WO2022039185A1 - Reagent composition and sensor - Google Patents

Reagent composition and sensor Download PDF

Info

Publication number
WO2022039185A1
WO2022039185A1 PCT/JP2021/030143 JP2021030143W WO2022039185A1 WO 2022039185 A1 WO2022039185 A1 WO 2022039185A1 JP 2021030143 W JP2021030143 W JP 2021030143W WO 2022039185 A1 WO2022039185 A1 WO 2022039185A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidase
dehydrogenase
electrode
electron transfer
alkyl
Prior art date
Application number
PCT/JP2021/030143
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 鉞
Original Assignee
キッコーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社 filed Critical キッコーマン株式会社
Priority to JP2022543967A priority Critical patent/JPWO2022039185A1/ja
Publication of WO2022039185A1 publication Critical patent/WO2022039185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present disclosure relates to a biosensor containing an electron transfer promoter, an oxidoreductase, and a metal complex compound, and a method using the same.
  • Patent Document 1 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
  • Patent Document 2 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
  • Patent Document 3 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
  • Patent Documents 1-3 The electron transfer promoter disclosed in Patent Documents 1-3 has few reports, and its characteristics and uses have not been sufficiently clarified.
  • An object of the present invention is to provide a new use of the electron transfer promoter disclosed in Patent Documents 1-3.
  • the present inventor has conducted various studies on electron transfer promoters, and found that electron transfer promoters are used together with metal complex compounds having a higher oxidation-reduction potential than the electron transfer promoters for oxidoreductases for biosensors. By doing so, or by using it together with a metal complex compound having a lower oxidation-reduction potential than the electron transfer promoter, it has been found that electron transfer from an oxidoreductase to an electrode can be promoted, and this is set as an embodiment.
  • the invention to be included has been completed.
  • a biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
  • Electron transport chain promoter [During the ceremony, R 1 is -NR 7 R 8 and R 2 is ⁇ NR 10 R 11 and R 7 and R 8 are each independently substituted with hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1- .
  • R 10 is hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 3-9 .
  • Cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl or phenanthrenyl, R 3 , R 4 , R 5 and R 6 are each independently substituted with hydrogen, optionally one or more Y, linear or branched C 1-7 alkyl, C 1-7 alkoxy. , C 1-7 alkynyl, C 1-7 alkoxy, halo, nitro, cyano, carboxy, sulfo, hydroxy or amino.
  • R 3 and R 4 , or R 5 and R 6 may be optionally substituted with one or more oxos, Xs, together with the benzene ring containing them, the benzene ring, or ,
  • * is bonded to the carbon atom to which R 3 is bonded
  • ** is bonded to the carbon atom to which R 4 is bonded
  • * is bonded to the carbon atom to which R 5 is bonded
  • R 11 is a straight or branched C 1-7 alkyl or optionally substituted with one or more Xs or Zs, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl and phenanthrenyl.
  • V is —O-acryloyl, acetylamino, or phenyl, optionally substituted with C 1-7 alkyl.
  • X may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys, alkylaminos, nitrosos, nitros and sulfos, linear or branched. , C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkylamino.
  • Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, hydroxy, alkoxy and sulfo.
  • the oxidase is FAD-type glucose dehydrogenase (FAD-GDH), L- or D-lactic acid oxidase (LOD), glucose oxidase, glucose dehydrogenase, amadriase, peroxidase, galactose oxidase, birylbin oxidase, pyruvate oxidase, D.
  • FAD-GDH FAD-type glucose dehydrogenase
  • LOD D-lactic acid oxidase
  • glucose oxidase glucose dehydrogenase
  • amadriase amadriase
  • peroxidase galactose oxidase
  • birylbin oxidase pyruvate oxidase
  • the electrode includes an electrode portion having a working electrode and a counter electrode, the electrode portion is arranged on an insulating substrate, and a reagent layer is further arranged on the electrode portion.
  • the biosensor according to any one of embodiments 1 to 3, wherein the oxidoreductase, the metal complex compound, and the electron transfer promoter are contained in the reagent layer.
  • a method for producing a biosensor which comprises forming a reagent layer containing an oxidoreductase, a metal complex compound, and an electron transfer promoter on an electrode.
  • [8] A step of preparing a biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
  • a method for measuring the concentration of a target compound in a sample which comprises a step of applying a voltage to the electrode of the biosensor and a step of measuring a response current.
  • This specification includes the disclosure of Japanese Patent Application No. 2020-138212, which is the basis of the priority of the present application.
  • a biosensor in which an electron transfer promoter, an oxidoreductase, an electrode and a metal complex compound are combined, and a measurement method using the same.
  • a glucose sensor in which an electron transfer promoter, a GDH, an electrode and a metal complex compound are combined, and a glucose measuring method using the same.
  • Glucose dehydrogenase (GDH) and ruthenium compound (Ru) and BGLB are used, and the response currents when various concentrations of glucose are added are shown.
  • the control does not contain BGLB.
  • the response currents when glucose dehydrogenase, ruthenium compound and TMPD are used and various concentrations of glucose are added are shown.
  • the control does not include TMPD.
  • the response currents when glucose dehydrogenase, ruthenium compound and APPD are used and various concentrations of glucose are added are shown. Controls do not include APPD.
  • Glucose dehydrogenase and potassium ferricyanide and BGLB, DPPA or APPD as an electron transfer promoter are used, and the response currents when various concentrations of glucose are added are shown.
  • the control does not contain an electron transfer promoter.
  • the response currents when lactic acid oxidase (LOD), ruthenium compound (Ru) and BGLB are used and various concentrations of lactic acid are added are shown.
  • the control does not contain BGLB.
  • the present disclosure provides a biosensor containing an electron transfer promoter, an oxidoreductase, a metal complex compound, and an electrode.
  • the biosensor can measure a compound that can be recognized as a substrate by the oxidoreductase, depending on the oxidoreductase used. For example, when FAD-GDH is used as an oxidoreductase, a glucose sensor having FAD-GDH is provided. PMS is removed from the electron transfer promoter.
  • a biosensor means a sensor containing an electron transfer promoter (excluding PMS), an electrode, an oxidoreductase, and a metal complex compound.
  • the electrode comprises an electrode portion having an working electrode and a counter electrode. In another embodiment, the electrode comprises an electrode portion having an working electrode, a counter electrode and a reference electrode.
  • the electrode may be, for example, a triode electrode or a printed electrode. In certain embodiments, the electrodes may be placed on an insulating substrate.
  • the mediator refers to a compound that participates in electron transfer.
  • the mediator receives an electron from an oxidoreductase to become a reduced form, and passes the electron to the electrode to return to the oxidized form. ..
  • a compound that functions as a mediator can also be called an electronic mediator.
  • Electron Transfer Promoter a compound that promotes the transfer of electrons from an oxidoreductase to an electrode is referred to as an “electron transfer promoter”.
  • the "electron transfer promoter” can be used for a biosensor equipped with an oxidoreductase, for example, a glucose sensor, and promotes the generation of a response current depending on the concentration of the target compound when it is added.
  • the electron transfer enhancer can alter the function of the mediator.
  • the term "electron transfer promoter modifies the function of a mediator” refers to an electron transfer promoter for a mediator in which electrons are hardly or hardly transferred from an oxidoreductase to an electrode in the absence of the electron transfer promoter. In the presence of, electrons are transferred from the oxidoreductase to the electrode.
  • the electron transfer promoter can be a compound of the following general formula I or II or a salt, anhydride or solvate thereof:
  • R 1 is -NR 7 R 8 and R 2 is ⁇ NR 10
  • R 11 and R 7 and R 8 are each independently substituted with hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, eg, C 1-3 alkyl, C 1 -7 alkenyl, C 1-7 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl, phenanthrenyl, acetyl, carboxy, furanylformyl, pyrazolylformyl, 1-methyl-1H-pyrazole- 5-Ilformyl, 9,9-dimethylfluorene-2-yl, or benzyl
  • R 10 is a straight or branched C 1-7 alkyl, eg
  • R 3 , R 4 , R 5 and R 6 may be independently substituted with hydrogen, optionally one or more Ys, with a straight or branched C 1-7 alkyl such as C 1-3 .
  • R 3 and R 4 , or R 5 and R 6 may be optionally substituted with one or more oxos, Xs, together with the benzene ring containing them, the benzene ring, or ,
  • * is bonded to the carbon atom to which R 3 is bonded
  • ** is bonded to the carbon atom to which R 4 is bonded
  • * is bonded to the carbon atom to which R 5 is bonded
  • R 11 is a straight or branched C 1-7 alkyl, eg, C 1-3 alkyl, or may optionally be substituted with one or more Xs or Zs, phenyl, 1-naphthyl,.
  • V is —O-acryloyl, acetylamino, or phenyl, optionally substituted with C 1-7 alkyl.
  • X may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys, alkylaminos, nitrosos, nitros and sulfos, linear or branched.
  • C 1-7 alkyl eg C 1-3 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkylamino.
  • Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, hydroxy, alkoxy and sulfo.
  • the electron transfer promoter can be a compound having the structure of the following general formula Ia or IIa or a salt, anhydride or solvate thereof: [During the ceremony, R 1a is ⁇ NR 7a R 8a . R 2a is ⁇ NR 10a R 11a . R 7a and R 8a are each independently substituted with hydrogen, optionally one or more Xa, linear or branched C 1-6 alkyl, eg C 1-3 alkyl, C 1-6 . Alkenyl, C 1-6 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl, or phenanthrenyl.
  • R 10a is a straight or branched C 1-6 alkyl, eg, C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, which may be substituted with hydrogen, optionally one or more Xa.
  • R 3a , R 4a , R 5a and R 6a are linear or branched C 1-6 alkyl, C 1-6 alkoxy, respectively, which may be independently substituted with hydrogen, optionally one or more Ys.
  • R 3a and R 4a , or R 5a and R 6a are benzene rings, or , Where * is bonded to the carbon atom to which R 3a is bonded, ** is bonded to the carbon atom to which R 4a is bonded, or * is bonded to the carbon atom to which R 5a is bonded, ** Bonds to the carbon atom to which R 6a bonds,
  • R 11a is a straight or branched C 1-7 alkyl, eg C 1-3 alkyl, or may optionally be substituted with one or more Xa, phenyl, 1-naphthyl, 2-naphthyl.
  • Anthracenyl and phenylanthrenyl, selected from the group Xa may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, hydroxys, alkoxys, alkylaminos, nitroso, nitros and sulfos, linear or fractional.
  • Branch chains of C 1-6 alkyl such as C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkyl
  • Amino and Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, alkoxy and sulfo].
  • the electron transfer promoter can be a compound having the structure of the following general formula Ib or IIb or a salt, anhydride or solvate thereof:
  • R 7b , R 8b and R 10b are each independently substituted with hydrogen, optionally one or more Xb, linear or branched C 1-6 alkyl, eg C 1-3 alkyl, C. 1-6 alkenyl, C 1-6 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl or phenanthrenyl, with R 3b , R 4b , R 5b and R 6b independently.
  • R 11b is a straight or branched C 1-7 alkyl, eg C 1-3 alkyl, or may optionally be substituted with one or more Xb, phenyl, 1-naphthyl, 2-naphthyl.
  • Xb may be optionally substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys and sulfos, C 1- of linear or branched chains.
  • 6 alkyl eg C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo or amino.
  • Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, alkoxy and sulfo].
  • alkyl refers to a straight-chain or branched-chain hydrocarbon having, for example, 1 to 7 carbon atoms, for example, 1 to 6 carbon atoms, for example, 1 to 3 carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, tert-butyl, isopentyl, n-pentyl and heptyl.
  • Cx-Cy alkyl which means an alkyl group having x to y carbon atoms. The same notation is used for other substituents and ranges.
  • alkenyl used in the present specification refers to a straight-chain or branched-chain aliphatic hydrocarbon having one or more carbon-carbon double bonds. Examples include, but are not limited to, vinyl, allyl, and the like.
  • alkynyl used in the present specification refers to a straight-chain or branched-chain aliphatic hydrocarbon having one or more carbon-carbon triple bonds. Examples include, but are not limited to, ethynyl and the like.
  • Cycloalkyl as used herein refers to a substituted or unsubstituted non-aromatic cyclic hydrocarbon ring. Cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
  • halo used in the present specification refers to a group of Group 17 elements such as -Cl, -Br, -I and the like.
  • halogen refers to fluorine, chlorine, bromine, or iodine.
  • haloalkyl used herein refers to an alkyl group substituted with at least one halogen.
  • Haloalkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, and t-, which are independently substituted with one or more halogens, such as fluoro, chloro, bromo, and iodine. Butyl and the like can be mentioned.
  • halosulfonyl used in the present specification refers to a sulfonyl group substituted with at least one halogen, and examples thereof include chlorosulfonyl (Cl - SO2-) and bromosulfonyl (Br - SO2-). Not limited to.
  • Phenyl as used herein refers to a substituted or unsubstituted benzene ring system.
  • naphthyl refers to a substituted or unsubstituted naphthalene ring system, and examples thereof include 1-naphthyl and 2-naphthyl.
  • anthracene refers to an anthracene ring system that has been substituted or not substituted.
  • phenanthrenel refers to a substituted or unsubstituted phenanthrene ring system.
  • acetyl means CH 3 CO-.
  • trifluoroacetyl means CF 3 CO-.
  • carboxy means -COOH.
  • furanyl refers to a monovalent group of furan, such as 2-furanyl or 3-furanyl.
  • formyl is also referred to as aldehyde and refers to -COH.
  • the furanylformyl means a formyl group (furanyl-CO-) to which a furanyl group is bonded.
  • pyrazolyl refers to a pyrazole ring system.
  • pyrazolyl formyl refers to a formyl group (pyrazolyl-CO-) to which a pyrazolyl group is bonded.
  • fluorenyl refers to a substituted or unsubstituted fluorene ring system.
  • nitro refers to two -NO groups.
  • cyano refers to a -CN group.
  • sulfo refers to -SO 3H .
  • hydroxy means -OH.
  • oxo O.
  • amino refers to a -NR'R'' group, and R'and R'' may be the same or different.
  • R'and R'' can be, but are not limited to, for example, H, alkyl, alkenyl, alkynyl, cycloalkyl, phenyl, naphthyl, anthracenyl, phenanthrenyl, and the like.
  • the aminoalkyl has an alkylene linker to which an amino group is linked. Examples of the aminoalkyl include, but are not limited to- (CH 2 ) n NH 2 .
  • alkylamino means an amino to which an alkyl group is linked.
  • alkylamino examples include, but are not limited to, C 1-7 alkyl-NH-.
  • acetylamino means an amino to which an acetyl group is linked.
  • examples of acetylamino include, but are not limited to, acetyl-NH-.
  • succinimidyl means (CH 2 CO) 2N- .
  • Alkoxy used in the present specification refers to an —O-alkyl group.
  • the electron transfer promoter is TMPD (N, N, N', N'-tetramethylphenylenediamine). Can be.
  • the redox potential E of TMPD is about 50 mV.
  • the electron transfer promoter is APPD (2,4-Diaminodiphenyllamine). Can be.
  • the redox potential E of APPD is about 20 mV.
  • the electron transfer promoter is BGLB (Bindschedler's Green Leuco Base). Can be.
  • the redox potential E of BGLB is about 17 mV.
  • the electron transfer promoter is DPPA (4,4'-Diaminodiphenyllamine). Can be.
  • the redox potential E of DPPA is about 20 mV.
  • the electron transfer promoter may have a redox state and an ionization state.
  • the compounds are described in neutral and reduced form.
  • the electron transfer promoter can be an oxidized type (diimine type), a semi-oxidized type, or a reduced type (diamine type).
  • the electron transfer promoter may be a neutral type or a cationic type.
  • the term electron transfer enhancer includes neutral or cationic, oxidized, semi-oxidized, or reduced forms. For example, after adding a neutral and oxidized compound as an electron transfer promoter to the measurement system, it may change to an oxidized and cationic compound depending on the pH of the solution and electron transfer.
  • Such compounds shall also be included in the electron transfer promoter. Further, when referring to an electron transfer promoter, it shall include its salt, acid addition salt, anhydride and solvate.
  • the salt include, but are not limited to, salts of Group 1 elements and salts of Group 17 elements, such as Na salt, K salt, Cl salt, Br salt and the like.
  • the acid addition salt include, but are not limited to, hydrochloride, sulfate, sulfite, and nitrate.
  • the electron transfer promoter may be artificially synthesized or a natural product may be obtained. It may also be commercially available.
  • organic synthesis can be performed using a conventional organic synthesis method, and the product can be confirmed by NMR, IR, mass spectrometry and the like.
  • the practice of the present invention uses prior arts of chemistry, organic synthesis, biochemistry, molecular biology and electrochemical, which are within the ability of those skilled in the art. Such techniques are described in the literature.
  • PMS refers to phenazinemethsulfate and its derivatives. Typical examples of PMS include 1-methoxy-5-methylphenazinenium methyl sulfate (1-methoxy PMS).
  • the term "electron transfer promoter” herein does not include PMS unless otherwise noted. That is, when the term “electron transfer promoter” is used, PMS is excluded.
  • any one of the specific compounds of the general formula I or II eg, general formula Ia or IIa, eg, general formula Ib or IIb. For example, known compounds can be excluded.
  • the content of the electron transfer promoter per biosensor can be, for example, 10 pmol to 1000 nmol, 10 pmol to 100 nmol, 10 pmol to 60 nmol, 10 pmol to 10 nmol, 10 pmol to 1 nmol, 40 to 900 pmol, 50 to 500 pmol, for example, 100 to 300 pmol. However, it is not limited to this.
  • the content of FAD-GDH is 1 to 100 U, 1 to 10 U, 1 to 6 U, for example, 1 to 4 U in a certain embodiment. ..
  • the content of FAD-GDH is, in a certain embodiment, 0.1 to 100 ⁇ g, 1 to 50 ⁇ g, for example, 1 to 20 ⁇ g.
  • the content per sensor is, in a certain embodiment, 0.1 to 1000 ⁇ g, 1 to 500 ⁇ g, 1 to 50 ⁇ g, for example, 1 to 20 ⁇ g.
  • the content of the metal complex compound may, in certain embodiments, be an amount that reaches a saturated concentration, or may be 5-50 ⁇ g, 10-40 ⁇ g, eg 15-25 ⁇ g.
  • the content of potassium ferricyanide can be 10 to 1000 mM, 100 to 800 mM, for example 200 to 500 mM in certain embodiments.
  • the metal complex compound examples include, but are not limited to, a ruthenium compound, an osmium compound, and an iron compound (for example, potassium ferricyanide and a ferrocene compound).
  • the content of the metal complex compound per glucose sensor can be the amount typically used for glucose sensors, eg 0.1 ⁇ g-100 mg, 1 ⁇ g-50 mg, 1 ⁇ g-10 mg, It can be 1 ⁇ g to 1 mg, 1 to 100 ⁇ g, 5 to 50 ⁇ g, 10 to 40 ⁇ g, for example 15 to 25 ⁇ g.
  • the redox potential of the metal complex compound may be a redox potential in a predetermined range, for example, the redox potential is -200 mV or more, -190 mV or more, -180 mV or more, -170 mV or more, -160 mV or more, -150 mV or more.
  • -140 mV or more -130 mV or more, -120 mV or more, -110 mV or more, -100 mV or more, -90 mV or more, -80 mV or more, -70 mV or more, -60 mV or more, -50 mV or more, -40 mV or more, -30 mV or more,- 20mV or more, -10mV or more, -0mV or more, for example, +400mV or less, +380mV or less, +360mV or less, +340mV or less, +320mV or less, +300mV or less, +280mV or less, +260mV or less, +240mV or less, +220mV Below, +200 mV or less, +180 mV or less, +160 mV or less, +140 mV or less, +120 mV or less, +100 mV or less, +80 mV or
  • the ruthenium compound As the ruthenium compound, ruthenium compounds used in conventional glucose sensors and biosensors, and their equivalents to be developed in the future can be used. In certain embodiments, the ruthenium compound can be present in the reaction system as an oxidized ruthenium complex.
  • the ruthenium complex is not particularly limited. In a certain embodiment, the ruthenium complex has the following general formula, [Ru (NH 3 ) 5X] n + (In the formula, X is NH 3 , CN, pyridine, halogen ion, nicotinamide, or H 2 O) complex. Examples of the halogen ion include Cl ⁇ , F ⁇ , Br ⁇ , and I ⁇ .
  • n + represents the valence of the oxidized ruthenium (III) complex, which is determined by the type of X. For example, if X is NH 3 , the compound is a hexaammine ruthenium complex compound, and if the halogen is Cl ⁇ , the compound is hexaammine ruthenium chloride.
  • the metal complex compound can be a ruthenium complex or an osmium complex.
  • the metal complex compound is the general formula III below. [M (A) x (B) y ] m (Z o ) n (Equation III)
  • M is osmium, ruthenium, or iron and has an oxidation state of 0, 1, 2, 3 or 4.
  • x and n are integers selected from 1 to 6 independently of each other, y is an integer selected from 1 to 5, z is an integer of -2 to +1 and m is an integer of -5 to -5.
  • A is a monodentate or bidentate aromatic ligand containing one or two nitrogen atoms.
  • B is independently selected to be one or more suitable ligands excluding nitrogen-containing heterocyclic ligands.
  • X is the counterion
  • A is a substituted or unsubstituted alkyl, alkenyl or aryl group, -CN, -NO 2 , -F, -Cl, -Br, -I, -CO 2 H, -SO 3 H, -NHNH 2 , -SH, -OH, -NH2, alkoxy, alkoxycarbonyl, alkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, dialkylamino, alkanoylamino, arylcarboxamide, alkylhydrazino, hydroxylamino, alkoxyamino, alkylthio, independently selected It may be substituted with 1 to 8 groups, The number of
  • the ligand A may be a monodentate ligand substituted with one or more CO2R B groups, or a bidentate or tridentate ligand optionally substituted with one or more CO2R B groups.
  • the RB of the one or more CO2RB groups can be H.
