WO2022040961A1 - Power-efficient network state - Google Patents

Power-efficient network state Download PDF

Info

Publication number
WO2022040961A1
WO2022040961A1 PCT/CN2020/111266 CN2020111266W WO2022040961A1 WO 2022040961 A1 WO2022040961 A1 WO 2022040961A1 CN 2020111266 W CN2020111266 W CN 2020111266W WO 2022040961 A1 WO2022040961 A1 WO 2022040961A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
message
state
periodicity
wake
Prior art date
Application number
PCT/CN2020/111266
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/111266 priority Critical patent/WO2022040961A1/en
Publication of WO2022040961A1 publication Critical patent/WO2022040961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates to wireless communications, including a power-efficient network state.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station may consume significant amounts of power. Techniques for reducing power consumption at a base station may be desired.
  • a base station may monitor the operating statuses of user equipments (UEs) served by the base station to determine an appropriate time to enter a power-efficient state. For example, the base station may determine the operating statuses of the UEs based on the reception, or lack thereof, of data transmissions, heartbeat signals, and/or requests for the base station to enter the power-efficient state. If none of the UEs are in an operating state that relies on connectivity provided by the base station, the base station may enter the power-efficient mode. While in the power-efficient state, the base station may suspend some or all services and may power down some or all components. The base station may periodically restore suspended services, power up components that had been powered down, and monitor for wakeup messages. Upon receipt of a wakeup message, the base station may leave the power-efficient state for an indefinite amount of time.
  • UEs user equipments
  • a method of wireless communication at a base station may include operating in a first state in which the base station provides connection services for a set of user equipments (UEs) , receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended, and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • UEs user equipments
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to operate in a first state in which the base station provides connection services for a set of user equipments (UEs) , receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, enter, based on the message, the second state in which connection services are suspended, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • UEs user equipments
  • the apparatus may include means for operating in a first state in which the base station provides connection services for a set of user equipments (UEs) , receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended, and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • UEs user equipments
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to operate in a first state in which the base station provides connection services for a set of user equipments (UEs) , receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, enter, based on the message, the second state in which connection services are suspended, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • UEs user equipments
  • a method of wireless communication at a UE may include communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the apparatus may include means for communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • FIG. 1 illustrates an example of a system for wireless communications that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • FIGs. 12 and 13 show flowcharts illustrating methods that support a power-efficient network state in accordance with aspects of the present disclosure.
  • a base station may continuously make connection services (e.g., synchronization services, access services, mobility services, paging services, uplink and downlink data services) available regardless of the demand for such services. For example, a base station may perpetually provide connection services to a collection of user equipments (UEs) even during periods of time in which UEs have no need for the connection services.
  • UEs user equipments
  • a base station serving a collection of machine-type-communications (MTC) UEs e.g., in a massive MTC (mMTC) environment, such as a factory
  • MTC machine-type-communications
  • mMTC massive MTC
  • a base station may strategically enter a power-efficient state in which some or all connection services are suspended and the base station powers off some or all components.
  • the base station may periodically leave the power-efficient state by powering on various components and providing at least some, if not all, connection services for a period of time before re-entering the power-efficient state.
  • Periodically leaving the power-efficient state may also allow the base station to monitor for wakeup messages, the receipt of which may trigger the base station to leave the power-efficient state permanently, or at least until a subsequent lack of demand is detected.
  • the UEs served by a base station may transmit to the base station various signals that assist with appropriate entrance into the power-efficient state. For example, in between transmissions to the base station, a UE may periodically transmit a “heartbeat” signal (or “living” signal) that informs the base station that the UE still desires the connection services provided by the base station, current inactivity notwithstanding. If the UE determines that the UE will not use the connection services for a period of time (e.g., because the UE is entering a low power mode) , the UE may transmit to the base station a message (or “power-efficient state request” ) that requests the base station to enter the power-efficient state.
  • a message or “power-efficient state request”
  • a base station may determine an opportune time to enter the power-efficient state based on the living signals and the power-efficient state requests by client UEs. In some examples, the base station may also monitor the timing of data transmissions of the client UEs to assist with the determination to enter the power-efficient state.
  • aspects of the disclosure are initially described in the context of wireless communications systems. A specific example is then described in the context of a process flow that depicts a collection of operations for a base station entering a power-efficient state. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a power-efficient network state.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may be configured to perpetually provide connectivity to devices in the wireless communications system 100.
  • a base station 105 may be configured to continuously make available various services such as synchronization services, random access services, mobility services, paging services, and data services (e.g., uplink and downlink communications) , among others. Such services may involve transmitting and receiving various control signals and data signals and supplying power to various components.
  • connection services Collectively, the services provided by a base station 105 for UEs 115 may be referred to as connection services. To ensure connectivity at any given time throughout the day, a base station 105 may continuously provide connection services even if there is no current demand for the connection services.
  • a base station 105 may be configured to enter a power-efficient state when the base station 105 detects a lack of demand for connection services.
  • the base station 105 may suspend the provision of various connection services and power down various components, thereby saving power.
  • the base station 105 may periodically resume some or all of the connection services and power up some or all of the components for various reasons. For example, the base station 105 may periodically listen for a wake-up message and/or periodically broadcast a synchronization signal to ensure that the UEs 115 can maintain synchronicity with the base station 105.
  • the base station 105 may monitor various signals from UEs 115 served by the base station 105. Such UEs 115 may be referred to herein as client UEs. As an example, the base station 105 may monitor data transmissions from the client UEs, heartbeat signal transmissions from the client UEs, and power-efficient state request transmissions from the client UEs to determine an appropriate time to enter the power-efficient state.
  • a data transmission may refer to transmission that conveys data from a UE.
  • a heartbeat signal transmission may refer to a transmission that indicates the presence and status, state, or mode of a UE.
  • a power-efficient state request transmission may refer to a transmission that requests the base station 105 enter into the power-efficient state.
  • a base station 105 may determine when to enter the power-efficient state. For example, the base station 105 may determine to enter the power efficient state when all of the client UEs served by the base station 105 have either transmitted a power-efficient state request transmission or ceased data transmissions and heartbeat transmissions for a threshold period of time. Thus, the base station 105 may enter the power-efficient state when there is a pause in demand, which may conserve power at the base station 105.
  • the power-efficient state described herein may be referred to as a power-efficient mode, a sleep state, a sleep mode, a discontinuous state, a discontinuous mode, a low or reduced power state, or a low or reduced power mode, among other suitable terminology. Additionally, the power-efficient state may be defined to exclude or include the periodic awakenings (e.g., the cyclical monitoring for wakeup messages, resumption of various connection services, and powering on of various components) .
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • Wireless communications system 200 may include a base station 205 and UEs 215, which may be examples of a base station and UEs described with reference to FIG. 1.
  • Base station 205 may communicate with the UEs 215 over respective communication links (such as communication link 220) when the UEs 215 are within coverage area 210, as described with reference to FIG. 1.
  • base station 205 may relay control information and/or data information from one UE 215 to the other UE 215.
  • the UEs 215 may be MTC devices, such as sensors or machines in a factory.
  • MTC devices such as sensors or machines in a factory.
  • the techniques described herein are not limited to MTC devices.
  • the base station 205 when the base station 205 is small cell may be encompass a factory, arena, office building, home, or other structure.
  • the techniques described herein are not limited to these examples.
  • the base station 205 may provide connection services for UEs 215 within the coverage area 210.
  • the bases station 205 may provide synchronization services, random access services, mobility services, paging services, and data services (e.g., uplink and downlink communications) , among other services.
  • Provision of synchronization services may involve the base station 205 transmitting (e.g., broadcasting) synchronization signals (e.g., synchronization signal blocks (SSBs) ) that enable a UE 215 to synchronize with the base station 105 in time and frequency.
  • the base station 205 may be configured to provide connection services continuously, regardless of demand for such services. For example, despite a lack of demand from the UEs 215, the base station 205 may continue to transmit certain signals, such as synchronization signals, and keep various components powered on, such as a transceiver.
  • a base station 205 may save power by strategically entering a power-efficient state when the base station 205 detects a lack of activity from the UEs 215.
  • the base station 205 may suspend some of all of its connection services and power down some or all of its components.
  • the base station 205 may detect a lack of activity by monitoring power-efficient state requests from the UEs 215, data transmissions from the UE 215, and heartbeat signal transmissions from the UEs 215.
  • the base station 205 may ensure that the base station 205 does not accidentally enter the power-efficient state when a UE 215 is still in need of connection services (but, for whatever reason, has not been actively communicating with the base station 205 for some time) .
  • a UE 215 may be configured to periodically transmit a heartbeat signal, such as heartbeat signal 225, when the UE 215 has been idle (e.g., has not communicated with the base station 205) for a threshold period of time but is not in a low power mode (e.g., a mode in which various components are powered down and various activities, such as over-the-air communication, are suspended or performed discontinuously) .
  • a heartbeat signal such as heartbeat signal 225
