WO2022041477A1 - 基于倏逝波耦合方式的波导集成光电探测器 - Google Patents

基于倏逝波耦合方式的波导集成光电探测器 Download PDF

Info

Publication number
WO2022041477A1
WO2022041477A1 PCT/CN2020/126257 CN2020126257W WO2022041477A1 WO 2022041477 A1 WO2022041477 A1 WO 2022041477A1 CN 2020126257 W CN2020126257 W CN 2020126257W WO 2022041477 A1 WO2022041477 A1 WO 2022041477A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
absorbing layer
evanescent wave
light
wave coupling
Prior art date
Application number
PCT/CN2020/126257
Other languages
English (en)
French (fr)
Inventor
朱宇鹏
徐珍珠
高旭东
崇毓华
梅理
曹继明
Original Assignee
中国电子科技集团公司第三十八研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第三十八研究所 filed Critical 中国电子科技集团公司第三十八研究所
Publication of WO2022041477A1 publication Critical patent/WO2022041477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Definitions

  • the invention relates to the technical field of integrated optoelectronics, in particular to a waveguide integrated photodetector based on an evanescent wave coupling method.
  • Photodetectors use the internal photoelectric effect for photodetection.
  • the waveguide integrated photodetector based on the evanescent wave coupling method mainly adopts the waveguide coupling method, which is divided into two types: butt coupling and evanescent wave coupling.
  • Evanescent wave coupling is to place a waveguide on top or below the detector, so that the transmission of incident light through the waveguide couples into the detector in the form of an evanescent wave.
  • FIG. 1 The cross-sectional doping of a conventional waveguide-integrated photodetector based on evanescent wave coupling is shown in Figure 1, including waveguide, light absorbing layer, cathode, anode and wrapping layer, low-concentration P+ doped region, and high-concentration P++ doped region , high-concentration N++ doped area; wherein, the anode is arranged on the high-concentration P++ doped area; the cathode is arranged on the high-concentration N++ doped area; the light absorbing layer is arranged on the low-concentration P+ doped area; Part, the anode except the top part, the waveguide, the light absorption layer, the low-concentration P+ doping region, the high-concentration P++ doping region, and the high-concentration N++ doping region are wrapped.
  • the photoelectric conversion capabilities of the germanium light absorbing layer of the conventional evanescent-wave coupling-based waveguide integrated photodetector for light absorption efficiency, photo-generated current, and responsivity are not high enough to meet the growing demand.
  • the present invention provides a waveguide integrated photodetector based on evanescent wave coupling mode, which solves the problem of low photoelectric conversion capability of conventional waveguide integrated photodetector based on evanescent wave coupling mode.
  • a waveguide-integrated photodetector based on evanescent wave coupling comprising: a waveguide, a light absorbing layer, a cathode, an anode and a wrapping layer;
  • the waveguide is a ridge waveguide
  • the light absorbing layer is distributed in a semi-surrounding manner to the ridge portion of the ridge waveguide.
  • the waveguide is provided with a first doped region at a position in contact with the light absorbing layer, and is provided with a second doped region and a third doped region on both sides of the first doped region.
  • the light absorption layer includes a fourth doped region disposed at the top.
  • the first doping region is doped with low concentration P+
  • the second doping region is doped with high concentration N++
  • the third doping region is doped with high concentration P++
  • the second doping region is doped with high concentration P++
  • the doped region is connected to the cathode, and the third doped region is connected to the anode.
  • the first doping region is doped with low concentration P+
  • the second doping region and the third doping region are both doped with high concentration P++
  • the fourth doping region is doped with high concentration N++
  • the second doping region and the third doping region are respectively connected to one anode
  • the fourth doping region is connected to the cathode.
  • the waveguide is a silicon waveguide
  • the light absorbing layer is a germanium light absorbing layer
  • the wrapping layer is silicon dioxide.
  • the cathode and the anode are loaded with a reverse bias voltage.
  • the waveguide-integrated photodetector is also suitable for silicon-based derivative materials, III-V group or organic polymer material systems.
