WO2022039145A1 - Signal generating device for engine - Google Patents

Signal generating device for engine Download PDF

Info

Publication number
WO2022039145A1
WO2022039145A1 PCT/JP2021/029992 JP2021029992W WO2022039145A1 WO 2022039145 A1 WO2022039145 A1 WO 2022039145A1 JP 2021029992 W JP2021029992 W JP 2021029992W WO 2022039145 A1 WO2022039145 A1 WO 2022039145A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
retractor
rotor
magnetic pole
rotation
Prior art date
Application number
PCT/JP2021/029992
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 関田
Original Assignee
マーレエレクトリックドライブズジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マーレエレクトリックドライブズジャパン株式会社 filed Critical マーレエレクトリックドライブズジャパン株式会社
Priority to JP2022543946A priority Critical patent/JPWO2022039145A1/ja
Publication of WO2022039145A1 publication Critical patent/WO2022039145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to an engine signal generator that generates a signal including information on the rotational position of the crank shaft of the engine.
  • a signal generator that generates a signal in synchronization with the rotation of the crank shaft.
  • a signal generator of a type that generates a signal when a change in magnetic flux is detected is often used.
  • This type of signal generator is placed fixed to the case of the engine and is provided to rotate with a rotation sensor that generates a signal when a change in magnetic flux is detected and the crank shaft of the engine. It is composed of a rotor provided with a retractor that causes a change in the magnetic flux detected by the rotation sensor each time the rotation position of the crank shaft matches a set position.
  • the waveform of the signal generated by the signal generator is a pulse waveform in a typical example, but may be a rectangular wave or a stepped waveform.
  • the rotor has a cylindrical surface that shares a central axis with the crank shaft, and has a retractor on the cylindrical surface that causes a change in the magnetic flux detected by the rotation sensor.
  • the retractor is composed of protrusions or recesses formed on the cylindrical surface of the rotor, and causes a change in the magnetic flux detected by the rotation sensor as the rotor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotation.
  • the rotation sensor includes a magnet that causes a magnetic flux to flow in a magnetic path including a magnetic pole portion that is opposed to a region where a rotor retractor is formed through a gap, and a region that includes the magnetic pole portion and a region where a rotor retractor is formed, and a rotor. It is provided with a signal generation unit that generates a positive or negative signal each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotation. The signal generation unit generates a positive electrode signal and a negative electrode signal as a signal including information on the rotation position of the crank shaft in synchronization with the rotation of the crank shaft.
  • each signal output by the rotation sensor is a signal generated at any rotation position of the crank shaft. It is necessary to determine if there is.
  • the rotation position of the crank shaft suitable for igniting the engine is set as the ignition position, and the ignition position is calculated with respect to the rotation speed of the engine, and the calculated ignition position is calculated.
  • an ignition command is given to the ignition device of the engine to perform the ignition operation.
  • a position advanced by a certain angle from the top dead center position which is the rotation position of the crank shaft when the piston of each cylinder of the engine reaches the top dead center.
  • the reference position of the crank shaft is set in, and the time required for the crank shaft to rotate from the reference position to the ignition position is calculated as the ignition position measurement time for various control conditions.
  • the signal generator In order to improve the startability of the engine, after the start operation of the engine is started, the signal generator generates a specific signal without waiting for the control device to be in a state where the ignition of the engine can be controlled. It is preferable to give an ignition command signal to the ignition device immediately when the engine is started so that the initial explosion at the start can be performed as soon as possible.
  • the signal generator needs to be configured to generate a specific signal at a rotation position of the crank shaft suitable as an ignition position at the time of starting the engine.
  • each signal generated by the signal generator is a signal generated for which cylinder at which rotation position of the crank shaft. It is necessary to determine if there is.
  • the signal generator for an engine is typically configured to alternately generate positive and negative signals in synchronization with the rotation of the crank shaft.
  • a signal generator of this type it is not possible to determine at which rotation position of the crank shaft each signal generated by the signal generator is, so it is possible to separately determine the signal. It is necessary to provide means for doing so.
  • Patent Document 1 a cylinder discrimination device that outputs a cylinder discrimination signal corresponding to each cylinder in synchronization with the rotation of the camshaft of the engine is separately provided, and a cylinder discrimination signal corresponding to each cylinder is provided.
  • a method of discriminating the signal output by the signal generator as a signal corresponding to each cylinder is adopted while the signal is generated.
  • the engine since it is necessary to separately provide a means for generating a signal for discriminating the signal in addition to the signal generator that generates a signal in synchronization with the rotation of the crank shaft, the engine It is inevitable that the structure of will be complicated.
  • the generated signal is a signal generated at a specific rotation position of the crank shaft, for example, a rotation position when the piston of a specific cylinder reaches the top dead center.
  • the present invention is provided with a rotation sensor configured to output a signal each time a change in magnetic flux is detected and arranged in a fixed state with respect to the engine case, and to rotate with the crank shaft of the engine.
  • a rotor equipped with a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position of the crank shaft coincides with the set rotation position is provided, and the retractor generates the magnetic flux. It is configured to output a signal of the first polarity from the rotation sensor when the direction is changed, and to output a signal of the second polarity from the rotation sensor when the retractor changes the magnetic flux in the other direction. It is applied to the signal generator for the engine.
  • the first magnetic flux change generator that causes the magnetic flux detected by the rotation sensor to change twice in a row in the process of rotating the rotor, and the rotor rotate.
  • the retractor is provided so that the rotor has one second magnetic flux change generation unit that continuously causes the magnetic flux detected by the rotation sensor to change in the other direction twice.
  • the signal output by the rotation sensor during one rotation of the rotor has the first polarity.
  • the signal output by the rotation sensor during one rotation of the rotor has the first polarity.
  • the signal generator When the signal generator is configured as described above, after the engine start operation is started, the polarity of the signals output by the signal generator in sequence is observed, and when two signals having the same polarity are subsequently detected. In addition, it is possible to determine at which rotation position of the crank shaft the signal detected later is the signal generated among these two signals. Since the first signal pair of the same polarity and the second signal pair of the same polarity are generated only once during one rotation of the rotor, each signal pair is configured when each signal pair is detected. It is possible to immediately determine at which rotation position of the crank shaft the signal is generated, and it is possible to quickly determine the rotation position of the crank shaft. Further, since the signals constituting the first signal pair of the same polarity and the signals constituting the signal pair of the second same polarity have different polarities, both signal pairs can be clearly distinguished and recognized.
  • a first signal pair having the same polarity wherein the signal pair group output by the rotation sensor during one rotation of the rotor has two signals continuously generated with the first polarity.
  • a signal pair of different polarities consisting of two signals of a first polarity and a signal of a second polarity, and a second isopolarity consisting of two signals having a second polarity and continuously generated.
  • the retractor is provided so as to include only a second signal pair consisting of a signal pair of the above and a signal pair of a second polarity and a signal of the first polarity which are subsequently generated.
  • the combination of the polarities of the two signals continuously output by the rotation sensor can be made different during one rotation of the rotor. Therefore, the polarities of the two signals continuously output by the rotation sensor can be different from each other. It is possible to immediately determine at which rotation position the signal is generated, and it is possible to accurately and quickly acquire information on the rotation position of the crank shaft.
  • the signal generated by the signal generator may be a signal whose level changes at a specific rotation position of the crank shaft of the engine.
  • the polarity of a signal is expressed in the direction of level change when the signal is generated. For example, when each signal is a pulse waveform, the polarity is positive when the direction of level change when each signal is generated is positive, and the direction of level change when each signal is generated is positive. When it is in the negative direction, its polarity is considered to be negative. When the signal has two different polarities, it is arbitrary which polarity is positive and which polarity is negative.
  • the waveform of the signal generated from the signal generation unit may be a pulse waveform, or may be a rectangular wave shape or a stepped wave shape.
  • the waveform of the signal generated by the signal generation unit is rectangular wavy or staircase wavy, its rising edge and / or falling edge are recognized as signals including information on the rotational position of the crank shaft, respectively.
  • the rising edge of the signal level is a positive signal
  • the falling signal level is a negative signal.
  • the first polarity and the second polarity are different from each other. When the first polarity is positive, the second polarity is negative, and when the first polarity is negative, the second polarity is negative. The polarity is positive.
  • the crank shafts are sequentially generated with the first polarity during one rotation of the engine. Because either one of the first identical polarity signal pair consisting of one signal and the second identical polarity signal pair consisting of two signals having a second polarity and sequentially generated can always be generated. , Information on the rotational position of the crank shaft required to enable the start of the engine can be quickly acquired, and the startability of the engine can be improved.
  • the present invention may take various aspects in carrying out the invention, but still another aspect of the present invention will be clarified in the description of the embodiments shown below for carrying out the invention.
  • two signal pairs a first signal pair of the same polarity and a second signal pair of the same polarity, are generated during one rotation of the crank shaft, and are based on both signal pairs. Since it is possible to determine the generation position of each signal, it is possible to increase the chances of determining the generation position of each signal and improve the reliability of the determination of the signal generation position.
  • the retractor is composed of only the retractor component consisting of the first section to the third section arranged in the circumferential direction of the rotor, and the form of the section at the tip of the first section and the first section
  • the form of the section at the connection between the rear end and the tip of the second section constitutes the first magnetic flux change generator, and at the connection between the rear end of the second section and the tip of the third section.
  • FIG. 1 is a front view schematically showing a configuration of an embodiment of a signal generator according to the present invention.
  • FIG. 2A is a developed view showing the shape of the retractor provided on the outer periphery of the rotor of the signal generator shown in FIG. 1 when viewed along the direction from the outer diameter side to the inner diameter side of the rotor.
  • 2 (B) is a developed view showing the shape of the retractor when viewed from a direction along the axial direction of the rotor.
  • FIG. 3 is a developed view showing a modified example of the retractor provided in the rotor of the signal generator shown in FIG. 1 when viewed along the direction from the outer diameter side to the inner diameter side of the rotor.
  • FIG. 2A is a developed view showing the shape of the retractor provided on the outer periphery of the rotor of the signal generator shown in FIG. 1 when viewed along the direction from the outer diameter side to the inner diameter side of the rotor.
  • 2 (B) is a developed
  • FIG. 4A is a development showing a shape when another modification of the retractor provided in the rotor of the signal generator shown in FIG. 1 is viewed along the direction from the outer diameter side to the inner diameter side of the rotor.
  • FIG. 4 (B) is a developed view showing the shape of the retractor of FIG. 4 (A) when viewed from the direction along the axial direction of the rotor, and
  • FIG. 4 (C) is an action point set for the retractor. It is a waveform diagram which showed the waveform of the signal generated when is passing the position of the magnetic pole part of a rotation sensor.
  • FIG. 5A is a side view schematically showing the configuration of the rotation sensor used in one embodiment of the present invention.
  • FIG. 5A is a side view schematically showing the configuration of the rotation sensor used in one embodiment of the present invention.
  • FIG. 5B is a cross-sectional view of the rotation sensor shown in cross section along the line BB of FIG. 5A.
  • FIG. 6A is a development view showing a retractor component provided in the rotor when the signal generator shown in FIG. 1 is applied to a single cylinder engine
  • FIG. 6B is a signal when the rotor is used.
  • a waveform diagram showing the signals generated by the generator FIG. 6C is a stroke diagram showing the stroke performed in the cylinder of the engine when each signal shown in FIG. 6B is generated.
  • 7 (A) is a developed view showing the shape of a retractor component provided in a rotor used when a signal generator having the configuration shown in FIG. 1 is applied to a 2-cylinder 4-cycle engine
  • FIG. 1 is a development view showing a retractor component provided in the rotor when the signal generator shown in FIG. 1 is applied to a single cylinder engine
  • FIG. 6B is a signal when the rotor is used.
  • FIG. 7 (B) is a developed view.
  • a waveform diagram showing the waveforms of the signals obtained when the same rotor is used FIGS. 7 (C) and 7 (D) show the first cylinder # of the engine when each signal shown in FIG. 7 (B) is generated. It is a stroke diagram which showed the stroke performed in 1 and 2nd cylinder # 2.
  • 8 (A) is a development view showing the shape of a retractor component used in an embodiment in which a signal generator having the configuration shown in FIG. 1 is applied to a 3-cylinder 4-cycle engine, and FIG. 8 (B) is the same. Waveform diagrams showing the waveforms of the signals obtained when the rotor is used, FIGS.
  • FIG. 8 (C) to 8 (E) show the three cylinders # 1 of the engine when each signal shown in FIG. 8 (B) is generated. It is a itinerary diagram which showed the process performed in ⁇ # 3.
  • 9 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 1 is applied to a 4-cylinder 4-cycle engine, and FIG. 9 (B) shows the same retractor.
  • Waveform diagrams showing the waveforms of the signals obtained when the provided rotor is used, FIGS. 9 (C) to 9 (F), are the first to the engine when each signal shown in FIG. 9 (B) is generated. It is a stroke diagram which showed the stroke performed in 4th cylinder # 1 to # 4.
  • FIG. 10 is a front view schematically showing the configuration of another embodiment of the signal generator according to the present invention.
  • 11 (A) shows a developed view of the retractor provided in the rotor shown in FIG. 10, and
  • FIG. 11 (B) shows the waveform of a series of signals obtained from the signal coil of the rotation sensor when the rotor is used. It is a waveform diagram.
  • FIG. 12 is a front view schematically showing the configuration of still another embodiment of the signal generator according to the present invention.
  • 13 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 12 is applied to a 3-cylinder 4-cycle engine, and FIG. 13 (B) uses the same rotor.
  • 14 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 12 is applied to a 6-cylinder 4-cycle engine, and FIG. 14 (B) uses the same retractor.
  • the waveform charts showing the waveforms of the signals obtained when the signals are generated, FIGS. 14 (C) to 14 (H), are performed on the six cylinders of the six-cylinder engine when each signal shown in FIG. 14 (B) is generated.
  • FIG. 15A is a developed view showing a modified example of the retractor used in the present invention
  • FIG. 15B is a waveform diagram showing a waveform of a signal obtained when a rotor equipped with the retractor is used.
  • .. 16 (A) is a waveform diagram showing an example of the waveform of the detection signal obtained when the signal generation unit of the rotation sensor is configured by the magnetic sensor
  • FIG. 16 (B) is shown in FIG. 16 (A). It is a waveform diagram which showed the pulse signal generated at each rising edge and each falling edge of a waveform.
  • FIG. 16 (A) is a waveform diagram showing an example of the waveform of the detection signal obtained when the signal generation unit of the rotation sensor is configured by the magnetic sensor
  • FIG. 16 (B) is shown in FIG. 16 (A). It is a waveform diagram which showed the pulse signal generated at each rising edge and each falling edge of a waveform.
  • FIG. 16 (A) is a waveform diagram showing an example of the waveform of the detection
  • FIG. 17 is a flowchart showing an example of an algorithm for crank angle interrupt processing executed when the signal generator determines the generation position of the signal generated in the embodiment shown in FIG. 9.
  • FIG. 18 is a flowchart showing an example of an algorithm of the initial processing executed when the signal generator discriminates the generated signal in the embodiment shown in FIG.
  • FIG. 19 is a flowchart showing an example of the algorithm of the present determination process executed when the signal generator determines the signal generated in the embodiment shown in FIG.
  • the signal generator according to the present invention can be widely used for an engine or when it is necessary to obtain rotational position information of a crank shaft of an engine in order to control an engine load.
  • the rotation position information of the crank shaft is information indicating that the rotation position of the crank shaft matches a specific rotation position.
  • the term "specific rotational position” has no limiting meaning and is various rotational positions of the crank shaft depending on the engine or the content of control performed on the load driven by the engine. obtain.
  • the “specific rotation position” is, for example, the rotation position of the crank shaft at the start of measurement of the ignition position or the fuel injection position, or the rotation position of the engine. This is the rotational position of the crank shaft when the engine is first ignited at the time of starting.
  • the rotation position of the crank shaft when the piston of each cylinder of the engine reaches the top dead center is referred to as the top dead center position of each cylinder.
  • the rotation position of the crank shaft at the time of starting the measurement of the ignition position and the like of each cylinder calculated for various control conditions is called the reference position of each cylinder.
  • the rotational position of the crank shaft of the engine is sometimes called the crank angle position.
  • the engine signal generator is configured to output a signal each time it detects a change in magnetic flux, along with a rotation sensor fixed to the engine case and an engine crank shaft.
  • the retractor comprises a rotor provided to rotate and having a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position coincides with the set rotation position.
  • the rotation sensor When the magnetic flux is changed in one direction, the rotation sensor outputs a signal of the first polarity, and when the retractor changes the magnetic flux in the other direction, the rotation sensor outputs a signal of the second polarity.
  • the rotor used in the signal generator to which the present invention is applied has a cylindrical surface that is arranged in a state where the crank shaft and the central axis are shared when the rotor is attached to the engine, and a retractor is provided on the cylindrical surface.
  • the rotation sensor applies a magnetic flux for signal generation to a magnetic pole portion that is opposed to a region provided with a retractor on the cylindrical surface of the rotor via a gap, and a magnetic path formed so as to include the magnetic pole portion and the retractor. It includes a magnet to be flown and a signal generation unit that generates a signal indicating a level change each time the retractor causes a change in the magnetic flux for signal generation in the process of rotating the rotor.
  • a first magnetic flux change generation unit that continuously changes in one direction to the magnetic flux detected by the rotation sensor twice in the process of rotating the rotor, and a rotation in the process of rotating the rotor.
  • the retractor is configured to have one second magnetic flux change generating unit that causes the magnetic flux detected by the sensor to continuously change in the other direction twice.
  • a first polar signal consisting of two signals of the first polarity generated in succession to a series of signal pairs output by the rotation sensor during one rotation of the rotor.
  • a pair and a second pair of signals of the same polarity consisting of two signals of the second polarity generated in succession can be included one by one.
  • a first signal pair consisting of two signals having a first polarity and continuously generated by a signal pair group output by the rotation sensor during one rotation of the rotor
  • a signal pair of different polarities consisting of two signals of a first polarity and a signal of a second polarity
  • a second isopolarity consisting of two signals having a second polarity and continuously generated.
  • the retractor is provided so as to include only a second signal pair consisting of a signal pair of the above and a signal pair of a second polarity and a signal of the first polarity which are subsequently generated.
  • the signal pair group output by the rotation sensor during one rotation of the rotor is a first signal pair consisting of two signals of the first polarity generated in succession.
  • a first pair of different polarities consisting of two signals of the first polarity and a signal of the second polarity generated in succession, and a second signal consisting of two signals of the second polarity generated in succession.
  • a retractor is provided so that it consists only of a third signal pair of different polarities, which consists of two signals, a signal of the second polarity and a signal of the second polarity.
  • FIG. 1 the configuration of one embodiment of the signal generator 1 according to the present invention is schematically shown.
  • the illustrated signal generator 1 is composed of a rotor 3 attached to the crank shaft 2 of the engine and rotated together with the crank shaft, and a rotation sensor 4.
  • the rotation sensor 4 is attached to a rotation sensor mounting portion (not shown) provided on an engine case, a frame to which the engine is fixed, or the like, and is arranged in a state of being fixed to the engine case.
  • the rotation sensor 4 detects a magnetic flux portion 4a facing the magnetic pole surface of the rotor 3, a magnet that causes a magnetic flux for signal generation to flow in a magnetic path including the rotation sensor 4 and the magnetic pole surface of the rotor 3, and a magnetic flux for signal generation. Therefore, it is provided with a signal generation unit that generates a signal when a change occurs in the detected magnetic flux.
  • the rotation sensor generates a signal of the first polarity when it detects that the detected signal generation magnetic flux has changed in one direction, and detects that the detected signal generation magnetic flux has changed in the other direction. When detected, a signal of the second polarity is generated.
  • the change in the magnetic flux for signal generation is a change in the increasing direction or the decreasing direction of the magnetic flux.
  • the change in the increasing direction of the magnetic flux for signal generation is regarded as the change in one direction of the magnetic flux
  • the signal is generated.
  • the change in the decreasing direction of the magnetic flux is the change in the other direction of the magnetic flux.
  • the rotor 3 includes a rotating body 301 attached to the crank shaft 2 of the engine.
  • the rotating body 301 may be provided exclusively for forming the rotor of the signal generator, or may also serve as a rotating body of another rotating device such as a generator.
  • the rotating body 301 is attached to an engine accessory that is rotated together with the crank shaft 2, for example, a flywheel attached to the crank shaft of the engine, or attached to the crank shaft of the engine, and is connected to a fan for cooling the engine via a belt. It may be a pulley or the like.
  • the flywheel attached to the crank shaft 2 is used as the rotating body 301.
  • the illustrated rotating body 301 is formed in a cup shape including a cylindrical peripheral wall portion 301a and a bottom wall portion 301b that closes one end side of the peripheral wall portion 301a in the axial direction.
  • a boss portion 301c is formed in the central portion of the bottom wall portion 301b of the rotating body 301.
  • the rotating body 301 is attached to the engine by fitting the boss portion 301c to the crank shaft 2 of the engine and keying it to the crank shaft.
  • a cylindrical surface 302 that concentrically surrounds the central axis O of the crank shaft 2 is formed on the outer periphery of the peripheral wall portion 301a of the rotating body.
  • the peripheral wall portion 301a of the rotating body 301 is also the peripheral wall portion of the rotor, and the cylindrical surface 302 is also the cylindrical surface of the rotor.
  • the cylindrical surface 302 is also an outer peripheral surface of the rotor.
  • the rotation direction of the crank shaft 2 during steady operation of the engine is the normal rotation direction of the crank shaft.
  • the forward rotation direction of the crank shaft is indicated by an arrow R.
  • the direction along the central axis O of the cylindrical surface 302 of the rotor 3 is the width direction of the cylindrical surface 302.
  • At least the outer peripheral portion of the rotor 3, that is, at least the outer peripheral portion of the rotating body 301 is formed of a ferromagnetic material such as iron, and a cylindrical surface formed on the outer periphery of the portion made of the ferromagnetic material of the rotor 3.
  • a retractor is provided at 302.
  • the retractor is composed of protrusions or recesses extending in the circumferential direction of the cylindrical surface 302 of the rotor.
  • the retractor is set with a plurality of points of action arranged at intervals in the circumferential direction of the cylindrical surface 302.
  • the retractor exhibits morphological changes such as changes in width dimension and protrusion height from the cylindrical surface 302 at each point of action.
  • the retractor changes the distance between the magnetic pole surface MS of the rotor and the magnetic pole portion 4a of the rotation sensor 4 when each point of action passes through the position of the magnetic pole portion 4a of the rotation sensor 4, or the magnetic pole of the rotation sensor 4.
  • the area of the magnetic pole surface MS of the rotor facing the portion 4a the magnetic resistance between the magnetic pole surface MS of the rotor and the magnetic pole portion 4a of the rotation sensor is changed, and the magnetic flux for signal generation is changed. ..
  • a signal is output from the rotation sensor 4 by the change of the magnetic flux for signal generation.
  • the entire rotating body 301 is formed of a ferromagnetic material such as iron.
  • a retractor configuration extending in the circumferential direction of the rotating body 301 in a region near the center in the width direction of the cylindrical surface 302 formed on the outer periphery of the rotating body 301.
  • the element 303 is provided with its tip directed forward in the rotation direction R of the rotor and its rear end directed rearward in the rotation direction of the rotor, and the retractor component constitutes the retractor.
  • the widest portion of the retractor component 303 has a width dimension smaller than the width dimension of the cylindrical surface 302 of the rotor. Therefore, a flat region without a retractor is left in the portion of the cylindrical surface 302 of the rotor near one end and the portion near the other end in the width direction.
  • the outer peripheral surface of the retractor component 303 and the outer peripheral surface of the rotating body 301 exposed to the outside in the radial direction between the front end and the rear end of the retractor component 303 are the rotor. It is a magnetic pole surface MS.
  • a signal is generated from the signal generator every time the rotation position of the crank shaft coincides with a plurality of set rotation positions. Therefore, a plurality of action points are set in the retractor provided on the rotor, and each time each action point passes the position of the magnetic pole portion 4a of the rotation sensor, the magnetic flux detected by the rotation sensor is changed to cause a rotation sensor.
  • the signal is output from 4.
  • the point of action of the retractor is set by gradually changing the morphology of the protrusions and recesses constituting the retractor before and after it. In the present embodiment, four signals are generated from the signal generator while the crank shaft makes one rotation.
  • the first to fourth points of action are set on the retractor provided on the rotor, and when the first to fourth points of action of the retractor pass through the position of the magnetic flux portion 4a of the rotation sensor 4, the rotation sensor 4 moves. causes a change in one direction or the other direction in the detected magnetic flux.
  • the rotation sensor 4 By causing the rotation sensor 4 to detect the change in the magnetic flux generated when the first to fourth points of action pass through the position of the magnetic pole portion 4a of the rotation sensor 4, the first signal Vs1 to 4 from the rotation sensor 4 is detected. Signal Vs4 is output.
  • the first to fourth set positions P1 to P4 arranged at predetermined intervals in the circumferential direction of the cylindrical surface are set on the cylindrical surface of the rotor. Then, the first to fourth action points of the retractor are set at the first to fourth set positions P1 to P4, respectively.
  • the illustrated retractor component 303 has a peripheral end of the cylindrical surface 302 with the tip S1a facing forward in the rotation direction R of the rotor 3 and the rear end facing the rear side in the rotation direction R of the rotor 3.
  • the tip S2a is connected to the arcuate first section S1 extending from the first set position P1 to the second set position P2 along the direction and the rear end S1b of the first section S1, and the rear end S2b is a rotor.
  • the arcuate second section S2 extending from the second set position P2 to the third set position P3 along the circumferential direction of the cylindrical surface 302 and the tip S3a in a state of facing the rear of the rotation direction R of 3 are the first.
  • the first section S1 constituting the portion near the tip of the retractor component 303 has a constant thickness d and a constant first section.
  • the width dimension W1 of 1 is provided so as to extend from the first set position P1 to the second set position P2 in the circumferential direction of the rotor 3.
  • the first section S1 is provided with its tip S1a directed toward the front side of the crank shaft 2 in the forward rotation direction R, and the position of the tip S1a is aligned with the first set position P1.
  • the tip S1a of the first section S1 is also the tip of the retractor component 303.
  • the tip S1a of the first section S1 at the first set position P1 is perpendicular to the cylindrical surface 302 which is the outer peripheral surface of the rotor.
  • the height of the first section S1 is increased stepwise at the first set position P1 by standing up.
