WO2022039213A1 - Conductive carbon, production method for conductive carbon, and production method for electrode using conductive carbon - Google Patents

Conductive carbon, production method for conductive carbon, and production method for electrode using conductive carbon Download PDF

Info

Publication number
WO2022039213A1
WO2022039213A1 PCT/JP2021/030332 JP2021030332W WO2022039213A1 WO 2022039213 A1 WO2022039213 A1 WO 2022039213A1 JP 2021030332 W JP2021030332 W JP 2021030332W WO 2022039213 A1 WO2022039213 A1 WO 2022039213A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive carbon
carbon
active material
band
peak intensity
Prior art date
Application number
PCT/JP2021/030332
Other languages
French (fr)
Japanese (ja)
Inventor
智志 久保田
典之 宮本
大輔 堀井
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2022039213A1 publication Critical patent/WO2022039213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to conductive carbon used for a power storage device having a high energy density and excellent high temperature stability.
  • the present invention also relates to the method for producing the conductive carbon and the method for producing an electrode for a power storage device using the conductive carbon.
  • Power storage devices such as secondary batteries, electric double-layer capacitors, redox capacitors and hybrid capacitors are used as power supplies for information devices such as mobile phones and laptop computers, motor-driven power supplies for low-emission vehicles such as electric vehicles and hybrid vehicles, and energy regeneration. Although it is a device whose application is widely studied for systems and the like, it is desired to improve the energy density of these power storage devices in order to meet the demands for higher performance and smaller size.
  • an electrode active material whose capacity is developed by a Faraday reaction involving the transfer of electrons with ions in an electrolyte (including an electrolytic solution) or a non-Faraday reaction without transfer of electrons is used for energy storage. It will be used.
  • these active materials are generally used in the form of a composite material with a conductive agent.
  • conductive agent conductive carbon such as carbon black, natural graphite, artificial graphite, and carbon nanotubes is usually used. These conductive carbons play a role of imparting conductivity to the composite material when used in combination with an active material having low conductivity, but also act as a matrix for absorbing the volume change accompanying the reaction of the active material. It also plays a role in ensuring an electron conduction path even if the active material is mechanically damaged.
  • the composite material of these active materials and conductive carbon is generally manufactured by a method of mixing the particles of the active material and the conductive carbon. Since conductive carbon basically does not contribute to the improvement of the energy density of the power storage device, in order to obtain a power storage device having a high energy density, the amount of conductive carbon per unit volume is decreased and the amount of active material is increased. There is a need. Therefore, studies have been conducted to increase the amount of active material per unit volume by increasing the distance between the active material particles by improving the dispersibility of the conductive carbon or lowering the structure of the conductive carbon. However, it is difficult to efficiently allow the conductive carbon as described above to enter between the active material particles, and therefore it is difficult to increase the amount of active material per unit volume by reducing the distance between the active material particles. Met.
  • the applicant has decided to use conductive carbon, which can be obtained by subjecting a carbon raw material to a strong oxidation treatment and has a property of spreading like a paste under pressure, for an electrode of a power storage device. It has been proposed (Patent Documents 1 to 15).
  • the "glue-like” means a state in which the grain boundaries of the carbon primary particles are not recognized in the SEM photograph taken at a magnification of 25,000, and the non-particulate amorphous carbon is connected.
  • Conductive carbon which has the property of spreading like a paste under this pressure, easily adheres to the surface of the electrode active material particles, and when it receives pressure, it is integrally compressed and spreads like a paste, making it difficult for it to fall apart. It has characteristics. Therefore, when a mixture of the conductive carbon and the electrode active material particles is obtained for the electrode of the power storage device, the conductive carbon adheres to the surface of the active material particles and covers the surface in the mixing process, and the active material is covered. Improves particle dispersibility. When the pressure applied to the conductive carbon during the production of the mixture is large, at least a part of the conductive carbon spreads like a paste and the surface of the active material particles is partially covered.
  • the conductive carbon further spreads like a paste to cover the surface of the electrode active material particles.
  • the active material particles are densified while covering, and the active material particles approach each other.
  • the conductive carbon covers the surface of the active material particles and forms not only the gaps formed between the adjacent active material particles but also the active material particles. It is also extruded and densely filled inside the pores existing on the surface (including the gaps between the primary particles found in the secondary particles). Therefore, the amount of the electrode active material per unit volume of the electrode increases, and the electrode density increases. Further, the densely packed paste-like conductive carbon has sufficient conductivity to function as a conductive agent and does not suppress the impregnation of the electrolytic solution in the power storage device. As a result, the energy density of the power storage device is improved.
  • Patent Document 6 shows the result of evaluating the content of the hydrophilic portion in the conductive carbon.
  • the "hydrophilic portion" of the conductive carbon has the following meaning. That is, 0.1 g of conductive carbon is added to 20 mL of an aqueous ammonia solution having a pH of 11, and ultrasonic irradiation is performed for 1 minute, and the obtained liquid is left for 5 hours to precipitate a solid phase portion. The portion dispersed in the aqueous ammonia solution having a pH of 11 without precipitating is the "hydrophilic portion". Further, the content of the hydrophilic portion with respect to the entire conductive carbon is determined by the following method.
  • the residual portion from which the supernatant has been removed is dried, and the weight of the dried solid is measured.
  • the weight obtained by subtracting the weight of the dried solid from the weight of the first conductive carbon of 0.1 g is the weight of the "hydrophilic portion" dispersed in the aqueous ammonia solution having a pH of 11.
  • the weight ratio of the weight of the "hydrophilic portion" to the weight of the first conductive carbon of 0.1 g is the content of the "hydrophilic portion" in the conductive carbon.
  • a lithium ion secondary battery having a positive electrode containing acetylene black as a conductive carbon and a positive electrode active material and a lithium counter electrode, and conductive carbon obtained by half or all of the acetylene black by the above-mentioned strong oxidation treatment.
  • the charge / discharge characteristics are evaluated by constructing a lithium ion secondary battery equipped with a positive electrode replaced with the former, it is shown that the latter exhibits better rate characteristics and charge / discharge cycle characteristics than the former (in this document). (See FIGS. 6 to 11, 13, and 14).
  • This improved charge / discharge cycle characteristic is due to the fact that the surface of the electrode active material is covered with the conductive carbon that spreads like a paste, so that the dissolution of the active material in the electrolytic solution is suppressed. (See Table 1 in this document).
  • an object of the present invention is to provide conductive carbon and a method for producing the same, which leads to a power storage device having a high energy density and improved stability under high temperature use.
  • the inventors proceeded with the study based on the conductive carbon having the property of spreading like a paste when subjected to the above-mentioned pressure, which is known to lead to the storage device having a high energy density, and pulverized the conductive carbon into the above-mentioned conductive carbon.
  • the effect of applying the above was investigated.
  • a high-temperature standing test was conducted in which a practical lithium-ion secondary battery including a positive electrode containing pulverized conductive carbon and a positive electrode active material and a negative electrode containing hard carbon was constructed and left at 60 ° C.
  • Non-Patent Document 1 shows an S1 band observed in the Raman spectrum of a graphite structure having high crystallinity near 2700 cm -1 , and an S2 band appearing in the vicinity of 2900 cm -1 when the graphite structure is disturbed (this). See A and B in Figure 3 of the literature). Since it is considered that the crystal structure is disturbed by pulverization, it is expected that the peak intensities of the S1 band and the S2 band of the Raman spectrum can be effectively utilized due to the conductive carbon.
  • FIG. 1 shows an S1 band observed in the Raman spectrum of a graphite structure having high crystallinity near 2700 cm -1 , and an S2 band appearing in the vicinity of 2900 cm -1 when the graphite structure is disturbed (this). See A and B in Figure 3 of the literature). Since it is considered that the crystal structure is disturbed by pulverization, it is expected that the peak intensities of the S1 band and the S2 band of the Raman spectrum can be effectively utilized due to the conductive carbon.
  • the present invention is a conductive carbon to be used as a conductive agent in an electrode of a power storage device. It has the property of spreading like a paste under pressure, and The present invention relates to conductive carbon in which the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon is in the range of 0.85 to 0.99.
  • the present invention is also the method for producing the conductive carbon of the present invention.
  • an oxidation-treated carbon having the property of spreading like a paste under pressure is obtained, an oxidation step, and The oxidized carbon is pulverized, except that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.85 to 0.99.
  • the crushing stage which is carried out so as to be
  • the present invention relates to a method for producing conductive carbon, which comprises.
  • the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum is calculated using the spectrum obtained by performing baseline correction on the measured Raman spectrum.
  • the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band is calculated after performing peak smoothing and baseline correction on the measured Raman spectrum. It is preferable to do so.
  • the power storage device obtained by using the conductive carbon improves stability under high temperature use.
  • the stability of the power storage device under high temperature use is more preferably improved by adjusting the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the range of 0.90 to 0.95.
  • the conductive carbon of the present invention when the conductive carbon contains a hydrophilic portion and the content of the hydrophilic portion is 10% by mass or more of the whole conductive carbon, it is paste-like under the pressure of the conductive carbon. It is preferable because the property of spreading carbon fiber becomes remarkable.
  • the present invention is also a method for manufacturing an electrode for a power storage device, in which the electrode active material particles and the conductive carbon of the present invention are mixed, and at least a part of the conductive carbon spreads like a paste.
  • An active material layer is formed by a mixing step of obtaining a mixture covering the surface of the electrode active material particles and by applying the mixture on a current collector for the electrode, and the obtained active material layer is obtained.
  • the present invention relates to a method for manufacturing an electrode, which comprises a pressurizing step of applying a pressure to the conductive carbon to further spread the conductive carbon into a paste and densify the conductive carbon.
  • the mixing step is a first mixing step of mixing the conductive carbon with another conductive carbon to obtain a conductive carbon mixture, and the conductive carbon mixture. It is preferable to carry out by a method including a second mixing step of mixing the above-mentioned electrode active material particles because the conductivity of the obtained electrode is further improved.
  • the active material particles and the present material are used in the manufacture of electrodes for power storage devices.
  • the pressure causes the conductive carbon of the present invention to spread like a paste and densify while covering the surface of the active material particles, thereby improving the energy density of the power storage device. Brought to you.
  • the energy storage device provided with the electrode containing the conductive carbon of the present invention exhibits improved stability under high temperature use.
  • the conductive carbon for the electrode of the power storage device of the present invention has a property of spreading like a paste under pressure, and the S1 band in the Raman spectrum of the conductive carbon.
  • the ratio of the peak intensity of S2 band to the peak intensity of S2 band is in the range of 0.85 to 0.99.
  • This conductive carbon is subjected to an oxidation step of obtaining an oxidation-treated carbon having a property of spreading like a paste under pressure by subjecting a carbon raw material to an oxidation treatment, and the above-mentioned oxidation-treated carbon is subjected to a pulverization treatment, provided that the pulverization is performed.
  • the oxidation stage In the oxidation stage, a relatively strong oxidation treatment is applied to the conductive carbon raw material.
  • the carbon raw materials used include carbon black such as Ketjen black, acetylene black, furnace black, and channel black, fullerene, carbon nanotubes, carbon nanofibers, graphene, amorphous carbon, carbon fibers, natural graphite, artificial graphite, and graphite.
  • Conductive carbon which is used as a conductive agent for electrodes of conventional power storage devices such as chemical Ketjen black, mesoporous carbon, and vapor phase carbon fiber, can be used without particular limitation, but is easy to oxidize.
  • porous carbon powder, Ketjen black, furnace black with voids, carbon nanofibers and conductive carbon having voids such as carbon nanotubes are preferable, and among them, the specific surface area measured by the BET method is 300 m 2 /.
  • Conductive carbon having voids of g or more is preferable, and spherical conductive carbon such as Ketjen black and furnace black having voids is particularly preferable.
  • oxidation-treated carbon can be obtained by treating the carbon raw material in a solution of acid or hydrogen peroxide.
  • acid nitric acid, a mixture of nitric acid and sulfuric acid, an aqueous solution of hypochlorous acid and the like can be used.
  • oxidation-treated carbon can be obtained by heating the carbon raw material in an oxygen-containing atmosphere, steam, or carbon dioxide.
  • the oxidation-treated carbon can be obtained by mixing the carbon raw material with the alkali metal hydroxide and heating it in an oxygen-containing atmosphere to remove the alkali metal by washing with water or the like.
  • the oxidized carbon can be obtained by plasma treatment in an oxygen-containing atmosphere of the carbon raw material, ultraviolet irradiation, corona discharge treatment and glow discharge treatment, treatment with ozone water or ozone gas, and oxygen bubbling treatment in water.
  • the carbon raw material preferably the carbon raw material having voids described above
  • it is oxidized from the surface of the carbon particles, a hydroxyl group, a carboxyl group or an ether bond is introduced into the carbon, and the conjugated double bond of the carbon is oxidized.
  • a carbon single bond is formed, the carbon-carbon bond is partially broken, and a highly hydrophilic portion is formed on the particle surface.
  • the proportion of the hydrophilic portion in the carbon particles increases, and it is possible to obtain the oxidation-treated carbon having the property of spreading like a paste under pressure.
  • the content of the hydrophilic portion in the oxidized carbon is preferably 10% by mass or more of the total amount of the oxidized carbon.
  • Oxidized carbon containing 10% by mass or more of the total hydrophilic part is (A1) A step of treating a carbon raw material having voids with an acid, (B1) Step of mixing the product after acid treatment with the transition metal compound, (C1) A step of pulverizing the obtained mixture to cause a mechanochemical reaction. (D1) A step of heating the product after the mechanochemical reaction in a non-oxidizing atmosphere, and (E1) It can be suitably obtained by the first production method including the step of removing the transition metal compound and / or the reaction product thereof from the product after heating.
  • the carbon raw material having voids is immersed in an acid and left to stand. Ultrasonic waves may be applied during this immersion.
  • an acid usually used for oxidation treatment of carbon such as nitric acid, a mixture of nitric acid and sulfuric acid, and an aqueous solution of hypochlorous acid can be used.
  • the soaking time depends on the concentration of the acid and the amount of the carbon raw material to be treated, but is generally in the range of 5 minutes to 5 hours.
  • the carbon after the acid treatment is thoroughly washed with water, dried, and then mixed with the transition metal compound in the step (b1).
  • Examples of the transition metal compound added to the carbon raw material in the step (b1) include halides of transition metals, nitrates, sulfates, and inorganic metal salts such as carbonates, formates, acetates, oxalates, methoxydos, ethoxydos, and iso.
  • Organic metal salts such as propoxide or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. Compounds containing different transition metals may be mixed and used in predetermined amounts. Further, a compound other than the transition metal compound, for example, an alkali metal compound may be added together as long as the reaction is not adversely affected.
  • the conductive carbon of the present invention is used by being mixed with active material particles in the production of electrodes of a power storage device, when a compound of an element constituting the active material is added to a carbon raw material, an impurity is added to the active material. It is preferable because it can prevent the mixing of potential elements.
  • the mixture obtained in the step (b1) is pulverized to cause a mechanochemical reaction.
  • crushers for this reaction include raikais, ball mills, bead mills, rod mills, roller mills, stirring mills, planetary mills, vibration mills, hybridizers, mechanochemical compounding devices and jet mills.
  • the crushing time depends on the crusher used, the amount of carbon to be processed, and the like, and is not strictly limited, but is generally in the range of 5 minutes to 3 hours.
  • the step (d1) is performed in a non-oxidizing atmosphere such as a nitrogen atmosphere and an argon atmosphere.
  • the heating temperature and heating time are appropriately selected depending on the transition metal compound used.
  • the transition metal compound and / or its reaction product is removed from the heated product by means such as dissolving it with an acid, and then thoroughly washed and dried to remove the oxidized carbon. Obtainable.
  • the transition metal compound acts to promote the oxidation of the carbon raw material by the mechanochemical reaction, and the oxidation of the carbon raw material proceeds rapidly.
  • an oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the total conductive carbon can be obtained.
  • Oxidized carbon containing more than 10% by weight of the total hydrophilic part also (A2) A step of mixing a carbon raw material having voids and a transition metal compound, (B2) A step of heating the obtained mixture in an oxidizing atmosphere, and (C2) It can also be preferably obtained by a second production method including a step of removing the transition metal compound and / or a reaction product thereof from the product after heating.
  • inorganic metal salts such as halides, nitrates, sulfates and carbonates of transition metals, formates, acetates, oxalates, methoxydos, ethoxydos and iso Organic metal salts such as propoxide or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. Compounds containing different metals may be mixed and used in predetermined amounts. Further, a compound other than the transition metal compound, for example, an alkali metal compound may be added together as long as the reaction is not adversely affected.
  • this conductive carbon is used by being mixed with active material particles in the production of electrodes of a power storage device, an element that can become an impurity with respect to the active material when a compound of an element constituting the active material is added to the carbon raw material. It is preferable because it can prevent the mixing of the compound.
  • the step (b2) is carried out in an oxygen-containing atmosphere, for example, in air, and is carried out at a temperature at which carbon partially disappears but does not completely disappear, preferably at a temperature of 200 to 350 ° C.
  • the transition metal compound and / or its reaction product is removed from the heated product by means such as dissolving it with an acid, and then thoroughly washed and dried to remove the oxidized carbon. Obtainable.
  • the transition metal compound acts as a catalyst for oxidizing the carbon raw material in the heating step in the oxidizing atmosphere, and the oxidation of the carbon raw material proceeds rapidly.
  • an oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the total conductive carbon can be obtained.
  • a suitable oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the whole is obtained by subjecting the carbon raw material to a strong oxidation treatment, and the carbon raw material can be obtained by a method other than the first production method and the second production method. It is also possible to promote oxidation.
  • the conductive carbon of the present invention can be obtained by subjecting the oxidation-treated carbon to a crushing treatment in the crushing step.
  • the pulverization treatment is carried out so that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.85 to 0.99.
  • the stability under high temperature use is more preferably improved.
  • a raikai device For crushing, a raikai device, a stone mill type grinder, a ball mill, a bead mill, a rod mill, a roller mill, a stirring mill, a planetary mill, a vibration mill, a hybridizer, a mechanochemical compounding device and a jet mill can be used.
  • the pulverization time varies depending on the amount of the oxidized carbon to be pulverized and the mixing device used, but is generally between 10 minutes and 1 hour.
  • the conductive carbon of the present invention is an electrode active material whose capacity is developed by a Faraday reaction involving the transfer of electrons with ions in the electrolyte of a power storage device or a non-Faraday reaction without transfer of electrons. In mixed form with particles, it is used for electrodes of power storage devices such as secondary batteries, electric double layer capacitors, redox capacitors and hybrid capacitors.
  • the power storage device includes a pair of electrodes (positive electrode, negative electrode) and an electrolyte arranged between them as essential elements, and at least one of the positive electrode and the negative electrode contains the conductive carbon of the present invention and the electrode active material particles. Manufactured using the inclusion mixture.
  • the electrolyte arranged between the positive electrode and the negative electrode in the power storage device may be an electrolytic solution held in the separator, a solid electrolyte, or a gel-like electrolyte, and may be a conventional power storage device.
  • the electrolyte used in the above can be used without particular limitation. The following is an example of a typical electrolyte.
  • a lithium salt such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , or LiN (CF 3 SO 2 ) 2 is added to a solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, or dimethyl carbonate.
  • the dissolved electrolytic solution is used in a state of being held by a separator such as a polyolefin fiber non-woven fabric or a glass fiber non-woven fabric.
  • a separator such as a polyolefin fiber non-woven fabric or a glass fiber non-woven fabric.
  • inorganic solid electrolytes such as Li 5 La 3 Nb 2 O 12 , Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 7 P 3 S 11 and the like.
  • An organic solid electrolyte composed of a composite of a lithium salt and a polymer compound such as polyethylene oxide, polymethacrylate, and polyacrylate, and a gel-like electrolyte in which an electrolytic solution is absorbed by polyvinylidene fluoride, polyacrylonitrile, or the like are also used.
  • an electrolytic solution in which a quaternary ammonium salt such as (C 2 H 5 ) 4 NBF 4 is dissolved in a solvent such as acrylonitrile or propylene carbonate is used.
  • a solvent such as acrylonitrile or propylene carbonate
  • an electrolytic solution in which a lithium salt is dissolved in propylene carbonate or the like or an electrolytic solution in which a quaternary ammonium salt is dissolved in propylene carbonate or the like is used.
  • the positive electrode or the negative electrode of the energy storage device using the conductive carbon of the present invention is generally prepared by mixing the electrode active material particles and the conductive carbon of the present invention together with a solvent in which a binder is dissolved, if necessary.
  • a mixing step of obtaining a mixture in which at least a part of the conductive carbon spreads like a paste and covers the surface of the electrode active material particles, and by applying the mixture onto a current collector for the electrodes. It is produced by a method including a pressurizing step of forming an active material layer and applying pressure to the obtained active material layer to further spread the conductive carbon into a paste and densify it.
  • a solid electrolyte or a gel-like electrolyte is used as the electrolyte between the positive electrode and the negative electrode, an ion conduction path in the active material layer is secured in the mixture containing the conductive carbon of the present invention and the electrode active material particles.
  • a solid electrolyte is added for the purpose of the above, and if necessary, these are sufficiently kneaded with a solvent in which the binder is dissolved, and the obtained mixture is used to form an active material layer on the current collector.
  • a conductive material such as platinum, gold, nickel, aluminum, titanium, steel, or carbon can be used.
  • shape of the current collector any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.
  • the conductive carbon of the present invention adheres to the surface of the active material particles and covers the surface, so that aggregation of the active material particles can be suppressed. Further, when the pressure applied to the conductive carbon of the present invention is large in the above mixing step, at least a part of the conductive carbon spreads like a paste and the surface of the active material particles is partially covered. Further, due to the pressure applied to the active material layer in the pressurizing step, the conductive carbon of the present invention further spreads like a paste and becomes densified while covering the surface of the active material particles, and the active material particles approach each other to this.
  • the conductive carbon of the present invention covers the surface of the active material particles and is extruded not only into the gaps formed between the adjacent active material particles but also into the pores existing on the surface of the active material particles. Is filled with. Therefore, the amount of active material per unit volume in the electrode increases, and the electrode density increases. Further, the densely packed paste-like conductive carbon has sufficient conductivity to function as a conductive agent and does not suppress the impregnation of the electrolytic solution in the power storage device. As a result, the energy density of the power storage device is improved.
  • the electrode active material used in the conventional power storage device can be used without particular limitation.
  • the active substance may be a single compound or a mixture of two or more kinds of compounds.
  • positive electrode active materials for secondary batteries include layered rock salt type LiMO 2 , layered Li 2 MnO 3 -LiMO 2 solid solution, and spinel type LiM 2 O 4 (M in the formula is Mn, Fe, Co, Ni or a combination thereof). Specific examples of these include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co 1/5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O.
  • sulfur and sulfides such as Li 2S, TiS 2 , MoS 2 , FeS 2 , VS 2 , Cr 1/2 V 1/2 S 2 and sulphides such as NbSe 3 , VSe 2 and NbSe 3 , Cr 2 Oxides such as O 5 , Cr 3 O 8 , VO 2 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiVOPO 4 , LiV 3 O 5 , LiV 3 O 8 , MoV 2 O 8 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , LiFePO 4 , LiFe 1/2 Mn 1/2 PO 4 , LiMnPO 4 , Li 3 V 2 (PO 4 )
  • composite oxides such as 3 .
  • negative electrode active materials for secondary batteries are Fe 2 O 3 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 , TiO, and TIO 2 .
  • Examples thereof include composite oxides and nitrides such as Li 2.6 Co 0.4 N, Ge 3 N 4 , Zn 3 N 2 and Cu 3 N.
  • the active material in the polarizable electrode of the electric double layer capacitor examples include carbon materials such as activated carbon having a large specific surface area, carbon nanofibers, carbon nanotubes, phenolic resin carbides, polyvinylidene chloride carbides, and microcrystalline carbon.
  • the positive electrode active material exemplified for the secondary battery can be used for the positive electrode, and in this case, the negative electrode is composed of a polar electrode using activated carbon or the like.
  • the negative electrode active material exemplified for the secondary battery can be used for the negative electrode, and in this case, the positive electrode is composed of a polarizable electrode using activated carbon or the like.
  • Examples of the positive electrode active material of the redox capacitor include metal oxides such as RuO 2 , MnO 2 , and NiO, and the negative electrode is composed of an active material such as RuO 2 and a polarizable material such as activated carbon.
  • the shape and particle size of the active material particles are not limited, but the average particle size is preferably larger than 2 ⁇ m and 25 ⁇ m or less.
  • the active material particles having such a relatively large particle size improve the electrode density by themselves, and in the mixing step, the pressing force of the active material particles promotes the gelatinization of the conductive carbon. Further, in the process of applying pressure to the active material layer on the current collector in the electrode manufacturing, the active material particles having such a relatively large particle size further press the conductive carbon which is at least partially pasty. Then, the conductive carbon is further spread like a paste to be densified. As a result, the electrode density is further increased, and the energy density of the power storage device is further improved.
  • the active material particles include fine particles having an average particle size of 0.01 to 2 ⁇ m, and coarse particles having an average particle size of 25 ⁇ m or less, which is larger than 2 ⁇ m and can operate as an active material having the same pole as the fine particles. It is preferably composed of.
  • the conductive carbon of the present invention adheres not only to the surface of the fine particles but also to the surface of the coarse particles to cover the surface, so that aggregation of the active material particles can be suppressed, and the active material particles and the conductivity can be suppressed.
  • the mixed state with carbon can be made uniform.
  • the coarse particles promote the gelatinization and densification of the conductive carbon of the present invention, increase the electrode density, and improve the energy density of the energy storage device. Further, due to the pressure applied to the active material layer formed on the current collector by the rolling process in the electrode production, the fine particles press the conductive carbon of the present invention together with the conductive carbon spread like a paste. Since the gaps formed between the adjacent coarse particles are extruded and filled, the electrode density is further increased, and the energy density of the energy storage device is further improved.
  • Another conductive carbon having a conductivity higher than that of the conductive carbon is used in the mixing step. It is preferable to further mix to obtain a mixture in which at least a part of the conductive carbon spreads like a paste and also covers the surface of the other conductive carbon.
  • Other conductive carbons mentioned above include carbon blacks such as Ketjen black, acetylene black, furnace black, and channel black, which are used for electrodes of conventional power storage devices, fullerene, carbon nanotubes, carbon nanofibers, and graphene.
  • Examples thereof include amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized Ketjen black, mesoporous carbon, and vapor phase carbon fiber.
  • the mass ratio of the conductive carbon to the other conductive carbon is generally in the range of 3: 1 to 1: 3.
  • the mixing step at least a part of the conductive carbon of the present invention spreads like a paste and adheres not only to the surface of the electrode active material but also to the surface of the other conductive carbon described above to cover the surface. It is possible to suppress the aggregation of the other conductive carbon. Further, due to the pressure applied to the active material layer formed on the current collector in the pressurizing step, the other conductive carbon is formed by adjacent active material particles together with the conductive carbon of the present invention spread like a paste. Since the gaps are densely filled and the conductivity of the entire electrode is improved, the energy density of the power storage device is further improved.
  • the mixing step is the first mixing step of mixing the conductive carbon with the other conductive carbon to obtain a conductive carbon mixture. Further, it is preferable to carry out by a method including a second mixing step of mixing the conductive carbon mixture and the electrode active material particles because the conductivity of the electrode obtained after the pressurizing step is further improved.
  • the mixing method for carrying out the mixing step is not particularly limited, and a known mixing method can be used, but the active material particles, the conductive carbon of the present invention, and another conductive material used in combination as necessary are used. It is preferred to mix the carbon by dry mixing and then, if necessary, with a solvent in which the binder is dissolved.
  • a solvent in which the binder is dissolved for dry mixing, lyca, ball mills, bead mills, rod mills, roller mills, stirring mills, planetary mills, vibration mills, hybridizers, mechanochemical compounding devices and jet mills can be used.
  • the ratio of the active material particles to the total of the conductive carbon of the present invention or another conductive carbon used in combination with the conductive carbon of the present invention as needed is to obtain a power storage device having a high energy density.
  • the mass ratio is preferably in the range of 90:10 to 99.5: 0.5, more preferably in the range of 95: 5 to 99: 1. If the proportion of the conductive carbon is less than the above range, the conductivity of the active material layer is insufficient, and the coverage of the active material particles by the conductive carbon tends to decrease. Further, when the ratio of the conductive carbon is larger than the above range, the electrode density tends to decrease, and the energy density of the power storage device tends to decrease.
  • Binders to be mixed with the active material particles, the conductive carbon of the present invention and other conductive carbons used in combination as needed include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, and polyhood. Known binders such as vinyl fluoride and carboxymethyl cellulose are used.
  • the binder content is preferably 1 to 30% by mass with respect to the total amount of the mixed material. If it is 1% by mass or less, the strength of the active material layer is not sufficient, and if it is 30% by mass or more, inconveniences such as a decrease in the discharge capacity of the electrode and an excessive internal resistance occur.
  • the solvent to be mixed with the active material particles, the conductive carbon of the present invention and another conductive carbon used in combination as necessary is not particularly limited to a solvent that does not adversely affect other materials such as N-methylpyrrolidone. Can be used.
  • Ketjen Black (trade name EC300J, manufactured by Ketjen Black International Co., Ltd.) was added to 300 mL of 40% nitric acid, and the obtained liquid was irradiated with ultrasonic waves for 10 minutes and then filtered to recover Ketjen Black. The recovered Ketjen black was washed with water three times and dried to obtain an acid-treated Ketjen black.
  • 0.1 g of the obtained oxidized carbon was added to 20 mL of an aqueous ammonia solution having a pH of 11, and ultrasonic irradiation was performed for 1 minute.
  • the obtained liquid was left to stand for 5 hours to precipitate the solid phase portion.
  • the residue from which the supernatant was removed was dried, and the weight of the dried solid was measured.
  • the weight ratio of the weight of the dried solid minus the weight of the first oxidized carbon of 0.1 g to the weight of the first oxidized carbon of 0.1 g is the content of the "hydrophilic moiety" in the oxidized carbon. did.
  • the content of the hydrophilic portion was 10.2% of the total oxidized carbon.
  • the Raman spectrum of the obtained oxidation-treated carbon was measured using a laser Raman spectrophotometer (NRS-5500 manufactured by JASCO Corporation, excitation light: KTP / 532 laser: wavelength 532 nm). Then, the measured Raman spectrum is smoothed and baseline corrected by the simple moving average method using the analysis software (spectrum manager) attached to the spectrophotometer, and the S1 band is obtained from the obtained spectrum. The ratio Is1 / Is2 of the peak intensity Is1 to the peak intensity Is2 of the S2 band was calculated.
  • N-Methylpyrrolidone was added and sufficiently kneaded to form a slurry. This slurry was applied onto an aluminum foil and dried, and then pressurized three times under the condition of 1.5 t / cm to obtain a positive electrode for a lithium ion secondary battery.
  • a lithium ion secondary battery was prepared using a 1 M LiPF 6 ethylene carbonate / dimethyl carbonate / propylene carbonate 1: 1: 1 solution as an electrolytic solution. ..
  • the obtained battery was subjected to a high temperature standing test. First, the obtained battery is charged until the SOC (remaining capacity (Ah) / full charge capacity (Ah) x 100) reaches 50%, and then discharged with a constant current for 10 seconds to obtain the initial DCIR from the voltage drop. Calculated. Next, the battery is charged to 4 V, left in a constant temperature bath at 60 ° C. for 2 weeks, then the battery is taken out from the constant temperature bath, charged until the SOC reaches 50%, and then discharged at a constant current for 10 seconds from the voltage drop. The DCIR after leaving was calculated. Then, the resistance increase rate of the DCIR after being left to stand from the initial DCIR was calculated as a measure of the high temperature holding stability.
  • Example 1 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 20 minutes under the condition of 10 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • Example 2 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill apparatus and pulverized for 20 minutes under the condition of 15 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • Example 3 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 30 minutes under the condition of 15 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • Example 4 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 60 minutes under the condition of 20 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • Example 5 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 20 minutes under the condition of 30 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • Comparative Example 2 The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill apparatus and pulverized for 60 minutes under the condition of 30 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
  • the ratio of the peak intensity Is1 of the S1 band to the peak intensity Is2 of the S2 band in the Raman spectrum is 0.90 to Is2 . It is important to grind the oxidized carbon so that it is in the range of 0.95.
  • a power storage device having a high energy density and improved stability under high temperature use can be obtained.