  • the thickest part of the waveguide is 220 nm or 250 nm.
  • the width of the ridge portion of the waveguide does not exceed 1 um.
  • the invention provides a waveguide integrated photodetector based on evanescent wave coupling mode. Compared with the prior art, it has the following beneficial effects:
  • the ridge waveguide transmits the light field
  • the light field is mainly concentrated near the central body of the ridge waveguide; the ridge part of the ridge waveguide is semi-surrounded by the light absorbing layer, and the light absorbing layer can absorb the top and two sides of the silicon ridge waveguide.
  • the optical signal transmitted by the side contact surface is efficiently absorbed.
  • the light absorption efficiency of the light absorbing layer in the embodiment of the present invention can reach 87.1% (normalized data), which is significantly improved.
  • FIG. 1 is a schematic cross-sectional doping schematic diagram of a conventional waveguide-integrated photodetector based on evanescent wave coupling;
  • FIG. 2 is a schematic cross-sectional structure diagram of a waveguide integrated photodetector based on an evanescent wave coupling method in Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of cross-sectional doping of a waveguide integrated photodetector based on an evanescent wave coupling method in Embodiment 1 of the present invention
  • Figure 4 is a graph showing the relationship between photogenerated current and reverse bias voltage of photodetectors with two structures under 1 mW illumination
  • Figure 5 is a graph showing the relationship between the photodetector responsivity and reverse bias voltage of the two structures under 1 mW illumination
  • FIG. 6 is a schematic cross-sectional structure diagram of a waveguide-integrated photodetector based on an evanescent wave coupling method in Embodiment 2 of the present invention
  • FIG. 7 is a cross-sectional doping schematic diagram of a waveguide integrated photodetector based on an evanescent wave coupling method in Embodiment 2 of the present invention.
  • waveguide 1 waveguide 1 , light absorption layer 2 , cathode 3 , anode 4 , wrapping layer 5 , first doped region 101 , second doped region 102 , third doped region 103 , and fourth doped region 104 .
  • the embodiments of the present application provide a waveguide-integrated photodetector based on evanescent wave coupling, which solves the problem of low photoelectric conversion capability of conventional waveguide-integrated photodetectors based on evanescent wave coupling, and achieves improved performance based on evanescent wave coupling.
  • the technical solutions in the embodiments of the present application are to solve the above technical problems, and the general idea is as follows: when the ridge waveguide transmits the light field, the light field is mainly concentrated near the central body of the ridge waveguide;
  • the light-absorbing layer 2 can efficiently absorb the optical signals transmitted by the top and the contact surfaces on both sides of the silicon ridge waveguide. Under the condition that the size of the light-absorbing layer 2 is the same, in the embodiment of the present invention, the light-absorbing layer 2 is a pair of The absorption efficiency of light can reach 87.1% (normalized data), which is a significant improvement.
  • the present invention provides a waveguide integrated photodetector based on evanescent wave coupling, comprising: a waveguide 1, a light absorption layer 2, a cathode 3, an anode 4 and a wrapping layer 5;
  • the waveguide 1 is a ridge waveguide
  • the light absorbing layer 2 is distributed in a semi-surrounding manner to the ridge portion of the ridge waveguide.
  • the ridge waveguide transmits the light field
  • the light field is mainly concentrated near the central body of the ridge waveguide; the ridge portion of the ridge waveguide is semi-enclosed by the light absorbing layer 2, and the light absorbing layer 2 can absorb the top of the silicon ridge waveguide.
  • the optical signal transmitted by the contact surfaces on both sides is efficiently absorbed.
  • the light absorption efficiency of the light absorbing layer 2 in the embodiment of the present invention can reach 87.1% (normalized data), which is a significant improvement. .
  • Waveguide-integrated photodetectors based on evanescent wave coupling include:
  • Waveguide 1 light absorbing layer 2, cathode 3, anode 4 and wrapping layer 5;
