end of the capacitor C12, so The base of the transistor Q3 is respectively connected with the other end of the capacitor C12 and the third pin of the potentiometer RV1, the second pin of the potentiometer RV1 is grounded, and the first pin of the potentiometer RV1 Connect to one end of the resistor R9, and the other end of the resistor R9 is connected to one end of the resistor R10, one end of the capacitor C13, one end of the resistor R11, one end of the capacitor C15 and the other end of the resistor R13.
  • One end is connected to the power supply voltage, the other end of the capacitor C15 is grounded, the other end of the resistor R10 is respectively connected to the other end of the inductor L3, the other end of the capacitor C13 and one end of the capacitor C14, the The other end of the capacitor C14 is respectively connected to the other end of the resistor R12 and the base of the transistor Q4, and the emitter of the transistor Q4 is grounded to one end of the capacitor C16 and one end of the resistor R14.
  • the collector of the transistor Q4 is respectively connected with the other end of the resistor R12, the other end of the resistor R11, the other end of the capacitor C16, the inverting input end of the operational amplifier U1:A and the operational amplifier U1 :
  • the non-inverting input terminal of B is connected, the non-inverting input terminal of the operational amplifier U1:A is respectively connected to the other end of the resistor R13 and one end of the varistor VR1, and the inverting input terminal of the operational amplifier U1:B is respectively is connected to the other end of the resistor R14 and the other end of the varistor VR1,
  • the output end of the operational amplifier U1:A is connected to the anode of the diode D2
  • the output end of the operational amplifier U1:B is connected to the
  • the anode of the diode D3 is connected, the cathode of the diode D2 is respectively connected to the cathode of the diode D3, one end of the resistor R15, and one end
  • the emitter of the transistor Q5 is connected, the other end of the resistor R16 is connected to the other end of the capacitor C17 and the base of the transistor Q5, and the collector of the transistor Q5 is connected to the acoustic wave to receive the output signal.
  • the triode Q3 generates self-excited oscillation under the action of the positive feedback of the capacitor C12.
  • the emitted sound wave changes the amplitude and frequency of the self-excited oscillation of the triode Q3, these changes are caused by the
  • the integrating circuit composed of the resistor R10 and the capacitor C14 becomes a voltage that fluctuates with the movement of the object.
  • a voltage change of 2.5-6.7V can be generated on the collector of the transistor Q4.
  • This changed voltage is sent to the double-limited voltage comparator composed of the operational amplifier U1:A and the operational amplifier U1:B, whether the collector of the transistor Q4 is sent to the operational amplifier U1:A
  • the potential of the inverting input terminal is lower than the non-inverting input terminal of the operational amplifier U1:A, or the potential of the collector of the transistor Q4 sent to the non-inverting input terminal of the operational amplifier U1:B is higher than that of the operational amplifier U1:B
  • the inverting input terminal of , the output terminal of the operational amplifier U1:A and the output terminal of the operational amplifier U1:B will output a high level, and the two high levels are passed through the diode D2 and the diode D3 respectively. After rectification, it is added to the base of the transistor Q5 to make it conduct.
  • the sound wave transmitter is arranged on both sides of the seat cushion of the standing assist wheelchair.
  • the sound wave emitted by the sound wave transmitter is received by the sound wave receiver located at the center of the wheel axle of the standing assist wheelchair. to get the height data on both sides of the assisted standing wheelchair.
  • the sound wave receiver of the standing adjustment unit is arranged at the same level of the wheelchair wheel axis, and receives the sound wave emitted by the sound wave transmitter of the sound wave ranging unit.
  • the distance between the sound wave transmitter and the sound wave receiver on the wheel axis increases. Because the assisted standing wheelchair is adjusted to the standing state, the increased height of the seat cushion is fixed, so the increased distance is set as the safe range of the wheelchair standing adjustment. This can then be used as a criterion to verify that the wheelchair is fully deployed.
  • the height data on both sides are compared and recorded, the comparison data accumulated in seven consecutive days is used as the basis, individual deviation data is excluded, and the conclusion that one side is higher than the other side in the standing state of the assisted standing wheelchair is obtained. After that, send an unbalanced signal to the bound smart terminal to make a prompt.
  • the signal sending unit after obtaining the judgment that the wheelchair is in an unbalanced state, connects to the network through the WiFi module to send the unbalanced state signal.
  • a balance detection method for an assisted standing wheelchair which is judged by accumulating data, and the specific steps include:
  • Step 1 Download the APP on the smart terminal to bind the assisted standing wheelchair, and establish a connection between the smart terminal and the assisted standing wheelchair;
  • Step 2 When the assisted standing wheelchair is converted into a standing state, the height of the seat cushion detected by the sound wave transmitter and sound wave receiver at the seat cushion of the wheelchair increases, judges that the wheelchair enters the standing state, and starts balance detection;
  • Step 3 Compare the detected standing heights on both sides of the seat cushion through the sound wave receivers on the wheel axles on both sides of the assisted standing wheelchair;
  • Step 4 When it is detected for seven consecutive days that there is a height difference on both sides of the assisted standing wheelchair, and the height of one side is greater than the other side, it is judged that the assisted standing wheelchair is in an unbalanced state;
  • Step 5 Send the unbalanced signal of the assisted standing wheelchair to the bound smart terminal.
  • the present invention has the following advantages:

Abstract

一种平衡检测辅助站立轮椅及方法,包括声波测距单元、站立调节单元、平衡判断单元和信号传输单元;声波测距单元,包括声波发射器,设置在轮椅坐垫位置同一水平高度,向地面发射声波,声波接收器与声波发射器连接,接收地面反射的声波,计算声波发射器离地高度;站立调节单元,包括声波接收器,设置在轮椅车轮轴心同一水平高度,接收声波发射器发射的声波,计算声波发射器与声波接收器的距离;平衡判断单元,根据轮椅坐垫距离地面距离判断轮椅平衡;信号传输单元,输出信号到设定好的智能终端。通过声波检测轮椅坐垫各个方向离地高度判断轮椅平衡,得到更准确的平衡检测结果,增设的声波接收器确保不会因为轮椅站立调节而误判。

Description

一种平衡检测辅助站立轮椅及方法 技术领域
本发明涉及平衡检测辅助站立轮椅及方法,属于声波检测领域。
背景技术
现在市面上的存在很多辅助站立轮椅,不仅可以作为轮椅使用,帮助一些老年人、腿脚有障碍的人行动,还可以用于辅助站立,在腿脚不便的使用者需要通过一些特殊区域时有很大帮助。辅助站立轮椅辅助一些腿脚受伤需要复健回复的病人使用,现在中国对于复健康复训练还处于起步阶段,很多人对此不够重视,但随着经济和医疗水平发展,市场上这方面的缺口会越来越大。这样两用的辅助站立轮椅在市面上的需求也会越来越多。
辅助站立轮椅在站立使用时,会因为使用者习惯和结构设计问题,导致在长期使用中造成处于失衡状态,即一侧低于另一侧,这种状况会对使用者带来安全隐患,也会因为受力不均不利于复健。而目前的辅助站立轮椅没有考虑到应对方法。
技术问题
提供一种平衡检测辅助站立轮椅及方法,以解决上述问题。
技术解决方案
一种平衡检测辅助站立轮椅,包括声波测距单元、站立调节单元、平衡判断单元和信号传输单元;
声波测距单元,包括声波发射器设置在轮椅坐垫位置同一水平高度,向地面发射声波,声波接收器与声波发射器连接,接收地面反射的声波,计算声波发射器离地高度;
站立调节单元,包括声波接收器设置在轮椅车轮轴心同一水平高度,接收声波发射器发射的声波,计算声波发射器与声波发射器的距离;
平衡判断单元,根据轮椅坐垫距离地面距离判断轮椅平衡;
信号传输单元,输出信号到设定好的智能终端。
根据本发明的一个方面,所述声波测距单元,还包括声波发射电路,包括电容C1、电容C2、电容C3、电容C4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电容C11、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、二极管D1、三极管Q1、三极管Q2、电感L1和电感L2;
所述电容C1的一端分别与所述电容C2的一端、所述电阻R1的一端连接,所述电容C2的另一端接地,所述电阻R1的另一端与分别与所述电阻R2的一端、所述电容C3的一端、所述电阻R3的一端和所述三极管Q1的基极连接,所述电容C3的另一端接地,所述电阻R2的另一端与所述电感L1的一端、所述电阻R5的一端、所述电感L2的一端、所述电容C10的一端和所述电容C11的一端均接电源电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述电阻R3的另一端与所述二极管D1的正极连接,所述二极管D1的负极接地,所述三极管Q1的集电极分别与所述电感L1的另一端、所述电容C4的一端连接,所述三极管Q1的发射极分别与所述电阻R4的一端、所述电容C4的另一端、所述电容C5的一端和所述电容C6的一端连接,所述电阻R4的另一端接地,所述电容C5的另一端接地,所述电容C6的另一端分别与所述电阻R5的另一端、所述电阻R6的一端和所述三极管Q2的基极连接,所述电阻R6的另一端接地,所述三极管Q2的集电极分别与所述电感L2的另一端、所述电容C8的一端连接,所述电容C8的另一端与所述电容C9的一端均接声波发射输出信号,所述电容C9的另一端接地,所述三极管Q2的发射极分别与所述电阻R7的一端、所述电容C7的一端连接,所述电阻R7的另一端接地,所述电容C7的另一另端接地。
根据本发明的一个方面,所述站立调节单元,还包括声波接收电路,包括电感L3、电容C12、电容C13、电容C14、电容C15、电容C16、电容C17、三极管Q3、三极管Q4、三极管Q5、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电位器RV1、变阻器VR1、运算放大器U1:A、运算放大器U1:B、二极管D2和二极管D3;