  • the rotation sensor 4 When the first point of action passes through the position of the magnetic pole portion of the rotation sensor, the distance between the magnetic pole surface of the retractor and the magnetic pole portion of the rotation sensor 4 decreases, so that the magnetic flux detected by the rotation sensor 4 increases. Change. Due to this change in magnetic flux, the rotation sensor 4 outputs a first signal having the first polarity.
  • the change of the magnetic flux detected by the rotation sensor is regarded as the change in one direction, but in the present embodiment, the change of the magnetic flux detected by the rotation sensor 4 in the increasing direction is the change of the magnetic flux. It is a change in one direction. Further, the polarity of the signal output by the rotation sensor 4 when the magnetic flux detected by the rotation sensor changes in the increasing direction is set as the first polarity.
  • the second section S2 constituting the intermediate portion of the retractor component 303 has the same thickness d as the first section S1 and has a constant second width dimension W2 larger than the first width dimension W1. It is provided so as to extend from the second set position P2 to the third set position P3 in the circumferential direction of the rotor 3, and the tip S2a of the second section S2 at the second set position P2 is the first section S1. It is connected to the rear end S1b.
  • the width dimension W2 of the second section is set larger than the width dimension W1 of the first section, the width dimension of the retractor is expanded stepwise at the second set position P2.
  • the second action point of the retractor is set at the second set position P2, and when the second action point passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the rotation sensor The area of the magnetic pole surface of the retractor facing the magnetic poles is changed in steps in the increasing direction. Therefore, when the second point of action of the retractor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the magnetic flux detected by the rotation sensor changes in the increasing direction again, and the rotation sensor is again second. A signal with a polarity of 1 is output.
  • the third section S3 constituting the portion near the rear end of the retractor component 303 has the same thickness d as the first section S1 and the second section S2, and has the width dimension of the second section S2. It has a constant width dimension W3 smaller than W2 and is provided so as to extend from the third set position P3 to the fourth set position P4 in the circumferential direction of the rotor 3.
  • the third section S3 is provided in a state where the tip end S3a is connected to the rear end S2b of the second section S2 and the rear end S3b is directed to the rear side in the forward rotation direction R of the rotor.
  • the width dimension W3 of the third section S3 is set smaller than the width dimension W2 of the second section S2, the width dimension of the retractor is reduced stepwise at the third set position P3.
  • the third action point of the retractor is set at the third set position P3.
  • the magnetic flux detected by the rotation sensor changes in the decreasing direction, and the rotation sensor becomes the second.
  • the change in the decreasing direction of the magnetic flux detected by the rotation sensor 4 is regarded as the change in the other direction of the magnetic flux, and the rotation sensor outputs when the magnetic flux detected by the rotation sensor changes in the decreasing direction.
  • the polarity of the signal is the second polarity.
  • the height of the third section S3 measured from the cylindrical surface 302 is stepped down, whereby the fourth point of action of the retractor at the fourth set position P4. Is set.
  • the fourth point of action passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the rotor increases stepwise. Therefore, when the fourth point of action of the retractor passes through the position of the magnetic pole portion of the rotation sensor, the magnetic flux detected by the rotation sensor changes in the decreasing direction again. The rotation sensor detects this change in magnetic flux and outputs a signal of the second polarity again.
  • the first to fourth action points of the retractor are not designated, but the positions where the first to fourth action points are provided are the first set positions P1 to 4th. Since it corresponds to the set position P4 of, the position where each action point is set can be identified from the symbols P1 to P4 indicating the first set position or the fourth set position.
  • the width dimension W3 of the third section S3 constituting the portion near the rear end of the retractor component 303 may be smaller than the width dimension W2 of the second section S2.
  • the width dimension W3 of the third section S3 is set to be equal to the width dimension W1 of the first section S1.
  • the second point of action set in the connecting portion constitutes a first magnetic flux change generation unit that continuously changes the magnetic flux detected by the rotation sensor 4 in one direction twice in the process of rotating the rotor 3. Has been done.
  • This first magnetic flux change generation unit continuously generates the magnetic flux detected by the rotation sensor 4 in one direction twice while the rotor makes one rotation, so that the first magnetic flux change generation unit has the first polarity.
  • a first pair of signals of the same polarity consisting of two signals is output from the rotation sensor.
  • a third point of action set at the connecting portion between the rear end S2b of the second section S2 of the retractor component 303 and the tip S3a of the third section S3, and the third of the first retractor component 303A.
  • a change generation unit is configured. This second magnetic flux change generation unit continuously generates a second polarity because the magnetic flux detected by the rotation sensor 4 continuously changes in the other direction twice while the rotor makes one rotation.
  • a second pair of signals of the same polarity consisting of two signals of the second polarity is output from the rotation sensor.
  • the rotation sensor 4 Since the rotor 3 is provided with a first magnetic flux change generation unit and a second magnetic flux change generation unit, the rotation sensor 4 has a signal pair having the same polarity as the first and a signal pair having the same polarity as the second. The signal pair of is output once during one rotation of the rotor.
  • the angle distance between the first set positions P1 to the fourth set position is 90 CA.
  • CA means a crank angle (Crank Angle).
  • the width dimension W2 of the second section S2 of the retractor component is set to be larger than the width dimension W1 of the first section S1 and the width dimension W3 of the third section S3.
  • the second action point and the third action point are set at the second set position P2 and the third set position P3, respectively, and the retractor component 303 used in the present invention is configured in this way. It is not limited to the ones.
  • the first section S1 to the third section S3 have the same constant width dimension W, and the thickness d2 of the second section S2 is set to the first.
  • the thickness d2 of the second section S2 is set to the first.
  • a second point of action and a third point of action may be set at the first set position P2 and the third set position P3, respectively.
  • the rotation sensor can output a third signal Vs3 and a fourth signal Vs4 having a second polarity.
  • the rotation sensor 4 constituting the signal generator 1 together with the rotor 3 includes a magnetic pole portion 4a facing the magnetic pole surface of the rotor 3 via a gap, and a retractor formed on the magnetic pole portion 4a and the magnetic pole surface of the rotor.
  • a permanent magnet that allows magnetic flux to flow through the magnetic path formed in the magnetic path, and a signal that indicates a level change each time the first retractor 303A and the second retractor 303B change the magnetic flux flowing through the magnetic path in the process of rotating the rotor. Is provided with a signal generation unit that is generated as a signal including crank angle information.
  • the illustrated rotation sensor 4 includes an iron core 401, a signal coil 402 wound around the iron core 401, a permanent magnet 403 that allows magnetic flux to flow through the iron core 401, and a magnetic path constituent member 404 made of a ferromagnetic material such as iron.
  • the tip of the iron core 401 is a magnetic pole portion 4a, and the magnetic pole portion 4a is opposed to the magnetic pole surface MSs of the first and second retractor components 303A and 303B via an air gap.
  • the illustrated magnetic path component 404 includes a substrate portion 404a arranged in a state orthogonal to the radial direction of the rotor 3 and a side plate portion 404b that is bent at a right angle from one end of the substrate portion 404a and extends toward the rotor 3. ,
  • the selvages 404c and 404c protruding in opposite directions are formed at the ends of the side plate portion 404b near the substrate portion 404a.
  • Mounting holes 404d and 404d are formed in the ears 404c and 404c.
  • One magnetic pole of the permanent magnet 403 (S pole in the illustrated example) is coupled to the substrate portion 404a of the magnetic path component 404, and the rotation sensor iron core 401 is connected to the other magnetic pole of the permanent magnet 403 (N pole in the illustrated example). The trailing ends are joined.
  • the components of the rotation sensor 4 are insulated with the magnetic pole portion 4a exposed to the outside and at least the portion near the tip of the side plate portion 404b of the magnetic path component 404 and the selvage portions 404c and 404c exposed to the outside. It is arranged in a state of maintaining a predetermined positional relationship by being covered with a molded portion made of resin or being housed in an appropriate case.
  • the magnetic pole portion 4a formed at the tip of the iron core 401 is opposed to the magnetic pole surface MS of the rotor 3 via a gap, and the side plate portion 404b of the magnetic path constituent member 404 is other than the magnetic pole surface MS of the rotor 3.
  • the selvages 404c and 404c are arranged so as to face each other through a gap, and are attached to the engine by fixing the selvages 404c and 404c to a rotation sensor mounting portion (not shown) fixed to the engine case.
  • the tip surface 404b1 of the side plate portion 404b of the magnetic path constituent member 404 faces the region 304 where the retractor is not formed, which is closer to one end of the cylindrical surface 302 of the rotor 3 in the width direction, via an air gap. I'm letting you. As a result, the side plate portion 404b of the magnetic path constituent member 404 is magnetically coupled to the rotor 3.
  • the magnetic path component 404 is magnetically coupled to the portion of the rotor 3 where the retractor is not formed by making the tip of the side plate portion 404b face the portion near the outer periphery of the bottom wall portion 301b of the rotor 3. Also, by fixing the tip of the side plate portion 404b to another appropriate member magnetically coupled to the rotor 3 via a gap, the rotor 3 is magnetically coupled to the portion where the retractor is not formed. May be.
  • a magnetic path composed of a loop of a permanent magnet 403-iron core 401-void-rotor 3-void-magnetic path component 404-permanent magnet 403 is formed between the rotor 3 and the rotation sensor 4.
  • a signal generation magnetic flux that is configured and interlinks with the signal coil 402 flows through this magnetic path.
  • the magnetic resistance of the magnetic path is changed.
  • the magnetic flux interlinking with the signal coil 402 is changed, and the signal of the pulse waveform is induced in the signal coil 402.
  • the signal coil 402 generates a signal indicating a level change each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotating the rotor 3, as a signal including crank angle information.
  • the generator is configured.
  • how to set the generation position of the signal generated from the signal generator is arbitrary, but in the signal generator of the present embodiment, the rotation position of the crank shaft is set while the crank shaft makes one rotation.
  • a signal that gives information that the ignition position of the crank shaft matches the rotation position of the crank shaft that can be used as the ignition position at the start of the engine, and the rotation position of the crank shaft are the crank shaft when the measurement of the ignition position of the engine is started.
  • the ignition position at the time of starting the engine is set to the top dead center position of each cylinder, or is set to a position slightly advanced from the top dead center position.
  • the top dead center position of each cylinder is set as the ignition position when the engine is started.
  • the signal generator according to the present embodiment has a single-cylinder 4-cycle engine, a 2-cylinder 4-cycle engine, and 3 by appropriately setting the first setting positions P1 to the fourth setting positions P4 on the cylindrical surface 302 of the rotor. It can be applied to various engines from a single cylinder engine to a multi-cylinder engine such as a cylinder 4-cycle engine and a 4-cylinder 4-cycle engine.
  • FIGS. 6A to 6C when the signal generator of the present embodiment is applied to a single-cylinder 4-cycle engine, a development view of a retractor provided on the rotor and signals Vs1 to Vs1 generated by the signal generator are shown. A waveform diagram of Vs4 and a stroke diagram showing the stroke performed in the cylinder of the engine when each signal is generated are shown.
  • INT indicates an intake process and COM indicates a compression process.
  • EXP indicates an expansion stroke
  • EXH indicates an exhaust stroke.
  • the rotation position of the crank shaft coincides with the first set rotation position ⁇ 1 to the fourth set rotation position ⁇ 4, they are set to the first set position P1 to the fourth set position P4, respectively.
  • Each of the retractors so that the first to fourth points of action pass through the position of the magnetic pole portion 4a of the rotation sensor 4 and output the first to fourth signals Vs1 to Vs4 from the rotation sensor 4.
  • the position of the point of action and the shape of the retractor are set.
  • the first set rotation position ⁇ 1 of the crank shaft is set to the tip S1a of the first section S1 constituting the portion near the tip of the retractor component 303.
  • the rotation sensor 4 outputs the first signal Vs1 of the first polarity in order to increase the magnetic flux detected by the rotation sensor 4 in a stepwise manner. do.
  • the rotation sensor 4 has a second polarity at the third set rotation position ⁇ 3 of the crank shaft.
  • the third signal Vs3 is output.
  • the fourth action point set at the rear end S3b of the third section S3 of the first retractor component rotates when passing through the position of the magnetic flux portion 4a. Since the magnetic flux detected by the sensor 4 decreases in steps, the rotation sensor 4 again outputs the fourth signal Vs4 having the second polarity at the fourth set rotation position ⁇ 4 of the crank shaft.
  • the set rotation position ⁇ 4 at which the fourth signal Vs4 is generated is set to the top dead center position TDC, which is the rotation position of the crank shaft when the piston reaches the top dead center. Further, the set rotation position ⁇ 3 at which the third signal Vs3 is generated is set to the reference position Ref, which is the position where the measurement of the ignition position is started. In the present embodiment, the reference position Ref is set to a position 90 CA ahead of the top dead center position TDC.
  • each time the rotation sensor 4 outputs a signal the signal generated this time and the signal generated immediately before are detected as a signal pair.
  • the signal pair groups detected during one rotation of the crank shaft are continuously generated with the first polarity.
  • a first polar signal pair consisting of one signal Vs1 and Vs2
  • a first different polar signal pair consisting of two signals of a first polar signal Vs2 and a second polar signal Vs3, and a second signal.
  • a second pair of signals of the same polarity consisting of two signals Vs3 and Vs4 that are continuously generated with two polarities, and a signal Vs4 of the second polarity and a signal Vs1 of the first polarity that are continuously generated. It consists of four signal pairs with a second polar signal pair consisting of one signal.
  • the rotation sensor 4 outputs the first signal pair of the same polarity Vs1 and Vs2 only once and the second signal pair of the same polarity Vs3 and Vs only once while the rotor makes one rotation. ..
  • the engine Regardless of the position where the crank shaft starts to rotate when the start operation is started, of the signal pair of the first polarity and the signal pair of the second polarity during one rotation of the crank shaft. Either one can always be generated. Therefore, it is possible to reliably complete the determination of the signal generated by the signal generator after the start operation is started and before the crank shaft makes one rotation, and to quickly acquire the information on the rotation position of the crank shaft, and the engine. It is possible to improve the startability of.
  • the first signal pair of the same polarity Vs1 and Vs2 and the second signal pair of the same polarity Vs3 and Vs4 are generated once during one rotation of the rotor, after the engine is started. Since the opportunity to determine the signal generation position can be obtained twice while the rotor makes one rotation, the accuracy of determining the rotation position of the crank shaft can be improved.
  • two different polar signal pairs Vs2, Vs3 and a second different polar signal pair, Vs4, Vs1 are generated during one rotation of the rotor. Although they are detected, in the order in which the first polar signal and the second polar signal are detected in the first polar signal pair Vs2, Vs3, and in the second polar signal pair Vs4, Vs1. Since the order in which the signals of the first polarity and the signals of the second polarity are detected is different, the first different-polarity signal pairs Vs2, Vs3 and the second different-polarity signal pairs Vs4, Vs1 are used. It can be clearly distinguished and detected.
  • FIGS. 7A to 7D in the case where the signal generator shown in FIG. 1 is applied to a 2-cylinder 4-cycle engine, a development view of a retractor provided in the rotor and a signal Vs1 generated by the signal generator A waveform diagram of Vs4 and a stroke diagram showing the stroke performed in the cylinder of the engine when each signal is generated are shown.
  • the first set positions P1 to P4 are set at an angular interval of 90 CA on the outer periphery of the rotating body constituting the rotor.
  • a retractor configuration consisting of a first section S1 extending from the set position P1 to the set position P2, a second section S2 extending from the set position P2 to the set position P3, and a third section S3 extending from the set position P3 to the set position P4.
  • the element 303 is configured, and the first action point to the fourth action point of the retractor is set at the first setting positions P1 to P4, respectively.
  • the set rotation position ⁇ 4 at which the fourth signal Vs4 is generated is set to the top dead center position TDC. Further, the set rotation position ⁇ 3 at which the third signal Vs3 is generated is set to the reference position Ref, which is the position where the measurement of the ignition position is started. In this case, the first cylinder and the second cylinder are simultaneously ignited at the set rotation position ⁇ 4 when the engine is started, but when one of the two cylinders is in the compression stroke, the other is the exhaust stroke. Therefore, even if both cylinders are ignited at the same time, the operation of the engine will not be hindered.
  • FIGS. 8A to 8E when the signal generator having the configuration shown in FIG. 1 is applied to the three-cylinder 4-cycle engine, the development view of the retractor provided in the rotor and the signal are shown.
  • a waveform diagram of the first to fourth signals Vs1 to Vs4 generated by the generator and a process diagram showing the process performed in the cylinder of the engine when each signal is generated are shown.
  • the first set positions P1 to P4 are set on the outer periphery of the rotating body constituting the rotor, and the first set points to the fourth actions of the retractor are set at the first set positions P1 to P4, respectively. The point is set.
  • the angular distance between the first set position P1 and the second set position P2 is set to 60CA, and the angular distance between the second set position P2 and the third set position P3. And the angular distance between the third set position P3 and the fourth set position P4 is set to 120 CA.
  • the fourth set rotation position ⁇ 4 at which the fourth signal Vs4 is generated is set at the top dead center position # 1TDC of the first cylinder. Further, the second set rotation position ⁇ 2 where the second signal Vs2 is generated is set at the top dead center position # 2TDC of the second cylinder, and the third set rotation position ⁇ 3 where the third signal Vs3 is generated is the third cylinder. Top dead center position # 3 TDC is set.
  • FIGS. 9A to 9F when the signal generator according to the present invention having the configuration shown in FIG. 1 is applied to a 4-cylinder 4-cycle engine, the retractor component 303 provided on the rotor , An example of the relationship established between the signal generated by the signal generator and the stroke performed in the cylinder of the engine is shown.
  • the first set position P1 to the fourth set position P4 are set at an angular interval of 90 CA on the outer periphery of the rotating body constituting the rotor, and the first set position P1 to the second set position are set.
  • the retractor component 303 is configured by the section S3.
  • the first action point or the fourth action point of the retractor is set at the first set position P1 to the fourth set position P4, respectively.
  • the rotation sensor 4 outputs the first signal Vs1 to the fourth signal Vs4, respectively, when the first action point to the fourth action point of the retractor passes through the position of the magnetic pole portion of the rotation sensor 4.
  • the set rotation position ⁇ 4 at which the fourth signal Vs4 is generated is set at the top dead center position # 1 / # 4TDC of the first cylinder and the fourth cylinder, and the set rotation position where the second signal Vs2 is generated is set.
  • ⁇ 2 is set at the top dead center position # 2 / # 3TDC of the 2nd and 3rd cylinders.
  • the set rotation position ⁇ 3 where the third signal Vs3 is generated is set to the reference position # 1 / # 4Ref of the first cylinder and the fourth cylinder, and the set rotation position ⁇ 1 where the first signal Vs1 is generated is the second cylinder and the second cylinder. It is set to the reference position # 2 / # 3Ref of the 3rd cylinder.
  • the signals Vs3 and Vs4 of the second polarity are subsequently detected, it is determined that the signal Vs4 generated later is the signal generated at the set rotation position ⁇ 4, and the second polarity signal Vs3 and Vs4 are determined to be the signal generated at the set rotation position ⁇ 4. Ignition of the 1st cylinder and the 4th cylinder is performed at the same time. Further, when the signals Vs1 and Vs2 of the first polarity are subsequently detected, it is determined that the signal Vs2 generated later is the signal generated at the set rotation position ⁇ 2, and the second cylinder and the second cylinder and the second at the set rotation position ⁇ 2. Ignition of 3 cylinders is performed at the same time. Also in this embodiment, two cylinders are ignited at the same time, but when one of the two cylinders ignited at the same time is in the compression stroke, the other is in the exhaust stroke, which hinders the operation of the engine. There is no.
  • the signal Vs3 of the second polarity is detected following the signal Vs2 of the first polarity
  • the signal Vs3 of the second polarity generated later is set as the reference position of the first cylinder and the fourth cylinder.
  • the signal Vs1 generated later is the second cylinder and the third. It is determined that the signal is generated at the set rotation position ⁇ 1 which is the reference position of the cylinder.
  • the first action point set at the tip S1a of the first section S1 of the retractor component 303, and the rear end S1b and the second section S2 of the first section S1 Due to the second point of action set at the connection with the tip S2a, the first magnetic flux change that occurs twice in succession in one direction of the magnetic flux detected by the rotation sensor 4 in the process of rotating the rotor 3. It constitutes a generator.
  • This first magnetic flux change generation unit continuously generates the magnetic flux detected by the rotation sensor 4 in one direction twice while the rotor makes one rotation, so that the first magnetic flux change generation unit has the first polarity.
  • a first signal pair of the same polarity consisting of two signals Vs1 and Vs2 is output from the rotation sensor.
  • the fourth point of action set in is configured to form a second magnetic flux change generator that causes the magnetic flux detected by the rotation sensor 4 to change twice in a row in the process of rotating the rotor. ..
  • This second magnetic flux change generation unit continuously generates a second polarity because the magnetic flux detected by the rotation sensor 4 continuously changes in the other direction twice while the rotor makes one rotation.
  • a second pair of signals of the same polarity consisting of two signals of the second polarity Vs3 and Vs4 is output from the rotation sensor 4.
  • the rotation sensor 4 Since the rotor 3 is provided with one first magnetic flux change generation unit and one second magnetic flux change generation unit, the rotation sensor 4 has a first signal of the same polarity during one rotation of the rotor.
  • the pair Vs1 and Vs2 are output only once, and the second signal pair Vs3 and Vs4 having the same polarity are output only once.
  • the first covalent signal pairs Vs1 and Vs2 having the first polarity and the second covalent signal pairs Vs3 and Vs4 having the second polarity are rotated by 1 during one rotation of the rotor. If it is set to generate each time, the first signal pair of the same polarity is generated during one rotation of the crank shaft regardless of the position where the crank shaft starts to rotate when the engine starting operation is started. And since either one of the second signal pairs of the same polarity can always be generated, the information on the rotation position of the crank shaft can be surely acquired until the crank shaft makes one rotation, and the engine The startability can be improved.
  • the first signal pair of the same polarity Vs1 and Vs2 and the second signal pair of the same polarity Vs3 and Vs4 are generated once during one rotation of the rotor, after the engine is started. Since the opportunity to determine the signal generation position can be obtained twice while the rotor makes one rotation, the accuracy of determining the rotation position of the crank shaft can be improved.
  • the retractor provided in the rotor 3 is provided with one first magnetic flux change generation unit and one second magnetic flux change generation unit, and while the rotor makes one rotation, the first signal pairs of the same polarity Vs1, Vs2 and Even if the second signal pairs of the same polarity Vs3 and Vs4 are configured to be generated only once, the first signal pairs of different polarities Vs2 and Vs3 and the second signal pairs of different polarities Vs4 and Vs1 are always generated. Occur. In this case, since the polar arrangements of the two signals constituting all the signal pairs detected during one rotation of the rotor can be made different, it is easy to determine the generation position of the signals constituting each signal pair. And it can be done reliably. Further, by appropriately setting the lengths of the first to third sections constituting the retractor component 303, it is possible to cope with a single-cylinder engine to a multi-cylinder engine.
  • the present invention is not limited to the configuration shown in FIG. 1, and further rotates in addition to the retractor component including one first magnetic flux change generation unit and one second magnetic flux change generation unit. It does not prevent the provision of a retractor component that outputs a signal pair of different polarity from the sensor.
  • the retractor provided on the outer periphery of the rotor is output from the rotation sensor with the first retractor component 303A having the first magnetic flux change generation unit and the second magnetic flux change generation unit, and a signal pair having different polarities.
  • the configuration of another embodiment of the signal generator according to the present invention, which is configured to be composed of two retractor components with a second retractor component 303B to be generated, is schematically shown.
  • the engine to which the signal generator 1 is applied is a 3-cylinder engine, and the angle interval between the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder is 120 degrees.
  • the entire rotating body 301 is formed of a ferromagnetic material such as iron, and extends in the circumferential direction of the rotating body 301 in a region near the center in the width direction of the cylindrical surface 302 formed on the outer periphery of the rotating body 301.
  • the retractor is configured by these retractor components.
  • the first retractor component 303A has a cylindrical surface 302 with the tip S1a facing forward in the rotation direction R of the rotor 3 and the rear end facing the rear side in the rotation direction R of the rotor 3.
  • the first section S1 extending from the first set position P1 to the second set position P2 along the circumferential direction and the tip S2a are connected to the rear end of the first section S1, and the rear end is the rotation direction of the rotor 3.
  • a second section S2 extending from the second set position P2 to the third set position P3 along the circumferential direction of the cylindrical surface 302 while facing the rear of R, and the tip S3a at the rear end of the second section S2.
  • a third set position extending from the third set position P3 to the fourth set position P4 along the circumferential direction of the circumferential surface 302 with the rear end S3b facing the rear side of the rotation direction R of the rotor 3 It consists of section S3.
  • the first retractor component 303A has the same structure as the retractor component 303 used in the embodiment shown in FIG.
  • the second retractor component 303B has the tip S4a facing the front side in the rotation direction R of the rotor 3 and the rear end S4b facing the rear side in the rotation direction R of the rotor 3 from the fifth setting position P5. It consists of a fourth section S4 extending to the set position P6 of 6.
  • the tip S4a of the fourth section S4 constituting the second retractor component 303B rises at a right angle from the cylindrical surface 302 of the rotor at the fifth setting position P5 set on the cylindrical surface 302 of the rotor.
  • the fifth action point of the retractor is set at the fifth setting position P5.
  • the sixth set position P6 The sixth point of action of the retractor is set in. This sixth point of action is to increase the distance between the magnetic pole portion of the rotation sensor 4 and the magnetic pole surface of the rotor when passing through the position of the magnetic pole portion of the rotation sensor 4 in the process of rotating the rotor. Since the shape changes, the magnetic flux detected by the rotation sensor 4 is changed in the decreasing direction, and the rotation sensor 4 outputs a signal having a second polarity.
  • the angular interval between the first set position P1 and the second set position P2, the angular interval between the third set position P3 and the fourth set position P4, and the fifth The angular distance between the set position P5 and the sixth set position P6 is set to 40 CA. Further, the angular interval between the second set position P2 and the third set position P3, the angular interval between the fourth set position P4 and the fifth set position P5, and the sixth set position P6 and the first.
  • the angle distance from the set position P1 of is set to 80CA.
  • 11 (A) and 11 (B) show the development view of the retractor of the signal generator shown in FIG. 10 and the waveforms of the signals Vs1 to Vs6 generated by the signal generator.
  • # 1TDC to # 3TDC indicate the top dead center positions of the first cylinder to the third cylinder of the engine, respectively.
