WO2022040822A1 - Método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas - Google Patents

Método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas Download PDF

Info

Publication number
WO2022040822A1
WO2022040822A1 PCT/CL2021/050079 CL2021050079W WO2022040822A1 WO 2022040822 A1 WO2022040822 A1 WO 2022040822A1 CL 2021050079 W CL2021050079 W CL 2021050079W WO 2022040822 A1 WO2022040822 A1 WO 2022040822A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
albumin
rpm
spions
shows
Prior art date
Application number
PCT/CL2021/050079
Other languages
English (en)
French (fr)
Inventor
Patricio Fernando VARGAS CANTÍN
Patricia Susana DÍAZ SALDÍVAR
Original Assignee
Universidad Técnica Federico Santa María
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María, Universidad De Santiago De Chile filed Critical Universidad Técnica Federico Santa María
Priority to US18/023,313 priority Critical patent/US20240016755A1/en
Priority to CN202180070646.5A priority patent/CN116685354A/zh
Priority to EP21859483.6A priority patent/EP4205731A1/en
Publication of WO2022040822A1 publication Critical patent/WO2022040822A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/47Magnetic materials; Paramagnetic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention is related to the technical field of nanotechnology, particularly with a new method for obtaining nanoparticles. Specifically, the present invention relates to a method for rapidly obtaining albumin nanoparticles loaded with magnetic nanoparticles, which are especially useful in the pharmaceutical industry.
  • Albumin-based nanoparticles are of special interest in the pharmaceutical industry because they are biodegradable and biocompatible, and allow the transport of different compounds in the body, even in a tissue-specific manner. For this reason, albumin nanoparticles loaded with radiopharmaceuticals or chemotherapeutic agents have been used successfully for the diagnosis and treatment of cancer.
  • albumin-coated magnetic nanoparticles One of the strategies that has been used to transport drugs or chemotherapeutic agents to a specific tissue or to tumor cells is albumin-coated magnetic nanoparticles. When administering these magnetic nanoparticles loaded with the drug, they accumulate in a certain place with the help of a magnetic field where they release the drug they contain. These nanoparticles are especially useful in the treatment of cancer by magnetic hyperthermia.
  • Kalidasan et al. (2016) report the use of albumin-coated superparamagnetic iron oxide nanoparticles (SPIONs) and ferromagnetic iron oxide nanoparticles (FIONs) to improve biocompatibility and specific adsorption rate.
  • SPIONs superparamagnetic iron oxide nanoparticles
  • FIONs ferromagnetic iron oxide nanoparticles
  • albumin coating improves colloidal stability, which results in increased heating of the nanoparticles, favoring their use in hyperthermia treatments (Kalidasan V. et al. Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance. Nano-Micro Lett. 2016. 8(1):80—93).
  • the desolvation method consists of the slow addition of a desolvation agent, such as salts or alcohol, to an aqueous solution of proteins under constant agitation.
  • a desolvation agent such as salts or alcohol
  • the proteins associate to form aggregates, which must be stabilized with a crosslinking agent to form nanoparticles.
  • the solution of aggregates with the crosslinking agent must be carried out under constant agitation throughout the night (6-8 hours).
  • the coacervation method is similar to the desolvation method, but varies in the number of parameters that affect the process to obtain the desired nanoparticles.
  • some of these parameters include the initial protein concentration, temperature, pH, the concentration and rate of addition of the desolvation agent to the protein solution, the concentration of the crosslinking agent, and the rate at which the desolvation agent is added.
  • constant agitation Sudar S. et al. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. 2010. 1 1 (1):014104; Langer K. et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles Int. J. Pharm. 2003. 257:169-180).
  • HSA human serum albumin
  • the standard desolvation method is a slow procedure that requires more than 8 hours to obtain stable albumin nanoparticles. For this reason, methods that try to accelerate this process are disclosed in the state of the art.
  • Patent document US 7,875,295 describes a process that reduces the time of the desolvation stage to obtain nano or microcapsules of active compounds coated with different polymers.
  • This process uses a high shear mixer to mix the desolvation agent with the aqueous polymer solution.
  • it describes the preparation of nanoparticles using ethanol and albumin solution, which are mixed at a speed of 5000 rpm.
  • this process does not consider the longest stage of the method that corresponds to the stabilization of the albumin nanoparticles with a cross-linking agent, so the duration of this process to obtain said nanoparticles is still extensive. Consequently, new methodologies are required to obtain albumin nanoparticles loaded with magnetic nanoparticles quickly and with high encapsulation efficiency.
  • the present invention relates to a method for obtaining albumin nanoparticles loaded with magnetic nanoparticles, comprising the steps of: a) mixing an albumin solution with magnetic nanoparticles and stirring said mixture at a speed between 8,000 and 20,000 rpm for 3 to 7 minutes; b) adding a desolvation agent dropwise to the mixture of step a) while maintaining constant stirring at a speed between 8,000 and 20,000 rpm for 1 to 15 minutes; c) adding a crosslinking agent to the mixture of step b) while maintaining constant stirring at a speed between 8,000 and 20,000 rpm for 1 to 15 minutes; and d) obtaining albumin nanoparticles loaded with magnetic nanoparticles from the mixture of step c).
  • the magnetic nanoparticles are iron oxide nanoparticles, preferably superparamagnetic iron oxide nanoparticles (SPIONs).
  • SPIONs superparamagnetic iron oxide nanoparticles
  • step a) is carried out at a speed of 15,000 rpm for 5 minutes; the agitation of step b) is carried out at a speed of 15,000 rpm for 5 minutes; and the stirring of step c) is carried out at a speed of 15,000 rpm for 5 minutes.
  • the agitation of stage a) is carried out with a rotor/stator type homogenizer; the agitation of step b) is carried out with a rotor/stator type homogenizer; and the agitation of step c) is carried out with a rotor/stator type homogenizer.
  • the albumin solution and the magnetic nanoparticles are mixed in a ratio between 10:1 to 10:5 w/w.
  • Another embodiment of the method of the present invention further comprises a step to adjust the pH of the mixture of the step to between 9 and 10.
  • the desolvation agent is added to the mixture of albumin solution and magnetic nanoparticles at a rate between 0.1 and 2 ml/min; preferably in a ratio of 0.3 to 0.7 ml per mg of albumin.
  • the desolvation agent is selected from the group consisting of ethanol, methanol, isopropanol, and acetone, as well as a combination thereof.
  • the crosslinking agent is a homobifunctional agent.
  • said homobifunctional agent is glutaraldehyde.
  • the glutaraldehyde has a concentration of 6.25% and is added in a ratio of 10 pl per mg of albumin.
  • the albumin nanoparticles loaded with magnetic nanoparticles that are obtained through this method have a diameter between 30 to 300 nm.
  • step d) additionally comprises a washing step that is preferably carried out with a solution selected from distilled water and phosphate buffered saline (PBS).
  • a washing step that is preferably carried out with a solution selected from distilled water and phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • step d) additionally comprises a centrifugation step that is preferably carried out at a speed between 8,000 and 20,000 g.
  • FIG. 1 shows the results of the analysis of superparamagnetic iron oxide nanoparticles (SPIONs).
  • FIG. 1 A shows an image electron microscopy of SPIONs.
  • FIG. 1B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 2 shows the results of the analysis of albumin nanoparticles that were obtained by the conventional desolvation method.
  • FIG. 2A shows an electron microscopy image of said nanoparticles.
  • FIG. 2B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 2C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 3 shows the results of the analysis of albumin nanoparticles that were obtained by the rapid desolvation method of the present invention.
  • FIG. 3A shows an electron microscopy image of said nanoparticles.
  • FIG. 3B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 3C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 4 shows the results of the analysis of albumin nanoparticles with 1 mg of SPIONs.
  • FIG. 4A shows an electron microscopy image of said nanoparticles.
  • FIG. 4B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 4C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 5 shows the results of the analysis of albumin nanoparticles with 2 mg of SPIONs.
  • FIG. 5A shows an electron microscopy image of said nanoparticles.
  • FIG. 5B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 5C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 6 shows the results of the analysis of albumin nanoparticles with 3 mg of SPIONs.
  • FIG. 6A shows an electron microscopy image of said nanoparticles.
  • FIG. 6B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 6C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 7 shows a graph with the percentage of albumin nanoparticles loaded with SPIONs depending on the agitation time of the mixture of the albumin and SPIONs solution with the desolvation agent.
  • FIG. 8 shows the results of the analysis of albumin nanoparticles without SPIONs, at pH 9, and stirring speed at 15,000 rpm.
  • FIG. 8A shows an electron microscopy image of said nanoparticles.