Abstract

Provided are: a conductive carbon that makes it possible to achieve a power storage device that has high energy density and improved stability when used at high temperatures; and a production method for the conductive carbon. This conductive carbon spreads like paste when subjected to pressure. The ratio of the peak intensity of an S1 band of a Raman spectrum of the conductive carbon to the peak intensity of an S2 band is 0.85–0.99. The conductive carbon is produced by means of a method that includes an oxidation step for performing an oxidation treatment on a carbon raw material to obtain an oxidized carbon that spreads like paste when subjected to pressure and a crushing step for performing a crushing treatment on the oxidized carbon such that the ratio of the peak intensity of an S1 band of a Raman spectrum of the resulting conductive carbon to the peak intensity of an S2 band is 0.85–0.99.

Description

導電性カーボン、この導電性カーボンの製造方法、及びこの導電性カーボンを用いた電極の製造方法Conductive carbon, a method for manufacturing this conductive carbon, and a method for manufacturing an electrode using this conductive carbon.
 本発明は、高いエネルギー密度を有し且つ高温安定性に優れた蓄電デバイスのために用いられる導電性カーボンに関する。本発明はまた、上記導電性カーボンの製造方法及び上記導電性カーボンを用いた蓄電デバイス用の電極の製造方法に関する。 The present invention relates to conductive carbon used for a power storage device having a high energy density and excellent high temperature stability. The present invention also relates to the method for producing the conductive carbon and the method for producing an electrode for a power storage device using the conductive carbon.
 二次電池、電気二重層キャパシタ、レドックスキャパシタ及びハイブリッドキャパシタなどの蓄電デバイスは、携帯電話やノート型パソコンなどの情報機器の電源、電気自動車やハイブリッド自動車などの低公害車のモーター駆動電源やエネルギー回生システム等のために広く応用が検討されているデバイスであるが、これらの蓄電デバイスにおいて、高性能化、小型化の要請に答えるために、エネルギー密度の向上が望まれている。 Power storage devices such as secondary batteries, electric double-layer capacitors, redox capacitors and hybrid capacitors are used as power supplies for information devices such as mobile phones and laptop computers, motor-driven power supplies for low-emission vehicles such as electric vehicles and hybrid vehicles, and energy regeneration. Although it is a device whose application is widely studied for systems and the like, it is desired to improve the energy density of these power storage devices in order to meet the demands for higher performance and smaller size.
 これらの蓄電デバイスでは、電解質(電解液を含む)中のイオンとの電子の授受を伴うファラデー反応或いは電子の授受を伴わない非ファラデー反応により容量を発現する電極活物質が、エネルギー貯蔵のために利用される。そして、これらの活物質は一般に導電剤との複合材料の形態で使用される。導電剤としては、通常、カーボンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ等の導電性カーボンが使用される。これらの導電性カーボンは、導電性の低い活物質と併用されて、複合材料に導電性を付与する役割を果たすが、これだけでなく、活物質の反応に伴う体積変化を吸収するマトリックスとしても作用し、また、活物質が機械的な損傷を受けても電子伝導パスを確保するという役割も果たす。 In these energy storage devices, an electrode active material whose capacity is developed by a Faraday reaction involving the transfer of electrons with ions in an electrolyte (including an electrolytic solution) or a non-Faraday reaction without transfer of electrons is used for energy storage. It will be used. And these active materials are generally used in the form of a composite material with a conductive agent. As the conductive agent, conductive carbon such as carbon black, natural graphite, artificial graphite, and carbon nanotubes is usually used. These conductive carbons play a role of imparting conductivity to the composite material when used in combination with an active material having low conductivity, but also act as a matrix for absorbing the volume change accompanying the reaction of the active material. It also plays a role in ensuring an electron conduction path even if the active material is mechanically damaged.
 ところで、これらの活物質と導電性カーボンとの複合材料は、一般に活物質の粒子と導電性カーボンを混合する方法により製造される。導電性カーボンは基本的に蓄電デバイスのエネルギー密度の向上に寄与しないため、高いエネルギー密度を有する蓄電デバイスを得るためには、単位体積あたりの導電性カーボン量を減少させて活物質量を増加させる必要がある。そこで、導電性カーボンの分散性を向上させ、或いは、導電性カーボンのストラクチャを低下させることにより、活物質粒子間の距離を接近させて単位体積あたりの活物質量を増加させる検討が行われてきたが、上述のような導電性カーボンを活物質粒子間に効率よく進入させることが困難であり、したがって活物質粒子間の距離を接近させて単位体積あたりの活物質量を増加させることが困難であった。 By the way, the composite material of these active materials and conductive carbon is generally manufactured by a method of mixing the particles of the active material and the conductive carbon. Since conductive carbon basically does not contribute to the improvement of the energy density of the power storage device, in order to obtain a power storage device having a high energy density, the amount of conductive carbon per unit volume is decreased and the amount of active material is increased. There is a need. Therefore, studies have been conducted to increase the amount of active material per unit volume by increasing the distance between the active material particles by improving the dispersibility of the conductive carbon or lowering the structure of the conductive carbon. However, it is difficult to efficiently allow the conductive carbon as described above to enter between the active material particles, and therefore it is difficult to increase the amount of active material per unit volume by reducing the distance between the active material particles. Met.
 この問題に対し、出願人は、カーボン原料に強い酸化処理を施すことにより得ることができる、圧力を受けて糊状に広がる性質を有する導電性カーボンを蓄電デバイスの電極のために使用することを提案している(特許文献1~15)。ここで、「糊状」とは、倍率25000倍で撮影したSEM写真において、カーボン一次粒子の粒界が認められず、非粒子状の不定形なカーボンがつながっている状態を意味する。 To solve this problem, the applicant has decided to use conductive carbon, which can be obtained by subjecting a carbon raw material to a strong oxidation treatment and has a property of spreading like a paste under pressure, for an electrode of a power storage device. It has been proposed (Patent Documents 1 to 15). Here, the "glue-like" means a state in which the grain boundaries of the carbon primary particles are not recognized in the SEM photograph taken at a magnification of 25,000, and the non-particulate amorphous carbon is connected.
 従来の蓄電デバイスの電極において導電剤として使用されているカーボンブラック、天然黒鉛、カーボンナノチューブ等の導電性カーボンに圧力を加えても、カーボンの粒子形状は維持される。しかし、これらの導電性カーボンに酸化処理を施すと、粒子の表面から酸化されて、カーボンにヒドロキシル基、カルボキシル基、カルボニル基、エーテル結合などが導入され、またカーボンの共役二重結合が酸化されて炭素単結合が生成し、部分的に炭素間結合が切断される。さらに酸化処理の強度を強めていくと、圧力を受けて糊状に広がる性質を有する導電性カーボンを得ることができる。 Even if pressure is applied to conductive carbon such as carbon black, natural graphite, and carbon nanotubes used as a conductive agent in the electrodes of conventional power storage devices, the particle shape of carbon is maintained. However, when these conductive carbons are oxidized, they are oxidized from the surface of the particles to introduce hydroxyl groups, carboxyl groups, carbonyl groups, ether bonds, etc. into the carbon, and the conjugated double bonds of the carbon are oxidized. A carbon single bond is formed, and the carbon-carbon bond is partially broken. Further, by increasing the strength of the oxidation treatment, it is possible to obtain conductive carbon having a property of spreading like a paste under pressure.
 この圧力を受けて糊状に広がる性質を有する導電性カーボンは、電極活物質粒子の表面に付着しやすく、また、圧力を受けると一体的に圧縮されて糊状に広がり、ばらばらになりにくいという特徴を有する。そのため、蓄電デバイスの電極のためにこの導電性カーボンと電極活物質粒子とを混合した混合物を得ると、混合の過程で導電性カーボンが活物質粒子の表面に付着して表面を覆い、活物質粒子の分散性を向上させる。上記混合物の製造時に導電性カーボンに及ぼされる圧力が大きいと、導電性カーボンの少なくとも一部が糊状に広がって活物質粒子の表面が部分的に覆われる。そして、電極の集電体上にこの混合物を用いて活物質層を形成し、活物質層に圧力を加えていくと、上記導電性カーボンがさらに糊状に広がって電極活物質粒子の表面を覆いながら緻密化し、活物質粒子が互いに接近し、これに伴って上記導電性カーボンが活物質粒子の表面を覆いながら隣り合う活物質粒子の間に形成される間隙部ばかりでなく活物質粒子の表面に存在する孔(二次粒子において認められる一次粒子間の間隙を含む)の内部にも押し出されて緻密に充填される。そのため、電極における単位体積あたりの電極活物質量が増加し、電極密度が増加する。また、緻密に充填された糊状の導電性カーボンは、導電剤として機能するのに十分な導電性を有するとともに、蓄電デバイス中の電解液の含浸を抑制しない。その結果、蓄電デバイスのエネルギー密度の向上がもたらされる。 Conductive carbon, which has the property of spreading like a paste under this pressure, easily adheres to the surface of the electrode active material particles, and when it receives pressure, it is integrally compressed and spreads like a paste, making it difficult for it to fall apart. It has characteristics. Therefore, when a mixture of the conductive carbon and the electrode active material particles is obtained for the electrode of the power storage device, the conductive carbon adheres to the surface of the active material particles and covers the surface in the mixing process, and the active material is covered. Improves particle dispersibility. When the pressure applied to the conductive carbon during the production of the mixture is large, at least a part of the conductive carbon spreads like a paste and the surface of the active material particles is partially covered. Then, when an active material layer is formed on the current collector of the electrode using this mixture and pressure is applied to the active material layer, the conductive carbon further spreads like a paste to cover the surface of the electrode active material particles. The active material particles are densified while covering, and the active material particles approach each other. Along with this, the conductive carbon covers the surface of the active material particles and forms not only the gaps formed between the adjacent active material particles but also the active material particles. It is also extruded and densely filled inside the pores existing on the surface (including the gaps between the primary particles found in the secondary particles). Therefore, the amount of the electrode active material per unit volume of the electrode increases, and the electrode density increases. Further, the densely packed paste-like conductive carbon has sufficient conductivity to function as a conductive agent and does not suppress the impregnation of the electrolytic solution in the power storage device. As a result, the energy density of the power storage device is improved.
 例えば、特許文献6には、上記導電性カーボンにおける親水性部分の含有量を評価した結果が示されている。ここで、導電性カーボンの「親水性部分」とは、以下の意味を有する。すなわち、pH11のアンモニア水溶液20mLに0.1gの導電性カーボンを添加し、1分間の超音波照射を行ない、得られた液を5時間放置して固相部分を沈殿させる。沈殿せずにpH11のアンモニア水溶液に分散している部分が「親水性部分」である。また、親水性部分の導電性カーボン全体に対する含有量は、以下の方法により求められる。上記固相部分の沈殿後、上澄み液を除去した残余部分を乾燥させ、乾燥後の固体の重量を測定する。乾燥後の固体の重量を最初の導電性カーボンの重量0.1gから差し引いた重量が、pH11のアンモニア水溶液に分散している「親水性部分」の重量である。そして、「親水性部分」の重量の最初の導電性カーボンの重量0.1gに対する重量比が、導電性カーボンにおける「親水性部分」の含有量である。 For example, Patent Document 6 shows the result of evaluating the content of the hydrophilic portion in the conductive carbon. Here, the "hydrophilic portion" of the conductive carbon has the following meaning. That is, 0.1 g of conductive carbon is added to 20 mL of an aqueous ammonia solution having a pH of 11, and ultrasonic irradiation is performed for 1 minute, and the obtained liquid is left for 5 hours to precipitate a solid phase portion. The portion dispersed in the aqueous ammonia solution having a pH of 11 without precipitating is the "hydrophilic portion". Further, the content of the hydrophilic portion with respect to the entire conductive carbon is determined by the following method. After the solid phase portion is precipitated, the residual portion from which the supernatant has been removed is dried, and the weight of the dried solid is measured. The weight obtained by subtracting the weight of the dried solid from the weight of the first conductive carbon of 0.1 g is the weight of the "hydrophilic portion" dispersed in the aqueous ammonia solution having a pH of 11. The weight ratio of the weight of the "hydrophilic portion" to the weight of the first conductive carbon of 0.1 g is the content of the "hydrophilic portion" in the conductive carbon.
 特許文献6には、親水性部分の含有量が導電性カーボン全体の8質量%を超えるように酸化処理の強度を高めると、得られた導電性カーボンを用いて製造された電極の電極密度が増大しはじめ、親水性部分の含有量が導電性カーボン全体の9質量%を超えると、電極密度が急激に増大しはじめ、親水性部分の含有量が導電性カーボン全体の10質量%を超えると、極めて高い電極密度が得られることが示されている(この文献の図2参照)。この電極密度の向上は、酸化処理の強度を高めるにつれて導電性カーボンに対して圧力を受けると糊状に広がる性質が付与されることに対応している。また、導電性カーボンとしてのアセチレンブラックと正極活物質とを含む正極とリチウム対極とを備えたリチウムイオン二次電池と、アセチレンブラックの半量或いは全量を上述の強い酸化処理により得られた導電性カーボンに置き換えた正極を備えたリチウムイオン二次電池と、を構成して充放電特性を評価すると、後者は前者より優れたレート特性及び充放電サイクル特性を示すことが示されている(この文献の図6~11,13,14参照)。この改善された充放電サイクル特性は、糊状に広がった導電性カーボンによって電極活物質の表面が被覆されているため、活物質の電解液への溶解が抑制されていることに起因していると考えられる(この文献の表1参照)。 According to Patent Document 6, when the strength of the oxidation treatment is increased so that the content of the hydrophilic portion exceeds 8% by mass of the entire conductive carbon, the electrode density of the electrode manufactured by using the obtained conductive carbon is increased. When the content of the hydrophilic portion exceeds 9% by mass of the entire conductive carbon, the electrode density begins to increase rapidly, and when the content of the hydrophilic portion exceeds 10% by mass of the entire conductive carbon, the electrode density begins to increase rapidly. , It has been shown that extremely high electrode densities can be obtained (see Figure 2 of this document). This improvement in electrode density corresponds to the fact that as the strength of the oxidation treatment is increased, the conductive carbon is given the property of spreading like a paste when pressure is applied. Further, a lithium ion secondary battery having a positive electrode containing acetylene black as a conductive carbon and a positive electrode active material and a lithium counter electrode, and conductive carbon obtained by half or all of the acetylene black by the above-mentioned strong oxidation treatment. When the charge / discharge characteristics are evaluated by constructing a lithium ion secondary battery equipped with a positive electrode replaced with the former, it is shown that the latter exhibits better rate characteristics and charge / discharge cycle characteristics than the former (in this document). (See FIGS. 6 to 11, 13, and 14). This improved charge / discharge cycle characteristic is due to the fact that the surface of the electrode active material is covered with the conductive carbon that spreads like a paste, so that the dissolution of the active material in the electrolytic solution is suppressed. (See Table 1 in this document).
特開2015-079678号公報Japanese Unexamined Patent Publication No. 2015-079678 特開2015-079680号公報JP-A-2015-079680 特開2015-079681号公報JP-A-2015-079681 WO2015/056759号WO2015 / 056759 WO2015/056760号WO2015 / 056760 WO2015/133586号WO2015 / 133586 特開2015-181089号公報Japanese Unexamined Patent Publication No. 2015-181089 特開2015-181090号公報Japanese Unexamined Patent Publication No. 2015-181090 特開2016-001592号公報Japanese Unexamined Patent Publication No. 2016-001592 特開2016-096125号公報Japanese Unexamined Patent Publication No. 2016-096125 特開2019-019014号公報Japanese Unexamined Patent Publication No. 2019-0190114 特開2019-021420号公報Japanese Unexamined Patent Publication No. 2019-021420 特開2019-021421号公報Japanese Unexamined Patent Publication No. 2019-021421 特開2019-021427号公報Japanese Unexamined Patent Publication No. 2019-021427 特開2019-200866号公報Japanese Unexamined Patent Publication No. 2019-20866