  • Such a UE may be referred to as being in an active state, and the term active state may also apply to a UE that has transmitted data to (or requested data from) the base station 205 within a threshold period of time.
  • the base station 205 may classify a UE 215 as being in an active state or inactive state (e.g., low power state) based on transmissions from the UE 215. Put another way, the base station 205 may determine the operating status of a UE 215.
  • the base station 205 may determine the operating status of a UE 215 based on a power-efficient state request, such as the power-efficient state request 230, received from the UE 215.
  • a UE 215 may be configured to transmit a power-efficient state request when the UE 215 determines that it will cease working and/or enter a lower power mode for a threshold duration of time.
  • the UE 215 may include a preferred wake-up cycle or periodicity for the base station 205 to follow. The UE 215 may determine the wake-up cycle based on the expected or anticipated communication needs of the UE 215, and/or based on a work schedule of the UE 215, among other factors.
  • the base station 205 may determine to enter the power-efficient state based on the operating status of the UEs 215.
  • the base station 205 may receive a data transmission from UE 215-a, a power-efficient state request from UE 215-b, and a heartbeat signal 225 from UE 215-c. Based on these signals, the base station 205 may determine that UE 215-a and UE 215-c are in an active state and that UE 215-b is in an inactive state (e.g., the base station 205 may determine that UE 215-a is in a low power mode, or will be in the low power mode within a threshold amount of time) .
  • the base station 205 may refrain from entering the power-efficient state, at least because UE 215-a and UE 215-b are still relying on connectivity provided by the base station 205. However, the base station 205 may continue to monitor the operating statuses of UE 215-a and UE 215-c and, upon determining that a threshold amount of time has expired since either UE 215-a or UE 215-c transmitted data or a heartbeat signal, may enter the power-efficient state.
  • the base station 205 may strategically enter the power-efficient state by monitoring the operating statuses of the UEs 215, which in turn may be configured to assist the base station 205 by transmitting heartbeat signals and power-efficient state requests. It should be appreciated that although the UEs 215 are shown transmitting certain signals, any of the UEs 215 may transmit any of the signals described herein.
  • FIG. 3 illustrates an example of a process flow 300 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communications system 100 or 200.
  • process flow 300 may be implemented by a base station 305 and UEs 310, which may be examples of a base station and UEs as described herein.
  • the base station 305 may enter a first state of operation.
  • the base station 305 may have various components (e.g., receivers, transmitters, transceivers, processors) powered on and may provide a full range of connection services for client UEs, such as UE 310-a and UE 310-b.
  • client UEs such as UE 310-a and UE 310-b.
  • the base station 305 may monitor communications from the UEs 310 (and thus their operating statuses) so that the base station 305 can determine an appropriate time to enter a second state, such as a power efficient state.
  • the UE 310-a may transmit data to the base station 305. Additionally or alternatively, the UE 310-a may receive data from the base station 305. At 330, the UE 310-b may transmit a heartbeat signal. The UE 310-a may transmit the heartbeat signal based on determining that although currently idle (e.g., not communicating with the base station 305) , the UE 310-a is not yet in a lower power state and/or expects to use the services provided by the base station 305 within a threshold amount of time.
  • the UE 310-a may determine that it is going to enter an inactive state (e.g., a low power state and/or a state in which interactions with the base station 305 are suspended) for a threshold duration of time. For example, the UE 310-a may determine that the UE 310-a is going to enter sleep mode for a threshold duration of time.
  • the UE 310-a may transmit a message that requests that the base station 305 enter a second state, such as a power-efficient state. The UE 310-a may transmit the message based on the UE 310-a determining that it is going to enter the inactive state for the threshold duration of time.
  • the message may include an indication of the periodicity the base station 305 is to use to periodically wake up.
  • the UE 310-a may determine the periodicity based on the anticipated needs of the UE 310-a.
  • the UE 310-a may enter the inactive state. For example, the UE 310-a may enter a low power mode in which various components of the UE 310-a are powered down and/or the UE 310-a may suspend interaction (the transmission and receipt of signals) with the base station 305.
  • the UE 310-a may transmit one or more heartbeat signals to inform the base station 305 of the status of the UE 310-a. However, the UE 310-a may suspend heartbeat signal transmissions after determining to enter the inactive state.
  • the UE 310-b may transmit another heartbeat signal to indicate that the UE 310-b is still in the active state.
  • the UE 310-b may transmit the heartbeat signal based on the UE 310-b determining that a threshold amount of time has expired since the UE 310-b last transmitted a data transmission or heartbeat signal.
  • the heartbeat signals transmitted at 330 and 350 may be transmitted according to a periodicity.
  • the UE 310-b may stop heartbeat signaling. For example, the UE 310-b may malfunction, be manually powered down, be disabled, or be removed from the coverage area of the base station 305.
  • the base station 305 may continually update a record of the operating statuses of the UEs 310 so that the base station 305 can determine an appropriate time to enter the second state.
  • the base station 305 may determine the operating statuses of the UEs 310 based on the timing and types of transmissions from the UEs 310. For example, leading up to 360, the base station 305 may determine (e.g., based on the state request message received at 340) that the UE 310-a is in an inactive state and determine (based on the heartbeat signal at 350) that the UE 310-b is in an active state.
  • the base station may refrain from entering the second state-state request message from the UE 310-a notwithstanding-because at least one client UE (e.g., UE 310-b) is in the active state. It should be appreciated that the operating status of a UE 310 may be different from the RRC mode of the UE 310.
  • the base station 305 may determine to enter the second state.
  • the base station 365 may determine to enter the second state based on determining that no UE 310 is in the active state. Put another way, the base station 305 may determine to enter the second state based on determining that none of the UEs 310 are in an operating state that relies on connectivity from the base station 305.
  • the base station 305 may detect such lack of demand by determining that all of its client UEs 310 have either transmitted a state request or ceased communications (data transmission, heartbeat transmissions) for a threshold duration of time.
  • the base station 305 may determine to enter the second state based on determining that the UE 310-a sent a state request at 340 and the UE 310-b has not transmitted a heartbeat signal (or any type of transmission) since 355. Accordingly, at 370, the base station 305 may enter the second state.
  • the base station 305 may power down various components (e.g., receivers, transmitters, transceivers, processors) and suspend some or all connection services. For example, the base station 305 may power down various components and suspend some or all connection services for duration 375. In some examples, the base station 305 may be completely powered down for duration 375. However, the base station 305 may periodically or cyclically monitor for wakeup messages. For example, after duration 375 has elapsed, the base station 305 may monitor for wakeup messages during duration 380. During duration 380, the base station 305 may also provide various connection services, which may involve powering up some components previously powered down during duration 375.
  • various components e.g., receivers, transmitters, transceivers, processors
  • the base station 305 may power up a transceiver or transmitter to broadcast one or more synchronization signals during duration 380 so that the UEs 310 can remain synchronized with the base station 305. It should be appreciated that the connection services provided by the base station 305 during duration 380 may be limited relative to the connection services provided by the base station 305 in the first state.
  • the base station 305 may repeat the operations at 375 and 380 until a wakeup message is received. Thus, the base station 305 may periodically monitor for wakeup messages while in the second state.
  • the periodicity with which the base station 305 monitors for wakeup messages may be determined based on periodicities indicated in state request messages. For example, if the base station 305 receives multiple state request messages indicating multiple different periodicities, the base station 305 may select the shortest periodicity for monitoring for wakeup messages. This way, the base station 305 can ensure that the needs of all UEs 310 (including the highest-maintenance UE 310) are met.
  • the base station 305 may include a timer for determining when to monitor for wakeup messages.
  • the UE 310-a may enter an active state (e.g., the UE 310-a may leave low power mode and start to perform various tasks, or the UE 310-a may determine to start communicating with the base station 305) .
  • the UE 310-a may transmit, and the base station 305 may receive, a wakeup request message that requests the base station 305 to enter the first state.
  • the UE 310-a may transit the wakeup request message based on entering the active state and/or based on determining that the UE 310-a has data for the base station 305 (or some other need for connection services) .
  • the base station 305 may be able to receive the wakeup request message because the base station 305 is monitoring for the wakeup request message according to the determined periodicity.
  • the UE 310-a may wait to send the wakeup request message until the UE 310-a receives signaling (e.g., a synchronization signal) from the base station 305 indicating that the base station 305 is monitoring for the wakeup signal.
  • the UE 310-a may periodically transmit the wakeup request message to ensure that the base station 305 eventually receives the wakeup request message.
  • the base station may enter the first state 395 based on receipt of the wakeup request message at 390.
  • the base station 305 may refrain from monitoring for a wakeup request message and instead autonomously enter the first state. For example, the base station 305 may wakeup after a threshold amount of time has expired since the base station 305 entered the second state.
  • a threshold amount of time may be expired since the base station 305 entered the second state.
  • such a technique may be inflexible and may be unreliable if the timer on the base station 305 is inaccurate over long periods of time.
  • the UEs 310 and the base station 305 may work together to ensure that the base station 305 enters, and leaves, a power-efficient state at appropriate times. It should be appreciated that although the UEs 310 are shown transmitting certain signals, any of the UEs 310 may transmit any of the signals described herein.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 535.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a communication component 520, a state manager component 525, and a transmission component 530.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the communication component 520 may communicate with a base station that provides connection services for a set of UEs that includes the UE.
  • the state manager component 525 may determine to enter a low power state in which communications with the base station are suspended.
  • the transmission component 530 may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the transmitter 535 may transmit signals generated by other components of the device 505.
  • the transmitter 535 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 535 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a communication component 610, a state manager component 615, a transmission component 620, a synchronization component 625, a periodicity component 630, a data component 635, and a timing component 640. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communication component 610 may communicate with a base station that provides connection services for a set of UEs that includes the UE. In some examples, the communication component 610 may communicate with the base station based at least in transmitting the wake-up message.