  • FIG. 8B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 8C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 9 shows the results of the analysis of albumin nanoparticles without SPIONs, at pH 9, and stirring speed at 20,000 rpm.
  • FIG. 9A shows an electron microscopy image of said nanoparticles.
  • FIG. 9B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 9C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 10 shows the results of the analysis of albumin nanoparticles loaded with SPIONs, at pH 9, and stirring speed at 15,000 rpm.
  • FIG. 10A shows an electron microscopy image of said nanoparticles.
  • FIG. 10B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 10C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 1 1 shows the results of the analysis of albumin nanoparticles loaded with SPIONs, at pH 9, and stirring speed at 20,000 rpm.
  • FIG. 11A shows an electron microscopy image of said nanoparticles.
  • FIG. 1 1 B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 1 1 C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 12 shows the results of the analysis of albumin nanoparticles without SPIONs, at pH 10, and stirring speed at 15,000 rpm.
  • FIG. 12A shows an electron microscopy image of said nanoparticles.
  • FIG. 12B shows a graph with the size distribution (diameter) of said nanoparticles.
  • FIG. 12C shows a graph with the hydrodynamic size distribution of said nanoparticles.
  • FIG. 13 shows an electron microscopy image of the result of the synthesis of albumin nanoparticles loaded with SPIONs, at pH 10, and stirring speed at 20,000 rpm.
  • FIG. 14 shows electron microscopy images of albumin nanoparticles loaded with SPIONs without glutaraldehyde that were incubated at different pH for 24 hours.
  • FIGS. 14A, 14B, 14C, 14D and 14E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 15 shows scatter plots of size (diameter) of albumin nanoparticles loaded with SPIONs without glutaraldehyde (Na-SPIONs) after 24 hours of incubation at different pH.
  • FIGS. 15A, 15B, 15C, 15D, and 15E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • FIG. 16 shows electron microscopy images of albumin nanoparticles loaded with SPIONs without glutaraldehyde that were incubated at different pH for 48 hours.
  • FIGS. 16A, 16B, 16C, 16D and 16E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 17 shows scatter plots of size (diameter) of albumin nanoparticles loaded with SPIONs without glutaraldehyde (Na-SPIONs) after 48 hours of incubation at different pH.
  • FIGS. 17A, 17B, 17C, 17D, and 17E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • FIG. 18 shows electron microscopy images of albumin nanoparticles loaded with SPIONs without glutaraldehyde that were incubated at different pH for 72 hours.
  • FIGS. 18A, 18B, 18C, 18D and 18E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 19 shows scatter plots of size (diameter) of albumin nanoparticles loaded with SPIONs without glutaraldehyde (Na-SPIONs) after 72 hours of incubation at different pH.
  • FIGS. 19A, 19B, 19C, 19D, and 19E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • FIG. 20 shows electron microscopy images of albumin nanoparticles loaded with SPIONs with glutaraldehyde that are incubated at different pH for 24 hours.
  • FIGS. 20A, 20B, 20C, 20D and 20E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 21 shows scatter plots of size (diameter) of albumin nanoparticles loaded with SPIONs with glutaraldehyde (Na-SPIONs + GA) after 24 hours of incubation at different pH.
  • FIGS. 21A, 21B, 21C, 21D, and 21E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • FIG. 22 shows electron microscopy images of albumin nanoparticles loaded with SPIONs with glutaraldehyde that were incubated at different pH for 48 hours.
  • FIGS. 22A, 22B, 22C, 22D and 22E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 23 shows size scatter plots (diameter) of albumin nanoparticles loaded with SPIONs with glutaraldehyde (Na-SPIONs + GA) after 48 hours of incubation at different pH.
  • FIGS. 23A, 23B, 23C, 23D, and 23E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • FIG. 24 shows electron microscopy images of albumin nanoparticles loaded with SPIONs with glutaraldehyde that were incubated at different pH for 72 hours.
  • FIGS. 24A, 24B, 24C, 24D and 24E show the nanoparticles at pH 2, 3, 4, 5 and 6, respectively.
  • FIG. 25 shows scatter plots of size (diameter) of albumin nanoparticles loaded with SPIONs with glutaraldehyde (Na-SPIONs + GA) after 72 hours of incubation at different pH.
  • FIGS. 25A, 25B, 25C, 25D, and 25E show the results that were obtained at pH 2, 3, 4, 5, and 6, respectively.
  • the present invention refers to a new fast, simple and efficient method for obtaining albumin nanoparticles loaded with magnetic nanoparticles. This method allows obtaining these nanoparticles in a time of less than 45 minutes, which is surprisingly faster than the methods described in the state of the art and with an encapsulation efficiency of over 90%.
  • the nanoparticles obtained by this method are biocompatible and biodegradable, particularly useful in the diagnosis and treatment of cancer in humans and other animal species.
  • Nanoparticle should be understood as any particle with sizes on the nanometer scale, preferably with diameters less than 500 nm. Additionally, it should be understood that the term “nanoparticle” covers any conformation that it has, that is, the term includes nanocapsule or nanosphere, understanding that a nanocapsule consists of a nanoparticle that contains a coating that surrounds a center where the molecule of interest is found. ; and that a nanosphere consists of a microparticle with no coating or defined layers.
  • Desolvation agent should be understood as any chemical compound that induces the formation of aggregates of polymer molecules in solution and subsequent precipitation of these aggregates. This is produced by the removal of solute molecules surrounding the polymer molecules, causing the polymers to spontaneously associate and form these aggregates.
  • Crosslinking agent should be understood as any chemical compound that has the property of forming covalent or ionic bonds between polymer chains, whether they are synthetic or natural polymers. Particularly, protein crosslinking agents form covalent bonds between proteins through the reaction of the reactive groups of said crosslinking agent with the functional groups of amino acids (primary amines, sulfhydryls, etc.), forming stable interactions.
  • the term crosslinking agent is also known as "crosslinking agent” or "crosslinking agent.”
  • the method of the present invention to obtain albumin nanoparticles loaded with magnetic nanoparticles comprises a first step (step a) of mixing a solution of albumin with magnetic nanoparticles.
  • the albumin used in the present invention can be obtained from any known source such as egg whites (ovalbumin), milk serum albumin ( ⁇ -lactalbumin), bovine serum albumin (BSA), human serum albumin ( HSA), etc
  • the present method is described for obtaining albumin nanoparticles, this method can be easily adapted to obtain nanoparticles of any other protein such as gelatin, whey proteins, gliadin, legumes, elastin, zein, soy proteins, casein.
  • the albumin used in the present invention is human serum albumin.
  • the magnetic nanoparticles that can be used in the present invention are those that comprise one or a mixture of magnetic elements such as iron (Fe), nickel (Ni), cobalt (Co), manganese (Mn), magnesium (Mg), zinc (Zn), gadolinium (Gd), among others.
  • Said nanoparticles can also be composed of the oxides of said elements.
  • nanoparticles that are composed primarily of some iron oxide may contain FeO (iron (II) oxide or wüstite), FeÜ2, FeaC (iron (II, III) oxide or magnetite), Fe4Ü5, FesOe, FesO?
  • the nanoparticles can also contain ferrites, such as cobalt ferrite (CoFeaC ), manganese ferrite (MnFeaC ), nickel ferrite (NiFeaC ), lithium ferrite (Lio.5Fe2.5O4), etc.
  • FeaC cobalt ferrite
  • MnFeaC manganese ferrite
  • NiFeaC nickel ferrite
  • Lio.5Fe2.5O4 lithium ferrite
  • Magnetic nanoparticles of magnetite or maghemite doped with magnesium, manganese, nickel, cobalt, copper, zinc, lanthanides (cene, gadolinium, terbium, holmium, samara, europium, etc.), silver, cadmium, etc. can also be used.
  • the magnetic nanoparticles used are iron oxide nanoparticles with diameters between 5-150 nm. Due to their size, these nanoparticles have superparamagnetic properties (called SPIONs), which are of special interest due to their high biocompatibility and their chemical, physical and magnetic properties, which makes them ideal for use in biomedical applications.
  • SPIONs superparamagnetic properties
  • the albumin solution is mixed with the magnetic nanoparticles in a ratio range of 10:1 to 10:5 w/w, preferably in a ratio of 10:2 w/w.
  • stage a) of the method of the present invention ultra-high-speed agitation is carried out that allows the preparation time of these nanoparticles to be surprisingly reduced, from hours to just minutes.
  • the speed at which the stirring can be carried out is between 5,000 and 20,000 rpm, preferably between 8,000 and 20,000 rpm, even more preferably between 10,000 and 18,000 rpm. In an even more preferred embodiment of the invention, the stirring speed in this stage is 15,000 rpm.
  • the agitation of step a) is preferably carried out with a rotor/stator type homogenizer.
  • the method further comprises a step for adjusting the pH of said mixture of albumin solution with magnetic nanoparticles to a pH between 9 and 10.
  • said adjustment is made by adding a sufficient quantity of base (eg NaOH) until the desired pH is achieved.
  • the method of the present invention comprises a second stage (stage b), in which a desolvation agent is added dropwise to the mixture of albumin solution and magnetic nanoparticles previously described, with constant stirring.
  • the desolvation agent that can be used in the present invention is selected from the group consisting of acetone, methanol, ethanol, acetonitrile, isopropanol, butanol, or a mixture of these, salts of polyvalent anions (eg SO4 2 ), salts of polyvalent cations (eg Ca 2+ , Mg 2+ ), among others, and is not limited to those mentioned.