 特許文献6におけるリチウムイオン二次電池の評価では対極としてリチウムが用いられているが、これは半電池としての評価であると言える。そこで、詳細は後述するが、実用的なリチウムイオン二次電池としての性能を評価すべく、リチウム対極に代えてハードカーボンを含む負極を用いたリチウムイオン二次電池を構成して60℃で放置する高温放置試験を行い、直流内部抵抗(以下、「DCIR」と表す。)の変化を評価したところ、試験後にDCIRが初期値の2.5倍を超えるまでに増加することがわかった(表1の比較例1参照)。 In the evaluation of the lithium ion secondary battery in Patent Document 6, lithium is used as the counter electrode, but it can be said that this is the evaluation as a half cell. Therefore, although the details will be described later, in order to evaluate the performance as a practical lithium ion secondary battery, a lithium ion secondary battery using a negative electrode containing hard carbon instead of the lithium counter electrode was constructed and left at 60 ° C. When a change in DC internal resistance (hereinafter referred to as "DCIR") was evaluated by conducting a high-temperature standing test, it was found that DCIR increased to more than 2.5 times the initial value after the test (Table). See Comparative Example 1 of 1).
 ところで、上述したように近年の蓄電デバイスに対しては高エネルギー密度化、小型化が要請されており、高集積状態でも使用可能なように、高温使用下での性能の安定性が要請されている。この要請に対し、圧力を受けて糊状に広がる性質を有する導電性カーボンは、高いエネルギー密度を有する蓄電デバイスを与える点では優れているものの、高温使用下での安定性についてはさらに改善されることが望ましい。 By the way, as described above, recent energy storage devices are required to have high energy density and miniaturization, and stable performance under high temperature use is required so that they can be used even in a highly integrated state. There is. In response to this demand, conductive carbon, which has the property of spreading like a paste under pressure, is excellent in that it provides a storage device having a high energy density, but its stability under high temperature use is further improved. Is desirable.
 そこで、本発明の目的は、高いエネルギー密度を有し且つ改善された高温使用下での安定性を有する蓄電デバイスへと導く導電性カーボン及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide conductive carbon and a method for producing the same, which leads to a power storage device having a high energy density and improved stability under high temperature use.
 発明者らは、高いエネルギー密度を有する蓄電デバイスへと導くことが分かっている上述の圧力を受けると糊状に広がる性質を有する導電性カーボンを基礎として検討を進め、上記導電性カーボンに粉砕処理を施すことによる影響を調査した。そして、粉砕処理を施した導電性カーボンと正極活物質とを含む正極とハードカーボンを含む負極とを備えた実用的なリチウムイオン二次電池を構成して60℃で放置する高温放置試験を行い、DCIRの変化を評価したところ、粉砕を強めていくにつれ一旦はDCIRの変化が抑制されるものの、さらに粉砕を強めていくと再びDCIRの変化が増大することがわかった。したがって、改善された高温使用下での安定性を得るためには、適度な粉砕条件を選定する必要があった。 The inventors proceeded with the study based on the conductive carbon having the property of spreading like a paste when subjected to the above-mentioned pressure, which is known to lead to the storage device having a high energy density, and pulverized the conductive carbon into the above-mentioned conductive carbon. The effect of applying the above was investigated. Then, a high-temperature standing test was conducted in which a practical lithium-ion secondary battery including a positive electrode containing pulverized conductive carbon and a positive electrode active material and a negative electrode containing hard carbon was constructed and left at 60 ° C. As a result of evaluating the change in DCIR, it was found that the change in DCIR was once suppressed as the pulverization was strengthened, but the change in DCIR increased again as the pulverization was further strengthened. Therefore, in order to obtain improved stability under high temperature use, it was necessary to select appropriate pulverization conditions.
 発明者らは次に、この適度な粉砕を施すことにより得られる導電性カーボンをラマンスペクトルによって特定することを試みた。非特許文献1には、結晶性が高いグラファイト構造のラマンスペクトルにおいて2700cm-1付近において認められるS1バンドと、グラファイト構造が乱れると2900cm-1付近に現れるS2バンドと、が示されている(この文献の図3のA,B参照)。粉砕をすれば結晶構造が乱れると考えられるから、導電性カーボンのためにラマンスペクトルのS1バンドとS2バンドのピーク強度を有効に利用することができると期待される。図1は、圧力を受けると糊状に広がる性質を有する導電性カーボンに粉砕を加えることによって得られたカーボンについて、レーザラマン分光光度計(励起光:KTP/532レーザー:波長532nm)を用いてラマンスペクトルを測定した結果の例を示している。なお、この図は、測定されたラマンスペクトルに対して単純移動平均法によるピークの平滑化とベースライン補正とを施した後、S2ピークを基準とした相対強度に変換したスペクトルを示している。粉砕が強くなるほど、S1バンドのピーク強度Is1が相対的に低くなり、S2バンドのピーク強度Is2が相対的に高くなる。そして、検討の結果、S1バンドのピーク強度Is1のS2バンドのピーク強度Is2に対する比Is1/Is2の値が0.85~0.99になるように粉砕すれば、改善された高温使用下での安定性を有する蓄電デバイスへと導く導電性カーボンが得られることがわかった。 The inventors then attempted to identify the conductive carbon obtained by applying this moderate pulverization by a Raman spectrum. Non-Patent Document 1 shows an S1 band observed in the Raman spectrum of a graphite structure having high crystallinity near 2700 cm -1 , and an S2 band appearing in the vicinity of 2900 cm -1 when the graphite structure is disturbed (this). See A and B in Figure 3 of the literature). Since it is considered that the crystal structure is disturbed by pulverization, it is expected that the peak intensities of the S1 band and the S2 band of the Raman spectrum can be effectively utilized due to the conductive carbon. FIG. 1 shows Raman using a laser Raman spectrophotometer (excitation light: KTP / 532 laser: wavelength 532 nm) for carbon obtained by pulverizing conductive carbon having the property of spreading like a paste when subjected to pressure. An example of the result of measuring the spectrum is shown. It should be noted that this figure shows a spectrum in which the measured Raman spectrum is subjected to peak smoothing and baseline correction by the simple moving average method, and then converted into relative intensities based on the S2 peak. The stronger the pulverization, the lower the peak intensity Is1 of the S1 band and the relatively higher the peak intensity Is2 of the S2 band. Then, as a result of the examination, if the value of the ratio Is1 / Is2 of the peak intensity Is1 of the S1 band to the peak intensity Is2 of the S2 band is 0.85 to 0.99, the high temperature is improved. It has been found that conductive carbon can be obtained that leads to a storage device with stability in use.
 したがって、本発明は、蓄電デバイスの電極において導電剤として使用されるべき導電性カーボンであって、
 圧力を受けて糊状に広がる性質を有し、且つ、
 上記導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲である
 ことを特徴とする導電性カーボンに関する。
Therefore, the present invention is a conductive carbon to be used as a conductive agent in an electrode of a power storage device.
It has the property of spreading like a paste under pressure, and
The present invention relates to conductive carbon in which the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon is in the range of 0.85 to 0.99.
 本発明はまた、本発明の導電性カーボンの製造方法であって、
 カーボン原料に酸化処理を施すことにより、圧力を受けて糊状に広がる性質を有する酸化処理カーボンを得る、酸化段階、及び、
 上記酸化処理カーボンに粉砕処理を施し、但し、該粉砕処理を、得られる導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲になるように実施する、粉砕段階、
 を含むことを特徴とする導電性カーボンの製造方法に関する。
The present invention is also the method for producing the conductive carbon of the present invention.
By subjecting the carbon raw material to an oxidation treatment, an oxidation-treated carbon having the property of spreading like a paste under pressure is obtained, an oxidation step, and
The oxidized carbon is pulverized, except that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.85 to 0.99. The crushing stage, which is carried out so as to be
The present invention relates to a method for producing conductive carbon, which comprises.
 ここで、ラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比は、測定されたラマンスペクトルに対してベースライン補正を行うことによって得られたスペクトルを用いて算出される。ノイズの多いラマンスペクトルが測定された場合には、測定されたラマンスペクトルに対してピークの平滑化とベースライン補正とを行った後に、S1バンドのピーク強度のS2バンドのピーク強度に対する比を算出することが好ましい。上記導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比を0.85~0.99の範囲に調整することにより、上記導電性カーボンを用いて得られた蓄電デバイスの高温使用下での安定性が改善される。蓄電デバイスの高温使用下での安定性は、S1バンドのピーク強度のS2バンドのピーク強度に対する比を0.90~0.95の範囲に調整することにより、より好ましく改善される。 Here, the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum is calculated using the spectrum obtained by performing baseline correction on the measured Raman spectrum. When a noisy Raman spectrum is measured, the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band is calculated after performing peak smoothing and baseline correction on the measured Raman spectrum. It is preferable to do so. By adjusting the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon in the range of 0.85 to 0.99, the power storage device obtained by using the conductive carbon Improves stability under high temperature use. The stability of the power storage device under high temperature use is more preferably improved by adjusting the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the range of 0.90 to 0.95.
 本発明の導電性カーボンにおいて、上記導電性カーボンが親水性部分を含み、該親水性部分の含有量が導電性カーボン全体の10質量%以上であると、導電性カーボンにおける圧力を受けて糊状に広がる性質が顕著になるため好ましい。 In the conductive carbon of the present invention, when the conductive carbon contains a hydrophilic portion and the content of the hydrophilic portion is 10% by mass or more of the whole conductive carbon, it is paste-like under the pressure of the conductive carbon. It is preferable because the property of spreading carbon fiber becomes remarkable.
 本発明の導電性カーボンを用いて蓄電デバイスの電極を構成することにより、高いエネルギー密度を有し且つ改善された高温使用下での安定性を有する蓄電デバイスが得られる。そこで、本発明はまた、蓄電デバイス用の電極の製造方法であって、電極活物質粒子と本発明の導電性カーボンとを混合して、上記導電性カーボンの少なくとも一部が糊状に広がって上記電極活物質粒子の表面を被覆している混合物を得る混合工程、及び、上記混合物を上記電極のための集電体上に塗布することにより活物質層を形成し、得られた活物質層に圧力を印加して上記導電性カーボンをさらに糊状に広げるとともに緻密化させる加圧工程、を含むことを特徴とする電極の製造方法に関する。 By constructing the electrode of the power storage device using the conductive carbon of the present invention, a power storage device having a high energy density and improved stability under high temperature use can be obtained. Therefore, the present invention is also a method for manufacturing an electrode for a power storage device, in which the electrode active material particles and the conductive carbon of the present invention are mixed, and at least a part of the conductive carbon spreads like a paste. An active material layer is formed by a mixing step of obtaining a mixture covering the surface of the electrode active material particles and by applying the mixture on a current collector for the electrode, and the obtained active material layer is obtained. The present invention relates to a method for manufacturing an electrode, which comprises a pressurizing step of applying a pressure to the conductive carbon to further spread the conductive carbon into a paste and densify the conductive carbon.
 電極に含まれる電極活物質の導電率が低く、電極の導電性の向上が望まれる場合には、上記混合工程において、上記導電性カーボンの導電率より高い導電率を有する別の導電性カーボンをさらに混合し、上記導電性カーボンの少なくとも一部が糊状に広がって上記別の導電性カーボンの表面をも被覆している混合物を得ることが好ましい。この好適な混合物の製造においては、上記混合工程を、上記導電性カーボンと上記別の導電性カーボンとを混合することにより導電性カーボン混合物を得る第1の混合段階、及び、上記導電性カーボン混合物と上記電極活物質粒子とを混合する第2の混合段階、を含む方法により実施すると、得られる電極の導電性がさらに向上するため好ましい。 When the conductivity of the electrode active material contained in the electrode is low and it is desired to improve the conductivity of the electrode, another conductive carbon having a conductivity higher than that of the conductive carbon is used in the mixing step. It is preferable to further mix to obtain a mixture in which at least a part of the conductive carbon spreads like a paste and also covers the surface of the other conductive carbon. In the production of this suitable mixture, the mixing step is a first mixing step of mixing the conductive carbon with another conductive carbon to obtain a conductive carbon mixture, and the conductive carbon mixture. It is preferable to carry out by a method including a second mixing step of mixing the above-mentioned electrode active material particles because the conductivity of the obtained electrode is further improved.
 本発明の導電性カーボンは、活物質粒子の表面に付着しやすく、圧力を受けると一体的に圧縮されて糊状に広がる性質を有するため、蓄電デバイスの電極の製造において、活物質粒子と本発明の導電性カーボンとを含む混合物に圧力を印加すると、その圧力により、本発明の導電性カーボンが糊状に広がって活物質粒子の表面を覆いながら緻密化し、蓄電デバイスのエネルギー密度の向上がもたらされる。また、本発明の導電性カーボンを含む電極を備えた蓄電デバイスは、改善された高温使用下での安定性を示す。 Since the conductive carbon of the present invention has the property of easily adhering to the surface of the active material particles and having the property of being integrally compressed and spreading like a paste when subjected to pressure, the active material particles and the present material are used in the manufacture of electrodes for power storage devices. When pressure is applied to the mixture containing the conductive carbon of the present invention, the pressure causes the conductive carbon of the present invention to spread like a paste and densify while covering the surface of the active material particles, thereby improving the energy density of the power storage device. Brought to you. In addition, the energy storage device provided with the electrode containing the conductive carbon of the present invention exhibits improved stability under high temperature use.
強い酸化処理により得られた導電性カーボンのラマンスペクトルを示した図である。It is a figure which showed the Raman spectrum of the conductive carbon obtained by a strong oxidation treatment.
 (A)導電性カーボン及びその製造方法
 本発明の蓄電デバイスの電極のための導電性カーボンは、圧力を受けて糊状に広がる性質を有し、且つ、上記導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲であることを特徴とする。この導電性カーボンは、カーボン原料に酸化処理を施すことにより圧力を受けて糊状に広がる性質を有する酸化処理カーボンを得る酸化段階、及び、上記酸化処理カーボンに粉砕処理を施し、但し、該粉砕処理を得られる導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲になるように実施する粉砕段階、を含む方法により製造することができる。以下、各段階について詳細に説明する。
(A) Conductive carbon and its manufacturing method The conductive carbon for the electrode of the power storage device of the present invention has a property of spreading like a paste under pressure, and the S1 band in the Raman spectrum of the conductive carbon. The ratio of the peak intensity of S2 band to the peak intensity of S2 band is in the range of 0.85 to 0.99. This conductive carbon is subjected to an oxidation step of obtaining an oxidation-treated carbon having a property of spreading like a paste under pressure by subjecting a carbon raw material to an oxidation treatment, and the above-mentioned oxidation-treated carbon is subjected to a pulverization treatment, provided that the pulverization is performed. Manufactured by a method comprising a grinding step carried out so that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon obtained can be in the range of 0.85 to 0.99. Can be done. Hereinafter, each step will be described in detail.
 (1)酸化段階
 酸化段階では、導電性を有するカーボン原料に比較的強い酸化処理が施される。使用されるカーボン原料としては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、チャネルブラック等のカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、グラフェン、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、気相法炭素繊維等の、従来の蓄電デバイスの電極のために導電剤として使用されている導電性カーボンを特に限定なく使用することができるが、酸化の容易性の点から、多孔質炭素粉末、ケッチェンブラック、空隙を有するファーネスブラック、カーボンナノファイバ及びカーボンナノチューブのような空隙を有する導電性カーボンが好ましく、中でも、BET法で測定した比表面積が300m/g以上の空隙を有する導電性カーボンが好ましく、特に、ケッチェンブラック、空隙を有するファーネスブラックのような球状の導電性カーボンが好ましい。
(1) Oxidation stage In the oxidation stage, a relatively strong oxidation treatment is applied to the conductive carbon raw material. The carbon raw materials used include carbon black such as Ketjen black, acetylene black, furnace black, and channel black, fullerene, carbon nanotubes, carbon nanofibers, graphene, amorphous carbon, carbon fibers, natural graphite, artificial graphite, and graphite. Conductive carbon, which is used as a conductive agent for electrodes of conventional power storage devices such as chemical Ketjen black, mesoporous carbon, and vapor phase carbon fiber, can be used without particular limitation, but is easy to oxidize. From this point of view, porous carbon powder, Ketjen black, furnace black with voids, carbon nanofibers and conductive carbon having voids such as carbon nanotubes are preferable, and among them, the specific surface area measured by the BET method is 300 m 2 /. Conductive carbon having voids of g or more is preferable, and spherical conductive carbon such as Ketjen black and furnace black having voids is particularly preferable.