  • the state manager component 615 may determine to enter a low power state in which communications with the base station are suspended. In some examples, the state manager component 615 may leave the low power state after a duration of time.
  • the transmission component 620 may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the transmission component 620 may periodically transmit to the base station a heartbeat signal message that indicates the UE is in an active state.
  • the transmission component 620 may perform data transmissions to the base station as part of communicating with the base station, where the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  • the transmission component 620 may transmit to the base station, based on leaving the lower power state, a wake-up message that requests the base station leave the low power state.
  • the synchronization component 625 may determine that the base station has entered the low power state based on a suspension of synchronization signal block transmissions. In some examples, the synchronization component 625 may determine that synchronization signal block transmissions have resumed at least temporarily. In some examples, the synchronization component 625 may synchronize with the base station based on the resumed synchronization block transmissions, where the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  • the periodicity component 630 may determine the periodicity with which the base station is to periodically monitor for a wake-up signal.
  • the data component 635 may determine that the UE has data for the base station after leaving the low power state, where the wake-up message is transmitted based on determining that the UE has data for the base station, and where communicating with the base station includes transmitting the data to the base station.
  • the timing component 640 may determine that the UE will be in the low power state for a threshold duration of time, where the message is transmitted based on determining that the UE will be in the low power state for the threshold duration of time.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include RAM and ROM.
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting power-efficient network state) .
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may operate in a first state in which the base station provides connection services for a set of UEs, enter, based on the message, the second state in which connection services are suspended, receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 935.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include a state manager component 920, a reception component 925, and a monitoring component 930.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the state manager component 920 may operate in a first state in which the base station provides connection services for a set of UEs and enter, based on the message, the second state in which connection services are suspended.
  • the reception component 925 may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message.
  • the monitoring component 930 may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • the transmitter 935 may transmit signals generated by other components of the device 905.
  • the transmitter 935 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 935 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include a state manager component 1010, a reception component 1015, a monitoring component 1020, a transmission component 1025, a timing component 1030, and a periodicity component 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the state manager component 1010 may operate in a first state in which the base station provides connection services for a set of UEs. In some examples, the state manager component 1010 may enter, based on the message, the second state in which connection services are suspended. In some examples, the state manager component 1010 may enter the first state based on receiving the wake-up signal. In some cases, the base station powers down a set of components in the second state.
  • the reception component 1015 may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message. In some examples, the reception component 1015 may receive, on a periodic basis from a UE of the set of UEs, a heartbeat signal message that indicates the UE is in an active state. In some examples, the reception component 1015 may receive a second message that requests the base station enter a second state, where the base station enters the second state based on receiving the second message.
  • receiving multiple messages requesting the base station enter the second state, where the message is one of the multiple messages and where each message of the multiple messages includes an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities.
  • the reception component 1015 may receive the wake-up message based on periodically monitoring for the wake-up signal.
  • the monitoring component 1020 may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • the transmission component 1025 may broadcast a synchronization signal block when the UE periodically monitors for the wake-up message.
  • the timing component 1030 may determine that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, where the base station enters the second state based on the determination. In some examples, the timing component 1030 may determine that a threshold amount of time has elapsed since the base station last received a communication from a UE of the set of the UEs, where the base station enters the second state based on the determination.
  • the periodicity component 1035 may determine that the first periodicity is shorter than the second periodicity. In some examples, the periodicity component 1035 may determine to periodically monitor for the wake-up message according to the first periodicity based on first periodicity being shorter than the second periodicity. In some examples, the periodicity component 1035 may select a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
  • buses e.g., bus 1150
  • the communications manager 1110 may operate in a first state in which the base station provides connection services for a set of UEs, enter, based on the message, the second state in which connection services are suspended, receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • the network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting power-efficient network state) .
  • the inter-station communications manager 1145 may manage communications with other base station 105 and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may operate in a first state in which the base station provides connection services for a set of UEs.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a state manager component as described with reference to FIGs. 8 through 11.
  • the base station may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a reception component as described with reference to FIGs. 8 through 11.
  • the base station may enter, based on the message, the second state in which connection services are suspended.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a state manager component as described with reference to FIGs. 8 through 11.
  • the base station may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a monitoring component as described with reference to FIGs. 8 through 11.
  • an apparatus as described herein may perform a method or methods, such as the method 1200.
  • the apparatus may include features, means, or instructions (e.g., a non-transitory computer-readable medium storing instructions executable by a processor) for operating in a first state in which the base station provides connection services for a set of UEs, receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended, and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for broadcasting a synchronization signal block when the UE periodically monitors for the wake-up message.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, where the base station enters the second state based at least in part on the determination.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, where the base station enters the second state based at least in part on the determination.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving a second message that requests the base station enter a second state, where the base station enters the second state based at least in part on receiving the second message.
  • the periodicity of the message is a first periodicity and the second message indicates a second periodicity.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that the first periodicity is shorter than the second periodicity.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving multiple messages requesting the base station enter the second state, where the message is one of the multiple messages and where each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for selecting a shortest UE- specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  • Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving the wake-up message based at least in part on periodically monitoring for the wake-up signal. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for entering the first state based at least in part on receiving the wake-up signal. In some examples of the method 1200 and the apparatus described herein, the base station powers down a plurality of components in the second state.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports a power-efficient network state in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may communicate with a base station that provides connection services for a set of UEs that includes the UE.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a communication component as described with reference to FIGs. 4 through 7.
  • the UE may determine to enter a low power state in which communications with the base station are suspended.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a state manager component as described with reference to FIGs. 4 through 7.
  • the UE may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a transmission component as described with reference to FIGs. 4 through 7.
  • an apparatus as described herein may perform a method or methods, such as the method 1300.
  • the apparatus may include features, means, or instructions (e.g., a non-transitory computer-readable medium storing instructions executable by a processor) for communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that synchronization signal block transmissions have resumed at least temporarily. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for synchronizing with the base station based at least in part on the resumed synchronization block transmissions, where the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for periodically transmitting to the base station a heartbeat signal message that indicates the UE is in an active state.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for performing data transmissions to the base station as part of communicating with the base station, where the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining the periodicity with which the base station is to periodically monitor for a wake-up signal.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for leaving the low power state after a duration of time. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for transmitting to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for communicating with the base station based at least in transmitting the wake-up message.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the UE has data for the base station after leaving the low power state, where the wake-up message is transmitted based at least in part on determining that the UE has data for the base station, and where communicating with the base station comprises transmitting the data to the base station.
  • Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the UE will be in the low power state for a threshold duration of time, where the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station may monitor the operating statuses of user equipments (UEs) that it serves to determine an appropriate time to enter a power-efficient state. For example, the base station may determine the operating statuses of the UEs based on the reception, or lack thereof, of data transmissions, heartbeat signals, and/or requests for the base station to enter the power-efficient state. If none of the UEs are in an operating state that relies on connectivity provided by the base station, the base station may enter the power-efficient mode. While in the power-efficient state, the base station may suspend some or all services and may power down some or all components. The base station may periodically restore suspended services, power up powered down components, and monitor for wakeup messages. Upon receipt of a wakeup message, the base station may leave the power-efficient state for an indefinite amount of time.