  • # 1Ref to # 3Ref indicate the reference positions of the first cylinder to the third cylinder set to the positions 40 CA before the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder, respectively.
  • the first set rotation position ⁇ 1 where the first signal Vs1 is generated is the reference position # 1Ref of the first cylinder
  • the second set rotation position ⁇ 2 where the second signal Vs2 is generated is.
  • the top dead center position of the 1st cylinder is # 1TDC.
  • the third set rotation position ⁇ 3 where the third signal Vs3 is generated is the reference position # 2Ref of the second cylinder
  • the fourth set rotation position ⁇ 4 where the fourth signal Vs4 is generated is the second.
  • the top dead center position of the cylinder is # 2 TDC.
  • the fifth set rotation position ⁇ 5 where the fifth signal Vs5 is generated is the reference position # 3Ref of the third cylinder
  • the sixth set rotation position ⁇ 6 where the sixth signal Vs6 is generated is the third cylinder.
  • the top dead center position is # 3TDC.
  • the rotation sensor when the first point of action of the retractor set at the first set position P1 passes through the position of the magnetic pole portion 4a of the rotation sensor at the first set rotation position ⁇ 1, the rotation sensor has a positive electrode property.
  • the first signal Vs1 is output and the second point of action of the retractor set at the second set position P2 passes through the position of the magnetic pole of the rotation sensor at the second set rotation position ⁇ 2, the rotation sensor moves.
  • the positive second signal Vs2 is output.
  • the third action point of the retractor set at the third set position P3 passes the position of the magnetic pole portion of the rotation sensor at the third set rotation position ⁇ 3, the rotation sensor has a negative third signal.
  • the present embodiment it is possible to determine at which rotation position each signal is generated, based on the polarities of the signals constituting the signal sequence output by the rotation sensor. For example, the first polarity is represented by “1”, the second polarity is represented by "0”, and by looking at the combination of the polarities of the signals constituting the signal sequence consisting of the two signals generated subsequently, each of them is represented. It is possible to determine at which rotation position the signal is generated.
  • the signal generated after the two signals constituting this signal sequence can be determined to be the signal Vs2 generated at the set rotation position ⁇ 2. It can be determined that this signal is a signal generated at the top dead center position # 1TDC of the first cylinder.
  • the signal generated after the two signals constituting this signal sequence is regarded as the signal generated at the set rotation position ⁇ 3. It can be determined that this signal is the signal Vs3 generated at the reference position # 2Ref of the second cylinder.
  • the signal sequence "00" when the signal sequence "00" is detected, it can be determined that the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position ⁇ 4, and this signal is It can be determined that the signal Vs4 is generated at the top dead center position # 2TDC of the second cylinder.
  • the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position ⁇ 6.
  • This signal can be determined to be the signal Vs6 generated at the top dead center position # 3TDC of the third cylinder.
  • the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position ⁇ 1.
  • This signal can be determined to be a signal generated at the reference position # 1Ref of the first cylinder.
  • the signal output by the rotation sensor is the signal generated, based on the polarities of the three signals continuously output by the rotation sensor.
  • the signal train consisting of three signals continuously generated by the signal generator of the present embodiment is "001", “010", “101” while the crank shaft makes one rotation. , "011", “110”, “100”. Since these signal sequences do not include a plurality of signal sequences having the same signal polarity arrangement, a signal sequence consisting of three signals generated continuously by the signal generator is used as a signal. By performing the determination, it is possible to easily determine which set position the last signal among the three signals constituting each signal sequence is the signal corresponding to.
  • the last signal among the three signals constituting this signal string is the last signal. It can be determined that the signal is generated at the reference position # 1Ref of the first cylinder. Further, when the signal sequence "011" is detected next time, it can be determined that the last signal constituting this signal sequence is the signal generated at the top dead center position # 1TDC of the first cylinder. In this way, it is possible to sequentially determine the generation position of the last signal among the three signals constituting the series of signal sequences.
  • the ignition position at the time of starting the engine is set as the top dead center position of each cylinder, and of the two signals constituting each signal pair, the signal generated later is the top dead center position of each cylinder of the engine.
  • the ignition position of each cylinder at the time of starting the engine is not limited to the top dead center position of each cylinder.
  • the ignition position at the time of starting the engine is set at a rotation position slightly advanced from the top dead center position of each cylinder, and the signal of each pair that is generated later is set as the engine. It may be generated at the ignition position at the time of starting.
  • FIG. 12 shows another embodiment of the signal generator according to the present invention.
  • the first to sixth set positions P1 to P6 are set on the cylindrical surface 302 of the rotor 3.
  • the angular spacing between them is all set to 60 CA.
  • the cylindrical surface 302 of the rotor 3 is provided with the first retractor component 303A and the second retractor component 303B, and the retractor is configured by these retractor components.
  • the first retractor component 303A has a first section S1 extending from the first set position P1 to the second set position P2 and a second section extending from the second set position P2 to the third set position P3. It consists of S2 and a third section S3 extending from the third set position P3 to the fourth set position P4.
  • the first section S1 to the third section S3 constituting the first retractor component 303A are the third rotors 3 used in the embodiment shown in FIG. 10, except that the polar arc angle of each is 60 CA. It is configured in the same manner as the first section S1 to the third section S3 constituting the retractor component 303A of 1.
  • the second retractor component 303B is composed of an arcuate fourth section S4 extending from the fifth set position P5 to the sixth set position P6 in the circumferential direction of the rotor 3.
  • the first to sixth action points of the retractor are set at the first to sixth set positions P1 to P6, respectively, and these action points are the magnetic pole portions 4a of the rotation sensor.
  • the signal coil 402 constituting the signal generation unit outputs the first to sixth signals Vs1 to Vs6 of the pulse waveform.
  • FIGS. 13 (A) and 13 (B) show the developed view of the retractor of the signal generator shown in FIG. 12 and the waveforms of the signals Vs1 to Vs6 generated by the signal generator.
  • FIGS. 13 (C) to 13 (E) show the strokes performed by the first cylinder # 1, the second cylinder # 2, and the third cylinder # 3 of the engine, respectively.
  • INT and COM indicate an intake stroke and a compression stroke, respectively
  • EXP and EXH indicate an expansion stroke and an exhaust stroke, respectively.
  • # 1TDC to # 3TDC indicate the top dead center positions of the first cylinder to the third cylinder of the engine, respectively.
  • # 1Ref to # 3Ref indicate the reference positions of the first cylinder to the third cylinder set to the positions 60 CA before the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder, respectively.
  • the rotation sensor 4 outputs a pulse waveform signal every time the rotor 3 rotates by 60 CA.
  • the first set rotation position ⁇ 1 is the reference position # 2Ref of the second cylinder
  • the second set rotation position ⁇ 2 is the top dead center position # 2 TDC of the second cylinder
  • the third set rotation position ⁇ 3 is the reference position # 3Ref of the third cylinder
  • the fourth set rotation position ⁇ 4 is the top dead center position # 3 TDC of the third cylinder.
  • the fifth set rotation position ⁇ 5 is the reference position # 1 Ref of the first cylinder
  • the sixth set rotation position ⁇ 6 is the top dead center position # 1 TDC of the first cylinder.
  • the rotation sensor when the rotation position of the crank shaft coincides with the first set rotation position ⁇ 1 at the reference position # 2Ref of the second cylinder, the first of the retractors set at the first set position P1 on the outer periphery of the rotor.
  • the rotation sensor When the point of action of 1 passes through the position of the magnetic pole portion 4a of the rotation sensor, the rotation sensor outputs a positive first signal Vs1.
  • the rotation position of the crank shaft coincides with the second set rotation position ⁇ 2 at the top dead point position # 2TDC of the second cylinder, the second of the retractors set at the second set position P2 on the outer periphery of the rotor.
  • the rotation sensor When the point of action passes through the position of the magnetic pole portion 4a of the rotation sensor, the rotation sensor outputs a positive second signal Vs2.
  • the rotation sensor outputs a negative third signal Vs3, and the rotation position of the crank shaft is the fourth at the top dead point position # 3TDC of the third cylinder.
  • the rotation sensor outputs a negative fourth signal Vs4 because the fourth point of action of the retractor passes through the position of the magnetic pole portion 4a when it coincides with the set rotation position ⁇ 4 of.
  • the signal generator shown in FIG. 12, in which the retractor is composed of the first retractor component 303A and the second retractor component 303B, is applied to the three-cylinder engine.
  • the engine to which the signal generator shown in No. 12 can be applied is not limited to the 3-cylinder engine.
  • the signal generator shown in FIG. 12 can be applied to a 6-cylinder engine.
  • FIG. 14 shows the relationship between the retractor, the series of signals output by the rotation sensor, and the stroke performed in the six cylinders of the engine in the embodiment in which the signal generator shown in FIG. 12 is applied to the 6-cylinder engine. It is a thing. 14 (A) is a developed view of the retractor used in the present embodiment, FIG. 14 (B) is a waveform diagram showing the waveform of the signal obtained when the retractor is used, and FIGS. 14 (C) to 14 (H) are shown. Is a stroke diagram showing a stroke performed by six cylinders of a six-cylinder engine when each signal shown in FIG. 14B is generated.
  • the rotation sensor 4 outputs the first signal Vs1 to the sixth signal Vs6 at the first set rotation position ⁇ 1 to the sixth set rotation position ⁇ 6 of the crank shaft, respectively.
  • the first set rotation position ⁇ 1 of the rotor in which the first signal Vs1 is generated is the reference position # 2 / # 5Ref of the second cylinder and the fifth cylinder of the 6-cylinder engine
  • the second The second set rotation position ⁇ 2 of the crank shaft in which the signal Vs2 of the above is generated is the top dead center position # 2 / # 5TDC of the second cylinder and the fifth cylinder.
  • the third set rotation position ⁇ 3 of the crankshaft where the third signal Vs3 is generated is the reference position # 3 / # 4Ref of the third cylinder and the fourth cylinder, and the crank when the fourth signal Vs4 is generated.
  • the fourth set rotation position ⁇ 4 of the shaft is the top dead center position # 3 / # 4TDC of the third cylinder and the fourth cylinder.
  • the fifth set rotation position ⁇ 5 of the crank shaft in which the fifth signal Vs5 is generated is the reference position # 1 / # 6Ref of the first cylinder and the sixth cylinder, and the sixth signal Vs6 is generated in the crank shaft.
  • the set rotation position ⁇ 6 is the top dead center position # 1 / # 6TDC of the first cylinder and the sixth cylinder.
  • the first retractor component 303A is configured by the first section S1 to the third section S3, and the second retractor component 303B is configured by the fourth section S4. It is not limited to the case where the retractor component is configured in.
  • each of the first retractor component 303A and the second retractor component 303B may be composed of two sections.
  • the angles between the first to sixth set positions P1 to P6 are all set to 60CA.
  • 303A is configured, and the first action point to the third action point of the retractor is set at the first set position P1 to the third set position P3, respectively.
  • a second retractor configuration is provided by a third section S3 extending from the fourth setting position P4 to the fifth setting position P5 and a fourth section S4 extending from the fifth setting position P5 to the sixth setting position P6.
  • the element 303B is configured, and a fourth action point to a sixth action point of the retractor is set at the fourth set position P4 to the sixth set position P6, respectively.
  • the rotation sensor After changing in one direction and outputting the first signal Vs1 having the first polarity from the rotation sensor, the rotation sensor detects when the second set position P2 passes the position of the magnetic pole portion of the rotation sensor. The current magnetic flux is further changed in one direction, and the second signal Vs2 having the same polarity as the first signal Vs1 is output from the rotation sensor.
  • the first set rotation position ⁇ 1 which is the rotation position of the crank shaft when the first set position P1 passes the position of the magnetic pole portion of the rotation sensor is set to the bottom dead center of the second cylinder.
  • Match the position # 2BDC and set the second set rotation position ⁇ 2, which is the rotation position of the crank shaft when the second set position P2 passes the position of the magnetic pole of the rotation sensor, to the top dead center position of the first cylinder.
  • the first set position P1 and the second set position P2 are set so as to match # 1 TDC.
  • the third set rotation position ⁇ 3 which is the rotation position of the crank shaft when the third set position P3 passes the position of the magnetic pole portion of the rotation sensor, is made to match the bottom dead center position # 3BDC of the third cylinder. , The third setting position P3 is set.
  • the fourth set rotation position ⁇ 4 which is the rotation position of the crank shaft when the fourth set position P4 passes the position of the magnetic pole portion of the rotation sensor, is set to the top dead center of the second cylinder.
  • the fourth set position P4 and the fifth set position P5 are set so as to match the position # 1 BDC.
  • the sixth set rotation position ⁇ 6 which is the rotation position of the crank shaft when the sixth set position P6 passes the position of the magnetic pole portion of the rotation sensor, is made to match the top dead center position # 3TDC of the third cylinder. , The sixth setting position P6 is set.
  • the signal train consisting of three signals generated in succession by the signal coil is "110", “101", “010”, and “" during one rotation of the crank shaft. It changes like “100”, “001”, “011”.
  • the rotation sensor used in the signal generator according to the present invention includes a sensor magnetic pole portion that faces the magnetic pole surface of the retractor via a gap, a magnet that allows magnetic flux to flow in a magnetic path including the sensor magnetic pole portion and the retractor, and a rotor. It is configured to include a signal generation unit that generates a signal indicating a level change as a signal including crank angle information each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotation.
  • the rotation sensor used in the above embodiment includes a rotation sensor iron core 401 having a sensor magnetic pole portion 4a at the tip and forming a part of the magnetic path, a magnet 403 that flows a signal generation magnetic flux through the iron core, and rotation.
  • a signal coil 402 wound around a sensor iron core 401 is provided, and the signal coil constitutes a signal generation unit, but the signal generation unit used in the present invention is not limited to the signal coil.
  • the signal generation unit is configured by a magnetic sensor that detects the signal generation magnetic flux flowing through the magnetic path and outputs a voltage signal at a level corresponding to the detected magnetic flux amount, or detects the signal generation magnetic flux.
  • a signal generation unit may be configured by a magnetic sensor that outputs a voltage signal at a level corresponding to the detected magnetic flux amount and a signal conversion unit that converts a change in the level of the voltage signal output by the magnetic sensor into a pulse signal. can.
  • the signal generation unit is configured by a magnetic sensor that detects the signal generation magnetic flux and outputs a voltage signal at a level corresponding to the detected magnetic flux amount
  • the voltage signal Vh generated by the signal generation unit is, for example, FIG. 16 (A).
  • Changes A portion indicating each level change of this voltage signal can be used as a signal including crank angle information.
  • a magnetic sensor that detects a signal generation magnetic flux and outputs a voltage signal at a level corresponding to the detected magnetic flux amount, and a signal conversion unit that converts a change in the voltage signal level output by the magnetic sensor into a pulse signal.
  • the signal generation unit is configured by the above, the waveform of the signal output by the signal generation unit is as shown in FIG. 16B, for example.
  • a Hall element can be used as the magnetic sensor, and a signal conversion unit that converts a level change of a voltage signal output by the magnetic sensor into a pulse signal can be configured by, for example, a differentiating circuit.
  • a pulse signal generated when the tip of each section of the retractor passes through the position of the magnetic pole portion of the rotation sensor is generated when the retractor enters the position of the magnetic pole portion 4a. It is called an "enter pulse” in the sense that it is a pulse signal. Further, the pulse signal generated when the rear end of each section of the retractor passes through the position of the magnetic pole portion of the rotation sensor is the pulse signal generated when the retractor exits the position of the magnetic pole portion 4a of the rotation sensor. It will be called an exit pulse.
  • the interrupt processing executed when an "entry pulse” occurs is called an "entry interrupt”
  • the interrupt processing executed when an "exit pulse” occurs is called an exit pulse. Called "missing interrupt”.
  • FIG. 17 shows an algorithm for crank angle interrupt processing executed every time the signal generator generates a signal (pulse signal in this embodiment) including rotation position information (crank angle information) of the crank shaft. .. Further, FIG. 18 shows an algorithm of the initial processing executed by the crank angle interrupt processing of FIG. 17, and FIG. 19 shows an algorithm of the present determination processing executed by the crank angle interrupt processing of FIG. Is.
  • First_f is the first interrupt detection flag, and takes a value of "0" when the current interrupt is the first interrupt, and takes a value of "1" when it is not the first interrupt.
  • the first interrupt means an interrupt executed when the rotation sensor first generates a pulse.
  • Judge_f is a signal generation position determination determination flag, and this flag takes a value of 0 when the determination of the signal generation position is not completed and is set to 1 when the determination is completed. ..
  • step S001 it is determined whether or not the first interrupt detection flag First_f is 0. As a result, when First_f is 0 and it is determined that the current interrupt is the first interrupt, the process proceeds to step S002 to execute the initial process shown in FIG. 18, and then the crank angle interrupt process is terminated. ..
  • step S001 When it is determined in step S001 that the first interrupt detection flag First_f is not 0 and the interrupt to the crank angle interrupt process in FIG. 17 is not the first interrupt, the process proceeds to step S003 and the signal generation position determination flag Judge_f is 0. It is determined whether or not it is. As a result, when it is determined that Judge_f is 0, that is, when it is determined that the determination of the signal generation position has not been performed yet, the process proceeds to step S004, and the present determination process shown in FIG. 19 is executed. After that, the crank angle interrupt process of FIG. 17 is terminated.
  • step S003 When it is determined in step S003 that Judge_f is not 0, that is, when it is determined that the signal generation position determination process is completed, the process proceeds to step S005, and normal operation is performed after the signal generation position determination is completed. After instructing to execute the process, this process ends.
  • Prev_ind is a sign indicating whether the pulse generated last time was an incoming pulse or an missing pulse. This indicator is set to 0 at the initialization performed at the startup of the microprocessor.
  • step S101 it is determined whether or not the interrupt this time is an “enter interrupt”. That is, it is determined whether or not the pulse for which the interrupt processing is executed this time is the incoming pulse Vs1 generated at the first set rotation position ⁇ 1 shown in FIG. As a result, when it is determined that the current interrupt is an incoming interrupt, the process proceeds to step S102 and Prev_ind is set to 1. As a result, it is memorized that the pulse generated this time was an incoming pulse. Next, the process proceeds to step S103, the first interrupt detection flag First_f is set to 1, and then this initial determination process is terminated.
  • step S101 When it is determined in step S101 that this interrupt is not an incoming interrupt, the process proceeds to step S104, and Prev_ind is set to 2 to indicate that the pulse generated this time is an missing pulse. Next, the process proceeds to step S103, the first interrupt detection flag First_f is set to 1, and then the first determination process is terminated.
  • Position_No is a position number indicating the position where the pulse signal generated this time is generated. A value of 1, 2, 3 or 4 is assigned to Position_No depending on the position where the pulse signal is generated.
  • Position_No is set to “1” and the pulse signal generated this time is the crank.
  • Position_No is set to “2”.
  • Position_No is set to “3” and the pulse signal generated this time is the fourth set rotation of the crank shaft.
  • Position_No is set to “4”.
  • the engine control device obtains information about the rotation position of the crank shaft from this determination result and controls the ignition position and the like.
  • the cylindrical surface of the rotor to which the retractor is provided is provided on the outer periphery of the rotor so that the rotation sensor is arranged on the outside of the rotor, but the present invention is limited to such a configuration. Instead, the present invention can be applied even when a cylindrical surface on which a retractor is provided is provided on the inner circumference of the rotor and the rotation sensor is arranged inside the rotor.
  • the retractor is composed of protrusions formed on the cylindrical surface of the rotor, but the retractor may be composed of recesses or grooves formed on the cylindrical surface of the rotor.
  • the retractor is composed of recesses or grooves, the recesses or grooves may be filled with a non-magnetic material.
  • the tip of the first retractor component 303A and the second retractor component 303B are used.
  • An area without protrusions is provided on the outer periphery of the rotor located between the rear end and the tip of the second retractor component 303B and the rear end of the first retractor component 303A, respectively.
  • a constant width smaller than the width dimension of section S1 and section S3. It may be connected with dimensions between sections S1 and S4 and by arcuate protrusions extending continuously between sections S3 and S4.
  • the width dimension of the first section S1 and the width of the third section S3 are between the tip S1a of the first section S1 and the rear end of the third section S3. It has a constant width dimension smaller than the dimension, and is connected by an arcuate protrusion that continuously extends between the tip S1a of the first section S1 and the rear end of the third section S3. You can also.
  • the first magnetic flux is obtained by gradually changing the width dimension of the section constituting the retractor component on both the front end side and the rear end side of the retractor. If the heights of the sections that make up the retractor component are different, either on the front end side or the rear end side of the retractor, either as a change generator and a second flux change generator, or as shown in FIG. By doing so, a first magnetic flux change generation unit and a second magnetic flux change generation unit are configured.
  • the present invention is not limited to such a configuration.
  • the first magnetic flux change generation unit is configured by making the heights of the sections S1 and S2 constituting the retractor component different, and on the rear end side of the retractor component, the retractor configuration is formed.
  • the second magnetic flux change generation unit may be configured by making the width dimensions of the sections S2 and S3 constituting the element different. Further, the first magnetic flux change generation unit and the second magnetic flux change generation unit may be configured by gradually changing both the width and the height of the sections constituting the retractor component.

Abstract

Provided is a signal generating device for an engine, comprising: a rotation sensor that is configured so as to output a signal each time a change in magnetic flux is detected, and that is fixed to a case of an engine; and a rotor provided with a reluctor for causing a change to occur in the magnetic flux detected by the rotation sensor each time the rotation position of a crankshaft matches a set rotation position. The signal generating device for an engine causes a signal to be outputted from the rotation sensor each time the rotation position of the crankshaft matches the set position. The reluctor is provided so that in one rotation of the crankshaft, a first signal pair comprising two signals generated successively with a first polarity and a second signal pair comprising two signals generated successively with a second polarity are generated once each from the rotation sensor.

Description

エンジン用信号発生装置Signal generator for engine
本発明は、エンジンのクランク軸の回転位置の情報を含む信号を発生するエンジン用信号発生装置に関するものである。 The present invention relates to an engine signal generator that generates a signal including information on the rotational position of the crank shaft of the engine.
エンジン(内燃機関)を動作させるためには、エンジンの各気筒に対して、点火動作の制御や、燃料噴射動作の制御などを行う必要がある。これらの制御を行う際には、エンジンのクランク軸の回転位置の情報を必要とする。またエンジンにより駆動される負荷を制御する場合にも、クランク軸の回転位置の情報を必要とすることがあり得る。 In order to operate the engine (internal combustion engine), it is necessary to control the ignition operation and the fuel injection operation for each cylinder of the engine. When performing these controls, information on the rotational position of the crank shaft of the engine is required. Also, when controlling the load driven by the engine, information on the rotational position of the crank shaft may be required.
エンジンのクランク軸の回転位置情報を得るため、クランク軸の回転に同期して信号を発生する信号発生装置が用いられている。この種の信号発生装置としては、磁束の変化を検出した時に信号を発生する形式の信号発生装置が多く用いられている。この種の信号発生装置は、エンジンのケースに対して固定された状態で配置されて、磁束の変化を検出した時に信号を発生する回転センサと、エンジンのクランク軸と共に回転するように設けられて、クランク軸の回転位置が設定された位置に一致する毎に回転センサが検出する磁束に変化を生じさせるリラクタを備えたロータとにより構成される。信号発生装置が発生する信号の波形は、典型的な例ではパルス波形であるが、矩形波状や階段状の波形である場合もあり得る。 In order to obtain the rotation position information of the crank shaft of the engine, a signal generator that generates a signal in synchronization with the rotation of the crank shaft is used. As this type of signal generator, a signal generator of a type that generates a signal when a change in magnetic flux is detected is often used. This type of signal generator is placed fixed to the case of the engine and is provided to rotate with a rotation sensor that generates a signal when a change in magnetic flux is detected and the crank shaft of the engine. It is composed of a rotor provided with a retractor that causes a change in the magnetic flux detected by the rotation sensor each time the rotation position of the crank shaft matches a set position. The waveform of the signal generated by the signal generator is a pulse waveform in a typical example, but may be a rectangular wave or a stepped waveform.
ロータは、クランク軸と中心軸線を共有する円筒面を有して、該円筒面に、回転センサが検出する磁束に変化を生じさせるリラクタを有している。リラクタは、ロータの円筒面に形成された突起や凹部からなっていて、ロータが回転する過程で回転センサの磁極部の位置を通過する際に、回転センサが検出する磁束に変化を生じさせる。 The rotor has a cylindrical surface that shares a central axis with the crank shaft, and has a retractor on the cylindrical surface that causes a change in the magnetic flux detected by the rotation sensor. The retractor is composed of protrusions or recesses formed on the cylindrical surface of the rotor, and causes a change in the magnetic flux detected by the rotation sensor as the rotor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotation.
回転センサは、ロータのリラクタが形成された領域に空隙を介して対向させられる磁極部と、該磁極部とロータのリラクタが形成された領域とを含む磁路に磁束を流す磁石と、ロータが回転する過程でリラクタが前記磁路を流れる磁束に変化を生じさせる毎に正極性又は負極性の信号を発生する信号発生部とを備えている。信号発生部は、クランク軸の回転に同期して、正極性の信号と負極性の信号とを、クランク軸の回転位置の情報を含む信号として発生する。 The rotation sensor includes a magnet that causes a magnetic flux to flow in a magnetic path including a magnetic pole portion that is opposed to a region where a rotor retractor is formed through a gap, and a region that includes the magnetic pole portion and a region where a rotor retractor is formed, and a rotor. It is provided with a signal generation unit that generates a positive or negative signal each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotation. The signal generation unit generates a positive electrode signal and a negative electrode signal as a signal including information on the rotation position of the crank shaft in synchronization with the rotation of the crank shaft.
この種の信号発生装置を用いて、エンジンの制御に必要なクランク軸の回転位置の情報を得るためには、回転センサが出力する各信号が、クランク軸の何れの回転位置で発生した信号であるかを判別する必要がある。 In order to obtain information on the rotation position of the crank shaft required for engine control using this type of signal generator, each signal output by the rotation sensor is a signal generated at any rotation position of the crank shaft. It is necessary to determine if there is.
例えば、エンジンの点火動作を制御する際には、エンジンを点火するのに適したクランク軸の回転位置を点火位置として、該点火位置をエンジンの回転速度に対して演算し、演算された点火位置が検出された時にエンジンの点火装置に点火指令を与えて、点火動作を行わせる。 For example, when controlling the ignition operation of the engine, the rotation position of the crank shaft suitable for igniting the engine is set as the ignition position, and the ignition position is calculated with respect to the rotation speed of the engine, and the calculated ignition position is calculated. When is detected, an ignition command is given to the ignition device of the engine to perform the ignition operation.