  • the ligand A is 2,2'-bipyridine-5,5'-bis-carboxylic acid, 2,2'-bipyridine-4,4'-bis-carboxylic acid, 2,2'-bipyridine, 1,10. It can be selected from the group consisting of -phenanthroline-3,9-bis-carboxylic acid, nicotinic acid, isonicotinic acid, 5-carboxy-nicotinic acid, and 6-pyridyl-nicotinic acid.
  • M can be osmium or ruthenium.
  • the metal complex compound is the general formula IV below.
  • M is ruthenium, osmium, or iron and has an oxidation state of 0, 1, 2, 3 or 4.
  • x and n are integers independently selected from 1 to 6
  • y is an integer selected from 0 to 5
  • z is an integer of -2 to +1
  • m is an integer of -5 to +4.
  • A is a bidentate, tridentate, tetradentate, pentadentate or hexadentate ligand with the formula RA RN (C 2 H 4 NR) w RA having a linear or formula (RNC 2 H 4 ). It may be a cyclic compound having v , (RNC 2 H 4 ) p (RNC 3 H 6 ) q or [(RNC 2 H 4 ) (RNC 3 H 6 )] s , and w is an integer of 1 to 5.
  • A is a substituted or unsubstituted alkyl, alkoxy or aryl group, -F, -Cl, -Br, -I, -NO2, -CN, -CO 2 H, -SO 3 H, -NHNH 2 ,- Independently selected from SH, -OH, -NH2, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxy, alkylamino, dialkylamino, alkanoylamino, arylcarboxamide, alkylhydrazino, hydroxylamino, alkoxyamino, alkylthio It may be substituted with 1 to 7 groups.
  • the ligand A can be a bidentate, tridentate or tetradentate ligand and has the formula RA RN (C 2 H 4 NR) w RA with a linear or formula (RNC 2 H 4 ) v . , (RNC 2 H 4 ) p (RNC 3 H 6 ) q or [(RNC 2 H 4 ) (RNC 3 H 6 )] s may be a ring, w is an integer of 1 to 3. , V is 3 or 4, p and q are integers of 1 to 3, the sum of p and q is 4, and s can be 2 or 3.
  • Ligand A is 1,1,4,7,10,10-hexamethyltriethylenetetramine, 1,4,7-trimethyl-1,4,7-triazacyclononane or 1,2-dimethylethylenediamine or It can be selected from the group consisting of 1,1,2,2-tetramethylethylenediamine.
  • M can be osmium or ruthenium.
  • Ligand B can be from an amine ligand such as NH 3 or NMe 3 , or CO, CN, halogen, acetylacetonato (acac), 3-bromo-acetylacetonato (Bracac), oxalate, 1 , 4,7-Triethylene crown ether, oxalate or 5-chloro-8-hydroxyquinoline can be selected.
  • an amine ligand such as NH 3 or NMe 3 , or CO, CN, halogen, acetylacetonato (acac), 3-bromo-acetylacetonato (Bracac), oxalate, 1 , 4,7-Triethylene crown ether, oxalate or 5-chloro-8-hydroxyquinoline can be selected.
  • the coordination of the complex can be cis or trans.
  • the oxidation state of the metal in the complex of formula III or formula IV can be selected to be 2+ or 3+.
  • the ligands A and B can be selected such that the total charge on the complex of formula III or formula IV is +2, +1, 0, -1, -2 or -3.
  • Counterions are F-, Cl- , Br- , I- , NO 3- , NH 4 + , NR 4 + , PF 6- , CF 3 SO 3- , SO 4 2- , ClO 4- , K + , You can choose from Na + and Li + . These combinations may be used as counterions.
  • the complex of formula III or formula IV is [Ru III (NH 3 ) 5 (pyridine-3-COOH)] (PF 6 ) 2 (CF 3 SO 3 ), [Ru III (2,4-pentandionate) 2 (Pyridin-3-COOH) (Pridin-3-COO)], [Ru III (3-bromo-2,4-pentandionate) 2 (Pridin-3-COOH) (Pridin-3-COO)], [Ru III (2,4-pentandionate) 2 (2,2'-bipyridine-5,5'-(COOH) (COO)], [Ru III (2,4-pentandionate) 2 (2,2) '-Bipyridine-4,4'-(COOH) (COO)], [Ru III (2,4-pentanionate) 2 (2,2'-bipyridine)] Cl, [Ru III (2,4-pentane) Dionate) 2 (Pyridin-4-COOH) (Pyridin-4-COO)], [Ru III (5-
  • the metal complex is [Ru III (acac) 2 (py-3-COOH) (py-3-COO)], [Ru III (3-Bracac) 2 (py-3-COOH) (py). -3-COO], [Ru III (acac) 2 (py-4-COOH) (py-4-COO)], or [Ru III (acac) 2 (py-3-COOH) (py-3-COO)] COO)].
  • the metal complexes are [Os III (2,4-pentandionate) 2 (Pyridine-3-COOH) (Pyridine-3-COO)], [Os III (NH 3 ) 5 (Pyridine-3).
  • Oxidases include various oxidases classified in EC Group 1, such as glucose oxidase, glucose dehydrogenase, amadriase (also referred to as fructosyl peptide oxidase or fructosyl amino acid oxidase), peroxidase, galactose oxidase, and the like.
  • Bilylvin oxidase pyruvate oxidase, D- or L-amino acid oxidase, amine oxidase, cholesterol oxidase, choline oxidase, xanthin oxidase, sarcosin oxidase, D- or L-lactic oxidase (LOD), ascorbate oxidase, cytochrome oxidase, alcohol dehydrogenase.
  • Glyceraldehyde 3-phosphate dehydrogenase 3-hydroxysteroid dehydrogenase, diaholase, catalase, glutathione reductase, cytochrome b5 reductase, adrenoxine reductase, cytochrome b5 reductase, adrenodoxin reductase, nitrate reductase, phosphate dehydrogenase, bilirubin oxidase.
  • Lacquerse polyamine oxidase, formate dehydrogenase, pyranose oxidase, pyranose dehydrogenase, tauropine dehydrogenase and the like, but are not limited thereto.
  • coenzyme of the above-mentioned enzyme include nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (FAD), and pyroquinolinquinone.
  • NAD nicotinamide adenine dinucleotide
  • FAD flavin adenine dinucleotide
  • pyroquinolinquinone pyroquinolinquinone.
  • the activity of the redox enzymes listed above can be measured using various substrates by the method described in, for example, Methods in Energy (Volumes 1 to 602).
  • the origin of the oxidoreductases listed above is not particularly limited, and those derived from prokaryotes, eukaryotes, microorganisms, fungi, plants, or animals are used. Can be.
  • the redox enzyme can be FAD-GDH.
  • FAD-GDH refers to flavin adenine dinucleotide-dependent glucose dehydrogenase or flavin adenine dinucleotide-bound glucose dehydrogenase.
  • FAD-GDH may be commercially available.
  • a variant of commercially available FAD-GDH or an equivalent thereof may be used.
  • the term "Mucole-type FAD-GDH" means a wild-type FAD-GDH of the genus Mucor and / or a variant thereof, and includes either a wild-type or a variant thereof unless otherwise specified.
  • Botriotinia genus FAD-GDH means wild-type FAD-GDH of the genus Botriotinia and / or a variant thereof, and includes either wild-type or variants thereof unless otherwise specified.
  • Aspergillus genus FAD-GDH means wild-type FAD-GDH of the genus Aspergillus and / or a variant thereof, and includes both wild-type and variants thereof unless otherwise specified.
  • Penicillium-type FAD-GDH means wild-type FAD-GDH of the genus Penicillium and / or a variant thereof, and includes either wild-type or a variant thereof unless otherwise specified.
  • FAD-GDH of the genus Circinella means wild-type FAD-GDH of the genus Circinella and / or a variant thereof, and includes both wild-type and variants thereof unless otherwise specified. ..
  • the microorganisms of the genus Mucor are not limited, but Mucor plainii, Mucor javanicus, Mucor silcineroides f. Mucor circinelloides f. Circinelloides, Mucor guilliermondii, Mucor hiemalis f. Examples include Mucor himalis f. Silvaticus, Mucor subtilissimus, and Mucor dimorphosporus. Examples of the microorganism belonging to the genus Botriotinia include, but are not limited to, Botriotinia fuckeliana.
  • Aspergillus genus microorganisms include, but are not limited to, Aspergillus oryzae, Aspergillus sojae, Aspergillus niger, and Aspergillus ter. ..
  • Examples of the microorganism belonging to the genus Penicillium include, but are not limited to, Penicillium sclerotiorum, Penicillium janzinellum, and Penicillium paneum.
  • a variant of the wild-type FAD-GDH of the genus Mucor has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has FAD-dependent glucose dehydrogenase activity. Say something.
  • the variants have low substrate specificity for maltose and galactose and high substrate specificity for glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the variant of the wild-type FAD-GDH of Mucor flavinii has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has FAD-dependent glucose dehydrogenase activity.
  • the variants are less reactive with maltose, xylose and galactose and more reactive with glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the enzyme used when the enzyme used is a variant of wild-type FAD-GDH of the genus Botriotinia, it has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is replaced and has a FAD-dependent glucose dehydrogenase. Those with activity.
  • the variants are less reactive with maltose and galactose and more reactive with glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the enzyme used is a variant of the wild-type FAD-GDH of Botriotinia fuccheliana
  • the enzyme has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and the sequence is substituted.
  • the variants are less reactive with maltose and galactose and more reactive with glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the enzyme used when the enzyme used is a variant of wild-type FAD-GDH of the genus Aspergillus, it has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has a FAD-dependent glucose dehydrogenase. Those with activity.
  • the variants are less reactive with maltose and galactose and more reactive with glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the enzyme used when it is a variant of wild-type FAD-GDH of the genus Penicillium, it has a sequence in which the amino acid residue of the amino acid sequence of wild-type FAD-GDH is replaced, and FAD-dependent glucose dehydrogenase. Those with activity.
  • the variants are less reactive with maltose and galactose and more reactive with glucose.
  • the number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
  • the redox enzyme can be amadriase.
  • amadriase refers to flavin adenine dinucleotide-dependent fructosyl peptide oxidase or flavin adenine dinucleotide-dependent fructosyl amino acid oxidase, or flavin adenine dinucleotide-bound fructosyl peptide oxidase or flavin adenine dinucleotide-bound fructosyl.
  • amino acid oxidase In certain embodiments, amadriase may be commercially available.
  • amadriase in another embodiment, a variant of commercially available amadriase or an equivalent thereof may be used.
  • the origin of amadriase is not particularly limited, and for example, the genus Coniochaeta, the genus Eupenicillium, the genus Pyrenochaeta, the genus Arthrinium, the genus Curvularia.
  • Neocosmospora The genus Pleospora, the genus Coniochaetidium, the genus Pichia, the genus Debaryomyces, the genus Corynebacterium, the genus Aglobacterium, or the genus Arsuro. It means amadriase and includes both wild type and its variants unless otherwise specified.
  • the redox enzyme can be lactate oxidase.
  • lactate oxidase refers to flavin adenine mononucleotide-dependent lactate oxidase or flavin adenine mononucleotide-bound lactate oxidase.
  • lactate oxidase may be commercially available.
  • a variant of commercially available lactic acid oxidase or an equivalent thereof may be used.
  • lactic acid oxidase is not particularly limited, and means, for example, lactic acid oxidase derived from Aerococcus, Streptococcus, Pediococcus, or Enterococcus. However, unless otherwise specified, both wild type and its variants are included.
  • FAD-GDH has a tag sequence for enzyme purification, a peptide sequence, a signal sequence, a recognition sequence for cleavage, and / or a cleavage residue of those sequences added to the N-terminus or C-terminus of the amino acid sequence.
  • Recombinant FAD-GDH that has been subjected to FAD-dependent glucose dehydrogenase activity may be included.
  • the content of FAD-GDH per glucose sensor can be, for example, 0.1-50U, 0.5-20U, 1-10U, for example 1-5U, but is not limited to this. ..
  • the enzyme unit U of FAD-GDH is an enzyme amount that converts 1 ⁇ mol of glucose at 37 ° C. for 1 minute.
  • the content of FAD-GDH per glucose sensor refers to the amount of FAD-GDH used in a glucose sensor having one electrode system having an working electrode and a counter electrode in a specific embodiment. .. In another embodiment, the content refers to the amount of FAD-GDH contained in the reagent layer arranged on one electrode system. In another embodiment, the content refers to the amount of FAD-GDH to be added to the reagent to be included in the reaction system when the sample is added.
  • the LOD content per lactic acid sensor can be, for example, 0.1 to 50 U, 0.5 to 20 U, 1 to 10 U, for example 1 to 5 U, but is not limited to this.
  • the enzyme unit U of LOD is an enzyme amount that oxidizes 1 ⁇ mol of lactic acid at 37 ° C. for 1 minute.
  • the content of LOD per lactic acid sensor refers to the amount of LOD used in a lactic acid sensor having one electrode system having an working electrode and a counter electrode in a specific embodiment. In another embodiment, the content refers to the amount of LOD contained in the reagent layer arranged on one electrode system. In another embodiment, the content refers to the amount of LOD to be added to the reagent to be included in the reaction system when the sample is added.
  • the biosensor has the usual size used for a measurement sample.
  • the glucose sensor has the usual size used for a sample that may contain glucose, such as blood, in certain embodiments.
  • the sample added to the sensor, such as a blood sample can be, for example, 0.1-2 ⁇ L, 0.2-1 ⁇ L, for example 0.2-0.5 ⁇ L.
  • the sensor can be designed according to the volume of the sample or reaction system.
  • the biosensors of the present disclosure include electron transfer promoters (excluding PMS), electrodes, oxidoreductases, and metal complex compounds.
  • the biosensor comprises an electrode and a reagent layer, the reagent layer comprising an electron transfer promoter, an oxidoreductase, and a metal complex compound.
  • the electrode comprises an electrode portion having an working electrode and a counter electrode.
  • the electrodes may be placed on an insulating substrate.
  • a reagent layer may be placed on top of the electrode section.
  • the present disclosure provides a method for producing a biosensor, which comprises forming a reagent layer containing an oxidoreductase, a metal complex compound, and an electron transfer promoter on an electrode.
  • the present disclosure provides a system for measuring the concentration of a target compound in a sample, comprising a biosensor, means for applying a voltage to the electrodes of the biosensor, and means for measuring an electric current. ..
  • the means for applying the voltage may include a contact portion capable of contacting the electrode and a power source (eg, a DC power source).
  • the system of the present disclosure may include potentiostats and galvanostats.
  • the biosensor can be a glucose sensor.
  • the target compound in the sample may be glucose. That is, in certain embodiments, the present disclosure provides a method for measuring glucose concentration using a glucose concentration measuring system.
  • the biosensor can be a lactate sensor.
  • the target compound in the sample may be lactic acid. That is, in certain embodiments, the present disclosure provides a method for measuring a lactate concentration using a lactate concentration measuring system.
  • the present disclosure relates to contacting a sample containing a compound to be measured with an oxidoreductase, applying a voltage to an electrode, and a metal complex compound and an electron transfer promoter (excluding PMS).
  • a metal complex compound and an electron transfer promoter excluding PMS.
  • the voltage to be applied is not particularly limited, but when a ruthenium compound is used as the metal complex compound, it may be, for example, 10 to 1000 mV, 10 to 800 mV, 50 to 500 mV, for example, 0 to 100 mV.
  • potassium ferricyanide is used as the metal complex compound, it may be, for example, 200 to 1000 mV, 300 to 800 mV, or 300 to 500 mV.
  • the sample may be brought into contact with the oxidoreductase, and then the voltage may be applied after holding the sample without applying the potential for a certain period of time, and the voltage is applied at the same time as the contact. You can also do it.
  • the time to hold without applying the potential can be greater than 0 seconds and less than 1 minute, eg 1-30 seconds, eg 1-10 seconds.
  • the redox enzyme can be FAD-GDH and the compound to be measured can be glucose. Further, the redox enzyme can be LOD, and the compound to be measured can be lactic acid.
  • the substrate recognized by these oxidoreductases can be used as the measurement target compound, and a system for measuring the concentration of the measurement target compound. Are provided respectively.
  • the reagent layer may further comprise a buffer, a surfactant, an inorganic compound, and other components.
  • the buffering agent is not particularly limited, and examples thereof include an amine-based buffering agent and a buffering agent having a carboxyl group.
  • examples of the amine-based buffer include Tris, ACES, CHES, CAPSO, TAPS, CAPS, Bis-Tris, TAPSO, TES, Tricine and ADA.
  • Examples of the buffer having a carboxyl group include acetic acid-Na acetate buffer, malic acid-Na acetate buffer, malonic acid-Na acetate buffer, and succinic acid-Na acetate buffer.
  • the buffer may be used alone or in combination.
  • the surfactant is not particularly limited, and examples thereof include nonionic, anionic, cationic, and amphoteric surfactants.
  • Amphoteric surfactants include, but are not limited to, carboxybetaine, sulfobetaine, and phosphobetaine.
  • the sulfobetaine include CHASPS (3-[(3-colamidepropyl)) dimethylammonio] propanesulfonate) and CHASPS (3-[(3-colamidepropyl) dimethylammonio] -2-hydroxy-1. -Propane sulfonate), and alkyl hydroxysulfobetaine, but not limited to.
  • the inorganic compound may be a layered inorganic compound, and those conventionally used for glucose sensors or equivalents thereof which will be developed in the future can be used.
  • the inorganic compound include swellable clay minerals having ion exchange ability, smectite, bentonite, synthetic fluorine mica, vermiculite, synthetic hectorite, synthetic saponite and other synthetic smectites; swellable synthetic mica containing synthetic fluorine mica; Na-type mica. Examples include, but are not limited to, synthetic mica including, and combinations thereof.
  • the reagent layer may have an enzyme layer.
  • the enzyme layer may have FAD-GDH.
  • the enzyme layer containing FAD-GDH may contain additives such as sodium polyacrylate, trehalose, glucomannan and the like.
  • the reagent layer may have a single layer structure or a multi-layer structure. Each layer may have one or more components.
  • the reagent layer can be an inorganic gel layer and an enzyme layer containing FAD-GDH laminated on top of the inorganic gel layer. The reagent layer can be placed dry on the electrodes.
  • the sample to be measured may be a biological sample (for example, blood, body fluid, urine, etc.) or another liquid sample.
  • the glucose sensor has a working electrode containing FAD-GDH, a counter electrode, and optionally a reference electrode.
  • a working electrode a carbon electrode, a gold electrode, a platinum electrode and the like can be used.
  • FAD-GDH may or may not be immobilized on the electrodes.
  • the counter electrode can be a conventional electrode such as a platinum electrode or Pt / C.
  • the reference electrode can be a conventional electrode such as an Ag / AgCl electrode.
  • the immobilization method includes a method using a cross-linking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer and the like. Or, it may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator typified by ferrocene or a derivative thereof, or these may be used in combination.
  • FAD-GDH is immobilized on a carbon electrode with glutaraldehyde and then treated with a reagent having an amine group to block glutaraldehyde.
  • Other redox enzymes can be immobilized in the same manner.
  • a method for manufacturing a glucose sensor is available in publicly known documents, for example, Liu, et. al. , Anal. Chem. 2012, 84, 3403-3409 and Tsujimura, et. al. , J. Am. Chem. Soc. 2014, 136, 14432-14437 (all of which are incorporated herein by reference).
  • the glucose sensor may include a printed electrode.
  • electrodes can be formed on the insulating substrate.
  • the electrodes can be formed on the substrate by printing techniques such as photolithography or screen printing, gravure printing or flexographic printing.
  • the material constituting the insulating substrate include silicon, glass, ceramic, polyvinyl chloride, polyethylene, polypropylene, polyester and the like. Materials that are highly resistant to various solvents or chemicals can be used.
  • the glucose concentration can be measured as follows. Put buffer in a constant temperature cell and keep it at a constant temperature. Metal complex compounds (eg, ruthenium compounds, etc.) and electron transfer promoters are used for electron transfer. FAD-GDH is used as an oxidoreductase. A carbon electrode is used as the working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. A constant voltage is applied to the carbon electrode, and after the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to the calibration curve prepared with the standard concentration glucose solution.
  • Metal complex compounds eg, ruthenium compounds, etc.
  • FAD-GDH is used as an oxidoreductase.
  • a carbon electrode is used as the working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are
  • the redox potential is the redox potential (vs. Ag / AgCl) when silver silver chloride is used as a reference electrode.
  • the glucose sensor is used in combination with a measuring device equipped with a means for applying a predetermined voltage at a fixed time, a means for measuring an electric signal transmitted from a biosensor, a means for converting the electric signal into a concentration of an object to be measured, and the like. obtain.
  • a measuring device equipped with a means for applying a predetermined voltage at a fixed time, a means for measuring an electric signal transmitted from a biosensor, a means for converting the electric signal into a concentration of an object to be measured, and the like. obtain.
  • biosensors including lactic acid sensors.
  • the electrochemical measurement method of the present disclosure may be a current measurement method, a potentiometric method, or a coulometric method.
  • the electrochemical measurement method measures the current value when the electron transfer substance in the reduced state is in the oxidized state by applying a potential.
  • the method of this disclosure does not include medical practice. In certain embodiments, the methods of the present disclosure do not include diagnostic activity by a physician. In certain embodiments, the methods of the present disclosure may aid in the diagnosis of diabetes. In certain embodiments, the methods of the present disclosure can be utilized for blood glucose monitoring. These do not require the judgment of a doctor.
  • Glucose Dehydrogenase manufactured by Kikkoman Biochemifa, derived from the genus Mucor, Product Code: FADGDH-AA, hereinafter referred to as GDH
  • GDH genus Mucor, Product Code: FADGDH-AA
  • Ru hexaammine ruthenium chloride
  • BGLB BGLB
  • the printed electrode uses a carbon working electrode (12.6 mm2) and a silver reference electrode printed on it, SCREEN-PRINTED ELECTRODES (Drop Sense, DRP-110), and a dedicated connector (Drop Sense, DRP-). It was connected to the ALS electrochemical analyzer 814D (manufactured by BAS) using CAC). Then, the applied voltage was set to +100 mV (vs. Ag / AgCl).