 カーボン原料の酸化処理のためには、公知の酸化方法を特に限定なく使用することができる。例えば、酸又は過酸化水素の溶液中でカーボン原料を処理することにより、酸化処理カーボンを得ることができる。酸としては、硝酸、硝酸硫酸混合物、次亜塩素酸水溶液等を使用することができる。また、カーボン原料を酸素含有雰囲気、水蒸気、二酸化炭素中で加熱することにより、酸化処理カーボンを得ることができる。さらに、カーボン原料をアルカリ金属水酸化物と混合して酸素含有雰囲気中で加熱し、水洗などによりアルカリ金属を除去することにより、酸化処理カーボンを得ることができる。また、カーボン原料の酸素含有雰囲気中でのプラズマ処理、紫外線照射、コロナ放電処理及びグロー放電処理、オゾン水又はオゾンガスによる処理、水中での酸素バブリング処理により、酸化処理カーボンを得ることができる。 For the oxidation treatment of the carbon raw material, a known oxidation method can be used without particular limitation. For example, oxidation-treated carbon can be obtained by treating the carbon raw material in a solution of acid or hydrogen peroxide. As the acid, nitric acid, a mixture of nitric acid and sulfuric acid, an aqueous solution of hypochlorous acid and the like can be used. Further, by heating the carbon raw material in an oxygen-containing atmosphere, steam, or carbon dioxide, oxidation-treated carbon can be obtained. Further, the oxidation-treated carbon can be obtained by mixing the carbon raw material with the alkali metal hydroxide and heating it in an oxygen-containing atmosphere to remove the alkali metal by washing with water or the like. Further, the oxidized carbon can be obtained by plasma treatment in an oxygen-containing atmosphere of the carbon raw material, ultraviolet irradiation, corona discharge treatment and glow discharge treatment, treatment with ozone water or ozone gas, and oxygen bubbling treatment in water.
 カーボン原料、好ましくは上述した空隙を有するカーボン原料に酸化処理を施すと、カーボン粒子の表面から酸化され、カーボンにヒドロキシル基、カルボキシル基やエーテル結合が導入され、またカーボンの共役二重結合が酸化されて炭素単結合が生成し、部分的に炭素間結合が切断され、粒子表面に親水性に富む部分が生成する。そして、酸化処理の強度を強めていくと、カーボン粒子における親水性部分の割合が増加し、圧力を受けて糊状に広がる性質を有する酸化処理カーボンを得ることができる。酸化処理カーボンにおける親水性部分の含有量は、酸化処理カーボン全体の10質量%以上であるのが好ましい。このような酸化処理カーボンは、圧力を受けると一体的に圧縮されて糊状に広がりやすく且つ緻密化しやすい。 When the carbon raw material, preferably the carbon raw material having voids described above, is oxidized, it is oxidized from the surface of the carbon particles, a hydroxyl group, a carboxyl group or an ether bond is introduced into the carbon, and the conjugated double bond of the carbon is oxidized. Then, a carbon single bond is formed, the carbon-carbon bond is partially broken, and a highly hydrophilic portion is formed on the particle surface. Then, as the strength of the oxidation treatment is increased, the proportion of the hydrophilic portion in the carbon particles increases, and it is possible to obtain the oxidation-treated carbon having the property of spreading like a paste under pressure. The content of the hydrophilic portion in the oxidized carbon is preferably 10% by mass or more of the total amount of the oxidized carbon. When such oxidized carbon is subjected to pressure, it is integrally compressed and easily spreads like a paste and is easily densified.
 全体の10質量%以上の親水性部分を含む酸化処理カーボンは、
 (a1)空隙を有するカーボン原料を酸で処理する工程、
 (b1)酸処理後の生成物と遷移金属化合物とを混合する工程、
 (c1)得られた混合物を粉砕し、メカノケミカル反応を生じさせる工程、
 (d1)メカノケミカル反応後の生成物を非酸化雰囲気中で加熱する工程、及び、
 (e1)加熱後の生成物から、上記遷移金属化合物及び/又はその反応生成物を除去する工程
 を含む第1の製造方法によって、好適に得ることができる。
Oxidized carbon containing 10% by mass or more of the total hydrophilic part is
(A1) A step of treating a carbon raw material having voids with an acid,
(B1) Step of mixing the product after acid treatment with the transition metal compound,
(C1) A step of pulverizing the obtained mixture to cause a mechanochemical reaction.
(D1) A step of heating the product after the mechanochemical reaction in a non-oxidizing atmosphere, and
(E1) It can be suitably obtained by the first production method including the step of removing the transition metal compound and / or the reaction product thereof from the product after heating.
 (a1)工程では、空隙を有するカーボン原料を酸に浸漬して放置する。この浸漬の際に超音波を照射しても良い。酸としては、硝酸、硝酸硫酸混合物、次亜塩素酸水溶液等のカーボンの酸化処理に通常使用される酸を使用することができる。浸漬時間は酸の濃度や処理されるカーボン原料の量などに依存するが、一般に5分~5時間の範囲である。酸処理後のカーボンを十分に水洗し、乾燥した後、(b1)工程において遷移金属化合物と混合する。 In the step (a1), the carbon raw material having voids is immersed in an acid and left to stand. Ultrasonic waves may be applied during this immersion. As the acid, an acid usually used for oxidation treatment of carbon such as nitric acid, a mixture of nitric acid and sulfuric acid, and an aqueous solution of hypochlorous acid can be used. The soaking time depends on the concentration of the acid and the amount of the carbon raw material to be treated, but is generally in the range of 5 minutes to 5 hours. The carbon after the acid treatment is thoroughly washed with water, dried, and then mixed with the transition metal compound in the step (b1).
 (b1)工程においてカーボン原料に添加される遷移金属化合物としては、遷移金属のハロゲン化物、硝酸塩、硫酸塩、炭酸塩等の無機金属塩、ギ酸塩、酢酸塩、蓚酸塩、メトキシド、エトキシド、イソプロポキシド等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる遷移金属を含む化合物を所定量で混合して使用しても良い。また、反応に悪影響を与えない限り、遷移金属化合物以外の化合物、例えば、アルカリ金属化合物を共に添加しても良い。本発明の導電性カーボンは、蓄電デバイスの電極の製造において、活物質粒子と混合されて使用されることから、活物質を構成する元素の化合物をカーボン原料に添加すると、活物質に対して不純物となりうる元素の混入を防止することができるため好ましい。 Examples of the transition metal compound added to the carbon raw material in the step (b1) include halides of transition metals, nitrates, sulfates, and inorganic metal salts such as carbonates, formates, acetates, oxalates, methoxydos, ethoxydos, and iso. Organic metal salts such as propoxide or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. Compounds containing different transition metals may be mixed and used in predetermined amounts. Further, a compound other than the transition metal compound, for example, an alkali metal compound may be added together as long as the reaction is not adversely affected. Since the conductive carbon of the present invention is used by being mixed with active material particles in the production of electrodes of a power storage device, when a compound of an element constituting the active material is added to a carbon raw material, an impurity is added to the active material. It is preferable because it can prevent the mixing of potential elements.
 (c1)工程では、(b1)工程で得られた混合物を粉砕し、メカノケミカル反応を生じさせる。この反応のための粉砕機の例としては、ライカイ器、ボールミル、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ハイブリダイザー、メカノケミカル複合化装置及びジェットミルを挙げることができる。粉砕時間は、使用する粉砕機や処理されるカーボンの量などに依存し、厳密な制限が無いが、一般には5分~3時間の範囲である。(d1)工程は、窒素雰囲気、アルゴン雰囲気などの非酸化雰囲気中で行われる。加熱温度及び加熱時間は使用される遷移金属化合物に応じて適宜選択される。続く(e1)工程において、加熱後の生成物から遷移金属化合物及び/又はその反応生成物を酸で溶解する等の手段により除去した後、十分に洗浄し、乾燥することにより、酸化処理カーボンを得ることができる。 In the step (c1), the mixture obtained in the step (b1) is pulverized to cause a mechanochemical reaction. Examples of crushers for this reaction include raikais, ball mills, bead mills, rod mills, roller mills, stirring mills, planetary mills, vibration mills, hybridizers, mechanochemical compounding devices and jet mills. The crushing time depends on the crusher used, the amount of carbon to be processed, and the like, and is not strictly limited, but is generally in the range of 5 minutes to 3 hours. The step (d1) is performed in a non-oxidizing atmosphere such as a nitrogen atmosphere and an argon atmosphere. The heating temperature and heating time are appropriately selected depending on the transition metal compound used. In the subsequent step (e1), the transition metal compound and / or its reaction product is removed from the heated product by means such as dissolving it with an acid, and then thoroughly washed and dried to remove the oxidized carbon. Obtainable.
 第1の製造方法では、(c1)工程において、遷移金属化合物がメカノケミカル反応によりカーボン原料の酸化を促進するように作用し、カーボン原料の酸化が迅速に進む。この酸化によって、導電性カーボン全体の10質量%以上の親水性部分を含む酸化処理カーボンが得られる。 In the first production method, in the step (c1), the transition metal compound acts to promote the oxidation of the carbon raw material by the mechanochemical reaction, and the oxidation of the carbon raw material proceeds rapidly. By this oxidation, an oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the total conductive carbon can be obtained.
 全体の10質量%以上の親水性部分を含む酸化処理カーボンはまた、
 (a2)空隙を有するカーボン原料と遷移金属化合物とを混合する工程、
 (b2)得られた混合物を酸化雰囲気中で加熱する工程、及び、
 (c2)加熱後の生成物から、上記遷移金属化合物及び/又はその反応生成物を除去する工程
 を含む第2の製造方法によっても、好適に得ることができる。
Oxidized carbon containing more than 10% by weight of the total hydrophilic part also
(A2) A step of mixing a carbon raw material having voids and a transition metal compound,
(B2) A step of heating the obtained mixture in an oxidizing atmosphere, and
(C2) It can also be preferably obtained by a second production method including a step of removing the transition metal compound and / or a reaction product thereof from the product after heating.
 (a2)工程においてカーボン原料に添加される遷移金属化合物としては、遷移金属のハロゲン化物、硝酸塩、硫酸塩、炭酸塩等の無機金属塩、ギ酸塩、酢酸塩、蓚酸塩、メトキシド、エトキシド、イソプロポキシド等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる金属を含む化合物を所定量で混合して使用しても良い。また、反応に悪影響を与えない限り、遷移金属化合物以外の化合物、例えば、アルカリ金属化合物を共に添加しても良い。この導電性カーボンは、蓄電デバイスの電極の製造において活物質粒子と混合されて使用されることから、活物質を構成する元素の化合物をカーボン原料に添加すると、活物質に対して不純物となりうる元素の混入を防止することができるため好ましい。 As the transition metal compound added to the carbon raw material in the step (a2), inorganic metal salts such as halides, nitrates, sulfates and carbonates of transition metals, formates, acetates, oxalates, methoxydos, ethoxydos and iso Organic metal salts such as propoxide or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. Compounds containing different metals may be mixed and used in predetermined amounts. Further, a compound other than the transition metal compound, for example, an alkali metal compound may be added together as long as the reaction is not adversely affected. Since this conductive carbon is used by being mixed with active material particles in the production of electrodes of a power storage device, an element that can become an impurity with respect to the active material when a compound of an element constituting the active material is added to the carbon raw material. It is preferable because it can prevent the mixing of the compound.
 (b2)工程は、酸素含有雰囲気、例えば空気中で行われ、カーボンが部分的には消失するものの完全には消失しない温度、好ましくは200~350℃の温度で行われる。続く(c2)工程において、加熱後の生成物から遷移金属化合物及び/又はその反応生成物を酸で溶解する等の手段により除去した後、十分に洗浄し、乾燥することにより、酸化処理カーボンを得ることができる。 The step (b2) is carried out in an oxygen-containing atmosphere, for example, in air, and is carried out at a temperature at which carbon partially disappears but does not completely disappear, preferably at a temperature of 200 to 350 ° C. In the subsequent step (c2), the transition metal compound and / or its reaction product is removed from the heated product by means such as dissolving it with an acid, and then thoroughly washed and dried to remove the oxidized carbon. Obtainable.
 第2の製造方法では、遷移金属化合物が、酸化雰囲気中での加熱工程において、カーボン原料を酸化する触媒として作用し、カーボン原料の酸化が迅速に進む。この酸化によって、導電性カーボン全体の10質量%以上の親水性部分を含む酸化処理カーボンが得られる。 In the second production method, the transition metal compound acts as a catalyst for oxidizing the carbon raw material in the heating step in the oxidizing atmosphere, and the oxidation of the carbon raw material proceeds rapidly. By this oxidation, an oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the total conductive carbon can be obtained.
 全体の10質量%以上の親水性部分を含む好適な酸化処理カーボンは、カーボン原料に強い酸化処理を施すことにより得られ、第1の製造方法、第2の製造方法以外の方法でカーボン原料の酸化を促進することも可能である。 A suitable oxidation-treated carbon containing a hydrophilic portion of 10% by mass or more of the whole is obtained by subjecting the carbon raw material to a strong oxidation treatment, and the carbon raw material can be obtained by a method other than the first production method and the second production method. It is also possible to promote oxidation.
 (2)粉砕段階
 粉砕段階において上記酸化処理カーボンに粉砕処理を施すことにより、本発明の導電性カーボンが得られる。粉砕処理は、得られる導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲になるように実施される。S1バンドのピーク強度のS2バンドのピーク強度に対する比を0.90~0.95の範囲に調整することにより、高温使用下での安定性がより好ましく改善される。
(2) Crushing Step The conductive carbon of the present invention can be obtained by subjecting the oxidation-treated carbon to a crushing treatment in the crushing step. The pulverization treatment is carried out so that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.85 to 0.99. By adjusting the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the range of 0.90 to 0.95, the stability under high temperature use is more preferably improved.
 粉砕のためには、ライカイ器、石臼式摩砕機、ボールミル、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ハイブリダイザー、メカノケミカル複合化装置及びジェットミルを使用することができる。粉砕の時間は、粉砕に処される上記酸化処理カーボンの量や使用する混合装置により変化するが、一般には10分~1時間の間である。 For crushing, a raikai device, a stone mill type grinder, a ball mill, a bead mill, a rod mill, a roller mill, a stirring mill, a planetary mill, a vibration mill, a hybridizer, a mechanochemical compounding device and a jet mill can be used. The pulverization time varies depending on the amount of the oxidized carbon to be pulverized and the mixing device used, but is generally between 10 minutes and 1 hour.
 (B)電極の製造方法
 本発明の導電性カーボンは、蓄電デバイスの電解質中のイオンとの電子の授受を伴うファラデー反応或いは電子の授受を伴わない非ファラデー反応により容量を発現する電極活物質の粒子と混合された形態で、二次電池、電気二重層キャパシタ、レドックスキャパシタ及びハイブリッドキャパシタなどの蓄電デバイスの電極のために使用される。蓄電デバイスは、一対の電極(正極、負極)とこれらの間に配置された電解質とを必須要素として含むが、正極及び負極の少なくとも一方が、本発明の導電性カーボンと電極活物質粒子とを含む混合物を用いて製造される。
(B) Method for manufacturing an electrode The conductive carbon of the present invention is an electrode active material whose capacity is developed by a Faraday reaction involving the transfer of electrons with ions in the electrolyte of a power storage device or a non-Faraday reaction without transfer of electrons. In mixed form with particles, it is used for electrodes of power storage devices such as secondary batteries, electric double layer capacitors, redox capacitors and hybrid capacitors. The power storage device includes a pair of electrodes (positive electrode, negative electrode) and an electrolyte arranged between them as essential elements, and at least one of the positive electrode and the negative electrode contains the conductive carbon of the present invention and the electrode active material particles. Manufactured using the inclusion mixture.
 蓄電デバイスにおいて正極と負極との間に配置される電解質は、セパレータに保持された電解液であっても良く、固体電解質であっても良く、ゲル状電解質であっても良く、従来の蓄電デバイスにおいて使用されている電解質を特に限定なく使用することができる。以下に、代表的な電解質を例示する。リチウムイオン二次電池のためには、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート等の溶媒に、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を溶解させた電解液が、ポリオレフィン繊維不織布、ガラス繊維不織布などのセパレータに保持された状態で使用される。この他、LiLaNb12、Li1.5Al0.5Ti1.5(PO、LiLaZr12、Li11等の無機固体電解質、リチウム塩とポリエチレンオキサイド、ポリメタクリレート、ポリアクリレート等の高分子化合物との複合体からなる有機固体電解質、電解液をポリフッ化ビニリデン、ポリアクリロニトリル等に吸収させたゲル状電解質も使用される。電気二重層キャパシタ及びレドックスキャパシタのためには、(CNBF等の第4級アンモニウム塩をアクリロニトリル、プロピレンカーボネート等の溶媒に溶解させた電解液が使用される。ハイブリッドキャパシタのためには、リチウム塩をプロピレンカーボネート等に溶解させた電解液や、第4級アンモニウム塩をプロピレンカーボネート等に溶解させた電解液が使用される。 The electrolyte arranged between the positive electrode and the negative electrode in the power storage device may be an electrolytic solution held in the separator, a solid electrolyte, or a gel-like electrolyte, and may be a conventional power storage device. The electrolyte used in the above can be used without particular limitation. The following is an example of a typical electrolyte. For a lithium ion secondary battery, a lithium salt such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , or LiN (CF 3 SO 2 ) 2 is added to a solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, or dimethyl carbonate. The dissolved electrolytic solution is used in a state of being held by a separator such as a polyolefin fiber non-woven fabric or a glass fiber non-woven fabric. In addition, inorganic solid electrolytes such as Li 5 La 3 Nb 2 O 12 , Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 7 P 3 S 11 and the like. , An organic solid electrolyte composed of a composite of a lithium salt and a polymer compound such as polyethylene oxide, polymethacrylate, and polyacrylate, and a gel-like electrolyte in which an electrolytic solution is absorbed by polyvinylidene fluoride, polyacrylonitrile, or the like are also used. For electric double layer capacitors and redox capacitors, an electrolytic solution in which a quaternary ammonium salt such as (C 2 H 5 ) 4 NBF 4 is dissolved in a solvent such as acrylonitrile or propylene carbonate is used. For the hybrid capacitor, an electrolytic solution in which a lithium salt is dissolved in propylene carbonate or the like or an electrolytic solution in which a quaternary ammonium salt is dissolved in propylene carbonate or the like is used.
