WO2022041038A1 - 一种基于物联网的防火报警系统及其控制方法 - Google Patents

一种基于物联网的防火报警系统及其控制方法 Download PDF

Info

Publication number
WO2022041038A1
WO2022041038A1 PCT/CN2020/111733 CN2020111733W WO2022041038A1 WO 2022041038 A1 WO2022041038 A1 WO 2022041038A1 CN 2020111733 W CN2020111733 W CN 2020111733W WO 2022041038 A1 WO2022041038 A1 WO 2022041038A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
resistor
capacitor
diode
module
Prior art date
Application number
PCT/CN2020/111733
Other languages
English (en)
French (fr)
Inventor
陈勇
李隽诗
刘峰
包永强
张娟
吕太之
徐笑阳
王波
周晨洁
Original Assignee
南京坤农信息技术有限公司
南京泰慧联电子科技有限公司
南京勤茂智能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京坤农信息技术有限公司, 南京泰慧联电子科技有限公司, 南京勤茂智能技术有限公司 filed Critical 南京坤农信息技术有限公司
Publication of WO2022041038A1 publication Critical patent/WO2022041038A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources

Definitions

  • the invention relates to the technical field of alarm detection, in particular to a fire alarm system based on the Internet of Things and a control method thereof.
  • the traditional alarm system adopts a single detection method, which cannot meet the detection range in the agricultural environment, thereby shortening the response speed of the alarm system.
  • the traditional gas alarm system uses long-distance sensing of the gas in the planting shed, so it is impossible to give an alarm prompt at the first time. , and then cause a large area of crops in the planting shed to be burned, and the alarm system uses the mains power supply method, and the voltage value of the mains changes, and the change of this voltage value will affect the change of the infrared induction circuit in the shed. , resulting in low detection accuracy.
  • a fire alarm system based on the Internet of Things is provided to solve the above problems.
  • a fire alarm system based on the Internet of Things characterized in that it includes the following modules:
  • a power step-down module that provides stable low voltage for gas monitoring, infrared sensing and control of alarm circuits
  • a gas signal adjustment module for adjusting and amplifying the electrical signal converted by the gas acquisition module, thereby improving the stability of the transmission electrical signal
  • Infrared sensing module used to monitor the doors and windows of the house and sense the temperature change through thermal effect
  • the sound and light alarm module is used to obtain the conduction voltage so that the alarm circuit can obtain the positive and negative terminal voltages, and then achieve the alarm prompt.
  • the power supply step-down module includes a transformer T1, a bridge Zener diode TR1, a capacitor C4, a voltage regulator U1, a diode D1, a variable resistor RV1, a resistor R3, a capacitor C5, and a diode D2, wherein
  • the transformer T1 pin 3 is connected with the positive terminal of the input AC 220V;
  • the transformer T1 pin 4 is connected with the input AC 220V negative terminal;
  • the transformer T1 pin 1 is connected with the bridge Zener diode TR1 pin;
  • the pin 2 of the transformer T1 is connected to the pin 4 of the bridge Zener diode TR1;
  • the pin 1 of the bridge Zener diode TR1 is respectively connected to the negative terminal of the diode D1, the pin 1 of the regulator U1, and the positive terminal of the capacitor C4;
  • the bridge Zener diode C4 is respectively connected with the negative terminal of the capacitor C4, the pins 1 and 2 of the variable resistor RV1, the positive terminal of the capacitor C5 and the ground
  • the gas acquisition module includes a gas sensor S1, a variable resistor RV2, a resistor R4, a transistor Q2, a resistor R5, a resistor R6, and a diode D6, wherein the gas sensor S1 pin 1 is negatively connected to the diode D6 Extreme connection; the gas sensor S1 pin 2 is connected with the variable resistance RV2 pin 3; the variable resistance RV2 pin 1 and pin 2 are connected with one end of the resistance R4; the other end of the resistance R4 is respectively connected with the resistance One end of R6, the ground wire GND, and the pin 3 of the transistor Q2 are connected; the pin 3 of the gas sensor S1 is connected to the pin 1 of the transistor Q2; the pin 2 of the transistor Q2 is connected to one end of the resistor R5; the other end of the resistor R5 is connected to The other end of resistor R6 is connected.
  • the gas signal conditioning module includes a resistor R13, a resistor R14, an operational amplifier U3, a resistor R16, a resistor R15, a capacitor C11, a diode D7, and an operational amplifier U4.
  • One end of the resistor R13 is respectively connected to the other end of the resistor R5.
  • One end is connected to the other end of the resistor R6 ; the other end of the resistor R13 is connected to the pin 3 of the operational amplifier U3; one end of the resistor R14 is connected to the ground wire GND; Pin 2 is connected; the operational amplifier U3 pin 7 is connected with the operational amplifier U4 pin 7; the operational amplifier U3 pin 6 is respectively connected with one end of the resistor R15 and the other end of the resistor R16; the other end of the resistor R15 is connected with the operation
  • the amplifier U4 pin 3, one end of the capacitor C11, and the negative terminal of the diode D7 are connected; the other end of the capacitor C11 is connected to the ground wire GND and the positive terminal of the diode D7 respectively; the operational amplifier U4 pin 2 is connected to the pin 6.
  • the infrared sensing module includes an infrared sensor S2, a capacitor C9, a resistor R9, a capacitor C8, a resistor R10, a capacitor C7, a capacitor C6, a resistor R7, an operational amplifier U5, a resistor R8, an operational amplifier U6, a resistor R11, capacitor C10, wherein pin 1 of the infrared sensor S2 is connected to one end of capacitor C9, pin 7 of operational amplifier U5, pin 4 of operational amplifier U6, and the positive end of diode D6; the other end of the capacitor C9 is connected to the ground wire GND connection; the pin 2 of the infrared sensor S2 is respectively connected with one end of the resistor R9, the positive end of the capacitor C8, and one end of the resistor R10; the negative end of the capacitor C8 is respectively connected with the other end of the resistor R10, the ground GND, the pin 3 of the infrared sensor S2, The negative terminal of capacitor C7 is connected to the
  • the operational amplifier U5 pin 6 is respectively connected with one end of the resistor R8, the other end of the resistor R7, and the negative end of the capacitor C6; the other end of the resistor R8 is respectively connected with the operational amplifier U6 pin 2, one end of the resistor R11, one end of the capacitor C10 connection; the other end of the resistor R11 is connected to the other end of the capacitor C11 and pin 6 of the operational amplifier U6.
  • the control module includes a capacitor C1, a capacitor C2, a crystal oscillator X1, a capacitor C3, a resistor R2, a resistor R1, a lamp LED1, a diode D4, and a controller U2, wherein one end of the resistor R1 is respectively connected to the One end of capacitor C3, pin 30 of controller U2, negative end of diode D2, the other end of resistor R3, pin 3 of voltage regulator U1, positive end of diode D1, positive end of diode D3, positive end of diode D4 are connected; the negative end of diode D4 is connected
  • the extremes are respectively connected with the pin 1 of the infrared sensor S2, one end of the capacitor C9, the pin 7 of the operational amplifier U5, the pin 4 of the operational amplifier U6, and the positive terminal of the diode D6; the other end of the resistor R1 is connected with the positive terminal of the lamp LED1; the lamp The negative terminal of LED1 is connected to the pin 31 of the controller U2; the other
  • the sound and light alarm module includes a resistor R12, a transistor Q1, a diode D5, a lamp LED2, a lamp LED3, and a speaker LS1, wherein one end of the resistor R12 is connected to the controller U2 pin 25; the resistor The other end of R12 is connected to the base end of the transistor Q1; the collector end of the transistor Q1 is connected to the negative end of the diode D5; the positive end of the diode D5 is respectively connected to the negative end of the diode D4, the pin 1 of the infrared sensor S2, one end of the capacitor C9, and the operational amplifier U5 pin 7, operational amplifier U6 pin 4, diode D6 positive terminal are connected; the emitter terminal of the transistor Q1 is respectively connected with the positive terminal of the lamp LED2, the positive terminal of the lamp LED3, and one end of the speaker LS1; the other end of the speaker LS1 is respectively connected with the lamp The negative terminal of LED2, the negative terminal of lamp LED3, and the ground wire are
  • the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all electrolytic capacitors; the diode D1, the diode D3, the diode D4.
  • the diode D5 and the diode D6 are all zener diodes; the transistor Q1 is NPN; the gas sensor S1 is TGS800; the infrared sensor S2 is KDS209; the controller U2
  • the model number is AT8951.