  • FIG. 1 shows the results of adding glucose and measuring the current value 5 seconds after the start of chronoamperometry measurement. As shown in FIG. 1, a higher response current was observed when BGLB was added as compared with the case where BGLB was not mixed, and the current value increased in a glucose concentration-dependent manner.
  • Example 2 The measurement was carried out using potassium ferricyanide (hereinafter referred to as FeCN) instead of Ru used in Example 1. Specifically, 100 ⁇ L of a solution containing 2.5% ethanol, a final concentration of 0.1 mg / ml GDH, 300 mM Ru, 1 mM BGLB or DPPA in PBS was applied onto the printed electrode. Similarly, 100 ⁇ L of a solution containing 0.5% ethanol, a final concentration of 0.1 mg / ml GDH, 300 mM Ru, and less than 1 mM APPD in PBS was applied onto the print electrode.
  • FIG. 4 shows the results of adding glucose and measuring the current value 5 seconds after the start of chronoamperometry measurement. As shown in FIG.
  • Example 3 Chronoamperometry by print electrode measurement was performed using lactic acid oxidase (manufactured by Toyobo Co., Ltd., Product Code: LCO-301, hereinafter referred to as LOD) instead of FADGDH-AA used in Example 1. Specifically, 100 ⁇ L of a solution containing a final concentration of 0.1 mg / ml LOD, 300 mM Ru, and 1 mM BGLB in PBS was applied onto the printed electrode.
  • FIG. 5 shows the results obtained by measuring the current value 5 seconds after the start of chronoamperometry measurement with the addition of lactic acid and subtracting the current value when no lactic acid was added. As shown in FIG. 5, a higher response current was observed when BGLB was added as compared with the case where BGLB was not mixed, and the current value increased in a lactic acid concentration-dependent manner.
  • biosensors of the present disclosure can be used in the fields of biochemistry, medicine and medicine.
  • the glucose sensor of the present disclosure is useful for glucose measurement.
  • the lactate sensor of the present disclosure is useful for measuring lactate. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides a biosensor. Provided are: a biosensor including an oxidoreductase, a ruthenium compound, and a non-PMS electron transfer accelerator; and a method in which the biosensor is used.

Description

試薬組成物及びセンサReagent compositions and sensors
 本開示は、電子伝達促進剤、酸化還元酵素、及び金属錯体化合物を含む、バイオセンサ並びにこれを用いる方法に関する。 The present disclosure relates to a biosensor containing an electron transfer promoter, an oxidoreductase, and a metal complex compound, and a method using the same.
 特許文献1は、フェニレンジアミン系化合物を含む新規の電子伝達促進剤を開示している。 Patent Document 1 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
 特許文献2は、フェニレンジアミン系化合物を含む新規の電子伝達促進剤を開示している。 Patent Document 2 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
 特許文献3は、フェニレンジアミン系化合物を含む新規の電子伝達促進剤を開示している。 Patent Document 3 discloses a novel electron transfer promoter containing a phenylenediamine-based compound.
 特許文献1-3に開示されている電子伝達促進剤は、報告文献も少なく、その特性や用途が十分に明らかにされていなかった。 The electron transfer promoter disclosed in Patent Documents 1-3 has few reports, and its characteristics and uses have not been sufficiently clarified.
 本明細書においては、特許出願および製造業者のマニュアルを含む多数の文書が引用されている。これらの文書の開示は、本発明の特許性に関連するとはみなされないが、その全体を参照により本明細書に組み入れることとする。より詳細には、全ての参照文書を、各個の文書が参照により組み入れられると具体的かつ個別に示されている場合と同様に、参照により本明細書に組み入れることとする。 In this specification, a large number of documents including patent applications and manufacturer's manuals are cited. The disclosure of these documents is not considered to be relevant to the patentability of the invention, but is incorporated herein by reference in its entirety. More specifically, all reference documents are incorporated herein by reference as if each individual document was specifically and individually indicated to be incorporated by reference.
国際公開第2019/198359号パンフレットInternational Publication No. 2019/198359 Pamphlet 特許第6484741号Patent No. 6484741 特許第6484742号Patent No. 6484742
 本願発明は、特許文献1-3に開示されている電子伝達促進剤の新たな用途を提供することを目的とする。 An object of the present invention is to provide a new use of the electron transfer promoter disclosed in Patent Documents 1-3.
 本発明者は、電子伝達促進剤について種々の検討を行ったところ、バイオセンサ用の酸化還元酵素に関し、電子伝達促進剤を、当該電子伝達促進剤よりも酸化還元電位の高い金属錯体化合物と共に使用することにより、又は、当該電子伝達促進剤よりも酸化還元電位の低い金属錯体化合物と共に使用することにより、酸化還元酵素から電極への電子伝達を促進し得ることを見出し、これを一実施形態として包含する本発明を完成させた。 The present inventor has conducted various studies on electron transfer promoters, and found that electron transfer promoters are used together with metal complex compounds having a higher oxidation-reduction potential than the electron transfer promoters for oxidoreductases for biosensors. By doing so, or by using it together with a metal complex compound having a lower oxidation-reduction potential than the electron transfer promoter, it has been found that electron transfer from an oxidoreductase to an electrode can be promoted, and this is set as an embodiment. The invention to be included has been completed.
 本開示は、以下の実施形態を包含する。
[1]  (i)電子伝達促進剤(PMSを除く)、(ii)酸化還元酵素、(iii)金属錯体化合物、及び、(iv)電極を含む、バイオセンサ。
[2] 電子伝達促進剤が
Figure JPOXMLDOC01-appb-C000003
[式中、
は、-NRであり、
は、-NR1011であり、
及びRは、それぞれ独立に、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル、フェナントレニル、アセチル、カルボキシ、フラニルホルミル、ピラゾリルホルミル、1-メチル-1H-ピラゾール-5-イルホルミル、9,9-ジメチルフルオレン-2-イル、又はベンジルであり、
10は、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル又はフェナントレニルであり、
、R、R及びRは、それぞれ独立に、水素、場合により1以上のYにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ニトロ、シアノ、カルボキシ、スルホ、ヒドロキシ又はアミノであり、
或いは、R及びR、又は、R及びRは、それらを含有するベンゼン環と一緒になって、場合により1以上のオキソ、Xにより置換されてもよい、ベンゼン環、又は
Figure JPOXMLDOC01-appb-C000004
を形成し、但し*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合するか、又は、*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合し、
11は、直鎖又は分枝鎖のC1-7アルキルであるか、又は、場合により1以上のX若しくはZにより置換されてもよい、フェニル、1-ナフチル、2-ナフチル、アントラセニル及びフェナントレニルからなる群より選択され、
ここでVは、場合によりC1-7アルキルに置換されてもよい、-O-アクリロイル、アセチルアミノ、又はフェニルであり、
Xは、場合により1以上のハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ、アルキルアミノ、ニトロソ、ニトロ及びスルホからなる群より選択される置換基により置換されてもよい、直鎖又は分枝鎖の、C1-7アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ヒドロキシ、ニトロ、カルボキシ、シアノ、スルホ、アミノ又はアルキルアミノであり、
Yはハロ、アミノ、シアノ、カルボキシ、カルボニル、ヒドロキシ、アルコキシ及びスルホからなる群より選択され、
Zは-SO-CH=CH、-SO-C-O-SOH、又は4,6-ジクロロトリアジン-2-イルアミノである]
である、実施形態1に記載のバイオセンサ。
[3] 酸化還元酵素が、FAD型グルコースデヒドロゲナーゼ(FAD-GDH)、L-またはD-乳酸オキシダーゼ(LOD)、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、アマドリアーゼ、ペルオキシダーゼ、ガラクトースオキシダーゼ、ビリルビンオキシダーゼ、ピルビン酸オキシダーゼ、D-またはL-アミノ酸オキシダーゼ、アミンオキシダーゼ、コレステロールオキシダーゼ、コリンオキシダーゼ、キサンチンオキシダーゼ、サルコシンオキシダーゼ、アスコルビン酸オキシダーゼ、チトクロムオキシダーゼ、アルコールデヒドロゲナーゼ、コレステロールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、アルデヒドオキシダーゼ、フルクトースデヒドロゲナーゼ(FDH)、ソルビトールデヒドロゲナーゼ、D-またはL-乳酸デヒドロゲナーゼ、リンゴ酸デヒドロゲナーゼ、グリセロールデヒドロゲナーゼ、17Bヒドロキシステロイドデヒドロゲナーゼ、エストラジオール17Bデヒドロゲナーゼ、D-またはL-アミノ酸デヒドロゲナーゼ、グリセルアルデヒド3-リン酸デヒドロゲナーゼ、3-ヒドロキシステロイドデヒドロゲナーゼ、ジアホラーゼ、カタラーゼ、グルタチオンレダクターゼ、チトクロムb5レダクターゼ、アドレノキシンレダクターゼ、チトクロムb5レダクターゼ、アドレノドキシンレダクターゼ、硝酸レダクターゼ、リン酸デヒドロゲナーゼ、ビリルビンオキシダーゼ、ラッカーゼ、ポリアミンオキシダーゼ、ギ酸デヒドロゲナーゼ、ピラノースオキシダーゼ、ピラノースデヒドロゲナーゼ、及びタウロピンデヒドロゲナーゼからなる群より選択される、実施形態1又は2に記載のバイオセンサ。
[4] 電極が、作用極及び対極を有する電極部を含み、前記電極部が絶縁性基板上に配置され、さらに、前記電極部上に試薬層が配置され、
 前記酸化還元酵素、金属錯体化合物、及び、電子伝達促進剤が前記試薬層に含まれる、実施形態1~3のいずれか1項に記載のバイオセンサ。
[5] 電極の上に、酸化還元酵素、金属錯体化合物、及び、電子伝達促進剤を含む試薬層を形成することを含む、バイオセンサの製造方法。  
[6] 実施形態1から4のいずれか1項に記載のバイオセンサと、前記バイオセンサの電極に電圧を印加する手段と、電流を測定する手段とを含む、試料中の対象化合物濃度を測定するためのシステム。  
[7] 実施形態6に記載のシステムを用いる、試料中の対象化合物濃度の測定方法。
[8] (i)電子伝達促進剤(PMSを除く)、(ii)酸化還元酵素、(iii)金属錯体化合物、及び、(iv)電極を含む、バイオセンサを用意する工程、
前記バイオセンサの電極に電圧を印加する工程、及び
応答電流を測定する工程を含む、試料中の対象化合物の濃度を測定する方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-138212号の開示内容を包含する。
The present disclosure includes the following embodiments.
[1] A biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
[2] Electron transport chain promoter
Figure JPOXMLDOC01-appb-C000003
[During the ceremony,
R 1 is -NR 7 R 8 and
R 2 is −NR 10 R 11 and
R 7 and R 8 are each independently substituted with hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1- . 7 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenanthrenyl, acetyl, carboxy, furanylformyl, pyrazolylformyl, 1-methyl-1H-pyrazole-5-ylformyl, 9,9 -Dimethylfluorene-2-yl or benzyl,
R 10 is hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 3-9 . Cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl or phenanthrenyl,
R 3 , R 4 , R 5 and R 6 are each independently substituted with hydrogen, optionally one or more Y, linear or branched C 1-7 alkyl, C 1-7 alkoxy. , C 1-7 alkynyl, C 1-7 alkoxy, halo, nitro, cyano, carboxy, sulfo, hydroxy or amino.
Alternatively, R 3 and R 4 , or R 5 and R 6 may be optionally substituted with one or more oxos, Xs, together with the benzene ring containing them, the benzene ring, or
Figure JPOXMLDOC01-appb-C000004
, Where * is bonded to the carbon atom to which R 3 is bonded, ** is bonded to the carbon atom to which R 4 is bonded, or * is bonded to the carbon atom to which R 5 is bonded, ** Bonds to the carbon atom to which R 6 bonds,
R 11 is a straight or branched C 1-7 alkyl or optionally substituted with one or more Xs or Zs, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl and phenanthrenyl. Selected from the group consisting of
Where V is —O-acryloyl, acetylamino, or phenyl, optionally substituted with C 1-7 alkyl.
X may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys, alkylaminos, nitrosos, nitros and sulfos, linear or branched. , C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkylamino.
Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, hydroxy, alkoxy and sulfo.
Z is -SO 2 -CH = CH 2 , -SO 2 -C 2 H 4 -O-SO 3 H, or 4,6-dichlorotriazine-2-ylamino]
The biosensor according to the first embodiment.
[3] The oxidase is FAD-type glucose dehydrogenase (FAD-GDH), L- or D-lactic acid oxidase (LOD), glucose oxidase, glucose dehydrogenase, amadriase, peroxidase, galactose oxidase, birylbin oxidase, pyruvate oxidase, D. -Or L-Amino acid oxidase, amine oxidase, cholesterol oxidase, choline oxidase, xanthin oxidase, sarcosine oxidase, ascorbic acid oxidase, cytochrome oxidase, alcohol dehydrogenase, cholesterol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, fructose dehydrogenase (FDH), sorbitol dehydrogenase, D- or L-lactic dehydrogenase, malic acid dehydrogenase, glycerol dehydrogenase, 17B hydroxysteroid dehydrogenase, estradiol 17B dehydrogenase, D- or L-amino acid dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, 3-hydroxysteroid dehydrogenase, diahorase, catalase , Glutathion reductase, titochrome b5 reductase, adrenoxin reductase, cytochrome b5 reductase, adrenodoxin reductase, nitrate reductase, phosphate dehydrogenase, birylbin oxidase, lacquerse, polyamine oxidase, formate dehydrogenase, pyranose oxidase, pyranose dehydrogenase, The biosensor according to embodiment 1 or 2, selected from the group consisting of.
[4] The electrode includes an electrode portion having a working electrode and a counter electrode, the electrode portion is arranged on an insulating substrate, and a reagent layer is further arranged on the electrode portion.
The biosensor according to any one of embodiments 1 to 3, wherein the oxidoreductase, the metal complex compound, and the electron transfer promoter are contained in the reagent layer.
[5] A method for producing a biosensor, which comprises forming a reagent layer containing an oxidoreductase, a metal complex compound, and an electron transfer promoter on an electrode.
[6] Measuring the concentration of a target compound in a sample, including the biosensor according to any one of embodiments 1 to 4, a means for applying a voltage to the electrode of the biosensor, and a means for measuring a current. System to do.
[7] A method for measuring the concentration of a target compound in a sample using the system according to the sixth embodiment.
[8] A step of preparing a biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
A method for measuring the concentration of a target compound in a sample, which comprises a step of applying a voltage to the electrode of the biosensor and a step of measuring a response current.
This specification includes the disclosure of Japanese Patent Application No. 2020-138212, which is the basis of the priority of the present application.
 本開示によれば、一実施形態として、電子伝達促進剤、酸化還元酵素、電極及び金属錯体化合物を組み合わせたバイオセンサ及びこれを用いた測定方法を提供することができる。また、本開示によれば、一実施形態として、電子伝達促進剤、GDH、電極及び金属錯体化合物を組み合わせたグルコースセンサ及びこれを用いたグルコース測定方法を提供することができる。 According to the present disclosure, as one embodiment, it is possible to provide a biosensor in which an electron transfer promoter, an oxidoreductase, an electrode and a metal complex compound are combined, and a measurement method using the same. Further, according to the present disclosure, as one embodiment, it is possible to provide a glucose sensor in which an electron transfer promoter, a GDH, an electrode and a metal complex compound are combined, and a glucose measuring method using the same.
グルコースデヒドロゲナーゼ(GDH)とルテニウム化合物(Ru)及びBGLBを使用し、種々の濃度のグルコースを添加した場合の応答電流を示す。対照はBGLBを含まない。Glucose dehydrogenase (GDH) and ruthenium compound (Ru) and BGLB are used, and the response currents when various concentrations of glucose are added are shown. The control does not contain BGLB. グルコースデヒドロゲナーゼとルテニウム化合物及びTMPDを使用し、種々の濃度のグルコースを添加した場合の応答電流を示す。対照はTMPDを含まない。The response currents when glucose dehydrogenase, ruthenium compound and TMPD are used and various concentrations of glucose are added are shown. The control does not include TMPD. グルコースデヒドロゲナーゼとルテニウム化合物及びAPPDを使用し、種々の濃度のグルコースを添加した場合の応答電流を示す。対照はAPPDを含まない。The response currents when glucose dehydrogenase, ruthenium compound and APPD are used and various concentrations of glucose are added are shown. Controls do not include APPD. グルコースデヒドロゲナーゼとフェリシアン化カリウム及び電子伝達促進剤としてBGLB、DPPA又はAPPDを使用し、種々の濃度のグルコースを添加した場合の応答電流を示す。対照は電子伝達促進剤を含まない。Glucose dehydrogenase and potassium ferricyanide and BGLB, DPPA or APPD as an electron transfer promoter are used, and the response currents when various concentrations of glucose are added are shown. The control does not contain an electron transfer promoter. 乳酸オキシダーゼ(LOD)とルテニウム化合物(Ru)及びBGLBを使用し、種々の濃度の乳酸を添加した場合の応答電流を示す。対照はBGLBを含まない。The response currents when lactic acid oxidase (LOD), ruthenium compound (Ru) and BGLB are used and various concentrations of lactic acid are added are shown. The control does not contain BGLB.
 ある実施形態において、本開示は、電子伝達促進剤、酸化還元酵素、金属錯体化合物、及び電極を含有するバイオセンサを提供する。バイオセンサは、使用する酸化還元酵素に応じて、当該酸化還元酵素が基質として認識し得る化合物を測定することができる。例えば酸化還元酵素としてFAD-GDHを用いると、FAD-GDHを有するグルコースセンサが提供される。前記電子伝達促進剤からPMSは除かれる。本明細書において、特に断らない限り、バイオセンサとは、電子伝達促進剤(PMSを除く)、電極、酸化還元酵素、及び金属錯体化合物を含むセンサを言う。これは酸化還元酵素により認識される基質のセンサとして使用することができる。ある実施形態において電極は、作用極及び対極を有する電極部を含む。別の実施形態において電極は、作用極、対極及び参照極を有する電極部を含む。電極は例えば三極電極でもよく、または印刷電極でもよい。ある実施形態において電極部は絶縁性基板上に配置されうる。 In certain embodiments, the present disclosure provides a biosensor containing an electron transfer promoter, an oxidoreductase, a metal complex compound, and an electrode. The biosensor can measure a compound that can be recognized as a substrate by the oxidoreductase, depending on the oxidoreductase used. For example, when FAD-GDH is used as an oxidoreductase, a glucose sensor having FAD-GDH is provided. PMS is removed from the electron transfer promoter. As used herein, unless otherwise specified, a biosensor means a sensor containing an electron transfer promoter (excluding PMS), an electrode, an oxidoreductase, and a metal complex compound. It can be used as a sensor for substrates recognized by oxidoreductase. In certain embodiments, the electrode comprises an electrode portion having an working electrode and a counter electrode. In another embodiment, the electrode comprises an electrode portion having an working electrode, a counter electrode and a reference electrode. The electrode may be, for example, a triode electrode or a printed electrode. In certain embodiments, the electrodes may be placed on an insulating substrate.
 本明細書において、メディエータとは、電子移動に与る化合物をいい、例えば電極を用いる系では、メディエータは、酸化還元酵素から電子を受け取って還元型となり、電極に電子を渡して酸化型に戻る。このような観点から、メディエータとして機能する化合物のことを電子メディエータと呼ぶこともできる。本明細書においてこれらの用語は同義とする。 In the present specification, the mediator refers to a compound that participates in electron transfer. For example, in a system using an electrode, the mediator receives an electron from an oxidoreductase to become a reduced form, and passes the electron to the electrode to return to the oxidized form. .. From this point of view, a compound that functions as a mediator can also be called an electronic mediator. These terms are synonymous herein.
電子伝達促進剤
 本明細書において、酸化還元酵素から電極への電子の伝達を促進する化合物を、「電子伝達促進剤」という。「電子伝達促進剤」は、酸化還元酵素を備えたバイオセンサ、例えばグルコースセンサに用いることができ、目的化合物が添加されたときにその濃度に依存して応答電流が生じることを促進する。ある実施形態において、電子伝達促進剤は、メディエータの機能を改変し得る。本明細書において、電子伝達促進剤が「メディエータの機能を改変する」とは、電子伝達促進剤の不在下で酸化還元酵素から電極へと電子が伝達されない又はほとんどされないメディエータについて、電子伝達促進剤の存在下では酸化還元酵素から電極へと電子が伝達されるようになることを言う。
Electron Transfer Promoter In the present specification, a compound that promotes the transfer of electrons from an oxidoreductase to an electrode is referred to as an “electron transfer promoter”. The "electron transfer promoter" can be used for a biosensor equipped with an oxidoreductase, for example, a glucose sensor, and promotes the generation of a response current depending on the concentration of the target compound when it is added. In certain embodiments, the electron transfer enhancer can alter the function of the mediator. As used herein, the term "electron transfer promoter modifies the function of a mediator" refers to an electron transfer promoter for a mediator in which electrons are hardly or hardly transferred from an oxidoreductase to an electrode in the absence of the electron transfer promoter. In the presence of, electrons are transferred from the oxidoreductase to the electrode.