  • ethanol is used as a desolvation agent.
  • the desolvation agent is added to the mixture of albumin solution and magnetic nanoparticles (mixture obtained from step a) continuously dropwise, at a rate between 0.1 to 3 ml/min, preferably at a rate of between 0.1 to 2 ml/min, even more preferably at a rate of 1 ml/min.
  • the desolvation agent is added in a ratio of 0.3 to 0.7 ml for each mg of albumin. This range is an approximate value because the amount of desolvation agent that must be added to the mixture must be sufficient to make the mixture cloudy or whitish.
  • the albumin solution is mixed with the magnetic nanoparticles in a ratio range of 10:1 to 10:5 w/w, preferably in a ratio of 10:2 w/w.
  • stage b) of the method of the present invention ultra-high-speed agitation is carried out, which also allows the preparation time of these nanoparticles to be surprisingly reduced, from hours to just minutes.
  • the speed at which the stirring can be carried out is between 5,000 and 20,000 rpm, preferably between 8,000 and 20,000 rpm, even more preferably between 10,000 and 18,000 rpm. In an even more preferred embodiment of the invention, the stirring speed in this stage is 15,000 rpm.
  • step b) Due to the ultra-high speed at which this step b) is carried out, only a short stirring time of no more than 15 minutes is required.
  • the stirring time in each of these stages is between 1 to 15 minutes, more preferably between 2 to 10 minutes, even more preferably between 2 to 8 minutes. In a preferred embodiment of the invention, the stirring time is 5 minutes.
  • the agitation of step b) is preferably carried out with a rotor/stator type homogenizer.
  • the method of the present invention comprises a third stage (stage c), in which a crosslinking agent is added to the mixture obtained from stage b) previously described, with constant stirring.
  • the crosslinking agent that can be used in the present invention is selected from the group consisting of homo- or hetero-bifunctional agents with identical or different reactive groups, respectively.
  • Crosslinking agents that can be used in the present method are homobifunctional such as, glutaraldehyde, diaminoalkanes, di(N-succinimidyl) carbonate, di(N-succinimidyl) suberate, dimethyl adipimate (DMA), dimethyl pimelimidate (DMP), dimethyl suberimidate ( DMS), bis(sulfosuccinimidyl) suberate (BSSS, BS3), disuccinimidyl glutarate (DSG), ethylene glycolbis(sulfosuccinimidylsuccinate) (sulfo-EGS), disuccinimidyl suberate (DSS), dithiobis(succinimidyl propionate) (DTSP, Lomant's reagent), ethylene glycolbis(succinimidylsuccinate) (EGS), bis(sulfosuccinimidyl) glutarate (BS2G),
  • stage c) of the method of the present invention ultra-high-speed agitation is carried out, which also allows the preparation time of these nanoparticles to be surprisingly reduced, from hours to just minutes.
  • the speed at which the stirring can be carried out is between 5,000 and 20,000 rpm, preferably between 8,000 and 20,000 rpm, even more preferably between 10,000 and 18,000 rpm. In an even more preferred embodiment of the invention, the stirring speed in this stage is 15,000 rpm.
  • the stirring time in each of these stages is between 1 to 15 minutes, more preferably between 2 to 10 minutes, even more preferably between 2 to 8 minutes. In a preferred embodiment of the invention, the stirring time is 5 minutes.
  • step c) the agitation of step c) is preferably carried out with a rotor/stator type homogenizer.
  • the present invention includes a fourth stage (stage d) comprising obtaining albumin nanoparticles loaded with magnetic nanoparticles from the mixture of stage c).
  • the diameter of the nanoparticles obtained by this rapid method is between 30 and 300 nm, preferably between 40 and 120 nm, even more preferably between 60 and 100 nm.
  • the method may include other steps in addition to those previously mentioned.
  • the step for obtaining the nanoparticles (step d) may additionally include a washing step for said nanoparticles, which can preferably be carried out by means of one or multiple washes with distilled water or phosphate buffer. saline (PBS).
  • the step for obtaining the nanoparticles (step d) can additionally include a centrifugation step at a speed between 8,000 and 20,000 g, preferably between 10,000 and 15,000 g.
  • All the steps of the method of the present invention are carried out at room temperature (between 20-25°C).
  • Albumin nanoparticles were prepared using the conventional desolvation method, to compare them with the albumin nanoparticles that are obtained if the stirring speed is modified when adding the desolvation agent. For this, 10 ml of a 10 mg/ml solution of albumin in distilled water was previously prepared in a magnetic stirrer at 800 rpm for 30 min. Then, 1 ml of this solution was placed in a 5 ml beaker and 50 pl of a 0.1 M NaOH solution was added and instead of using the magnetic stirrer that would be used in the conventional method, a rotor/stator type homogenizer and the solution was stirred at a speed of 10,000 rpm for 5 min. After this time, the pH was measured with indicator strips and the value obtained was 9. Then, under constant stirring at 10,000 rpm, 3 to 4 ml of ethanol were added dropwise until the solution turned whitish, indicating the formation of nanoparticles.
  • the albumin nanoparticles obtained by both methods were analyzed by transmission electron microscopy (TEM), and their hydrodynamic size was measured by dynamic light scattering (DLS).
  • TEM transmission electron microscopy
  • DLS dynamic light scattering
  • the morphology of the albumin nanoparticles that were obtained with the conventional method (FIG. 2A) and the morphology of the albumin nanoparticles that were obtained with the rapid method (FIG. 3A) are highly similar.
  • the hydrodynamic size of the nanoparticles obtained with the conventional method (FIG. 2C) was close to 253 nm
  • the hydrodynamic size of the nanoparticles obtained with the fast method (FIG. 3C) was close to at 252.3nm.
  • FIG. 4 shows the results of the nanoparticles that were formed by adding 1 mg of SPIONs.
  • FIG. 5 shows the results of the nanoparticles that were formed by adding 2 mg of SPIONs.
  • FIG. 6 shows the results of the nanoparticles that were formed by adding 3 mg of SPIONs.
  • the encapsulation efficiency was analyzed depending on the agitation time of the albumin solution and SPIONs when the desolvation agent is added. To do this, 1 ml of a 10 mg/ml albumin solution was taken and 2 mg of SPIONs were added to said solution, and the pH was adjusted to 9. Then between 3 and 4 ml of absolute ethanol were added drop by drop. continuously and under stirring at 10,000 rpm for 2 or 5 minutes.
  • FIG. 7 shows the results of this test, in percentage of nanoparticles loaded with SPIONs.
  • the average values were 56.3 ⁇ 5.8 and 91.7 ⁇ 1.0 for stirring times of 2 and 5 minutes, respectively.
  • albumin nanoparticles loaded with SPIONs were obtained. A higher encapsulation efficiency was observed with a stirring time of 5 minutes.
  • Example 5 Optimization of the stirring speed and the pH of the solution of albumin and SPIONs when the desolvation agent is added
  • the agitation speed and pH parameters were optimized in order to have nanoparticles close to 100 nm and with low dispersion, maintaining the efficacy. encapsulation equal to or greater than 90%.
  • the synthesis of albumin nanoparticles with and without SPIONs was evaluated at 15,000 and 20,000 rpm at pH 9 and 10. In those experiments of albumin nanoparticles with SPIONs, 2 mg of SPIONs were added to the solutions. The stirring time in each experiment was 5 minutes.
  • FIG. 10A shows the morphology of albumin nanoparticles loaded with SPIONs, synthesized at pH 9, and a stirring speed of 15,000 rpm.
  • FIG. 1 1A shows the morphology of albumin nanoparticles loaded with SPIONs, synthesized at pH 9, and a stirring speed of 20,000 rpm.
  • FIG. 12A shows the morphology of albumin nanoparticles without SPIONs, synthesized at pH 10, and a stirring speed of 15,000 rpm.
  • FIG. 13 shows the result of the synthesis of albumin nanoparticles loaded with SPIONs, at pH 10, and stirring speed at 20,000 rpm.
  • the electron microscopy image shows that there was no formation of nanoparticles at this pH value.
  • the smallest diameter of the nanoparticles is achieved with a speed of 15,000 rpm at pH 9, both for the albumin nanoparticles with or without SPIONs (FIG. 8 and 10), compared to those obtained at 20,000 rpm (FIG. 9 and 11).
  • the increase in pH did not contribute to improving the morphology or the size of the nanoparticles (FIG. 12 and 13).
  • the optimal synthesis of albumin nanoparticles with SPIONs was obtained using 2 mg of SPIONs for every 10 mg of albumin, a prior stirring time of 5 minutes at 15,000 rpm at pH 9.
  • Example 6 Analysis of albumin nanoparticles loaded with SPIONs stabilized with the crosslinking agent at different pH values.
  • Two groups of albumin nanoparticles loaded with SPIONs were used, both prepared by the method mentioned above with the optimal synthesis parameters, but to one of the groups, after the addition of ethanol, 100 pl of an ethanolic solution of 6.25% glutaraldehyde and stirred for an additional 5 min at 15,000 rpm. Subsequently, both groups of albumin nanoparticles loaded with SPIONs were centrifuged at 10,000 g for 10 min, washed twice with distilled water and resuspended in citrate buffer at pH 2, 3, 4, 5 and 6. Then, observations were made. by TEM microscopy after 24, 48 and 72 hours of incubation in said citrate buffer.
  • the analysis of the images obtained by TEM shows changes in the morphology, structure and size of the albumin nanoparticles loaded with SPIONs obtained by the standard method, without adding glutaraldehyde (FIG. 14-19).
  • the nanoparticles showed greater structural changes at pH 2, where nanoparticles in the process of disintegration were observed (FIG. 14A, 16A, 18A) and a high variability in size in those nanoparticles that were incubated for 24 hours (FIG. 15A, 17A, 18).
  • pH 3 4, 5 and 6