  • a method for controlling a fire alarm system based on the Internet of Things is characterized by the following steps:
  • Step 1 By bucking the obtained mains voltage, the electrical module is used to work under a safe and stable power supply voltage. Since the input mains voltage value is not a fixed value, the stability of the low voltage value after the reduction cannot be guaranteed. The low voltage after depressurization is stably adjusted by the stabilizer, so that the gas detection circuit and the infrared induction circuit work under a stable voltage and maintain a continuous stable voltage;
  • Step 2 Receive the converted stable voltage, and make the gas acquisition module work at a stable voltage to further improve the stability and response speed of the gas detection signal transmission, and convert the received gas volume fraction into a corresponding electrical signal through the concentration of the gas in the shed. , so as to transmit a stable electrical signal to the next module;
  • Step 3 Adjust the electrical signal fed back by the gas acquisition module, intercept the electrical signal in a stable state, filter the interference signal in the transmitted electrical signal, and then amplify the electrical signal to improve the response of the gas monitoring and alarm control system, which can respond to work.
  • the low signal that appears in the state is amplified and processed to further identify the range of the alarm value;
  • Step 4 The infrared induction circuit is operated by receiving the stable voltage, so as to sense the thermal effect of the entrance and exit of the shed, and sense the temperature change within the monitoring range, so as to intercept the alarm value beyond the temperature monitoring range, so as to feed back the temperature alarm electrical signal to the shed.
  • control module so as to control the operation of the alarm circuit according to the on-off of the control module;
  • Step 5 The gas acquisition module and the infrared sensing module transmit the converted monitoring signal to the control module, so as to transmit in a two-line paralleling manner, thereby reducing the consumption of redundant lines, and the output end of the monitoring signal is connected in series with a diode, Further prevent the mutual influence of the two monitoring signals, so as to realize the one-way transmission of the signal, so as to control the conduction signal according to the response signal of the two monitoring modules;
  • Step 6 further obtaining a conduction command through the triode to energize the positive and negative terminals of the alarm circuit, thereby completing the operation of the alarm system.
  • the invention designs a fire alarm system based on the Internet of Things and a control method thereof.
  • the weak gas signal is adjusted and amplified to improve the detection accuracy of the gas detection signal, thereby reducing the lowest point of gas generation.
  • the alarm system is put into a dormant state through the control circuit to ensure no response during work, thereby reducing the power loss caused by the long-term operation of the alarm system.
  • the alarm system enters the detection state, and then reminds the planting personnel whether there is gas generation, further enhancing the response speed of the intelligent induction.
  • the power step-down circuit In response to the change of the power supply voltage, the power step-down circuit is used to make the alarm system work again. Under the low voltage state, the discharge phenomenon when the alarm system is activated instantly is reduced. On the other hand, the output voltage is adjusted to stabilize the output voltage, ensure the stability of the power supply voltage of the gas acquisition circuit and the infrared induction circuit, and improve the accuracy of signal acquisition.
  • Fig. 1 is a structural block diagram of the present invention.
  • Fig. 2 is the distribution diagram of the intelligent fire alarm system of the present invention.
  • FIG. 3 is a circuit diagram of a power supply step-down module of the present invention.
  • FIG. 4 is a circuit diagram of the gas collection module of the present invention.
  • FIG. 5 is a circuit diagram of the gas signal conditioning module of the present invention.
  • FIG. 6 is a circuit diagram of the infrared sensing module of the present invention.
  • FIG. 7 is a circuit diagram of the sound and light alarm module of the present invention.
  • a fire alarm system based on the Internet of Things includes:
  • a fire alarm system based on the Internet of Things characterized in that it includes the following modules:
  • a power step-down module that provides stable low voltage for gas monitoring, infrared sensing and control of alarm circuits
  • a gas signal adjustment module for adjusting and amplifying the electrical signal converted by the gas acquisition module, thereby improving the stability of the transmission electrical signal
  • Infrared sensing module used to monitor the doors and windows of the house and sense the temperature change through thermal effect
  • the sound and light alarm module is used to obtain the conduction voltage so that the alarm circuit can obtain the positive and negative terminal voltages, and then achieve the alarm prompt.
  • the power supply step-down module includes a transformer T1, a bridge Zener diode TR1, a capacitor C4, a voltage regulator U1, a diode D1, a variable resistor RV1, a resistor R3, a capacitor C5, diode D2.
  • the transformer T1 pin 3 is connected to the positive terminal of the input AC 220V; the transformer T1 pin 4 is connected to the input AC 220V negative terminal; the transformer T1 leads
  • the pin 1 is connected with the bridge Zener diode TR1 pin; the transformer T1 pin 2 is connected with the bridge Zener diode TR1 pin 4; the bridge Zener diode TR1 pin 1 is respectively connected with the negative terminal of the diode D1,
  • the voltage regulator U1 pin 1 and the positive terminal of the capacitor C4 are connected; the bridge Zener diode C4 is respectively connected with the negative terminal of the capacitor C4, the variable resistor RV1 pin 1 and pin 2, the positive terminal of the capacitor C5, and the ground wire GND.
  • the voltage stabilizer U1 pin 2 is respectively connected with the variable resistor RV1 pin 3, one end of the resistor R3, the negative end of the capacitor C5, and the positive end of the diode D2; the negative end of the diode D2 is respectively connected with the other end of the resistor R3, the voltage regulator
  • the device U1 pin 3, diode D1 positive terminal is connected.
  • the gas collection module includes a gas sensor S1, a variable resistor RV2, a resistor R4, a transistor Q2, a resistor R5, a resistor R6, and a diode D6.
  • the gas sensor S1 pin 1 of the gas collection module is connected to the negative terminal of the diode D6; the gas sensor S1 pin 2 is connected to the variable resistor RV2 pin 3;
  • the varistor RV2 pin 1 and pin 2 are connected to one end of the resistor R4; the other end of the resistor R4 is respectively connected to one end of the resistor R6, the ground wire GND, and the pin 3 of the transistor Q2; the gas sensor S1 pin 3 is connected to the transistor
  • the pin 1 of Q2 is connected; the pin 2 of the transistor Q2 is connected to one end of the resistor R5; the other end of the resistor R5 is connected to the other end of the resistor R6.
  • the gas signal conditioning module includes a resistor R13, a resistor R14, an operational amplifier U3, a resistor R16, a resistor R15, a capacitor C11, a diode D7, and an operational amplifier U4.
  • one end of the resistance R13 in the gas signal conditioning module is respectively connected with the other end of the resistance R5 and the other end of the resistance R6 ; the other end of the resistance R13 is connected with the pin 3 of the operational amplifier U3; the One end of the resistor R14 is connected to the ground wire GND; the other end of the resistor R14 is respectively connected to one end of the resistor R16 and the pin 2 of the operational amplifier U3; the pin 7 of the operational amplifier U3 is connected to the pin 7 of the operational amplifier U4; the operational amplifier Pin 6 of U3 is respectively connected to one end of resistor R15 and the other end of resistor R16; the other end of said resistor R15 is connected to pin 3 of operational amplifier U4, one end of capacitor C11 and the negative end of diode D7 respectively; the other end of said capacitor C11 is respectively connected to ground The line GND and the positive terminal of the diode D7 are connected; the pin 2 of the operational amplifier U4 is connected with the pin 6.
  • the infrared sensing module includes an infrared sensor S2, a capacitor C9, a resistor R9, a capacitor C8, a resistor R10, a capacitor C7, a capacitor C6, a resistor R7, an operational amplifier U5, and a resistor R8 , operational amplifier U6, resistor R11, capacitor C10.