 本発明の導電性カーボンを用いた蓄電デバイスの正極又は負極は、一般的には、電極活物質粒子と本発明の導電性カーボンとを必要に応じてバインダを溶解した溶媒と共に混合して、上記導電性カーボンの少なくとも一部が糊状に広がって上記電極活物質粒子の表面を被覆している混合物を得る混合工程、及び、上記混合物を上記電極のための集電体上に塗布することにより活物質層を形成し、得られた活物質層に圧力を印加して上記導電性カーボンをさらに糊状に広げるとともに緻密化させる加圧工程、を含む方法により製造される。正極と負極との間の電解質として、固体電解質又はゲル状電解質が使用される場合には、本発明の導電性カーボンと電極活物質粒子とを含む混合物に、活物質層におけるイオン伝導パスを確保する目的で固体電解質を加え、これらを必要に応じてバインダを溶解した溶媒と共に十分に混練し、得られた混合物を用いて集電体上に活物質層を形成する。上記集電体としては、白金、金、ニッケル、アルミニウム、チタン、鋼、カーボンなどの導電材料を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。 The positive electrode or the negative electrode of the energy storage device using the conductive carbon of the present invention is generally prepared by mixing the electrode active material particles and the conductive carbon of the present invention together with a solvent in which a binder is dissolved, if necessary. By a mixing step of obtaining a mixture in which at least a part of the conductive carbon spreads like a paste and covers the surface of the electrode active material particles, and by applying the mixture onto a current collector for the electrodes. It is produced by a method including a pressurizing step of forming an active material layer and applying pressure to the obtained active material layer to further spread the conductive carbon into a paste and densify it. When a solid electrolyte or a gel-like electrolyte is used as the electrolyte between the positive electrode and the negative electrode, an ion conduction path in the active material layer is secured in the mixture containing the conductive carbon of the present invention and the electrode active material particles. A solid electrolyte is added for the purpose of the above, and if necessary, these are sufficiently kneaded with a solvent in which the binder is dissolved, and the obtained mixture is used to form an active material layer on the current collector. As the current collector, a conductive material such as platinum, gold, nickel, aluminum, titanium, steel, or carbon can be used. As the shape of the current collector, any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.
 上記混合工程において、本発明の導電性カーボンが活物質粒子の表面に付着して表面を覆うため、活物質粒子の凝集を抑制することができる。また、上記混合工程において本発明の導電性カーボンに及ぼされる圧力が大きいと、導電性カーボンの少なくとも一部が糊状に広がって活物質粒子の表面が部分的に覆われる。また、加圧工程において活物質層に印加される圧力により、本発明の導電性カーボンがさらに糊状に広がって活物質粒子の表面を覆いながら緻密化し、活物質粒子が互いに接近し、これに伴って本発明の導電性カーボンが活物質粒子の表面を覆いながら隣り合う活物質粒子の間に形成される間隙部ばかりでなく活物質粒子の表面に存在する孔の内部にも押し出されて緻密に充填される。そのため、電極における単位体積あたりの活物質量が増加し、電極密度が増加する。また、緻密に充填された糊状の導電性カーボンは、導電剤として機能するのに十分な導電性を有するとともに、蓄電デバイス中の電解液の含浸を抑制しない。その結果、蓄電デバイスのエネルギー密度の向上がもたらされる。 In the above mixing step, the conductive carbon of the present invention adheres to the surface of the active material particles and covers the surface, so that aggregation of the active material particles can be suppressed. Further, when the pressure applied to the conductive carbon of the present invention is large in the above mixing step, at least a part of the conductive carbon spreads like a paste and the surface of the active material particles is partially covered. Further, due to the pressure applied to the active material layer in the pressurizing step, the conductive carbon of the present invention further spreads like a paste and becomes densified while covering the surface of the active material particles, and the active material particles approach each other to this. Along with this, the conductive carbon of the present invention covers the surface of the active material particles and is extruded not only into the gaps formed between the adjacent active material particles but also into the pores existing on the surface of the active material particles. Is filled with. Therefore, the amount of active material per unit volume in the electrode increases, and the electrode density increases. Further, the densely packed paste-like conductive carbon has sufficient conductivity to function as a conductive agent and does not suppress the impregnation of the electrolytic solution in the power storage device. As a result, the energy density of the power storage device is improved.
 上記混合工程において本発明の導電性カーボンと混合される正極活物質及び負極活物質としては、従来の蓄電デバイスにおいて使用されている電極活物質を特に限定なく使用することができる。活物質は、単独の化合物であっても良く、2種以上の化合物の混合物であっても良い。 As the positive electrode active material and the negative electrode active material mixed with the conductive carbon of the present invention in the above mixing step, the electrode active material used in the conventional power storage device can be used without particular limitation. The active substance may be a single compound or a mixture of two or more kinds of compounds.
 二次電池の正極活物質の例としては、まず、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、及びスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)が挙げられる。これらの具体的な例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO-LiCoO2、LiMnO-LiNiO、LiMnO-LiNi1/3Co1/3Mn1/3、LiMnO-LiNi1/2Mn1/2、LiMnO-LiNi1/2Mn1/2-LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。また、イオウ及びLiS、TiS、MoS、FeS、VS、Cr1/21/2などの硫化物、NbSe、VSe、NbSeなどのセレン化物、Cr、Cr、VO、V、V、V13などの酸化物の他、LiNi0.8Co0.15Al0.05、LiVOPO、LiV、LiV、MoV、LiFeSiO、LiMnSiO、LiFePO、LiFe1/2Mn1/2PO、LiMnPO、Li(POなどの複合酸化物が挙げられる。 Examples of positive electrode active materials for secondary batteries include layered rock salt type LiMO 2 , layered Li 2 MnO 3 -LiMO 2 solid solution, and spinel type LiM 2 O 4 (M in the formula is Mn, Fe, Co, Ni or a combination thereof). Specific examples of these include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co 1/5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O. 2 , LiFeO 2 , LiMnO 2 , Li 2 MnO 3 -LiCoO 2, Li 2 MnO 3 -LiNiO 2 , Li 2 MnO 3 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 -LiNi 1/2 Mn 1/2 O 2 , Li 2 MnO 3 -LiNi 1/2 Mn 1/2 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMn 3/2 Ni 1/2 O 4 can be mentioned. In addition, sulfur and sulfides such as Li 2S, TiS 2 , MoS 2 , FeS 2 , VS 2 , Cr 1/2 V 1/2 S 2 and sulphides such as NbSe 3 , VSe 2 and NbSe 3 , Cr 2 Oxides such as O 5 , Cr 3 O 8 , VO 2 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiVOPO 4 , LiV 3 O 5 , LiV 3 O 8 , MoV 2 O 8 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , LiFePO 4 , LiFe 1/2 Mn 1/2 PO 4 , LiMnPO 4 , Li 3 V 2 (PO 4 ) Examples thereof include composite oxides such as 3 .
 二次電池の負極活物質の例としては、Fe、MnO、MnO、Mn、Mn、CoO、Co、NiO、Ni、TiO、TiO、SnO、SnO、SiO、RuO、WO、WO、ZnO等の酸化物、Sn、Si、Al、Zn等の金属、LiVO、LiVO、LiTi12などの複合酸化物、Li2.6Co0.4N、Ge、Zn、CuNなどの窒化物が挙げられる。 Examples of negative electrode active materials for secondary batteries are Fe 2 O 3 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 , TiO, and TIO 2 . , SnO, SnO 2 , SiO 2 , RuO 2 , WO, WO 2 , ZnO and other oxides, Sn, Si, Al, Zn and other metals, LiVO 2 , Li 3 VO 4 , Li 4 Ti 5 O 12 and the like. Examples thereof include composite oxides and nitrides such as Li 2.6 Co 0.4 N, Ge 3 N 4 , Zn 3 N 2 and Cu 3 N.
 電気二重層キャパシタの分極性電極における活物質としては、比表面積の大きな活性炭、カーボンナノファイバ、カーボンナノチューブ、フェノール樹脂炭化物、ポリ塩化ビニリデン炭化物、微結晶炭素などの炭素材料が例示される。ハイブリッドキャパシタでは、二次電池のために例示した正極活物質を正極のために使用することができ、この場合には負極が活性炭等を用いた分極性電極により構成される。また、二次電池のために例示した負極活物質を負極のために使用することができ、この場合には正極が活性炭等を用いた分極性電極により構成される。レドックスキャパシタの正極活物質としてはRuO、MnO、NiOなどの金属酸化物を例示することができ、負極はRuO等の活物質と活性炭等の分極性材料により構成される。 Examples of the active material in the polarizable electrode of the electric double layer capacitor include carbon materials such as activated carbon having a large specific surface area, carbon nanofibers, carbon nanotubes, phenolic resin carbides, polyvinylidene chloride carbides, and microcrystalline carbon. In the hybrid capacitor, the positive electrode active material exemplified for the secondary battery can be used for the positive electrode, and in this case, the negative electrode is composed of a polar electrode using activated carbon or the like. Further, the negative electrode active material exemplified for the secondary battery can be used for the negative electrode, and in this case, the positive electrode is composed of a polarizable electrode using activated carbon or the like. Examples of the positive electrode active material of the redox capacitor include metal oxides such as RuO 2 , MnO 2 , and NiO, and the negative electrode is composed of an active material such as RuO 2 and a polarizable material such as activated carbon.
 活物質粒子の形状や粒径には限定がないが、平均粒径が2μmより大きく25μm以下であるのが好ましい。このような比較的大きな粒径を有する活物質粒子は、それ自体で電極密度を向上させる上に、混合工程において、上記活物質粒子の押圧力により、導電性カーボンの糊状化を促進させる。また、電極製造において集電体上の活物質層に圧力を印加する過程で、このような比較的大きな粒径を有する活物質粒子が、少なくとも一部が糊状化した導電性カーボンをさらに押圧し、導電性カーボンをさらに糊状に広げて緻密化させる。その結果、電極密度がさらに増加し、蓄電デバイスのエネルギー密度がさらに向上する。 The shape and particle size of the active material particles are not limited, but the average particle size is preferably larger than 2 μm and 25 μm or less. The active material particles having such a relatively large particle size improve the electrode density by themselves, and in the mixing step, the pressing force of the active material particles promotes the gelatinization of the conductive carbon. Further, in the process of applying pressure to the active material layer on the current collector in the electrode manufacturing, the active material particles having such a relatively large particle size further press the conductive carbon which is at least partially pasty. Then, the conductive carbon is further spread like a paste to be densified. As a result, the electrode density is further increased, and the energy density of the power storage device is further improved.
 また、活物質粒子が、0.01~2μmの平均粒径を有する微小粒子と、該微小粒子と同じ極の活物質として動作可能な2μmより大きく25μm以下の平均粒径を有する粗大粒子と、から構成されているのが好ましい。混合工程において、本発明の導電性カーボンが微小粒子の表面ばかりでなく粗大粒子の表面にも付着して表面を覆うため、活物質粒子の凝集を抑制することができ、活物質粒子と導電性カーボンとの混合状態を均一化させることができる。また、粗大粒子は、上述したように、本発明の導電性カーボンの糊状化及び緻密化を促進させ、電極密度を増加させ、蓄電デバイスのエネルギー密度を向上させる。さらに、電極製造における圧延処理により集電体上に形成された活物質層に印加される圧力によって、微小粒子が、本発明の導電性カーボンを押圧しながら、糊状に広がった導電性カーボンと共に隣り合う粗大粒子の間に形成される間隙部に押し出させて充填されるため、電極密度がさらに増加し、蓄電デバイスのエネルギー密度がさらに向上する。 Further, the active material particles include fine particles having an average particle size of 0.01 to 2 μm, and coarse particles having an average particle size of 25 μm or less, which is larger than 2 μm and can operate as an active material having the same pole as the fine particles. It is preferably composed of. In the mixing step, the conductive carbon of the present invention adheres not only to the surface of the fine particles but also to the surface of the coarse particles to cover the surface, so that aggregation of the active material particles can be suppressed, and the active material particles and the conductivity can be suppressed. The mixed state with carbon can be made uniform. Further, as described above, the coarse particles promote the gelatinization and densification of the conductive carbon of the present invention, increase the electrode density, and improve the energy density of the energy storage device. Further, due to the pressure applied to the active material layer formed on the current collector by the rolling process in the electrode production, the fine particles press the conductive carbon of the present invention together with the conductive carbon spread like a paste. Since the gaps formed between the adjacent coarse particles are extruded and filled, the electrode density is further increased, and the energy density of the energy storage device is further improved.
 電極に含まれる電極活物質の導電率が低く、電極の導電性の向上が望まれる場合には、上記混合工程において、上記導電性カーボンの導電率より高い導電率を有する別の導電性カーボンをさらに混合し、上記導電性カーボンの少なくとも一部が糊状に広がって上記別の導電性カーボンの表面をも被覆している混合物を得ることが好ましい。上記別の導電性カーボンとしては、従来の蓄電デバイスの電極のために使用されているケッチェンブラック、アセチレンブラック、ファーネスブラック、チャネルブラック等のカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、グラフェン、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、気相法炭素繊維が例示される。上記導電性カーボンと、上記別の導電性カーボンとの質量比は、一般に3:1~1:3の範囲である。 When the conductivity of the electrode active material contained in the electrode is low and it is desired to improve the conductivity of the electrode, another conductive carbon having a conductivity higher than that of the conductive carbon is used in the mixing step. It is preferable to further mix to obtain a mixture in which at least a part of the conductive carbon spreads like a paste and also covers the surface of the other conductive carbon. Other conductive carbons mentioned above include carbon blacks such as Ketjen black, acetylene black, furnace black, and channel black, which are used for electrodes of conventional power storage devices, fullerene, carbon nanotubes, carbon nanofibers, and graphene. Examples thereof include amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized Ketjen black, mesoporous carbon, and vapor phase carbon fiber. The mass ratio of the conductive carbon to the other conductive carbon is generally in the range of 3: 1 to 1: 3.
 この形態では、混合工程において、本発明の導電性カーボンの少なくとも一部が糊状に広がって電極活物質の表面ばかりでなく上記別の導電性カーボンの表面にも付着して表面を覆うため、上記別の導電性カーボンの凝集を抑制することができる。さらに、加圧工程において集電体上に形成された活物質層に印加される圧力によって、上記別の導電性カーボンが糊状に広がった本発明の導電性カーボンと共に隣り合う活物質粒子により形成される間隙部に密に充填され、電極全体の導電性が向上するため、蓄電デバイスのエネルギー密度がさらに向上する。 In this embodiment, in the mixing step, at least a part of the conductive carbon of the present invention spreads like a paste and adheres not only to the surface of the electrode active material but also to the surface of the other conductive carbon described above to cover the surface. It is possible to suppress the aggregation of the other conductive carbon. Further, due to the pressure applied to the active material layer formed on the current collector in the pressurizing step, the other conductive carbon is formed by adjacent active material particles together with the conductive carbon of the present invention spread like a paste. Since the gaps are densely filled and the conductivity of the entire electrode is improved, the energy density of the power storage device is further improved.
 上記別の導電性カーボンを含む好適な混合物の製造においては、上記混合工程を、上記導電性カーボンと上記別の導電性カーボンとを混合することにより導電性カーボン混合物を得る第1の混合段階、及び、上記導電性カーボン混合物と上記電極活物質粒子とを混合する第2の混合段階、を含む方法により実施すると、加圧工程の後に得られる電極の導電性がさらに向上するため好ましい。 In the production of a suitable mixture containing the other conductive carbon, the mixing step is the first mixing step of mixing the conductive carbon with the other conductive carbon to obtain a conductive carbon mixture. Further, it is preferable to carry out by a method including a second mixing step of mixing the conductive carbon mixture and the electrode active material particles because the conductivity of the electrode obtained after the pressurizing step is further improved.