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La presente invención se refiere a un método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas, que comprende etapas con agitación a ultra altas velocidades. Este método permite obtener dichas nanopartículas en menos de 45 minutos con eficiencia de encapsulación superior al 90%.

Description

MÉTODO PARA LA RÁPIDA OBTENCIÓN DE NANOPARTÍCULAS DE ALBÚMINA CARGADAS CON NANOPARTÍCULAS MAGNÉTICAS
Campo técnico
La presente invención se relaciona con el campo técnico de la nanotecnología, particularmente con un nuevo método de obtención de nanopartículas. Específicamente, la presente invención se refiere a un método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas, las cuales son especialmente útiles en la industria farmacéutica.
Antecedentes de la invención
Las nanopartículas basadas en albúmina son de especial interés en la industria farmacéutica debido a que son biodegradables y biocompatibles, y permiten transportar diferentes compuestos en el organismo incluso de manera específica a un tejido. Por esta razón, las nanopartículas de albúmina cargadas con radiofármacos o agentes quimioterapéuticos han sido utilizadas exitosamente para el diagnóstico y tratamiento del cáncer.
Una de las estrategias que se ha utilizado para transportar fármacos o agentes quimioterapéuticos a un tejido específico o a células tumorales, son las nanopartículas magnéticas recubiertas con albúmina. Al administrar estas nanopartículas magnéticas cargadas con el fármaco, éstas se acumulan en un cierto lugar con ayuda de un campo magnético donde liberan el fármaco que contienen. Estas nanopartículas son especialmente útiles en el tratamiento del cáncer mediante hipertermia magnética. Por ejemplo, Kalidasan y col. (2016) reporta el uso de nanopartículas de óxido de hierro superparamagnético (SPIONs) y nanopartículas de óxido de hierro ferromagnético (FIONs) recubiertas de albúmina para mejorar la biocompatibilidad y la tasa de adsorción específica. Esto se debe a que el recubrimiento de albúmina mejora la estabilidad coloidal, lo cual repercute en un aumento del calentamiento de las nanopartículas, favoreciendo su uso en los tratamientos de hipertermia (Kalidasan V. et al. Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance. Nano-Micro Lett. 2016. 8(1 ):80— 93).
Para obtener este tipo de nanopartículas, uno de los métodos más utilizados es la desolvatación y coacervación. El método de desolvatación consiste en la lenta adición de un agente de desolvatación, como sales o alcohol, a una solución acuosa de proteínas en agitación constante. Cuando la solución alcanza una concentración crítica del agente de desolvatación, las proteínas se asocian formando agregados, los cuales se deben estabilizar con un agente reticulante para formar las nanopartículas. La solución de agregados con el agente reticulante debe realizarse en agitación constante durante toda la noche (6-8 horas). El método de coacervación es similar al método de desolvatación, pero varía en la cantidad de parámetros que afectan el proceso para obtener las nanopartículas deseadas. Por ejemplo, algunos de estos parámetros incluyen la concentración inicial de proteínas, la temperatura, el pH, la concentración y velocidad de adición del agente de desolvatación a la solución de proteínas, la concentración del agente reticulante, y la velocidad a la cual se realiza la agitación constante (Sundar S. et al. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. 2010. 1 1 (1 ):014104; Langer K. et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2003. 257:169-180). La variación de cualquiera de estos parámetros afecta directamente en el tamaño de las nanopartículas, la dispersión de los tamaños obtenidos y la eficiencia de encapsulación de los compuestos de interés.
El método de desolvatación estándar es un procedimiento lento que requiere de más de 8 horas para obtener nanopartículas de albúmina estables. Por esta razón, en el estado de la técnica se divulgan métodos que intentan acelerar este proceso.
En el artículo publicado por Jahanban-Esfahlan y cois. (2016) se describe un método de desolvatación para la preparación de nanopartículas de albúmina, en el que se disminuye el tiempo de preparación de toda la noche a tres horas. Este método consiste en agregar etanol como agente de desolvatación a una solución acuosa de albúmina a una velocidad de 2 ml/min en agitación constante (1250 rpm) usando un agitador magnético de 1 cm. Luego, para estabilizar las nanopartículas se utiliza EDC (N-(3-Dimetilaminopropil)-N'-etilcarbodiimida), y se mantiene en agitación constante por tres horas en las mismas condiciones previamente descritas (Jahanban-Esfahlan A. et al. A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int. J. Biol. Macromol. 2016. 91 :703- 709). Si bien este proceso es más rápido que el método de desolvatación estándar, el uso de agitadores magnéticos hace que este proceso no sea adecuado para la preparación de nanopartículas de albúmina cargadas con nanopartículas magnéticas, pues dichas nanopartículas son atraídas por este agitador, disminuyendo la eficiencia de encapsulación de éstas con la albúmina.
En el artículo publicado por Wacker y cois. (2014) se describe la obtención nanopartículas de albúmina cargadas con óxido de hierro mediante el método de desolvatación, en el cual se utiliza etanol y se añade a una solución acuosa de albúmina y nanopartículas de óxido de hierro a una velocidad de 1 ,5 ml/min en agitación constante (550 rpm). Luego, para estabilizar las nanopartículas obtenidas se agrega a la solución glutaraldehído y se mantienen en agitación constante por al menos tres horas para completar el proceso (Wacker M. et al. Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles. Beilstein J. Nanotechnol. 2014. 5:2259-2266). Sin embargo, este procedimiento sigue siendo lento y requiere de al menos tres horas para obtener nanopartículas estables de albúmina cargadas con óxido de hierro.
En el documento de patente US 7,875,295 se describe un proceso que disminuye el tiempo de la etapa de desolvatación para obtener nano o microcápsulas de compuestos activos recubiertos con diferentes polímeros. Este proceso utiliza un mezclador de alto cizallamiento para mezclar el agente de desolvatación con la solución acuosa del polímero. Particularmente, describe la preparación de nanopartículas utilizando etanol y una solución de albúmina, los cuales se mezclan a una velocidad de 5000 rpm. Sin embargo, este proceso no considera la etapa más prolongada del método que corresponde a la estabilización de las nanopartículas de albúmina con un agente reticulante, por lo que la duración de este proceso para obtener dichas nanopartículas sigue siendo extenso. En consecuencia, se requiere de nuevas metodologías que permitan obtener nanopartículas de albúmina cargadas con nanopartículas magnéticas de forma rápida y con una alta eficiencia de encapsulación.
Sumario de la invención
La presente invención se refiere a un método para la obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas, que comprende las etapas de: a) mezclar una solución de albúmina con nanopartículas magnéticas y agitar dicha mezcla a una velocidad entre 8.000 y 20.000 rpm durante 3 a 7 minutos; b) agregar gota a gota un agente de desolvatación a la mezcla de la etapa a) mientras se mantiene una agitación constante a una velocidad entre 8.000 y 20.000 rpm durante 1 a 15 minutos; c) agregar un agente reticulante a la mezcla de la etapa b) mientras se mantiene una agitación constante a una velocidad entre 8.000 y 20.000 rpm durante 1 a 15 minutos; y d) obtener nanopartículas de albúmina cargadas con nanopartículas magnéticas a partir de la mezcla de la etapa c).
En una modalidad preferida de la invención, las nanopartículas magnéticas son nanopartículas de óxido de hierro, preferentemente nanopartículas superparamagnéticas de óxido de hierro (SPIONs).
En otra modalidad preferida del método de la presente invención, la agitación de la etapa a) se realiza a una velocidad de 15.000 rpm durante 5 minutos; la agitación de la etapa b) se realiza a una velocidad de 15.000 rpm durante 5 minutos; y la agitación de la etapa c) se realiza a una velocidad de 15.000 rpm durante 5 minutos.
En otra modalidad preferida, la agitación de la etapa a) se realiza con un homogeneizador de tipo rotor/estator; la agitación de la etapa b) se realiza con un homogeneizador de tipo rotor/estator; y la agitación de la etapa c) se realiza con un homogeneizador de tipo rotor/estator.
En otra modalidad de la presente invención, la solución de albúmina y las nanopartículas magnéticas se mezclan en una razón entre 10:1 a 10:5 p/p.
Otra modalidad del método de la presente invención comprende adicionalmente una etapa para ajustar el pH de la mezcla de la etapa a entre 9 y 10.
En una modalidad preferida de la presente invención, el agente de desolvatación se agrega a la mezcla de solución de albúmina y nanopartículas magnéticas a una velocidad entre 0,1 y 2 ml/min; preferentemente en una razón de 0,3 a 0,7 mi por cada mg de albúmina. Preferentemente, el agente de desolvatación se selecciona del grupo que consiste de etanol, metanol, isopropanol, y acetona, así como una combinación de ellos.
En otra modalidad preferida de la presente invención, el agente reticulante es un agente homobifuncional. Preferentemente, dicho agente homobifuncional es glutaraldehído. Preferentemente, el glutaraldehído tiene una concentración al 6,25% y se agrega en una razón de 10 pl por cada mg albúmina.
En una modalidad preferida, las nanopartículas de albúmina cargadas con nanopartículas magnéticas que se obtienen a través de este método tienen un diámetro entre 30 a 300 nm.
En una modalidad de la presente invención, la etapa d) comprende adicionalmente una etapa de lavado que, preferentemente, se realiza con una solución que se selecciona de agua destilada y tampón fosfato salino (PBS).
En otra modalidad de la presente invención, la etapa d) comprende adicionalmente una etapa de centrifugación que, preferentemente, se realiza a una velocidad entre 8.000 a 20.000 g.
Breve descripción de las figuras
La FIG. 1 muestra los resultados del análisis de nanopartículas superparamagnéticas de óxido de hierro (SPIONs). La FIG. 1 A muestra una imagen de microscopía electrónica de los SPIONs. La FIG. 1 B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas.