  • the infrared sensor S2 pin 1 in the infrared sensing module is respectively connected with one end of the capacitor C9, the operational amplifier U5 pin 7, the operational amplifier U6 pin 4, and the diode D6 positive end; the The other end of the capacitor C9 is connected to the ground wire GND; the pin 2 of the infrared sensor S2 is respectively connected to one end of the resistor R9, the positive terminal of the capacitor C8, and one end of the resistor R10; the negative terminal of the capacitor C8 is respectively connected to the other end of the resistor R10 and the ground wire GND , infrared sensor S2 pin 3, capacitor C7 negative terminal, budget amplifier U6 pin 3 connection; the other end of the resistor R9 is connected to the operational amplifier U5 pin 3; the operational amplifier U5 pin 2 is respectively connected to one end of the resistor R7, The positive terminal of the capacitor C6 and the positive terminal of the capacitor C7 are connected; the pin 6 of the operational amplifier U5 is respectively connected to one end of the resistor R8,
  • the control module includes a capacitor C1, a capacitor C2, a crystal oscillator X1, a capacitor C3, a resistor R2, a resistor R1, a lamp LED1, a diode D4, and a controller U2.
  • one end of the resistor R1 in the control module is respectively connected to one end of the capacitor C3, the pin 30 of the controller U2, the negative end of the diode D2, the other end of the resistor R3, the pin 3 of the voltage regulator U1, and the diode
  • the positive terminal of D1, the positive terminal of diode D3, and the positive terminal of diode D4 are connected; the negative terminal of diode D4 is respectively connected with pin 1 of infrared sensor S2, one end of capacitor C9, pin 7 of operational amplifier U5, pin 4 of operational amplifier U6, and pin 4 of diode D6.
  • the positive terminal is connected; the other end of the resistor R1 is connected to the positive terminal of the lamp LED1; the negative terminal of the lamp LED1 is connected to the controller U2 pin 31; the other end of the capacitor C3 is respectively connected to one end of the resistor R2 and the controller U2 pin 19
  • the other end of the resistor R2 is connected to the ground wire GND; the pin 9 of the controller U2 is connected to the crystal oscillator X1 pin 1 and one end of the capacitor C1 respectively; the other end of the capacitor C1 is connected to the ground wire GND and the capacitor C2
  • One end is connected; the other end of the capacitor C2 is connected with the crystal oscillator X1 pin 2 and the controller U2 pin 18 respectively; the controller U2 pin 6 is respectively connected with the operational amplifier U4 pin 2 and pin 6;
  • the pin 1 of the controller U2 is respectively connected with the other end of the resistor R11, the other end of the capacitor C11, and the pin 6 of the operational amplifier U6.
  • the sound and light alarm module includes a resistor R12, a transistor Q1, a diode D5, a lamp LED2, a lamp LED3, and a speaker LS1.
  • one end of the resistor R12 in the sound and light alarm module is connected to the pin 25 of the controller U2; the other end of the resistor R12 is connected to the base end of the transistor Q1; the collector end of the transistor Q1 is connected to the The negative terminal of the diode D5 is connected; the positive terminal of the diode D5 is respectively connected with the negative terminal of the diode D4, the pin 1 of the infrared sensor S2, one terminal of the capacitor C9, the pin 7 of the operational amplifier U5, the pin 4 of the operational amplifier U6, and the positive terminal of the diode D6;
  • the emitter terminal of the transistor Q1 is respectively connected with the positive terminal of the lamp LED2, the positive terminal of the lamp LED3, and one end of the speaker LS1; the other end of the speaker LS1 is respectively connected with the negative terminal of the lamp LED2, the negative terminal of the lamp LED3, and the ground wire GND.
  • the capacitor C4, the capacitor C5, the capacitor C6, the capacitor C7, and the capacitor C8 are all electrolytic capacitors; the diode D1, the diode D3, the diode D4.
  • the diode D5 and the diode D6 are all zener diodes; the transistor Q1 is NPN; the gas sensor S1 is TGS800; the infrared sensor S2 is KDS209; the controller U2 The model number is AT8951.
  • a method for controlling a fire alarm system based on the Internet of Things is characterized by the following steps:
  • Step 1 By bucking the obtained mains voltage, the electrical module is used to work under a safe and stable power supply voltage. Since the input mains voltage value is not a fixed value, the stability of the low voltage value after the reduction cannot be guaranteed. The low voltage after depressurization is stably adjusted by the stabilizer, so that the gas detection circuit and the infrared induction circuit work under a stable voltage and maintain a continuous stable voltage;
  • Step 2 Receive the converted stable voltage, and make the gas acquisition module work at a stable voltage to further improve the stability and response speed of the gas detection signal transmission, and convert the received gas volume fraction into a corresponding electrical signal through the concentration of the gas in the shed. , so as to transmit a stable electrical signal to the next module;
  • Step 3 Adjust the electrical signal fed back by the gas acquisition module, intercept the electrical signal in a stable state, filter the interference signal in the transmitted electrical signal, and then amplify the electrical signal to improve the response of the gas monitoring and alarm control system, which can respond to work.
  • the low signal that appears in the state is amplified and processed to further identify the range of the alarm value;
  • Step 4 The infrared induction circuit is operated by receiving the stable voltage, so as to sense the thermal effect of the entrance and exit of the shed, and sense the temperature change within the monitoring range, so as to intercept the alarm value beyond the temperature monitoring range, so as to feed back the temperature alarm electrical signal to the shed.
  • control module so as to control the operation of the alarm circuit according to the on-off of the control module;
  • Step 5 The gas acquisition module and the infrared sensing module transmit the converted monitoring signal to the control module, so as to transmit in a two-line paralleling manner, thereby reducing the consumption of redundant lines, and the output end of the monitoring signal is connected in series with a diode, Further prevent the mutual influence of the two monitoring signals, so as to realize the one-way transmission of the signal, so as to control the conduction signal according to the response signal of the two monitoring modules;
  • Step 6 further obtaining a conduction command through the triode to energize the positive and negative terminals of the alarm circuit, thereby completing the operation of the alarm system.
  • the present invention has the following advantages: the power supply voltage reduction module provides the starting operation voltage for the gas acquisition module, the gas signal adjustment module, the infrared sensing module, the control module and the sound and light alarm module by adjusting the voltage reduction of the obtained high voltage,
  • the internal components work at a safe voltage
  • the diode D2 controls the unidirectional transmission of the voltage to prevent the device from being damaged due to reverse voltage transmission when the power is off.
  • the capacitor C2 is used to reduce the AC ripple coefficient and further improve the efficient and smooth DC output;
  • the gas acquisition module receives the voltage drop of the power supply step-down module, and then detects the gas in the housing environment through the gas sensor S1, and then converts the received gas volume fraction into a corresponding electrical signal, so as to transmit the collected signal to the gas signal adjustment.
  • the gas signal adjustment module adjusts the signal fed back by the gas acquisition module after being powered on, and then converts the detected electrical signal into a stable output electrical signal , to further improve the transmission of the gas acquisition signal, and then filter the interference signal in the adjustment process through the capacitor C11, thereby improving the command of the acquisition signal, and the diode D2 blocks the entry of the external interference signal;
  • the infrared sensing module uses the radiant heat effect to make the infrared sensor S2 receive the signal After the radiant energy, the internal temperature changes, and then the parameters of the temperature change are fed back to the control module, and then the stored electric energy of the capacitor C6 is absorbed by the resistor R7, thereby preventing the discharge current from being too large and causing damage to the connecting device;
  • the detection signal fed back by the acquisition module and the infrared sensing module is stored, and then according to the transmission of the signal, the conduction voltage is transmitted to the sound and light alarm module