  • the wrapping layer 5 is silicon dioxide, and wraps the waveguide 1 , the light absorbing layer 2 , the cathode 3 and the anode 4 , and the upper ends of the cathode 3 and the anode 4 are located outside the wrapping layer 5 .
  • the waveguide 1 is a ridge-type silicon waveguide. It is used to transmit optical signals.
  • the thickest part ie, the position of the central ridge
  • the width of the ridge does not exceed 1um; it has strong binding ability to the optical field, and the loss is relatively small.
  • the light-absorbing layer 2 is a germanium light-absorbing layer, and the ridge portion of the ridge-type waveguide is semi-enclosed; under the evanescent wave coupling effect, it will absorb the light signals from the top and both sides of the ridge-type silicon waveguide (such as the arrow in 2). indicated) and generate charge carriers.
  • the central portion (including the ridge portion) of the ridge-type silicon waveguide is the first doped region 101 , which is doped with low concentration P+, and the germanium light absorbing layer is within the range of the low concentration P+ doped region.
  • a second doping region 102 and a third doping region 103 are provided on both sides of the low-concentration P+ doping region, and both are doped with high-concentration P++; each high-concentration P++ doping region is connected to an anode 4 .
  • a fourth doping region 201 is provided at the middle position of the upper end surface of the germanium light absorbing layer, and is doped with high concentration N++, and the high concentration N++ doping region is connected to the cathode 3 .
  • the cathode 3 and the anode 4 are loaded with a reverse bias voltage, for example, the cathode 3 is grounded, and the anode 4 is connected to a negative voltage.
  • the light absorption efficiency of the germanium region under the conventional evanescent wave coupling structure is 46.6% (normalized data)
  • the light absorption efficiency of the light absorbing layer 2 under the semi-enclosed structure of the present invention can reach 87.1% (normalized data), which is significantly improved.
  • the photogenerated current I_halfsurr_photo of the detector in the embodiment of the present invention is 698.7uA, and the responsivity R is about 0.7A/W.
  • the waveguide-integrated photodetector supports tape-out on the CMOS integrated circuit process line, and the light-absorbing layer 2 provided by the waveguide-integrated photodetector is also applicable to the structure of the ridge portion of the ridge waveguide in a semi-enclosed distribution. It is suitable for material systems such as silicon-based derivative materials, III-V groups and organic polymers.
  • the present invention provides another waveguide-integrated photodetector based on evanescent wave coupling.
  • the difference is that in this embodiment: the number of anode 4 and high-concentration P++ doping region is one, and the high-concentration P++ doping region is located in the third doping region 103 of the waveguide 1; 4 connections;
  • the high-concentration N++ doping region is located in the second doping region 102 of the waveguide 1 ; and is connected to the cathode 3 .
  • the present invention has the following beneficial effects:
  • a reverse bias voltage is applied to the cathode 3 and the anode 4, and the ridge portion of the ridge waveguide is semi-enclosed by the light absorbing layer 2.
  • the light absorbing layer 2 can transmit the light signal to the top and the contact surfaces of the silicon ridge waveguide.
  • the light absorption efficiency of the light absorbing layer 2 in the embodiment of the present invention can reach 87.1% (normalized data), and the absorption efficiency of the light absorbing layer 2 to light, photogenerated current and responsivity, thereby improving the photoelectric conversion capability.
  • the width and thickness of the waveguide 1 meet the same process requirements, and the width and thickness of the light absorbing layer 2 are the same.
  • the requirements for the precision of the growth process of the light absorbing layer 2 are not improved by orders of magnitude.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于倏逝波耦合方式的波导集成光电探测器,涉及集成光电子技术领域。工作时在阴极(3)和阳极(4)加载反偏电压,通过吸光层(2)对脊型波导(1)的脊部呈半包围分布的结构,吸光层(2)可对硅脊波导(1)的顶部和两侧接触面传递的光信号进行高效吸收,在吸光层(2)尺寸相同的条件下,吸光层(2)对光的吸收效率可达87.1%(归一化数据),并提高吸光层(2)对光的吸收效率、光生电流以及响应度,进而提高光电转换能力。与常规的基于倏逝波耦合方式的波导集成光电探测器相比,波导(1)的宽度和厚度符合相同工艺要求,吸光层(2)的宽度、厚度相同,对吸光层(2)生长工艺精度的要求并无量级上的提升。