La FIG. 2 muestra los resultados del análisis de nanopartículas de albúmina que se obtuvieron mediante el método de desolvatación convencional. La FIG. 2A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 2B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 2C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 3 muestra los resultados del análisis de nanopartículas de albúmina que se obtuvieron mediante el método de desolvatación rápido de la presente invención. La FIG. 3A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 3B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 3C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 4 muestra los resultados del análisis de las nanopartículas de albúmina con 1 mg de SPIONs. La FIG. 4A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 4B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 4C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 5 muestra los resultados del análisis de las nanopartículas de albúmina con 2 mg de SPIONs. La FIG. 5A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 5B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 5C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 6 muestra los resultados del análisis de las nanopartículas de albúmina con 3 mg de SPIONs. La FIG. 6A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 6B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 6C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas. La FIG. 7 muestra un gráfico con el porcentaje de nanopartículas de albúmina cargadas con SPIONs en dependencia del tiempo de agitación de la mezcla de la solución de albúmina y SPIONs con el agente de desolvatación.
La FIG. 8 muestra los resultados del análisis de las nanopartículas de albúmina sin SPIONs, a pH 9, y velocidad de agitación a 15.000 rpm. La FIG. 8A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 8B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 8C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 9 muestra los resultados del análisis de las nanopartículas de albúmina sin SPIONs, a pH 9, y velocidad de agitación a 20.000 rpm. La FIG. 9A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 9B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 9C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 10 muestra los resultados del análisis de las nanopartículas de albúmina cargadas con SPIONs, a pH 9, y velocidad de agitación a 15.000 rpm. La FIG. 10A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 10B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 10C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 1 1 muestra los resultados del análisis de las nanopartículas de albúmina cargadas con SPIONs, a pH 9, y velocidad de agitación a 20.000 rpm. La FIG. 11 A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 1 1 B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 1 1 C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 12 muestra los resultados del análisis de las nanopartículas de albúmina sin SPIONs, a pH 10, y velocidad de agitación a 15 000 rpm. La FIG. 12A muestra una imagen de microscopía electrónica de dichas nanopartículas. La FIG. 12B muestra un gráfico con la distribución de tamaño (diámetro) de dichas nanopartículas. La FIG. 12C muestra un gráfico con la distribución de tamaño hidrodinámico de dichas nanopartículas.
La FIG. 13 muestra una imagen de microscopía electrónica del resultado de la síntesis de nanopartículas de albúmina cargadas con SPIONs, a pH 10, y velocidad de agitación a 20 000 rpm.
La FIG. 14 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído que se incubaron a diferentes pH durante 24 horas. Las FIG. 14A, 14B, 14C, 14D y 14E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 15 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído (Na-SPIONs) después de 24 horas de incubación a distintos pH. Las FIG. 15A, 15B, 15C, 15D y 15E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
La FIG. 16 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído que se incubaron a diferentes pH durante 48 horas. Las FIG. 16A, 16B, 16C, 16D y 16E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 17 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído (Na-SPIONs) después de 48 horas de incubación a distintos pH. Las FIG. 17A, 17B, 17C, 17D y 17E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
La FIG. 18 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído que se incubaron a diferentes pH durante 72 horas. Las FIG. 18A, 18B, 18C, 18D y 18E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 19 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs sin glutaraldehído (Na-SPIONs) después de 72 horas de incubación a distintos pH. Las FIG. 19A, 19B, 19C, 19D y 19E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
La FIG. 20 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído que se incubaron a diferentes pH durante 24 horas. Las FIG. 20A, 20B, 20C, 20D y 20E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 21 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído (Na-SPIONs + GA) después de 24 horas de incubación a distintos pH. Las FIG. 21 A, 21 B, 21 C, 21 D y 21 E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
La FIG. 22 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído que se incubaron a diferentes pH durante 48 horas. Las FIG. 22A, 22B, 22C, 22D y 22E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 23 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído (Na-SPIONs + GA) después de 48 horas de incubación a distintos pH. Las FIG. 23A, 23B, 23C, 23D y 23E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
La FIG. 24 muestra imágenes de microscopía electrónica de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído que se incubaron a diferentes pH durante 72 horas. Las FIG. 24A, 24B, 24C, 24D y 24E muestran las nanopartículas a pH 2, 3, 4, 5 y 6, respectivamente.
La FIG. 25 muestra gráficos de dispersión de tamaño (diámetro) de las nanopartículas de albúmina cargadas con SPIONs con glutaraldehído (Na-SPIONs + GA) después de 72 horas de incubación a distintos pH. Las FIG. 25A, 25B, 25C, 25D y 25E muestran los resultados que se obtuvieron a pH 2, 3, 4, 5, y 6, respectivamente.
Descripción detallada de la invención
La presente invención se refiere a un nuevo método rápido, sencillo y eficiente para la obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas. Este método permite la obtención de dichas nanopartículas en un tiempo de menos de 45 minutos, lo cual es sorprendentemente más rápido que los métodos descritos en el estado de la técnica y con una eficiencia de encapsulación por sobre el 90%.
Las nanopartículas que se obtienen mediante este método son biocompatibles y biodegradables, particularmente útiles en el diagnóstico y tratamiento del cáncer en humanos y otras especies animales.
Todos los términos técnicos y científicos utilizados para describir la presente invención tienen el mismo significado entendido para una persona con conocimientos básicos en el campo técnico en cuestión. No obstante, para definir con más claridad el alcance de la invención a continuación, se incluye una lista de la terminología utilizada en esta descripción y su significado.
Se debe entender por “nanopartícula”, cualquier partícula con tamaños en la escala de los nanómetros, preferentemente con diámetros menores a 500 nm. Adicionalmente, debe entenderse que el término “nanopartícula” abarca cualquier conformación que ésta tenga, es decir, el término incluye nanocápsula o nanoesfera, entendiéndose que una nanocápsula consiste en una nanopartícula que contiene un recubrimiento que envuelve un centro donde se encuentra la molécula de interés; y que una nanoesfera consiste en una micropartícula sin recubrimiento o capas definidas.
Se debe entender por “agente de desolvatación” cualquier compuesto químico que induce la formación de agregados de moléculas de polímeros en solución y posterior precipitación de estos agregados. Esto se produce por la remoción de las moléculas de soluto que rodean las moléculas de polímero, lo que causa que dichos polímeros se asocien espontáneamente y formen estos agregados.
Se debe entender por “agente reticulante” cualquier compuesto químico que tiene la propiedad de formar enlaces covalentes o iónicos entre cadenas poliméhcas, ya sean de polímeros sintéticos o naturales. Particularmente, los agentes reticulantes de proteínas forman enlaces covalentes entre proteínas mediante la reacción de los grupos reactivos de dicho agente reticulante con los grupos funcionales de los aminoácidos (aminas primarias, sulfhidrilos, etc.), formando interacciones estables. El término agente reticulante también se conoce como “agente de entrecruzamiento” o “agente entrecruzante”. El método de la presente invención para obtener nanopartículas de albúmina cargadas con nanopartículas magnéticas comprende una primera etapa (etapa a) de mezclar una solución de albúmina con nanopartículas magnéticas.
La albúmina que se utiliza en la presente invención se puede obtener de cualquier fuente conocida tales como claras de huevo (ovoalbúmina), albúmina del suero de la leche (a-lactalbúmina), albúmina de suero bovino (BSA), albúmina de suero humano (HSA), etc. Si bien el presente método está descrito para la obtención de nanopartículas de albúmina, este método puede ser adaptado fácilmente para la obtención de nanopartículas de cualquiera otra proteína como gelatina, proteínas de suero, gliadina, legumina, elastina, zeína, proteínas de soya, caseína, globulinas a1 , globulinas a2, globulinas (3, globulinas y, entre otras. En una modalidad preferida, la albúmina que se utiliza en la presente invención es albúmina de suero humano.
Las nanopartículas magnéticas que se pueden utilizar en la presente invención son aquellas que comprenden uno o una mezcla de elementos magnéticos tales como hierro (Fe), níquel (Ni), cobalto (Co), manganeso (Mn), magnesio (Mg), zinc (Zn), gadolinio (Gd), entre otros. Dichas nanopartículas también pueden estar compuestas por los óxidos de dichos elementos. Por ejemplo, las nanopartículas que se componen principalmente de algún óxido de hierro pueden contener FeO (óxido de hierro (II) o wüstita), FeÜ2, FeaC (óxido de hierro (II, III) o magnetita), Fe4Ü5, FesOe, FesO?, Fe25Ü32, Fe O , Fe2Ü3 (óxido de hierro (III)), a-FeaOa (hematita), p-FeaOa, y-FeaOa (maghemita), s-FeaOa, entre otros. Las nanopartículas también pueden contener ferritas, tales como, ferrita de cobalto (CoFeaC ), ferrita de manganeso (MnFeaC ), ferrita de níquel (NiFeaC ), ferrita de litio (Lio.5Fe2.5O4), etc. También se pueden usar nanopartículas ferromagnéticas de hierro dopado con oro (Au) u óxidos de hierro dopados con zinc/manganeso (ZnxMn<i - X)Fe3O4), zinc/hierro (ZnxFe<i - X)Fe3O4), zinc/cobalto (ZnxCo<i - X)Fe3Ü4), entre otros. También se pueden utilizar nanopartículas magnéticas de magnetita o maghemita dopadas con magnesio, manganeso, níquel, cobalto, cobre, zinc, lantánidos (ceno, gadolinio, terbio, holmio, samarlo, europio, etc.), plata, cadmio, etc. En una modalidad preferida de la invención, las nanopartículas magnéticas que se utilizan son nanopartículas de óxido de hierro de diámetros entre 5-150 nm. Debido a su tamaño, dichas nanopartículas tienen propiedades superparamagnéticas (denominadas SPIONs), las cuales son de especial interés debido a su alta biocompatibilidad y sus propiedades químicas, físicas y magnéticas, que las hace idóneas para su eso en aplicaciones biomédicas.