 ある実施形態において、電子伝達促進剤は、下記の一般式I又はIIの化合物またはその塩、無水物若しくは溶媒和物でありうる:
Figure JPOXMLDOC01-appb-C000005
[式中、
は、-NRであり、
は、-NR1011であり、
及びRは、それぞれ独立に、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル、フェナントレニル、アセチル、カルボキシ、フラニルホルミル、ピラゾリルホルミル、1-メチル-1H-ピラゾール-5-イルホルミル、9,9-ジメチルフルオレン-2-イル、又はベンジルであり、
10は、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル又はフェナントレニルであり、
、R、R及びRは、それぞれ独立に、水素、場合により1以上のYにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ニトロ、シアノ、カルボキシ、スルホ、ヒドロキシ又はアミノであり、
或いは、R及びR、又は、R及びRは、それらを含有するベンゼン環と一緒になって、場合により1以上のオキソ、Xにより置換されてもよい、ベンゼン環、又は
Figure JPOXMLDOC01-appb-C000006
を形成し、但し*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合するか、又は、*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合し、
11は、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキルであるか、又は、場合により1以上のX若しくはZにより置換されてもよい、フェニル、1-ナフチル、2-ナフチル、アントラセニル及びフェナントレニルからなる群より選択され、
ここでVは、場合によりC1-7アルキルに置換されてもよい、-O-アクリロイル、アセチルアミノ、又はフェニルであり、
Xは、場合により1以上のハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ、アルキルアミノ、ニトロソ、ニトロ及びスルホからなる群より選択される置換基により置換されてもよい、直鎖又は分枝鎖の、C1-7アルキル、例えばC1-3アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ヒドロキシ、ニトロ、カルボキシ、シアノ、スルホ、アミノ又はアルキルアミノであり、
Yはハロ、アミノ、シアノ、カルボキシ、カルボニル、ヒドロキシ、アルコキシ及びスルホからなる群より選択され、
Zは-SO-CH=CH、-SO-C-O-SOH、又は4,6-ジクロロトリアジン-2-イルアミノである]。
In certain embodiments, the electron transfer promoter can be a compound of the following general formula I or II or a salt, anhydride or solvate thereof:
Figure JPOXMLDOC01-appb-C000005
[During the ceremony,
R 1 is -NR 7 R 8 and
R 2 is −NR 10 R 11 and
R 7 and R 8 are each independently substituted with hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, eg, C 1-3 alkyl, C 1 -7 alkenyl, C 1-7 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl, phenanthrenyl, acetyl, carboxy, furanylformyl, pyrazolylformyl, 1-methyl-1H-pyrazole- 5-Ilformyl, 9,9-dimethylfluorene-2-yl, or benzyl,
R 10 is a straight or branched C 1-7 alkyl, eg, C 1-3 alkyl, C 1-7 alkenyl, C 1- which may be substituted with hydrogen, optionally one or more Xs or Vs. 7 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl or phenanthrenyl,
R 3 , R 4 , R 5 and R 6 may be independently substituted with hydrogen, optionally one or more Ys, with a straight or branched C 1-7 alkyl such as C 1-3 . Alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, nitro, cyano, carboxy, sulfo, hydroxy or amino.
Alternatively, R 3 and R 4 , or R 5 and R 6 may be optionally substituted with one or more oxos, Xs, together with the benzene ring containing them, the benzene ring, or
Figure JPOXMLDOC01-appb-C000006
, Where * is bonded to the carbon atom to which R 3 is bonded, ** is bonded to the carbon atom to which R 4 is bonded, or * is bonded to the carbon atom to which R 5 is bonded, ** Bonds to the carbon atom to which R 6 bonds,
R 11 is a straight or branched C 1-7 alkyl, eg, C 1-3 alkyl, or may optionally be substituted with one or more Xs or Zs, phenyl, 1-naphthyl,. Selected from the group consisting of 2-naphthyl, anthracenyl and phenanthrenyl,
Where V is —O-acryloyl, acetylamino, or phenyl, optionally substituted with C 1-7 alkyl.
X may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys, alkylaminos, nitrosos, nitros and sulfos, linear or branched. With C 1-7 alkyl, eg C 1-3 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkylamino. can be,
Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, hydroxy, alkoxy and sulfo.
Z is -SO 2 -CH = CH 2 , -SO 2 -C 2 H 4 -O-SO 3 H, or 4,6-dichlorotriazine-2-ylamino].
 ある実施形態において、電子伝達促進剤は下記の一般式Ia若しくはIIaの構造を有する化合物又はその塩、無水物若しくは溶媒和物でありうる:
Figure JPOXMLDOC01-appb-C000007
[式中、
1aは、-NR7a8aであり、
2aは、-NR10a11aであり、
7a及びR8aは、それぞれ独立に、水素、場合により1以上のXaにより置換されてもよい、直鎖又は分枝鎖のC1-6アルキル、例えばC1-3アルキル、C1-6アルケニル、C1-6アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル、又はフェナントレニルであり、
10aは、水素、場合により1以上のXaにより置換されてもよい、直鎖又は分枝鎖のC1-6アルキル、例えばC1-3アルキル、C1-6アルケニル、C1-6アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル又はフェナントレニルであり、
3a、R4a、R5a及びR6aは、それぞれ独立に、水素、場合により1以上のYにより置換されてもよい、直鎖又は分枝鎖のC1-6アルキル、C1-6アルケニル、C1-6アルキニル、C1-6アルコキシ、ハロ、ニトロ、シアノ、カルボキシ、スルホ、ヒドロキシ又はアミノであり、
或いは、R3a及びR4a、又は、R5a及びR6aは、ベンゼン環、又は
Figure JPOXMLDOC01-appb-C000008
を形成し、但し*はR3aが結合する炭素原子に結合し、**はR4aが結合する炭素原子に結合するか、又は、*はR5aが結合する炭素原子に結合し、**はR6aが結合する炭素原子に結合し、
11aは、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキルであるか、又は場合により1以上のXaにより置換されてもよい、フェニル、1-ナフチル、2-ナフチル、アントラセニル及びフェナントレニル、からなる群より選択され、
Xaは、場合により1以上のハロ、アミノ、シアノ、カルボキシ、カルボニル、ヒドロキシ、アルコキシ、アルキルアミノ、ニトロソ、ニトロ及びスルホからなる群より選択される置換基により置換されてもよい、直鎖又は分枝鎖の、C1-6アルキル、例えばC1-3アルキル、C1-6アルケニル、C1-6アルキニル、C1-6アルコキシ、ハロ、ヒドロキシ、ニトロ、カルボキシ、シアノ、スルホ、アミノ又はアルキルアミノであり、
Yはハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ及びスルホからなる群より選択される]。
In certain embodiments, the electron transfer promoter can be a compound having the structure of the following general formula Ia or IIa or a salt, anhydride or solvate thereof:
Figure JPOXMLDOC01-appb-C000007
[During the ceremony,
R 1a is −NR 7a R 8a .
R 2a is −NR 10a R 11a .
R 7a and R 8a are each independently substituted with hydrogen, optionally one or more Xa, linear or branched C 1-6 alkyl, eg C 1-3 alkyl, C 1-6 . Alkenyl, C 1-6 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl, or phenanthrenyl.
R 10a is a straight or branched C 1-6 alkyl, eg, C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, which may be substituted with hydrogen, optionally one or more Xa. , C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl or phenanthrenyl,
R 3a , R 4a , R 5a and R 6a are linear or branched C 1-6 alkyl, C 1-6 alkoxy, respectively, which may be independently substituted with hydrogen, optionally one or more Ys. , C 1-6 alkynyl, C 1-6 alkoxy, halo, nitro, cyano, carboxy, sulfo, hydroxy or amino.
Alternatively, R 3a and R 4a , or R 5a and R 6a are benzene rings, or
Figure JPOXMLDOC01-appb-C000008
, Where * is bonded to the carbon atom to which R 3a is bonded, ** is bonded to the carbon atom to which R 4a is bonded, or * is bonded to the carbon atom to which R 5a is bonded, ** Bonds to the carbon atom to which R 6a bonds,
R 11a is a straight or branched C 1-7 alkyl, eg C 1-3 alkyl, or may optionally be substituted with one or more Xa, phenyl, 1-naphthyl, 2-naphthyl. , Anthracenyl and phenylanthrenyl, selected from the group
Xa may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, hydroxys, alkoxys, alkylaminos, nitroso, nitros and sulfos, linear or fractional. Branch chains of C 1-6 alkyl such as C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkyl Amino and
Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, alkoxy and sulfo].
 ある実施形態において、電子伝達促進剤は下記の一般式Ib若しくはIIbの構造を有する化合物又はその塩、無水物若しくは溶媒和物でありうる:
Figure JPOXMLDOC01-appb-C000009
[式中、
7b、R8b及びR10bは、それぞれ独立に、水素、場合により1以上のXbにより置換されてもよい、直鎖又は分枝鎖のC1-6アルキル、例えばC1-3アルキル、C1-6アルケニル、C1-6アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル又はフェナントレニルであり、R3b、R4b、R5b及びR6bは、それぞれ独立に、水素、場合により1以上のYにより置換されてもよい、直鎖又は分枝鎖のC1-6アルキル、C1-6アルケニル、C1-6アルキニル、C1-6アルコキシ、ハロ、ニトロ、シアノ、カルボキシ、スルホ又はアミノであり、
11bは、直鎖又は分枝鎖のC1-7アルキル、例えばC1-3アルキルであるか、又は場合により1以上のXbにより置換されてもよい、フェニル、1-ナフチル、2-ナフチル、アントラセニル及びフェナントレニル、からなる群より選択され、
ここでXbは、場合により1以上のハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ及びスルホからなる群より選択される置換基により置換されてもよい、直鎖又は分枝鎖の、C1-6アルキル、例えばC1-3アルキル、C1-6アルケニル、C1-6アルキニル、C1-6アルコキシ、ハロ、ヒドロキシ、ニトロ、カルボキシ、シアノ、スルホ又はアミノであり、
Yはハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ及びスルホからなる群より選択される]。
In certain embodiments, the electron transfer promoter can be a compound having the structure of the following general formula Ib or IIb or a salt, anhydride or solvate thereof:
Figure JPOXMLDOC01-appb-C000009
[During the ceremony,
R 7b , R 8b and R 10b are each independently substituted with hydrogen, optionally one or more Xb, linear or branched C 1-6 alkyl, eg C 1-3 alkyl, C. 1-6 alkenyl, C 1-6 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthrasenyl or phenanthrenyl, with R 3b , R 4b , R 5b and R 6b independently. , Hydrogen, optionally straight or branched C 1-6 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, halo, nitro. , Cyano, carboxy, sulfo or amino,
R 11b is a straight or branched C 1-7 alkyl, eg C 1-3 alkyl, or may optionally be substituted with one or more Xb, phenyl, 1-naphthyl, 2-naphthyl. , Anthracenyl and phenylanthrenyl, selected from the group
Here, Xb may be optionally substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys and sulfos, C 1- of linear or branched chains. 6 alkyl, eg C 1-3 alkyl, C 1-6 alkenyl, C 1-6 alkynyl, C 1-6 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo or amino.
Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, alkoxy and sulfo].
 本明細書において用いるアルキルとは、直鎖または分枝鎖の、例えば1~7個の炭素原子、例えば1~6個の炭素原子、例えば1~3個の炭素原子を有する炭化水素を言う。アルキルの例としては、メチル、エチル、プロピル、イソプロピル、イソブチル、n-ブチル、tert-ブチル、イソペンチル、n-ペンチル、ヘプチルが挙げられるがこれに限らない。 As used herein, alkyl refers to a straight-chain or branched-chain hydrocarbon having, for example, 1 to 7 carbon atoms, for example, 1 to 6 carbon atoms, for example, 1 to 3 carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, tert-butyl, isopentyl, n-pentyl and heptyl.
 本明細書において用いる、(炭素原子など)の原子の数は、例えば「Cx-Cy アルキル」と表され、これはxからy個の炭素原子を有するアルキル基を言う。他の置換基および範囲についても同じような表記をする。 The number of atoms (such as carbon atoms) used in the present specification is expressed as, for example, "Cx-Cy alkyl", which means an alkyl group having x to y carbon atoms. The same notation is used for other substituents and ranges.
 本明細書において用いるアルケニルとは、1以上の炭素-炭素二重結合を有する直鎖または分枝鎖の脂肪属炭化水素を言う。例としては、限定するものではないが、ビニル、アリルなどが挙げられるがこれに限らない。 The alkenyl used in the present specification refers to a straight-chain or branched-chain aliphatic hydrocarbon having one or more carbon-carbon double bonds. Examples include, but are not limited to, vinyl, allyl, and the like.
 本明細書において用いるアルキニルとは、1以上の炭素-炭素三重結合を有する直鎖または分枝鎖の脂肪属炭化水素を言う。例としては、限定するものではないが、エチニルなどが挙げられるがこれに限らない。 The alkynyl used in the present specification refers to a straight-chain or branched-chain aliphatic hydrocarbon having one or more carbon-carbon triple bonds. Examples include, but are not limited to, ethynyl and the like.
 本明細書において用いるシクロアルキルとは、置換されたまたは置換されていない非芳香族環式炭化水素環を言う。シクロアルキル基としては、限定するものではないが、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、およびシクロヘプチルが挙げられるがこれに限らない。 Cycloalkyl as used herein refers to a substituted or unsubstituted non-aromatic cyclic hydrocarbon ring. Cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
 本明細書において用いるハロとは、第17族元素の基、例えば-Cl、-Br、-I等をいう。本明細書において用いるハロゲンとは、フッ素、塩素、臭素、またはヨウ素を言う。 The halo used in the present specification refers to a group of Group 17 elements such as -Cl, -Br, -I and the like. As used herein, halogen refers to fluorine, chlorine, bromine, or iodine.
 本明細書において用いるハロアルキルとは、少なくとも1つのハロゲンで置換されているアルキル基を言う。ハロアルキル基としては、限定するものではないが、独立に1以上のハロゲン、例えば、フルオロ、クロロ、ブロモ、およびヨードで置換されている、メチル、エチル、プロピル、イソプロピル、n-ブチル、およびt-ブチル等が挙げられる。 The haloalkyl used herein refers to an alkyl group substituted with at least one halogen. Haloalkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, and t-, which are independently substituted with one or more halogens, such as fluoro, chloro, bromo, and iodine. Butyl and the like can be mentioned.
 本明細書において用いるハロスルホニルとは、少なくとも1つのハロゲンで置換されているスルホニル基をいい、例えばクロロスルホニル(Cl-SO-)、ブロモスルホニル(Br-SO-)等が挙げられるがこれに限らない。 The halosulfonyl used in the present specification refers to a sulfonyl group substituted with at least one halogen, and examples thereof include chlorosulfonyl (Cl - SO2-) and bromosulfonyl (Br - SO2-). Not limited to.
 本明細書において用いるフェニルとは、置換されたもしくは置換されていないベンゼン環系をいう。本明細書において用いるナフチルとは、置換されたもしくは置換されていないナフタレン環系をいい、1-ナフチルおよび2-ナフチルが挙げられる。本明細書において用いるアントラセニルとは、置換されたもしくは置換されていないアントラセン環系をいう。本明細書において用いるフェナントレニルとは、置換されたもしくは置換されていないフェナントレン環系をいう。 Phenyl as used herein refers to a substituted or unsubstituted benzene ring system. As used herein, naphthyl refers to a substituted or unsubstituted naphthalene ring system, and examples thereof include 1-naphthyl and 2-naphthyl. As used herein, anthracene refers to an anthracene ring system that has been substituted or not substituted. As used herein, phenanthrenel refers to a substituted or unsubstituted phenanthrene ring system.
 本明細書においてアセチルとは、CHCO-をいう。本明細書においてトリフルオロアセチルとは、CFCO-をいう。本明細書において用いるカルボキシとは、-COOHをいう。本明細書においてフラニルとはフランの1価の基、例えば2-フラニル又は3-フラニルをいう。本明細書においてホルミルとは、アルデヒドともいい、-COHをいう。本明細書においてフラニルホルミルとは、フラニル基が結合したホルミル基(フラニル-CO-)をいう。本明細書においてピラゾリルとはピラゾール環系をいう。本明細書においてピラゾリルホルミルとはピラゾリル基が結合したホルミル基(ピラゾリル-CO-)をいう。本明細書において用いるフルオレニルとは、置換されたもしくは置換されていないフルオレン環系をいう。 As used herein, acetyl means CH 3 CO-. As used herein, trifluoroacetyl means CF 3 CO-. As used herein, carboxy means -COOH. As used herein, furanyl refers to a monovalent group of furan, such as 2-furanyl or 3-furanyl. In the present specification, formyl is also referred to as aldehyde and refers to -COH. In the present specification, the furanylformyl means a formyl group (furanyl-CO-) to which a furanyl group is bonded. As used herein, pyrazolyl refers to a pyrazole ring system. As used herein, the pyrazolyl formyl refers to a formyl group (pyrazolyl-CO-) to which a pyrazolyl group is bonded. As used herein, fluorenyl refers to a substituted or unsubstituted fluorene ring system.
 本明細書においてニトロは、-NO基を言う。本明細書においてニトロソは、-N=O基を言う。本明細書においてシアノは、-CN基を言う。本明細書においてスルホは、-SOHをいう。本明細書においてヒドロキシは-OHをいう。本明細書においてオキソは=Oをいう。 As used herein, nitro refers to two -NO groups. As used herein, nitroso refers to the -N = O group. As used herein, cyano refers to a -CN group. As used herein, sulfo refers to -SO 3H . In the present specification, hydroxy means -OH. In the present specification, oxo means = O.
 本明細書においてアミノとは、-NR’R’’基を言い、R’とR’’は、同一でも異なってもよい。R’とR’’は、例えばH、アルキル、アルケニル、アルキニル、シクロアルキル、フェニル、ナフチル、アントラセニル、フェナントレニル、等であり得るがこれに限らない。本明細書においてアミノアルキルとは、アミノ基が連結されているアルキレンリンカーを有する。アミノアルキルとしては-(CHNHなどが挙げられるがこれに限らない。本明細書においてアルキルアミノとは、アルキル基が連結されているアミノをいう。アルキルアミノとしては、C1-7アルキル-NH-などが挙げられるがこれに限らない。本明細書においてアセチルアミノとは、アセチル基が連結されているアミノをいう。アセチルアミノとしては、アセチル-NH-などが挙げられるがこれに限らない。 As used herein, amino refers to a -NR'R'' group, and R'and R'' may be the same or different. R'and R'' can be, but are not limited to, for example, H, alkyl, alkenyl, alkynyl, cycloalkyl, phenyl, naphthyl, anthracenyl, phenanthrenyl, and the like. As used herein, the aminoalkyl has an alkylene linker to which an amino group is linked. Examples of the aminoalkyl include, but are not limited to- (CH 2 ) n NH 2 . As used herein, the term alkylamino means an amino to which an alkyl group is linked. Examples of the alkylamino include, but are not limited to, C 1-7 alkyl-NH-. As used herein, acetylamino means an amino to which an acetyl group is linked. Examples of acetylamino include, but are not limited to, acetyl-NH-.
 本明細書においてアクリロイルとは、HC=CH-C(=O)-をいう。本明細書において-O-アクリロイルとは、HC=CH-C(=O)-O-をいう。本明細書においてイソチオシアネートとは-N=C=Sをいう。本明細書においてスクシンイミジルとは(CHCO)N-をいう。本明細書においてカルボニルとは-C(=O)-をいう。本明細書において用いるアルコキシとは-O-アルキル基を言う。 As used herein, acryloyl means H2C = CH - C (= O)-. In the present specification, -O-acryloyl means H2C = CH - C (= O) -O-. As used herein, isothiocyanate means −N = C = S. In the present specification, succinimidyl means (CH 2 CO) 2N- . As used herein, carbonyl means −C (= O) −. Alkoxy used in the present specification refers to an —O-alkyl group.
 本明細書において「場合により置換されてもよい」、「置換されたまたは置換されていない」とは、1以上の置換基での任意の置換を意味し、これには複数度の置換も含まれる。 As used herein, "possibly substituted" and "substituted or not substituted" mean any substitution with one or more substituents, including multiple substitutions. Is done.
 ある実施形態において、電子伝達促進剤は、TMPD(N,N,N’,N’-テトラメチルフェニレンジアミン)
Figure JPOXMLDOC01-appb-C000010
であり得る。TMPDの酸化還元電位Eは約50mVである。
In certain embodiments, the electron transfer promoter is TMPD (N, N, N', N'-tetramethylphenylenediamine).
Figure JPOXMLDOC01-appb-C000010
Can be. The redox potential E of TMPD is about 50 mV.
 ある実施形態において、電子伝達促進剤は、APPD(2,4-Diaminodiphenylamine)
Figure JPOXMLDOC01-appb-C000011
であり得る。APPDの酸化還元電位Eは約20mVである。
In certain embodiments, the electron transfer promoter is APPD (2,4-Diaminodiphenyllamine).
Figure JPOXMLDOC01-appb-C000011
Can be. The redox potential E of APPD is about 20 mV.
 ある実施形態において、電子伝達促進剤は、BGLB(Bindschedler’s Green Leuco Base)
Figure JPOXMLDOC01-appb-C000012
であり得る。BGLBの酸化還元電位Eは約17mVである。
In certain embodiments, the electron transfer promoter is BGLB (Bindschedler's Green Leuco Base).
Figure JPOXMLDOC01-appb-C000012
Can be. The redox potential E of BGLB is about 17 mV.
 ある実施形態において、電子伝達促進剤は、DPPA(4,4’-Diaminodiphenylamine)
Figure JPOXMLDOC01-appb-C000013
であり得る。DPPAの酸化還元電位Eは約20mVである。
In certain embodiments, the electron transfer promoter is DPPA (4,4'-Diaminodiphenyllamine).
Figure JPOXMLDOC01-appb-C000013
Can be. The redox potential E of DPPA is about 20 mV.