Description

基于倏逝波耦合方式的波导集成光电探测器 技术领域
本发明涉及集成光电子技术领域,具体涉及一种基于倏逝波耦合方式的波导集成光电探测器。
背景技术
光电探测器是利用内光电效应进行光电探测。目前基于倏逝波耦合方式的波导集成光电探测器主要采用波导耦合方式,其中又分为对接耦合和倏逝波耦合两种。倏逝波耦合是将波导放置在探测器的顶部或者下面,使入射光通过波导的传输以倏逝波的形式耦合到探测器中。
常规的基于倏逝波耦合方式的波导集成光电探测器的截面掺杂如图1所示,包括波导、吸光层、阴极、阳极和包裹层、低浓度P+掺杂区、高浓度P++掺杂区、高浓度N++掺杂区;其中,阳极设置在高浓度P++掺杂区上;阴极设置在高浓度N++掺杂区上;吸光层设置在低浓度P+掺杂区上;包裹层对阴极除顶端部分、阳极除顶端部分、波导、吸光层、低浓度P+掺杂区、高浓度P++掺杂区、高浓度N++掺杂区进行包裹。
但常规的基于倏逝波耦合方式的波导集成光电探测器的锗吸光层对光的吸收效率、光生电流、响应度等光电转换能力不高,无法满足日益增长的需求。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种基于倏逝波耦合方式的波导集成光电探测器,解决了常规的基于倏逝波耦合方式的波导集成光电探测器光电转换能力不高的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于倏逝波耦合方式的波导集成光电探测器,包括:波导、吸光层、阴极、阳极和包裹层;
所述波导为脊型波导;
所述吸光层对脊型波导的脊部呈半包围分布。
进一步的,所述波导在与吸光层接触的位置设置有第一掺杂区,且设置有位于在第一掺杂区两侧的第二掺杂区和第三掺杂区。
进一步的,所述吸光层包括设置在顶端的第四掺杂区。
进一步的,所述第一掺杂区为低浓度P+掺杂,所述第二掺杂区为高浓度N++掺杂,所述第三掺杂区为高浓度P++掺杂;且所述第二掺杂区与阴极连接,所述第三掺杂区与阳极连接。
进一步的,所述第一掺杂区为低浓度P+掺杂,所述第二掺杂区和第三掺杂区均为高浓度P++掺杂,所述第四掺杂区为高浓度N++掺杂,且第二掺杂区和第三掺杂区分别与一个阳极连接,所述第四掺杂区与阴极连接。
进一步的,所述波导为硅波导,吸光层为锗吸光层,包裹层为二氧化硅。
进一步的,在工作时,所述阴极和阳极加载反偏电压。
进一步的,所述波导集成光电探测器还适用于硅基衍生物材料、III-V族或有机聚合物材料体系。
进一步的,所述波导的最厚处为220nm或250nm。
进一步的,所述波导的脊部宽度不超过1um。
(三)有益效果
本发明提供了一种基于倏逝波耦合方式的波导集成光电探测器。与现有技术相比,具备以下有益效果:
由于脊型波导在传输光场时,光场主要集中在脊型波导中心主体附近;通过吸光层对脊型波导的脊部呈半包围分布的结构,吸光层可 对硅脊波导的顶部和两侧接触面传递的光信号进行高效吸收,在吸光层尺寸相同的条件下,本发明实施例中吸光层对光的吸收效率可达87.1%(归一化数据),获得明显提升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为常规的基于倏逝波耦合方式的波导集成光电探测器截面掺杂示意图;
图2为本发明实施例1中基于倏逝波耦合方式的波导集成光电探测器的截面结构示意图;
图3为本发明实施例1中基于倏逝波耦合方式的波导集成光电探测器的截面掺杂示意图;
图4为1mW光照下两种结构的光电探测器光生电流与反偏电压关系曲线图;
图5为1mW光照下两种结构的光电探测器响应度与反偏电压关系曲线图;
图6为本发明实施例2中基于倏逝波耦合方式的波导集成光电探测器的截面结构示意图;
图7为本发明实施例2中基于倏逝波耦合方式的波导集成光电探测器的截面掺杂示意图。
图中:波导1、吸光层2、阴极3、阳极4、包裹层5、第一掺杂区101、第二掺杂区102、第三掺杂区103、第四掺杂区104。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明 实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例通过提供一种基于倏逝波耦合方式的波导集成光电探测器,解决了常规的基于倏逝波耦合方式的波导集成光电探测器光电转换能力不高问题,实现提高基于倏逝波耦合方式的波导集成光电探测器光电转换能力的目的。