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

一种基于物联网的防火报警系统及其控制方法,该系统包括:电源降压模块、气体采集模块、气体信号调节模块、红外感应模块、控制模块、声光报警模块,电源降压模块通过对获取的高电压进行降压调整;气体采集模块通过气体传感器(S1)将接收的气体体积分数转化成对应电信号;气体信号调节模块对气体采集模块反馈的信号进行调节;红外感应模块利用辐射热效应使红外传感器(S2)接收到辐射能后引起内部温度的变化;控制模块对接收采集信号进行储存,进而根据信号的传输控制声光报警模块的响应;声光报警模块通过获取电压导通指令实现报警电路的运行,实现对火灾与偷盗信息的采集,进而控制报警电路的运行。

Description

一种基于物联网的防火报警系统及其控制方法 技术领域
本发明涉及一种报警检测技术领域,尤其是一种基于物联网的防火报警系统及其控制方法。
背景技术
随着生活水平的提高,农业的防火防盗成为了种植户的问题,对于一个种植户来说,需要建立自身的防火体系,让人们在享受生活的同时,得到农产品的安全保障,而随着各类场所的火灾危险性、危害性极大增加。
而传统的报警系统采用单一检测方法,从而无法满足农业环境内的检测范围,进而缩短报警系统的响应速度,传统气体报警系统采用远距离感应种植棚内的气体,从而无法第一时间进行报警提示,进而造成种植棚内大面积的农作物被焚烧,而报警系统采用的是市电供电方式,而市电的电压值是存在变化,而这种电压值的变化会影响棚内红外感应电路的变化,造成检测精度低。
技术问题
提供一种基于物联网的防火报警系统,以解决上述问题。
技术解决方案
一种基于物联网的防火报警系统,其特征在于,包括以下模块:
用于对气体的监测、红外的感应以及报警电路的控制提供稳定的低电压的电源降压模块;
用于对室内产生的气体进行监测,从而将超出报警值的指令传递给下一模块的气体采集模块;
用于对气体采集模块转换的电信号进行调节、放大,进而提高传输电信号稳定的气体信号调节模块;
用于对住房的门窗进行监测,通过热效应感知温度的变换的红外感应模块;
用于接收气体采集模块和红外感应模块的检测信号,然后对接收采集信号进行对比运算、储存,从而使导通电压传递给下一模块的控制模块;
用于获取导通电压使报警电路获取正负极端电压,进而达到报警提示的声光报警模块。
根据本发明的一个方面,所述电源降压模块包括变压器T1、桥式稳压二极管TR1、电容C4、稳压器U1、二极管D1、可变电阻RV1、电阻R3、电容C5、二极管D2,其中所述变压器T1引脚3与输入交流220V正极端连接;所述变压器T1引脚4与输入交流电220V负极端连接;所述变压器T1引脚1与桥式稳压二极管TR1引脚连接;所述变压器T1引脚2与桥式稳压二极管TR1引脚4连接;所述桥式稳压二极管TR1引脚1分别与二极管D1负极端、稳压器U1引脚1、电容C4正极端连接;所述桥式稳压二极管C4分别与电容C4负极端、可变电阻RV1引脚1和引脚2、电容C5正极端、地线GND连接;所述稳压器U1引脚2分别与可变电阻RV1引脚3、电阻R3一端、电容C5负极端、二极管D2正极端连接;所述二极管D2负极端分别与电阻R3另一端、稳压器U1引脚3、二极管D1正极端连接。
根据本发明的一个方面,所述气体采集模块包括气体传感器S1、可变电阻RV2、电阻R4、晶体管Q2、电阻R5、电阻R6、二极管D6,其中所述气体传感器S1引脚1与二极管D6负极端连接;所述气体传感器S1引脚2与可变电阻RV2引脚3连接;所述可变电阻RV2引脚1和引脚2均与电阻R4一端连接;所述电阻R4另一端分别与电阻R6一端、地线GND、晶体管Q2引脚3连接;所述气体传感器S1引脚3与晶体管Q2引脚1连接;所述晶体管Q2引脚2与电阻R5一端连接;所述电阻R5另一端与电阻R6另一端连接。
根据本发明的一个方面,所述气体信号调节模块包括电阻R13、电阻R14、运算放大器U3、电阻R16、电阻R15、电容C11、二极管D7、运算放大器U4,所述电阻R13一端分别与电阻R5另一端与电阻R6另一端连接 所述电阻R13另一端与运算放大器U3引脚3连接;所述电阻R14一端与地线GND连接;所述电阻R14另一端分别与电阻R16一端、运算放大器U3引脚2连接;所述运算放大器U3引脚7与运算放大器U4引脚7连接;所述运算放大器U3引脚6分别与电阻R15一端、电阻R16另一端连接;所述电阻R15另一端分别与运算放大器U4引脚3、电容C11一端、二极管D7负极端连接;所述电容C11另一端分别与地线GND、二极管D7正极端连接;所述运算放大器U4引脚2与引脚6连接。
根据本发明的一个方面,所述红外感应模块包括红外传感器S2、电容C9、电阻R9、电容C8、电阻R10、电容C7、电容C6、电阻R7、运算放大器U5、电阻R8、运算放大器U6、电阻R11、电容C10,其中所述红外传感器S2引脚1分别与电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电容C9另一端与地线GND连接;所述红外传感器S2引脚2分别与电阻R9一端、电容C8正极端、电阻R10一端连接;所述电容C8负极端分别与电阻R10另一端、地线GND、红外传感器S2引脚3、电容C7负极端、预算放大器U6引脚3连接;所述电阻R9另一端与运算放大器U5引脚3连接;所述运算放大器U5引脚2分别与电阻R7一端、电容C6正极端、电容C7正极端连接;所述运算放大器U5引脚6分别与电阻R8一端、电阻R7另一端、电容C6负极端连接;所述电阻R8另一端分别与运算放大器U6引脚2、电阻R11一端、电容C10一端连接;所述电阻R11另一端与电容C11另一端、运算放大器U6引脚6连接。