 電子伝達促進剤には、酸化還元状態及びイオン化状態があり得る。上記の化学式では、化合物を、中性型で還元型の形態で記載した。しかしながらこの形態のみならず、電子伝達促進剤は、酸化型(ジイミン型)、半酸化型、又は還元型(ジアミン型)であり得る。また、電子伝達促進剤は、中性型、又はカチオン型でありうる。便宜上、電子伝達促進剤という場合、これは、中性型、又はカチオン型の、酸化型、半酸化型、又は還元型の形態のものを包含するものとする。例えば、測定系に、電子伝達促進剤として中性型で酸化型の化合物を添加した後、溶液のpHや電子授受によりそれが酸化型でカチオン型の化合物に変化することがあり得るが、そのような化合物も電子伝達促進剤に包含されるものとする。また電子伝達促進剤というとき、これはその塩、酸付加塩、無水物及び溶媒和物を包含するものとする。塩としては、第1族元素の塩や第17族元素の塩、例えばNa塩、K塩、Cl塩、Br塩等が挙げられるがこれに限らない。酸付加塩としては塩酸塩、硫酸塩、亜硫酸塩、硝酸塩が挙げられるがこれに限らない。 The electron transfer promoter may have a redox state and an ionization state. In the above chemical formula, the compounds are described in neutral and reduced form. However, not only in this form, the electron transfer promoter can be an oxidized type (diimine type), a semi-oxidized type, or a reduced type (diamine type). Further, the electron transfer promoter may be a neutral type or a cationic type. For convenience, the term electron transfer enhancer includes neutral or cationic, oxidized, semi-oxidized, or reduced forms. For example, after adding a neutral and oxidized compound as an electron transfer promoter to the measurement system, it may change to an oxidized and cationic compound depending on the pH of the solution and electron transfer. Such compounds shall also be included in the electron transfer promoter. Further, when referring to an electron transfer promoter, it shall include its salt, acid addition salt, anhydride and solvate. Examples of the salt include, but are not limited to, salts of Group 1 elements and salts of Group 17 elements, such as Na salt, K salt, Cl salt, Br salt and the like. Examples of the acid addition salt include, but are not limited to, hydrochloride, sulfate, sulfite, and nitrate.
 電子伝達促進剤は、人工合成してもよく、天然物を取得してもよい。また市販されているものであってもよい。合成する場合は、慣用の有機合成手法を用いて有機合成を行い、NMR、IR、質量分析等により生成物を確認することができる。本発明の実施は、特に明記しない限り、化学、有機合成、生化学、分子生物学、電気化学の従来技術を使用するが、それらは当業者の能力の範囲内である。このような技術は文献に説明されている。たとえば、Organic Chemistry (Jonathan Clayden (編集), Nick Greeves (著), Stuart Warren (著), Peter Wothers (著))、Oxford Univ Pr, 2000や、March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Michael B. Smith (著), Jerry March (著))Wiley-Interscience, 6th edition, 2007を参照されたい。これらの一般的なテキストは、それぞれ参考として本明細書に組み入れられる。 The electron transfer promoter may be artificially synthesized or a natural product may be obtained. It may also be commercially available. In the case of synthesis, organic synthesis can be performed using a conventional organic synthesis method, and the product can be confirmed by NMR, IR, mass spectrometry and the like. Unless otherwise specified, the practice of the present invention uses prior arts of chemistry, organic synthesis, biochemistry, molecular biology and electrochemical, which are within the ability of those skilled in the art. Such techniques are described in the literature. For example, Organic Chemistry (Jonathan Clayden (editing), Nick Greeves (Author), Stuart Warren (Author), Peter Wothers (Author)), and Oxford Univ Pr, 2000, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (See Michael B. Smith (Author), Jerry March (Author)) Wiley-Interscience, 6th edition, 2007. Each of these general texts is incorporated herein by reference.
 本明細書において、PMSとは、フェナジンメトサルフェート及びその誘導体を言う。PMSとしては、代表的には1-メトキシ-5-メチルフェナジニウムメチルサルフェート(1-メトキシPMS)が挙げられる。本明細書において「電子伝達促進剤」という場合、特に断らない限りこれはPMSを含まない。すなわち「電子伝達促進剤」という場合、PMSは除かれる。特定の実施形態では、本開示の「電子伝達促進剤」から、一般式I又はII、例えば一般式Ia若しくはIIa、例えば一般式Ib若しくはIIbに包含される化合物のうちのいずれか1つの特定化合物、例えば公知の化合物が除かれうる。特定の実施形態では、本開示の「電子伝達促進剤」から、一般式I又はII、例えば一般式Ia若しくはIIa、例えば一般式Ib若しくはIIbに肯定的に記載されている択一的要素(選択肢により特定される化合物)が除かれうる。 In the present specification, PMS refers to phenazinemethsulfate and its derivatives. Typical examples of PMS include 1-methoxy-5-methylphenazinenium methyl sulfate (1-methoxy PMS). The term "electron transfer promoter" herein does not include PMS unless otherwise noted. That is, when the term "electron transfer promoter" is used, PMS is excluded. In certain embodiments, from the "electron transfer promoters" of the present disclosure, any one of the specific compounds of the general formula I or II, eg, general formula Ia or IIa, eg, general formula Ib or IIb. For example, known compounds can be excluded. In certain embodiments, alternative elements (options) positively described in the general formula I or II, such as the general formula Ia or IIa, such as the general formula Ib or IIb, from the "electron transfer promoter" of the present disclosure. Compounds identified by) can be excluded.
 1つのバイオセンサ当たりの電子伝達促進剤の含有量は、例えば10pmol~1000nmol、10pmol~100nmol、10pmol~60nmol、10pmol~10nmol、10pmol~1nmol、40~900pmol、50~500pmol、例えば100~300pmolとし得るがこれに限らない。 The content of the electron transfer promoter per biosensor can be, for example, 10 pmol to 1000 nmol, 10 pmol to 100 nmol, 10 pmol to 60 nmol, 10 pmol to 10 nmol, 10 pmol to 1 nmol, 40 to 900 pmol, 50 to 500 pmol, for example, 100 to 300 pmol. However, it is not limited to this.
 1つのバイオセンサ当たりの電子伝達促進剤の含有量を5nmolとした場合、FAD-GDHの含有量は、ある実施形態において、1~100U、1~10U、1~6U、例えば1~4Uとする。FAD-GDHの含有量は、ある実施形態において、0.1~100μg、1~50μg、例えば1~20μgとする。その他の酸化還元酵素においても、1つのセンサ当たりの含有量は、ある実施形態において、0.1~1000μg、1~500μg、1~50μg、例えば1~20μgとする。金属錯体化合物の含有量は、ある実施形態において、飽和濃度に達する量であるか、または5~50μg、10~40μg、例えば15~25μgとし得る。フェリシアン化カリウムの含有量は、ある実施形態において、10~1000mM、100~800mM、例えば200~500mMとし得る。 When the content of the electron transfer promoter per biosensor is 5 nmol, the content of FAD-GDH is 1 to 100 U, 1 to 10 U, 1 to 6 U, for example, 1 to 4 U in a certain embodiment. .. The content of FAD-GDH is, in a certain embodiment, 0.1 to 100 μg, 1 to 50 μg, for example, 1 to 20 μg. In other redox enzymes, the content per sensor is, in a certain embodiment, 0.1 to 1000 μg, 1 to 500 μg, 1 to 50 μg, for example, 1 to 20 μg. The content of the metal complex compound may, in certain embodiments, be an amount that reaches a saturated concentration, or may be 5-50 μg, 10-40 μg, eg 15-25 μg. The content of potassium ferricyanide can be 10 to 1000 mM, 100 to 800 mM, for example 200 to 500 mM in certain embodiments.
金属錯体化合物
 金属錯体化合物としてはルテニウム化合物、オスミウム化合物及び鉄化合物(例えば、フェリシアン化カリウム、フェロセン化合物)が挙げられるがこれに限らない。ある実施形態において、1つのグルコースセンサ当たりの金属錯体化合物の含有量は、グルコースセンサに典型的に使用される量とすることができ、例えば0.1μg~100mg、1μg~50mg、1μg~10mg、1μg~1mg、1~100μg、5~50μg、10~40μg、例えば15~25μgとし得る。金属錯体化合物の酸化還元電位は、所定の範囲の酸化還元電位であってもよく、例えば酸化還元電位が-200mV以上、-190mV以上、-180mV以上、-170mV以上、-160mV以上、-150mV以上、-140mV以上、-130mV以上、-120mV以上、-110mV以上、-100mV以上、-90mV以上、-80mV以上、-70mV以上、-60mV以上、-50mV以上、-40mV以上、-30mV以上、-20mV以上、-10mV以上、-0mV以上、例えば+400mV以下、+380mV以下、+360mV以下、+340mV以下、+320mV以下、+300mV以下、+280mV以下、+260mV以下、+240mV以下、+220mV以下、+200mV以下、+180mV以下、+160mV以下、+140mV以下、+120mV以下、+100mV以下、+80mV以下、+60mV以下、+40mV以下、+0mV以下、例えばこれらの任意の上限及び下限の組み合わせ、例えば-200mV~+400mV、-200mV~+300mV、-200mV~+200mV、-100mV~+400mV、例えば-0mV~+400mVの金属錯体化合物を用いることができる。
Metal Complex Compound Examples of the metal complex compound include, but are not limited to, a ruthenium compound, an osmium compound, and an iron compound (for example, potassium ferricyanide and a ferrocene compound). In certain embodiments, the content of the metal complex compound per glucose sensor can be the amount typically used for glucose sensors, eg 0.1 μg-100 mg, 1 μg-50 mg, 1 μg-10 mg, It can be 1 μg to 1 mg, 1 to 100 μg, 5 to 50 μg, 10 to 40 μg, for example 15 to 25 μg. The redox potential of the metal complex compound may be a redox potential in a predetermined range, for example, the redox potential is -200 mV or more, -190 mV or more, -180 mV or more, -170 mV or more, -160 mV or more, -150 mV or more. , -140 mV or more, -130 mV or more, -120 mV or more, -110 mV or more, -100 mV or more, -90 mV or more, -80 mV or more, -70 mV or more, -60 mV or more, -50 mV or more, -40 mV or more, -30 mV or more,- 20mV or more, -10mV or more, -0mV or more, for example, +400mV or less, +380mV or less, +360mV or less, +340mV or less, +320mV or less, +300mV or less, +280mV or less, +260mV or less, +240mV or less, +220mV Below, +200 mV or less, +180 mV or less, +160 mV or less, +140 mV or less, +120 mV or less, +100 mV or less, +80 mV or less, +60 mV or less, +40 mV or less, +0 mV or less, for example, any upper and lower limits of these Combinations of, for example -200 mV to +400 mV, -200 mV to +300 mV, -200 mV to +200 mV, -100 mV to + 400 mV, for example -0 mV to + 400 mV, can be used.
ルテニウム化合物
 ルテニウム化合物としては、従来のグルコースセンサやバイオセンサに用いられるルテニウム化合物や、今後開発されるそれらの均等物を使用することができる。ある実施形態においてルテニウム化合物は、酸化型のルテニウム錯体として反応系に存在し得るものである。ルテニウム錯体は、特に限定されない。ある実施形態においてルテニウム錯体としては、下記の一般式、
  [Ru(NH)5X]n
(式中、Xは、NH、CN、ピリジン、ハロゲンイオン、ニコチンアミド、またはHOである)の錯体が挙げられる。ハロゲンイオンとしてはCl、F、Br、Iが挙げられる。式中のnは、酸化型ルテニウム(III)錯体の価数を表し、これはXの種類により決定される。例えばXがNHであれば化合物はヘキサアンミンルテニウム錯体化合物であり、ハロゲンがClであれば、ヘキサアンミンルテニウムクロライドである。
Ruthenium compound As the ruthenium compound, ruthenium compounds used in conventional glucose sensors and biosensors, and their equivalents to be developed in the future can be used. In certain embodiments, the ruthenium compound can be present in the reaction system as an oxidized ruthenium complex. The ruthenium complex is not particularly limited. In a certain embodiment, the ruthenium complex has the following general formula,
[Ru (NH 3 ) 5X] n +
(In the formula, X is NH 3 , CN, pyridine, halogen ion, nicotinamide, or H 2 O) complex. Examples of the halogen ion include Cl , F , Br , and I . In the formula, n + represents the valence of the oxidized ruthenium (III) complex, which is determined by the type of X. For example, if X is NH 3 , the compound is a hexaammine ruthenium complex compound, and if the halogen is Cl , the compound is hexaammine ruthenium chloride.
ルテニウム錯体及び/又はオスミウム錯体
 ある実施形態において、金属錯体化合物はルテニウム錯体又はオスミウム錯体であり得る。ある実施形態において、金属錯体化合物は、下記の一般式III
  [M(A)(B)(Zo (式III)
式中、Mはオスミウム、ルテニウム、又は鉄であって0、1、2、3又は4の酸化状態を有し、
x及びnは、互いに独立して、1~6から選択される整数であり、yは1~5から選択される整数であり、zは-2~+1の整数であり、mは-5~+4の整数であり、
Aは1又は2個の窒素原子を含む、一座又は二座の芳香族配位子であり、
Bは、窒素含有複素環式配位子を除く1以上の適切な配位子であるように独立して選択され、
Xは対イオンであり、
場合によりAは、置換又は非置換のアルキル、アルケニル又はアリール基、-CN、-NO、-F、-Cl、-Br、-I、-COH、-SOH、-NHNH、-SH、-OH、-NH2、アルコキシ、アルコキシカルボニル、アルキルアミノ、アルキルアミノカルボニル、ジアルキルアミノカルボニル、ジアルキルアミノ、アルカノイルアミノ、アリールカルボキサミド、アルキルヒドラジノ、ヒドロキシルアミノ、アルコキシアミノ、アルキルチオから、独立に選択された1~8の基で置換されてもよく、
配位原子数は6である。
Ruthenium Complex and / or Osmium Complex In certain embodiments, the metal complex compound can be a ruthenium complex or an osmium complex. In certain embodiments, the metal complex compound is the general formula III below.
[M (A) x (B) y ] m (Z o ) n (Equation III)
In the formula, M is osmium, ruthenium, or iron and has an oxidation state of 0, 1, 2, 3 or 4.
x and n are integers selected from 1 to 6 independently of each other, y is an integer selected from 1 to 5, z is an integer of -2 to +1 and m is an integer of -5 to -5. It is an integer of +4,
A is a monodentate or bidentate aromatic ligand containing one or two nitrogen atoms.
B is independently selected to be one or more suitable ligands excluding nitrogen-containing heterocyclic ligands.
X is the counterion
In some cases, A is a substituted or unsubstituted alkyl, alkenyl or aryl group, -CN, -NO 2 , -F, -Cl, -Br, -I, -CO 2 H, -SO 3 H, -NHNH 2 , -SH, -OH, -NH2, alkoxy, alkoxycarbonyl, alkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, dialkylamino, alkanoylamino, arylcarboxamide, alkylhydrazino, hydroxylamino, alkoxyamino, alkylthio, independently selected It may be substituted with 1 to 8 groups,
The number of coordinating atoms is 6.
 配位子Aは、1以上のCO2R基で置換された一座配位子、又は1以上のCO2R基で場合により置換されてもよい二座若しくは三座配位子であってもよく、前記1以上のCO2R基のRは、Hであり得る。 The ligand A may be a monodentate ligand substituted with one or more CO2R B groups, or a bidentate or tridentate ligand optionally substituted with one or more CO2R B groups. The RB of the one or more CO2RB groups can be H.
 配位子Aは、2,2’-ビピリジン-5,5’-ビス-カルボン酸、2,2’-ビピリジン-4,4’-ビス-カルボン酸、2,2’-ビピリジン、1,10-フェナントロリン-3,9-ビス-カルボン酸、ニコチン酸、イソニコチン酸、5-カルボキシ-ニコチン酸、及び6-ピリジル-ニコチン酸からなる群より選択し得る。ある実施形態においてMはオスミウム又はルテニウムであり得る。 The ligand A is 2,2'-bipyridine-5,5'-bis-carboxylic acid, 2,2'-bipyridine-4,4'-bis-carboxylic acid, 2,2'-bipyridine, 1,10. It can be selected from the group consisting of -phenanthroline-3,9-bis-carboxylic acid, nicotinic acid, isonicotinic acid, 5-carboxy-nicotinic acid, and 6-pyridyl-nicotinic acid. In certain embodiments, M can be osmium or ruthenium.
 別の実施形態において、金属錯体化合物は、下記の一般式IV
  [M(A)(B)(Zo (式IV)
式中、Mは、ルテニウム、オスミウム、若しくは鉄であって0、1、2、3又は4の酸化状態を有し、
x及びnは独立に、1~6から選択される整数であり、yは0~5から選択される整数であり、zは-2~+1の整数であり、mは-5~+4の整数であり、
 Aは二座、三座、四座、五座又は六座配位子であって、式RRN(CNR)を有する直鎖式、又は式(RNC、(RNC(RNC若しくは[(RNC)(RNC)]を有する環式であってもよく、wは1~5の整数であり、vは3~6の整数であり、p及びqは1~3の整数であってpとqとの和が4であり、sは2又は3であり、R及びRは水素又はメチルであり、
Bは、適切な配位子であるように独立して選択され、
Xは対イオンであり、
場合によりAは、置換又は非置換のアルキル、アルケニル又はアリール基、-F、-Cl、-Br、-I、-NO2、-CN、-COH、-SOH、-NHNH、-SH、-OH、-NH2、アルコキシカルボニル、アルキルアミノカルボニル、ジアルキルアミノカルボニル、アルコキシ、アルキルアミノ、ジアルキルアミノ、アルカノイルアミノ、アリールカルボキサミド、アルキルヒドラジノ、ヒドロキシルアミノ、アルコキシアミノ、アルキルチオから、独立に選択される1~7の基で置換されてもよく、
配位原子数は6である。
In another embodiment, the metal complex compound is the general formula IV below.
[M (A) X (B) y ] m (Z o ) n (Equation IV)
In the formula, M is ruthenium, osmium, or iron and has an oxidation state of 0, 1, 2, 3 or 4.
x and n are integers independently selected from 1 to 6, y is an integer selected from 0 to 5, z is an integer of -2 to +1 and m is an integer of -5 to +4. And
A is a bidentate, tridentate, tetradentate, pentadentate or hexadentate ligand with the formula RA RN (C 2 H 4 NR) w RA having a linear or formula (RNC 2 H 4 ). It may be a cyclic compound having v , (RNC 2 H 4 ) p (RNC 3 H 6 ) q or [(RNC 2 H 4 ) (RNC 3 H 6 )] s , and w is an integer of 1 to 5. Yes, v is an integer of 3 to 6, p and q are integers of 1 to 3, the sum of p and q is 4, s is 2 or 3, and R and RA are hydrogen or Methyl and
B is independently selected to be the appropriate ligand,
X is the counterion
In some cases, A is a substituted or unsubstituted alkyl, alkoxy or aryl group, -F, -Cl, -Br, -I, -NO2, -CN, -CO 2 H, -SO 3 H, -NHNH 2 ,- Independently selected from SH, -OH, -NH2, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxy, alkylamino, dialkylamino, alkanoylamino, arylcarboxamide, alkylhydrazino, hydroxylamino, alkoxyamino, alkylthio It may be substituted with 1 to 7 groups.
The number of coordinating atoms is 6.
 配位子Aは二座、三座又は四座配位子とすることができ、式RRN(CNR)を有する直鎖式、又は式(RNC、(RNC(RNC若しくは[(RNC)(RNC)]を有する環式であってもよく、wは1~3の整数であり、vは3又は4であり、p及びqは1~3の整数であってpとqとの和が4であり、sは2又は3であることができる。 The ligand A can be a bidentate, tridentate or tetradentate ligand and has the formula RA RN (C 2 H 4 NR) w RA with a linear or formula (RNC 2 H 4 ) v . , (RNC 2 H 4 ) p (RNC 3 H 6 ) q or [(RNC 2 H 4 ) (RNC 3 H 6 )] s may be a ring, w is an integer of 1 to 3. , V is 3 or 4, p and q are integers of 1 to 3, the sum of p and q is 4, and s can be 2 or 3.
 配位子Aは、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、1,4,7-トリメチル-1,4,7-トリアザシクロノナン又は1,2-ジメチルエチレンジアミン若しくは1,1,2,2-テトラメチルエチレンジアミンからなる群より選択し得る。ある実施形態においてMはオスミウム又はルテニウムであり得る。 Ligand A is 1,1,4,7,10,10-hexamethyltriethylenetetramine, 1,4,7-trimethyl-1,4,7-triazacyclononane or 1,2-dimethylethylenediamine or It can be selected from the group consisting of 1,1,2,2-tetramethylethylenediamine. In certain embodiments, M can be osmium or ruthenium.
 配位子Bは、NH若しくはNMeのようなアミン配位子から、又はCO、CN、ハロゲン、アセチルアセトナト(acac)、3-ブロモ-アセチルアセトナト(Bracac)、シュウ酸塩、1,4,7-トリエチレンクラウンエーテル、シュウ酸塩若しくは5-クロロ-8-ヒドロキシキノリンから選択し得る。 Ligand B can be from an amine ligand such as NH 3 or NMe 3 , or CO, CN, halogen, acetylacetonato (acac), 3-bromo-acetylacetonato (Bracac), oxalate, 1 , 4,7-Triethylene crown ether, oxalate or 5-chloro-8-hydroxyquinoline can be selected.
 配位子A又はBが二座であるように選択した場合、錯体の配位はシス形又はトランス形であり得る。式III又は式IVの錯体内の金属の酸化状態は、2+又は3+であるように選択し得る。 If the ligand A or B is chosen to be bidentate, the coordination of the complex can be cis or trans. The oxidation state of the metal in the complex of formula III or formula IV can be selected to be 2+ or 3+.
 配位子A及びBは、式III又は式IVの錯体上の全電荷が+2、+1、0、-1、-2又は-3となるよう選択し得る。対イオンは、F、Cl、Br、I、NO 、NH 、NR 、PF 、CFSO 、SO 2-、ClO 、K、Na、及びLiから選択し得る。対イオンとしてこれらの組み合わせを使用してもよい。 The ligands A and B can be selected such that the total charge on the complex of formula III or formula IV is +2, +1, 0, -1, -2 or -3. Counterions are F-, Cl- , Br- , I- , NO 3- , NH 4 + , NR 4 + , PF 6- , CF 3 SO 3- , SO 4 2- , ClO 4- , K + , You can choose from Na + and Li + . These combinations may be used as counterions.