本申请实施例中的技术方案为解决上述技术问题,总体思路如下:由于脊型波导在传输光场时,光场主要集中在脊型波导中心主体附近;通过吸光层2对脊型波导的脊部呈半包围分布的结构,吸光层2可对硅脊波导的顶部和两侧接触面传递的光信号进行高效吸收,在吸光层2尺寸相同的条件下,本发明实施例中吸光层2对光的吸收效率可达87.1%(归一化数据),获得明显提升。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
本发明提供了一种基于倏逝波耦合方式的波导集成光电探测器,包括:波导1、吸光层2、阴极3、阳极4和包裹层5;
所述波导1为脊型波导;
所述吸光层2对脊型波导的脊部呈半包围分布。
本发明实施例的有益效果为:
由于脊型波导在传输光场时,光场主要集中在脊型波导中心主体附近;通过吸光层2对脊型波导的脊部呈半包围分布的结构,吸光层2可对硅脊波导的顶部和两侧接触面传递的光信号进行高效吸收,在吸光层2尺寸相同的条件下,本发明实施例中吸光层2对光的吸收效率可达87.1%(归一化数据),获得明显提升。
实施例1:
下面以脊型硅波导、锗吸光层为例,如图2-3所示,详细说明本发明实施例的实现过程:
基于倏逝波耦合方式的波导集成光电探测器包括:
波导1、吸光层2、阴极3、阳极4和包裹层5;
所述包裹层5为二氧化硅,且包裹波导1、吸光层2、阴极3以及阳极4,且阴极3、阳极4的上端位于包裹层5外部。
所述波导1为脊型硅波导。用于传输光信号,其最厚处(即中心脊部位置)为流片单位主流工艺指标220nm或250nm,脊部宽度不超过1um;对其中的光场束缚能力较强,损耗相对较小。
所述吸光层2为锗吸光层,且对脊型波导的脊部呈半包围分布;在倏逝波耦合效应下将吸收脊型硅波导顶部和两侧传来的光信号(如2中箭头指示)并生成载流子。
脊型硅波导的中心部分(包含脊部)为第一掺杂区101,且为低浓度P+掺杂,且锗吸光层在低浓度P+掺杂区的范围内。
在低浓度P+掺杂区的两侧均设置第二掺杂区102和第三掺杂区103,且均为高浓度P++掺杂;每个高浓度P++掺杂区均与一个阳极4连接。
在锗吸光层的上端面中间位置设置第四掺杂区201,且为高浓度N++掺杂,且高浓度N++掺杂区与阴极3连接。
在工作时,阴极3和阳极4加载反偏电压,如阴极3接地,阳极4接负电压。
为了验证本实施例的效果,将常规的基于倏逝波耦合方式的波导集成光电探测器与本实施例的光电探测器进行对比:
实验1:关于吸光层2对光的吸收率,采用时域有限差分法进行光学仿真,实验结果为:
在吸光层2相同尺寸规格下,常规倏逝波耦合结构下锗区域对光的吸收效率为46.6%(归一化数据),
而本发明所述的半包围结构下的吸光层2对光的吸收效率可达87.1%(归一化数据),获得明显提升。
实验2:关于光生电流和响应度,在阴极3接地,阳极4接负电压(0V~-3V)下,光照下的I-V曲线和响应度曲线,如图4-5所示,实线为本发明实施例所述的探测器;虚线为常规倏逝波耦合结构探测器;在1mW入射光照,加载反偏电压-1V下,常规探测器光生电流I_evane_photo为451.2uA,响应度R为0.45A/W;
而本发明实施例的探测器光生电流I_halfsurr_photo为698.7uA,响应度R约为0.7A/W。
需要说明的是,本发明实施例所述波导集成光电探测器支持在CMOS集成电路工艺线上流片完成,其所具备的吸光层2对脊型波导的脊部呈半包围分布的结构特点同样适用于硅基衍生物材料、III-V族和有机聚合物等材料体系。
实施例2:
如图6-7所示,本发明提供了另一种基于倏逝波耦合方式的波导集成光电探测器。
与实施例1相比,区别在于本实施例中:阳极4和高浓度P++掺杂区的数量均为一个,且高浓度P++掺杂区位于波导1的第三掺杂区103;并与阳极4连接;
而所述高浓度N++掺杂区位于波导1的第二掺杂区102;并与阴极3连接。