 混合工程を実施するための混合方法には特に限定がなく、公知の混合方法を使用することができるが、活物質粒子、本発明の導電性カーボン及び必要に応じて併用される別の導電性カーボンを乾式混合により混合し、次いで必要に応じてバインダを溶解した溶媒と共に混合ことが好ましい。乾式混合のためには、ライカイ器、ボールミル、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ハイブリダイザー、メカノケミカル複合化装置及びジェットミルを使用することができる。活物質粒子と、本発明の導電性カーボン又は本発明の導電性カーボンと必要に応じて併用される別の導電性カーボンの合計との割合は、高いエネルギー密度を有する蓄電デバイスを得るために、質量比で、90:10~99.5:0.5の範囲であるのが好ましく、95:5~99:1の範囲であるのがより好ましい。導電性カーボンの割合が上述の範囲より少ないと、活物質層の導電性が不足し、また導電性カーボンによる活物質粒子の被覆率が低下する傾向がある。また、導電性カーボンの割合が上述の範囲より多いと、電極密度が低下し、蓄電デバイスのエネルギー密度が低下する傾向がある。 The mixing method for carrying out the mixing step is not particularly limited, and a known mixing method can be used, but the active material particles, the conductive carbon of the present invention, and another conductive material used in combination as necessary are used. It is preferred to mix the carbon by dry mixing and then, if necessary, with a solvent in which the binder is dissolved. For dry mixing, lyca, ball mills, bead mills, rod mills, roller mills, stirring mills, planetary mills, vibration mills, hybridizers, mechanochemical compounding devices and jet mills can be used. The ratio of the active material particles to the total of the conductive carbon of the present invention or another conductive carbon used in combination with the conductive carbon of the present invention as needed is to obtain a power storage device having a high energy density. The mass ratio is preferably in the range of 90:10 to 99.5: 0.5, more preferably in the range of 95: 5 to 99: 1. If the proportion of the conductive carbon is less than the above range, the conductivity of the active material layer is insufficient, and the coverage of the active material particles by the conductive carbon tends to decrease. Further, when the ratio of the conductive carbon is larger than the above range, the electrode density tends to decrease, and the energy density of the power storage device tends to decrease.
 活物質粒子、本発明の導電性カーボン及び必要に応じて併用される別の導電性カーボンと混合されるバインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニル、カルボキシメチルセルロースなどの公知のバインダが使用される。バインダの含有量は、混合材料の総量に対して1~30質量%であるのが好ましい。1質量%以下であると活物質層の強度が十分でなく、30質量%以上であると、電極の放電容量が低下する、内部抵抗が過大になるなどの不都合が生じる。活物質粒子、本発明の導電性カーボン及び必要に応じて併用される別の導電性カーボンと混合される溶媒としては、N-メチルピロリドン等の他の材料に悪影響を及ぼさない溶媒を特に限定なく使用することができる。 Binders to be mixed with the active material particles, the conductive carbon of the present invention and other conductive carbons used in combination as needed include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, and polyhood. Known binders such as vinyl fluoride and carboxymethyl cellulose are used. The binder content is preferably 1 to 30% by mass with respect to the total amount of the mixed material. If it is 1% by mass or less, the strength of the active material layer is not sufficient, and if it is 30% by mass or more, inconveniences such as a decrease in the discharge capacity of the electrode and an excessive internal resistance occur. The solvent to be mixed with the active material particles, the conductive carbon of the present invention and another conductive carbon used in combination as necessary is not particularly limited to a solvent that does not adversely affect other materials such as N-methylpyrrolidone. Can be used.
 本発明を以下の実施例を用いて説明するが、本発明は以下の実施例に限定されない。 The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples.
 比較例1
 40%硝酸300mLにケッチェンブラック(商品名EC300J、ケッチェンブラックインターナショナル社製)10gを添加し、得られた液に超音波を10分間照射した後、ろ過してケッチェンブラックを回収した。回収したケッチェンブラックを3回水洗し、乾燥することにより、酸処理ケッチェンブラックを得た。この酸処理ケッチェンブラック1.8gと、Fe(CHCOO)0.5gと、Li(CHCOO)0.19gと、C・HO0.28gと、CHCOOH0.33gと、HPO0.33gと、蒸留水250mLとを混合し、得られた混合液をスターラーで1時間攪拌した後、空気中100℃で蒸発乾固させて混合物を採集した。次いで、得られた混合物を振動ボールミル装置に導入し、20hzで10分間の粉砕を行なった。粉砕後の粉体を、窒素中700℃で3分間加熱し、ケッチェンブラックにLiFePOが担持された複合体を得た。
Comparative Example 1
10 g of Ketjen Black (trade name EC300J, manufactured by Ketjen Black International Co., Ltd.) was added to 300 mL of 40% nitric acid, and the obtained liquid was irradiated with ultrasonic waves for 10 minutes and then filtered to recover Ketjen Black. The recovered Ketjen black was washed with water three times and dried to obtain an acid-treated Ketjen black. 1.8 g of this acid-treated Ketjen Black, 2 0.5 g of Fe (CH 3 COO), 0.19 g of Li (CH 3 COO), C 6 H 8 O 7 · H 2 O 0.28 g, and CH 3 0.33 g of COOH, 0.33 g of H 3 PO 4 and 250 mL of distilled water were mixed, and the obtained mixture was stirred with a stirrer for 1 hour and then evaporated to dryness in air at 100 ° C. to collect the mixture. .. Then, the obtained mixture was introduced into a vibrating ball mill device, and pulverization was performed at 20 hz for 10 minutes. The pulverized powder was heated in nitrogen at 700 ° C. for 3 minutes to obtain a complex in which LiFePO 4 was supported on Ketjen black.
 濃度30%の塩酸水溶液100mLに、得られた複合体1gを添加し、得られた液に超音波を15分間照射させながら複合体中のLiFePOを溶解させ、残った固体をろ過し、水洗し、乾燥させた。乾燥後の固体の一部を、TG分析により空気中900℃まで加熱し、重量損失を測定した。重量損失が100%、すなわちLiFePOが残留していないことが確認できるまで、上述の塩酸水溶液によるLiFePOの溶解、ろ過、水洗及び乾燥の工程を繰り返し、LiFePOフリーの酸化処理カーボンを得た。 1 g of the obtained complex is added to 100 mL of a 30% hydrochloric acid aqueous solution, LiFePO 4 in the complex is dissolved while irradiating the obtained solution with ultrasonic waves for 15 minutes, the remaining solid is filtered, and washed with water. And dried. A part of the dried solid was heated to 900 ° C. in air by TG analysis, and the weight loss was measured. The steps of dissolution, filtration, washing and drying of LiFePO 4 with the above-mentioned aqueous hydrochloric acid solution were repeated until it was confirmed that the weight loss was 100%, that is, LiFePO 4 did not remain, to obtain LiFePO 4 -free oxidized carbon. ..
 次いで、得られた酸化処理カーボンの0.1gをpH11のアンモニア水溶液20mLに添加し、1分間の超音波照射を行なった。得られた液を5時間放置して固相部分を沈殿させた。固相部分の沈殿後、上澄み液を除去した残余部分を乾燥させ、乾燥後の固体の重量を測定した。乾燥後の固体の重量を最初の酸化処理カーボンの重量0.1gから差し引いた重量の最初の酸化処理カーボンの重量0.1gに対する重量比を、酸化処理カーボンにおける「親水性部分」の含有量とした。親水性部分の含有量は酸化処理カーボン全体の10.2%であった。 Next, 0.1 g of the obtained oxidized carbon was added to 20 mL of an aqueous ammonia solution having a pH of 11, and ultrasonic irradiation was performed for 1 minute. The obtained liquid was left to stand for 5 hours to precipitate the solid phase portion. After the solid phase was precipitated, the residue from which the supernatant was removed was dried, and the weight of the dried solid was measured. The weight ratio of the weight of the dried solid minus the weight of the first oxidized carbon of 0.1 g to the weight of the first oxidized carbon of 0.1 g is the content of the "hydrophilic moiety" in the oxidized carbon. did. The content of the hydrophilic portion was 10.2% of the total oxidized carbon.
 また、得られた酸化処理カーボンについて、レーザラマン分光光度計(日本分光(株)製NRS-5500,励起光:KTP/532レーザー:波長532nm)を用いてラマンスペクトルを測定した。そして、測定されたラマンスペクトルに対して上記分光光度計に付属の解析ソフト(spectra manager)を用いて単純移動平均法によるピークの平滑化とベースライン補正とを行い、得られたスペクトルからS1バンドのピーク強度Is1のS2バンドのピーク強度Is2に対する比Is1/Is2を算出した。 Further, the Raman spectrum of the obtained oxidation-treated carbon was measured using a laser Raman spectrophotometer (NRS-5500 manufactured by JASCO Corporation, excitation light: KTP / 532 laser: wavelength 532 nm). Then, the measured Raman spectrum is smoothed and baseline corrected by the simple moving average method using the analysis software (spectrum manager) attached to the spectrophotometer, and the S1 band is obtained from the obtained spectrum. The ratio Is1 / Is2 of the peak intensity Is1 to the peak intensity Is2 of the S2 band was calculated.
 さらに、96質量部の市販のLiNi0.5Mn0.3Co0.2粒子(平均粒径5μm)、2質量部の上記酸化処理カーボン、及び2質量部のポリフッ化ビニリデンに適量のN-メチルピロリドンを加えて十分に混錬してスラリーを形成した。このスラリーをアルミニウム箔上に塗布して乾燥した後、1.5t/cmの条件下で3回の加圧を行って、リチウムイオン二次電池用の正極を得た。 Further, an appropriate amount for 96 parts by mass of commercially available LiNi 0.5 Mn 0.3 Co 0.2 O 2 particles (average particle size 5 μm), 2 parts by mass of the above-mentioned oxidized carbon, and 2 parts by mass of polyvinylidene fluoride. N-Methylpyrrolidone was added and sufficiently kneaded to form a slurry. This slurry was applied onto an aluminum foil and dried, and then pressurized three times under the condition of 1.5 t / cm to obtain a positive electrode for a lithium ion secondary battery.
 また、93質量部のハードカーボン、1質量部のアセチレンブラック、及び6質量部のポリフッ化ビニリデンに適量のN-メチルピロリドンを加えて十分に混錬してスラリーを形成した。このスラリーを銅箔上に塗布し、乾燥した後加圧して、1.0g/ccの電極密度を有するリチウムイオン二次電池用の負極を得た。また、正極容量と負極容量との比は、1:1.2とした。 Further, 93 parts by mass of hard carbon, 1 part by mass of acetylene black, and 6 parts by mass of polyvinylidene fluoride were added with an appropriate amount of N-methylpyrrolidone and sufficiently kneaded to form a slurry. This slurry was applied onto a copper foil, dried, and then pressurized to obtain a negative electrode for a lithium ion secondary battery having an electrode density of 1.0 g / cc. The ratio of the positive electrode capacity to the negative electrode capacity was 1: 1.2.
 得られた正極と負極とを100℃で12時間真空乾燥させた後、1MのLiPFのエチレンカーボネート/ジメチルカーボネート/プロピレンカーボネート1:1:1溶液を電解液としてリチウムイオン二次電池を作成した。 After vacuum-drying the obtained positive electrode and negative electrode at 100 ° C. for 12 hours, a lithium ion secondary battery was prepared using a 1 M LiPF 6 ethylene carbonate / dimethyl carbonate / propylene carbonate 1: 1: 1 solution as an electrolytic solution. ..
 得られた電池について高温放置試験を行った。まず、得られた電池をSOC(残容量(Ah)/満充電容量(Ah)×100)が50%になるまで充電した後、10秒間定電流で放電を行い、電圧降下から初期のDCIRを算出した。次いで、電池を4Vまで充電し、60℃の恒温槽に2週間放置した後に電池を恒温槽から取り出し、SOCが50%になるまで充電した後、10秒間定電流で放電を行い、電圧降下から放置後のDCIRを算出した。そして、放置後のDCIRの初期のDCIRからの抵抗増加率を高温保持安定性の尺度として算出した。 The obtained battery was subjected to a high temperature standing test. First, the obtained battery is charged until the SOC (remaining capacity (Ah) / full charge capacity (Ah) x 100) reaches 50%, and then discharged with a constant current for 10 seconds to obtain the initial DCIR from the voltage drop. Calculated. Next, the battery is charged to 4 V, left in a constant temperature bath at 60 ° C. for 2 weeks, then the battery is taken out from the constant temperature bath, charged until the SOC reaches 50%, and then discharged at a constant current for 10 seconds from the voltage drop. The DCIR after leaving was calculated. Then, the resistance increase rate of the DCIR after being left to stand from the initial DCIR was calculated as a measure of the high temperature holding stability.
 実施例1
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、10Hzの条件下で20分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Example 1
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 20 minutes under the condition of 10 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 実施例2
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、15Hzの条件下で20分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Example 2
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill apparatus and pulverized for 20 minutes under the condition of 15 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 実施例3
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、15Hzの条件下で30分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Example 3
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 30 minutes under the condition of 15 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 実施例4
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、20Hzの条件下で60分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Example 4
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 60 minutes under the condition of 20 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 実施例5
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、30Hzの条件下で20分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Example 5
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill device and pulverized for 20 minutes under the condition of 30 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 比較例2
 比較例1において得られたLiFePOフリーの酸化処理カーボンを振動ボールミル装置に導入し、30Hzの条件下で60分間の粉砕を行った。得られた粉砕後の導電性カーボンを比較例1の酸化処理カーボンの代わりに用いて比較例1と同じ手順でリチウムイオン二次電池を作成し、得られた電池について比較例1と同じ手順で高温放置試験を行った。
Comparative Example 2
The LiFePO 4 -free oxidation-treated carbon obtained in Comparative Example 1 was introduced into a vibrating ball mill apparatus and pulverized for 60 minutes under the condition of 30 Hz. The obtained pulverized conductive carbon was used in place of the oxidized carbon of Comparative Example 1 to prepare a lithium ion secondary battery in the same procedure as in Comparative Example 1, and the obtained battery was prepared in the same procedure as in Comparative Example 1. A high temperature standing test was performed.
 表1に、実施例1~5及び比較例1,2について、導電性カーボンのラマンスペクトルから求められたS1バンドのピーク強度Is1のS2バンドのピーク強度Is2に対する比Is1/Is2と、リチウムイオン二次電池の高温放置試験において算出された抵抗増加率と、をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, for Examples 1 to 5 and Comparative Examples 1 and 2, the ratio of the peak intensity Is1 of the S1 band to the peak intensity Is2 of the S2 band obtained from the Raman spectrum of the conductive carbon is Is1 / Is2 . , The resistance increase rate calculated in the high temperature standing test of the lithium ion secondary battery is shown together.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかに把握されるように、比較例1の酸化処理カーボンに粉砕処理を施した後、得られた導電性カーボンを用いて実用的なリチウムイオン二次電池を構成すると、高温放置試験における抵抗増加率が好ましく低下するものの、粉砕処理の強度を強めていくと、一旦は低下した高温放置試験における抵抗増加率が再び増加に転じることがわかった。したがって、高いエネルギー密度を有し且つ改善された高温使用下での安定性を有する蓄電デバイスを得るためには、ラマンスペクトルにおけるS1バンドのピーク強度Is1のS2バンドのピーク強度Is2に対する比Is1/Is2が0.85~0.99の範囲になるような粉砕を酸化処理カーボンに施す必要がある。また、蓄電デバイスのより高い高温使用下での安定性を得るためには、ラマンスペクトルにおけるS1バンドのピーク強度Is1のS2バンドのピーク強度Is2に対する比Is1/Is2が0.90~0.95の範囲になるような粉砕を酸化処理カーボンに施すことが重要である。 As can be clearly seen from Table 1, after the oxidation-treated carbon of Comparative Example 1 was pulverized, a practical lithium-ion secondary battery was constructed using the obtained conductive carbon, and a high-temperature standing test was performed. However, it was found that when the strength of the pulverization treatment was increased, the resistance increase rate in the high temperature standing test, which had once decreased, started to increase again. Therefore, in order to obtain a power storage device having a high energy density and improved stability under high temperature use, the ratio I of the peak intensity Is1 of the S1 band to the peak intensity Is2 of the S2 band in the Raman spectrum. It is necessary to grind the oxidized carbon so that s1 / Is2 is in the range of 0.85 to 0.99. Further, in order to obtain the stability of the power storage device under higher temperature use, the ratio of the peak intensity Is1 of the S1 band to the peak intensity Is2 of the S2 band in the Raman spectrum is 0.90 to Is2 . It is important to grind the oxidized carbon so that it is in the range of 0.95.
 本発明の導電性カーボンの使用により、高いエネルギー密度を有し且つ改善された高温使用下での安定性を有する蓄電デバイスが得られる。 By using the conductive carbon of the present invention, a power storage device having a high energy density and improved stability under high temperature use can be obtained.