通常エンジンの各気筒の点火位置を制御する際には、エンジンの各気筒のピストンが上死点に達する時のクランク軸の回転位置である上死点位置よりも一定の角度だけ進角した位置にクランク軸の基準位置を設定しておいて、クランク軸が基準位置から点火位置まで回転するのに要する時間を点火位置計測用時間として、各種の制御条件に対して演算する。 Normally, when controlling the ignition position of each cylinder of the engine, a position advanced by a certain angle from the top dead center position, which is the rotation position of the crank shaft when the piston of each cylinder of the engine reaches the top dead center. The reference position of the crank shaft is set in, and the time required for the crank shaft to rotate from the reference position to the ignition position is calculated as the ignition position measurement time for various control conditions.
エンジンを制御する制御装置は、信号発生装置が発生する複数の信号の中から基準位置で発生した信号を基準信号として判別し、基準信号を判別した時に、前記点火位置計測用時間をタイマに設定して、その計測を開始させる。制御装置は、タイマが設定された点火位置計測用時間の計測を完了した時に点火装置に点火指令を与えて点火動作を行わせる。 The control device that controls the engine discriminates the signal generated at the reference position from a plurality of signals generated by the signal generator as a reference signal, and when the reference signal is discriminated, the ignition position measurement time is set in the timer. Then, the measurement is started. The control device gives an ignition command to the ignition device to perform the ignition operation when the timer completes the measurement of the set ignition position measurement time.
エンジンの始動性を良好にするためには、エンジンの始動操作が開始された後、制御装置がエンジンの点火を制御し得る状態になるのを待つことなく、信号発生装置が特定の信号を発生したときに直ちに点火装置に点火指令信号を与えて、始動時の初爆をできるだけ速やかに行わせることが好ましい。この場合、信号発生装置は、エンジンの始動時の点火位置として適したクランク軸の回転位置で特定の信号を発生するように構成されている必要がある。 In order to improve the startability of the engine, after the start operation of the engine is started, the signal generator generates a specific signal without waiting for the control device to be in a state where the ignition of the engine can be controlled. It is preferable to give an ignition command signal to the ignition device immediately when the engine is started so that the initial explosion at the start can be performed as soon as possible. In this case, the signal generator needs to be configured to generate a specific signal at a rotation position of the crank shaft suitable as an ignition position at the time of starting the engine.
エンジンが複数の気筒を有する場合には、エンジンの点火動作や燃料噴射動作の制御を気筒毎に行う必要があるため、信号発生装置は、エンジンの複数の気筒にそれぞれ対応した信号を発生する。この場合、エンジンの各気筒の点火動作や燃料噴射動作を制御するためには、信号発生装置が発生した各信号が、クランク軸の何れの回転位置で、何れの気筒に対して発生した信号であるかを判別する必要がある。 When the engine has a plurality of cylinders, it is necessary to control the ignition operation and the fuel injection operation of the engine for each cylinder, so that the signal generator generates a signal corresponding to each of the plurality of cylinders of the engine. In this case, in order to control the ignition operation and the fuel injection operation of each cylinder of the engine, each signal generated by the signal generator is a signal generated for which cylinder at which rotation position of the crank shaft. It is necessary to determine if there is.
エンジン用の信号発生装置は、典型的な例では、クランク軸の回転と同期して、正極性の信号と負極性の信号とを交互に発生するように構成される。このような形式の信号発生装置を用いる場合、信号発生装置が発生する各信号がクランク軸の何れの回転位置で発生した信号であるかを判別することができないため、別途信号の判別を可能にするための手段を設ける必要がある。 The signal generator for an engine is typically configured to alternately generate positive and negative signals in synchronization with the rotation of the crank shaft. When a signal generator of this type is used, it is not possible to determine at which rotation position of the crank shaft each signal generated by the signal generator is, so it is possible to separately determine the signal. It is necessary to provide means for doing so.
そのため、特許文献1に示されているように、エンジンのカム軸の回転に同期して各気筒に対応する気筒判別信号を出力する気筒判別装置を別途設けて、各気筒に対応する気筒判別信号が発生している間に信号発生装置が出力した信号を各気筒に対応する信号として判別する方法が採用されている。しかしながら、このような方法による場合には、クランク軸の回転に同期して信号を発生する信号発生装置の外に、信号を判別するための信号を発生する手段を別途設ける必要があるため、エンジンの構造が複雑になるのを避けられない。 Therefore, as shown in Patent Document 1, a cylinder discrimination device that outputs a cylinder discrimination signal corresponding to each cylinder in synchronization with the rotation of the camshaft of the engine is separately provided, and a cylinder discrimination signal corresponding to each cylinder is provided. A method of discriminating the signal output by the signal generator as a signal corresponding to each cylinder is adopted while the signal is generated. However, in the case of such a method, since it is necessary to separately provide a means for generating a signal for discriminating the signal in addition to the signal generator that generates a signal in synchronization with the rotation of the crank shaft, the engine It is inevitable that the structure of will be complicated.
そこで、特許文献2に示されているように、クランク軸が1回転する間に回転センサが出力する複数の信号の中に、クランク軸の特定の回転位置で続けて発生する1対の同極性の信号を含ませておくことが提案された。特許文献2に示された信号発生装置においては、ロータに設ける一部のリラクタに段付き部を有する形状を持たせることにより、特定の気筒の基準位置に対して所定の位相関係を有する位置で同極性の2個の信号を続けて発生させている。 Therefore, as shown in Patent Document 2, a pair of isopolarities continuously generated at a specific rotation position of the crank shaft in a plurality of signals output by the rotation sensor during one rotation of the crank shaft. It was suggested to include the signal of. In the signal generator shown in Patent Document 2, by giving a shape having a stepped portion to a part of the retractors provided in the rotor, at a position having a predetermined phase relationship with respect to the reference position of a specific cylinder. Two signals of the same polarity are continuously generated.
特許文献2に示されているように、信号発生装置が出力する複数の信号の中に、続いて発生する一対の同極性の信号を含ませておくと、同極性の信号のうちの後から発生した方の信号を、クランク軸の特定の回転位置、例えば、特定の気筒のピストンが上死点に達した時の回転位置で発生した信号であると判別することができる。 As shown in Patent Document 2, if a pair of signals of the same polarity that are subsequently generated are included in a plurality of signals output by the signal generator, the signals of the same polarity will be added later. It can be determined that the generated signal is a signal generated at a specific rotation position of the crank shaft, for example, a rotation position when the piston of a specific cylinder reaches the top dead center.
特開平11-229946号公報Japanese Unexamined Patent Publication No. 11-22946 特開平4-103856号公報Japanese Unexamined Patent Publication No. 4-103856
特許文献2に示された信号発生装置のように、異なる極性の信号が交互に現れる複数の出力信号の中に、同じ極性を持って続けて発生する特異な信号を含ませておけば、これらの信号の特異性を利用して、信号発生装置が発生する各信号がクランク軸の何れの回転位置で発生した信号であるかを判別することができる。 As in the signal generator shown in Patent Document 2, if a plurality of output signals in which signals having different polarities appear alternately include a peculiar signal that is continuously generated with the same polarity, these are included. It is possible to determine at which rotation position of the crank shaft each signal generated by the signal generator is a signal generated by using the signal peculiarity of.
しかしながら、特許文献2に示された信号発生装置を用いた場合には、エンジンの始動時に、段付きのリラクタの中間部が回転センサの磁極部に対向している状態でクランク軸が回転を開始した場合に、クランク軸を1回転以上回転させないと、連続して現れる同極性の信号を発生させることができない。そのため、エンジンを始動する際に、エンジンの始動を可能にするために必要な回転位置情報の取得が遅れ、エンジンを速やかに始動させることができないことがあるという問題があった。このことは、手動操作による始動や、キック操作による始動を行うことがあるエンジンで特に問題になる。 However, when the signal generator shown in Patent Document 2 is used, when the engine is started, the crank shaft starts to rotate with the intermediate portion of the stepped retractor facing the magnetic pole portion of the rotation sensor. In this case, unless the crank shaft is rotated by one rotation or more, it is not possible to generate continuously appearing signals of the same polarity. Therefore, when starting the engine, there is a problem that the acquisition of the rotation position information necessary for enabling the start of the engine is delayed, and the engine may not be started promptly. This is especially problematic for engines that may be manually started or kicked.
またエンジンを運転している間、信号発生装置が発生する各信号の判別を継続的に行う必要があるが、特許文献2に示された信号発生装置を用いた場合には、クランク軸が1回転する間に、信号の判別に用いる同極性の信号を1回しか発生させることができないため、信号の判別の迅速性を高める上で限界があった。 Further, while the engine is being operated, it is necessary to continuously discriminate each signal generated by the signal generator. However, when the signal generator shown in Patent Document 2 is used, the crank shaft is set to 1. Since a signal of the same polarity used for signal discrimination can be generated only once during rotation, there is a limit in improving the speed of signal discrimination.
本発明の目的は、磁束の変化を検出する毎に信号を出力するように構成されてエンジンのケースに対して固定される回転センサと、前記エンジンのクランク軸と共に回転するように設けられて、回転位置が設定回転位置に一致する毎に前記回転センサが検出する磁束に一方向又は他方向への変化を生じさせるリラクタを備えたロータとを備えて、前記リラクタが前記磁束を一方向に変化させた際に前記回転センサから第1の極性の信号を出力させ、前記リラクタが前記磁束を他方向に変化させた際に前記回転センサから第2の極性の信号を出力させるように構成されたエンジン用信号発生装置を用いてクランク軸の回転位置情報を得る場合に、回転センサが出力する信号の判別を従来よりも高い迅速性を持って行うことができるようにすることにある。 An object of the present invention is to provide a rotation sensor configured to output a signal each time a change in magnetic flux is detected and fixed to the case of the engine, and to rotate with the crank shaft of the engine. The retractor is provided with a rotor provided with a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position coincides with the set rotation position, and the retractor changes the magnetic flux in one direction. The rotation sensor is configured to output a signal of the first polarity when the rotation sensor is used, and the rotation sensor is configured to output a signal of the second polarity when the retractor changes the magnetic flux in the other direction. When the rotation position information of the crank shaft is obtained by using the signal generator for an engine, it is possible to discriminate the signal output by the rotation sensor with higher speed than before.
本発明は、磁束の変化を検出する毎に信号を出力するように構成されてエンジンのケースに対して固定された状態で配置される回転センサと、エンジンのクランク軸と共に回転するように設けられて、クランク軸の回転位置が設定回転位置に一致する毎に回転センサが検出する磁束に一方向又は他方向への変化を生じさせるリラクタを備えたロータとを備えて、リラクタが前記磁束を一方向に変化させた際に回転センサから第1の極性の信号を出力させ、前記リラクタが前記磁束を他方向に変化させた際に回転センサから第2の極性の信号を出力させるように構成されたエンジン用信号発生装置に適用される。 The present invention is provided with a rotation sensor configured to output a signal each time a change in magnetic flux is detected and arranged in a fixed state with respect to the engine case, and to rotate with the crank shaft of the engine. A rotor equipped with a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position of the crank shaft coincides with the set rotation position is provided, and the retractor generates the magnetic flux. It is configured to output a signal of the first polarity from the rotation sensor when the direction is changed, and to output a signal of the second polarity from the rotation sensor when the retractor changes the magnetic flux in the other direction. It is applied to the signal generator for the engine.
本発明に係わるエンジン用信号発生装置においては、ロータが回転する過程で回転センサが検出する磁束に前記一方向への変化を続けて2回生じさせる第1の磁束変化生成部と、ロータが回転する過程で回転センサが検出する磁束に前記他方向への変化を続けて2回生じさせる第2の磁束変化生成部とをロータに1つずつ持たせるように前記リラクタが設けられる。 In the engine signal generator according to the present invention, the first magnetic flux change generator that causes the magnetic flux detected by the rotation sensor to change twice in a row in the process of rotating the rotor, and the rotor rotate. The retractor is provided so that the rotor has one second magnetic flux change generation unit that continuously causes the magnetic flux detected by the rotation sensor to change in the other direction twice.
このようにリラクタを設けることにより、回転センサが続いて発生する2つの信号を信号対として見たときに、ロータが1回転する間に回転センサが出力する信号が、第1の極性を持って続けて発生する2つの信号からなる第1の同極性の信号対と、第2の極性を持って続けて発生する2つの信号からなる第2の同極性の信号対とを1つずつ含むようにする。 By providing the retractor in this way, when the two signals generated by the rotation sensor are viewed as a signal pair, the signal output by the rotation sensor during one rotation of the rotor has the first polarity. To include one signal pair of the same polarity consisting of two signals generated in succession and a second signal pair of the same polarity consisting of two signals generated consecutively with a second polarity. To.
上記のように信号発生装置を構成すると、エンジンの始動操作が開始された後、信号発生装置が順次出力する信号の極性を見ていって、同じ極性を有する2つの信号を続いて検出したときに、これら2つの信号のうち、後から検出された信号がクランク軸の何れの回転位置で発生した信号であるかを判別することができる。第1の同極性の信号対及び第2の同極性の信号対は、ロータが1回転する間に1回ずつしか発生しないため、各信号対が検出されたときに各信号対を構成している信号がクランク軸のいずれの回転位置で発生した信号であるかを直ちに判別することができ、クランク軸の回転位置の判別を迅速に行うことができる。また第1の同極性の信号対を構成する信号及び第2の同極性の信号対を構成する信号は、極性が異なるため、両信号対は明確に区別して認識することができる。 When the signal generator is configured as described above, after the engine start operation is started, the polarity of the signals output by the signal generator in sequence is observed, and when two signals having the same polarity are subsequently detected. In addition, it is possible to determine at which rotation position of the crank shaft the signal detected later is the signal generated among these two signals. Since the first signal pair of the same polarity and the second signal pair of the same polarity are generated only once during one rotation of the rotor, each signal pair is configured when each signal pair is detected. It is possible to immediately determine at which rotation position of the crank shaft the signal is generated, and it is possible to quickly determine the rotation position of the crank shaft. Further, since the signals constituting the first signal pair of the same polarity and the signals constituting the signal pair of the second same polarity have different polarities, both signal pairs can be clearly distinguished and recognized.
本発明の一態様においては、ロータが1回転する間に回転センサが出力する信号対群が、第1の極性を持って続けて発生する2つの信号からなる第1の同極性の信号対、第1の極性の信号と第2の極性の信号との2つの信号からなる第1の異極性の信号対、第2の極性を持って続けて発生する2つの信号からなる第2の同極性の信号対、及び続けて発生する第2の極性の信号と第1の極性の信号との2つの信号からなる第2の異極性の信号対のみを含むように前記リラクタが設けられる。 In one aspect of the present invention, a first signal pair having the same polarity, wherein the signal pair group output by the rotation sensor during one rotation of the rotor has two signals continuously generated with the first polarity. A signal pair of different polarities consisting of two signals of a first polarity and a signal of a second polarity, and a second isopolarity consisting of two signals having a second polarity and continuously generated. The retractor is provided so as to include only a second signal pair consisting of a signal pair of the above and a signal pair of a second polarity and a signal of the first polarity which are subsequently generated.
このように構成すると、ロータが1回転する間に回転センサが続けて出力する2つの信号の極性の組合せをすべて異ならせることができるため、回転センサが続けて出力する2つの信号の極性から各信号が何れの回転位置で発生した信号であるかを直ちに判別することができ、クランク軸の回転位置の情報を正確かつ迅速に取得することができる。 With this configuration, the combination of the polarities of the two signals continuously output by the rotation sensor can be made different during one rotation of the rotor. Therefore, the polarities of the two signals continuously output by the rotation sensor can be different from each other. It is possible to immediately determine at which rotation position the signal is generated, and it is possible to accurately and quickly acquire information on the rotation position of the crank shaft.
本発明の他の態様においては、ロータが1回転する間に回転センサが出力する信号対群が、続けて発生する2つの第1の極性の信号からなる第1の同極性の信号対、続けて発生する第1の極性の信号と第2の極性の信号との2つの信号からなる第1の異極性の信号対、続けて発生する2つの第2の極性の信号からなる第2の同極性の信号対、続けて発生する第2の極性の信号と第1の極性の信号との2つの信号からなる第2の異極性の信号対、及び続けて発生する第1の極性の信号と第2の極性の信号との2つの信号からなる第3の異極性の信号対のみからなるようにリラクタが設けられる。 In another aspect of the present invention, the signal pair group output by the rotation sensor during one rotation of the rotor is a first signal pair consisting of two signals of the first polarity generated in succession, followed by a signal pair of the same polarity. A first pair of different polarities consisting of two signals of the first polarity and a signal of the second polarity generated thereafter, and a second signal consisting of two signals of the second polarity generated in succession. A pair of polar signals, a second pair of different polar signals consisting of two signals of the second polarity and a signal of the first polarity generated in succession, and a signal of the first polarity generated in succession. The retractor is provided so that it consists only of a third signal pair of different polarities consisting of two signals with a signal of the second polarity.
信号発生装置が発生する信号は、エンジンのクランク軸の特定の回転位置でレベルが変化する信号であればよい。本明細書においては、信号の極性を、信号発生時のレベル変化の方向で表わす。例えば、各信号をパルス波形とする場合には、各信号が発生する際のレベル変化の方向が正方向である場合にその極性を正極性とし、各信号が発生する際のレベル変化の方向が負方向である場合にその極性を負極性とする。信号が2つの異なる極性をもつ場合、何れの極性を正極性とし、何れの極性を負極性とするかは任意である。 The signal generated by the signal generator may be a signal whose level changes at a specific rotation position of the crank shaft of the engine. In the present specification, the polarity of a signal is expressed in the direction of level change when the signal is generated. For example, when each signal is a pulse waveform, the polarity is positive when the direction of level change when each signal is generated is positive, and the direction of level change when each signal is generated is positive. When it is in the negative direction, its polarity is considered to be negative. When the signal has two different polarities, it is arbitrary which polarity is positive and which polarity is negative.
信号発生部から発生させる信号の波形は、パルス波形でもよく、矩形波状や階段波状の波形でも良い。信号発生部が発生する信号の波形が矩形波状や階段波状である場合には、その立ち上がり及び(又は)立ち下がりをそれぞれクランク軸の回転位置の情報を含む信号として認識する。この場合、例えば信号のレベルの立ち上がりを正極性の信号とし、信号のレベルの立ち下がりを負極性の信号とする。第1の極性及び第2の極性は互いに異なる極性であり、第1の極性を正極性とした場合、第2の極性は負極性となり、第1の極性を負極性とした場合、第2の極性は正極性となる。 The waveform of the signal generated from the signal generation unit may be a pulse waveform, or may be a rectangular wave shape or a stepped wave shape. When the waveform of the signal generated by the signal generation unit is rectangular wavy or staircase wavy, its rising edge and / or falling edge are recognized as signals including information on the rotational position of the crank shaft, respectively. In this case, for example, the rising edge of the signal level is a positive signal, and the falling signal level is a negative signal. The first polarity and the second polarity are different from each other. When the first polarity is positive, the second polarity is negative, and when the first polarity is negative, the second polarity is negative. The polarity is positive.
前述のように、続けて発生する同極性の2つの信号からなる信号対をクランク軸が1回転する間に1回だけ発生させていた従来の信号発生装置によった場合には、エンジンの始動操作を開始する際のクランク軸の回転位置によっては、エンジンの始動を可能にするために必要なクランク軸の回転位置情報を得るために、クランク軸を1回転以上回転させる必要があった。そのため、エンジンの始動を可能にするために必要なクランク軸の回転位置情報の取得が遅れ、エンジンの始動性が悪くなることがあった。 As described above, when the conventional signal generator that generates a signal pair consisting of two signals of the same polarity continuously generated only once during one rotation of the crank shaft, the engine is started. Depending on the rotation position of the crank shaft at the time of starting the operation, it was necessary to rotate the crank shaft by one or more rotations in order to obtain the rotation position information of the crank shaft necessary for enabling the start of the engine. Therefore, the acquisition of the rotation position information of the crank shaft necessary for enabling the start of the engine may be delayed, and the startability of the engine may be deteriorated.
これに対し、本発明によった場合には、エンジンの始動時にクランク軸が何れの位置から回転を開始した場合でも、エンジンが1回転する間に、第1の極性を持って順次発生する2つの信号からなる第1の同極性の信号対及び第2の極性を持って順次発生する2つの信号からなる第2の同極性の信号対のうちのいずれか一方は必ず発生させることができるため、エンジンの始動を可能にするために必要なクランク軸の回転位置の情報を速やかに取得して、エンジンの始動性を向上させることができる。 On the other hand, according to the present invention, regardless of the position where the crank shaft starts to rotate when the engine is started, the crank shafts are sequentially generated with the first polarity during one rotation of the engine. Because either one of the first identical polarity signal pair consisting of one signal and the second identical polarity signal pair consisting of two signals having a second polarity and sequentially generated can always be generated. , Information on the rotational position of the crank shaft required to enable the start of the engine can be quickly acquired, and the startability of the engine can be improved.
本発明は、実施するに当たり、種々の態様をとることができるが、本発明の更に他の態様については、以下に示す発明を実施するための形態についての説明の中で明らかにされる。 The present invention may take various aspects in carrying out the invention, but still another aspect of the present invention will be clarified in the description of the embodiments shown below for carrying out the invention.
本発明によれば、エンジンの始動時にクランク軸が何れの位置から回転を開始した場合でも、エンジンが1回転する間に、第1の同極性の信号対及び第2の同極性の信号対のうちのいずれか一方は必ず発生させることができるため、エンジンの始動時にクランク軸の回転位置情報を速やかに取得して、エンジンの始動性を向上させることができる。 According to the present invention, regardless of the position where the crank shaft starts to rotate at the time of starting the engine, the signal pair of the first equal polarity and the signal pair of the second equal polarity during one rotation of the engine. Since either one of them can be generated without fail, the rotation position information of the crank shaft can be quickly acquired when the engine is started, and the startability of the engine can be improved.
またエンジンが始動した後は、クランク軸が1回転する間に、第1の同極性の信号対と第2の同極性の信号対との2つの信号対を発生させて、両信号対に基づいて各信号の発生位置の判別を行うことができるため、各信号の発生位置の判別を行う機会を増やして、信号の発生位置の判別の信頼性を高めることができる。 Also, after the engine is started, two signal pairs, a first signal pair of the same polarity and a second signal pair of the same polarity, are generated during one rotation of the crank shaft, and are based on both signal pairs. Since it is possible to determine the generation position of each signal, it is possible to increase the chances of determining the generation position of each signal and improve the reliability of the determination of the signal generation position.
また本発明によれば、信号の発生位置の判別を可能にするための信号を発生する装置を別途設ける必要がないため、エンジンの構造が複雑になるのを防ぐことができる。 Further, according to the present invention, it is not necessary to separately provide a device for generating a signal for enabling determination of the signal generation position, so that it is possible to prevent the structure of the engine from becoming complicated.
特に、本発明において、ロータの周方向に並ぶ第1のセクションないし第3のセクションからなるリラクタ構成要素のみによりリラクタを構成して、第1のセクションの先端におけるセクションの形態と、第1のセクションの後端と第2のセクションの先端との連結部におけるセクションの形態とにより第1の磁束変化生成部を構成し、第2のセクションの後端と第3のセクションの先端との連結部におけるセクションの形態と、第3のセクションの後端における第3のセクションの形態とにより第2の磁束変化生成部を構成するようにした場合には、ロータが1回転する間に検出されるすべての信号対をそれぞれ構成する2つの信号の極性の組合せを異ならせることができるため、ロータが何れの位置から回転を開始した場合でも、続いて発生した2つの信号からなる信号対を最初に検出した時点で、該信号対を構成する1番目の信号及び2番目の信号のうち、2番目の信号の発生位置を直ちに判別することができる。従って、エンジンの始動操作が開始された直後に最短でクランク軸の回転位置情報を取得することができる。 In particular, in the present invention, the retractor is composed of only the retractor component consisting of the first section to the third section arranged in the circumferential direction of the rotor, and the form of the section at the tip of the first section and the first section The form of the section at the connection between the rear end and the tip of the second section constitutes the first magnetic flux change generator, and at the connection between the rear end of the second section and the tip of the third section. When the form of the section and the form of the third section at the rear end of the third section form the second magnetic flux change generator, all detected during one rotation of the rotor. Since the polar combinations of the two signals that make up each signal pair can be different, no matter where the rotor starts rotating, the signal pair consisting of the two signals that are subsequently generated is detected first. At a time point, the generation position of the second signal among the first signal and the second signal constituting the signal pair can be immediately determined. Therefore, it is possible to acquire the rotation position information of the crank shaft in the shortest time immediately after the engine starting operation is started.