可理解的是,本发明实施例有关内容的解释、举例、有益效果等部分可以参考实施例1中的相应内容,此处不再赘述。
综上所述,与现有技术相比,本发明具备以下有益效果:
工作时在阴极3和阳极4加载反偏电压,通过吸光层2对脊型波导的脊部呈半包围分布的结构,吸光层2可对硅脊波导的顶部和两侧接触面传递的光信号进行高效吸收,在吸光层2尺寸相同的条件下, 本发明实施例中吸光层2对光的吸收效率可达87.1%(归一化数据),并提高吸光层2对光的吸收效率、光生电流以及响应度,进而提高光电转换能力。且与常规的基于倏逝波耦合方式的波导集成光电探测器相比,本发明中,波导1的宽度和厚度符合相同工艺要求,吸光层2的宽度、厚度相同。对吸光层2生长工艺精度的要求并无量级上的提升。
需要说明的是,通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于倏逝波耦合方式的波导集成光电探测器,包括:波导(1)、吸光层(2)、阴极(3)、阳极(4)和包裹层(5),其特征在于:
    所述波导(1)为脊型波导;
    所述吸光层(2)对脊型波导的脊部呈半包围分布。
  2. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述波导(1)在与吸光层(2)接触的位置设置有第一掺杂区(101),且设置有位于在第一掺杂区(101)两侧的第二掺杂区(102)和第三掺杂区(103)。
  3. 如权利要求2所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述吸光层(2)包括设置在顶端的第四掺杂区(201)。
  4. 如权利要求2所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述第一掺杂区(101)为低浓度P+掺杂,所述第二掺杂区(102)为高浓度N++掺杂,所述第三掺杂区(103)为高浓度P++掺杂;且所述第二掺杂区(102)与阴极(3)连接,所述第三掺杂区(103)与阳极(4)连接。
  5. 如权利要求3所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述第一掺杂区(101)为低浓度P+掺杂,所述第二掺杂区(102)和第三掺杂区(103)均为高浓度P++掺杂,所述第四掺杂区(201)为高浓度N++掺杂,且第二掺杂区(102)和第三掺杂区(103)分别与一个阳极(4)连接,所述第四掺杂区(201)与阴极(3)连接。
  6. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述波导(1)为硅波导,吸光层(2)为锗吸光层,包裹层(5)为二氧化硅。
  7. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电 探测器,其特征在于,在工作时,所述阴极(3)和阳极(4)加载反偏电压。
  8. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述波导集成光电探测器还适用于硅基衍生物材料、III-V族或有机聚合物材料体系。
  9. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述波导(1)的最厚处为220nm或250nm。
  10. 如权利要求1所述的一种基于倏逝波耦合方式的波导集成光电探测器,其特征在于,所述波导(1)的脊部宽度不超过1um。
PCT/CN2020/126257 2020-08-31 2020-11-03 基于倏逝波耦合方式的波导集成光电探测器 WO2022041477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010901062.5 2020-08-31
CN202010901062.5A CN112201706A (zh) 2020-08-31 2020-08-31 基于倏逝波耦合方式的波导集成光电探测器