Description

POWER-EFFICIENT NETWORK STATE
FIELD OF TECHNOLOGY
The following relates to wireless communications, including a power-efficient network state.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless networks, a base station may consume significant amounts of power. Techniques for reducing power consumption at a base station may be desired.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support a power-efficient network state. A base station may monitor the operating statuses of user equipments (UEs) served by the base station to determine an appropriate time to enter a power-efficient state. For example, the base station may determine the operating statuses of the UEs based on the reception, or lack thereof, of data transmissions, heartbeat signals, and/or requests for the base station to enter the power-efficient state. If none of the UEs are in an operating state that relies on connectivity provided  by the base station, the base station may enter the power-efficient mode. While in the power-efficient state, the base station may suspend some or all services and may power down some or all components. The base station may periodically restore suspended services, power up components that had been powered down, and monitor for wakeup messages. Upon receipt of a wakeup message, the base station may leave the power-efficient state for an indefinite amount of time.
A method of wireless communication at a base station is described. The method may include operating in a first state in which the base station provides connection services for a set of user equipments (UEs) , receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended, and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to operate in a first state in which the base station provides connection services for a set of user equipments (UEs) , receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, enter, based on the message, the second state in which connection services are suspended, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for operating in a first state in which the base station provides connection services for a set of user equipments (UEs) , receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended,  and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to operate in a first state in which the base station provides connection services for a set of user equipments (UEs) , receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, enter, based on the message, the second state in which connection services are suspended, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
A method of wireless communication at a UE is described. The method may include communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base  station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports a power-efficient network state in accordance with aspects of the present disclosure.
FIGs. 12 and 13 show flowcharts illustrating methods that support a power-efficient network state in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a base station may continuously make connection services (e.g., synchronization services, access services, mobility services, paging services, uplink and downlink data services) available regardless of the demand for such services. For example, a base station may perpetually provide connection services to a collection of user equipments (UEs) even during periods of time in which UEs have no need for the connection services. As an illustration, a base station serving a collection of machine-type-communications (MTC) UEs (e.g., in a massive MTC (mMTC) environment, such as a factory) may continue to provide connection services to the MTC UEs even when the MTC UEs are powered off or disabled overnight. Continuing to provide connection services when there is no demand for such services may waste power and resources at a base station.
According to the techniques described herein, when a lack of demand for connection services is detected, a base station may strategically enter a power-efficient state in which some or all connection services are suspended and the base station powers off some or all components. To ensure that UEs still have opportunities to use various connection services, such as synchronization services, the base station may periodically leave the power-efficient state by powering on various components and providing at least some, if not all, connection services for a period of time before re-entering the power-efficient state. Periodically leaving the power-efficient state may also allow the base station to monitor for wakeup messages, the receipt of which may trigger the base station to leave the power-efficient state permanently, or at least until a subsequent lack of demand is detected.
The UEs served by a base station (termed “client UEs” ) may transmit to the base station various signals that assist with appropriate entrance into the power-efficient state. For example, in between transmissions to the base station, a UE may periodically transmit a “heartbeat” signal (or “living” signal) that informs the base station that the UE still desires the connection services provided by the base station, current inactivity notwithstanding. If the  UE determines that the UE will not use the connection services for a period of time (e.g., because the UE is entering a low power mode) , the UE may transmit to the base station a message (or “power-efficient state request” ) that requests the base station to enter the power-efficient state. Thus, a base station may determine an opportune time to enter the power-efficient state based on the living signals and the power-efficient state requests by client UEs. In some examples, the base station may also monitor the timing of data transmissions of the client UEs to assist with the determination to enter the power-efficient state.
Aspects of the disclosure are initially described in the context of wireless communications systems. A specific example is then described in the context of a process flow that depicts a collection of operations for a base station entering a power-efficient state. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a power-efficient network state.
FIG. 1 illustrates an example of a wireless communications system 100 that supports a power-efficient network state in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at  different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio  frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a  control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base  stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be  based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In some examples, a base station 105 may be configured to perpetually provide connectivity to devices in the wireless communications system 100. For example, a base station 105 may be configured to continuously make available various services such as synchronization services, random access services, mobility services, paging services, and data services (e.g., uplink and downlink communications) , among others. Such services may involve transmitting and receiving various control signals and data signals and supplying power to various components. Collectively, the services provided by a base station 105 for UEs 115 may be referred to as connection services. To ensure connectivity at any given time throughout the day, a base station 105 may continuously provide connection services even if there is no current demand for the connection services.
But continuously providing connection services despite a lack of demand may consume excess power at the base station 105, particularly when the lack of demand lasts for a significant period of time (e.g., minutes, hours, over-night) . Accordingly to the techniques described herein, a base station 105 may be configured to enter a power-efficient state when the base station 105 detects a lack of demand for connection services. When in the power efficient state, the base station 105 may suspend the provision of various connection services and power down various components, thereby saving power. The base station 105 may periodically resume some or all of the connection services and power up some or all of the components for various reasons. For example, the base station 105 may periodically listen for a wake-up message and/or periodically broadcast a synchronization signal to ensure that the UEs 115 can maintain synchronicity with the base station 105.
To detect a lack of demand or collective UE-inactivity that justifies entrance into the power-efficient state, the base station 105 may monitor various signals from UEs 115 served by the base station 105. Such UEs 115 may be referred to herein as client UEs. As an example, the base station 105 may monitor data transmissions from the client UEs, heartbeat signal transmissions from the client UEs, and power-efficient state request transmissions from the client UEs to determine an appropriate time to enter the power-efficient state. A data transmission may refer to transmission that conveys data from a UE. A heartbeat signal transmission may refer to a transmission that indicates the presence and status, state, or mode of a UE. A power-efficient state request transmission may refer to a transmission that requests the base station 105 enter into the power-efficient state.
Based on the timing and type of transmissions from client UEs, or lack thereof, a base station 105 may determine when to enter the power-efficient state. For example, the base station 105 may determine to enter the power efficient state when all of the client UEs served by the base station 105 have either transmitted a power-efficient state request transmission or ceased data transmissions and heartbeat transmissions for a threshold period of time. Thus, the base station 105 may enter the power-efficient state when there is a pause in demand, which may conserve power at the base station 105.
It should be appreciated that the power-efficient state described herein may be referred to as a power-efficient mode, a sleep state, a sleep mode, a discontinuous state, a discontinuous mode, a low or reduced power state, or a low or reduced power mode, among other suitable terminology. Additionally, the power-efficient state may be defined to exclude or include the periodic awakenings (e.g., the cyclical monitoring for wakeup messages, resumption of various connection services, and powering on of various components) .
FIG. 2 illustrates an example of a wireless communications system 200 that supports a power-efficient network state in accordance with aspects of the present disclosure. Wireless communications system 200 may include a base station 205 and UEs 215, which may be examples of a base station and UEs described with reference to FIG. 1. Base station 205 may communicate with the UEs 215 over respective communication links (such as communication link 220) when the UEs 215 are within coverage area 210, as described with reference to FIG. 1. In some examples, base station 205 may relay control information and/or data information from one UE 215 to the other UE 215.
In some examples, the UEs 215 may be MTC devices, such as sensors or machines in a factory. However, the techniques described herein are not limited to MTC devices. In some examples (e.g., when the base station 205 is small cell) may be encompass a factory, arena, office building, home, or other structure. However, the techniques described herein are not limited to these examples.
As noted, the base station 205 may provide connection services for UEs 215 within the coverage area 210. For example, the bases station 205 may provide synchronization services, random access services, mobility services, paging services, and data services (e.g., uplink and downlink communications) , among other services. Provision of synchronization services may involve the base station 205 transmitting (e.g., broadcasting)  synchronization signals (e.g., synchronization signal blocks (SSBs) ) that enable a UE 215 to synchronize with the base station 105 in time and frequency. In some examples, the base station 205 may be configured to provide connection services continuously, regardless of demand for such services. For example, despite a lack of demand from the UEs 215, the base station 205 may continue to transmit certain signals, such as synchronization signals, and keep various components powered on, such as a transceiver.
According to the techniques described herein, a base station 205 may save power by strategically entering a power-efficient state when the base station 205 detects a lack of activity from the UEs 215. In the power efficient state, the base station 205 may suspend some of all of its connection services and power down some or all of its components. The base station 205 may detect a lack of activity by monitoring power-efficient state requests from the UEs 215, data transmissions from the UE 215, and heartbeat signal transmissions from the UEs 215. By monitoring for heartbeat signal transmissions in addition to data transmissions (or other activity) from the UEs 215, the base station 205 may ensure that the base station 205 does not accidentally enter the power-efficient state when a UE 215 is still in need of connection services (but, for whatever reason, has not been actively communicating with the base station 205 for some time) .
UE 215 may be configured to periodically transmit a heartbeat signal, such as heartbeat signal 225, when the UE 215 has been idle (e.g., has not communicated with the base station 205) for a threshold period of time but is not in a low power mode (e.g., a mode in which various components are powered down and various activities, such as over-the-air communication, are suspended or performed discontinuously) . Such a UE may be referred to as being in an active state, and the term active state may also apply to a UE that has transmitted data to (or requested data from) the base station 205 within a threshold period of time. Thus, the base station 205 may classify a UE 215 as being in an active state or inactive state (e.g., low power state) based on transmissions from the UE 215. Put another way, the base station 205 may determine the operating status of a UE 215.