所述三极管Q3的发射极与所述电阻R8的一端连接,所述电阻R8的另一端接地,所述三极管Q3的集电极分别与所述电感L3的一端、所述电容C12的一端连接,所述三极管Q3的基极分别与所述电容C12的另一端、所述电位器RV1的第3引脚连接,所述电位器RV1的第2引脚接地,所述电位器RV1的第1引脚与所述电阻R9的一端连接,所述电阻R9的另一端与所述电阻R10的一端、所述电容C13的一端、所述电阻R11的一端、所述电容C15的一端和所述电阻R13的一端均接电源电压,所述电容C15的另一端接地,所述电阻R10的另一端分别与所述电感L3的另一端、所述电容C13的另一端和所述电容C14的一端连接,所述电容C14的另一端分别与所述电阻R12的另一端、所述三极管Q4的基极连接,、所述三极管Q4的发射极与所述电容C16的一端、所述电阻R14的一端均接地,所述三极管Q4的集电极分别与所述电阻R12的另一端、所述电阻R11的另一端、所述电容C16的另一端、所述运算放大器U1:A的反相输入端和所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:A的同相输入端分别与所述电阻R13的另一端、所述变阻器VR1的一端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R14的另一端、所述变阻器VR1的另一端连接,所述运算放大器U1:A的输出端与所述二极管D2的正极连接,所述运算放大器U1:B的输出端与所述二极管D3的正极连接,所述二极管D2的负极分别与所述二极管D3的负极、所述电阻R15的一端、所述电阻R16的一端连接,所述电阻R15的另一端与所述电容C17的一端、所述三极管Q5的发射极连接,所述电阻R16的另一端分别与所述电容C17的另一端、所述三极管Q5的基极连接,所述三极管Q5的集电极接声波接收输出信号。
根据本发明的一个方面,所述站立调节单元,包括声波接收器,设置在轮椅车轮轴心同一水平高度,接收所述声波测距单元的声波发射器发射的声波,当轮椅从座椅状态改变为站立辅助状态时,声波发射器与车轮轴心的声波接收器之间的距离增加,将增加的距离设为轮椅站立调节的安全范围。
根据本发明的一个方面,所述信号传输单元还包括WiFi模块、蓝牙模块,与智能终端建立连接后即可绑定智能终端,通过网络信号或蓝牙传输数据到智能终端。
根据本发明的一个方面,所述信号发送单元还包括WiFi模块,得到轮椅处于非平衡状态的判断后,通过网络发送信号到设定的智能终端。
一种辅助站立轮椅的平衡检测方法,通过积累数据进行判断,具体步骤包括:
步骤1、在智能终端上下载APP绑定该辅助站立轮椅,将智能终端与该辅助站立轮椅建立连接;
步骤2、当该辅助站立轮椅转换成站立状态时,轮椅坐垫处的声波发射器、声波接收器检测到的坐垫高度增加,判断轮椅进入站立状态,开始平衡检测;
步骤3、通过该辅助站立轮椅两侧车轮轴心的声波接收器将检测到的坐垫两侧站立高度进行比较;
步骤4、当连续七天检测到该辅助站立轮椅两侧出现高度差,且均为一侧高度大于另一侧,判断该辅助站立轮椅处于非平衡状态;
步骤5、将该辅助站立轮椅的失衡信号发送到绑定的智能终端。
有益效果
本发明通过声波测距判断辅助站立轮椅在站立状态是否失去平衡;通过设置检测安全范围避免了误判;通过长期数据积累作为判断依据,结果更准确。
附图说明
图1是本发明的平衡检测辅助站立轮椅的系统框图。
图2是本发明的声波发射电路的原理图。
图3是本发明的声波接收电路的原理图。
本发明的实施方式
实施例1
辅助站立轮椅在站立状态下有可能出现失衡状态,即轮椅两侧出现高度差,装置高度差距肉眼难以察觉,使用者也不能准确感觉到。为了解决此问题在辅助站立轮椅上增加了平衡检测系统。
如图1所示,在该实施例中,一种平衡检测辅助站立轮椅,包括声波测距单元、站立调节单元、平衡判断单元和信号传输单元;
声波测距单元,包括声波发射器设置在轮椅坐垫位置同一水平高度,向地面发射声波,声波接收器与声波发射器连接,接收地面反射的声波,计算声波发射器离地高度;
站立调节单元,包括声波接收器设置在轮椅车轮轴心同一水平高度,接收声波发射器发射的声波,计算声波发射器与声波发射器的距离;
平衡判断单元,根据轮椅坐垫距离地面距离判断轮椅平衡;
信号传输单元,输出信号到设定好的智能终端。
在进一步的实施例中,安装在轮椅坐垫位置的声波发射器发射声波,声波接收器接收声波,得到声波在空气中传播的时间。
如图2所示,在进一步的实施例中,所述声波测距单元,还包括声波发射电路,包括电容C1、电容C2、电容C3、电容C4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电容C11、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、二极管D1、三极管Q1、三极管Q2、电感L1和电感L2;