En una modalidad preferida de la presente invención, la solución de albúmina se mezcla con las nanopartículas magnéticas en un rango de proporción de 10:1 a 10:5 p/p, preferentemente en una proporción de 10:2 p/p.
En la etapa a) del método de la presente invención se realiza una agitación a ultra alta velocidad que permite disminuir el tiempo de preparación de estas nanopartículas de forma sorprendente, de horas a tan solo minutos. La velocidad a la cual se puede realizar la agitación es entre 5.000 y 20.000 rpm, preferentemente entre 8.000 y 20.000 rpm, aún más preferentemente entre 10.000 y 18.000 rpm. En una modalidad aún más preferida de la invención, la velocidad de agitación en esta etapa es de 15.000 rpm.
Debido a la ultra alta velocidad a la cual se lleva a cabo esta etapa a), solo se requiere de un tiempo de agitación corto, de entre 3 a 7 minutos, más preferentemente entre 4 a 6 minutos. En una modalidad preferida de la invención, el tiempo de agitación es de 5 minutos.
En una modalidad preferida de la presente invención, la agitación de la etapa a) se realiza, preferentemente, con un homogeneizador de tipo rotor/estator.
Posteriormente, en una modalidad preferida de la invención, el método comprende adicionalmente una etapa para ajustar el pH de dicha mezcla de la solución de albúmina con nanopartículas magnéticas a un pH entre 9 y 10. Preferentemente, dicho ajuste se realiza agregando una cantidad suficiente de base (ej. NaOH) hasta lograr el pH deseado.
El método de la presente invención comprende una segunda etapa (etapa b), en la cual se agrega gota a gota un agente de desolvatación a la mezcla de solución de albúmina y nanopartículas magnéticas previamente descrita, con agitación constante. El agente de desolvatación que se puede utilizar en la presente invención se selecciona del grupo que comprende de acetona, metanol, etanol, acetonitrilo, isopropanol, butanol, o una mezcla de estos, sales de aniones polivalentes (ej. SO42), sales de cationes polivalentes (ej. Ca2+, Mg2+), entre otros, y no se limita a estos mencionados. Preferentemente, en el método de la presente invención se utiliza etanol como agente de desolvatación.
En una modalidad preferida, el agente de desolvatación se agrega a la mezcla de solución de albúmina y nanopartículas magnéticas (mezcla obtenida de la etapa a) gota a gota de forma continua, a una velocidad entre 0,1 a 3 ml/min, preferentemente a una velocidad de entre 0,1 a 2 ml/min, aún más preferentemente a una velocidad de 1 ml/min. En otra modalidad preferida, el agente de desolvatación se agrega en una razón de 0,3 a 0,7 mi por cada mg de albúmina. Este rango es un valor aproximado pues la cantidad de agente de desolvatación que se debe agregar a la mezcla tiene que ser la suficiente como para que la mezcla se torne turbia o blanquecina.
En una modalidad preferida de la presente invención, la solución de albúmina se mezcla con las nanopartículas magnéticas en un rango de proporción de 10:1 a 10:5 p/p, preferentemente en una proporción de 10:2 p/p.
En la etapa b) del método de la presente invención se realiza una agitación a ultra alta velocidad que también permite disminuir el tiempo de preparación de estas nanopartículas de forma sorprendente, de horas a tan solo minutos. La velocidad a la cual se puede realizar la agitación es entre 5.000 y 20.000 rpm, preferentemente entre 8.000 y 20.000 rpm, aún más preferentemente entre 10.000 y 18.000 rpm. En una modalidad aún más preferida de la invención, la velocidad de agitación en esta etapa es de 15.000 rpm.
Debido a la ultra alta velocidad a la cual se lleva a cabo esta etapa b), solo se requiere de un tiempo de agitación corto, de no más de 15 minutos. Preferentemente, el tiempo de agitación en cada una de estas etapas es entre 1 a 15 minutos, más preferentemente entre 2 a 10 minutos, aún más preferentemente entre 2 a 8 minutos. En una modalidad preferida de la invención, el tiempo de agitación es de 5 minutos. En una modalidad preferida de la presente invención, la agitación de la etapa b) se realiza, preferentemente, con un homogeneizador de tipo rotor/estator.
El método de la presente invención comprende una tercera etapa (etapa c), en la cual se agrega un agente reticulante a la mezcla obtenida de la etapa b) previamente descrita, con agitación constante.
El agente reticulante que se puede utilizar en la presente invención se selecciona del grupo que consiste agentes homo- o hetero- bifuncionales con grupos reactivos idénticos o diferentes, respectivamente. Los grupos funcionales pueden ser ahí azida, carbodiimida, hidrazida, hidroximetil fosfina, imidoéster, isocianato, carbonil, maleimida, NHS-éster, PFP-éster, psoraleno, pirimidil disulfuro, vinil sulfona.
Los agentes reticulantes que se pueden utilizar en el presente método son homobifuncionales como, glutaraldehído, diaminoalcanos, di(N-succinimidil) carbonato, di(N-succinimidil) suberato, dimetil adipimato (DMA), dimetil pimelimidato (DMP), dimetil suberimidato (DMS), bis(sulfosuccinimidil) suberato (BSSS, BS3), disuccinimidil glutarato (DSG), etilen glicolbis(sulfosuccinimidilsuccinato) (sulfo-EGS), disuccinimidil suberato (DSS), dithiobis(succinimidil propionato) (DTSP, reactivo de Lomant), etilen glicolbis(succinimidilsuccinato) (EGS), bis(sulfosuccinimidil) glutarato (BS2G), 3,3 - dithiobis(sulfosuccinimidilpropionato) (DTSSP), disuccinimidil tartrato (DST), (Bis(2- (succinimidooxicarboniloxi]etil)sulfona (BSOCOES), 1 ,4-d¡-(3’-(2’ pirid i Iditio)- propionamido) butano (DPDPB), sulfodisuccinimidil tartrato (sulfo DST), ditiobis(succinimidil propionato) (DSP), etilenglicol bis(succinimidil succinato) (EGS); agentes heterobifuncionales como succinimidil-4- [Nmaleimidometil]cyclohexano-l-carboxilato (SMCC), SANPAH, n-sulfosuccinimidil- 6-[4'-azido-2'-nitrofen¡lam¡no] hexanoato (sulfo-SANPAH), m-maleimidobenzoil-N- hidroxisuccinimida éster (MBS), m-maleimidobenzoil-N-hidroxisulfosuccinimida éster (sulfo MBS), N-Y-maleimidobutihloxisuccinimida éster (GMBS), N-y- maleimidobutihloxisulfosuccinimida éster (sulfo GMBS), N-(8-maleimidocapro¡co azido) hidrazida (EMCH), N-(8-maleimidocapro¡lox¡) succinimida éster (EMCS), N- (s-maleimidocaproiloxi) sulfo succinimida éster (sulfo EMCS), N-(p-maleimidofenil) isocianato (PMPI), N-succinimidil(4-iodoacetil)aminobenzoato (SIAB), succinimidil 3-(2-piridilditio)propionato (SPDP), succinimidil 6-[3(2-piridilditio)propionamido] hexanoato (LC-SPDP), N-succinimidil bromoacetato (SBA), N-[e- maleimidocaproiloxi] succinimida éster (EMCS), succinimidil-6-[B- maleimidopropionamido] hexanoato (SMPH), sulfosuccinimidil 6-(3'-[2-piridilditio]- propionamido) hexanoate (sulfo-LC-SPDP), N-succinimidil 4-[4-maleimidophenil] butirato (SMPB), (3-[2-Piridilditio]propionil hydrazida) (PDPH), N-succinimidil iodoacetato (SIA), N-(B-maleimidopropiloxi)succinimida éster (BMPS) y N-5-azido- 2-nitrobenzoiloxisuccinimida (ANB-NOS); entre otros, sin limitarse a estos agentes reticulantes mencionados. Preferentemente, en el método de la presente invención se utiliza glutaraldehído como agente reticulante. En una modalidad preferida, se agrega 10 pl de una solución de glutaraldehído al 6,25% por cada mg de albúmina.
En la etapa c) del método de la presente invención se realiza una agitación a ultra alta velocidad que también permite disminuir el tiempo de preparación de estas nanopartículas de forma sorprendente, de horas a tan solo minutos. La velocidad a la cual se puede realizar la agitación es entre 5.000 y 20.000 rpm, preferentemente entre 8.000 y 20.000 rpm, aún más preferentemente entre 10.000 y 18.000 rpm. En una modalidad aún más preferida de la invención, la velocidad de agitación en esta etapa es de 15.000 rpm.
Debido a la ultra alta velocidad a la cual se lleva a cabo esta etapa c), solo se requiere de un tiempo de agitación corto, de no más de 15 minutos. Preferentemente, el tiempo de agitación en cada una de estas etapas es entre 1 a 15 minutos, más preferentemente entre 2 a 10 minutos, aún más preferentemente entre 2 a 8 minutos. En una modalidad preferida de la invención, el tiempo de agitación es de 5 minutos.
En una modalidad preferida de la presente invención, la agitación de la etapa c) se realiza, preferentemente, con un homogeneizador de tipo rotor/estator.
La presente invención incluye una cuarta etapa (etapa d) que comprende obtener las nanopartículas de albúmina cargadas con nanopartículas magnéticas a partir de la mezcla de la etapa c). El diámetro de las nanopartículas que se obtienen mediante este método rápido es entre 30 a 300 nm, preferentemente entre 40 a 120 nm, aún más preferentemente entre 60 a 100 nm. En algunas modalidades preferidas de la invención, el método puede incluir otras etapas adicionales a las previamente mencionadas. Por ejemplo, en una modalidad preferida de la presente invención, la etapa de obtención de las nanopartículas (etapa d) puede incluir adicionalmente una etapa lavado de dichas nanopartículas, que se puede realizar preferentemente, mediante uno o múltiples lavados con agua destilada o tampón fosfato salino (PBS por sus siglas en inglés). En otra modalidad preferida de la invención, la etapa de obtención de las nanopartículas (etapa d) puede incluir adicionalmente una etapa de centrifugación a una velocidad entre 8.000 a 20.000 g, preferentemente entre 10.000 a 15.000 g.
Todas las etapas del método de la presente invención se realizan a temperatura ambiente (entre 20 - 25°C).
A continuación, se presentan ejemplos de realización de la invención, los cuales se han incluido con el objetivo de ¡lustrar la invención, sus modalidades preferidas y ejemplos comparativos, pero en ningún caso deben considerarse para restringir el alcance de la solicitud de patente, el cual solo está delimitado por el contenido de las reivindicaciones que aquí se adjuntan.
EJEMPLOS DE REALIZACIÓN
Ejemplo 1. Caracterización de las nanopartículas superparamagnéticas de óxido de hierro (SPIONs)
Se analizaron los SPIONs (n = 315) con un microscopio electrónico de transmisión (TEM) para determinar su tamaño y morfología. Como se observa en la FIG. 1 A, las nanopartículas mostraron una morfología mayoñtariamente esférica con un diámetro promedio de 10,79 ± 3,8 nm (FIG. 1 B).
Ejemplo 2. Método para la síntesis de nanopartículas (NPs) de albúmina