In some examples, the base station 205 may determine the operating status of a UE 215 based on a power-efficient state request, such as the power-efficient state request 230, received from the UE 215. A UE 215 may be configured to transmit a power-efficient state request when the UE 215 determines that it will cease working and/or enter a lower  power mode for a threshold duration of time. In some examples, the UE 215 may include a preferred wake-up cycle or periodicity for the base station 205 to follow. The UE 215 may determine the wake-up cycle based on the expected or anticipated communication needs of the UE 215, and/or based on a work schedule of the UE 215, among other factors.
The base station 205 may determine to enter the power-efficient state based on the operating status of the UEs 215. In the illustrated example, the base station 205 may receive a data transmission from UE 215-a, a power-efficient state request from UE 215-b, and a heartbeat signal 225 from UE 215-c. Based on these signals, the base station 205 may determine that UE 215-a and UE 215-c are in an active state and that UE 215-b is in an inactive state (e.g., the base station 205 may determine that UE 215-a is in a low power mode, or will be in the low power mode within a threshold amount of time) . Accordingly, the base station 205 may refrain from entering the power-efficient state, at least because UE 215-a and UE 215-b are still relying on connectivity provided by the base station 205. However, the base station 205 may continue to monitor the operating statuses of UE 215-a and UE 215-c and, upon determining that a threshold amount of time has expired since either UE 215-a or UE 215-c transmitted data or a heartbeat signal, may enter the power-efficient state.
Thus, the base station 205 may strategically enter the power-efficient state by monitoring the operating statuses of the UEs 215, which in turn may be configured to assist the base station 205 by transmitting heartbeat signals and power-efficient state requests. It should be appreciated that although the UEs 215 are shown transmitting certain signals, any of the UEs 215 may transmit any of the signals described herein.
FIG. 3 illustrates an example of a process flow 300 that supports a power-efficient network state in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of  wireless communications system  100 or 200. For example, process flow 300 may be implemented by a base station 305 and UEs 310, which may be examples of a base station and UEs as described herein.
Alternative examples of the following may be implemented, where some operations are performed in a different order than described, are performed in parallel, or are not performed at all. In some cases, operations may include additional features not mentioned below, or further operations may be added. Additionally, certain operations may be performed multiple times or certain combinations of operations may repeat or cycle.
At 315, the base station 305 may enter a first state of operation. In the first state, which lasts for duration 320, the base station 305 may have various components (e.g., receivers, transmitters, transceivers, processors) powered on and may provide a full range of connection services for client UEs, such as UE 310-a and UE 310-b. While operating in the first state the base station 305 may monitor communications from the UEs 310 (and thus their operating statuses) so that the base station 305 can determine an appropriate time to enter a second state, such as a power efficient state.
At 325, the UE 310-a may transmit data to the base station 305. Additionally or alternatively, the UE 310-a may receive data from the base station 305. At 330, the UE 310-b may transmit a heartbeat signal. The UE 310-a may transmit the heartbeat signal based on determining that although currently idle (e.g., not communicating with the base station 305) , the UE 310-a is not yet in a lower power state and/or expects to use the services provided by the base station 305 within a threshold amount of time.
At 335, the UE 310-a may determine that it is going to enter an inactive state (e.g., a low power state and/or a state in which interactions with the base station 305 are suspended) for a threshold duration of time. For example, the UE 310-a may determine that the UE 310-a is going to enter sleep mode for a threshold duration of time. At 340, the UE 310-a may transmit a message that requests that the base station 305 enter a second state, such as a power-efficient state. The UE 310-a may transmit the message based on the UE 310-a determining that it is going to enter the inactive state for the threshold duration of time. In some examples, the message may include an indication of the periodicity the base station 305 is to use to periodically wake up. The UE 310-a may determine the periodicity based on the anticipated needs of the UE 310-a. At 345, the UE 310-a may enter the inactive state. For example, the UE 310-a may enter a low power mode in which various components of the UE 310-a are powered down and/or the UE 310-a may suspend interaction (the transmission and receipt of signals) with the base station 305.
It should be appreciated that before determining to enter the inactive state, the UE 310-a may transmit one or more heartbeat signals to inform the base station 305 of the status of the UE 310-a. However, the UE 310-a may suspend heartbeat signal transmissions after determining to enter the inactive state.
At 350, the UE 310-b may transmit another heartbeat signal to indicate that the UE 310-b is still in the active state. The UE 310-b may transmit the heartbeat signal based on the UE 310-b determining that a threshold amount of time has expired since the UE 310-b last transmitted a data transmission or heartbeat signal. Thus, the heartbeat signals transmitted at 330 and 350 may be transmitted according to a periodicity. At 355, the UE 310-b may stop heartbeat signaling. For example, the UE 310-b may malfunction, be manually powered down, be disabled, or be removed from the coverage area of the base station 305.
As noted, while operating in the first state the base station 305 may continually update a record of the operating statuses of the UEs 310 so that the base station 305 can determine an appropriate time to enter the second state. The base station 305 may determine the operating statuses of the UEs 310 based on the timing and types of transmissions from the UEs 310. For example, leading up to 360, the base station 305 may determine (e.g., based on the state request message received at 340) that the UE 310-a is in an inactive state and determine (based on the heartbeat signal at 350) that the UE 310-b is in an active state. Accordingly, at 360, the base station may refrain from entering the second state-state request message from the UE 310-a notwithstanding-because at least one client UE (e.g., UE 310-b) is in the active state. It should be appreciated that the operating status of a UE 310 may be different from the RRC mode of the UE 310.
However, at 365, the base station 305 may determine to enter the second state. The base station 365 may determine to enter the second state based on determining that no UE 310 is in the active state. Put another way, the base station 305 may determine to enter the second state based on determining that none of the UEs 310 are in an operating state that relies on connectivity from the base station 305. The base station 305 may detect such lack of demand by determining that all of its client UEs 310 have either transmitted a state request or ceased communications (data transmission, heartbeat transmissions) for a threshold duration of time. Thus, the base station 305 may determine to enter the second state based on determining that the UE 310-a sent a state request at 340 and the UE 310-b has not transmitted a heartbeat signal (or any type of transmission) since 355. Accordingly, at 370, the base station 305 may enter the second state.
While in the second state, the base station 305 may power down various components (e.g., receivers, transmitters, transceivers, processors) and suspend some or all  connection services. For example, the base station 305 may power down various components and suspend some or all connection services for duration 375. In some examples, the base station 305 may be completely powered down for duration 375. However, the base station 305 may periodically or cyclically monitor for wakeup messages. For example, after duration 375 has elapsed, the base station 305 may monitor for wakeup messages during duration 380. During duration 380, the base station 305 may also provide various connection services, which may involve powering up some components previously powered down during duration 375. For, example, the base station 305 may power up a transceiver or transmitter to broadcast one or more synchronization signals during duration 380 so that the UEs 310 can remain synchronized with the base station 305. It should be appreciated that the connection services provided by the base station 305 during duration 380 may be limited relative to the connection services provided by the base station 305 in the first state.
The base station 305 may repeat the operations at 375 and 380 until a wakeup message is received. Thus, the base station 305 may periodically monitor for wakeup messages while in the second state. The periodicity with which the base station 305 monitors for wakeup messages may be determined based on periodicities indicated in state request messages. For example, if the base station 305 receives multiple state request messages indicating multiple different periodicities, the base station 305 may select the shortest periodicity for monitoring for wakeup messages. This way, the base station 305 can ensure that the needs of all UEs 310 (including the highest-maintenance UE 310) are met. In some examples, the base station 305 may include a timer for determining when to monitor for wakeup messages.
At 385, the UE 310-a may enter an active state (e.g., the UE 310-a may leave low power mode and start to perform various tasks, or the UE 310-a may determine to start communicating with the base station 305) . At 390, the UE 310-a may transmit, and the base station 305 may receive, a wakeup request message that requests the base station 305 to enter the first state. The UE 310-a may transit the wakeup request message based on entering the active state and/or based on determining that the UE 310-a has data for the base station 305 (or some other need for connection services) . The base station 305 may be able to receive the wakeup request message because the base station 305 is monitoring for the wakeup request message according to the determined periodicity.
In some examples, the UE 310-a may wait to send the wakeup request message until the UE 310-a receives signaling (e.g., a synchronization signal) from the base station 305 indicating that the base station 305 is monitoring for the wakeup signal. Alternatively, the UE 310-a may periodically transmit the wakeup request message to ensure that the base station 305 eventually receives the wakeup request message. At 395, the base station may enter the first state 395 based on receipt of the wakeup request message at 390.
Although described with the base station 305 periodically monitoring for a wakeup request message, in some examples the base station 305 may refrain from monitoring for a wakeup request message and instead autonomously enter the first state. For example, the base station 305 may wakeup after a threshold amount of time has expired since the base station 305 entered the second state. However, such a technique may be inflexible and may be unreliable if the timer on the base station 305 is inaccurate over long periods of time.
Thus, the UEs 310 and the base station 305 may work together to ensure that the base station 305 enters, and leaves, a power-efficient state at appropriate times. It should be appreciated that although the UEs 310 are shown transmitting certain signals, any of the UEs 310 may transmit any of the signals described herein.
FIG. 4 shows a block diagram 400 of a device 405 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the  base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
FIG. 5 shows a block diagram 500 of a device 505 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 535. The device  505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a communication component 520, a state manager component 525, and a transmission component 530. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The communication component 520 may communicate with a base station that provides connection services for a set of UEs that includes the UE. The state manager component 525 may determine to enter a low power state in which communications with the base station are suspended.
The transmission component 530 may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
The transmitter 535 may transmit signals generated by other components of the device 505. In some examples, the transmitter 535 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 535 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a power-efficient network state in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described  herein. The communications manager 605 may include a communication component 610, a state manager component 615, a transmission component 620, a synchronization component 625, a periodicity component 630, a data component 635, and a timing component 640. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communication component 610 may communicate with a base station that provides connection services for a set of UEs that includes the UE. In some examples, the communication component 610 may communicate with the base station based at least in transmitting the wake-up message.
The state manager component 615 may determine to enter a low power state in which communications with the base station are suspended. In some examples, the state manager component 615 may leave the low power state after a duration of time.
The transmission component 620 may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message. In some examples, the transmission component 620 may periodically transmit to the base station a heartbeat signal message that indicates the UE is in an active state. In some examples, the transmission component 620 may perform data transmissions to the base station as part of communicating with the base station, where the heartbeat signal message is periodically transmitted after stopping the data transmissions. In some examples, the transmission component 620 may transmit to the base station, based on leaving the lower power state, a wake-up message that requests the base station leave the low power state.