図1は、本発明に係る信号発生装置の一実施形態の構成を概略的に示した正面図である。FIG. 1 is a front view schematically showing a configuration of an embodiment of a signal generator according to the present invention. 図2(A)は、図1に示した信号発生装置のロータの外周に設けられているリラクタを、ロータの外径側から内径側に向かう方向に沿って見た場合の形状を示す展開図、図2(B)は、同リラクタをロータの軸線方向に沿う方向から見た場合の形状を示す展開図である。FIG. 2A is a developed view showing the shape of the retractor provided on the outer periphery of the rotor of the signal generator shown in FIG. 1 when viewed along the direction from the outer diameter side to the inner diameter side of the rotor. 2 (B) is a developed view showing the shape of the retractor when viewed from a direction along the axial direction of the rotor. 図3は、図1に示した信号発生装置のロータに設けられるリラクタの変形例を、ロータの外径側から内径側に向かう方向に沿って見た場合の形状を示す展開図である。FIG. 3 is a developed view showing a modified example of the retractor provided in the rotor of the signal generator shown in FIG. 1 when viewed along the direction from the outer diameter side to the inner diameter side of the rotor. 図4(A)は、図1に示した信号発生装置のロータに設けられるリラクタの他の変形例を、ロータの外径側から内径側に向かう方向に沿って見た場合の形状を示す展開図、図4(B)は、図4(A)のリラクタをロータの軸線方向に沿う方向から見た場合の形状を示す展開図、図4(C)は同リラクタに設定された各作用点が回転センサの磁極部の位置を通過する際に発生する信号の波形を示した波形図である。FIG. 4A is a development showing a shape when another modification of the retractor provided in the rotor of the signal generator shown in FIG. 1 is viewed along the direction from the outer diameter side to the inner diameter side of the rotor. FIG. 4 (B) is a developed view showing the shape of the retractor of FIG. 4 (A) when viewed from the direction along the axial direction of the rotor, and FIG. 4 (C) is an action point set for the retractor. It is a waveform diagram which showed the waveform of the signal generated when is passing the position of the magnetic pole part of a rotation sensor. 図5(A)は、本発明の一実施形態で用いる回転センサの構成を概略的に示した側面図である。図5(B)は、図5(A)のB-B線に沿って断面して示した回転センサの断面図である。FIG. 5A is a side view schematically showing the configuration of the rotation sensor used in one embodiment of the present invention. FIG. 5B is a cross-sectional view of the rotation sensor shown in cross section along the line BB of FIG. 5A. 図6(A)は、図1に示した信号発生装置を単気筒エンジンに適用する場合にロータに設けるリラクタ構成要素を示した展開図、図6(B)は同ロータを用いた場合に信号発生装置が発生する信号を示した波形図、図6(C)は、図6(B)に示した各信号が発生したときにエンジンの気筒で行われる行程を示した行程図である。FIG. 6A is a development view showing a retractor component provided in the rotor when the signal generator shown in FIG. 1 is applied to a single cylinder engine, and FIG. 6B is a signal when the rotor is used. A waveform diagram showing the signals generated by the generator, FIG. 6C is a stroke diagram showing the stroke performed in the cylinder of the engine when each signal shown in FIG. 6B is generated. 図7(A)は、図1に示した構成を有する信号発生装置を2気筒4サイクルエンジンに適用する際に用いるロータに設けるリラクタ構成要素の形状を示した展開図、図7(B)は、同ロータを用いた場合に得られる信号の波形を示した波形図、図7(C)及び(D)は図7(B)に示した各信号が発生したときにエンジンの第1気筒#1及び第2気筒#2で行われる行程を示した行程図である。7 (A) is a developed view showing the shape of a retractor component provided in a rotor used when a signal generator having the configuration shown in FIG. 1 is applied to a 2-cylinder 4-cycle engine, and FIG. 7 (B) is a developed view. , A waveform diagram showing the waveforms of the signals obtained when the same rotor is used, FIGS. 7 (C) and 7 (D) show the first cylinder # of the engine when each signal shown in FIG. 7 (B) is generated. It is a stroke diagram which showed the stroke performed in 1 and 2nd cylinder # 2. 図8(A)は、図1に示した構成を有する信号発生装置を3気筒4サイクルエンジンに適用する実施形態で用いるリラクタ構成要素の形状を示した展開図、図8(B)は、同ロータを用いた場合に得られる信号の波形を示した波形図、図8(C)ないし(E)は、図8(B)に示した各信号が発生したときにエンジンの3つの気筒#1~#3で行われる行程を示した行程図である。8 (A) is a development view showing the shape of a retractor component used in an embodiment in which a signal generator having the configuration shown in FIG. 1 is applied to a 3-cylinder 4-cycle engine, and FIG. 8 (B) is the same. Waveform diagrams showing the waveforms of the signals obtained when the rotor is used, FIGS. 8 (C) to 8 (E), show the three cylinders # 1 of the engine when each signal shown in FIG. 8 (B) is generated. It is a itinerary diagram which showed the process performed in ~ # 3. 図9(A)は、図1に示した構成を有する信号発生装置を4気筒4サイクルエンジンに適用する実施形態で用いるリラクタの形状を示した展開図、図9(B)は、同リラクタを備えたロータを用いた場合に得られる信号の波形を示した波形図、図9(C)ないし(F)は、図9(B)に示した各信号が発生したときにエンジンの第1ないし第4気筒#1~#4で行われる行程を示した行程図である。9 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 1 is applied to a 4-cylinder 4-cycle engine, and FIG. 9 (B) shows the same retractor. Waveform diagrams showing the waveforms of the signals obtained when the provided rotor is used, FIGS. 9 (C) to 9 (F), are the first to the engine when each signal shown in FIG. 9 (B) is generated. It is a stroke diagram which showed the stroke performed in 4th cylinder # 1 to # 4. 図10は、本発明に係る信号発生装置の他の実施形態の構成を概略的に示した正面図である。FIG. 10 is a front view schematically showing the configuration of another embodiment of the signal generator according to the present invention. 図11(A)は、図10に示したロータに設けられたリラクタの展開図、図11(B)は同ロータを用いた場合に回転センサの信号コイルから得られる一連の信号の波形を示した波形図である。11 (A) shows a developed view of the retractor provided in the rotor shown in FIG. 10, and FIG. 11 (B) shows the waveform of a series of signals obtained from the signal coil of the rotation sensor when the rotor is used. It is a waveform diagram. 図12は、本発明に係る信号発生装置の更に他の実施形態の構成を概略的に示した正面図である。FIG. 12 is a front view schematically showing the configuration of still another embodiment of the signal generator according to the present invention. 図13(A)は、図12に示した構成を有する信号発生装置を3気筒4サイクルエンジンに適用する実施形態で用いるリラクタの形状を示した展開図、図13(B)は同ロータを用いた場合に回転センサの信号コイルから得られる信号の波形を示した波形図、図13(C)~(E)は、図13(B)に示した各信号が発生した際に3気筒エンジンの3つの気筒#1~#3で行われる行程を示した行程図である。13 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 12 is applied to a 3-cylinder 4-cycle engine, and FIG. 13 (B) uses the same rotor. Waveform diagrams showing the waveforms of the signals obtained from the signal coil of the rotation sensor, FIGS. 13 (C) to 13 (E), show the three-cylinder engine when each signal shown in FIG. 13 (B) is generated. It is a stroke diagram which showed the stroke performed in three cylinders # 1 to # 3. 図14(A)は、図12に示した構成を有する信号発生装置を6気筒4サイクルエンジンに適用する実施形態で用いるリラクタの形状を示した展開図、図14(B)は同リラクタを用いた場合に得られる信号の波形を示した波形図、図14(C)~(H)は、図14(B)に示した各信号が発生したときに6気筒エンジンの6つの気筒で行われる行程を示した行程図である。14 (A) is a developed view showing the shape of a retractor used in an embodiment in which the signal generator having the configuration shown in FIG. 12 is applied to a 6-cylinder 4-cycle engine, and FIG. 14 (B) uses the same retractor. The waveform charts showing the waveforms of the signals obtained when the signals are generated, FIGS. 14 (C) to 14 (H), are performed on the six cylinders of the six-cylinder engine when each signal shown in FIG. 14 (B) is generated. It is a itinerary diagram which showed the process. 図15(A)は、本発明で用いるリラクタの変形例を示した展開図、図15(B)は同リラクタを備えたロータを用いた場合に得られる信号の波形を示した波形図である。FIG. 15A is a developed view showing a modified example of the retractor used in the present invention, and FIG. 15B is a waveform diagram showing a waveform of a signal obtained when a rotor equipped with the retractor is used. .. 図16(A)は、回転センサの信号発生部を磁気センサにより構成した場合に得られる検出信号の波形の一例を示した波形図、図16(B)は、同図(A)に示された波形の各立ち上がり及び各立ち下がりで発生させたパルス信号を示した波形図である。16 (A) is a waveform diagram showing an example of the waveform of the detection signal obtained when the signal generation unit of the rotation sensor is configured by the magnetic sensor, and FIG. 16 (B) is shown in FIG. 16 (A). It is a waveform diagram which showed the pulse signal generated at each rising edge and each falling edge of a waveform. 図17は、図9に示した実施形態において信号発生装置が発生する信号の発生位置の判別を行う際に実行されるクランク角割り込み処理のアルゴリズムの一例を示したフローチャートである。FIG. 17 is a flowchart showing an example of an algorithm for crank angle interrupt processing executed when the signal generator determines the generation position of the signal generated in the embodiment shown in FIG. 9. 図18は、図9に示した実施形態において信号発生装置が発生する信号の判別を行う際に実行される初回処理のアルゴリズムの一例を示したフローチャートである。FIG. 18 is a flowchart showing an example of an algorithm of the initial processing executed when the signal generator discriminates the generated signal in the embodiment shown in FIG. 図19は、図9に示した実施形態において信号発生装置が発生する信号の判別を行う際に実行される本判定処理のアルゴリズムの一例を示したフローチャートである。FIG. 19 is a flowchart showing an example of the algorithm of the present determination process executed when the signal generator determines the signal generated in the embodiment shown in FIG.
本発明に係る信号発生装置は、エンジンや、エンジンの負荷を制御するためにエンジンのクランク軸の回転位置情報を得ることが必要な場合に広く使用することができる。クランク軸の回転位置情報は、クランク軸の回転位置が特定の回転位置に一致したことを示す情報である。 The signal generator according to the present invention can be widely used for an engine or when it is necessary to obtain rotational position information of a crank shaft of an engine in order to control an engine load. The rotation position information of the crank shaft is information indicating that the rotation position of the crank shaft matches a specific rotation position.
本明細書において「特定の回転位置」は、限定的な意味を持つものではなく、エンジン又はエンジンにより駆動される負荷に対して行う制御の内容に応じて、クランク軸の種々の回転位置であり得る。エンジンの点火位置を制御する場合や、燃料噴射位置を制御する場合、「特定の回転位置」は、例えば、点火位置や燃料噴射位置の計測を開始する際のクランク軸の回転位置や、エンジンの始動時に最初に点火を行う際のクランク軸の回転位置などである。 As used herein, the term "specific rotational position" has no limiting meaning and is various rotational positions of the crank shaft depending on the engine or the content of control performed on the load driven by the engine. obtain. When controlling the ignition position of the engine or controlling the fuel injection position, the "specific rotation position" is, for example, the rotation position of the crank shaft at the start of measurement of the ignition position or the fuel injection position, or the rotation position of the engine. This is the rotational position of the crank shaft when the engine is first ignited at the time of starting.
本明細書においては、エンジンの各気筒のピストンが上死点に達した際のクランク軸の回転位置を各気筒の上死点位置と呼ぶ。また各種の制御条件に対して演算された各気筒の点火位置等の計測を開始する際のクランク軸の回転位置を各気筒の基準位置と呼ぶ。エンジンのクランク軸の回転位置をクランク角位置と呼ぶこともある。 In the present specification, the rotation position of the crank shaft when the piston of each cylinder of the engine reaches the top dead center is referred to as the top dead center position of each cylinder. Further, the rotation position of the crank shaft at the time of starting the measurement of the ignition position and the like of each cylinder calculated for various control conditions is called the reference position of each cylinder. The rotational position of the crank shaft of the engine is sometimes called the crank angle position.
本発明の一実施形態では、エンジン用信号発生装置が、磁束の変化を検出する毎に信号を出力するように構成されてエンジンのケースに対して固定される回転センサと、エンジンのクランク軸と共に回転するように設けられて、回転位置が設定回転位置に一致する毎に回転センサが検出する磁束に一方向又は他方向への変化を生じさせるリラクタを備えたロータとを備えて、リラクタが前記磁束を一方向に変化させた際に回転センサから第1の極性の信号を出力し、リラクタが前記磁束を他方向に変化させた際に、回転センサから第2の極性の信号を出力する。 In one embodiment of the invention, the engine signal generator is configured to output a signal each time it detects a change in magnetic flux, along with a rotation sensor fixed to the engine case and an engine crank shaft. The retractor comprises a rotor provided to rotate and having a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position coincides with the set rotation position. When the magnetic flux is changed in one direction, the rotation sensor outputs a signal of the first polarity, and when the retractor changes the magnetic flux in the other direction, the rotation sensor outputs a signal of the second polarity.
本発明を適用する信号発生装置で用いるロータは、エンジンに取り付けられる際にクランク軸と中心軸線を共有した状態で配置される円筒面を有し、この円筒面にリラクタが設けられる。また回転センサは、ロータの円筒面のリラクタが設けられた領域に空隙を介して対向させられる磁極部と、この磁極部とリラクタとを含むように形成された磁路に信号生成用の磁束を流す磁石と、ロータが回転する過程で前記リラクタが前記信号生成用の磁束に変化を生じさせる毎にレベル変化を示す信号を発生する信号発生部とを備えている。 The rotor used in the signal generator to which the present invention is applied has a cylindrical surface that is arranged in a state where the crank shaft and the central axis are shared when the rotor is attached to the engine, and a retractor is provided on the cylindrical surface. Further, the rotation sensor applies a magnetic flux for signal generation to a magnetic pole portion that is opposed to a region provided with a retractor on the cylindrical surface of the rotor via a gap, and a magnetic path formed so as to include the magnetic pole portion and the retractor. It includes a magnet to be flown and a signal generation unit that generates a signal indicating a level change each time the retractor causes a change in the magnetic flux for signal generation in the process of rotating the rotor.
本発明の好ましい実施形態においては、ロータが回転する過程で回転センサが検出する磁束に一方向への変化を続けて2回生じさせる第1の磁束変化生成部と、ロータが回転する過程で回転センサが検出する磁束に他方向への変化を続けて2回生じさせる第2の磁束変化生成部とを1つずつ持つようにリラクタが構成される。 In a preferred embodiment of the present invention, a first magnetic flux change generation unit that continuously changes in one direction to the magnetic flux detected by the rotation sensor twice in the process of rotating the rotor, and a rotation in the process of rotating the rotor. The retractor is configured to have one second magnetic flux change generating unit that causes the magnetic flux detected by the sensor to continuously change in the other direction twice.
このようにリラクタを構成しておくと、ロータが1回転する間に回転センサが出力する一連の信号対に、続けて発生する2つの第1の極性の信号からなる第1の同極性の信号対と、続けて発生する2つの第2の極性の信号からなる第2の同極性の信号対とを1つずつ含ませることができる。 When the retractor is configured in this way, a first polar signal consisting of two signals of the first polarity generated in succession to a series of signal pairs output by the rotation sensor during one rotation of the rotor. A pair and a second pair of signals of the same polarity consisting of two signals of the second polarity generated in succession can be included one by one.
本発明の好ましい実施形態では、ロータが1回転する間に回転センサが出力する信号対群が、第1の極性を持って続けて発生する2つの信号からなる第1の同極性の信号対、第1の極性の信号と第2の極性の信号との2つの信号からなる第1の異極性の信号対、第2の極性を持って続けて発生する2つの信号からなる第2の同極性の信号対、及び続けて発生する第2の極性の信号と第1の極性の信号との2つの信号からなる第2の異極性の信号対のみを含むように前記リラクタが設けられる。 In a preferred embodiment of the present invention, a first signal pair consisting of two signals having a first polarity and continuously generated by a signal pair group output by the rotation sensor during one rotation of the rotor, A signal pair of different polarities consisting of two signals of a first polarity and a signal of a second polarity, and a second isopolarity consisting of two signals having a second polarity and continuously generated. The retractor is provided so as to include only a second signal pair consisting of a signal pair of the above and a signal pair of a second polarity and a signal of the first polarity which are subsequently generated.
本発明の他の好ましい実施形態では、ロータが1回転する間に回転センサが出力する信号対群が、続けて発生する2つの第1の極性の信号からなる第1の同極性の信号対、続けて発生する第1の極性の信号と第2の極性の信号との2つの信号からなる第1の異極性の信号対、続けて発生する2つの第2の極性の信号からなる第2の同極性の信号対、続けて発生する第2の極性の信号と第1の極性の信号との2つの信号からなる第2の異極性の信号対、及び続けて発生する第1の極性の信号と第2の極性の信号との2つの信号からなる第3の異極性の信号対のみからなるようにリラクタが設けられる。 In another preferred embodiment of the present invention, the signal pair group output by the rotation sensor during one rotation of the rotor is a first signal pair consisting of two signals of the first polarity generated in succession. A first pair of different polarities consisting of two signals of the first polarity and a signal of the second polarity generated in succession, and a second signal consisting of two signals of the second polarity generated in succession. A signal pair of the same polarity, a signal pair of a second different polarity consisting of two signals of a second polarity signal and a signal of the first polarity generated in succession, and a signal of the first polarity generated in succession. A retractor is provided so that it consists only of a third signal pair of different polarities, which consists of two signals, a signal of the second polarity and a signal of the second polarity.
以下、図面を参照して本発明の実施形態を説明する。図1を参照すると、本発明に係る信号発生装置1の一実施形態の構成が概略的に示されている。図示の信号発生装置1は、エンジンのクランク軸2に取り付けられて、クランク軸と共に回転させられるロータ3と、回転センサ4とにより構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. With reference to FIG. 1, the configuration of one embodiment of the signal generator 1 according to the present invention is schematically shown. The illustrated signal generator 1 is composed of a rotor 3 attached to the crank shaft 2 of the engine and rotated together with the crank shaft, and a rotation sensor 4.
回転センサ4は、エンジンのケースやエンジンが固定されたフレーム等に設けられた回転センサ取り付け部(図示せず。)に取り付けられて、エンジンのケースに対して固定された状態で配置される。 The rotation sensor 4 is attached to a rotation sensor mounting portion (not shown) provided on an engine case, a frame to which the engine is fixed, or the like, and is arranged in a state of being fixed to the engine case.
回転センサ4は、ロータ3の磁極面に対向する磁極部4aと、回転センサ4とロータ3の磁極面とを含む磁路に信号発生用の磁束を流す磁石と、信号発生用の磁束を検出して、検出している磁束に変化が生じた際に信号を発生する信号発生部とを備えている。回転センサは、検出している信号発生用磁束が一方向に変化したことを検出したときに第1の極性の信号を発生し、検出している信号発生用磁束が他方向に変化したことを検出したときに第2の極性の信号を発生する。信号発生用磁束の変化は、該磁束の増加方向又は減少方向への変化であり、例えば、信号発生用磁束の増加方向への変化を該磁束の一方向への変化とした場合、該信号発生用磁束の減少方向への変化が該磁束の他方向への変化となる。回転センサ4の具体的な構成例については後述する。 The rotation sensor 4 detects a magnetic flux portion 4a facing the magnetic pole surface of the rotor 3, a magnet that causes a magnetic flux for signal generation to flow in a magnetic path including the rotation sensor 4 and the magnetic pole surface of the rotor 3, and a magnetic flux for signal generation. Therefore, it is provided with a signal generation unit that generates a signal when a change occurs in the detected magnetic flux. The rotation sensor generates a signal of the first polarity when it detects that the detected signal generation magnetic flux has changed in one direction, and detects that the detected signal generation magnetic flux has changed in the other direction. When detected, a signal of the second polarity is generated. The change in the magnetic flux for signal generation is a change in the increasing direction or the decreasing direction of the magnetic flux. For example, when the change in the increasing direction of the magnetic flux for signal generation is regarded as the change in one direction of the magnetic flux, the signal is generated. The change in the decreasing direction of the magnetic flux is the change in the other direction of the magnetic flux. A specific configuration example of the rotation sensor 4 will be described later.
ロータ3は、エンジンのクランク軸2に取り付けられる回転体301を備えている。回転体301は、専ら信号発生装置のロータを構成するために設けられたものでもよく、発電機などの他の回転機器の回転体を兼ねるものでもよい。回転体301は、クランク軸2と共に回転させられるエンジンの付属部品、例えば、エンジンのクランク軸に取り付けられるフライホイールや、エンジンのクランク軸に取り付けられて、エンジン冷却用のファンにベルトを介して連結されるプーリなどであってもよい。 The rotor 3 includes a rotating body 301 attached to the crank shaft 2 of the engine. The rotating body 301 may be provided exclusively for forming the rotor of the signal generator, or may also serve as a rotating body of another rotating device such as a generator. The rotating body 301 is attached to an engine accessory that is rotated together with the crank shaft 2, for example, a flywheel attached to the crank shaft of the engine, or attached to the crank shaft of the engine, and is connected to a fan for cooling the engine via a belt. It may be a pulley or the like.
本実施形態では、クランク軸2に取り付けられるフライホイールを回転体301として用いている。図示の回転体301は、円筒状の周壁部301aと、周壁部301aの軸線方向の一端側を閉じる底壁部301bとを備えたカップ状の形状に形成されている。回転体301の底壁部301bの中央部にはボス部301cが形成されている。回転体301は、ボス部301cをエンジンのクランク軸2に嵌合させて該クランク軸にキー止めすることによりエンジンに取り付けられる。回転体の周壁部301aの外周には、クランク軸2の中心軸線Oを同心的に取り囲む円筒面302が形成されている。回転体301の周壁部301aは、ロータの周壁部でもあり、円筒面302は、ロータの円筒面でもある。また円筒面302は、ロータの外周面でもある。 In this embodiment, the flywheel attached to the crank shaft 2 is used as the rotating body 301. The illustrated rotating body 301 is formed in a cup shape including a cylindrical peripheral wall portion 301a and a bottom wall portion 301b that closes one end side of the peripheral wall portion 301a in the axial direction. A boss portion 301c is formed in the central portion of the bottom wall portion 301b of the rotating body 301. The rotating body 301 is attached to the engine by fitting the boss portion 301c to the crank shaft 2 of the engine and keying it to the crank shaft. A cylindrical surface 302 that concentrically surrounds the central axis O of the crank shaft 2 is formed on the outer periphery of the peripheral wall portion 301a of the rotating body. The peripheral wall portion 301a of the rotating body 301 is also the peripheral wall portion of the rotor, and the cylindrical surface 302 is also the cylindrical surface of the rotor. The cylindrical surface 302 is also an outer peripheral surface of the rotor.
本実施形態では、エンジンの定常運転時におけるクランク軸2の回転方向をクランク軸の正回転方向としている。図1においては、クランク軸の正回転方向が矢印Rで示されている。以下の説明においては、ロータ3の円筒面302の中心軸線Oに沿う方向(図1の紙面と直角な方向)を、円筒面302の幅方向としている。 In the present embodiment, the rotation direction of the crank shaft 2 during steady operation of the engine is the normal rotation direction of the crank shaft. In FIG. 1, the forward rotation direction of the crank shaft is indicated by an arrow R. In the following description, the direction along the central axis O of the cylindrical surface 302 of the rotor 3 (the direction perpendicular to the paper surface in FIG. 1) is the width direction of the cylindrical surface 302.
ロータ3の少なくとも外周寄りの部分、即ち回転体301の少なくとも外周寄りの部分は、鉄等の強磁性材料により形成され、ロータ3の強磁性材料により構成された部分の外周に形成された円筒面302にリラクタが設けられている。リラクタは、ロータの円筒面302の周方向に延びる突起又は凹部により構成される。リラクタには、円筒面302の周方向に間隔を隔てて並ぶ複数の作用点が設定されている。リラクタは、各作用点の所で、幅寸法や円筒面302からの突出高さが変化する等の形態の変化を示す。リラクタは、各作用点が回転センサ4の磁極部4aの位置を通過する際に、ロータの磁極面MSと回転センサ4の磁極部4aとの間の距離を変化させたり、回転センサ4の磁極部4aに対向するロータの磁極面MSの面積を変化させたりすることにより、ロータの磁極面MSと回転センサの磁極部4aとの間の磁気抵抗を変化させて、信号発生用磁束を変化させる。この信号発生用磁束の変化により、回転センサ4から信号を出力させる。 At least the outer peripheral portion of the rotor 3, that is, at least the outer peripheral portion of the rotating body 301 is formed of a ferromagnetic material such as iron, and a cylindrical surface formed on the outer periphery of the portion made of the ferromagnetic material of the rotor 3. A retractor is provided at 302. The retractor is composed of protrusions or recesses extending in the circumferential direction of the cylindrical surface 302 of the rotor. The retractor is set with a plurality of points of action arranged at intervals in the circumferential direction of the cylindrical surface 302. The retractor exhibits morphological changes such as changes in width dimension and protrusion height from the cylindrical surface 302 at each point of action. The retractor changes the distance between the magnetic pole surface MS of the rotor and the magnetic pole portion 4a of the rotation sensor 4 when each point of action passes through the position of the magnetic pole portion 4a of the rotation sensor 4, or the magnetic pole of the rotation sensor 4. By changing the area of the magnetic pole surface MS of the rotor facing the portion 4a, the magnetic resistance between the magnetic pole surface MS of the rotor and the magnetic pole portion 4a of the rotation sensor is changed, and the magnetic flux for signal generation is changed. .. A signal is output from the rotation sensor 4 by the change of the magnetic flux for signal generation.
本実施形態では、回転体301全体が鉄等の強磁性材料により形成されている。図2(A),(B)にも示されているように、回転体301の外周に形成された円筒面302の幅方向の中央寄りの領域に、回転体301の周方向に延びるリラクタ構成要素303が、その先端をロータの回転方向Rの前方に向け、後端をロータの回転方向の後方に向けた状態で設けられ、このリラクタ構成要素によりリラクタが構成されている。 In this embodiment, the entire rotating body 301 is formed of a ferromagnetic material such as iron. As shown in FIGS. 2A and 2B, a retractor configuration extending in the circumferential direction of the rotating body 301 in a region near the center in the width direction of the cylindrical surface 302 formed on the outer periphery of the rotating body 301. The element 303 is provided with its tip directed forward in the rotation direction R of the rotor and its rear end directed rearward in the rotation direction of the rotor, and the retractor component constitutes the retractor.
図示の例では、リラクタ構成要素303の最も幅広な部分に、ロータの円筒面302の幅寸法よりも小さい幅寸法を持たせている。従って、ロータの円筒面302の幅方向の一端寄りの部分及び他端寄りの部分には、リラクタが設けられていない平坦な領域が残されている。本実施形態では、リラクタ構成要素303の外周面と、リラクタ構成要素303の先端と後端との間で回転体301の径方向の外側に露呈されている回転体301の外周面とがロータの磁極面MSとなっている。 In the illustrated example, the widest portion of the retractor component 303 has a width dimension smaller than the width dimension of the cylindrical surface 302 of the rotor. Therefore, a flat region without a retractor is left in the portion of the cylindrical surface 302 of the rotor near one end and the portion near the other end in the width direction. In the present embodiment, the outer peripheral surface of the retractor component 303 and the outer peripheral surface of the rotating body 301 exposed to the outside in the radial direction between the front end and the rear end of the retractor component 303 are the rotor. It is a magnetic pole surface MS.