Claims (9)

  1.  蓄電デバイスの電極において導電剤として使用されるべき導電性カーボンであって、
     圧力を受けて糊状に広がる性質を有し、且つ、
     前記導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲である
     ことを特徴とする導電性カーボン。
    Conductive carbon that should be used as a conductive agent in the electrodes of power storage devices.
    It has the property of spreading like a paste under pressure, and
    The conductive carbon is characterized in that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon is in the range of 0.85 to 0.99.
  2.  前記導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.90~0.95の範囲である、請求項1に記載の導電性カーボン。 The conductive carbon according to claim 1, wherein the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the conductive carbon is in the range of 0.90 to 0.95.
  3.  前記導電性カーボンが親水性部分を含み、
     該親水性部分の含有量が導電性カーボン全体の10質量%以上である、請求項1又は2に記載の導電性カーボン。
    The conductive carbon contains a hydrophilic portion and contains
    The conductive carbon according to claim 1 or 2, wherein the content of the hydrophilic portion is 10% by mass or more of the total conductive carbon.
  4.  請求項1に記載の導電性カーボンの製造方法であって、
     カーボン原料に酸化処理を施すことにより、圧力を受けて糊状に広がる性質を有する酸化処理カーボンを得る、酸化段階、及び、
     前記酸化処理カーボンに粉砕処理を施し、但し、該粉砕処理を、得られる導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.85~0.99の範囲になるように実施する、粉砕段階、
     を含むことを特徴とする導電性カーボンの製造方法。
    The method for producing conductive carbon according to claim 1.
    By subjecting the carbon raw material to an oxidation treatment, an oxidation-treated carbon having the property of spreading like a paste under pressure is obtained, an oxidation step, and
    The oxidized carbon is pulverized, except that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.85 to 0.99. The crushing stage, which is carried out so as to be
    A method for producing conductive carbon, which comprises.
  5.  前記粉砕段階において、粉砕処理を、得られる導電性カーボンのラマンスペクトルにおけるS1バンドのピーク強度のS2バンドのピーク強度に対する比が0.90~0.95の範囲になるように実施する、請求項4に記載の導電性カーボンの製造方法。 Claimed in the above-mentioned pulverization step, the pulverization treatment is carried out so that the ratio of the peak intensity of the S1 band to the peak intensity of the S2 band in the Raman spectrum of the obtained conductive carbon is in the range of 0.90 to 0.95. 4. The method for producing conductive carbon according to 4.
  6.  前記酸化段階において、酸化処理を、得られる酸化処理カーボンにおける親水性部分の含有量が酸化処理カーボン全体の10質量%以上になるように実施する、請求項4又は5に記載の導電性カーボンの製造方法。 The conductive carbon according to claim 4 or 5, wherein in the oxidation step, the oxidation treatment is carried out so that the content of the hydrophilic portion in the obtained oxidation-treated carbon is 10% by mass or more of the total oxidation-treated carbon. Production method.
  7.  蓄電デバイス用の電極の製造方法であって、
     電極活物質粒子と請求項1~3のいずれか1項に記載の導電性カーボンとを混合して、前記導電性カーボンの少なくとも一部が糊状に広がって前記電極活物質粒子の表面を被覆している混合物を得る、混合工程、及び、
     前記混合物を前記電極のための集電体上に塗布することにより活物質層を形成し、得られた活物質層に圧力を印加して前記導電性カーボンをさらに糊状に広げるとともに緻密化させる、加圧工程
     を含むことを特徴とする電極の製造方法。
    It is a method of manufacturing electrodes for power storage devices.
    The electrode active material particles and the conductive carbon according to any one of claims 1 to 3 are mixed, and at least a part of the conductive carbon spreads like a paste to cover the surface of the electrode active material particles. To obtain the mixture, the mixing process, and
    An active material layer is formed by applying the mixture onto a current collector for the electrodes, and pressure is applied to the obtained active material layer to further spread and densify the conductive carbon in a paste-like manner. A method for manufacturing an electrode, which comprises a pressurizing step.
  8.  前記混合工程において、前記導電性カーボンの導電率より高い導電率を有する別の導電性カーボンをさらに混合し、前記導電性カーボンの少なくとも一部が糊状に広がって前記別の導電性カーボンの表面をも被覆している混合物を得る、請求項7に記載の電極の製造方法。 In the mixing step, another conductive carbon having a conductivity higher than that of the conductive carbon is further mixed, and at least a part of the conductive carbon spreads like a paste on the surface of the other conductive carbon. The method for producing an electrode according to claim 7, wherein the mixture is also coated with the above-mentioned material.
  9.  前記混合工程が、
     前記導電性カーボンと前記別の導電性カーボンとを混合することにより導電性カーボン混合物を得る、第1の混合段階、及び、
     前記導電性カーボン混合物と前記電極活物質粒子とを混合する、第2の混合段階
     を含む、請求項8に記載の電極の製造方法。
    The mixing step
    A first mixing step of mixing the conductive carbon with the other conductive carbon to obtain a conductive carbon mixture, and
    The method for manufacturing an electrode according to claim 8, further comprising a second mixing step of mixing the conductive carbon mixture and the electrode active material particles.
PCT/JP2021/030332 2020-08-21 2021-08-19 Conductive carbon, production method for conductive carbon, and production method for electrode using conductive carbon WO2022039213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140416A JP2022035839A (en) 2020-08-21 2020-08-21 Conductive carbon and production method of conductive carbon, and production method of electrode by use of the conductive carbon
JP2020-140416 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022039213A1 true WO2022039213A1 (en) 2022-02-24