Publications (1)

Publication Number Publication Date
WO2022041477A1 true WO2022041477A1 (zh) 2022-03-03

Family

ID=74005408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126257 WO2022041477A1 (zh) 2020-08-31 2020-11-03 基于倏逝波耦合方式的波导集成光电探测器

Country Status (2)

Country Link
CN (1) CN112201706A (zh)
WO (1) WO2022041477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035982B (zh) * 2021-03-03 2022-09-02 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298739A (en) * 1991-05-24 1994-03-29 Canon Kabushiki Kaisha Photodetector capable of sweeping out unwanted carriers and an optical communication system including the same
CN102569485A (zh) * 2011-12-31 2012-07-11 浙江大学 近红外波段全硅基纳米光电探测器
CN103094396A (zh) * 2011-11-02 2013-05-08 三星电子株式会社 集成有波导的石墨烯光电探测器
CN105122469A (zh) * 2013-04-19 2015-12-02 富士通株式会社 半导体受光元件及其制造方法
US20170038543A1 (en) * 2015-08-05 2017-02-09 Fujitsu Optical Components Limited Optical communication device and optical module
CN110870084A (zh) * 2017-08-22 2020-03-06 洛克利光子有限公司 肖特基光检测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2392007A (en) * 2002-08-14 2004-02-18 Bookham Technology Plc Integrated optoelectronic photodetector Tap-off waveguide light sensor
CN205723580U (zh) * 2016-05-09 2016-11-23 厦门市计量检定测试院 Si基Ge混合型波导光电探测器
US9978890B1 (en) * 2017-02-23 2018-05-22 Cisco Technology, Inc. Germanium multi-directional detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298739A (en) * 1991-05-24 1994-03-29 Canon Kabushiki Kaisha Photodetector capable of sweeping out unwanted carriers and an optical communication system including the same
CN103094396A (zh) * 2011-11-02 2013-05-08 三星电子株式会社 集成有波导的石墨烯光电探测器
CN102569485A (zh) * 2011-12-31 2012-07-11 浙江大学 近红外波段全硅基纳米光电探测器
CN105122469A (zh) * 2013-04-19 2015-12-02 富士通株式会社 半导体受光元件及其制造方法
US20170038543A1 (en) * 2015-08-05 2017-02-09 Fujitsu Optical Components Limited Optical communication device and optical module
CN110870084A (zh) * 2017-08-22 2020-03-06 洛克利光子有限公司 肖特基光检测器

Also Published As

Publication number Publication date
CN112201706A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
Gao et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes
Desiatov et al. Silicon photodetector for integrated lithium niobate photonics
Hu et al. High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide
Gao et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors
CN103489953B (zh) 一种双步消逝场耦合的雪崩光电探测器
Beling et al. InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation
US20080264486A1 (en) Guided-wave photovoltaic devices
Park et al. Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics
Li et al. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current
Benedikovic et al. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip
WO2022183710A1 (zh) 全硅掺杂多结电场增强型锗光波导探测器
Zhou et al. Photo detection and modulation from 1,550 to 2,000 nm realized by a GeSn/Ge multiple-quantum-well photodiode on a 300-mm Si substrate
WO2022041477A1 (zh) 基于倏逝波耦合方式的波导集成光电探测器
WO2022041550A1 (zh) 一种雪崩光电探测器及其制备方法
Chen et al. Light harvesting improvement of organic solar cells with self-enhanced active layer designs
Mayet et al. Surface passivation of silicon photonic devices with high surface-to-volume-ratio nanostructures
Liang et al. Van der Waals Integrated LiNbO3/WS2 for High‐Performance UV–Vis–NIR Photodetection
Tian et al. Ultrafast MUTC photodiodes over 200 GHz with high saturation power
CN101393945A (zh) 全硅波导型光电转换器及其制造方法
CN1164933A (zh) 波导式光接收元件
CN112985596B (zh) 基于频率上转换的10.6μm单光子探测器及其性能测试实验装置
CN111863984B (zh) 光电探测器及其制作方法
Yu et al. High-Bandwidth Zero-Biased Waveguide-Integrated pn Homojunction Graphene Photodetectors on Silicon for a Wavelength Band of 1.55 μm and Beyond
Gherabli et al. Role of surface passivation in integrated sub-bandgap silicon photodetection
CN116247110A (zh) 一种高量子效率光电探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951145

Country of ref document: EP

Kind code of ref document: A1