根据本发明的一个方面,所述控制模块包括电容C1、电容C2、晶体振荡器X1、电容C3、电阻R2、电阻R1、灯LED1、二极管D4、控制器U2,其中所述电阻R1一端分别与电容C3一端、控制器U2引脚30、二极管D2负极端、电阻R3另一端、稳压器U1引脚3、二极管D1正极端、二极管D3正极端、二极管D4正极端连接;所述二极管D4负极端分别与红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电阻R1另一端与灯LED1正极端连接;所述灯LED1负极端与控制器U2引脚31连接;所述电容C3另一端分别与电阻R2一端、控制器U2引脚19连接;所述电阻R2另一端与地线GND连接;所述控制器U2引脚9分别与晶体振荡器X1引脚1、电容C1一端连接;所述电容C1另一端与地线GND、电容C2一端连接;所述电容C2另一端分别与晶体振荡器X1引脚2、控制器U2引脚18连接;所述控制器U2引脚6分别与运算放大器U4引脚2、引脚6连接;所述控制器U2引脚1分别与电阻R11另一端、电容C11另一端、运算放大器U6引脚6连接。
根据本发明的一个方面,所述声光报警模块包括电阻R12、三极管Q1、二极管D5、灯LED2、灯LED3、扬声器LS1,其中所述电阻R12一端与控制器U2引脚25连接;所述电阻R12另一端与三极管Q1基极端连接;所述三极管Q1集电极端与二极管D5负极端连接;所述二极管D5正极端分别与二极管D4负极端、红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述三极管Q1发射极端分别与灯LED2正极端、灯LED3正极端、扬声器LS1一端连接;所述扬声器LS1另一端分别与灯LED2负极端、灯LED3负极端、地线GND连接。
根据本发明的一个方面,所述电容C4、所述电容C5、所述电容C6、所述电容C7、所述电容C8型号均为电解电容;所述二极管D1、所述二极管D3、所述二极管D4、所述二极管D5、所述二极管D6型号均为稳压二极管;所述三极管Q1型号均为NPN;所述气体传感器S1型号为TGS800;所述红外传感器S2型号为KDS209;所述控制器U2型号为AT8951。
根据本发明的一个方面,一种基于物联网的防火报警系统的控制方法,其特征在于以下步骤:
步骤1、通过对获取的市电压进行降压处理,使用电模块工作在安全稳定的电源电压下,因输入的市电压值不是定值,进而无法保障降压后的低电压值的稳定,进而通过稳定器对降压后的低压进行稳定调节,使气体检测电路和红外感应电路工作在稳定的电压下,保持持续的稳电压;
步骤2、接收转换后的稳电压,使气体采集模块工作再稳定的电压下,进一步提高气体检测信号传输的稳定以及响应速度,通过棚内气体的浓度将接收的气体体积分数转化成对应电信号,从而将稳定的电信号传递给下一模块;
步骤3、对气体采集模块反馈的电信号进行调整,截取稳定状态下的电信号,过滤传输电信号中干扰信号,再通过电信号的放大,来提高气体监测报警控制系统的响应,能够对工作状态下出现的低信号进行放大处理,进一步识别报警值的范围;
步骤4、通过接收稳电压使红外感应电路运行,从而对棚内进出口进行热效应感应,感知监测范围内的温度变化,从而截取超出温度监测范围内的报警值,从而将温度报警电信号反馈给控制模块,从而根据控制模块通断控制报警电路的运行;
步骤5、气体采集模块和红外感应模块将转换后的监测信号传输给控制模块,从而通过两线并一线的方式传输,进而减小多余线路的消耗,而再监测信号的输出端串接二极管,进一步阻止两者监测信号的相互影响,从而实现信号的单向传输,从而根据两个监测模块的反应信号进行导通电信号的控制;
步骤6、进而通过三极管获取导通指令使报警电路正负极端得电,进而完成报警系统的运行。
有益效果
本发明设计一种基于物联网的防火报警系统及其控制方法,通过使用气体信号调节电路,对微弱的气体信号进行调节,放大、来提高气体检测信号的检测精度,从而再气体产生的最低点,实现报警提示,进而减少棚内气体扩散的时间,而对有人员进入时,通过控制电路使报警系统进入休眠状态,保障工作中的无响应,进而降低报警系统长时间运行造成电能的损耗,而棚内无人员走动时报警系统进入检测状态,进而提醒种植人员有无气体产生,进一步加强智能感应的响应速度,针对供电市电压的变化,通过电源降压电路,一方面使报警系统工作再低压状态下,从而降低报警系统瞬间启动时产生放电现象,另一方面调节输出电压,从而稳定输出电压,保障气体采集电路和红外感应电路供电电压的稳定,提高信号采集的精准。
附图说明
图1是本发明的结构框图。
图2是本发明的智能防火报警系统分布图。
图3是本发明的电源降压模块电路图。
图4是本发明的气体采集模块电路图。
图5是本发明的气体信号调节模块电路图。
图6是本发明的红外感应模块电路图。
图7是本发明的声光报警模块电路图。
本发明的实施方式
如图1所示,在该实施例中,一种基于物联网的防火报警系统,包括:
一种基于物联网的防火报警系统,其特征在于,包括以下模块:
 