 式III又は式IVの錯体は、[RuIII(NH(ピリジン-3-COOH)](PF(CFSO)、[RuIII(2,4-ペンタンジオネート)(ピリジン-3-COOH)(ピリジン-3-COO)]、[RuIII(3-ブロモ-2,4-ペンタンジオネート)(ピリジン-3-COOH)(ピリジン-3-COO)]、[RuIII(2,4-ペンタンジオネート)(2,2’-ビピリジン-5,5’-(COOH)(COO)]、[RuIII(2,4-ペンタンジオネート)(2,2’-ビピリジン-4,4’-(COOH)(COO)]、[RuIII(2,4-ペンタンジオネート)(2,2’-ビピリジン)]Cl、[RuIII(2,4-ペンタンジオネート)(ピリジン-4-COOH)(ピリジン-4-COO)]、[RuIII(5-クロロ-8-ヒドロキシキノリン)(ピリジン-3-COOH)(ピリジン-3-COO)]、[RuIII(1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン)(2,4-ペンタンジオネート)](PF)(CFSO)、[RuIII(1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン)(2,4-ペンタンジオネート)]Cl、[OsII(2,2’-ビピリジン)(2,4-ペンタンジオネート)]Cl、[RuII(2,2’-ビピリジン)(2,4-ペンタンジオネート)]Cl、[RuII(2,2’-ビピリジン)(C)]、K[RuIII(C(ピリジン-3-COOH)]、及び[RuIII(1,4,7-トリメチル-1,4,7-トリアザシクロノナン)(2,4-ペンタンジオネート)(ピリジン)](NOから選択し得る。 The complex of formula III or formula IV is [Ru III (NH 3 ) 5 (pyridine-3-COOH)] (PF 6 ) 2 (CF 3 SO 3 ), [Ru III (2,4-pentandionate) 2 (Pyridin-3-COOH) (Pridin-3-COO)], [Ru III (3-bromo-2,4-pentandionate) 2 (Pridin-3-COOH) (Pridin-3-COO)], [ Ru III (2,4-pentandionate) 2 (2,2'-bipyridine-5,5'-(COOH) (COO)], [Ru III (2,4-pentandionate) 2 (2,2) '-Bipyridine-4,4'-(COOH) (COO)], [Ru III (2,4-pentanionate) 2 (2,2'-bipyridine)] Cl, [Ru III (2,4-pentane) Dionate) 2 (Pyridin-4-COOH) (Pyridin-4-COO)], [Ru III (5-Chloro-8-hydroxyquinoline) 2 (Pyridin-3-COOH) (Pridin-3-COO)], [Ru III (1,1,4,7,10,10-hexamethyltriethylenetetramine) (2,4-pentandionate)] (PF 6 ) (CF 3 SO 3 ), [Ru III (1, 1) , 4,7,10,10-hexamethyltriethylenetetramine) (2,4-pentandionate)] Cl 2 , [Os II (2,2'-bipyridine) 2 (2,4-pentandionate)] Cl, [Ru II (2,2'-bipyridine) 2 (2,4 - pentandionate)] Cl, [Ru II (2,2'-bipyridine) 2 (C2O 4 )], K [Ru III (C 2 O 4 ) 2 (Pridin-3-COOH) 2 ], and [Ru III (1,4,7-trimethyl-1,4,7-triazacyclononan) (2,4-pentanionate). (Ppyridine)] (NO 3 ) 2 can be selected.
 ある実施形態において、金属錯体は、[RuIII(acac)(py-3-COOH)(py-3-COO)]、[RuIII(3-Bracac)(py-3-COOH)(py-3-COO)]、[RuIII(acac)(py-4-COOH)(py-4-COO)]、または[RuIII(acac)(py-3-COOH)(py-3-COO)]であり得る。 In certain embodiments, the metal complex is [Ru III (acac) 2 (py-3-COOH) (py-3-COO)], [Ru III (3-Bracac) 2 (py-3-COOH) (py). -3-COO], [Ru III (acac) 2 (py-4-COOH) (py-4-COO)], or [Ru III (acac) 2 (py-3-COOH) (py-3-COO)] COO)].
 ある実施形態において、金属錯体は、[OsIII(2,4-ペンタンジオネート)(ピリジン-3-COOH)(ピリジン-3-COO)]、[OsIII(NH(ピリジン-3-COOH)](PF(CFSO)、[OsIII(3-ブロモ-2,4-ペンタンジオネート)(ピリジン-3-COOH)(ピリジン-3-COO)]、[OsIII(2,4-ペンタンジオネート)(2,2’-ビピリジン-5,5’-(COOH)(COO)]、[OsIII(2,4-ペンタンジオネート)(2,2’-ビピリジン-4,4’-(COOH)(COO)]、[OsIII(2,4-ペンタンジオネート)(2,2’-ビピリジン)]Cl、[OsIII(2,4-ペンタンジオネート)(ピリジン-4-COOH)(ピリジン-4-COO)]、[OsIII(5-クロロ-8-ヒドロキシキノリン)(ピリジン-3-COOH)(ピリジン-3-COO)]、[OsIII(1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン)(2,4-ペンタンジオネート)](PF)(CFSO)、[OsIII(1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン)(2.4-ペンタンジオネート)]Cl、[OsII(2,2’-ビピリジン)(2,4-ペンタンジオネート)]Cl、[OsIII(1,4,7-トリメチル-1,4,7-トリアザシクロノナン)(2,4-ペンタンジオネート)(ピリジン)](NO、又は[OsII(2.2’-ビピリジン)(C)]、K[OsIII(C(ピリジン-3-COOH)]であり得るがこれに限らない。ある実施形態において、金属錯体は、国際公開第2007/072018号に記載のものとし得る。参照により国際公開第2007/072018号の、金属錯体に関する記載を、本明細書に組み入れる。 In certain embodiments, the metal complexes are [Os III (2,4-pentandionate) 2 (Pyridine-3-COOH) (Pyridine-3-COO)], [Os III (NH 3 ) 5 (Pyridine-3). -COOH)] (PF 6 ) 2 (CF 3 SO 3 ), [Os III (3-bromo-2,4-pentandionate) 2 (pyridine-3-COOH) (pyridine-3-COO)], [ Os III (2,4-pentangionate) 2 (2,2'-bipyridine-5,5'-(COOH) (COO)], [Os III (2,4-pentangionate) 2 (2,2) '-Bipyridine-4,4'-(COOH) (COO)], [Os III (2,4-pentanionate) 2 (2,2'-bipyridine)] Cl, [Os III (2,4-pentane) Zionate) 2 (Pyridine-4-COOH) (Pyridine-4-COO)], [Os III (5-Chloro-8-hydroxyquinoline) 2 (Pyridine-3-COOH) (Pyridine-3-COO)], [Os III (1,1,4,7,10,10-hexamethyltriethylenetetramine) (2,4-pentandionate)] (PF 6 ) (CF 3 SO 3 ), [Os III (1, 1) , 4,7,10,10-hexamethyltriethylenetetramine) (2.4-pentangionate)] Cl 2 , [Os II (2,2'-bipyridine) 2 (2,4-pentandionate)] Cl, [Os III (1,4,7-trimethyl-1,4,7-triazacyclononan) (2,4-pentandionate) (pyridine)] (NO 3 ) 2 , or [Os II (2) .2'-Bipyridine) 2 (C 2 O 4 )], K [Os III (C 2 O 4 ) 2 (Pyridine-3-COOH) 2 ], but not limited to metal in certain embodiments. The complex may be as described in WO 2007/072018. By reference, the description of WO 2007/072018 regarding the metal complex is incorporated herein.
酸化還元酵素
 酸化還元酵素としては、EC第1群に分類される各種の酸化還元酵素、例えばグルコースオキシダーゼ、グルコースデヒドロゲナーゼ、アマドリアーゼ(フルクトシルペプチドオキシダーゼまたはフルクトシルアミノ酸オキシダーゼともいう)、ペルオキシダーゼ、ガラクトースオキシダーゼ、ビリルビンオキシダーゼ、ピルビン酸オキシダーゼ、D-またはL-アミノ酸オキシダーゼ、アミンオキシダーゼ、コレステロールオキシダーゼ、コリンオキシダーゼ、キサンチンオキシダーゼ、サルコシンオキシダーゼ、D-またはL-乳酸オキシダーゼ(LOD)、アスコルビン酸オキシダーゼ、チトクロムオキシダーゼ、アルコールデヒドロゲナーゼ、コレステロールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、アルデヒドオキシダーゼ、フルクトースデヒドロゲナーゼ(FDH)、ソルビトールデヒドロゲナーゼ、D-またはL-乳酸デヒドロゲナーゼ、リンゴ酸デヒドロゲナーゼ、グリセロールデヒドロゲナーゼ、17Bヒドロキシステロイドデヒドロゲナーゼ、エストラジオール17Bデヒドロゲナーゼ、D-またはL-アミノ酸デヒドロゲナーゼ、グリセルアルデヒド3-リン酸デヒドロゲナーゼ、3-ヒドロキシステロイドデヒドロゲナーゼ、ジアホラーゼ、カタラーゼ、グルタチオンレダクターゼ、チトクロムb5レダクターゼ、アドレノキシンレダクターゼ、チトクロムb5レダクターゼ、アドレノドキシンレダクターゼ、硝酸レダクターゼ、リン酸デヒドロゲナーゼ、ビリルビンオキシダーゼ、ラッカーゼ、ポリアミンオキシダーゼ、ギ酸デヒドロゲナーゼ、ピラノースオキシダーゼ、ピラノースデヒドロゲナーゼ、タウロピンデヒドロゲナーゼ等が挙げられるが、これに限らない。上記酵素の補酵素としては、ニコチンアミドアデニンジヌクレオチド(NAD)、ニコチンアミドアデニンジヌクレオチドリン酸、フラビンアデニンジヌクレオチド(FAD)、ピロロキノリンキノン等が挙げられる。上記に挙げた酸化還元酵素は、例えばMethods in Enzymology(1~602巻)に記載の方法で、種々の基質を用いた活性測定を行うことができる。上記に列挙した酸化還元酵素(例えばグルコースデヒドロゲナーゼ、LOD、アマドリアーゼ等)の由来は特に限定されず、原核生物由来、真核生物由来、微生物由来、真菌由来、植物由来、又は動物由来のものを使用し得る。
Oxidases Oxidases include various oxidases classified in EC Group 1, such as glucose oxidase, glucose dehydrogenase, amadriase (also referred to as fructosyl peptide oxidase or fructosyl amino acid oxidase), peroxidase, galactose oxidase, and the like. Bilylvin oxidase, pyruvate oxidase, D- or L-amino acid oxidase, amine oxidase, cholesterol oxidase, choline oxidase, xanthin oxidase, sarcosin oxidase, D- or L-lactic oxidase (LOD), ascorbate oxidase, cytochrome oxidase, alcohol dehydrogenase. , Cholesterol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, fructose dehydrogenase (FDH), sorbitol dehydrogenase, D- or L-lactic acid dehydrogenase, malic acid dehydrogenase, glycerol dehydrogenase, 17B hydroxysteroid dehydrogenase, estradiol 17B dehydrogenase, D- or L-amino acid dehydrogenase. , Glyceraldehyde 3-phosphate dehydrogenase, 3-hydroxysteroid dehydrogenase, diaholase, catalase, glutathione reductase, cytochrome b5 reductase, adrenoxine reductase, cytochrome b5 reductase, adrenodoxin reductase, nitrate reductase, phosphate dehydrogenase, bilirubin oxidase. , Lacquerse, polyamine oxidase, formate dehydrogenase, pyranose oxidase, pyranose dehydrogenase, tauropine dehydrogenase and the like, but are not limited thereto. Examples of the coenzyme of the above-mentioned enzyme include nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide (FAD), and pyroquinolinquinone. The activity of the redox enzymes listed above can be measured using various substrates by the method described in, for example, Methods in Energy (Volumes 1 to 602). The origin of the oxidoreductases listed above (eg glucose dehydrogenase, LOD, amadriase, etc.) is not particularly limited, and those derived from prokaryotes, eukaryotes, microorganisms, fungi, plants, or animals are used. Can be.
 ある実施形態において酸化還元酵素はFAD-GDHであり得る。本明細書においてFAD-GDHとは、フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ又はフラビンアデニンジヌクレオチド結合型グルコースデヒドロゲナーゼを言う。特定の実施形態では、FAD-GDHは市販のものを使用し得る。別の実施形態では、市販FAD-GDHの改変体又はその均等物を使用し得る。本明細書においてムコール属型FAD-GDHとは、ムコール属の野生型FAD-GDH及び/又はその改変体を意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。本明細書においてボトリオティニア(Botryotinia)属型FAD-GDHとは、ボトリオティニア属の野生型FAD-GDH及び/又はその改変体を意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。本明細書においてアスペルギルス(Aspergillus)属型FAD-GDHとは、アスペルギルス属の野生型FAD-GDH及び/又はその改変体を意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。本明細書においてペニシリウム(Penicillium)属型FAD-GDHとは、ペニシリウム属の野生型FAD-GDH及び/又はその改変体を意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。本明細書においてシルシネラ(Circinella)属型FAD-GDHとは、シルシネラ属の野生型FAD-GDH及び/又はその改変体を意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。 In certain embodiments, the redox enzyme can be FAD-GDH. As used herein, FAD-GDH refers to flavin adenine dinucleotide-dependent glucose dehydrogenase or flavin adenine dinucleotide-bound glucose dehydrogenase. In certain embodiments, FAD-GDH may be commercially available. In another embodiment, a variant of commercially available FAD-GDH or an equivalent thereof may be used. As used herein, the term "Mucole-type FAD-GDH" means a wild-type FAD-GDH of the genus Mucor and / or a variant thereof, and includes either a wild-type or a variant thereof unless otherwise specified. As used herein, the term Botriotinia genus FAD-GDH means wild-type FAD-GDH of the genus Botriotinia and / or a variant thereof, and includes either wild-type or variants thereof unless otherwise specified. .. As used herein, Aspergillus genus FAD-GDH means wild-type FAD-GDH of the genus Aspergillus and / or a variant thereof, and includes both wild-type and variants thereof unless otherwise specified. .. As used herein, the term Penicillium-type FAD-GDH means wild-type FAD-GDH of the genus Penicillium and / or a variant thereof, and includes either wild-type or a variant thereof unless otherwise specified. .. As used herein, the term FAD-GDH of the genus Circinella means wild-type FAD-GDH of the genus Circinella and / or a variant thereof, and includes both wild-type and variants thereof unless otherwise specified. ..
 ムコール属微生物としては、限定するものではないが、ムコール・プライニ(Mucor prainii)、ムコール・ジャバニカス(Mucor javanicus)、ムコール・シルシネロイデスf.シルシネロイデス(Mucor circinelloides f. circinelloides)、ムコール・ギリエルモンディ(Mucor guilliermondii)、ムコール・ヒエマリスf.シルヴァティカス(Mucor hiemalis f. silvaticus)、ムコール・サブチリシマス(Mucor subtilissimus)、及びムコール・ダイモルホスポラス(Mucor dimorphosporus)が挙げられる。ボトリオティニア属微生物としては、限定するものではないがボトリオティニア・フケリアナ(Botryotinia fuckeliana)が挙げられる。アスペルギルス(Aspergillus)属微生物としては、限定するものではないがアスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)、アスペルギルス・ニガー(Aspergillus niger)、及びアスペルギルス・テルス(Aspergillus terreus)が挙げられる。ペニシリウム(Penicillium)属微生物としては、限定するものではないがペニシリウム・スクレロチオル(Penicillium sclerotiorum)、ペニシリウム・ジャンチネルム(Penicillium janthinellum)及びペニシリウム・パネウム(Penicillium paneum)が挙げられる。 The microorganisms of the genus Mucor are not limited, but Mucor plainii, Mucor javanicus, Mucor silcineroides f. Mucor circinelloides f. Circinelloides, Mucor guilliermondii, Mucor hiemalis f. Examples include Mucor himalis f. Silvaticus, Mucor subtilissimus, and Mucor dimorphosporus. Examples of the microorganism belonging to the genus Botriotinia include, but are not limited to, Botriotinia fuckeliana. Aspergillus genus microorganisms include, but are not limited to, Aspergillus oryzae, Aspergillus sojae, Aspergillus niger, and Aspergillus ter. .. Examples of the microorganism belonging to the genus Penicillium include, but are not limited to, Penicillium sclerotiorum, Penicillium janzinellum, and Penicillium paneum.
 本明細書において、ムコール属の野生型FAD-GDHの改変体とは、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース及びガラクトースに対する基質特異性が低く、かつ、グルコースに対する基質特異性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 As used herein, a variant of the wild-type FAD-GDH of the genus Mucor has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has FAD-dependent glucose dehydrogenase activity. Say something. In certain embodiments, the variants have low substrate specificity for maltose and galactose and high substrate specificity for glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 本明細書において、Mucor prainiiの野生型FAD-GDHの改変体とは、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース、キシロース及びガラクトースに対する反応性が低く、かつ、グルコースに対する反応性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 In the present specification, the variant of the wild-type FAD-GDH of Mucor flavinii has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has FAD-dependent glucose dehydrogenase activity. Say something. In certain embodiments, the variants are less reactive with maltose, xylose and galactose and more reactive with glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 例えば、使用する酵素がボトリオティニア属の野生型FAD-GDHの改変体の場合には、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース及びガラクトースに対する反応性が低く、かつ、グルコースに対する反応性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 For example, when the enzyme used is a variant of wild-type FAD-GDH of the genus Botriotinia, it has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is replaced and has a FAD-dependent glucose dehydrogenase. Those with activity. In certain embodiments, the variants are less reactive with maltose and galactose and more reactive with glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 例えば、使用する酵素がボトリオティニア・フケリアナ(Botryotinia fuckeliana)の野生型FAD-GDHの改変体の場合には、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース及びガラクトースに対する反応性が低く、かつ、グルコースに対する反応性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 For example, in the case where the enzyme used is a variant of the wild-type FAD-GDH of Botriotinia fuccheliana, the enzyme has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and the sequence is substituted. Those having FAD-dependent glucose dehydrogenase activity. In certain embodiments, the variants are less reactive with maltose and galactose and more reactive with glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 例えば、使用する酵素がアスペルギルス属の野生型FAD-GDHの改変体の場合には、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース及びガラクトースに対する反応性が低く、かつ、グルコースに対する反応性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 For example, when the enzyme used is a variant of wild-type FAD-GDH of the genus Aspergillus, it has a sequence in which the amino acid residue of the amino acid sequence of the wild-type FAD-GDH is substituted, and has a FAD-dependent glucose dehydrogenase. Those with activity. In certain embodiments, the variants are less reactive with maltose and galactose and more reactive with glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 例えば、使用する酵素がペニシリウム属の野生型FAD-GDHの改変体の場合には、前記野生型FAD-GDHのアミノ酸配列のアミノ酸残基を置換した配列を有し、かつ、FAD依存性グルコースデヒドロゲナーゼ活性を有するものをいう。特定の実施形態において改変体は、マルトース及びガラクトースに対する反応性が低く、かつ、グルコースに対する反応性が高い。前記置換アミノ酸残基の数は、例えば、1、2、3、4、5、6、7、8、9、10個、例えば1~10個、1~5個、1~3個、例えば1~2個であり得る。 For example, when the enzyme used is a variant of wild-type FAD-GDH of the genus Penicillium, it has a sequence in which the amino acid residue of the amino acid sequence of wild-type FAD-GDH is replaced, and FAD-dependent glucose dehydrogenase. Those with activity. In certain embodiments, the variants are less reactive with maltose and galactose and more reactive with glucose. The number of the substituted amino acid residues is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 such as 1 to 10, 1 to 5, 1 to 3, for example 1. It can be up to two.
 ある実施形態において酸化還元酵素はアマドリアーゼであり得る。本明細書においてアマドリアーゼとは、フラビンアデニンジヌクレオチド依存性フルクトシルペプチドオキシダーゼ又はフラビンアデニンジヌクレオチド依存性フルクトシルアミノ酸オキシダーゼ、若しくはフラビンアデニンジヌクレオチド結合型フルクトシルペプチドオキシダーゼ又はフラビンアデニンジヌクレオチド結合型フルクトシルアミノ酸オキシダーゼを言う。特定の実施形態では、アマドリアーゼは市販のものを使用し得る。別の実施形態では、市販アマドリアーゼの改変体又はその均等物を使用し得る。本明細書においてアマドリアーゼの由来は特に限定せず、例えば、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属、フザリウム(Fusarium)属、アカエトミエラ(Achaetomiella)属、アカエトミウム(Achaetomium)属、シエラビア(Thielavia)属、カエトミウム(Chaetomium)属、ゲラシノスポラ(Gelasinospora)属、ミクロアスカス(Microascus)属、レプトスフェリア(Leptosphaeria)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、コニオケチジウム(Coniochaetidium)属、ピチア(Pichia)属、デバリオマイセス(Debaryomyces)属、コリネバクテリウム(Corynebacterium)属、アグロバクテリウム(Agrobacterium)属、又はアルスロバクター(Arthrobacter)属由来であるアマドリアーゼを意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。 In certain embodiments, the redox enzyme can be amadriase. As used herein, amadriase refers to flavin adenine dinucleotide-dependent fructosyl peptide oxidase or flavin adenine dinucleotide-dependent fructosyl amino acid oxidase, or flavin adenine dinucleotide-bound fructosyl peptide oxidase or flavin adenine dinucleotide-bound fructosyl. Refers to amino acid oxidase. In certain embodiments, amadriase may be commercially available. In another embodiment, a variant of commercially available amadriase or an equivalent thereof may be used. In the present specification, the origin of amadriase is not particularly limited, and for example, the genus Coniochaeta, the genus Eupenicillium, the genus Pyrenochaeta, the genus Arthrinium, the genus Curvularia. Neocosmospora, Cryptococcus, Phaeosphaeria, Aspergillus, Emericella, Emericella, Urocladium, Pilium Achaetomiella, Achaetomium, Thielavia, Chaetomium, Gelasinospora, Microascus, Litoporas The genus Pleospora, the genus Coniochaetidium, the genus Pichia, the genus Debaryomyces, the genus Corynebacterium, the genus Aglobacterium, or the genus Arsuro. It means amadriase and includes both wild type and its variants unless otherwise specified.