エンジンを制御する際には、クランク軸の回転位置が複数の設定回転位置にそれぞれ一致する毎に信号発生装置から信号を発生させる。そのため、ロータに設けるリラクタに複数の作用点を設定しておいて、各作用点が回転センサの磁極部4aの位置を通過する毎に回転センサが検出する磁束に変化を生じさせて、回転センサ4から信号を出力させる。リラクタの作用点は、その前後でリラクタを構成する突起や凹部の形態を段階的に異ならせることにより設定される。本実施形態では、クランク軸が1回転する間に、信号発生装置から4つの信号を発生させる。そのため、ロータに設けるリラクタに第1ないし第4の作用点を設定して、リラクタの第1ないし第4の作用点が回転センサ4の磁極部4aの位置を通過する際に、回転センサ4が検出している磁束に一方向又は他方向の変化を生じさせる。第1ないし第4の作用点が回転センサ4の磁極部4aの位置を通過する際にそれぞれ生じる磁束の変化を回転センサ4に検出させることにより、回転センサ4から第1の信号Vs1ないし第4の信号Vs4を出力させる。 When controlling the engine, a signal is generated from the signal generator every time the rotation position of the crank shaft coincides with a plurality of set rotation positions. Therefore, a plurality of action points are set in the retractor provided on the rotor, and each time each action point passes the position of the magnetic pole portion 4a of the rotation sensor, the magnetic flux detected by the rotation sensor is changed to cause a rotation sensor. The signal is output from 4. The point of action of the retractor is set by gradually changing the morphology of the protrusions and recesses constituting the retractor before and after it. In the present embodiment, four signals are generated from the signal generator while the crank shaft makes one rotation. Therefore, the first to fourth points of action are set on the retractor provided on the rotor, and when the first to fourth points of action of the retractor pass through the position of the magnetic flux portion 4a of the rotation sensor 4, the rotation sensor 4 moves. Causes a change in one direction or the other direction in the detected magnetic flux. By causing the rotation sensor 4 to detect the change in the magnetic flux generated when the first to fourth points of action pass through the position of the magnetic pole portion 4a of the rotation sensor 4, the first signal Vs1 to 4 from the rotation sensor 4 is detected. Signal Vs4 is output.
リラクタの第1ないし第4の作用点の位置を規定するため、ロータの円筒面に、該円筒面の周方向に所定の間隔を持って並ぶ第1ないし第4の設定位置P1ないしP4が設定され、第1ないし第4の設定位置P1ないしP4にそれぞれリラクタの第1ないし第4の作用点が設定される。 In order to define the positions of the first to fourth action points of the retractor, the first to fourth set positions P1 to P4 arranged at predetermined intervals in the circumferential direction of the cylindrical surface are set on the cylindrical surface of the rotor. Then, the first to fourth action points of the retractor are set at the first to fourth set positions P1 to P4, respectively.
更に詳細に説明すると、図示のリラクタ構成要素303は、先端S1aをロータ3の回転方向Rの前方に向け、後端をロータ3の回転方向Rの後方側に向けた状態で円筒面302の周方向に沿って第1の設定位置P1から第2の設定位置P2まで延びる円弧状の第1のセクションS1と、第1のセクションS1の後端S1bに先端S2aを連結し、後端S2bをロータ3の回転方向Rの後方に向けた状態で円筒面302の周方向に沿って第2の設定位置P2から第3の設定位置P3まで延びる円弧状の第2のセクションS2と、先端S3aを第2のセクションS2の後端S2bに連結し、後端S3bをロータ3の回転方向Rの後方側に向けた状態で円周面302の周方向に沿って第3の設定位置P3から第4の設定位置P4まで延びる円弧状の第3のセクションS3とからなっている。本実施形態では、第1ないし第3のセクションのそれぞれの外径が等しく設定されているため、第1ないし第3のセクションS1ないしS3の外周面は同一の円筒面上に配置されている。 More specifically, the illustrated retractor component 303 has a peripheral end of the cylindrical surface 302 with the tip S1a facing forward in the rotation direction R of the rotor 3 and the rear end facing the rear side in the rotation direction R of the rotor 3. The tip S2a is connected to the arcuate first section S1 extending from the first set position P1 to the second set position P2 along the direction and the rear end S1b of the first section S1, and the rear end S2b is a rotor. The arcuate second section S2 extending from the second set position P2 to the third set position P3 along the circumferential direction of the cylindrical surface 302 and the tip S3a in a state of facing the rear of the rotation direction R of 3 are the first. The third set position P3 to the fourth along the circumferential direction of the circumferential surface 302 in a state where the rear end S3b is connected to the rear end S2b of the section S2 and the rear end S3b is directed to the rear side of the rotation direction R of the rotor 3. It is composed of an arc-shaped third section S3 extending to the set position P4. In the present embodiment, since the outer diameters of the first to third sections are set to be equal, the outer peripheral surfaces of the first to third sections S1 to S3 are arranged on the same cylindrical surface.
図2(A),(B)に示されているように、リラクタ構成要素303の先端部寄りの部分を構成している第1のセクションS1は、一定の厚みdを持ち、かつ一定の第1の幅寸法W1 を持って、ロータ3の周方向に第1の設定位置P1から第2の設定位置P2まで延びるように設けられている。第1のセクションS1は、その先端S1aをクランク軸2の正回転方向Rの前方側に向け、かつ先端S1aの位置を第1の設定位置P1に一致させた状態で設けられている。第1のセクションS1の先端S1aは、リラクタ構成要素303の先端でもある。 As shown in FIGS. 2A and 2B, the first section S1 constituting the portion near the tip of the retractor component 303 has a constant thickness d and a constant first section. The width dimension W1 of 1 is provided so as to extend from the first set position P1 to the second set position P2 in the circumferential direction of the rotor 3. The first section S1 is provided with its tip S1a directed toward the front side of the crank shaft 2 in the forward rotation direction R, and the position of the tip S1a is aligned with the first set position P1. The tip S1a of the first section S1 is also the tip of the retractor component 303.
この例では、第1の設定位置P1に第1の作用点を設定するため、第1の設定位置P1で第1のセクションS1の先端S1aを、ロータの外周面である円筒面302から直角に立ち上がらせて、第1の設定位置P1で第1のセクションS1の高さをステップ状に増大させている。ロータが回転する過程でこの第1の作用点が回転センサの磁極部の位置を通過する際に、リラクタの磁極面と回転センサ4の磁極部4aとの間の距離が減じる方向にステップ状に変化する。 In this example, in order to set the first action point at the first set position P1, the tip S1a of the first section S1 at the first set position P1 is perpendicular to the cylindrical surface 302 which is the outer peripheral surface of the rotor. The height of the first section S1 is increased stepwise at the first set position P1 by standing up. When the first point of action passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the distance between the magnetic pole surface of the retractor and the magnetic pole portion 4a of the rotation sensor 4 decreases in a stepped manner. Change.
第1の作用点が回転センサの磁極部の位置を通過する際にリラクタの磁極面と回転センサ4の磁極部との間の距離が減じることにより、回転センサ4が検出する磁束が増加方向に変化する。この磁束の変化により、回転センサ4が第1の極性を有する第1の信号を出力する。 When the first point of action passes through the position of the magnetic pole portion of the rotation sensor, the distance between the magnetic pole surface of the retractor and the magnetic pole portion of the rotation sensor 4 decreases, so that the magnetic flux detected by the rotation sensor 4 increases. Change. Due to this change in magnetic flux, the rotation sensor 4 outputs a first signal having the first polarity.
回転センサが検出する磁束の何れの方向への変化を一方向への変化とするかは任意であるが、本実施形態では、回転センサ4が検出する磁束の増加方向への変化を該磁束の一方向への変化としている。また、回転センサが検出している磁束が増加方向に変化した際に回転センサ4が出力する信号の極性を第1の極性としている。 It is arbitrary which direction the change of the magnetic flux detected by the rotation sensor is regarded as the change in one direction, but in the present embodiment, the change of the magnetic flux detected by the rotation sensor 4 in the increasing direction is the change of the magnetic flux. It is a change in one direction. Further, the polarity of the signal output by the rotation sensor 4 when the magnetic flux detected by the rotation sensor changes in the increasing direction is set as the first polarity.
リラクタ構成要素303の中間部を構成している第2のセクションS2は、第1のセクションS1と同じ厚みdを持ち、かつ第1の幅寸法W1 よりも大きい一定な第2の幅寸法W2 を持ってロータ3の周方向に第2の設定位置P2から第3の設定位置P3まで延びるように設けられ、第2の設定位置P2で第2のセクションS2の先端S2aが第1のセクションS1の後端S1bに連結されている。 The second section S2 constituting the intermediate portion of the retractor component 303 has the same thickness d as the first section S1 and has a constant second width dimension W2 larger than the first width dimension W1. It is provided so as to extend from the second set position P2 to the third set position P3 in the circumferential direction of the rotor 3, and the tip S2a of the second section S2 at the second set position P2 is the first section S1. It is connected to the rear end S1b.
第2のセクションの幅寸法W2が第1のセクションの幅寸法W1よりも大きく設定されていることにより、第2の設定位置P2でリラクタの幅寸法がステップ状に拡大されている。これにより、第2の設定位置P2にリラクタの第2の作用点が設定され、ロータが回転する過程でこの第2の作用点が回転センサの磁極部の位置を通過する際に、回転センサの磁極部が対向しているリラクタの磁極面の面積が増加方向にステップ状に変化させられる。従って、ロータが回転する過程でリラクタの第2の作用点が回転センサの磁極部の位置を通過する際に、回転センサが検出している磁束が再び増加方向に変化し、回転センサが再び第1の極性の信号を出力する。 Since the width dimension W2 of the second section is set larger than the width dimension W1 of the first section, the width dimension of the retractor is expanded stepwise at the second set position P2. As a result, the second action point of the retractor is set at the second set position P2, and when the second action point passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the rotation sensor The area of the magnetic pole surface of the retractor facing the magnetic poles is changed in steps in the increasing direction. Therefore, when the second point of action of the retractor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the magnetic flux detected by the rotation sensor changes in the increasing direction again, and the rotation sensor is again second. A signal with a polarity of 1 is output.
リラクタ構成要素303の後端部寄りの部分を構成している第3のセクションS3は、第1のセクションS1及び第2のセクションS2と同じ厚みdを持ち、かつ第2のセクションS2の幅寸法W2 よりも小さい一定な幅寸法W3 を持って、ロータ3の周方向に第3の設定位置P3から第4の設定位置P4まで伸びるように設けられている。第3のセクションS3は、その先端S3a を第2のセクションS2の後端S2bに連結し、その後端S3bをロータの正回転方向Rの後方側に向けた状態で設けられている。 The third section S3 constituting the portion near the rear end of the retractor component 303 has the same thickness d as the first section S1 and the second section S2, and has the width dimension of the second section S2. It has a constant width dimension W3 smaller than W2 and is provided so as to extend from the third set position P3 to the fourth set position P4 in the circumferential direction of the rotor 3. The third section S3 is provided in a state where the tip end S3a is connected to the rear end S2b of the second section S2 and the rear end S3b is directed to the rear side in the forward rotation direction R of the rotor.
第3のセクションS3の幅寸法W3が第2のセクションS2の幅寸法W2よりも小さく設定されていることにより、第3の設定位置P3でリラクタの幅寸法がステップ状に縮小されている。これにより、第3の設定位置P3にリラクタの第3の作用点が設定されている。ロータが回転する過程でこの第3の作用点が回転センサの磁極部の位置を通過する際に、回転センサの磁極部4aが対向しているロータの磁極面の面積がステップ状に減少する。 Since the width dimension W3 of the third section S3 is set smaller than the width dimension W2 of the second section S2, the width dimension of the retractor is reduced stepwise at the third set position P3. As a result, the third action point of the retractor is set at the third set position P3. When the third point of action passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the area of the magnetic pole surface of the rotor facing the magnetic pole portion 4a of the rotation sensor is reduced in steps.
従って、ロータが回転する過程で、第3の作用点が回転センサの磁極部4aの位置を通過する際に、回転センサが検出している磁束が減少方向に変化し、回転センサが第2の極性の信号を出力する。本実施形態では、回転センサ4が検出する磁束の減少方向への変化を該磁束の他方向への変化とし、回転センサが検出している磁束が減少方向に変化した際に回転センサが出力する信号の極性を第2の極性としている。 Therefore, in the process of rotating the rotor, when the third point of action passes the position of the magnetic pole portion 4a of the rotation sensor, the magnetic flux detected by the rotation sensor changes in the decreasing direction, and the rotation sensor becomes the second. Output a signal of polarity. In the present embodiment, the change in the decreasing direction of the magnetic flux detected by the rotation sensor 4 is regarded as the change in the other direction of the magnetic flux, and the rotation sensor outputs when the magnetic flux detected by the rotation sensor changes in the decreasing direction. The polarity of the signal is the second polarity.
第3のセクションS3の後端S3bで、円筒面302から測った第3のセクションS3の高さがステップ状に低下させられ、これにより、第4の設定位置P4にリラクタの第4の作用点が設定されている。ロータが回転する過程でこの第4の作用点が回転センサの磁極部の位置を通過する際に、回転センサの磁極部とロータの磁極面との間の距離がステップ状に増大する。従って、リラクタの第4の作用点が回転センサの磁極部の位置を通過する際に、回転センサが検出している磁束が再び減少方向に変化する。回転センサは、この磁束の変化を検出して再び第2の極性の信号を出力する。 At the rear end S3b of the third section S3, the height of the third section S3 measured from the cylindrical surface 302 is stepped down, whereby the fourth point of action of the retractor at the fourth set position P4. Is set. When the fourth point of action passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor, the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the rotor increases stepwise. Therefore, when the fourth point of action of the retractor passes through the position of the magnetic pole portion of the rotation sensor, the magnetic flux detected by the rotation sensor changes in the decreasing direction again. The rotation sensor detects this change in magnetic flux and outputs a signal of the second polarity again.
本願の図面においては、リラクタの第1ないし第4の作用点には符号を付してないが、第1ないし第4の作用点がそれぞれ設けられた位置は第1の設定位置P1ないし第4の設定位置P4に一致しているので、第1の設定位置ないし第4の設定位置を示す符号P1~P4から各作用点が設定された位置を識別できる。 In the drawings of the present application, the first to fourth action points of the retractor are not designated, but the positions where the first to fourth action points are provided are the first set positions P1 to 4th. Since it corresponds to the set position P4 of, the position where each action point is set can be identified from the symbols P1 to P4 indicating the first set position or the fourth set position.
リラクタ構成要素303の後端寄りの部分を構成する第3のセクションS3の幅寸法W3は、第2のセクションS2の幅寸法W2 よりも小さければよい。本実施形態では、第3のセクションS3の幅寸法W3 が第1のセクションS1の幅寸法W1 に等しく設定されている。 The width dimension W3 of the third section S3 constituting the portion near the rear end of the retractor component 303 may be smaller than the width dimension W2 of the second section S2. In the present embodiment, the width dimension W3 of the third section S3 is set to be equal to the width dimension W1 of the first section S1.
本実施形態においては、リラクタ構成要素303の第1のセクションS1の先端S1aに設定された第1の作用点と、第1のセクションS1の後端S1bと第2のセクションS2の先端S2aとの連結部に設定された第2の作用点とにより、ロータ3が回転する過程で回転センサ4が検出する磁束の一方向への変化を続けて2回生じさせる第1の磁束変化生成部が構成されている。この第1の磁束変化生成部は、ロータが1回転する間に回転センサ4が検出する磁束の一方向への変化を続けて2回生じさせるため、第1の極性を持って続けて発生する2つの信号からなる第1の同極性の信号対を回転センサから出力させる。 In the present embodiment, the first action point set at the tip S1a of the first section S1 of the retractor component 303, and the rear end S1b of the first section S1 and the tip S2a of the second section S2. The second point of action set in the connecting portion constitutes a first magnetic flux change generation unit that continuously changes the magnetic flux detected by the rotation sensor 4 in one direction twice in the process of rotating the rotor 3. Has been done. This first magnetic flux change generation unit continuously generates the magnetic flux detected by the rotation sensor 4 in one direction twice while the rotor makes one rotation, so that the first magnetic flux change generation unit has the first polarity. A first pair of signals of the same polarity consisting of two signals is output from the rotation sensor.
また、リラクタ構成要素303の第2のセクションS2の後端S2bと第3のセクションS3の先端S3aとの連結部に設定された第3の作用点と、第1のリラクタ構成要素303Aの第3のセクションS3の後端部S3bに設定された第4の作用点とにより、ロータが回転する過程で回転センサ4が検出する磁束に他方向への変化を2回続けて生じさせる第2の磁束変化生成部が構成されている。この第2の磁束変化生成部は、ロータが1回転する間に、回転センサ4が検出する磁束の他方向への変化を続けて2回生じさせるため、第2の極性を持って続けて発生する2つの第2の極性の信号からなる第2の同極性の信号対を回転センサから出力させる。 Further, a third point of action set at the connecting portion between the rear end S2b of the second section S2 of the retractor component 303 and the tip S3a of the third section S3, and the third of the first retractor component 303A. A second magnetic flux that causes the magnetic flux detected by the rotation sensor 4 to change twice in a row in the process of rotating the rotor due to the fourth point of action set at the rear end portion S3b of the section S3. A change generation unit is configured. This second magnetic flux change generation unit continuously generates a second polarity because the magnetic flux detected by the rotation sensor 4 continuously changes in the other direction twice while the rotor makes one rotation. A second pair of signals of the same polarity consisting of two signals of the second polarity is output from the rotation sensor.
ロータ3には、第1の磁束変化生成部及び第2の磁束変化生成部が1つずつ設けられているため、回転センサ4は、第1の同極性の信号対と、第2の同極性の信号対とを、ロータが1回転する間に1回ずつ出力する。 Since the rotor 3 is provided with a first magnetic flux change generation unit and a second magnetic flux change generation unit, the rotation sensor 4 has a signal pair having the same polarity as the first and a signal pair having the same polarity as the second. The signal pair of is output once during one rotation of the rotor.
なお図1及び図2に示した例では、第1の設定位置P1~第4の設定位置相互間の角度間隔、即ち第1ないし第4の作用点相互間の角度間隔が90CAとなるように第1ないし第3のセクションのそれぞれの極弧角が設定されているが、設定位置相互間の角度間隔は、信号発生装置の用途に応じて適宜に設定できる。ここでCAは、クランク角(Crank Angle)を意味している。 In the example shown in FIGS. 1 and 2, the angle distance between the first set positions P1 to the fourth set position, that is, the angle distance between the first to fourth action points is 90 CA. Although the polar arc angles of the first to third sections are set, the angle spacing between the set positions can be appropriately set according to the application of the signal generator. Here, CA means a crank angle (Crank Angle).
図1及び図2に示した例では、リラクタ構成要素の第2のセクションS2の幅寸法W2を、第1のセクションS1の幅寸法W1及び第3のセクションS3の幅寸法W3よりも大きく設定することにより、第2の設定位置P2及び第3の設定位置P3にそれぞれ第2の作用点及び第3の作用点を設定しているが、本発明で用いるリラクタ構成要素303はこのように構成されたものに限定されない。 In the example shown in FIGS. 1 and 2, the width dimension W2 of the second section S2 of the retractor component is set to be larger than the width dimension W1 of the first section S1 and the width dimension W3 of the third section S3. As a result, the second action point and the third action point are set at the second set position P2 and the third set position P3, respectively, and the retractor component 303 used in the present invention is configured in this way. It is not limited to the ones.
例えば、図4(A),(B)に示したように、第1のセクションS1ないし第3のセクションS3に同じ一定の幅寸法Wを持たせ、第2のセクションS2の厚みd2を第1のセクションS1の厚みd1及び第3のセクションS3の厚みd3よりも厚くして、第1の設定位置P2及び第3の設定位置P3でリラクタ構成要素の高さをステップ状に変化させることにより、第1の設定位置P2及び第3の設定位置P3にそれぞれ第2の作用点及び第3の作用点を設定しても良い。 For example, as shown in FIGS. 4A and 4B, the first section S1 to the third section S3 have the same constant width dimension W, and the thickness d2 of the second section S2 is set to the first. By making it thicker than the thickness d1 of the section S1 and the thickness d3 of the third section S3, and changing the height of the retractor component stepwise at the first set position P2 and the third set position P3. A second point of action and a third point of action may be set at the first set position P2 and the third set position P3, respectively.
このように構成した場合も、図4(C)に示したように、設定回転位置θ1及びθ2で第1の作用点及び第2の作用点が回転センサの磁極部の位置を通過する際に第1の極性を有する第1の信号Vs1及び第2の信号Vs2を回転センサから出力させることができ、設定回転位置θ3及びθ4で第3の作用点及び第4の作用点が回転センサの磁極部の位置を通過する際に、回転センサから第2の極性を有する第3の信号Vs3及び第4の信号Vs4を出力させることができる。 Even in this configuration, as shown in FIG. 4C, when the first and second points of action pass through the positions of the magnetic poles of the rotation sensor at the set rotation positions θ1 and θ2. The first signal Vs1 and the second signal Vs2 having the first polarity can be output from the rotation sensor, and the third action point and the fourth action point are the magnetic poles of the rotation sensor at the set rotation positions θ3 and θ4. When passing through the position of the unit, the rotation sensor can output a third signal Vs3 and a fourth signal Vs4 having a second polarity.
図5(A),(B)を参照すると、本実施形態で用いる回転センサ4の構成が示されている。ロータ3と共に信号発生装置1を構成する回転センサ4は、ロータ3の磁極面にギャップを介して対向する磁極部4aと、該磁極部4aとロータの磁極面に形成されたリラクタとを含むように形成された磁路に磁束を流す永久磁石と、ロータが回転する過程で第1のリラクタ303A及び第2のリラクタ303Bが前記磁路を流れる磁束に変化を生じさせる毎にレベル変化を示す信号を、クランク角情報を含む信号として発生する信号発生部とを備えている。 With reference to FIGS. 5A and 5B, the configuration of the rotation sensor 4 used in the present embodiment is shown. The rotation sensor 4 constituting the signal generator 1 together with the rotor 3 includes a magnetic pole portion 4a facing the magnetic pole surface of the rotor 3 via a gap, and a retractor formed on the magnetic pole portion 4a and the magnetic pole surface of the rotor. A permanent magnet that allows magnetic flux to flow through the magnetic path formed in the magnetic path, and a signal that indicates a level change each time the first retractor 303A and the second retractor 303B change the magnetic flux flowing through the magnetic path in the process of rotating the rotor. Is provided with a signal generation unit that is generated as a signal including crank angle information.
図示の回転センサ4は、鉄心401と、鉄心401に巻かれた信号コイル402と、鉄心401に磁束を流す永久磁石403と、鉄等の強磁性材料からなる磁路構成部材404とを備えている。図示の例では、鉄心401の先端が磁極部4aとなっていて、この磁極部4aが、第1及び第2のリラクタ構成要素303A及び303Bの磁極面MSにエアギャップを介して対向させられる。 The illustrated rotation sensor 4 includes an iron core 401, a signal coil 402 wound around the iron core 401, a permanent magnet 403 that allows magnetic flux to flow through the iron core 401, and a magnetic path constituent member 404 made of a ferromagnetic material such as iron. There is. In the illustrated example, the tip of the iron core 401 is a magnetic pole portion 4a, and the magnetic pole portion 4a is opposed to the magnetic pole surface MSs of the first and second retractor components 303A and 303B via an air gap.
図示の磁路構成部材404は、ロータ3の径方向に対して直交した状態で配置される基板部404aと、基板部404aの一端から直角に折れ曲がってロータ3側に延びる側板部404bとを備え、側板部404bの基板部404a寄りの端部には互いに反対方向に突出した耳部404c,404cが形成されている。耳部404c,404cには取り付け孔404d,404dが形成されている。磁路構成部材404の基板部404aに永久磁石403の一方の磁極(図示の例ではS極)が結合され、永久磁石403の他方の磁極(図示の例ではN極)に回転センサ鉄心401の後端が結合されている。 The illustrated magnetic path component 404 includes a substrate portion 404a arranged in a state orthogonal to the radial direction of the rotor 3 and a side plate portion 404b that is bent at a right angle from one end of the substrate portion 404a and extends toward the rotor 3. , The selvages 404c and 404c protruding in opposite directions are formed at the ends of the side plate portion 404b near the substrate portion 404a. Mounting holes 404d and 404d are formed in the ears 404c and 404c. One magnetic pole of the permanent magnet 403 (S pole in the illustrated example) is coupled to the substrate portion 404a of the magnetic path component 404, and the rotation sensor iron core 401 is connected to the other magnetic pole of the permanent magnet 403 (N pole in the illustrated example). The trailing ends are joined.
回転センサ4の構成部品は、磁極部4aを外部に露呈させ、かつ磁路構成部材404の側板部404bの少なくとも先端寄りの部分と耳部404c,404cとを外部に露呈させた状態で、絶縁樹脂からなるモールド部により被覆されるか、又は適宜のケース内に収容されることにより、所定の位置関係を保持した状態で配置されている。 The components of the rotation sensor 4 are insulated with the magnetic pole portion 4a exposed to the outside and at least the portion near the tip of the side plate portion 404b of the magnetic path component 404 and the selvage portions 404c and 404c exposed to the outside. It is arranged in a state of maintaining a predetermined positional relationship by being covered with a molded portion made of resin or being housed in an appropriate case.
回転センサ4は、鉄心401の先端に形成された磁極部4aを、ロータ3の磁極面MSにギャップを介して対向させ、かつ磁路構成部材404の側板部404bをロータ3の磁極面MS以外の部分にギャップを介して対向させた状態で配置されて、耳部404c,404cを、エンジンのケースに対して固定された図示しない回転センサ取り付け部に固定することにより、エンジンに取り付けられる。 In the rotation sensor 4, the magnetic pole portion 4a formed at the tip of the iron core 401 is opposed to the magnetic pole surface MS of the rotor 3 via a gap, and the side plate portion 404b of the magnetic path constituent member 404 is other than the magnetic pole surface MS of the rotor 3. The selvages 404c and 404c are arranged so as to face each other through a gap, and are attached to the engine by fixing the selvages 404c and 404c to a rotation sensor mounting portion (not shown) fixed to the engine case.
本実施形態では、ロータ3の円筒面302の幅方向の一端寄りの、リラクタが形成されていない領域304に、磁路構成部材404の側板部404bの先端面404b1を、エアギャップを介して対向させている。これにより、磁路構成部材404の側板部404bが、ロータ3に磁気的に結合されている。 In the present embodiment, the tip surface 404b1 of the side plate portion 404b of the magnetic path constituent member 404 faces the region 304 where the retractor is not formed, which is closer to one end of the cylindrical surface 302 of the rotor 3 in the width direction, via an air gap. I'm letting you. As a result, the side plate portion 404b of the magnetic path constituent member 404 is magnetically coupled to the rotor 3.