Family

ID=80323480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030332 WO2022039213A1 (en) 2020-08-21 2021-08-19 Conductive carbon, production method for conductive carbon, and production method for electrode using conductive carbon

Country Status (2)

Country Link
JP (1) JP2022035839A (en)
WO (1) WO2022039213A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019014A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode using the mixture, and power storage device equipped with the electrode
JP2019021420A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2019021421A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2019511982A (en) * 2017-02-28 2019-05-09 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible carbon pocket composite structure, method of manufacturing the same, electrode including the same, and energy storage device including the electrode
JP2019513682A (en) * 2016-04-13 2019-05-30 グリーン ナノテク ラブズ,エルエルシー Low cost and rapid method for mass production of graphene and graphene oxide using carbon rich natural materials
JP2019200866A (en) * 2018-05-14 2019-11-21 日本ケミコン株式会社 Electrode, manufacturing method of this electrode, and power storage device with this electrode
JP2021008383A (en) * 2019-07-02 2021-01-28 株式会社日本触媒 Method for producing defect reduction carbon material
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513682A (en) * 2016-04-13 2019-05-30 グリーン ナノテク ラブズ,エルエルシー Low cost and rapid method for mass production of graphene and graphene oxide using carbon rich natural materials
JP2019511982A (en) * 2017-02-28 2019-05-09 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible carbon pocket composite structure, method of manufacturing the same, electrode including the same, and energy storage device including the electrode
JP2019019014A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode using the mixture, and power storage device equipped with the electrode
JP2019021420A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2019021421A (en) * 2017-07-12 2019-02-07 日本ケミコン株式会社 Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2019200866A (en) * 2018-05-14 2019-11-21 日本ケミコン株式会社 Electrode, manufacturing method of this electrode, and power storage device with this electrode
JP2021008383A (en) * 2019-07-02 2021-01-28 株式会社日本触媒 Method for producing defect reduction carbon material
JP2021158083A (en) * 2020-03-30 2021-10-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2022035839A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
US11024469B2 (en) Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode
JP7015445B2 (en) A method for producing a conductive carbon mixture and a method for producing an electrode using this mixture.
JP6621664B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP6621663B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP6689741B2 (en) Conductive carbon, method for producing this conductive carbon, method for producing an electrode material containing this conductive carbon, and method for producing an electrode using this electrode material
JP6436472B2 (en) Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using electrode material
JP6931186B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
US11777099B2 (en) Electrode, method for producing said electrode, and electricity storage device provided with said electrode
JP2019021427A (en) Carbon slurry and active material slurry arranged by use thereof
JP6621586B2 (en) Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using this electrode material
WO2022039213A1 (en) Conductive carbon, production method for conductive carbon, and production method for electrode using conductive carbon
WO2022039211A1 (en) Conductive carbon, method for producing same, method for producing conductive carbon mixture containing said conductive carbon, and method for producing electrode using said conductive carbon or conductive carbon mixture
KR102394159B1 (en) Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode
JP2022035830A (en) Conductive carbon and production method of conductive carbon, and production method of electrode by use of conductive carbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858357

Country of ref document: EP

Kind code of ref document: A1