 ある実施形態において酸化還元酵素は乳酸オキシダーゼであり得る。本明細書において乳酸オキシダーゼとは、フラビンアデニンモノヌクレオチド依存性乳酸オキシダーゼ、又はフラビンアデニンモノヌクレオチド結合型乳酸オキシダーゼを言う。特定の実施形態では、乳酸オキシダーゼは市販のものを使用し得る。別の実施形態では、市販乳酸オキシダーゼの改変体又はその均等物を使用し得る。本明細書において乳酸オキシダーゼの由来は特に限定せず、例えば、アエロコッカス(Aerococcus)属、ストレプトコッカス(Streptococcus)属、ペディオコッカス(Pediococcus)属、又はエンテロコッカス(Enterococcus)属由来である乳酸オキシダーゼを意味し、特に断らない限り、野生型及びその改変体のいずれをも含む。 In certain embodiments, the redox enzyme can be lactate oxidase. As used herein, the term lactate oxidase refers to flavin adenine mononucleotide-dependent lactate oxidase or flavin adenine mononucleotide-bound lactate oxidase. In certain embodiments, lactate oxidase may be commercially available. In another embodiment, a variant of commercially available lactic acid oxidase or an equivalent thereof may be used. In the present specification, the origin of lactic acid oxidase is not particularly limited, and means, for example, lactic acid oxidase derived from Aerococcus, Streptococcus, Pediococcus, or Enterococcus. However, unless otherwise specified, both wild type and its variants are included.
 特定の実施形態において、FAD-GDHは、そのアミノ酸配列のN末端又はC末端に酵素精製用のタグ配列、ペプチド配列、シグナル配列、切断用認識配列、及び/又はそれらの配列の切断残部が付加された組換えFAD-GDHであって、FAD依存性グルコースデヒドロゲナーゼ活性を有するものを含み得る。 In certain embodiments, FAD-GDH has a tag sequence for enzyme purification, a peptide sequence, a signal sequence, a recognition sequence for cleavage, and / or a cleavage residue of those sequences added to the N-terminus or C-terminus of the amino acid sequence. Recombinant FAD-GDH that has been subjected to FAD-dependent glucose dehydrogenase activity may be included.
 ある実施形態において、1つのグルコースセンサ当たりのFAD-GDHの含有量は、例えば0.1~50U、0.5~20U、1~10U、例えば1~5Uとすることができるがこれに限らない。本明細書においてFAD-GDHの酵素単位Uは、37℃1分で1μmolのグルコースを変換する酵素量とする。 In certain embodiments, the content of FAD-GDH per glucose sensor can be, for example, 0.1-50U, 0.5-20U, 1-10U, for example 1-5U, but is not limited to this. .. In the present specification, the enzyme unit U of FAD-GDH is an enzyme amount that converts 1 μmol of glucose at 37 ° C. for 1 minute.
 本明細書において、1つのグルコースセンサ当たりのFAD-GDHの含有量とは、特定の実施形態において、作用極及び対極を有する電極系を1つ有するグルコースセンサに用いられるFAD-GDHの量を言う。別の実施形態において、前記含有量は、1つの電極系の上に配置される試薬層に含まれるFAD-GDHの量を言う。別の実施形態において、前記含有量は試料が添加されたときに、反応系に含まれるよう試薬に配合されるFAD-GDHの量をいう。 As used herein, the content of FAD-GDH per glucose sensor refers to the amount of FAD-GDH used in a glucose sensor having one electrode system having an working electrode and a counter electrode in a specific embodiment. .. In another embodiment, the content refers to the amount of FAD-GDH contained in the reagent layer arranged on one electrode system. In another embodiment, the content refers to the amount of FAD-GDH to be added to the reagent to be included in the reaction system when the sample is added.
 ある実施形態において、1つの乳酸センサ当たりのLODの含有量は、例えば0.1~50U、0.5~20U、1~10U、例えば1~5Uとすることができるがこれに限らない。本明細書においてLODの酵素単位Uは、37℃1分で1μmolの乳酸を酸化する酵素量とする。 In certain embodiments, the LOD content per lactic acid sensor can be, for example, 0.1 to 50 U, 0.5 to 20 U, 1 to 10 U, for example 1 to 5 U, but is not limited to this. In the present specification, the enzyme unit U of LOD is an enzyme amount that oxidizes 1 μmol of lactic acid at 37 ° C. for 1 minute.
 本明細書において、1つの乳酸センサ当たりのLODの含有量とは、特定の実施形態において、作用極及び対極を有する電極系を1つ有する乳酸センサに用いられるLODの量を言う。別の実施形態において、前記含有量は、1つの電極系の上に配置される試薬層に含まれるLODの量を言う。別の実施形態において、前記含有量は試料が添加されたときに、反応系に含まれるよう試薬に配合されるLODの量をいう。 In the present specification, the content of LOD per lactic acid sensor refers to the amount of LOD used in a lactic acid sensor having one electrode system having an working electrode and a counter electrode in a specific embodiment. In another embodiment, the content refers to the amount of LOD contained in the reagent layer arranged on one electrode system. In another embodiment, the content refers to the amount of LOD to be added to the reagent to be included in the reaction system when the sample is added.
 ある実施形態において、バイオセンサは、測定試料に対して使用される通常の大きさを有する。例えばグルコースセンサは、特定の実施形態において、血液等のグルコースを含み得る試料に対して使用される通常の大きさを有する。センサに添加される試料、例えば血液試料は、例えば0.1~2μL、0.2~1μL、例えば0.2~0.5μLであり得る。センサは、試料若しくは反応系の容量に応じて設計し得る。 In certain embodiments, the biosensor has the usual size used for a measurement sample. For example, the glucose sensor has the usual size used for a sample that may contain glucose, such as blood, in certain embodiments. The sample added to the sensor, such as a blood sample, can be, for example, 0.1-2 μL, 0.2-1 μL, for example 0.2-0.5 μL. The sensor can be designed according to the volume of the sample or reaction system.
試薬層
 ある実施形態において、本開示のバイオセンサは、電子伝達促進剤(PMSを除く)、電極、酸化還元酵素、及び金属錯体化合物を含む。ある実施形態において、バイオセンサは電極及び試薬層を有し、試薬層は、電子伝達促進剤、酸化還元酵素、及び金属錯体化合物を含む。ある実施形態において電極は、作用極及び対極を有する電極部を含む。ある実施形態において電極部は絶縁性基板上に配置されうる。ある実施形態では電極部の上に試薬層が配置され得る。
Reagent Layer In certain embodiments, the biosensors of the present disclosure include electron transfer promoters (excluding PMS), electrodes, oxidoreductases, and metal complex compounds. In certain embodiments, the biosensor comprises an electrode and a reagent layer, the reagent layer comprising an electron transfer promoter, an oxidoreductase, and a metal complex compound. In certain embodiments, the electrode comprises an electrode portion having an working electrode and a counter electrode. In certain embodiments, the electrodes may be placed on an insulating substrate. In certain embodiments, a reagent layer may be placed on top of the electrode section.
 ある実施形態において、本開示は、電極の上に、酸化還元酵素、金属錯体化合物、及び、電子伝達促進剤を含む試薬層を形成することを含む、バイオセンサの製造方法を提供する。 In certain embodiments, the present disclosure provides a method for producing a biosensor, which comprises forming a reagent layer containing an oxidoreductase, a metal complex compound, and an electron transfer promoter on an electrode.
 ある実施形態において、本開示は、バイオセンサと、前記バイオセンサの電極に電圧を印加する手段と、電流を測定する手段とを含む、試料中の対象化合物濃度を測定するためのシステムを提供する。電圧を印加する手段は電極と接触可能な接触部、及び電源(例えば直流電源)を含みうる。本開示のシステムはポテンショスタットやガルバノスタットを備え得る。ある実施形態においてバイオセンサはグルコースセンサであり得る。また、ある実施形態において試料中の対象化合物はグルコースであり得る。すなわちある実施形態において、本開示は、グルコース濃度測定システムを用いるグルコース濃度の測定方法を提供する。ある実施形態においてバイオセンサは乳酸センサであり得る。また、ある実施形態において試料中の対象化合物は乳酸であり得る。すなわちある実施形態において、本開示は、乳酸濃度測定システムを用いる乳酸濃度の測定方法を提供する。 In certain embodiments, the present disclosure provides a system for measuring the concentration of a target compound in a sample, comprising a biosensor, means for applying a voltage to the electrodes of the biosensor, and means for measuring an electric current. .. The means for applying the voltage may include a contact portion capable of contacting the electrode and a power source (eg, a DC power source). The system of the present disclosure may include potentiostats and galvanostats. In certain embodiments, the biosensor can be a glucose sensor. Also, in certain embodiments, the target compound in the sample may be glucose. That is, in certain embodiments, the present disclosure provides a method for measuring glucose concentration using a glucose concentration measuring system. In certain embodiments, the biosensor can be a lactate sensor. Also, in certain embodiments, the target compound in the sample may be lactic acid. That is, in certain embodiments, the present disclosure provides a method for measuring a lactate concentration using a lactate concentration measuring system.
 ある実施形態において、本開示は、測定対象化合物を含み得る試料と酸化還元酵素とを接触させること、電極に電圧を印加すること、及び、金属錯体化合物及び電子伝達促進剤(PMSを除く)の存在下での応答電流を測定することを含む、測定対象化合物の濃度を測定する方法を提供する。印加する電圧は特に限定されないが、金属錯体化合物としてルテニウム化合物を用いる場合は、例えば10~1000mV、10~800mV、50~500mV、例えば0~100mVであり得る。また、金属錯体化合物としてフェリシアン化カリウムを用いる場合は、例えば200~1000mV、300~800mV、300~500mVであり得る。 In certain embodiments, the present disclosure relates to contacting a sample containing a compound to be measured with an oxidoreductase, applying a voltage to an electrode, and a metal complex compound and an electron transfer promoter (excluding PMS). Provided are methods for measuring the concentration of a compound to be measured, including measuring the response current in the presence. The voltage to be applied is not particularly limited, but when a ruthenium compound is used as the metal complex compound, it may be, for example, 10 to 1000 mV, 10 to 800 mV, 50 to 500 mV, for example, 0 to 100 mV. When potassium ferricyanide is used as the metal complex compound, it may be, for example, 200 to 1000 mV, 300 to 800 mV, or 300 to 500 mV.
 測定対象化合物の濃度を測定する方法は、前記試料と酸化還元酵素とを接触させた後、一定時間電位を印加せずに保持した後に電圧を印加してもよく、接触と同時に電圧を印加することもできる。電位を印加せずに保持する時間は、0秒より大きく1分未満、例えば1~30秒、例えば1~10秒であり得る。例えば酸化還元酵素をFAD-GDHとし測定対象化合物をグルコースとすることができる。また、酸化還元酵素をLODとすることができ、測定対象化合物を乳酸とすることができる。上記に列挙したEC第1群に分類される各種の酸化還元酵素についても同様に、それら酸化還元酵素が認識する基質を測定対象化合物とすることができ、かかる測定対象化合物の濃度を測定するシステムがそれぞれ提供される。 As a method for measuring the concentration of the compound to be measured, the sample may be brought into contact with the oxidoreductase, and then the voltage may be applied after holding the sample without applying the potential for a certain period of time, and the voltage is applied at the same time as the contact. You can also do it. The time to hold without applying the potential can be greater than 0 seconds and less than 1 minute, eg 1-30 seconds, eg 1-10 seconds. For example, the redox enzyme can be FAD-GDH and the compound to be measured can be glucose. Further, the redox enzyme can be LOD, and the compound to be measured can be lactic acid. Similarly, for various oxidoreductases classified into the EC Group 1 listed above, the substrate recognized by these oxidoreductases can be used as the measurement target compound, and a system for measuring the concentration of the measurement target compound. Are provided respectively.
 ある実施形態において、試薬層は、さらに、緩衝剤、界面活性剤、無機化合物、及びその他の成分を含み得る。 In certain embodiments, the reagent layer may further comprise a buffer, a surfactant, an inorganic compound, and other components.
 緩衝剤としては、特に限定されるものではないが、アミン系緩衝剤やカルボキシル基を有する緩衝剤が挙げられる。アミン系緩衝剤としては、Tris、ACES、CHES、CAPSO、TAPS、CAPS、Bis-Tris、TAPSO、TES、Tricine及びADA等が挙げられる。カルボキシル基を有する緩衝剤としては、酢酸-酢酸Na緩衝剤、リンゴ酸-酢酸Na緩衝剤、マロン酸-酢酸Na緩衝剤、コハク酸-酢酸Na緩衝剤が挙げられる。緩衝剤は、単独でも組み合わせでも使用し得る。 The buffering agent is not particularly limited, and examples thereof include an amine-based buffering agent and a buffering agent having a carboxyl group. Examples of the amine-based buffer include Tris, ACES, CHES, CAPSO, TAPS, CAPS, Bis-Tris, TAPSO, TES, Tricine and ADA. Examples of the buffer having a carboxyl group include acetic acid-Na acetate buffer, malic acid-Na acetate buffer, malonic acid-Na acetate buffer, and succinic acid-Na acetate buffer. The buffer may be used alone or in combination.
 界面活性剤としては、特に限定されるものではないが、非イオン性、アニオン性、カチオン性、両性の界面活性剤が挙げられる。両性界面活性剤としては、カルボキシベタイン、スルホベタイン、及びホスホベタインが挙げられるがこれに限らない。スルホベタインとしては、例えば、CHAPS(3-[(3-コールアミドプロピル])ジメチルアンモニオ]プロパンスルホネート)、CHAPSO(3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシ-1-プロパンスルホネート)、及びアルキルヒドロキシスルホベタインが挙げられるがこれに限らない。 The surfactant is not particularly limited, and examples thereof include nonionic, anionic, cationic, and amphoteric surfactants. Amphoteric surfactants include, but are not limited to, carboxybetaine, sulfobetaine, and phosphobetaine. Examples of the sulfobetaine include CHASPS (3-[(3-colamidepropyl)) dimethylammonio] propanesulfonate) and CHASPS (3-[(3-colamidepropyl) dimethylammonio] -2-hydroxy-1. -Propane sulfonate), and alkyl hydroxysulfobetaine, but not limited to.
 ある実施形態において無機化合物は、層状無機化合物であってもよく、従来グルコースセンサに使用されるものや今後開発されるその均等物を使用し得る。無機化合物としては、イオン交換能を有する膨潤性粘土鉱物、スメクタイト、ベントナイト、合成フッ素雲母、バーミキュライト、合成ヘクトライト、合成サポナイトなどの合成スメクタイト;合成フッ素雲母を含む膨潤性合成雲母;Na型雲母を含む合成雲母、及びこれらの組み合わせが挙げられるがこれに限らない。 In certain embodiments, the inorganic compound may be a layered inorganic compound, and those conventionally used for glucose sensors or equivalents thereof which will be developed in the future can be used. Examples of the inorganic compound include swellable clay minerals having ion exchange ability, smectite, bentonite, synthetic fluorine mica, vermiculite, synthetic hectorite, synthetic saponite and other synthetic smectites; swellable synthetic mica containing synthetic fluorine mica; Na-type mica. Examples include, but are not limited to, synthetic mica including, and combinations thereof.
 ある実施形態において、試薬層は酵素層を有し得る。ある実施形態において酵素層はFAD-GDHを有し得る。ある実施形態において、FAD-GDHを含む酵素層に、ポリアクリル酸ナトリウム、トレハロース、グルコマンナン等の添加剤を含み得る。 In certain embodiments, the reagent layer may have an enzyme layer. In certain embodiments, the enzyme layer may have FAD-GDH. In certain embodiments, the enzyme layer containing FAD-GDH may contain additives such as sodium polyacrylate, trehalose, glucomannan and the like.
 試薬層は単層構造でも多層構造でもよい。各層は1以上の成分を有し得る。ある実施形態において、試薬層は無機ゲル層と、その上に積層されたFAD-GDHを含む酵素層であり得る。試薬層は、電極上に乾燥状態で配置され得る。 The reagent layer may have a single layer structure or a multi-layer structure. Each layer may have one or more components. In certain embodiments, the reagent layer can be an inorganic gel layer and an enzyme layer containing FAD-GDH laminated on top of the inorganic gel layer. The reagent layer can be placed dry on the electrodes.
 測定対象となる試料は、生物学的試料(例えば血液、体液、尿等)、又は他の液体試料であり得る。 The sample to be measured may be a biological sample (for example, blood, body fluid, urine, etc.) or another liquid sample.
 ある実施形態においてグルコースセンサは、FAD-GDHを含む作用電極、対極、及び場合により参照電極を有する。作用電極としては、カーボン電極、金電極、白金電極などを用いることができる。電極上にFAD-GDHを固定化してもよく、又は固定せずともよい。対極は白金電極やPt/C等の慣用の電極でありうる。参照電極はAg/AgCl電極などの慣用の電極でありうる。FAD-GDHを固定化する場合、固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどがあり、あるいはフェロセンあるいはその誘導体に代表される電子メディエータとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いてFAD-GDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。他の酸化還元酵素についても同じ要領で固定化し得る。 In certain embodiments, the glucose sensor has a working electrode containing FAD-GDH, a counter electrode, and optionally a reference electrode. As the working electrode, a carbon electrode, a gold electrode, a platinum electrode and the like can be used. FAD-GDH may or may not be immobilized on the electrodes. The counter electrode can be a conventional electrode such as a platinum electrode or Pt / C. The reference electrode can be a conventional electrode such as an Ag / AgCl electrode. When FAD-GDH is immobilized, the immobilization method includes a method using a cross-linking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a photocrosslinkable polymer, a conductive polymer, a redox polymer and the like. Or, it may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator typified by ferrocene or a derivative thereof, or these may be used in combination. Typically, FAD-GDH is immobilized on a carbon electrode with glutaraldehyde and then treated with a reagent having an amine group to block glutaraldehyde. Other redox enzymes can be immobilized in the same manner.
 グルコースセンサの製造方法は公知文献にあり、例えばLiu,et.al.,Anal.Chem.2012,84,3403-3409及びTsujimura,et.al.,J.Am.Chem.Soc.2014,136,14432-14437が挙げられる(参照によりいずれもその全内容を本明細書に組み入れるものとする。)。 A method for manufacturing a glucose sensor is available in publicly known documents, for example, Liu, et. al. , Anal. Chem. 2012, 84, 3403-3409 and Tsujimura, et. al. , J. Am. Chem. Soc. 2014, 136, 14432-14437 (all of which are incorporated herein by reference).
 一実施形態では、グルコースセンサは印刷電極を含みうる。この場合、絶縁基板上に電極を形成しうる。具体的には、電極は、フォトリソグラフィ又はスクリーン印刷、グラビア印刷またはフレキソ印刷などの印刷技術によって基板上に形成しうる。絶縁基板を構成する材料としては、例えば、シリコン、ガラス、セラミック、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル等が挙げられる。様々な溶媒または化学物質に対して高い耐性を示す材料を使用しうる。 In one embodiment, the glucose sensor may include a printed electrode. In this case, electrodes can be formed on the insulating substrate. Specifically, the electrodes can be formed on the substrate by printing techniques such as photolithography or screen printing, gravure printing or flexographic printing. Examples of the material constituting the insulating substrate include silicon, glass, ceramic, polyvinyl chloride, polyethylene, polypropylene, polyester and the like. Materials that are highly resistant to various solvents or chemicals can be used.
 グルコース濃度の測定は、以下のようにして行うことができる。恒温セルに緩衝液を入れ、一定温度に維持する。電子移動のために、金属錯体化合物(例えばルテニウム化合物等)及び電子伝達促進剤を用いる。酸化還元酵素としてFAD-GDHを用いる。作用電極として炭素電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。炭素電極に一定の電圧を印加して、電流が定常になった後、グルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作成したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。同様にして、ルテニウム化合物の代わりにフェリシアン化カリウムを用いても、試料中のグルコース濃度を計算することができる。本明細書中において、特に断らない限り、酸化還元電位は、参照電極として銀塩化銀を用いた際の酸化還元電位(vs. Ag/AgCl)とする。 The glucose concentration can be measured as follows. Put buffer in a constant temperature cell and keep it at a constant temperature. Metal complex compounds (eg, ruthenium compounds, etc.) and electron transfer promoters are used for electron transfer. FAD-GDH is used as an oxidoreductase. A carbon electrode is used as the working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. A constant voltage is applied to the carbon electrode, and after the current becomes steady, a sample containing glucose is added and the increase in current is measured. The glucose concentration in the sample can be calculated according to the calibration curve prepared with the standard concentration glucose solution. Similarly, potassium ferricyanide can be used instead of the ruthenium compound to calculate the glucose concentration in the sample. In the present specification, unless otherwise specified, the redox potential is the redox potential (vs. Ag / AgCl) when silver silver chloride is used as a reference electrode.
 グルコースセンサは、一定の時間で所定の電圧を加える手段、バイオセンサから伝達される電気信号を測定する手段、電気信号を測定対象物濃度に換算する手段等を備えた測定機器と組み合わせて使用し得る。乳酸センサを含むバイオセンサについても同様である。 The glucose sensor is used in combination with a measuring device equipped with a means for applying a predetermined voltage at a fixed time, a means for measuring an electric signal transmitted from a biosensor, a means for converting the electric signal into a concentration of an object to be measured, and the like. obtain. The same applies to biosensors including lactic acid sensors.
 本開示の電気化学的測定法は、電流測定法、電位差測定法、又は電量分析法であり得る。ある実施形態において、電気化学的測定法では、還元状態の電子伝達物質が電位の印加により酸化状態となる際の電流値を測定する。 The electrochemical measurement method of the present disclosure may be a current measurement method, a potentiometric method, or a coulometric method. In one embodiment, the electrochemical measurement method measures the current value when the electron transfer substance in the reduced state is in the oxidized state by applying a potential.