なお磁路構成部材404は、その側板部404bの先端をロータ3の底壁部301bの外周寄りの部分に対向させることにより、ロータ3のリラクタが形成されていない部分に磁気的に結合しても良く、側板部404bの先端をロータ3にギャップを介して磁気的に結合されている他の適宜の部材に固定することにより、ロータ3のリラクタが形成されていない部分に磁気的に結合してもよい。 The magnetic path component 404 is magnetically coupled to the portion of the rotor 3 where the retractor is not formed by making the tip of the side plate portion 404b face the portion near the outer periphery of the bottom wall portion 301b of the rotor 3. Also, by fixing the tip of the side plate portion 404b to another appropriate member magnetically coupled to the rotor 3 via a gap, the rotor 3 is magnetically coupled to the portion where the retractor is not formed. May be.
図示の信号発生装置1においては、ロータ3と回転センサ4との間に、永久磁石403-鉄心401-空隙-ロータ3-空隙-磁路構成部材404-永久磁石403のループからなる磁路が構成され、この磁路を通して信号コイル402と鎖交する信号発生用磁束が流れる。ロータ3が回転する過程で、リラクタ構成要素303に設定された各作用点が回転センサ4の磁極部4aの位置を通過する際に、上記磁路の磁気抵抗を変化させる。これにより、信号コイル402と鎖交する磁束に変化を生じさせて、信号コイル402にパルス波形の信号を誘起させる。 In the signal generator 1 shown in the figure, a magnetic path composed of a loop of a permanent magnet 403-iron core 401-void-rotor 3-void-magnetic path component 404-permanent magnet 403 is formed between the rotor 3 and the rotation sensor 4. A signal generation magnetic flux that is configured and interlinks with the signal coil 402 flows through this magnetic path. In the process of rotating the rotor 3, when each action point set in the retractor component 303 passes through the position of the magnetic pole portion 4a of the rotation sensor 4, the magnetic resistance of the magnetic path is changed. As a result, the magnetic flux interlinking with the signal coil 402 is changed, and the signal of the pulse waveform is induced in the signal coil 402.
本実施形態においては、信号コイル402により、ロータ3が回転する過程でリラクタが前記磁路を流れる磁束に変化を生じさせる毎にレベル変化を示す信号を、クランク角情報を含む信号として発生する信号発生部が構成されている。 In the present embodiment, the signal coil 402 generates a signal indicating a level change each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotating the rotor 3, as a signal including crank angle information. The generator is configured.
本発明において、信号発生装置から発生させる信号の発生位置をどのように設定するかは任意であるが、本実施形態の信号発生装置は、クランク軸が1回転する間に、クランク軸の回転位置が、エンジンの始動時の点火位置として用いることができるクランク軸の回転位置に一致したことの情報を与える信号と、クランク軸の回転位置が、エンジンの点火位置の計測を開始する際のクランク軸の回転位置である基準位置に一致したことの情報を与える信号との2つの信号を含む信号を、エンジンの気筒毎に発生する。 In the present invention, how to set the generation position of the signal generated from the signal generator is arbitrary, but in the signal generator of the present embodiment, the rotation position of the crank shaft is set while the crank shaft makes one rotation. However, a signal that gives information that the ignition position of the crank shaft matches the rotation position of the crank shaft that can be used as the ignition position at the start of the engine, and the rotation position of the crank shaft are the crank shaft when the measurement of the ignition position of the engine is started. A signal including two signals, that is, a signal that gives information that the engine matches the reference position, which is the rotation position of the engine, is generated for each cylinder of the engine.
通常エンジンの始動時の点火位置は、各気筒の上死点位置に設定するか、又は上死点位置よりも僅かに進んだ位置に設定される。本実施形態では、各気筒の上死点位置をエンジンの始動時の点火位置としている。 Normally, the ignition position at the time of starting the engine is set to the top dead center position of each cylinder, or is set to a position slightly advanced from the top dead center position. In the present embodiment, the top dead center position of each cylinder is set as the ignition position when the engine is started.
本実施形態に係る信号発生装置は、ロータの円筒面302に第1の設定位置P1~第4の設定位置P4を適宜に設定することにより、単気筒4サイクルエンジン、2気筒4サイクルエンジン、3気筒4サイクルエンジン、4気筒4サイクルエンジンなど、単気筒エンジンから多気筒エンジンまでの各種のエンジンに適用することができる。 The signal generator according to the present embodiment has a single-cylinder 4-cycle engine, a 2-cylinder 4-cycle engine, and 3 by appropriately setting the first setting positions P1 to the fourth setting positions P4 on the cylindrical surface 302 of the rotor. It can be applied to various engines from a single cylinder engine to a multi-cylinder engine such as a cylinder 4-cycle engine and a 4-cylinder 4-cycle engine.
図6(A)ないし(C)を参照すると、本実施形態の信号発生装置を単気筒4サイクルエンジンに適用する場合について、ロータに設けるリラクタの展開図と、信号発生装置が発生する信号Vs1ないしVs4の波形図と、各信号が発生したときにエンジンの気筒で行われる行程を示した行程図とが示されている。図6(C)の行程図において、INTは吸気行程を示し、COMは圧縮行程を示している。またEXPは膨張行程を示し、EXHは排気行程を示している。 With reference to FIGS. 6A to 6C, when the signal generator of the present embodiment is applied to a single-cylinder 4-cycle engine, a development view of a retractor provided on the rotor and signals Vs1 to Vs1 generated by the signal generator are shown. A waveform diagram of Vs4 and a stroke diagram showing the stroke performed in the cylinder of the engine when each signal is generated are shown. In the process diagram of FIG. 6C, INT indicates an intake process and COM indicates a compression process. Further, EXP indicates an expansion stroke, and EXH indicates an exhaust stroke.
本実施形態では、クランク軸の回転位置が第1の設定回転位置θ1ないし第4の設定回転位置θ4にそれぞれ一致したときに、第1の設定位置P1ないし第4の設定位置P4にそれぞれ設定された第1の作用点ないし第4の作用点が回転センサ4の磁極部4aの位置を通過して、回転センサ4から第1ないし第4の信号Vs1~Vs4を出力させるように、リラクタの各作用点の位置と、リラクタの形状とが設定されている。 In the present embodiment, when the rotation position of the crank shaft coincides with the first set rotation position θ1 to the fourth set rotation position θ4, they are set to the first set position P1 to the fourth set position P4, respectively. Each of the retractors so that the first to fourth points of action pass through the position of the magnetic pole portion 4a of the rotation sensor 4 and output the first to fourth signals Vs1 to Vs4 from the rotation sensor 4. The position of the point of action and the shape of the retractor are set.
図6に示した例では、クランク軸の第1の設定回転位置θ1で、リラクタ構成要素303の先端寄りの部分を構成している第1のセクションS1の先端S1aに設定されている第1の作用点が、回転センサ4の磁極部4aの位置を通過した際に、回転センサ4が検出する磁束をステップ状に増加させるため、回転センサ4が第1の極性の第1の信号Vs1を出力する。 In the example shown in FIG. 6, the first set rotation position θ1 of the crank shaft is set to the tip S1a of the first section S1 constituting the portion near the tip of the retractor component 303. When the point of action passes through the position of the magnetic pole portion 4a of the rotation sensor 4, the rotation sensor 4 outputs the first signal Vs1 of the first polarity in order to increase the magnetic flux detected by the rotation sensor 4 in a stepwise manner. do.
また、クランク軸の第2の設定回転位置θ2で、第1のリラクタ構成要素303Aの第1のセクションS1の後端S1bと第2のセクションS2の先端S2aとの連結部に設定されている第2の作用点が回転センサ4の磁極部4aの位置を通過した際に、回転センサ4が検出する磁束を再びステップ状に増加させるため、回転センサ4が再び第1の極性の第2の信号Vs2を出力する。 Further, at the second set rotation position θ2 of the crank shaft, a second set at the connecting portion between the rear end S1b of the first section S1 of the first retractor component 303A and the tip S2a of the second section S2. When the point of action of 2 passes through the position of the magnetic pole portion 4a of the rotation sensor 4, the rotation sensor 4 again increases the magnetic flux detected by the rotation sensor 4 in a stepped manner, so that the rotation sensor 4 again has a second signal of the first polarity. Output Vs2.
 またクランク軸の第3の設定回転位置θ3で、第1のリラクタ303Aの第2のセクションS2の後端S2bと第3のセクションS3の先端S3aとの連結部に設定された第3の作用点が回転センサの磁極部4aの位置を通過した際に、回転センサ4が検出する磁束がステップ状に減少したため、クランク軸の第3の設定回転位置θ3で回転センサ4が第2の極性を有する第3の信号Vs3を出力する。 Further, at the third set rotation position θ3 of the crank shaft, a third point of action set at the connecting portion between the rear end S2b of the second section S2 of the first retractor 303A and the tip S3a of the third section S3. Has passed the position of the magnetic pole portion 4a of the rotation sensor, and the magnetic flux detected by the rotation sensor 4 is reduced in a stepped manner. Therefore, the rotation sensor 4 has a second polarity at the third set rotation position θ3 of the crank shaft. The third signal Vs3 is output.
またロータの第4の設定回転位置θ4で、第1のリラクタ構成要素の第3のセクションS3の後端S3b に設定された第4の作用点が磁極部4aの位置を通過する際に、回転センサ4が検出する磁束がステップ状に減少したため、クランク軸の第4の設定回転位置θ4で回転センサ4が再び第2の極性を有する第4の信号Vs4を出力する。 Further, at the fourth set rotation position θ4 of the rotor, the fourth action point set at the rear end S3b of the third section S3 of the first retractor component rotates when passing through the position of the magnetic flux portion 4a. Since the magnetic flux detected by the sensor 4 decreases in steps, the rotation sensor 4 again outputs the fourth signal Vs4 having the second polarity at the fourth set rotation position θ4 of the crank shaft.
本実施形態においては、第4の信号Vs4が発生する設定回転位置θ4を、ピストンが上死点に達する際のクランク軸の回転位置である上死点位置TDCに設定している。また第3の信号Vs3が発生する設定回転位置θ3を点火位置の計測を開始する位置である基準位置Refに設定している。本実施形態においては、基準位置Refを上死点位置TDCよりも90CA進んだ位置に設定している。 In the present embodiment, the set rotation position θ4 at which the fourth signal Vs4 is generated is set to the top dead center position TDC, which is the rotation position of the crank shaft when the piston reaches the top dead center. Further, the set rotation position θ3 at which the third signal Vs3 is generated is set to the reference position Ref, which is the position where the measurement of the ignition position is started. In the present embodiment, the reference position Ref is set to a position 90 CA ahead of the top dead center position TDC.
この場合、上死点位置TDCで始動時の最初の点火を行わせるとすると、排気行程EXHが終了する際の上死点位置でも点火が行われることになるが、排気行程では燃焼は行われないため、この点火によりエンジンの動作に支障を来すことはない。 In this case, if the first ignition at the start is performed at the top dead center position TDC, the ignition will be performed at the top dead center position at the end of the exhaust stroke EXH, but combustion will be performed in the exhaust stroke. Therefore, this ignition does not interfere with the operation of the engine.
本実施形態において、回転センサ4が信号を出力する毎に、今回発生した信号と1つ前に発生した信号とを信号対として検出するものとする。クランク軸が1回転する間に検出される一連の信号対を信号対群とすると、クランク軸が1回転する間に検出される信号対群は、第1の極性を持って続けて発生する2つの信号Vs1,Vs2からなる第1の同極性の信号対と、第1の極性の信号Vs2と第2の極性の信号Vs3との2つの信号からなる第1の異極性の信号対と、第2の極性を持って続けて発生する2つの信号Vs3,Vs4からなる第2の同極性の信号対と、続けて発生する第2の極性の信号Vs4と第1の極性の信号Vs1との2つの信号からなる第2の異極性の信号対との4つの信号対からなる。 In the present embodiment, each time the rotation sensor 4 outputs a signal, the signal generated this time and the signal generated immediately before are detected as a signal pair. Assuming that a series of signal pairs detected during one rotation of the crank shaft is a signal pair group, the signal pair groups detected during one rotation of the crank shaft are continuously generated with the first polarity. A first polar signal pair consisting of one signal Vs1 and Vs2, a first different polar signal pair consisting of two signals of a first polar signal Vs2 and a second polar signal Vs3, and a second signal. A second pair of signals of the same polarity consisting of two signals Vs3 and Vs4 that are continuously generated with two polarities, and a signal Vs4 of the second polarity and a signal Vs1 of the first polarity that are continuously generated. It consists of four signal pairs with a second polar signal pair consisting of one signal.
従って、回転センサ4は、ロータが1回転する間に、第1の同極性の信号対Vs1,Vs2を1回だけ出力し、第2の同極性の信号対Vs3,Vsを1回だけ出力する。このように、第1の同極性の信号対Vs1,Vs2と、第2の同極性の信号対Vs3,Vs4とをロータが1回転する間に1回ずつ発生させるようにしておくと、エンジンの始動操作を開始した際にクランク軸が何れの位置から回転を開始した場合でも、クランク軸が1回転する間に、第1の同極性の信号対及び第2の同極性の信号対のうちの何れか一方は必ず発生させることができる。そのため、始動操作開始後、クランク軸が1回転するまでの間に信号発生装置が発生する信号の判別を確実に完了して、クランク軸の回転位置の情報を迅速に取得することができ、エンジンの始動性を向上させることができる。 Therefore, the rotation sensor 4 outputs the first signal pair of the same polarity Vs1 and Vs2 only once and the second signal pair of the same polarity Vs3 and Vs only once while the rotor makes one rotation. .. In this way, if the first signal pair of the same polarity Vs1 and Vs2 and the second signal pair of the same polarity Vs3 and Vs4 are generated once during one rotation of the rotor, the engine Regardless of the position where the crank shaft starts to rotate when the start operation is started, of the signal pair of the first polarity and the signal pair of the second polarity during one rotation of the crank shaft. Either one can always be generated. Therefore, it is possible to reliably complete the determination of the signal generated by the signal generator after the start operation is started and before the crank shaft makes one rotation, and to quickly acquire the information on the rotation position of the crank shaft, and the engine. It is possible to improve the startability of.
また第1の同極性の信号対Vs1,Vs2と、第2の同極性の信号対Vs3,Vs4とをロータが1回転する間に1回ずつ発生させるようにしておくと、エンジンが始動した後、ロータが1回転する間に、信号の発生位置を判別する機会を2回得ることができるため、クランク軸の回転位置の判別の精度を高めることができる。 In addition, if the first signal pair of the same polarity Vs1 and Vs2 and the second signal pair of the same polarity Vs3 and Vs4 are generated once during one rotation of the rotor, after the engine is started. Since the opportunity to determine the signal generation position can be obtained twice while the rotor makes one rotation, the accuracy of determining the rotation position of the crank shaft can be improved.
また本実施形態のように構成すると、ロータが1回転する間に第1の異極性の信号対Vs2,Vs3と第2の異極性の信号対Vs4,Vs1との2つの異極性の信号対が検出されるが、第1の異極性の信号対Vs2,Vs3において第1の極性の信号と第2の極性の信号とが検出される順序と、第2の異極性の信号対Vs4,Vs1において第1の極性の信号と第2の極性の信号が検出される順序とが異なることから、第1の異極性の信号対Vs2,Vs3と、第2の異極性の信号対Vs4,Vs1とを明確に区別して検出することができる。 Further, when configured as in the present embodiment, two different polar signal pairs, Vs2, Vs3 and a second different polar signal pair, Vs4, Vs1, are generated during one rotation of the rotor. Although they are detected, in the order in which the first polar signal and the second polar signal are detected in the first polar signal pair Vs2, Vs3, and in the second polar signal pair Vs4, Vs1. Since the order in which the signals of the first polarity and the signals of the second polarity are detected is different, the first different-polarity signal pairs Vs2, Vs3 and the second different-polarity signal pairs Vs4, Vs1 are used. It can be clearly distinguished and detected.
従って、エンジンの始動時に最初に異極性の信号対が検出された場合でも、検出された異極性の信号対を構成する信号のうち、後から検出された信号の発生位置を直ちに判別することができる。例えば、図6において、第1の極性の信号Vs2に続いて第2の極性の信号Vs3が検出された場合には、第1の極性の信号に続いて第2の極性の信号が検出されたことから、後から検出された信号Vs3を設定回転位置θ3で発生した信号であると直ちに判別することができる。従って、本実施形態によれば、回転センサが出力する各信号の判別を迅速かつ正確に行うことができる。 Therefore, even if a signal pair having a different polarity is detected first when the engine is started, it is possible to immediately determine the generation position of the signal detected later among the signals constituting the detected signal pair having the different polarity. can. For example, in FIG. 6, when the signal Vs2 of the first polarity is detected followed by the signal Vs3 of the second polarity, the signal of the first polarity is followed by the signal of the second polarity. Therefore, it can be immediately determined that the signal Vs3 detected later is a signal generated at the set rotation position θ3. Therefore, according to the present embodiment, it is possible to quickly and accurately discriminate each signal output by the rotation sensor.
図7(A)~(D)を参照すると、図1に示した信号発生装置を2気筒4サイクルエンジンに適用する場合について、ロータに設けるリラクタの展開図と、信号発生装置が発生する信号Vs1ないしVs4の波形図と、各信号が発生したときにエンジンの気筒で行われる行程を示した行程図とが示されている。 Referring to FIGS. 7A to 7D, in the case where the signal generator shown in FIG. 1 is applied to a 2-cylinder 4-cycle engine, a development view of a retractor provided in the rotor and a signal Vs1 generated by the signal generator A waveform diagram of Vs4 and a stroke diagram showing the stroke performed in the cylinder of the engine when each signal is generated are shown.
本実施形態においても、ロータを構成する回転体の外周に、第1の設定位置P1ないしP4が90CAの角度間隔で設定されている。設定位置P1から設定位置P2まで延びる第1のセクションS1と、設定位置P2から設定位置P3まで延びる第2のセクションS2と、設定位置P3から設定位置P4まで延びる第3のセクションS3とによりリラクタ構成要素303が構成され、第1の設定位置P1ないしP4にそれぞれリラクタの第1の作用点ないし第4の作用点が設定されている。 Also in this embodiment, the first set positions P1 to P4 are set at an angular interval of 90 CA on the outer periphery of the rotating body constituting the rotor. A retractor configuration consisting of a first section S1 extending from the set position P1 to the set position P2, a second section S2 extending from the set position P2 to the set position P3, and a third section S3 extending from the set position P3 to the set position P4. The element 303 is configured, and the first action point to the fourth action point of the retractor is set at the first setting positions P1 to P4, respectively.
本実施形態においては、第4の信号Vs4が発生する設定回転位置θ4を上死点位置TDCに設定している。また第3の信号Vs3が発生する設定回転位置θ3を点火位置の計測を開始する位置である基準位置Refに設定している。この場合、エンジンの始動時に設定回転位置θ4で第1気筒及び第2気筒の点火を同時に行わせることになるが、両気筒のうちの一方が圧縮行程にあるときに、他方は排気行程であるため、両気筒で同時に点火を行わせてもエンジンの動作に支障を来すことはない。 In the present embodiment, the set rotation position θ4 at which the fourth signal Vs4 is generated is set to the top dead center position TDC. Further, the set rotation position θ3 at which the third signal Vs3 is generated is set to the reference position Ref, which is the position where the measurement of the ignition position is started. In this case, the first cylinder and the second cylinder are simultaneously ignited at the set rotation position θ4 when the engine is started, but when one of the two cylinders is in the compression stroke, the other is the exhaust stroke. Therefore, even if both cylinders are ignited at the same time, the operation of the engine will not be hindered.
図8(A)~(E)を参照すると、リラクタに図1に示した構成を持たせた信号発生装置を3気筒4サイクルエンジンに適用する場合について、ロータに設けるリラクタの展開図と、信号発生装置が発生する第1ないし第4の信号Vs1ないしVs4の波形図と、各信号が発生したときにエンジンの気筒で行われる行程を示した行程図とが示されている。本実施形態においても、ロータを構成する回転体の外周に、第1の設定位置P1ないしP4が設定され、第1の設定位置P1ないしP4にそれぞれリラクタの第1の作用点ないし第4の作用点が設定されている。本実施形態においては、第1の設定位置P1と第2の設定位置P2との間の角度間隔が60CAに設定され、第2の設定位置P2と第3の設定位置P3との間の角度間隔及び第3の設定位置P3と第4の設定位置P4との間の角度間隔が120CAに設定されている。 Referring to FIGS. 8A to 8E, when the signal generator having the configuration shown in FIG. 1 is applied to the three-cylinder 4-cycle engine, the development view of the retractor provided in the rotor and the signal are shown. A waveform diagram of the first to fourth signals Vs1 to Vs4 generated by the generator and a process diagram showing the process performed in the cylinder of the engine when each signal is generated are shown. Also in this embodiment, the first set positions P1 to P4 are set on the outer periphery of the rotating body constituting the rotor, and the first set points to the fourth actions of the retractor are set at the first set positions P1 to P4, respectively. The point is set. In the present embodiment, the angular distance between the first set position P1 and the second set position P2 is set to 60CA, and the angular distance between the second set position P2 and the third set position P3. And the angular distance between the third set position P3 and the fourth set position P4 is set to 120 CA.
本実施形態では、第4の信号Vs4が発生する第4の設定回転位置θ4が第1気筒の上死点位置#1TDCに設定されている。また第2の信号Vs2が発生する第2の設定回転位置θ2が第2気筒の上死点位置#2TDCに設定され、第3の信号Vs3が発生する第3の設定回転位置θ3が第3気筒の上死点位置#3TDCに設定されている。エンジンの始動時には、設定回転位置θ4、θ2及びθ3でそれぞれ第1気筒、第2気筒及び第3気筒の点火が行われる。 In the present embodiment, the fourth set rotation position θ4 at which the fourth signal Vs4 is generated is set at the top dead center position # 1TDC of the first cylinder. Further, the second set rotation position θ2 where the second signal Vs2 is generated is set at the top dead center position # 2TDC of the second cylinder, and the third set rotation position θ3 where the third signal Vs3 is generated is the third cylinder. Top dead center position # 3 TDC is set. When the engine is started, the first cylinder, the second cylinder, and the third cylinder are ignited at the set rotation positions θ4, θ2, and θ3, respectively.
図9(A)ないし(F)を参照すると、図1に示した構成を有する本発明に係る信号発生装置を、4気筒4サイクルエンジンに適用する場合に、ロータに設けられるリラクタ構成要素303と、信号発生装置が発生する信号と、エンジンの気筒で行われる行程との間に成立する関係の一例が示されている。 Referring to FIGS. 9A to 9F, when the signal generator according to the present invention having the configuration shown in FIG. 1 is applied to a 4-cylinder 4-cycle engine, the retractor component 303 provided on the rotor , An example of the relationship established between the signal generated by the signal generator and the stroke performed in the cylinder of the engine is shown.
本実施形態においては、ロータを構成する回転体の外周に、第1の設定位置P1ないし第4の設定位置P4が90CAの角度間隔で設定され、第1の設定位置P1から第2の設定位置P2まで延びる第1のセクションS1と、第2の設定位置P2から第3の設定位置P3まで延びる第2のセクションS2と、第3の設定位置P3から第4の設定位置P4まで延びる第3のセクションS3とによりリラクタ構成要素303が構成されている。この例では、第1の設定位置P1ないし第4の設定位置P4にそれぞれリラクタの第1の作用点ないし第4の作用点が設定されている。回転センサ4は、リラクタの第1の作用点ないし第4の作用点が回転センサ4の磁極部の位置を通過する際にそれぞれ第1の信号Vs1ないし第4の信号Vs4を出力する。 In the present embodiment, the first set position P1 to the fourth set position P4 are set at an angular interval of 90 CA on the outer periphery of the rotating body constituting the rotor, and the first set position P1 to the second set position are set. A first section S1 extending to P2, a second section S2 extending from the second set position P2 to the third set position P3, and a third section extending from the third set position P3 to the fourth set position P4. The retractor component 303 is configured by the section S3. In this example, the first action point or the fourth action point of the retractor is set at the first set position P1 to the fourth set position P4, respectively. The rotation sensor 4 outputs the first signal Vs1 to the fourth signal Vs4, respectively, when the first action point to the fourth action point of the retractor passes through the position of the magnetic pole portion of the rotation sensor 4.
本実施形態では、第4の信号Vs4が発生する設定回転位置θ4が第1気筒及び第4気筒の上死点位置#1/#4TDCに設定され、第2の信号Vs2が発生する設定回転位置θ2が第2気筒及び第3気筒の上死点位置#2/#3TDCに設定されている。また第3の信号Vs3が発生する設定回転位置θ3が第1気筒及び第4気筒の基準位置#1/#4Refに設定され、第1の信号Vs1が発生する設定回転位置θ1が第2気筒及び第3気筒の基準位置#2/#3Refに設定されている。 In the present embodiment, the set rotation position θ4 at which the fourth signal Vs4 is generated is set at the top dead center position # 1 / # 4TDC of the first cylinder and the fourth cylinder, and the set rotation position where the second signal Vs2 is generated is set. θ2 is set at the top dead center position # 2 / # 3TDC of the 2nd and 3rd cylinders. Further, the set rotation position θ3 where the third signal Vs3 is generated is set to the reference position # 1 / # 4Ref of the first cylinder and the fourth cylinder, and the set rotation position θ1 where the first signal Vs1 is generated is the second cylinder and the second cylinder. It is set to the reference position # 2 / # 3Ref of the 3rd cylinder.
エンジンの始動時には、第2の極性の信号Vs3及びVs4が続いて検出されたときに、後から発生した信号Vs4が設定回転位置θ4で発生した信号であると判別され、設定回転位置θ4で第1気筒及び第4気筒の点火が同時に行われる。また第1の極性の信号Vs1及びVs2が続いて検出されたときに、後から発生した信号Vs2が設定回転位置θ2で発生した信号であると判別され、設定回転位置θ2で第2気筒及び第3気筒の点火が同時に行われる。本実施形態でも、2つの気筒が同時に点火されるが、同時に点火が行われる2つの気筒の一方が圧縮行程にあるときに、他方は排気行程にあるため、エンジンの動作に支障を来すことはない。 At the time of starting the engine, when the signals Vs3 and Vs4 of the second polarity are subsequently detected, it is determined that the signal Vs4 generated later is the signal generated at the set rotation position θ4, and the second polarity signal Vs3 and Vs4 are determined to be the signal generated at the set rotation position θ4. Ignition of the 1st cylinder and the 4th cylinder is performed at the same time. Further, when the signals Vs1 and Vs2 of the first polarity are subsequently detected, it is determined that the signal Vs2 generated later is the signal generated at the set rotation position θ2, and the second cylinder and the second cylinder and the second at the set rotation position θ2. Ignition of 3 cylinders is performed at the same time. Also in this embodiment, two cylinders are ignited at the same time, but when one of the two cylinders ignited at the same time is in the compression stroke, the other is in the exhaust stroke, which hinders the operation of the engine. There is no.