所述电容C1的一端分别与所述电容C2的一端、所述电阻R1的一端连接,所述电容C2的另一端接地,所述电阻R1的另一端与分别与所述电阻R2的一端、所述电容C3的一端、所述电阻R3的一端和所述三极管Q1的基极连接,所述电容C3的另一端接地,所述电阻R2的另一端与所述电感L1的一端、所述电阻R5的一端、所述电感L2的一端、所述电容C10的一端和所述电容C11的一端均接电源电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述电阻R3的另一端与所述二极管D1的正极连接,所述二极管D1的负极接地,所述三极管Q1的集电极分别与所述电感L1的另一端、所述电容C4的一端连接,所述三极管Q1的发射极分别与所述电阻R4的一端、所述电容C4的另一端、所述电容C5的一端和所述电容C6的一端连接,所述电阻R4的另一端接地,所述电容C5的另一端接地,所述电容C6的另一端分别与所述电阻R5的另一端、所述电阻R6的一端和所述三极管Q2的基极连接,所述电阻R6的另一端接地,所述三极管Q2的集电极分别与所述电感L2的另一端、所述电容C8的一端连接,所述电容C8的另一端与所述电容C9的一端均接声波发射输出信号,所述电容C9的另一端接地,所述三极管Q2的发射极分别与所述电阻R7的一端、所述电容C7的一端连接,所述电阻R7的另一端接地,所述电容C7的另一另端接地。
在此实施例中,因为要检测高度差,所以原本考虑使用红外测距。但实际实验中红外测距容易出现误判,会造成影响的因素太多,于是改为声波测距,检测结果精准,误判率低。采用调制信号改变所述三极管Q1、所述三极管Q2的基极偏置从而改变极间电容的方法来改变频率的。为了得到较大的频率偏移,减小所述电容C4和所述电容C5的容量。将所述电感L1的电感量设置为0.3μH,因受到所述三极管Q1的极司电容或寄生电容的影响,采用空心线圈,并调节线间松紧程度以获得最佳的电感量,通过所述三极管Q2输出级减少阻抗变化对振荡电路的影响。
如图3所示,在进一步的实施例中,所述站立调节单元,还包括声波接收电路,包括电感L3、电容C12、电容C13、电容C14、电容C15、电容C16、电容C17、三极管Q3、三极管Q4、三极管Q5、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电位器RV1、变阻器VR1、运算放大器U1:A、运算放大器U1:B、二极管D2和二极管D3;
所述三极管Q3的发射极与所述电阻R8的一端连接,所述电阻R8的另一端接地,所述三极管Q3的集电极分别与所述电感L3的一端、所述电容C12的一端连接,所述三极管Q3的基极分别与所述电容C12的另一端、所述电位器RV1的第3引脚连接,所述电位器RV1的第2引脚接地,所述电位器RV1的第1引脚与所述电阻R9的一端连接,所述电阻R9的另一端与所述电阻R10的一端、所述电容C13的一端、所述电阻R11的一端、所述电容C15的一端和所述电阻R13的一端均接电源电压,所述电容C15的另一端接地,所述电阻R10的另一端分别与所述电感L3的另一端、所述电容C13的另一端和所述电容C14的一端连接,所述电容C14的另一端分别与所述电阻R12的另一端、所述三极管Q4的基极连接,、所述三极管Q4的发射极与所述电容C16的一端、所述电阻R14的一端均接地,所述三极管Q4的集电极分别与所述电阻R12的另一端、所述电阻R11的另一端、所述电容C16的另一端、所述运算放大器U1:A的反相输入端和所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:A的同相输入端分别与所述电阻R13的另一端、所述变阻器VR1的一端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R14的另一端、所述变阻器VR1的另一端连接,所述运算放大器U1:A的输出端与所述二极管D2的正极连接,所述运算放大器U1:B的输出端与所述二极管D3的正极连接,所述二极管D2的负极分别与所述二极管D3的负极、所述电阻R15的一端、所述电阻R16的一端连接,所述电阻R15的另一端与所述电容C17的一端、所述三极管Q5的发射极连接,所述电阻R16的另一端分别与所述电容C17的另一端、所述三极管Q5的基极连接,所述三极管Q5的集电极接声波接收输出信号。
在此实施例中,所述三极管Q3在所述电容C12的正反馈作用下产生自激振荡,当发射的声波使所述三极管Q3自激振荡的幅度和频率发生变化,这些变化经过由所述电阻R10、所述电容C14组成的积分电路变成随物体移动而波动的电压,该电压经所述三极管Q4放大后可以在所述三极管Q4的集电极上产生2.5~6.7V的电压变化。这个变化的电压被送至由所述运算放大器U1:A、所述运算放大器U1:B组成的双限电压比较器,无论是所述三极管Q4的集电极送至所述运算放大器U1:A的反相输入端的电位低于所述运算放大器U1:A的同相输入端,还是所述三极管Q4的集电极送至所述运算放大器U1:B的同相输入端的电位高于所述运算放大器U1:B的反相输入端,所述运算放大器U1:A的输出端与所述运算放大器U1:B的输出端都会输出高电平,这两个高电平分别经所述二极管D2、所述二极管D3整流后加在所述三极管Q5的基极使之导通。