The synchronization component 625 may determine that the base station has entered the low power state based on a suspension of synchronization signal block transmissions. In some examples, the synchronization component 625 may determine that synchronization signal block transmissions have resumed at least temporarily. In some examples, the synchronization component 625 may synchronize with the base station based on the resumed synchronization block transmissions, where the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
The periodicity component 630 may determine the periodicity with which the base station is to periodically monitor for a wake-up signal. The data component 635 may determine that the UE has data for the base station after leaving the low power state, where the wake-up message is transmitted based on determining that the UE has data for the base station, and where communicating with the base station includes transmitting the data to the base station.
The timing component 640 may determine that the UE will be in the low power state for a threshold duration of time, where the message is transmitted based on determining that the UE will be in the low power state for the threshold duration of time.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
The communications manager 710 may communicate with a base station that provides connection services for a set of UEs that includes the UE, determine to enter a low power state in which communications with the base station are suspended, and transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as 
Figure PCTCN2020111266-appb-000001
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor. In some cases, a user may interact  with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include RAM and ROM. The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting power-efficient network state) .
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a block diagram 800 of a device 805 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may operate in a first state in which the base station provides connection services for a set of UEs, enter, based on the message, the second state in which connection services are suspended, receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state. The communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
The communications manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 815, or its sub-components, may be a separate and  distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a device 905 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 935. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to power-efficient network state, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may be an example of aspects of the communications manager 815 as described herein. The communications manager 915 may include a state manager component 920, a reception component 925, and a monitoring component 930. The communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
The state manager component 920 may operate in a first state in which the base station provides connection services for a set of UEs and enter, based on the message, the second state in which connection services are suspended.
The reception component 925 may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message. The monitoring component 930 may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
The transmitter 935 may transmit signals generated by other components of the device 905. In some examples, the transmitter 935 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 935 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports a power-efficient network state in accordance with aspects of the present disclosure. The communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein. The communications manager 1005 may include a state manager component 1010, a reception component 1015, a monitoring component 1020, a transmission component 1025, a timing component 1030, and a periodicity component 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The state manager component 1010 may operate in a first state in which the base station provides connection services for a set of UEs. In some examples, the state manager component 1010 may enter, based on the message, the second state in which connection services are suspended. In some examples, the state manager component 1010 may enter the first state based on receiving the wake-up signal. In some cases, the base station powers down a set of components in the second state.
The reception component 1015 may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message. In some examples, the reception component 1015 may receive, on a periodic basis from a UE of the set of UEs, a heartbeat signal message that indicates the UE is in an active state. In some examples, the reception component 1015 may receive a second message that requests  the base station enter a second state, where the base station enters the second state based on receiving the second message.
In some examples, receiving multiple messages requesting the base station enter the second state, where the message is one of the multiple messages and where each message of the multiple messages includes an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities. In some examples, the reception component 1015 may receive the wake-up message based on periodically monitoring for the wake-up signal.
The monitoring component 1020 may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state. The transmission component 1025 may broadcast a synchronization signal block when the UE periodically monitors for the wake-up message.
The timing component 1030 may determine that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, where the base station enters the second state based on the determination. In some examples, the timing component 1030 may determine that a threshold amount of time has elapsed since the base station last received a communication from a UE of the set of the UEs, where the base station enters the second state based on the determination.
The periodicity component 1035 may determine that the first periodicity is shorter than the second periodicity. In some examples, the periodicity component 1035 may determine to periodically monitor for the wake-up message according to the first periodicity based on first periodicity being shorter than the second periodicity. In some examples, the periodicity component 1035 may select a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports a power-efficient network state in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a  processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
The communications manager 1110 may operate in a first state in which the base station provides connection services for a set of UEs, enter, based on the message, the second state in which connection services are suspended, receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, and periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
The network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable  logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting power-efficient network state) .
The inter-station communications manager 1145 may manage communications with other base station 105 and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports a power-efficient network state in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1205, the base station may operate in a first state in which the base station provides connection services for a set of UEs. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of  1205 may be performed by a state manager component as described with reference to FIGs. 8 through 11.
At 1210, the base station may receive, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a reception component as described with reference to FIGs. 8 through 11.
At 1215, the base station may enter, based on the message, the second state in which connection services are suspended. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a state manager component as described with reference to FIGs. 8 through 11.
At 1220, the base station may periodically monitor, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a monitoring component as described with reference to FIGs. 8 through 11.
In some examples, an apparatus as described herein may perform a method or methods, such as the method 1200. The apparatus may include features, means, or instructions (e.g., a non-transitory computer-readable medium storing instructions executable by a processor) for operating in a first state in which the base station provides connection services for a set of UEs, receiving, from at least one UE of the set of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message, entering, based on the message, the second state in which connection services are suspended, and periodically monitoring, based on the periodicity, for a wake-up message from the set of UEs to trigger a return to the first state.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for broadcasting a synchronization signal block when the UE periodically monitors for the wake-up message.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, where the base station enters the second state based at least in part on the determination.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, where the base station enters the second state based at least in part on the determination.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving a second message that requests the base station enter a second state, where the base station enters the second state based at least in part on receiving the second message.
In some examples of the method 1200 and the apparatus described herein, the periodicity of the message is a first periodicity and the second message indicates a second periodicity. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining that the first periodicity is shorter than the second periodicity. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for determining to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving multiple messages requesting the base station enter the second state, where the message is one of the multiple messages and where each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for selecting a shortest UE- specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for receiving the wake-up message based at least in part on periodically monitoring for the wake-up signal. Some examples of the method 1200 and the apparatus described herein may further include operations, features, means, or instructions for entering the first state based at least in part on receiving the wake-up signal. In some examples of the method 1200 and the apparatus described herein, the base station powers down a plurality of components in the second state.
FIG. 13 shows a flowchart illustrating a method 1300 that supports a power-efficient network state in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may communicate with a base station that provides connection services for a set of UEs that includes the UE. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a communication component as described with reference to FIGs. 4 through 7.
At 1310, the UE may determine to enter a low power state in which communications with the base station are suspended. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a state manager component as described with reference to FIGs. 4 through 7.
At 1315, the UE may transmit to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message. The operations of 1315 may be performed according to the methods  described herein. In some examples, aspects of the operations of 1315 may be performed by a transmission component as described with reference to FIGs. 4 through 7.
In some examples, an apparatus as described herein may perform a method or methods, such as the method 1300. The apparatus may include features, means, or instructions (e.g., a non-transitory computer-readable medium storing instructions executable by a processor) for communicating with a base station that provides connection services for a set of UEs that includes the UE, determining to enter a low power state in which communications with the base station are suspended, and transmitting to the base station, based on the determination, a message that requests that the base station enter a low power state in which connection services for the set of UEs are periodically suspended in accordance with a periodicity included in the message.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that synchronization signal block transmissions have resumed at least temporarily. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for synchronizing with the base station based at least in part on the resumed synchronization block transmissions, where the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for periodically transmitting to the base station a heartbeat signal message that indicates the UE is in an active state.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for performing data transmissions to the base station as part of communicating with the base station, where the heartbeat signal message is periodically transmitted after stopping the data transmissions.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining the periodicity with which the base station is to periodically monitor for a wake-up signal.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for leaving the low power state after a duration of time. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for transmitting to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state. Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for communicating with the base station based at least in transmitting the wake-up message.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the UE has data for the base station after leaving the low power state, where the wake-up message is transmitted based at least in part on determining that the UE has data for the base station, and where communicating with the base station comprises transmitting the data to the base station.
Some examples of the method 1300 and the apparatus described herein may further include operations, features, means, or instructions for determining that the UE will be in the low power state for a threshold duration of time, where the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to  various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available  medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the  purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (68)