Se prepararon nanopartículas de albúmina utilizando el método de desolvatación convencional, para compararlas con las nanopartículas de albúmina que se obtienen si se modifica la velocidad de agitación al momento de agregar el agente de desolvatación. Para ello, previamente se preparó 10 mi de una solución de 10 mg/ml de albúmina en agua destilada en un agitador magnético a 800 rpm por 30 min. Luego, se colocó 1 mi de esta solución en un vaso de precipitado de 5 mi y se agregó 50 pl de una solución de NaOH a 0,1 M y en vez de utilizar el agitador magnético que se utilizaría en el método convencional, se utilizó un homogeneizador de tipo rotor/estator y se agitó la solución a una velocidad de 10.000 rpm por 5 min. Luego de este tiempo se midió el pH con tiras indicadoras y el valor obtenido fue de 9. Luego, bajo agitación constante a 10.000 rpm se agregó gota a gota 3 a 4 mi de etanol hasta que la solución se tornó blanquecina, indicando la formación de nanopartículas.
Las nanopartículas de albúmina que se obtuvieron por ambos métodos se analizaron mediante microscopía electrónica de transmisión (TEM), y se les midió el tamaño hidrodinámico por dispersión de luz dinámica (DLS).
La morfología de las nanopartículas de albúmina que se obtuvieron con el método convencional (FIG. 2A) y la morfología de las nanopartículas de albúmina que se obtuvieron con el método rápido (FIG. 3A) son altamente similares. A su vez, el diámetro promedio de las nanopartículas que se obtuvieron con el método convencional (FIG. 2B) fue cercano a los 146 nm (n = 288), mientras que el diámetro de las nanopartículas que se obtuvieron con el método rápido (FIG. 3B) fue cercano a los 123 nm (n = 291 ). De igual forma, el tamaño hidrodinámico de las nanopartículas que se obtuvieron con el método convencional (FIG. 2C) fue cercano a los 253 nm, y el tamaño hidrodinámico de las nanopartículas que se obtuvieron con el método rápido (FIG. 3C) fue cercano a los 252,3 nm.
Estos resultados muestran que las nanopartículas de albúmina que se obtienen por ambos métodos son similares tanto en su morfología como en su tamaño, por lo que se valida la primera etapa de este método rápido.
Ejemplo 3. Desarrollo de nanopartículas de albúmina cargadas con nanopartículas SPIONs
Luego de verificar que fue factible la síntesis de nanopartículas de albúmina con el homogeneizador, se estandarizó el método para la encapsulación de SPIONs en nanopartículas de albúmina. Para ello, se hicieron tres ensayos en los cuales se agregó diferentes concentraciones de SPIONs (1 , 2 y 3 mg) a la solución de albúmina.
Se prepararon 50 mi de una solución de albúmina a 10 mg/ml en agua destilada, con agitación de 800 rpm en un agitador magnético por 30 min. Luego se colocó 1 mi de esta solución en un vaso de precipitado de 5 mi y se agregó 1 , 2 o 3 mg de SPIONs y se agitó esta mezcla por 5 min a 15.000 rpm. Luego, se ajustó el pH a 9 agregando 50 pl de una solución de NaOH 0,1 M y se agitó durante 5 min.
Luego, se agregó entre 3 y 6 mi de etanol absoluto gota a gota de forma continua a una velocidad aproximada de 1 ml/min y en agitación a 10.000 rpm hasta observar que la solución se tornó blanquecina, lo cual indica la formación de las nanopartículas.
La FIG. 4 muestra los resultados de las nanopartículas que se formaron añadiendo 1 mg de SPIONs. La FIG. 4A muestra la morfología de las nanopartículas de albúmina cargadas con SPIONs. El diámetro promedio de estas nanopartículas fue de 106,7 ± 33,6 nm (n = 326) como se observa en la FIG. 4B, y su tamaño hidrodinámico promedio fue cercano a 297 nm (FIG. 4C).
La FIG. 5 muestra los resultados de las nanopartículas que se formaron añadiendo 2 mg de SPIONs. La FIG. 5A muestra la morfología de las nanopartículas de albúmina cargadas con SPIONs. El diámetro promedio de estas nanopartículas fue de 71 ,24 ± 20,2 nm (n = 292) como se observa en la FIG. 5B, y su tamaño hidrodinámico promedio fue cercano a 240,9 nm (FIG. 4C).
La FIG. 6 muestra los resultados de las nanopartículas que se formaron añadiendo 3 mg de SPIONs. La FIG. 6A muestra la morfología de las nanopartículas de albúmina cargadas con SPIONs. El diámetro promedio de estas nanopartículas fue de 83,21 ± 29,7 nm (n = 312) como se observa en la FIG. 6B, y su tamaño hidrodinámico promedio fue cercano a 323,8 nm (FIG. 6C).
Estos resultados muestran que la presencia de SPIONs afecta la formación de las nanopartículas de albúmina, pues disminuye el diámetro y la proporción de nanopartículas que se forman. Debido a que la concentración de 2 mg de SPIONs presentó los valores más bajos de dispersión, se seleccionó esta concentración para los siguientes experimentos. Ejemplo 4. Optimización del tiempo de agitación de la solución de albúmina y SPIONs cuando se agrega el agente de desolvatación
Se analizó la eficiencia de encapsulación en dependencia del tiempo de agitación de la solución de albúmina y SPIONs cuando se agrega el agente de desolvatación. Para ello, se tomó 1 mi de una solución de albúmina a 10 mg/ml y se agregó 2 mg de SPIONs a dicha solución, y se ajustó el pH a 9. Luego se agregó entre 3 a 4 mi de etanol absoluto gota a gota de forma continua y en agitación a 10.000 rpm durante 2 o 5 minutos.
En la FIG. 7 se muestran los resultados de este ensayo, en porcentaje de nanopartículas cargadas con SPIONs. Los valores promedio fueron de 56,3 ± 5,8 y 91 ,7 ± 1 ,0 para los tiempos de agitación de 2 y 5 minutos, respetivamente. En ambos experimentos se obtuvieron nanopartículas de albúmina cargadas con SPIONs. Se observó que una mayor eficiencia de encapsulación con un tiempo de agitación de 5 minutos.
Ejemplo 5: Optimización de la velocidad de agitación y el pH de la solución de albúmina y SPIONs cuando se agrega el agente de desolvatación
Debido a que la dispersión y el tamaño de las nanopartículas de albúmina cambia por efecto de los SPIONs, se optimizaron los parámetros de velocidad de agitación y de pH con el objetivo de tener nanopartículas cercanas a los 100 nm y con baja dispersión, manteniendo la eficacia de encapsulación igual o mayor al 90%. Se evaluó la síntesis de nanopartículas de albúmina con y sin SPIONs a 15.000 y 20.000 rpm a pH 9 y 10. En aquellos experimentos de nanopartículas de albúmina con SPIONs, se añadieron a las soluciones 2 mg de SPIONs. El tiempo de agitación en cada experimento fue de 5 minutos.
En las FIG. 8-13 se observan los resultados de estos ensayos. La FIG. 8A muestra la morfología de las nanopartículas de albúmina sin SPIONs, sintetizadas a pH 9, y una velocidad de agitación de 15.000 rpm. El diámetro promedio de estas nanopartículas fue de 85,1 ± 1 ,0 nm (n = 308) como se observa en la FIG. 8B, y su tamaño hidrodinámico promedio fue de 159,8 nm (FIG. 8C). La FIG. 9A muestra la morfología de las nanopartículas de albúmina sin SPIONs, sintetizadas a pH 9, y una velocidad de agitación de 20.000 rpm. El diámetro promedio de estas nanopartículas fue de 100,8 ± 2,1 nm (n = 312) como se observa en la FIG. 9B, y su tamaño hidrodinámico promedio fue de 149,1 nm (FIG. 9C).
La FIG. 10A muestra la morfología de las nanopartículas de albúmina cargadas con SPIONs, sintetizadas a pH 9, y una velocidad de agitación de 15.000 rpm. El diámetro promedio de estas nanopartículas fue de 129,0 ± 1 ,6 nm (n = 298) como se observa en la FIG. 10B, y su tamaño hidrodinámico promedio fue de 232,0 nm (FIG. 10C).
La FIG. 1 1A muestra la morfología de las nanopartículas de albúmina cargadas con SPIONs, sintetizadas a pH 9, y una velocidad de agitación de 20.000 rpm. El diámetro promedio de estas nanopartículas fue de 126,0 ± 2,48 nm (n = 305) como se observa en la FIG. 1 1 B, y su tamaño hidrodinámico promedio fue de 232,0 nm (FIG. 1 1 C).
La FIG. 12A muestra la morfología de las nanopartículas de albúmina sin SPIONs, sintetizadas a pH 10, y una velocidad de agitación de 15.000 rpm. El diámetro promedio de estas nanopartículas fue de 100,0 ± 3,3 nm (n = 309) como se observa en la FIG. 12B, y su tamaño hidrodinámico promedio fue de 192,7 nm (FIG. 12C).
La FIG. 13 muestra el resultado de la síntesis de nanopartículas de albúmina cargadas con SPIONs, a pH 10, y velocidad de agitación a 20.000 rpm. La imagen de microscopía electrónica muestra que no hubo formación de nanopartículas con este valor de pH.
Por tanto, el menor diámetro de las nanopartículas se logra con una velocidad de 15.000 rpm a pH 9, tanto para las nanopartículas de albúmina con o sin SPIONs (FIG. 8 y 10), en comparación con las obtenidas a 20.000 rpm (FIG. 9 y 1 1 ). El incremento del pH no contribuyó a mejorar la morfología ni el tamaño de las nanopartículas (FIG. 12 y 13). En resumen, la síntesis óptima de nanopartículas de albúmina con SPIONs de obtuvo usando 2 mg de SPIONs por cada 10 mg de albúmina, un tiempo previo de agitación de 5 minutos a 15.000 rpm a pH 9. Ejemplo 6: Análisis de las nanopartículas de albúmina cargadas con SPIONs estabilizadas con el agente reticulante a diferentes valores de pH.
Se analizó la estabilidad de las nanopartículas de albúmina cargadas con SPIONs luego de incubarlas en soluciones ácidas de diferentes pH.
Se usaron dos grupos de nanopartículas de albúmina cargadas con SPIONs, ambos preparados por el método mencionado anteriormente con los parámetros de síntesis óptima, pero a uno de los grupos, luego de la adición de etanol, se le agregó 100 pl de una solución etanólica de glutaraldehído al 6,25% y se agitó por 5 min adicionales a 15.000 rpm. Posteriormente, ambos grupos de nanopartículas de albúmina cargadas con SPIONs se centrifugaron a 10.000 g por 10 min, se lavaron 2 veces con agua destilada y se resuspendieron en tampón citrato a pH 2, 3, 4, 5 y 6. Luego, se realizaron observaciones por microscopía TEM después 24, 48 y 72 horas de incubación en dicho tampón citrato.
El análisis de las imágenes obtenidas por TEM muestran cambios en la morfología, estructura y tamaño de las nanopartículas de albúmina cargadas con SPIONs obtenidas por el método estándar, sin agregar glutaraldehído (FIG. 14-19). Las nanopartículas mostraron mayores cambios estructurales a pH 2, donde se observaron nanopartículas en proceso de desintegración (FIG. 14A, 16A, 18A) y una alta variabilidad en el tamaño en aquellas nanopartículas que se incubaron por 24 horas (FIG. 15A, 17A, 18A). A pH 3, 4, 5 y 6 las nanopartículas de albúmina cargadas con SPIONs presentaron contornos difusos y aumento en la permeabilidad al colorante acetato de uranilo, usado para dar contraste a las muestras, haciendo que se vean más oscuras (FIG. 14B-E, 16B-E, 18B-E), pero presentaron una dispersión de tamaño similar en todos los grupos que se analizaron (FIG. 15B-E, 17B-E, 19B-E). Por otro lado, las nanopartículas de albúmina cargadas con SPIONs estabilizadas con glutaraldehído no mostraron cambios en la morfología, estructura (FIG. 20A-E, 22A-E y 24A-E) ni tamaño (FIG. 21 A-E, 23A-E y 25A-E) para ningún valor de pH y tiempo de tratamiento. El glutaraldehído muestra ser de utilidad para dar estabilidad a las nanopartículas de albúmina en soluciones con valores de pH ácidos hasta por 72 horas.