在进一步的实施例中,声波发射器设置在该辅助站立轮椅的坐垫两侧,当辅助站立轮椅处于站立状态后,声波发射器发射的声波被位于辅助站立轮椅的车轮车轴中心的声波接收器接收,得到辅助站立轮椅两侧的高度数据。
在进一步的实施例中,将两侧高度数据进行比较并记录,将连续七天中积累的比较数据作为基础,排除掉个别偏差数据,得到辅助站立轮椅站立状态下一侧高于另一侧的结论后,发出失衡信号到绑定的智能终端,做出提示。
实施例2
在辅助站立轮椅伸展到站立状态的过程中可能出现使用不当使得辅助站立轮椅没有完全展开,在这种情况下导致声波测距会出现误判。为了解决这个问题设置声波测距的安全范围。
如图1所示,在该实施例中,一种平衡检测辅助站立轮椅,包括声波测距单元、站立调节单元、平衡判断单元和信号传输单元;
声波测距单元,包括声波发射器设置在轮椅坐垫位置同一水平高度,向地面发射声波,声波接收器与声波发射器连接,接收地面反射的声波,计算声波发射器离地高度;
站立调节单元,包括声波接收器设置在轮椅车轮轴心同一水平高度,接收声波发射器发射的声波,计算声波发射器与声波发射器的距离;
平衡判断单元,根据轮椅坐垫距离地面距离判断轮椅平衡;
信号传输单元,输出信号到设定好的智能终端。
在进一步的实施例中,安装在轮椅坐垫位置的声波发射器发射声波,声波接收器接收声波,得到声波在空气中传播的时间。
如图2所示,在进一步的实施例中,所述声波测距单元,还包括声波发射电路,包括电容C1、电容C2、电容C3、电容C4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电容C11、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、二极管D1、三极管Q1、三极管Q2、电感L1和电感L2;
所述电容C1的一端分别与所述电容C2的一端、所述电阻R1的一端连接,所述电容C2的另一端接地,所述电阻R1的另一端与分别与所述电阻R2的一端、所述电容C3的一端、所述电阻R3的一端和所述三极管Q1的基极连接,所述电容C3的另一端接地,所述电阻R2的另一端与所述电感L1的一端、所述电阻R5的一端、所述电感L2的一端、所述电容C10的一端和所述电容C11的一端均接电源电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述电阻R3的另一端与所述二极管D1的正极连接,所述二极管D1的负极接地,所述三极管Q1的集电极分别与所述电感L1的另一端、所述电容C4的一端连接,所述三极管Q1的发射极分别与所述电阻R4的一端、所述电容C4的另一端、所述电容C5的一端和所述电容C6的一端连接,所述电阻R4的另一端接地,所述电容C5的另一端接地,所述电容C6的另一端分别与所述电阻R5的另一端、所述电阻R6的一端和所述三极管Q2的基极连接,所述电阻R6的另一端接地,所述三极管Q2的集电极分别与所述电感L2的另一端、所述电容C8的一端连接,所述电容C8的另一端与所述电容C9的一端均接声波发射输出信号,所述电容C9的另一端接地,所述三极管Q2的发射极分别与所述电阻R7的一端、所述电容C7的一端连接,所述电阻R7的另一端接地,所述电容C7的另一另端接地。
在此实施例中,因为要检测高度差,所以原本考虑使用红外测距。但实际实验中红外测距容易出现误判,会造成影响的因素太多,于是改为声波测距,检测结果精准,误判率低。采用调制信号改变所述三极管Q1、所述三极管Q2的基极偏置从而改变极间电容的方法来改变频率的。为了得到较大的频率偏移,减小所述电容C4和所述电容C5的容量。将所述电感L1的电感量设置为0.3μH,因受到所述三极管Q1的极司电容或寄生电容的影响,采用空心线圈,并调节线间松紧程度以获得最佳的电感量,通过所述三极管Q2输出级减少阻抗变化对振荡电路的影响。
如图3所示,在进一步的实施例中,所述站立调节单元,还包括声波接收电路,包括电感L3、电容C12、电容C13、电容C14、电容C15、电容C16、电容C17、三极管Q3、三极管Q4、三极管Q5、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电位器RV1、变阻器VR1、运算放大器U1:A、运算放大器U1:B、二极管D2和二极管D3;