  1. A method for wireless communication at a base station, comprising:
    operating in a first state in which the base station provides connection services for a plurality of user equipments (UEs) ;
    receiving, from at least one UE of the plurality of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message;
    entering, based at least in part on the message, the second state in which connection services are suspended; and
    periodically monitoring, based at least in part on the periodicity, for a wake-up message from the plurality of UEs to trigger a return to the first state.
  2. The method of claim 1, further comprising:
    broadcasting a synchronization signal block when the UE periodically monitors for the wake-up message.
  3. The method of claim 1, further comprising:
    receiving, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state; and
    determining that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, wherein the base station enters the second state based at least in part on the determination.
  4. The method of claim 1, further comprising:
    determining that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, wherein the base station enters the second state based at least in part on the determination.
  5. The method of claim 1, further comprising:
    receiving a second message that requests the base station enter a second state, wherein the base station enters the second state based at least in part on receiving the second message.
  6. The method of claim 5, wherein the periodicity of the message is a first periodicity and the second message indicates a second periodicity, the method further comprising:
    determining that the first periodicity is shorter than the second periodicity; and
    determining to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
  7. The method of claim 1, further comprising:
    receiving multiple messages requesting the base station enter the second state, wherein the message is one of the multiple messages and wherein each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities; and
    selecting a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  8. The method of claim 1, further comprising:
    receiving the wake-up message based at least in part on periodically monitoring for the wake-up signal; and
    entering the first state based at least in part on receiving the wake-up signal.
  9. The method of claim 1, wherein the base station powers down a plurality of components in the second state.
  10. A method for wireless communication at a user equipment (UE) , comprising:
    communicating with a base station that provides connection services for a plurality of UEs that includes the UE;
    determining to enter a low power state in which communications with the base station are suspended; and
    transmitting to the base station, based at least in part on the determination, a message that requests that the base station enter a low power state in which connection services for the plurality of UEs are periodically suspended in accordance with a periodicity included in the message.
  11. The method of claim 10, further comprising:
    determining that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions;
    determining that synchronization signal block transmissions have resumed at least temporarily; and
    synchronizing with the base station based at least in part on the resumed synchronization block transmissions, wherein the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  12. The method of claim 10, wherein communicating comprises:
    periodically transmitting to the base station a heartbeat signal message that indicates the UE is in an active state.
  13. The method of claim 12, further comprising:
    performing data transmissions to the base station as part of communicating with the base station, wherein the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  14. The method of claim 10, further comprising:
    determining the periodicity with which the base station is to periodically monitor for a wake-up signal.
  15. The method of claim 10, further comprising:
    leaving the low power state after a duration of time;
    transmitting to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state; and
    communicating with the base station based at least in transmitting the wake-up message.
  16. The method of claim 15, further comprising:
    determining that the UE has data for the base station after leaving the low power state, wherein the wake-up message is transmitted based at least in part on determining that the UE has data for the base station, and wherein communicating with the base station comprises transmitting the data to the base station.
  17. The method of claim 10, further comprising:
    determining that the UE will be in the low power state for a threshold duration of time, wherein the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
  18. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    operate in a first state in which the base station provides connection services for a plurality of user equipments (UEs) ;
    receive, from at least one UE of the plurality of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message;
    enter, based at least in part on the message, the second state in which connection services are suspended; and
    periodically monitor, based at least in part on the periodicity, for a wake-up message from the plurality of UEs to trigger a return to the first state.
  19. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    broadcast a synchronization signal block when the UE periodically monitors for the wake-up message.
  20. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state; and
    determine that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, wherein the base station enters the second state based at least in part on the determination.
  21. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, wherein the base station enters the second state based at least in part on the determination.
  22. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a second message that requests the base station enter a second state, wherein the base station enters the second state based at least in part on receiving the second message.
  23. The apparatus of claim 22, wherein the periodicity of the message is a first periodicity and the second message indicates a second periodicity, and the instructions are further executable by the processor to cause the apparatus to:
    determine that the first periodicity is shorter than the second periodicity; and
    determine to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
  24. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive multiple messages requesting the base station enter the second state, wherein the message is one of the multiple messages and wherein each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities; and
    select a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  25. The apparatus of claim 18, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the wake-up message based at least in part on periodically monitoring for the wake-up signal; and
    enter the first state based at least in part on receiving the wake-up signal.
  26. The apparatus of claim 18, wherein the base station powers down a plurality of components in the second state.
  27. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    communicate with a base station that provides connection services for a plurality of UEs that includes the UE;
    determine to enter a low power state in which communications with the base station are suspended; and
    transmit to the base station, based at least in part on the determination, a message that requests that the base station enter a low power state in which connection services for the plurality of UEs are periodically suspended in accordance with a periodicity included in the message.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions;
    determine that synchronization signal block transmissions have resumed at least temporarily; and
    synchronize with the base station based at least in part on the resumed synchronization block transmissions, wherein the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  29. The apparatus of claim 27, wherein the instructions to communicate are executable by the processor to cause the apparatus to:
    periodically transmit to the base station a heartbeat signal message that indicates the UE is in an active state.
  30. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform data transmissions to the base station as part of communicating with the base station, wherein the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  31. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the periodicity with which the base station is to periodically monitor for a wake-up signal.
  32. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    leave the low power state after a duration of time;
    transmit to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state; and
    communicate with the base station based at least in transmitting the wake-up message.
  33. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    the instructions to determine that the UE has data for the base station after leaving the low power state, wherein the wake-up message is transmitted based at least in part on determining that the UE has data for the base station, and wherein communicating with the base station are executable by the processor to cause the apparatus to transmit the data to the base station.
  34. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the UE will be in the low power state for a threshold duration of time, wherein the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
  35. An apparatus for wireless communication at a base station, comprising:
    means for operating in a first state in which the base station provides connection services for a plurality of user equipments (UEs) ;
    means for receiving, from at least one UE of the plurality of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message;
    means for entering, based at least in part on the message, the second state in which connection services are suspended; and
    means for periodically monitoring, based at least in part on the periodicity, for a wake-up message from the plurality of UEs to trigger a return to the first state.
  36. The apparatus of claim 35, further comprising:
    means for broadcasting a synchronization signal block when the UE periodically monitors for the wake-up message.
  37. The apparatus of claim 35, further comprising:
    means for receiving, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state; and
    means for determining that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, wherein the base station enters the second state based at least in part on the determination.
  38. The apparatus of claim 35, further comprising:
    means for determining that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, wherein the base station enters the second state based at least in part on the determination.
  39. The apparatus of claim 35, further comprising:
    means for receiving a second message that requests the base station enter a second state, wherein the base station enters the second state based at least in part on receiving the second message.
  40. The apparatus of claim 39, wherein the periodicity of the message is a first periodicity and the second message indicates a second periodicity, the apparatus further comprising:
    means for determining that the first periodicity is shorter than the second periodicity; and
    means for determining to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
  41. The apparatus of claim 35, further comprising:
    means for receiving multiple messages requesting the base station enter the second state, wherein the message is one of the multiple messages and wherein each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities; and
    means for selecting a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  42. The apparatus of claim 35, further comprising:
    means for receiving the wake-up message based at least in part on periodically monitoring for the wake-up signal; and
    means for entering the first state based at least in part on receiving the wake-up signal.
  43. The apparatus of claim 35, wherein the base station powers down a plurality of components in the second state.
  44. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for communicating with a base station that provides connection services for a plurality of UEs that includes the UE;
    means for determining to enter a low power state in which communications with the base station are suspended; and
    means for transmitting to the base station, based at least in part on the determination, a message that requests that the base station enter a low power state in which connection services for the plurality of UEs are periodically suspended in accordance with a periodicity included in the message.
  45. The apparatus of claim 44, further comprising:
    means for determining that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions;
    means for determining that synchronization signal block transmissions have resumed at least temporarily; and
    means for synchronizing with the base station based at least in part on the resumed synchronization block transmissions, wherein the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  46. The apparatus of claim 44, wherein the means for communicating comprises:
    means for periodically transmitting to the base station a heartbeat signal message that indicates the UE is in an active state.
  47. The apparatus of claim 46, further comprising:
    means for performing data transmissions to the base station as part of communicating with the base station, wherein the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  48. The apparatus of claim 44, further comprising:
    means for determining the periodicity with which the base station is to periodically monitor for a wake-up signal.
  49. The apparatus of claim 44, further comprising:
    means for leaving the low power state after a duration of time;
    means for transmitting to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state; and
    means for communicating with the base station based at least in transmitting the wake-up message.
  50. The apparatus of claim 49, further comprising:
    means for determining that the UE has data for the base station after leaving the low power state, wherein the wake-up message is transmitted based at least in part on  determining that the UE has data for the base station, and wherein communicating with the base station comprises transmitting the data to the base station.
  51. The apparatus of claim 44, further comprising:
    means for determining that the UE will be in the low power state for a threshold duration of time, wherein the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
  52. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    operate in a first state in which the base station provides connection services for a plurality of user equipments (UEs) ;
    receive, from at least one UE of the plurality of UEs, a message that requests the base station enter a second state in which connection services are periodically suspended in accordance with a periodicity included in the message;
    enter, based at least in part on the message, the second state in which connection services are suspended; and
    periodically monitor, based at least in part on the periodicity, for a wake-up message from the plurality of UEs to trigger a return to the first state.
  53. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    broadcast a synchronization signal block when the UE periodically monitors for the wake-up message.
  54. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive, on a periodic basis from a UE of the plurality of UEs, a heartbeat signal message that indicates the UE is in an active state; and
    determine that a threshold amount of time has elapsed since a last heartbeat signal message was received from the UE, wherein the base station enters the second state based at least in part on the determination.
  55. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    determine that a threshold amount of time has elapsed since the base station last received a communication from a UE of the plurality of the UEs, wherein the base station enters the second state based at least in part on the determination.
  56. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive a second message that requests the base station enter a second state, wherein the base station enters the second state based at least in part on receiving the second message.
  57. The non-transitory computer-readable medium of claim 56, wherein the periodicity of the message is a first periodicity and the second message indicates a second periodicity, and the instructions are executable to:
    determine that the first periodicity is shorter than the second periodicity; and
    determine to periodically monitor for the wake-up message according to the first periodicity based at least in part on first periodicity being shorter than the second periodicity.
  58. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive multiple messages requesting the base station enter the second state, wherein the message is one of the multiple messages and wherein each message of the multiple messages comprises an indication of a UE-specified periodicity, the periodicity of the message being one of the UE-specified periodicities; and
    select a shortest UE-specified periodicity from the indicated UE-specified periodicities for periodically monitoring for the wake-up message.
  59. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    receive the wake-up message based at least in part on periodically monitoring for the wake-up signal; and
    enter the first state based at least in part on receiving the wake-up signal.
  60. The non-transitory computer-readable medium of claim 52, wherein the base station powers down a plurality of components in the second state.
  61. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    communicate with a base station that provides connection services for a plurality of UEs that includes the UE;
    determine to enter a low power state in which communications with the base station are suspended; and
    transmit to the base station, based at least in part on the determination, a message that requests that the base station enter a low power state in which connection services for the plurality of UEs are periodically suspended in accordance with a periodicity included in the message.
  62. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    determine that the base station has entered the low power state based at least in part on a suspension of synchronization signal block transmissions;
    determine that synchronization signal block transmissions have resumed at least temporarily; and
    synchronize with the base station based at least in part on the resumed synchronization block transmissions, wherein the synchronization occurs before the base station re-suspends the synchronization signal block transmissions.
  63. The non-transitory computer-readable medium of claim 61, wherein the instructions to communicate are executable to:
    periodically transmit to the base station a heartbeat signal message that indicates the UE is in an active state.
  64. The non-transitory computer-readable medium of claim 63, wherein the instructions are further executable to:
    perform data transmissions to the base station as part of communicating with the base station, wherein the heartbeat signal message is periodically transmitted after stopping the data transmissions.
  65. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    determine the periodicity with which the base station is to periodically monitor for a wake-up signal.
  66. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    leave the low power state after a duration of time;
    transmit to the base station, based at least in part on leaving the lower power state, a wake-up message that requests the base station leave the low power state; and
    communicate with the base station based at least in transmitting the wake-up message.
  67. The non-transitory computer-readable medium of claim 66, wherein the instructions are further executable to:
    the instructions to determine that the UE has data for the base station after leaving the low power state, wherein the wake-up message is transmitted based at least in part on determining that the UE has data for the base station, and wherein communicating with the base station are executable by the processor to cause the apparatus to transmit the data to the base station.
  68. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    determine that the UE will be in the low power state for a threshold duration of time, wherein the message is transmitted based at least in part on determining that the UE will be in the low power state for the threshold duration of time.
PCT/CN2020/111266 2020-08-26 2020-08-26 Power-efficient network state WO2022040961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111266 WO2022040961A1 (en) 2020-08-26 2020-08-26 Power-efficient network state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111266 WO2022040961A1 (en) 2020-08-26 2020-08-26 Power-efficient network state