Claims

22
REIVINDICACIONES Un método para la obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas, CARACTERIZADO porque comprende las etapas de: a) mezclar una solución de albúmina con nanopartículas magnéticas y agitar dicha mezcla a una velocidad entre 8.000 y 20.000 rpm durante 3 a 7 minutos; b) agregar gota a gota un agente de desolvatación a la mezcla de la etapa a) mientras se mantiene una agitación constante a una velocidad entre 8.000 y 20.000 rpm durante 1 a 15 minutos; c) agregar un agente reticulante a la mezcla de la etapa b) mientras se mantiene una agitación constante a una velocidad entre 8.000 y 20.000 rpm durante 1 a 15 minutos; y d) obtener nanopartículas de albúmina cargadas con nanopartículas magnéticas a partir de la mezcla de la etapa c). El método según la reivindicación 1 , CARACTERIZADO porque las nanopartículas magnéticas son nanopartículas de óxido de hierro. El método según la reivindicación 2, CARACTERIZADO porque las nanopartículas magnéticas son nanopartículas superparamagnéticas de óxido de hierro (SPIONs). El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa a) se realiza a una velocidad de 15.000 rpm durante 5 minutos. El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa b) se realiza a una velocidad de 15.000 rpm durante 5 minutos. El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa c) se realiza a una velocidad de 15.000 rpm durante 5 minutos.
7. El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa a) se realiza con un homogeneizador de tipo rotor/estator.
8. El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa b) se realiza con un homogeneizador de tipo rotor/estator.
9. El método según la reivindicación 1 , CARACTERIZADO porque la agitación de la etapa c) se realiza con un homogeneizador de tipo rotor/estator.
10. El método según la reivindicación 1 , CARACTERIZADO porque la solución de albúmina y las nanopartículas magnéticas se mezclan en una razón entre 10:1 a 10:5 p/p.
1 1. El método según la reivindicación 1 , CARACTERIZADO porque comprende adicionalmente ajustar el pH de la mezcla de la etapa a entre 9 y 10.
12. El método según la reivindicación 1 , CARACTERIZADO porque el agente de desolvatación se selecciona del grupo que consiste de etanol, metanol, isopropanol, y acetona, así como una combinación entre ellos.
13. El método según la reivindicación 1 , CARACTERIZADO porque el agente de desolvatación se agrega a la mezcla de solución de albúmina y nanopartículas magnéticas a una velocidad entre 0,1 y 2 ml/min.
14. El método según la reivindicación 1 , CARACTERIZADO porque el agente de desolvatación se agrega en una razón de 0,3 a 0,7 mi por cada mg de albúmina.
15. El método según la reivindicación 1 , CARACTERIZADO porque el agente reticulante es homobifuncional.
16. El método según la reivindicación 15, CARACTERIZADO porque el agente reticulante homobifuncional es glutaraldehído.
17. El método según la reivindicación 16, CARACTERIZADO porque el glutaraldehído tiene una concentración al 6,25% y se agrega en una razón de 10 pl por cada mg albúmina.
18. El método según la reivindicación 1 , CARACTERIZADO porque las nanopartículas de albúmina cargadas con nanopartículas magnéticas tienen un diámetro entre 30 a 300 nm.
19. El método según la reivindicación 1 , CARACTERIZADO porque la etapa d) comprende adicionalmente una etapa de lavado de las nanopartículas de albúmina cargadas con nanopartículas magnéticas.
20. El método según la reivindicación 19, CARACTERIZADO porque la etapa de lavado se realiza con una solución que se selecciona de agua destilada y tampón fosfato salino.
21 . El método según la reivindicación 1 , CARACTERIZADO porque la etapa d) comprende adicionalmente una etapa de centrifugación de las nanopartículas de albúmina cargadas con nanopartículas magnéticas.
22. El método según la reivindicación 21 , CARACTERIZADO porque la etapa de centrifugación se realiza a una velocidad entre 8.000 a 20.000 g.
PCT/CL2021/050079 2020-08-26 2021-08-27 Método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas WO2022040822A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/023,313 US20240016755A1 (en) 2020-08-26 2021-08-27 Method for rapidly obtaining albumin nanoparticles loaded with magnetic nanoparticles
CN202180070646.5A CN116685354A (zh) 2020-08-26 2021-08-27 用于快速获得负载有磁性纳米颗粒的白蛋白纳米颗粒的方法
EP21859483.6A EP4205731A1 (en) 2020-08-26 2021-08-27 Method for rapidly obtaining albumin nanoparticles loaded with magnetic nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2020002205A CL2020002205A1 (es) 2020-08-26 2020-08-26 Método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas
CL2205-2020 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022040822A1 true WO2022040822A1 (es) 2022-03-03

Family

ID=73047998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050079 WO2022040822A1 (es) 2020-08-26 2021-08-27 Método para la rápida obtención de nanopartículas de albúmina cargadas con nanopartículas magnéticas

Country Status (5)

Country Link
US (1) US20240016755A1 (es)
EP (1) EP4205731A1 (es)
CN (1) CN116685354A (es)
CL (1) CL2020002205A1 (es)
WO (1) WO2022040822A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206146A1 (en) * 2005-03-21 2008-08-28 Massoud Akhtari Functionalized Magnetic Nanoparticles and Methods of Use Thereof
US7875295B2 (en) 2001-05-09 2011-01-25 Nanomaterials Technology Pte Ltd Process for the controlled production of organic particles
KR101125232B1 (ko) * 2009-09-29 2012-03-21 서울대학교산학협력단 초상자성 산화철 나노입자 탑재 고분자 미세구의 제조 방법
CN106124758A (zh) * 2016-06-12 2016-11-16 华中科技大学 一种水溶性微球的制备方法及其应用
WO2019093923A1 (en) * 2017-11-09 2019-05-16 National University Of Science And Technology "Misis" Method of fabrication of preparation on the base of iron oxide magnetic nanoparticles for neoplasms diagnostics by magnetic resonance imaging
WO2019167040A1 (en) * 2018-03-01 2019-09-06 Bar Ilan University System, method and material composition for use in correction of eye conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875295B2 (en) 2001-05-09 2011-01-25 Nanomaterials Technology Pte Ltd Process for the controlled production of organic particles
US20080206146A1 (en) * 2005-03-21 2008-08-28 Massoud Akhtari Functionalized Magnetic Nanoparticles and Methods of Use Thereof
KR101125232B1 (ko) * 2009-09-29 2012-03-21 서울대학교산학협력단 초상자성 산화철 나노입자 탑재 고분자 미세구의 제조 방법
CN106124758A (zh) * 2016-06-12 2016-11-16 华中科技大学 一种水溶性微球的制备方法及其应用
WO2019093923A1 (en) * 2017-11-09 2019-05-16 National University Of Science And Technology "Misis" Method of fabrication of preparation on the base of iron oxide magnetic nanoparticles for neoplasms diagnostics by magnetic resonance imaging
WO2019167040A1 (en) * 2018-03-01 2019-09-06 Bar Ilan University System, method and material composition for use in correction of eye conditions

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JAHANBAN-ESFAHLAN A. ET AL.: "A simple improved desolvation method for the rapid preparation of albumin nanoparticles", INT. J. BIOL. MACROMOL., vol. 91, 2016, pages 703 - 709, XP029680340, DOI: 10.1016/j.ijbiomac.2016.05.032
KALIDASAN V. ET AL.: "Bovine Serum Albumin-Conjugated Ferrimagnetic Iron-oxide nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance", NANO- MICRO LETT, vol. 8, no. 1, 2016, pages 80 - 93, XP055634939, DOI: 10.1007/s40820-015-0065-1
LANGER K. ET AL.: "Optimization of the preparation process for human serum albumin (HSA) nanoparticles", INT. J. PHARM., vol. 257, 2003, pages 169 - 180, XP055211340, DOI: 10.1016/S0378-5173(03)00134-0
NOSRATI HAMED, SEFIDI NASER, SHARAFI ALI, DANAFAR HOSSEIN, KHEIRI MANJILI HAMIDREZA: "Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug", BIOORGANIC CHEMISTRY, ACADEMIC PRESS INC., NEW YORK, NY., US, vol. 76, 1 February 2018 (2018-02-01), US , pages 501 - 509, XP055908371, ISSN: 0045-2068, DOI: 10.1016/j.bioorg.2017.12.033 *
PARVIN NAJAFI, HASAN KOUCHAKZADEH: "BSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation", NANOMEDICINE JOURNAL, MASHHAD UNIVERSITY OF MEDICAL SCIENCES, vol. 6, no. 1, 1 January 2019 (2019-01-01), pages 55 - 66, XP055908375, ISSN: 2322-3049, DOI: 10.22038/nmj.2019.06.008 *
SUNDAR S. ET AL.: "Biopolymeric nanoparticles", SCI. TECHNOL. ADV. MATER., vol. 11, no. 1, 2010, pages 014104
WACKER M. ET AL.: "Nanoencapsulation of ultrasmall superparamagnetic particles of iron oxide into human serum albumin nanoparticles", BEILSTEIN J. NANOTECHNOL., vol. 5, 2014, pages 2259 - 2266

Also Published As

Publication number Publication date
CN116685354A (zh) 2023-09-01
EP4205731A1 (en) 2023-07-05
US20240016755A1 (en) 2024-01-18
CL2020002205A1 (es) 2020-10-02

Similar Documents

Publication Publication Date Title
Corr et al. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications
Akbarzadeh et al. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin
Shen et al. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications
Boyer et al. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications
JP5147699B2 (ja) タンパク質ナノ粒子およびその使用
Choubey et al. Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin
AU2009346580B2 (en) Water dispersible glyceryl monooleate magnetic nanoparticle formulation
Bhatia et al. Nanotechnology and its drug delivery applications
Ding et al. Chitosan-based magnetic/fluorescent nanocomposites for cell labelling and controlled drug release
Sadighian et al. pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach
KR100702671B1 (ko) 스마트 자성 나노 스피어 제제 및 이의 제조방법
Agotegaray et al. Silica-coated magnetic nanoparticles: an insight into targeted drug delivery and toxicology
Lin et al. Osteogenic effects of inductive coupling magnetism from magnetic 3D printed hydrogel scaffold
Tallury et al. Fluorescent and paramagnetic chitosan nanoparticles that exhibit high magnetic resonance relaxivity: synthesis, characterization and in vitro studies
Maurice et al. Synthesis and characterization of functionalized core–shell γFe2O3–SiO2 nanoparticles
Mu et al. Encapsulation of drug microparticles with self‐assembled Fe3O4/alginate hybrid multilayers for targeted controlled release
Gudovan et al. Functionalized magnetic nanoparticles for biomedical applications
Varanda et al. Magnetic and multifunctional magnetic nanoparticles in nanomedicine: challenges and trends in synthesis and surface engineering for diagnostic and therapy applications
CN106124758B (zh) 一种水溶性微球的制备方法及其应用
Vishwasrao et al. Luteinizing hormone releasing hormone-targeted cisplatin-loaded magnetite nanoclusters for simultaneous MR imaging and chemotherapy of ovarian cancer
Mokhosi et al. Assessing the structural, morphological and magnetic properties of polymer-coated magnesium-doped cobalt ferrite (CoFe2O4) nanoparticles for biomedical application
Favela-Camacho et al. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma
Biglione et al. Revealing the NIR-triggered chemotherapy therapeutic window of magnetic and thermoresponsive nanogels
Feuser et al. Superparamagnetic poly (methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis
Maximilien et al. Nanoparticles in biomedical applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021859483

Country of ref document: EP

Effective date: 20230327

WWE Wipo information: entry into national phase

Ref document number: 202180070646.5

Country of ref document: CN