 ある実施形態において本開示の方法は医療行為を含まない。ある実施形態において本開示の方法は医師による診断行為を含まない。ある実施形態において、本開示の方法は糖尿病診断を補助し得る。ある実施形態において、本開示の方法は血糖値モニタリングに利用し得る。これらは医師の判断を必要としない。 In certain embodiments, the method of this disclosure does not include medical practice. In certain embodiments, the methods of the present disclosure do not include diagnostic activity by a physician. In certain embodiments, the methods of the present disclosure may aid in the diagnosis of diabetes. In certain embodiments, the methods of the present disclosure can be utilized for blood glucose monitoring. These do not require the judgment of a doctor.
 以下に、実施例及び比較例を用いて本開示をさらに説明する。但し、本開示は以下の実施例に限定して解釈されない。 Hereinafter, the present disclosure will be further described with reference to Examples and Comparative Examples. However, this disclosure is not construed as being limited to the following examples.
 [実施例1]
 Glucose Dehydrogenase(キッコーマンバイオケミファ社製、ムコール属由来、Product Code:FADGDH-AA、以下、GDHと表記する)、ヘキサアンミンルテニウムクロライド(メルク社製、以下、Ruと表記する)とBGLBを混合し、印刷電極測定によるクロノアンペロメトリーを行った。具体的には、PBS中に終濃度0.1mg/mlのGDH、300mMのRu、12mMのBGLBを含んだ溶液を印刷電極上に100μL塗布した。印刷電極はカーボンの作用電極(12.6mm2)、銀の参照電極が印刷されてなる、SCREEN-PRINTED ELECTRODES(Drop Sense社製、DRP-110)を用い、専用コネクター(Drop Sense社製、DRP-CAC)を用いて、ALS 電気化学アナライザー 814D(BAS社製)に接続した。そして、印加電圧を+100mV(vs. Ag/AgCl)とした。グルコースを添加し、クロノアンペロメトリー測定開始から5秒後の電流値を計測した結果を図1に示す。図1に示すように、BGLBを混合しなかった場合と比べて、BGLBを添加した場合に高い応答電流がみられ、グルコース濃度依存的に電流値が増加した。
[Example 1]
Glucose Dehydrogenase (manufactured by Kikkoman Biochemifa, derived from the genus Mucor, Product Code: FADGDH-AA, hereinafter referred to as GDH), hexaammine ruthenium chloride (manufactured by Merck, hereinafter referred to as Ru) and BGLB are mixed. Chronoamperometry was performed by measuring the printed electrodes. Specifically, 100 μL of a solution containing GDH at a final concentration of 0.1 mg / ml, Ru at 300 mM, and BGLB at 12 mM in PBS was applied onto the print electrode. The printed electrode uses a carbon working electrode (12.6 mm2) and a silver reference electrode printed on it, SCREEN-PRINTED ELECTRODES (Drop Sense, DRP-110), and a dedicated connector (Drop Sense, DRP-). It was connected to the ALS electrochemical analyzer 814D (manufactured by BAS) using CAC). Then, the applied voltage was set to +100 mV (vs. Ag / AgCl). FIG. 1 shows the results of adding glucose and measuring the current value 5 seconds after the start of chronoamperometry measurement. As shown in FIG. 1, a higher response current was observed when BGLB was added as compared with the case where BGLB was not mixed, and the current value increased in a glucose concentration-dependent manner.
 続いて、BGLBの代わりに1mMのTMPD若しくはAPPDを用いて、同様の測定を行った。具体的には、PBS中に0.5%エタノール、終濃度0.1mg/mlのGDH、300mMのRu、1mMのTMPD若しくはAPPDを含んだ溶液を印刷電極上に100μL塗布した。ただし、APPDは完全に溶解しなかったため、実際には1mM未満の濃度で測定した。そして、印加電圧を+100mV(vs. Ag/AgCl)とした。グルコースを添加し、クロノアンペロメトリー測定開始から20秒後の電流値を計測した結果を図2及び図3に示す。図2及び図3にそれぞれ示すように、TMPD若しくはAPPDを混合しなかった場合と比べて、TMPD若しくはAPPDを添加した場合に高い応答電流がみられ、グルコース濃度依存的に電流値が増加した。 Subsequently, the same measurement was performed using 1 mM TMPD or APPD instead of BGLB. Specifically, 100 μL of a solution containing 0.5% ethanol, a final concentration of 0.1 mg / ml GDH, 300 mM Ru, 1 mM TMPD or APPD in PBS was applied onto the printed electrode. However, since APPD was not completely dissolved, it was actually measured at a concentration of less than 1 mM. Then, the applied voltage was set to +100 mV (vs. Ag / AgCl). The results of adding glucose and measuring the current value 20 seconds after the start of chronoamperometry measurement are shown in FIGS. 2 and 3. As shown in FIGS. 2 and 3, a higher response current was observed when TMPD or APPD was added as compared with the case where TMPD or APPD was not mixed, and the current value increased in a glucose concentration-dependent manner.
 [実施例2]
 実施例1で用いたRuの代わりにフェリシアン化カリウム(以下、FeCNと表記する)を用いて測定を行った。具体的には、PBS中に2.5%エタノール、終濃度0.1mg/mlのGDH、300mMのRu、1mMのBGLB若しくはDPPAを含んだ溶液を印刷電極上に100μL塗布した。同様にして、PBS中に0.5%エタノール、終濃度0.1mg/mlのGDH、300mMのRu、1mM未満のAPPDを含んだ溶液を印刷電極上に100μL塗布した。グルコースを添加し、クロノアンペロメトリー測定開始から5秒後の電流値を計測した結果を図4に示す。図4に示すように、APPDを混合しなかった場合と比べて、APPDを添加した場合に高い応答電流がみられ、グルコース濃度依存的に電流値が増加した。特に軽度の糖尿病患者の血糖値付近である10mM~20mM グルコース添加時に、FeCN単独では応答電流が低く、BGLB、DPPA又はAPPDを添加した場合に高い応答電流がみられ、センサ感度が向上した。
[Example 2]
The measurement was carried out using potassium ferricyanide (hereinafter referred to as FeCN) instead of Ru used in Example 1. Specifically, 100 μL of a solution containing 2.5% ethanol, a final concentration of 0.1 mg / ml GDH, 300 mM Ru, 1 mM BGLB or DPPA in PBS was applied onto the printed electrode. Similarly, 100 μL of a solution containing 0.5% ethanol, a final concentration of 0.1 mg / ml GDH, 300 mM Ru, and less than 1 mM APPD in PBS was applied onto the print electrode. FIG. 4 shows the results of adding glucose and measuring the current value 5 seconds after the start of chronoamperometry measurement. As shown in FIG. 4, a higher response current was observed when APPD was added as compared with the case where APPD was not mixed, and the current value increased in a glucose concentration-dependent manner. In particular, when 10 mM to 20 mM glucose was added, which is near the blood glucose level of mildly diabetic patients, the response current was low with FeCN alone, and a high response current was observed when BGLB, DPPA or APPD was added, and the sensor sensitivity was improved.
 [実施例3]
 実施例1で用いたFADGDH-AAの代わりに乳酸オキシダーゼ(東洋紡社製、Product Code:LCO-301、以下、LODと表記する)を用いて印刷電極測定によるクロノアンペロメトリーを行った。具体的には、PBS中に終濃度0.1mg/mlのLOD、300mMのRu、1mMのBGLBを含んだ溶液を印刷電極上に100μL塗布した。乳酸を添加し、クロノアンペロメトリー測定開始から5秒後の電流値を計測し、乳酸を添加しなかった際の電流値を差し引いた結果を図5に示す。図5に示すように、BGLBを混合しなかった場合と比べて、BGLBを添加した場合に高い応答電流がみられ、乳酸濃度依存的に電流値が増加した。
[Example 3]
Chronoamperometry by print electrode measurement was performed using lactic acid oxidase (manufactured by Toyobo Co., Ltd., Product Code: LCO-301, hereinafter referred to as LOD) instead of FADGDH-AA used in Example 1. Specifically, 100 μL of a solution containing a final concentration of 0.1 mg / ml LOD, 300 mM Ru, and 1 mM BGLB in PBS was applied onto the printed electrode. FIG. 5 shows the results obtained by measuring the current value 5 seconds after the start of chronoamperometry measurement with the addition of lactic acid and subtracting the current value when no lactic acid was added. As shown in FIG. 5, a higher response current was observed when BGLB was added as compared with the case where BGLB was not mixed, and the current value increased in a lactic acid concentration-dependent manner.
 本開示のバイオセンサは生化学、医療、医学の分野において利用することができる。例えば本開示のグルコースセンサはグルコース測定に有用である。例えば本開示の乳酸センサは乳酸測定に有用である。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
The biosensors of the present disclosure can be used in the fields of biochemistry, medicine and medicine. For example, the glucose sensor of the present disclosure is useful for glucose measurement. For example, the lactate sensor of the present disclosure is useful for measuring lactate.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (8)

  1.  (i)電子伝達促進剤(PMSを除く)、(ii)酸化還元酵素、(iii)金属錯体化合物、及び、(iv)電極を含む、バイオセンサ。 A biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
  2.  電子伝達促進剤が
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    は、-NRであり、
    は、-NR1011であり、
    及びRは、それぞれ独立に、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル、フェナントレニル、アセチル、カルボキシ、フラニルホルミル、ピラゾリルホルミル、1-メチル-1H-ピラゾール-5-イルホルミル、9,9-ジメチルフルオレン-2-イル、又はベンジルであり、
    10は、水素、場合により1以上のX又はVにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C3-9シクロアルキル、フェニル、1-ナフチル、2-ナフチル、アントラセニル又はフェナントレニルであり、
    、R、R及びRは、それぞれ独立に、水素、場合により1以上のYにより置換されてもよい、直鎖又は分枝鎖のC1-7アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ニトロ、シアノ、カルボキシ、スルホ、ヒドロキシ又はアミノであり、
    或いは、R及びR、又は、R及びRは、それらを含有するベンゼン環と一緒になって、場合により1以上のオキソ、Xにより置換されてもよい、ベンゼン環、又は
    Figure JPOXMLDOC01-appb-C000002
    を形成し、但し*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合するか、又は、*はRが結合する炭素原子に結合し、**はRが結合する炭素原子に結合し、
    11は、直鎖又は分枝鎖のC1-7アルキルであるか、又は、場合により1以上のX若しくはZにより置換されてもよい、フェニル、1-ナフチル、2-ナフチル、アントラセニル及びフェナントレニルからなる群より選択され、
    ここでVは、場合によりC1-7アルキルに置換されてもよい、-O-アクリロイル、アセチルアミノ、又はフェニルであり、
    Xは、場合により1以上のハロ、アミノ、シアノ、カルボキシ、カルボニル、アルコキシ、アルキルアミノ、ニトロソ、ニトロ及びスルホからなる群より選択される置換基により置換されてもよい、直鎖又は分枝鎖の、C1-7アルキル、C1-7アルケニル、C1-7アルキニル、C1-7アルコキシ、ハロ、ヒドロキシ、ニトロ、カルボキシ、シアノ、スルホ、アミノ又はアルキルアミノであり、
    Yはハロ、アミノ、シアノ、カルボキシ、カルボニル、ヒドロキシ、アルコキシ及びスルホからなる群より選択され、
    Zは-SO-CH=CH、-SO-C-O-SOH、又は4,6-ジクロロトリアジン-2-イルアミノである]
    である、請求項1に記載のバイオセンサ。
    Electron transfer promoter
    Figure JPOXMLDOC01-appb-C000001
    [During the ceremony,
    R 1 is -NR 7 R 8 and
    R 2 is −NR 10 R 11 and
    R 7 and R 8 are each independently substituted with hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1- . 7 alkynyl, C 3-9 cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenanthrenyl, acetyl, carboxy, furanylformyl, pyrazolylformyl, 1-methyl-1H-pyrazole-5-ylformyl, 9,9 -Dimethylfluorene-2-yl or benzyl,
    R 10 is hydrogen, optionally one or more X or V, linear or branched C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 3-9 . Cycloalkyl, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl or phenanthrenyl,
    R 3 , R 4 , R 5 and R 6 are each independently substituted with hydrogen, optionally one or more Y, linear or branched C 1-7 alkyl, C 1-7 alkoxy. , C 1-7 alkynyl, C 1-7 alkoxy, halo, nitro, cyano, carboxy, sulfo, hydroxy or amino.
    Alternatively, R 3 and R 4 , or R 5 and R 6 may be optionally substituted with one or more oxos, Xs, together with the benzene ring containing them, the benzene ring, or
    Figure JPOXMLDOC01-appb-C000002
    , Where * is bonded to the carbon atom to which R 3 is bonded, ** is bonded to the carbon atom to which R 4 is bonded, or * is bonded to the carbon atom to which R 5 is bonded, ** Bonds to the carbon atom to which R 6 bonds,
    R 11 is a straight or branched C 1-7 alkyl or optionally substituted with one or more Xs or Zs, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl and phenanthrenyl. Selected from the group consisting of
    Where V is —O-acryloyl, acetylamino, or phenyl, optionally substituted with C 1-7 alkyl.
    X may optionally be substituted with a substituent selected from the group consisting of one or more halos, aminos, cyanos, carboxys, carbonyls, alkoxys, alkylaminos, nitrosos, nitros and sulfos, linear or branched. , C 1-7 alkyl, C 1-7 alkenyl, C 1-7 alkynyl, C 1-7 alkoxy, halo, hydroxy, nitro, carboxy, cyano, sulfo, amino or alkylamino.
    Y is selected from the group consisting of halo, amino, cyano, carboxy, carbonyl, hydroxy, alkoxy and sulfo.
    Z is -SO 2 -CH = CH 2 , -SO 2 -C 2 H 4 -O-SO 3 H, or 4,6-dichlorotriazine-2-ylamino]
    The biosensor according to claim 1.
  3.  酸化還元酵素が、FAD型グルコースデヒドロゲナーゼ(FAD-GDH)、L-またはD-乳酸オキシダーゼ(LOD)、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、アマドリアーゼ、ペルオキシダーゼ、ガラクトースオキシダーゼ、ビリルビンオキシダーゼ、ピルビン酸オキシダーゼ、D-またはL-アミノ酸オキシダーゼ、アミンオキシダーゼ、コレステロールオキシダーゼ、コリンオキシダーゼ、キサンチンオキシダーゼ、サルコシンオキシダーゼ、アスコルビン酸オキシダーゼ、チトクロムオキシダーゼ、アルコールデヒドロゲナーゼ、コレステロールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、アルデヒドオキシダーゼ、フルクトースデヒドロゲナーゼ(FDH)、ソルビトールデヒドロゲナーゼ、D-またはL-乳酸デヒドロゲナーゼ、リンゴ酸デヒドロゲナーゼ、グリセロールデヒドロゲナーゼ、17Bヒドロキシステロイドデヒドロゲナーゼ、エストラジオール17Bデヒドロゲナーゼ、D-またはL-アミノ酸デヒドロゲナーゼ、グリセルアルデヒド3-リン酸デヒドロゲナーゼ、3-ヒドロキシステロイドデヒドロゲナーゼ、ジアホラーゼ、カタラーゼ、グルタチオンレダクターゼ、チトクロムb5レダクターゼ、アドレノキシンレダクターゼ、チトクロムb5レダクターゼ、アドレノドキシンレダクターゼ、硝酸レダクターゼ、リン酸デヒドロゲナーゼ、ビリルビンオキシダーゼ、ラッカーゼ、ポリアミンオキシダーゼ、ギ酸デヒドロゲナーゼ、ピラノースオキシダーゼ、ピラノースデヒドロゲナーゼ、及びタウロピンデヒドロゲナーゼからなる群より選択される、請求項1又は2に記載のバイオセンサ。 The oxidase is FAD-type glucose dehydrogenase (FAD-GDH), L- or D-lactic acid oxidase (LOD), glucose oxidase, glucose dehydrogenase, amadriase, peroxidase, galactose oxidase, birylbin oxidase, pyruvate oxidase, D- or L. -Amino acid oxidase, amine oxidase, cholesterol oxidase, choline oxidase, xanthin oxidase, sarcosin oxidase, ascorbic acid oxidase, cytochrome oxidase, alcohol dehydrogenase, cholesterol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, fructose dehydrogenase (FDH), sorbitol dehydrogenase, D- or L-lactic dehydrogenase, malic acid dehydrogenase, glycerol dehydrogenase, 17B hydroxysteroid dehydrogenase, estradiol 17B dehydrogenase, D- or L-amino acid dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, 3-hydroxysteroid dehydrogenase, diahorase, catalase, glutathione reductase , Citochrome b5 reductase, adrenoxine reductase, cytochrome b5 reductase, adrenodoxin reductase, nitrate reductase, phosphate dehydrogenase, birylbin oxidase, lacquerse, polyamine oxidase, formate dehydrogenase, pyranose oxidase, pyranose dehydrogenase, and tauropine dehydrogenase. The biosensor according to claim 1 or 2, which is selected from the above.
  4.  電極が、作用極及び対極を有する電極部を含み、前記電極部が絶縁性基板上に配置され、さらに、前記電極部上に試薬層が配置され、
     前記酸化還元酵素、金属錯体化合物、及び、電子伝達促進剤が前記試薬層に含まれる、請求項1~3のいずれか1項に記載のバイオセンサ。
    The electrode includes an electrode portion having a working electrode and a counter electrode, the electrode portion is arranged on an insulating substrate, and a reagent layer is further arranged on the electrode portion.
    The biosensor according to any one of claims 1 to 3, wherein the oxidoreductase, the metal complex compound, and the electron transfer promoter are contained in the reagent layer.
  5.  電極の上に、酸化還元酵素、金属錯体化合物、及び、電子伝達促進剤を含む試薬層を形成することを含む、バイオセンサの製造方法。 A method for producing a biosensor, which comprises forming a reagent layer containing an oxidoreductase, a metal complex compound, and an electron transfer promoter on an electrode.
  6.  請求項1から4のいずれか1項に記載のバイオセンサと、前記バイオセンサの電極に電圧を印加する手段と、電流を測定する手段とを含む、試料中の対象化合物濃度を測定するためのシステム。 For measuring the concentration of a target compound in a sample, which comprises the biosensor according to any one of claims 1 to 4, a means for applying a voltage to the electrode of the biosensor, and a means for measuring a current. system.
  7.  請求項6に記載のシステムを用いる、試料中の対象化合物濃度の測定方法。 A method for measuring the concentration of a target compound in a sample using the system according to claim 6.
  8.  (i)電子伝達促進剤(PMSを除く)、(ii)酸化還元酵素、(iii)金属錯体化合物、及び、(iv)電極を含む、バイオセンサを用意する工程、
    前記バイオセンサの電極に電圧を印加する工程、及び
    応答電流を測定する工程を含む、試料中の対象化合物の濃度を測定する方法。
    A step of preparing a biosensor comprising (i) an electron transfer promoter (excluding PMS), (ii) an oxidoreductase, (iii) a metal complex compound, and (iv) an electrode.
    A method for measuring the concentration of a target compound in a sample, which comprises a step of applying a voltage to the electrode of the biosensor and a step of measuring a response current.
PCT/JP2021/030143 2020-08-18 2021-08-18 Reagent composition and sensor WO2022039185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022543967A JPWO2022039185A1 (en) 2020-08-18 2021-08-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-138212 2020-08-18
JP2020138212 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022039185A1 true WO2022039185A1 (en) 2022-02-24

Family

ID=80350429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030143 WO2022039185A1 (en) 2020-08-18 2021-08-18 Reagent composition and sensor

Country Status (2)

Country Link
JP (1) JPWO2022039185A1 (en)
WO (1) WO2022039185A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185533A (en) * 2007-01-31 2008-08-14 National Institute Of Advanced Industrial & Technology Glucose measuring method
JP2018054555A (en) * 2016-09-30 2018-04-05 アークレイ株式会社 Biosensor, manufacturing method therefor, and method and system for measuring concentration of glucose or lactate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185533A (en) * 2007-01-31 2008-08-14 National Institute Of Advanced Industrial & Technology Glucose measuring method
JP2018054555A (en) * 2016-09-30 2018-04-05 アークレイ株式会社 Biosensor, manufacturing method therefor, and method and system for measuring concentration of glucose or lactate

Also Published As

Publication number Publication date
JPWO2022039185A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
Cass et al. Ferricinium ion as an electron acceptor for oxido-reductases
JP3966591B2 (en) Mediators useful for electrochemical biosensors
US9410917B2 (en) Method of using a biosensor
US8658011B2 (en) Glucose sensor
JP3297630B2 (en) Biosensor
US8702965B2 (en) Biosensor methods having enhanced stability and hematocrit performance
Sotomayor et al. Development of an enzymeless biosensor for the determination of phenolic compounds
JP2007509355A5 (en)
Razumiene et al. 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions
Wang et al. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly (toluidine blue O) film
EP3303605B1 (en) Multi-mediator reagent formulations for use in electrochemical detection
Ferapontova et al. Effect of pH on direct electron transfer between graphite and horseradish peroxidase
Sekretaryova et al. Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases
Ferapontova et al. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes
US20190257781A1 (en) Glucose redox reaction and composition for glucose measurement using flavin compound (as amended)
JP7032906B2 (en) Composition for glucose redox reaction and glucose measurement using flavin compound
WO2019198359A1 (en) Novel mediator
Kulys et al. Pyrroloquinoline quinone‐dependent carbohydrate dehydrogenase: Activity enhancement and the role of artificial electron acceptors
Pauliukaite et al. L-glutamate biosensor for estimation of the taste of tomato specimens
JP2019184580A (en) Novel mediator
WO2022039185A1 (en) Reagent composition and sensor
JP6484741B1 (en) New mediator
Yao et al. Preparation of a carbon paste/alcohol dehydrogenase electrode using polyethylene glycol-modified enzyme and oil-soluble mediator
JP6484742B1 (en) New mediator
WO2018079465A1 (en) Oxidizing agent for electron mediator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858329

Country of ref document: EP

Kind code of ref document: A1