用于对气体的监测、红外的感应以及报警电路的控制提供稳定的低电压的电源降压模块;
用于对室内产生的气体进行监测,从而将超出报警值的指令传递给下一模块的气体采集模块;
用于对气体采集模块转换的电信号进行调节、放大,进而提高传输电信号稳定的气体信号调节模块;
用于对住房的门窗进行监测,通过热效应感知温度的变换的红外感应模块;
用于接收气体采集模块和红外感应模块的检测信号,然后对接收采集信号进行对比运算、储存,从而使导通电压传递给下一模块的控制模块;
用于获取导通电压使报警电路获取正负极端电压,进而达到报警提示的声光报警模块。
在进一步的实施例中,如图3所示,所述电源降压模块包括变压器T1、桥式稳压二极管TR1、电容C4、稳压器U1、二极管D1、可变电阻RV1、电阻R3、电容C5、二极管D2。
在更进一步的实施例中,所述电源降压模块中所述变压器T1引脚3与输入交流220V正极端连接;所述变压器T1引脚4与输入交流电220V负极端连接;所述变压器T1引脚1与桥式稳压二极管TR1引脚连接;所述变压器T1引脚2与桥式稳压二极管TR1引脚4连接;所述桥式稳压二极管TR1引脚1分别与二极管D1负极端、稳压器U1引脚1、电容C4正极端连接;所述桥式稳压二极管C4分别与电容C4负极端、可变电阻RV1引脚1和引脚2、电容C5正极端、地线GND连接;所述稳压器U1引脚2分别与可变电阻RV1引脚3、电阻R3一端、电容C5负极端、二极管D2正极端连接;所述二极管D2负极端分别与电阻R3另一端、稳压器U1引脚3、二极管D1正极端连接。
在进一步的实施例中,如图4所示,所述气体采集模块包括气体传感器S1、可变电阻RV2、电阻R4、晶体管Q2、电阻R5、电阻R6、二极管D6。
在更进一步的实施例中,所述气体采集模块中所述气体传感器S1引脚1与二极管D6负极端连接;所述气体传感器S1引脚2与可变电阻RV2引脚3连接;所述可变电阻RV2引脚1和引脚2均与电阻R4一端连接;所述电阻R4另一端分别与电阻R6一端、地线GND、晶体管Q2引脚3连接;所述气体传感器S1引脚3与晶体管Q2引脚1连接;所述晶体管Q2引脚2与电阻R5一端连接;所述电阻R5另一端与电阻R6另一端连接。
在进一步的实施例中,如图5所示,所述气体信号调节模块包括电阻R13、电阻R14、运算放大器U3、电阻R16、电阻R15、电容C11、二极管D7、运算放大器U4。
在更进一步的实施例中,所述气体信号调节模块中所述电阻R13一端分别与电阻R5另一端与电阻R6另一端连接 所述电阻R13另一端与运算放大器U3引脚3连接;所述电阻R14一端与地线GND连接;所述电阻R14另一端分别与电阻R16一端、运算放大器U3引脚2连接;所述运算放大器U3引脚7与运算放大器U4引脚7连接;所述运算放大器U3引脚6分别与电阻R15一端、电阻R16另一端连接;所述电阻R15另一端分别与运算放大器U4引脚3、电容C11一端、二极管D7负极端连接;所述电容C11另一端分别与地线GND、二极管D7正极端连接;所述运算放大器U4引脚2与引脚6连接。
在进一步的实施例中,如图6所示,所述红外感应模块包括红外传感器S2、电容C9、电阻R9、电容C8、电阻R10、电容C7、电容C6、电阻R7、运算放大器U5、电阻R8、运算放大器U6、电阻R11、电容C10。
在更进一步的实施例中,所述红外感应模块中所述红外传感器S2引脚1分别与电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电容C9另一端与地线GND连接;所述红外传感器S2引脚2分别与电阻R9一端、电容C8正极端、电阻R10一端连接;所述电容C8负极端分别与电阻R10另一端、地线GND、红外传感器S2引脚3、电容C7负极端、预算放大器U6引脚3连接;所述电阻R9另一端与运算放大器U5引脚3连接;所述运算放大器U5引脚2分别与电阻R7一端、电容C6正极端、电容C7正极端连接;所述运算放大器U5引脚6分别与电阻R8一端、电阻R7另一端、电容C6负极端连接;所述电阻R8另一端分别与运算放大器U6引脚2、电阻R11一端、电容C10一端连接;所述电阻R11另一端与电容C11另一端、运算放大器U6引脚6连接。
在进一步的实施例中,如图2所示,所述控制模块包括电容C1、电容C2、晶体振荡器X1、电容C3、电阻R2、电阻R1、灯LED1、二极管D4、控制器U2。
在更进一步的实施例中,所述控制模块中所述电阻R1一端分别与电容C3一端、控制器U2引脚30、二极管D2负极端、电阻R3另一端、稳压器U1引脚3、二极管D1正极端、二极管D3正极端、二极管D4正极端连接;所述二极管D4负极端分别与红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电阻R1另一端与灯LED1正极端连接;所述灯LED1负极端与控制器U2引脚31连接;所述电容C3另一端分别与电阻R2一端、控制器U2引脚19连接;所述电阻R2另一端与地线GND连接;所述控制器U2引脚9分别与晶体振荡器X1引脚1、电容C1一端连接;所述电容C1另一端与地线GND、电容C2一端连接;所述电容C2另一端分别与晶体振荡器X1引脚2、控制器U2引脚18连接;所述控制器U2引脚6分别与运算放大器U4引脚2、引脚6连接;所述控制器U2引脚1分别与电阻R11另一端、电容C11另一端、运算放大器U6引脚6连接。
在进一步的实施例中,如图7所示,所述声光报警模块包括电阻R12、三极管Q1、二极管D5、灯LED2、灯LED3、扬声器LS1。
在更进一步的实施例中,所述声光报警模块中所述电阻R12一端与控制器U2引脚25连接;所述电阻R12另一端与三极管Q1基极端连接;所述三极管Q1集电极端与二极管D5负极端连接;所述二极管D5正极端分别与二极管D4负极端、红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述三极管Q1发射极端分别与灯LED2正极端、灯LED3正极端、扬声器LS1一端连接;所述扬声器LS1另一端分别与灯LED2负极端、灯LED3负极端、地线GND连接。
在进一步的实施例中,所述电容C4、所述电容C5、所述电容C6、所述电容C7、所述电容C8型号均为电解电容;所述二极管D1、所述二极管D3、所述二极管D4、所述二极管D5、所述二极管D6型号均为稳压二极管;所述三极管Q1型号均为NPN;所述气体传感器S1型号为TGS800;所述红外传感器S2型号为KDS209;所述控制器U2型号为AT8951。
在进一步的实施例中,一种基于物联网的防火报警系统的控制方法,其特征在于以下步骤:
步骤1、通过对获取的市电压进行降压处理,使用电模块工作在安全稳定的电源电压下,因输入的市电压值不是定值,进而无法保障降压后的低电压值的稳定,进而通过稳定器对降压后的低压进行稳定调节,使气体检测电路和红外感应电路工作在稳定的电压下,保持持续的稳电压;
步骤2、接收转换后的稳电压,使气体采集模块工作再稳定的电压下,进一步提高气体检测信号传输的稳定以及响应速度,通过棚内气体的浓度将接收的气体体积分数转化成对应电信号,从而将稳定的电信号传递给下一模块;
步骤3、对气体采集模块反馈的电信号进行调整,截取稳定状态下的电信号,过滤传输电信号中干扰信号,再通过电信号的放大,来提高气体监测报警控制系统的响应,能够对工作状态下出现的低信号进行放大处理,进一步识别报警值的范围;
步骤4、通过接收稳电压使红外感应电路运行,从而对棚内进出口进行热效应感应,感知监测范围内的温度变化,从而截取超出温度监测范围内的报警值,从而将温度报警电信号反馈给控制模块,从而根据控制模块通断控制报警电路的运行;
步骤5、气体采集模块和红外感应模块将转换后的监测信号传输给控制模块,从而通过两线并一线的方式传输,进而减小多余线路的消耗,而再监测信号的输出端串接二极管,进一步阻止两者监测信号的相互影响,从而实现信号的单向传输,从而根据两个监测模块的反应信号进行导通电信号的控制;
步骤6、进而通过三极管获取导通指令使报警电路正负极端得电,进而完成报警系统的运行。
总之,本发明具有以下优点:电源降压模块通过对获取的高电压进行降压调整,进而给气体采集模块、气体信号调节模块、红外感应模块、控制模块和声光报警模块提供启动运行电压,进而使内部元器件工作在安全电压下,而二极管D2控制电压的单向传输,防止断电时电压反向传输造成器件损坏,电容C2用于降低交流脉动波纹系数,进一步提升高效平滑直流输出;而气体采集模块接收电源降压模块的降电压,再通过气体传感器S1对住房环境内的气体进行检测,进而将接收的气体体积分数转化成对应电信号,从而将采集的信号传递给气体信号调节模块,而可变电阻RV2的阻值变化,进而调节采集信号的响应速度;气体信号调节模块得电后对气体采集模块反馈的信号进行调节,进而将检测的电信号转换为稳定的输出电信号,进一步提高气体采集信号的传输,再通过电容C11过滤调节过程中的干扰信号,进而提高采集信号的指令,而二极管D2阻隔外界干扰信号的进入;红外感应模块利用辐射热效应使红外传感器S2接收到辐射能后使内部温度变化,进而将温度变化的参数反馈给控制模块,再通过电阻R7吸收电容C6的储存电能,进而阻止放电电流过大,造成连接器件的损坏;控制模块得电后对气体采集模块和红外感应模块反馈的检测信号进行储存,进而根据信号的传输,从而导通电压传递给声光报警模块,再通过电阻R2和电容C3能够快速启动控制器U2的响应;声光报警模块中三极管Q1通过基极端获取控制模块的导通电压指令,进而实现报警提示。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (8)