Publications (1)

Publication Number Publication Date
WO2022040961A1 true WO2022040961A1 (en) 2022-03-03

Family

ID=80352426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111266 WO2022040961A1 (en) 2020-08-26 2020-08-26 Power-efficient network state

Country Status (1)

Country Link
WO (1) WO2022040961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203834A1 (en) * 1988-08-04 2004-10-14 Mahany Ronald L. Remote radio data communication system with data rate switching
CN101925154A (en) * 2009-06-09 2010-12-22 鼎桥通信技术有限公司 Method for reducing interference of home base station
CN102246565A (en) * 2008-12-15 2011-11-16 Lg电子株式会社 Method for saving power of a femto base station using sleep period synchronization
CN104754708A (en) * 2013-12-27 2015-07-01 中国移动通信集团公司 Method of carrying out shutoff/sleep on small cell, system, and small cell controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203834A1 (en) * 1988-08-04 2004-10-14 Mahany Ronald L. Remote radio data communication system with data rate switching
CN102246565A (en) * 2008-12-15 2011-11-16 Lg电子株式会社 Method for saving power of a femto base station using sleep period synchronization
CN101925154A (en) * 2009-06-09 2010-12-22 鼎桥通信技术有限公司 Method for reducing interference of home base station
CN104754708A (en) * 2013-12-27 2015-07-01 中国移动通信集团公司 Method of carrying out shutoff/sleep on small cell, system, and small cell controller

Similar Documents

Publication Publication Date Title
US11516876B2 (en) Discontinuous reception configuration for sidelink
US11671917B2 (en) Power saving techniques for sidelink communication
US11570843B2 (en) Discontinuous reception operations for wireless communications systems
US11924910B2 (en) Enhanced connection release techniques for wireless communications systems
US11930451B2 (en) Techniques for wireless communication in connected discontinuous reception mode
US20220408356A1 (en) Discontinuous reception wakeup techniques
US11895592B2 (en) Selecting reference signal occasions for wakeup
US12028808B2 (en) Sidelink-induced UU wake-up signal
US11770773B2 (en) Duty cycle configuration for power saving
US20220232474A1 (en) Ue idle and inactive mode enhancement with sidelink
WO2022040961A1 (en) Power-efficient network state
US12048016B2 (en) Techniques for managing discontinuous operation for wireless communication
US11800449B2 (en) Resource allocation for bi-directional sidelink wakeup and paging
US20230007695A1 (en) Techniques for managing discontinuous operation for wireless communication
US20220095271A1 (en) Monitoring periodicity for paging messages
EP4406295A1 (en) Techniques for reducing wakeup latency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950634

Country of ref document: EP

Kind code of ref document: A1