所述三极管Q3的发射极与所述电阻R8的一端连接,所述电阻R8的另一端接地,所述三极管Q3的集电极分别与所述电感L3的一端、所述电容C12的一端连接,所述三极管Q3的基极分别与所述电容C12的另一端、所述电位器RV1的第3引脚连接,所述电位器RV1的第2引脚接地,所述电位器RV1的第1引脚与所述电阻R9的一端连接,所述电阻R9的另一端与所述电阻R10的一端、所述电容C13的一端、所述电阻R11的一端、所述电容C15的一端和所述电阻R13的一端均接电源电压,所述电容C15的另一端接地,所述电阻R10的另一端分别与所述电感L3的另一端、所述电容C13的另一端和所述电容C14的一端连接,所述电容C14的另一端分别与所述电阻R12的另一端、所述三极管Q4的基极连接,、所述三极管Q4的发射极与所述电容C16的一端、所述电阻R14的一端均接地,所述三极管Q4的集电极分别与所述电阻R12的另一端、所述电阻R11的另一端、所述电容C16的另一端、所述运算放大器U1:A的反相输入端和所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:A的同相输入端分别与所述电阻R13的另一端、所述变阻器VR1的一端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R14的另一端、所述变阻器VR1的另一端连接,所述运算放大器U1:A的输出端与所述二极管D2的正极连接,所述运算放大器U1:B的输出端与所述二极管D3的正极连接,所述二极管D2的负极分别与所述二极管D3的负极、所述电阻R15的一端、所述电阻R16的一端连接,所述电阻R15的另一端与所述电容C17的一端、所述三极管Q5的发射极连接,所述电阻R16的另一端分别与所述电容C17的另一端、所述三极管Q5的基极连接,所述三极管Q5的集电极接声波接收输出信号。
在此实施例中,所述三极管Q3在所述电容C12的正反馈作用下产生自激振荡,当发射的声波使所述三极管Q3自激振荡的幅度和频率发生变化,这些变化经过由所述电阻R10、所述电容C14组成的积分电路变成随物体移动而波动的电压,该电压经所述三极管Q4放大后可以在所述三极管Q4的集电极上产生2.5~6.7V的电压变化。这个变化的电压被送至由所述运算放大器U1:A、所述运算放大器U1:B组成的双限电压比较器,无论是所述三极管Q4的集电极送至所述运算放大器U1:A的反相输入端的电位低于所述运算放大器U1:A的同相输入端,还是所述三极管Q4的集电极送至所述运算放大器U1:B的同相输入端的电位高于所述运算放大器U1:B的反相输入端,所述运算放大器U1:A的输出端与所述运算放大器U1:B的输出端都会输出高电平,这两个高电平分别经所述二极管D2、所述二极管D3整流后加在所述三极管Q5的基极使之导通。
在进一步的实施例中,声波发射器设置在该辅助站立轮椅的坐垫两侧,当辅助站立轮椅处于站立状态后,声波发射器发射的声波被位于辅助站立轮椅的车轮车轴中心的声波接收器接收,得到辅助站立轮椅两侧的高度数据。
根据本发明的一个方面,所述站立调节单元的声波接收器设置在轮椅车轮轴心同一水平高度,接收所述声波测距单元的声波发射器发射的声波,当轮椅从座椅状态改变为站立辅助状态时,声波发射器与车轮轴心的声波接收器之间的距离增加,因为辅助站立轮椅调整为站立状态下,坐垫增加的高度固定,所以将增加的距离设为轮椅站立调节的安全范围后可以作为标准验证轮椅是否完全展开。
在进一步的实施例中,将两侧高度数据进行比较并记录,将连续七天中积累的比较数据作为基础,排除掉个别偏差数据,得到辅助站立轮椅站立状态下一侧高于另一侧的结论后,发出失衡信号到绑定的智能终端,做出提示。
在进一步的实施例中,得到轮椅处于非平衡状态的判断后,所述信号发送单元通过WiFi模块连接网络将非平衡状态的信号发送。
一种辅助站立轮椅的平衡检测方法,通过积累数据进行判断,具体步骤包括:
步骤1、在智能终端上下载APP绑定该辅助站立轮椅,将智能终端与该辅助站立轮椅建立连接;
步骤2、当该辅助站立轮椅转换成站立状态时,轮椅坐垫处的声波发射器、声波接收器检测到的坐垫高度增加,判断轮椅进入站立状态,开始平衡检测;
步骤3、通过该辅助站立轮椅两侧车轮轴心的声波接收器将检测到的坐垫两侧站立高度进行比较;
步骤4、当连续七天检测到该辅助站立轮椅两侧出现高度差,且均为一侧高度大于另一侧,判断该辅助站立轮椅处于非平衡状态;
步骤5、将该辅助站立轮椅的失衡信号发送到绑定的智能终端。
总之,本发明具有以下优点:
1、通过安装同水平高度的声波发射器、声波接收器检测是否有温差来判断轮椅平衡状态,不会因长期使用导致失准;
2、使用声波检测周围的温差,避免了红外检测可能会受到周围热源干扰的问题,得到更准确的平衡检测结果。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,用于通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (7)