  1. 一种基于物联网的防火报警系统,其特征在于,包括以下模块:
    用于对气体的监测、红外的感应以及报警电路的控制提供稳定的低电压的电源降压模块;
    用于对室内产生的气体进行监测,从而将超出报警值的指令传递给下一模块的气体采集模块;
    用于对气体采集模块转换的电信号进行调节、放大,进而提高传输电信号稳定的气体信号调节模块;
    用于对住房的门窗进行监测,通过热效应感知温度的变换的红外感应模块;
    用于接收气体采集模块和红外感应模块的检测信号,然后对接收采集信号进行对比运算、储存,从而使导通电压传递给下一模块的控制模块;
    用于获取导通电压使报警电路获取正负极端电压,进而达到报警提示的声光报警模块。
  2. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述电源降压模块包括变压器T1、桥式稳压二极管TR1、电容C4、稳压器U1、二极管D1、可变电阻RV1、电阻R3、电容C5、二极管D2,其中所述变压器T1引脚3与输入交流220V正极端连接;所述变压器T1引脚4与输入交流电220V负极端连接;所述变压器T1引脚1与桥式稳压二极管TR1引脚连接;所述变压器T1引脚2与桥式稳压二极管TR1引脚4连接;所述桥式稳压二极管TR1引脚1分别与二极管D1负极端、稳压器U1引脚1、电容C4正极端连接;所述桥式稳压二极管C4分别与电容C4负极端、可变电阻RV1引脚1和引脚2、电容C5正极端、地线GND连接;所述稳压器U1引脚2分别与可变电阻RV1引脚3、电阻R3一端、电容C5负极端、二极管D2正极端连接;所述二极管D2负极端分别与电阻R3另一端、稳压器U1引脚3、二极管D1正极端连接。
  3. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述气体采集模块包括气体传感器S1、可变电阻RV2、电阻R4、晶体管Q2、电阻R5、电阻R6、二极管D6,其中所述气体传感器S1引脚1与二极管D6负极端连接;所述气体传感器S1引脚2与可变电阻RV2引脚3连接;所述可变电阻RV2引脚1和引脚2均与电阻R4一端连接;所述电阻R4另一端分别与电阻R6一端、地线GND、晶体管Q2引脚3连接;所述气体传感器S1引脚3与晶体管Q2引脚1连接;所述晶体管Q2引脚2与电阻R5一端连接;所述电阻R5另一端与电阻R6另一端连接。
  4. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述气体信号调节模块包括电阻R13、电阻R14、运算放大器U3、电阻R16、电阻R15、电容C11、二极管D7、运算放大器U4,所述电阻R13一端分别与电阻R5另一端与电阻R6另一端连接 所述电阻R13另一端与运算放大器U3引脚3连接;所述电阻R14一端与地线GND连接;所述电阻R14另一端分别与电阻R16一端、运算放大器U3引脚2连接;所述运算放大器U3引脚7与运算放大器U4引脚7连接;所述运算放大器U3引脚6分别与电阻R15一端、电阻R16另一端连接;所述电阻R15另一端分别与运算放大器U4引脚3、电容C11一端、二极管D7负极端连接;所述电容C11另一端分别与地线GND、二极管D7正极端连接;所述运算放大器U4引脚2与引脚6连接。
  5. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述红外感应模块包括红外传感器S2、电容C9、电阻R9、电容C8、电阻R10、电容C7、电容C6、电阻R7、运算放大器U5、电阻R8、运算放大器U6、电阻R11、电容C10,其中所述红外传感器S2引脚1分别与电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电容C9另一端与地线GND连接;所述红外传感器S2引脚2分别与电阻R9一端、电容C8正极端、电阻R10一端连接;所述电容C8负极端分别与电阻R10另一端、地线GND、红外传感器S2引脚3、电容C7负极端、预算放大器U6引脚3连接;所述电阻R9另一端与运算放大器U5引脚3连接;所述运算放大器U5引脚2分别与电阻R7一端、电容C6正极端、电容C7正极端连接;所述运算放大器U5引脚6分别与电阻R8一端、电阻R7另一端、电容C6负极端连接;所述电阻R8另一端分别与运算放大器U6引脚2、电阻R11一端、电容C10一端连接;所述电阻R11另一端与电容C11另一端、运算放大器U6引脚6连接。
  6. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述控制模块包括电容C1、电容C2、晶体振荡器X1、电容C3、电阻R2、电阻R1、灯LED1、二极管D4、控制器U2,其中所述电阻R1一端分别与电容C3一端、控制器U2引脚30、二极管D2负极端、电阻R3另一端、稳压器U1引脚3、二极管D1正极端、二极管D3正极端、二极管D4正极端连接;所述二极管D4负极端分别与红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述电阻R1另一端与灯LED1正极端连接;所述灯LED1负极端与控制器U2引脚31连接;所述电容C3另一端分别与电阻R2一端、控制器U2引脚19连接;所述电阻R2另一端与地线GND连接;所述控制器U2引脚9分别与晶体振荡器X1引脚1、电容C1一端连接;所述电容C1另一端与地线GND、电容C2一端连接;所述电容C2另一端分别与晶体振荡器X1引脚2、控制器U2引脚18连接;所述控制器U2引脚6分别与运算放大器U4引脚2、引脚6连接;所述控制器U2引脚1分别与电阻R11另一端、电容C11另一端、运算放大器U6引脚6连接。
  7. 根据权利要求1所述的一种基于物联网的防火报警系统,其特征在于,所述声光报警模块包括电阻R12、三极管Q1、二极管D5、灯LED2、灯LED3、扬声器LS1,其中所述电阻R12一端与控制器U2引脚25连接;所述电阻R12另一端与三极管Q1基极端连接;所述三极管Q1集电极端与二极管D5负极端连接;所述二极管D5正极端分别与二极管D4负极端、红外传感器S2引脚1、电容C9一端、运算放大器U5引脚7、运算放大器U6引脚4、二极管D6正极端连接;所述三极管Q1发射极端分别与灯LED2正极端、灯LED3正极端、扬声器LS1一端连接;所述扬声器LS1另一端分别与灯LED2负极端、灯LED3负极端、地线GND连接。
  8. 一种基于物联网的防火报警系统的控制方法,其特征在于以下步骤:
    步骤1、通过对获取的市电压进行降压处理,使用电模块工作在安全稳定的电源电压下,因输入的市电压值不是定值,进而无法保障降压后的低电压值的稳定,进而通过稳定器对降压后的低压进行稳定调节,使气体检测电路和红外感应电路工作在稳定的电压下,保持持续的稳电压;
    步骤2、接收转换后的稳电压,使气体采集模块工作再稳定的电压下,进一步提高气体检测信号传输的稳定以及响应速度,通过棚内气体的浓度将接收的气体体积分数转化成对应电信号,从而将稳定的电信号传递给下一模块;
    步骤3、对气体采集模块反馈的电信号进行调整,截取稳定状态下的电信号,过滤传输电信号中干扰信号,再通过电信号的放大,来提高气体监测报警控制系统的响应,能够对工作状态下出现的低信号进行放大处理,进一步识别报警值的范围;
    步骤4、通过接收稳电压使红外感应电路运行,从而对棚内进出口进行热效应感应,感知监测范围内的温度变化,从而截取超出温度监测范围内的报警值,从而将温度报警电信号反馈给控制模块,从而根据控制模块通断控制报警电路的运行;
    步骤5、气体采集模块和红外感应模块将转换后的监测信号传输给控制模块,从而通过两线并一线的方式传输,进而减小多余线路的消耗,而再监测信号的输出端串接二极管,进一步阻止两者监测信号的相互影响,从而实现信号的单向传输,从而根据两个监测模块的反应信号进行导通电信号的控制;
    步骤6、进而通过三极管获取导通指令使报警电路正负极端得电,进而完成报警系统的运行。
PCT/CN2020/111733 2020-08-26 2020-08-27 一种基于物联网的防火报警系统及其控制方法 WO2022041038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010866726.9A CN112200999A (zh) 2020-08-26 2020-08-26 一种基于物联网的防火报警系统及其控制方法
CN202010866726.9 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041038A1 true WO2022041038A1 (zh) 2022-03-03

Family

ID=74006279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111733 WO2022041038A1 (zh) 2020-08-26 2020-08-27 一种基于物联网的防火报警系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112200999A (zh)
WO (1) WO2022041038A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038718A1 (en) * 2000-03-08 2003-02-27 Torsten Clauss Method and device for the early detectiion of fire and for fighting fire indoors and outdoors, especially in living areas, of homes and buildings
CN201622665U (zh) * 2010-02-10 2010-11-03 西安博康电子有限公司 基于机械式感温元件的点式复合火灾探测器
CN104043218A (zh) * 2014-05-26 2014-09-17 国家电网公司 变电站电缆预警与消防综合系统及其敷设方法
CN205177045U (zh) * 2015-11-24 2016-04-20 贾如春 基于物联网的火灾预警系统
CN107103734A (zh) * 2017-03-17 2017-08-29 江苏科华智能控制设备有限公司 一种智能气体检测报警装置
CN107301757A (zh) * 2017-06-07 2017-10-27 广西科技大学鹿山学院 一种厨房燃气报警检测装置及其报警检测方法
CN207397445U (zh) * 2017-10-12 2018-05-22 新疆利安消防产业集团有限公司 一种消防报警装置
CN108091095A (zh) * 2017-12-18 2018-05-29 广州市景彤机电设备有限公司 一种大范围火警监控系统
CN109781651A (zh) * 2019-03-04 2019-05-21 宁波舜宇红外技术有限公司 一种气体检测单元及红外燃气报警器
CN209357199U (zh) * 2019-01-21 2019-09-06 山东科技大学 一种无线火灾报警器
CN111063154A (zh) * 2019-12-10 2020-04-24 金陵科技学院 一种基于物联网的家庭智能消防系统的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426753B (zh) * 2011-11-21 2013-07-17 上海大学 红外多参数火气探测器
CN204288409U (zh) * 2014-12-26 2015-04-22 温州高新技术产业开发区聚智汇科技信息咨询服务中心 一种防盗报警器
CN109117682A (zh) * 2017-06-23 2019-01-01 杨桂凤 一种积分电路
CN107733228A (zh) * 2017-10-27 2018-02-23 成都悦翔翔科技有限公司 一种输出电压可调式稳压电源
KR102087000B1 (ko) * 2019-08-13 2020-05-29 주식회사 지에스아이엘 화재 감지 방법 및 시스템
CN211319100U (zh) * 2020-03-06 2020-08-21 南京白牙智能科技有限公司 一种激振器功率调节保护电路

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038718A1 (en) * 2000-03-08 2003-02-27 Torsten Clauss Method and device for the early detectiion of fire and for fighting fire indoors and outdoors, especially in living areas, of homes and buildings
CN201622665U (zh) * 2010-02-10 2010-11-03 西安博康电子有限公司 基于机械式感温元件的点式复合火灾探测器
CN104043218A (zh) * 2014-05-26 2014-09-17 国家电网公司 变电站电缆预警与消防综合系统及其敷设方法
CN205177045U (zh) * 2015-11-24 2016-04-20 贾如春 基于物联网的火灾预警系统
CN107103734A (zh) * 2017-03-17 2017-08-29 江苏科华智能控制设备有限公司 一种智能气体检测报警装置
CN107301757A (zh) * 2017-06-07 2017-10-27 广西科技大学鹿山学院 一种厨房燃气报警检测装置及其报警检测方法
CN207397445U (zh) * 2017-10-12 2018-05-22 新疆利安消防产业集团有限公司 一种消防报警装置
CN108091095A (zh) * 2017-12-18 2018-05-29 广州市景彤机电设备有限公司 一种大范围火警监控系统
CN209357199U (zh) * 2019-01-21 2019-09-06 山东科技大学 一种无线火灾报警器
CN109781651A (zh) * 2019-03-04 2019-05-21 宁波舜宇红外技术有限公司 一种气体检测单元及红外燃气报警器
CN111063154A (zh) * 2019-12-10 2020-04-24 金陵科技学院 一种基于物联网的家庭智能消防系统的方法

Also Published As

Publication number Publication date
CN112200999A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN202991562U (zh) 一种基于单片机的智能风扇控制系统
CN203500077U (zh) 基于热释人体红外的风扇智能温控系统
CN105228312A (zh) 一种led照明的智能控制系统
CN205029938U (zh) 一种led照明的智能控制系统
CN203965915U (zh) 家庭浴室智能控制系统
WO2020052223A1 (zh) 恒功率led驱动电路及led驱动电源
CN103835976A (zh) 一种基于单片机的智能风扇控制系统
CN103327699A (zh) 一种多参数联动控制的智能led植物生长灯
CN209170710U (zh) 一种双路调光电路
CN102404921B (zh) 输出电流可调的智能恒流供电装置
CN102404920A (zh) 一种输出电流可调的智能恒流供电装置
WO2022041038A1 (zh) 一种基于物联网的防火报警系统及其控制方法
CN204634702U (zh) 一种基于红外检测技术的养鸡场安全防护装置
CN204679888U (zh) 一种基于led光源的温室光环境控制装置
CN201063915Y (zh) 发光二极管驱动终端
CN112185049A (zh) 一种基于物联网的安防自动控制报警系统及其控制方法
CN116321583B (zh) 一种包含D4i功能的DALI恒压电源
CN208621708U (zh) 一种市电掉电信号传输电路
CN203690702U (zh) 红外传感器激光管驱动电路
CN204178218U (zh) 一种试验厅环境智能监测及调控系统
CN215450005U (zh) 一种基于tec的大功率恒温控制系统
CN105425867A (zh) 一种低功率恒温控制电路
CN105388935A (zh) 一种禽蛋孵化用恒温控制装置
CN210835761U (zh) 畜禽养殖场监控系统
CN206946843U (zh) 一种节能、智能化安全指示牌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950710

Country of ref document: EP

Kind code of ref document: A1