  1. 一种平衡检测辅助站立轮椅,其特征在于,包括声波测距单元、站立调节单元、平衡判断单元和信号传输单元;
    声波测距单元,包括声波发射器设置在轮椅坐垫位置同一水平高度,向地面发射声波,声波接收器与声波发射器连接,接收地面反射的声波,计算声波发射器离地高度;
    站立调节单元,包括声波接收器设置在轮椅车轮轴心同一水平高度,接收声波发射器发射的声波,计算声波发射器与声波发射器的距离;
    平衡判断单元,根据轮椅坐垫距离地面距离判断轮椅平衡;
    信号传输单元,输出信号到设定好的智能终端。
  2. 根据权利要求1所述的一种平衡检测辅助站立轮椅,其特征在于,所述声波测距单元,还包括声波发射电路,包括电容C1、电容C2、电容C3、电容C4、电容C5、电容C6、电容C7、电容C8、电容C9、电容C10、电容C11、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、二极管D1、三极管Q1、三极管Q2、电感L1和电感L2;
    所述电容C1的一端分别与所述电容C2的一端、所述电阻R1的一端连接,所述电容C2的另一端接地,所述电阻R1的另一端与分别与所述电阻R2的一端、所述电容C3的一端、所述电阻R3的一端和所述三极管Q1的基极连接,所述电容C3的另一端接地,所述电阻R2的另一端与所述电感L1的一端、所述电阻R5的一端、所述电感L2的一端、所述电容C10的一端和所述电容C11的一端均接电源电压,所述电容C10的另一端接地,所述电容C11的另一端接地,所述电阻R3的另一端与所述二极管D1的正极连接,所述二极管D1的负极接地,所述三极管Q1的集电极分别与所述电感L1的另一端、所述电容C4的一端连接,所述三极管Q1的发射极分别与所述电阻R4的一端、所述电容C4的另一端、所述电容C5的一端和所述电容C6的一端连接,所述电阻R4的另一端接地,所述电容C5的另一端接地,所述电容C6的另一端分别与所述电阻R5的另一端、所述电阻R6的一端和所述三极管Q2的基极连接,所述电阻R6的另一端接地,所述三极管Q2的集电极分别与所述电感L2的另一端、所述电容C8的一端连接,所述电容C8的另一端与所述电容C9的一端均接声波发射输出信号,所述电容C9的另一端接地,所述三极管Q2的发射极分别与所述电阻R7的一端、所述电容C7的一端连接,所述电阻R7的另一端接地,所述电容C7的另一另端接地。
  3. 根据权利要求1所述的一种平衡检测辅助站立轮椅,其特征在于,所述站立调节单元,还包括声波接收电路,包括电感L3、电容C12、电容C13、电容C14、电容C15、电容C16、电容C17、三极管Q3、三极管Q4、三极管Q5、电阻R8、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电位器RV1、变阻器VR1、运算放大器U1:A、运算放大器U1:B、二极管D2和二极管D3;
    所述三极管Q3的发射极与所述电阻R8的一端连接,所述电阻R8的另一端接地,所述三极管Q3的集电极分别与所述电感L3的一端、所述电容C12的一端连接,所述三极管Q3的基极分别与所述电容C12的另一端、所述电位器RV1的第3引脚连接,所述电位器RV1的第2引脚接地,所述电位器RV1的第1引脚与所述电阻R9的一端连接,所述电阻R9的另一端与所述电阻R10的一端、所述电容C13的一端、所述电阻R11的一端、所述电容C15的一端和所述电阻R13的一端均接电源电压,所述电容C15的另一端接地,所述电阻R10的另一端分别与所述电感L3的另一端、所述电容C13的另一端和所述电容C14的一端连接,所述电容C14的另一端分别与所述电阻R12的另一端、所述三极管Q4的基极连接,、所述三极管Q4的发射极与所述电容C16的一端、所述电阻R14的一端均接地,所述三极管Q4的集电极分别与所述电阻R12的另一端、所述电阻R11的另一端、所述电容C16的另一端、所述运算放大器U1:A的反相输入端和所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:A的同相输入端分别与所述电阻R13的另一端、所述变阻器VR1的一端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R14的另一端、所述变阻器VR1的另一端连接,所述运算放大器U1:A的输出端与所述二极管D2的正极连接,所述运算放大器U1:B的输出端与所述二极管D3的正极连接,所述二极管D2的负极分别与所述二极管D3的负极、所述电阻R15的一端、所述电阻R16的一端连接,所述电阻R15的另一端与所述电容C17的一端、所述三极管Q5的发射极连接,所述电阻R16的另一端分别与所述电容C17的另一端、所述三极管Q5的基极连接,所述三极管Q5的集电极接声波接收输出信号。
  4. 根据权利要求1所述的一种平衡检测辅助站立轮椅,其特征在于,所述站立调节单元,包括声波接收器,设置在轮椅车轮轴心同一水平高度,接收所述声波测距单元的声波发射器发射的声波,当轮椅从座椅状态改变为站立辅助状态时,声波发射器与车轮轴心的声波接收器之间的距离增加,将增加的距离设为轮椅站立调节的安全范围。
  5. 根据权利要求1所述的一种平衡检测辅助站立轮椅,其特征在于,还包括平衡判断单元,根据检测轮椅两侧车轮上的声波接收器接收到的声波信号计算轮椅两侧车轮轴心与座椅两侧的距离,比较两侧距离差判断辅助站立轮椅是否平衡。
  6. 根据权利要求1所述的一种平衡检测辅助站立轮椅,其特征在于,所述信号传输单元还包括WiFi模块、蓝牙模块,与智能终端建立连接后即可绑定智能终端,通过网络信号或蓝牙传输数据到智能终端。
  7. 一种辅助站立轮椅的平衡检测方法,其特征在于,通过积累数据进行判断,具体步骤包括:
    步骤1、在智能终端上下载APP绑定该辅助站立轮椅,将智能终端与该辅助站立轮椅建立连接;
    步骤2、当该辅助站立轮椅转换成站立状态时,轮椅坐垫处的声波发射器、声波接收器检测到的坐垫高度增加,判断轮椅进入站立状态,开始平衡检测;
    步骤3、通过该辅助站立轮椅两侧车轮轴心的声波接收器将检测到的坐垫两侧站立高度进行比较;
    步骤4、当连续七天检测到该辅助站立轮椅两侧出现高度差,且均为一侧高度大于另一侧,判断该辅助站立轮椅处于非平衡状态;
    步骤5、将该辅助站立轮椅的失衡信号发送到绑定的智能终端。
PCT/CN2021/087023 2020-08-26 2021-04-13 一种平衡检测辅助站立轮椅及方法 WO2022041756A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010866758.9 2020-08-26
CN202010866758.9A CN112043512A (zh) 2020-08-26 2020-08-26 一种平衡检测辅助站立轮椅及方法

Publications (1)

Publication Number Publication Date
WO2022041756A1 true WO2022041756A1 (zh) 2022-03-03

Family

ID=73600098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087023 WO2022041756A1 (zh) 2020-08-26 2021-04-13 一种平衡检测辅助站立轮椅及方法

Country Status (2)

Country Link
CN (1) CN112043512A (zh)
WO (1) WO2022041756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043512A (zh) * 2020-08-26 2020-12-08 南京汉尔斯生物科技有限公司 一种平衡检测辅助站立轮椅及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117288A (ja) * 1994-10-25 1996-05-14 Uchie Kk リクライニング式車いす
CN105796255A (zh) * 2016-01-29 2016-07-27 北京动力京工科技有限公司 一种智能康复训练电动轮椅
CN106038106A (zh) * 2016-06-24 2016-10-26 张学海 基于激光测距的爬楼轮椅控制系统及方法
CN106859875A (zh) * 2017-03-12 2017-06-20 深圳市上羽科技有限公司 一种可检测病人摔倒并自动警报定位的电动轮椅
CN209166379U (zh) * 2018-11-27 2019-07-26 哈尔滨理工大学 用于平衡检测功能的轮椅体
CN210277525U (zh) * 2019-04-18 2020-04-10 河北化工医药职业技术学院 集成有助行器的智能康复轮椅
CN210277526U (zh) * 2019-04-18 2020-04-10 河北化工医药职业技术学院 智能助行轮椅
CN112043512A (zh) * 2020-08-26 2020-12-08 南京汉尔斯生物科技有限公司 一种平衡检测辅助站立轮椅及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2159921A1 (en) * 1995-09-18 1997-03-19 David Harding Cushion element for use in a wheelchair
CN201654232U (zh) * 2010-04-30 2010-11-24 浙江天煌科技实业有限公司 一种智能超声波测距传感器
JP5773718B2 (ja) * 2011-04-11 2015-09-02 富士機械製造株式会社 立ち上がり動作アシストロボット
CN104000697A (zh) * 2014-05-08 2014-08-27 河南科技大学 一种自平衡轮椅结构
CN104000693A (zh) * 2014-05-08 2014-08-27 河南科技大学 一种全自动轮椅及控制方法
CN205964328U (zh) * 2016-02-18 2017-02-22 深圳市迈康信医用机器人有限公司 具有故障指示灯的电动轮椅
CN205849672U (zh) * 2016-05-16 2017-01-04 西安科技大学 一种轮椅控制装置
CN106546988A (zh) * 2016-12-09 2017-03-29 李�诚 超声波测量距离突变报警装置
CN107049718B (zh) * 2017-05-11 2020-02-21 英华达(上海)科技有限公司 避障装置
CN107902554B (zh) * 2017-10-12 2019-03-26 淮阴工学院 吊具精准定位系统的定位算法
KR102275618B1 (ko) * 2019-01-29 2021-07-13 엘지전자 주식회사 전동 휠체어 및 그 제어방법
CN110522574A (zh) * 2019-09-05 2019-12-03 张铸 智能辅助站立装置及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117288A (ja) * 1994-10-25 1996-05-14 Uchie Kk リクライニング式車いす
CN105796255A (zh) * 2016-01-29 2016-07-27 北京动力京工科技有限公司 一种智能康复训练电动轮椅
CN106038106A (zh) * 2016-06-24 2016-10-26 张学海 基于激光测距的爬楼轮椅控制系统及方法
CN106859875A (zh) * 2017-03-12 2017-06-20 深圳市上羽科技有限公司 一种可检测病人摔倒并自动警报定位的电动轮椅
CN209166379U (zh) * 2018-11-27 2019-07-26 哈尔滨理工大学 用于平衡检测功能的轮椅体
CN210277525U (zh) * 2019-04-18 2020-04-10 河北化工医药职业技术学院 集成有助行器的智能康复轮椅
CN210277526U (zh) * 2019-04-18 2020-04-10 河北化工医药职业技术学院 智能助行轮椅
CN112043512A (zh) * 2020-08-26 2020-12-08 南京汉尔斯生物科技有限公司 一种平衡检测辅助站立轮椅及方法

Also Published As

Publication number Publication date
CN112043512A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022041756A1 (zh) 一种平衡检测辅助站立轮椅及方法
EP0474542B1 (en) Apparatus and method for recognizing carpets and stairs of cleaning robot
CN106685029A (zh) 一种无线充电装置及其金属异物检测方法
US20120191014A1 (en) Method and system for measuring chest parameters, especially during cpr
US8326572B2 (en) Apparatus and method for measuring length of pipe
JPS63501066A (ja) タイヤで測定された2つの変数の値をコーデイングする回路
EP1783514A1 (en) Device and method for acoustically measuring distance
US9973024B2 (en) Method for detecting change in load during wireless charging and wireless power transmitter thereof
CN105852836A (zh) 一种血压测量方法以及智能血压计
CN106768086A (zh) 一种室内空气检测系统
CN104771174A (zh) 一种站姿身高测量装置及测量方法
US20200247251A1 (en) Intelligent power wireless charging system for electric wheelchairs
CN212515015U (zh) 超声波测距传感器
CN209789864U (zh) 坐位体前屈式体测装置
CN204215053U (zh) 一种预埋线管探测器
CN115871738A (zh) 一种计轴和断轨检测一体化传感器结构及使用方法
KR920007588B1 (ko) 자동주행청소기의 카페트 및 계단감지장치 및 방법
CN210604999U (zh) 一种燃气pe探测定位设备
TWI759972B (zh) 無線功率傳輸系統之快速異物檢測方法與相關之無線功率發送模組
CN103876779A (zh) 智能身高测量仪
CN105286836A (zh) 一种智能家用电子血压计
CN112033565A (zh) 一种基于声波测温的平衡检测轮椅及方法
CN112197872B (zh) 一种单杠稳定检测装置及方法
CN204500770U (zh) 一种超声波身高测量仪
JP3013236B2 (ja) 検電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859605

Country of ref document: EP

Kind code of ref document: A1