また第1の極性の信号Vs2に続いて第2の極性の信号Vs3が検出されたときに、後から発生した第2の極性の信号Vs3が第1気筒及び第4気筒の基準位置である設定回転位置θ3で発生した信号であると判別され、第2の極性の信号Vs4に続いて第1の極性の信号Vs1が検出されたときに、後から発生した信号Vs1が第2気筒及び第3気筒の基準位置である設定回転位置θ1で発生した信号であると判別される。 Further, when the signal Vs3 of the second polarity is detected following the signal Vs2 of the first polarity, the signal Vs3 of the second polarity generated later is set as the reference position of the first cylinder and the fourth cylinder. When it is determined that the signal is generated at the rotation position θ3 and the signal Vs1 of the first polarity is detected following the signal Vs4 of the second polarity, the signal Vs1 generated later is the second cylinder and the third. It is determined that the signal is generated at the set rotation position θ1 which is the reference position of the cylinder.
以上のように、本発明においては、リラクタ構成要素303の第1のセクションS1の先端S1aに設定された第1の作用点と、第1のセクションS1の後端S1bと第2のセクションS2の先端S2aとの連結部に設定された第2の作用点とにより、ロータ3が回転する過程で回転センサ4が検出する磁束の一方向への変化を続けて2回生じさせる第1の磁束変化生成部を構成する。この第1の磁束変化生成部は、ロータが1回転する間に回転センサ4が検出する磁束の一方向への変化を続けて2回生じさせるため、第1の極性を持って続けて発生する2つの信号Vs1,Vs2からなる第1の同極性の信号対を回転センサから出力させる。 As described above, in the present invention, the first action point set at the tip S1a of the first section S1 of the retractor component 303, and the rear end S1b and the second section S2 of the first section S1 Due to the second point of action set at the connection with the tip S2a, the first magnetic flux change that occurs twice in succession in one direction of the magnetic flux detected by the rotation sensor 4 in the process of rotating the rotor 3. It constitutes a generator. This first magnetic flux change generation unit continuously generates the magnetic flux detected by the rotation sensor 4 in one direction twice while the rotor makes one rotation, so that the first magnetic flux change generation unit has the first polarity. A first signal pair of the same polarity consisting of two signals Vs1 and Vs2 is output from the rotation sensor.
また、リラクタ構成要素303の第2のセクションS2の後端S2bと第3のセクションS3の先端S3aとの連結部に設定された第3の作用点と、第3のセクションS3の後端部S3bに設定された第4の作用点とにより、ロータが回転する過程で回転センサ4が検出する磁束に他方向への変化を2回続けて生じさせる第2の磁束変化生成部が構成されている。この第2の磁束変化生成部は、ロータが1回転する間に、回転センサ4が検出する磁束の他方向への変化を続けて2回生じさせるため、第2の極性を持って続けて発生する2つの第2の極性の信号Vs3,Vs4からなる第2の同極性の信号対を回転センサ4から出力させる。 Further, a third point of action set at the connecting portion between the rear end S2b of the second section S2 of the retractor component 303 and the tip S3a of the third section S3, and the rear end portion S3b of the third section S3. The fourth point of action set in is configured to form a second magnetic flux change generator that causes the magnetic flux detected by the rotation sensor 4 to change twice in a row in the process of rotating the rotor. .. This second magnetic flux change generation unit continuously generates a second polarity because the magnetic flux detected by the rotation sensor 4 continuously changes in the other direction twice while the rotor makes one rotation. A second pair of signals of the same polarity consisting of two signals of the second polarity Vs3 and Vs4 is output from the rotation sensor 4.
ロータ3には、第1の磁束変化生成部及び第2の磁束変化生成部が1つずつ設けられているため、回転センサ4は、ロータが1回転する間に、第1の同極性の信号対Vs1,Vs2を1回だけ出力し、第2の同極性の信号対Vs3,Vs4を1回だけ出力する。 Since the rotor 3 is provided with one first magnetic flux change generation unit and one second magnetic flux change generation unit, the rotation sensor 4 has a first signal of the same polarity during one rotation of the rotor. The pair Vs1 and Vs2 are output only once, and the second signal pair Vs3 and Vs4 having the same polarity are output only once.
このように、第1の極性を有する第1の同極性の信号対Vs1,Vs2と、第2の極性を有する第2の同極性の信号対Vs3,Vs4とをロータが1回転する間に1回ずつ発生させるようにしておくと、エンジンの始動操作を開始した際にクランク軸が何れの位置から回転を開始した場合でも、クランク軸が1回転する間に、第1の同極性の信号対及び第2の同極性の信号対のうちの何れか一方は必ず発生させることができるため、クランク軸が1回転するまでの間にクランク軸の回転位置の情報を確実に取得して、エンジンの始動性を向上させることができる。また第1の同極性の信号対Vs1,Vs2と、第2の同極性の信号対Vs3,Vs4とをロータが1回転する間に1回ずつ発生させるようにしておくと、エンジンが始動した後、ロータが1回転する間に、信号の発生位置を判別する機会を2回得ることができるため、クランク軸の回転位置の判別の精度を高めることができる。 In this way, the first covalent signal pairs Vs1 and Vs2 having the first polarity and the second covalent signal pairs Vs3 and Vs4 having the second polarity are rotated by 1 during one rotation of the rotor. If it is set to generate each time, the first signal pair of the same polarity is generated during one rotation of the crank shaft regardless of the position where the crank shaft starts to rotate when the engine starting operation is started. And since either one of the second signal pairs of the same polarity can always be generated, the information on the rotation position of the crank shaft can be surely acquired until the crank shaft makes one rotation, and the engine The startability can be improved. In addition, if the first signal pair of the same polarity Vs1 and Vs2 and the second signal pair of the same polarity Vs3 and Vs4 are generated once during one rotation of the rotor, after the engine is started. Since the opportunity to determine the signal generation position can be obtained twice while the rotor makes one rotation, the accuracy of determining the rotation position of the crank shaft can be improved.
ロータ3に設けるリラクタに、第1の磁束変化生成部及び第2の磁束変化生成部を1つずつ持たせて、ロータが1回転する間に、第1の同極性の信号対Vs1,Vs2及び第2の同極性の信号対Vs3,Vs4を1回だけ発生させるように構成した場合でも、第1の異極性の信号対Vs2,Vs3と第2の異極性の信号対Vs4,Vs1とが必ず発生する。この場合、ロータが1回転する間に検出されるすべての信号対を構成する2つの信号の極性の配列をすべて異ならせることができるため、各信号対を構成する信号の発生位置の判別を容易かつ確実に行わせることができる。またリラクタ構成要素303を構成する第1ないし第3のセクションの長さを適宜に設定することにより、単気筒エンジンから多気筒エンジンまで対応することができる。 The retractor provided in the rotor 3 is provided with one first magnetic flux change generation unit and one second magnetic flux change generation unit, and while the rotor makes one rotation, the first signal pairs of the same polarity Vs1, Vs2 and Even if the second signal pairs of the same polarity Vs3 and Vs4 are configured to be generated only once, the first signal pairs of different polarities Vs2 and Vs3 and the second signal pairs of different polarities Vs4 and Vs1 are always generated. Occur. In this case, since the polar arrangements of the two signals constituting all the signal pairs detected during one rotation of the rotor can be made different, it is easy to determine the generation position of the signals constituting each signal pair. And it can be done reliably. Further, by appropriately setting the lengths of the first to third sections constituting the retractor component 303, it is possible to cope with a single-cylinder engine to a multi-cylinder engine.
しかしながら、本発明は、図1に示した構成に限定されるものではなく、第1の磁束変化生成部及び第2の磁束変化生成部を1つずつ備えたリラクタ構成要素の外に、更に回転センサから異極性の信号対を出力させるリラクタ構成要素を設けることを妨げない。 However, the present invention is not limited to the configuration shown in FIG. 1, and further rotates in addition to the retractor component including one first magnetic flux change generation unit and one second magnetic flux change generation unit. It does not prevent the provision of a retractor component that outputs a signal pair of different polarity from the sensor.
図10を参照すると、ロータの外周に設けるリラクタを、第1の磁束変化生成部及び第2の磁束変化生成部を有する第1のリラクタ構成要素303Aと、回転センサから異極性の信号対を出力させる第2のリラクタ構成要素303Bとの2つのリラクタ構成要素により構成するようにした、本発明に係る信号発生装置の他の実施形態の構成が概略的に示されている。 Referring to FIG. 10, the retractor provided on the outer periphery of the rotor is output from the rotation sensor with the first retractor component 303A having the first magnetic flux change generation unit and the second magnetic flux change generation unit, and a signal pair having different polarities. The configuration of another embodiment of the signal generator according to the present invention, which is configured to be composed of two retractor components with a second retractor component 303B to be generated, is schematically shown.
本実施形態では、信号発生装置1を適用するエンジンが3気筒エンジンであり、第1気筒ないし第3気筒の上死点位置#1TDCないし#3TDCの角度間隔が120度である。 In the present embodiment, the engine to which the signal generator 1 is applied is a 3-cylinder engine, and the angle interval between the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder is 120 degrees.
本実施形態では、回転体301全体が鉄等の強磁性材料により形成され、回転体301の外周に形成された円筒面302の幅方向の中央寄りの領域に、回転体301の周方向に延びる第1のリラクタ構成要素303Aと、第2のリラクタ構成要素303Bとが、回転体301の周方向に間隔を隔てた状態で、かつそれぞれの長手方向を回転体301の周方向に一致させた状態で設けられ、これらのリラクタ構成要素により、リラクタが構成されている。 In the present embodiment, the entire rotating body 301 is formed of a ferromagnetic material such as iron, and extends in the circumferential direction of the rotating body 301 in a region near the center in the width direction of the cylindrical surface 302 formed on the outer periphery of the rotating body 301. A state in which the first retractor component 303A and the second retractor component 303B are spaced apart from each other in the circumferential direction of the rotating body 301, and their longitudinal directions are aligned with the circumferential direction of the rotating body 301. The retractor is configured by these retractor components.
更に詳細に説明すると、第1のリラクタ構成要素303Aは、先端S1aをロータ3の回転方向Rの前方に向け、後端をロータ3の回転方向Rの後方側に向けた状態で円筒面302の周方向に沿って第1の設定位置P1から第2の設定位置P2まで延びる第1のセクションS1と、第1のセクションS1の後端に先端S2aを連結し、後端をロータ3の回転方向Rの後方に向けた状態で円筒面302の周方向に沿って第2の設定位置P2から第3の設定位置P3まで延びる第2のセクションS2と、先端S3aを第2のセクションS2の後端に連結し、後端S3bをロータ3の回転方向Rの後方側に向けた状態で円周面302の周方向に沿って第3の設定位置P3から第4の設定位置P4まで延びる第3のセクションS3とからなっている。第1のリラクタ構成要素303Aは、図1に示した実施形態で用いたリラクタ構成要素303と同じ構造を有する。 More specifically, the first retractor component 303A has a cylindrical surface 302 with the tip S1a facing forward in the rotation direction R of the rotor 3 and the rear end facing the rear side in the rotation direction R of the rotor 3. The first section S1 extending from the first set position P1 to the second set position P2 along the circumferential direction and the tip S2a are connected to the rear end of the first section S1, and the rear end is the rotation direction of the rotor 3. A second section S2 extending from the second set position P2 to the third set position P3 along the circumferential direction of the cylindrical surface 302 while facing the rear of R, and the tip S3a at the rear end of the second section S2. A third set position extending from the third set position P3 to the fourth set position P4 along the circumferential direction of the circumferential surface 302 with the rear end S3b facing the rear side of the rotation direction R of the rotor 3 It consists of section S3. The first retractor component 303A has the same structure as the retractor component 303 used in the embodiment shown in FIG.
第2のリラクタ構成要素303Bは、先端S4aをロータ3の回転方向Rの前方側に向け、後端S4bをロータ3の回転方向Rの後方側に向けた状態で第5の設定位置P5から第6の設定位置P6まで延びる第4のセクションS4からなっている。 The second retractor component 303B has the tip S4a facing the front side in the rotation direction R of the rotor 3 and the rear end S4b facing the rear side in the rotation direction R of the rotor 3 from the fifth setting position P5. It consists of a fourth section S4 extending to the set position P6 of 6.
第2のリラクタ構成要素303Bを構成する第4のセクションS4の先端S4aが、ロータの円筒面302に設定された第5の設定位置P5で、ロータの円筒面302から直角に立ち上がっていることにより、第5の設定位置P5にリラクタの第5の作用点が設定されている。ロータ3が回転する過程でこの第5の作用点が回転センサ4の磁極部の位置を通過する際に回転センサ4の磁極部とロータの磁極面との間の距離が減少方向にステップ状に変化する。このとき、回転センサ4が検出している磁束が一方向に変化するため、回転センサ4は第1の極性の信号を出力する。 The tip S4a of the fourth section S4 constituting the second retractor component 303B rises at a right angle from the cylindrical surface 302 of the rotor at the fifth setting position P5 set on the cylindrical surface 302 of the rotor. , The fifth action point of the retractor is set at the fifth setting position P5. When the fifth point of action passes through the position of the magnetic pole portion of the rotation sensor 4 in the process of rotating the rotor 3, the distance between the magnetic pole portion of the rotation sensor 4 and the magnetic pole surface of the rotor is stepped in a decreasing direction. Change. At this time, since the magnetic flux detected by the rotation sensor 4 changes in one direction, the rotation sensor 4 outputs a signal having the first polarity.
また第4のセクションS4の後端S4bがロータの円筒面302に設定された第6の設定位置P6でロータの円筒面302に向けて直角に下降していることにより、第6の設定位置P6にリラクタの第6の作用点が設定されている。この第6の作用点は、ロータが回転する過程で、回転センサ4の磁極部の位置を通過する際に、回転センサ4の磁極部とロータの磁極面との間の距離を増加方向にステップ状に変化するため、回転センサ4が検出している磁束を減少方向に変化させて、回転センサ4から第2の極性の信号を出力させる。 Further, since the rear end S4b of the fourth section S4 descends at a right angle toward the cylindrical surface 302 of the rotor at the sixth set position P6 set on the cylindrical surface 302 of the rotor, the sixth set position P6 The sixth point of action of the retractor is set in. This sixth point of action is to increase the distance between the magnetic pole portion of the rotation sensor 4 and the magnetic pole surface of the rotor when passing through the position of the magnetic pole portion of the rotation sensor 4 in the process of rotating the rotor. Since the shape changes, the magnetic flux detected by the rotation sensor 4 is changed in the decreasing direction, and the rotation sensor 4 outputs a signal having a second polarity.
図10に示した例では、第1の設定位置P1と第2の設定位置P2との間の角度間隔、第3の設定位置P3と第4の設定位置P4との間の角度間隔及び第5の設定位置P5と第6の設定位置P6との間の角度間隔が40CAに設定されている。また第2の設定位置P2と第3の設定位置P3との間の角度間隔、第4の設定位置P4と第5の設定位置P5との間の角度間隔及び第6の設定位置P6と第1の設定位置P1との間の角度間隔が80CAに設定されている。 In the example shown in FIG. 10, the angular interval between the first set position P1 and the second set position P2, the angular interval between the third set position P3 and the fourth set position P4, and the fifth The angular distance between the set position P5 and the sixth set position P6 is set to 40 CA. Further, the angular interval between the second set position P2 and the third set position P3, the angular interval between the fourth set position P4 and the fifth set position P5, and the sixth set position P6 and the first. The angle distance from the set position P1 of is set to 80CA.
図10に示された信号発生装置のリラクタの展開図と、信号発生部が発生する信号Vs1ないしVs6の波形とを図11(A),(B)に示した。図11において、#1TDC~#3TDCはそれぞれエンジンの第1気筒ないし第3気筒の上死点位置を示している。また#1Ref~#3Refはそれぞれ第1気筒ないし第3気筒の上死点位置#1TDC~#3TDCより40CA手前の位置に設定された第1気筒ないし第3気筒の基準位置を示している。 11 (A) and 11 (B) show the development view of the retractor of the signal generator shown in FIG. 10 and the waveforms of the signals Vs1 to Vs6 generated by the signal generator. In FIG. 11, # 1TDC to # 3TDC indicate the top dead center positions of the first cylinder to the third cylinder of the engine, respectively. Further, # 1Ref to # 3Ref indicate the reference positions of the first cylinder to the third cylinder set to the positions 40 CA before the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder, respectively.
本実施形態では、第1の信号Vs1が発生する第1の設定回転位置θ1が第1気筒の基準位置#1Refとなっており、第2の信号Vs2が発生する第2の設定回転位置θ2が、第1気筒の上死点位置#1TDCとなっている。また第3の信号Vs3が発生する第3の設定回転位置θ3が、第2気筒の基準位置#2Refとなっており、第4の信号Vs4が発生する第4の設定回転位置θ4が、第2気筒の上死点位置#2TDCとなっている。更に、第5の信号Vs5が発生する第5の設定回転位置θ5が第3気筒の基準位置#3Refとなっており、第6の信号Vs6が発生する第6の設定回転位置θ6が第3気筒の上死点位置#3TDCとなっている。 In the present embodiment, the first set rotation position θ1 where the first signal Vs1 is generated is the reference position # 1Ref of the first cylinder, and the second set rotation position θ2 where the second signal Vs2 is generated is. , The top dead center position of the 1st cylinder is # 1TDC. Further, the third set rotation position θ3 where the third signal Vs3 is generated is the reference position # 2Ref of the second cylinder, and the fourth set rotation position θ4 where the fourth signal Vs4 is generated is the second. The top dead center position of the cylinder is # 2 TDC. Further, the fifth set rotation position θ5 where the fifth signal Vs5 is generated is the reference position # 3Ref of the third cylinder, and the sixth set rotation position θ6 where the sixth signal Vs6 is generated is the third cylinder. The top dead center position is # 3TDC.
本実施形態では、第1の設定位置P1に設定されたリラクタの第1の作用点が第1の設定回転位置θ1で回転センサの磁極部4aの位置を通過した際に回転センサが正極性の第1の信号Vs1を出力し、第2の設定位置P2に設定されたリラクタの第2の作用点が第2の設定回転位置θ2で回転センサの磁極部の位置を通過した際に回転センサが正極性の第2の信号Vs2を出力する。また第3の設定位置P3に設定されたリラクタの第3の作用点が第3の設定回転位置θ3で回転センサの磁極部の位置を通過した際に、回転センサが負極性の第3の信号Vs3を出力し、第4の設定位置P4に設定されたリラクタの第4の作用点が第4の設定回転位置θ4で回転センサの磁極部の位置を通過した際に、回転センサが負極性の第4の信号Vs4を出力する。更に第5の設定位置P5に設定されたリラクタの第5の作用点が第5の設定回転位置θ5で回転センサの磁極部の位置を通過した際に、回転センサが正極性の第5の信号Vs5を出力し、第6の設定位置P6に設定されたリラクタの第6の作用点が第6の設定回転位置θ6で回転センサの磁極部の位置を通過した際に、回転センサが負極性の第6の信号Vs6を出力する。 In the present embodiment, when the first point of action of the retractor set at the first set position P1 passes through the position of the magnetic pole portion 4a of the rotation sensor at the first set rotation position θ1, the rotation sensor has a positive electrode property. When the first signal Vs1 is output and the second point of action of the retractor set at the second set position P2 passes through the position of the magnetic pole of the rotation sensor at the second set rotation position θ2, the rotation sensor moves. The positive second signal Vs2 is output. Further, when the third action point of the retractor set at the third set position P3 passes the position of the magnetic pole portion of the rotation sensor at the third set rotation position θ3, the rotation sensor has a negative third signal. When Vs3 is output and the fourth point of action of the retractor set at the fourth set position P4 passes through the position of the magnetic pole of the rotation sensor at the fourth set rotation position θ4, the rotation sensor becomes negative. The fourth signal Vs4 is output. Further, when the fifth action point of the retractor set at the fifth set position P5 passes the position of the magnetic pole portion of the rotation sensor at the fifth set rotation position θ5, the rotation sensor has a positive fifth signal. When Vs5 is output and the sixth point of action of the retractor set at the sixth set position P6 passes through the position of the magnetic pole of the rotation sensor at the sixth set rotation position θ6, the rotation sensor becomes negative. The sixth signal Vs6 is output.
本実施形態においては、回転センサが出力する信号列を構成する信号の極性に基づいて、各信号が何れの回転位置で発生した信号であるかを判別することができる。例えば、第1の極性を「1」で、第2の極性を「0」で表わし、続いて発生する2つの信号からなる信号列を構成する信号の極性の組合せを見ていくことにより、各信号が何れの回転位置で発生した信号であるかを判別することができる。 In the present embodiment, it is possible to determine at which rotation position each signal is generated, based on the polarities of the signals constituting the signal sequence output by the rotation sensor. For example, the first polarity is represented by "1", the second polarity is represented by "0", and by looking at the combination of the polarities of the signals constituting the signal sequence consisting of the two signals generated subsequently, each of them is represented. It is possible to determine at which rotation position the signal is generated.
例えば、信号列「11」が検出された時に、この信号列を構成する2つの信号のうちの後から発生した信号を、設定回転位置θ2で発生した信号Vs2であると判別することができ、この信号は第1気筒の上死点位置#1TDCで発生した信号であると判別することができる。 For example, when the signal sequence "11" is detected, the signal generated after the two signals constituting this signal sequence can be determined to be the signal Vs2 generated at the set rotation position θ2. It can be determined that this signal is a signal generated at the top dead center position # 1TDC of the first cylinder.
また信号列「11」に続いて信号列「10」が検出されたときに、この信号列を構成する2つの信号のうちの後から発生した信号を設定回転位置θ3で発生した信号であると判別することができ、この信号は第2気筒の基準位置#2Refで発生した信号Vs3であると判別することができる。 Further, when the signal sequence "10" is detected following the signal sequence "11", the signal generated after the two signals constituting this signal sequence is regarded as the signal generated at the set rotation position θ3. It can be determined that this signal is the signal Vs3 generated at the reference position # 2Ref of the second cylinder.
更に信号列「00」が検出されたときには、この信号列を構成する2つの信号のうちの後から発生した信号を設定回転位置θ4で発生した信号であると判別することができ、この信号は第2気筒の上死点位置#2TDCで発生した信号Vs4であると判別することができる。 Further, when the signal sequence "00" is detected, it can be determined that the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position θ4, and this signal is It can be determined that the signal Vs4 is generated at the top dead center position # 2TDC of the second cylinder.
また信号列「00」に続いて信号列「01」が検出されたときには、この信号列を構成する2つの信号のうち後から発生した信号を設定回転位置θ5で発生した信号であると判別することができ、この信号は第3気筒の基準位置#3Refで発生した信号Vs5であると判別することができる。 When the signal sequence "01" is detected following the signal sequence "00", it is determined that the signal generated later from the two signals constituting this signal sequence is the signal generated at the set rotation position θ5. This signal can be determined to be the signal Vs5 generated at the reference position # 3Ref of the third cylinder.
信号列「01」に続いて信号列「10」が検出されたときには、この信号列を構成する2つの信号のうちの後から発生した信号を設定回転位置θ6で発生した信号であると判別することができ、この信号は第3気筒の上死点位置#3TDCで発生した信号Vs6であると判別することができる。 When the signal sequence "10" is detected following the signal sequence "01", it is determined that the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position θ6. This signal can be determined to be the signal Vs6 generated at the top dead center position # 3TDC of the third cylinder.
信号列「10」に続いて信号列「01」が検出されたときには、この信号列を構成する2つの信号のうちの後から発生した信号を設定回転位置θ1で発生した信号であると判別することができ、この信号は第1気筒の基準位置#1Refで発生した信号であると判別することができる。 When the signal sequence "01" is detected following the signal sequence "10", it is determined that the signal generated after the two signals constituting this signal sequence is the signal generated at the set rotation position θ1. This signal can be determined to be a signal generated at the reference position # 1Ref of the first cylinder.
また回転センサが連続して出力する3個の信号の極性に基づいて、回転センサが出力した信号が何れの回転位置で発生した信号であるかを判別することもできる。図3から明らかなように、本実施形態の信号発生装置が連続して発生する3個の信号からなる信号列は、クランク軸が1回転する間に「001」,「010」,「101」,「011」,「110」,「100」 のように変化する。これらの信号列の中には、信号の極性の配列が同じになる信号列が複数含まれることがないため、信号発生装置が連続して発生する3個の信号からなる信号列を用いて信号の判別を行うようにすれば、各信号列を構成する3個の信号のうちの最後の信号が何れの設定ポジションに対応する信号であるかを簡単に判別することができる。 It is also possible to determine at which rotation position the signal output by the rotation sensor is the signal generated, based on the polarities of the three signals continuously output by the rotation sensor. As is clear from FIG. 3, the signal train consisting of three signals continuously generated by the signal generator of the present embodiment is "001", "010", "101" while the crank shaft makes one rotation. , "011", "110", "100". Since these signal sequences do not include a plurality of signal sequences having the same signal polarity arrangement, a signal sequence consisting of three signals generated continuously by the signal generator is used as a signal. By performing the determination, it is possible to easily determine which set position the last signal among the three signals constituting each signal sequence is the signal corresponding to.
例えば、図11に示した例において、エンジンの始動操作を開始した後、最初に信号列「101」が検出された場合には、この信号列を構成する3つの信号の内の最後の信号が第1気筒の基準位置#1Refで発生した信号であると判別することができる。また次に信号列「011」が検出された時にこの信号列を構成する最後の信号が第1気筒の上死点位置#1TDCで発生した信号であると判別することができる。このようにして、一連の信号列をそれぞれ構成する3つの信号のうちの最後の信号の発生位置の判別を順次行うことができる。 For example, in the example shown in FIG. 11, when the signal string "101" is detected first after starting the engine starting operation, the last signal among the three signals constituting this signal string is the last signal. It can be determined that the signal is generated at the reference position # 1Ref of the first cylinder. Further, when the signal sequence "011" is detected next time, it can be determined that the last signal constituting this signal sequence is the signal generated at the top dead center position # 1TDC of the first cylinder. In this way, it is possible to sequentially determine the generation position of the last signal among the three signals constituting the series of signal sequences.
上記の実施形態では、エンジンの始動時の点火位置を各気筒の上死点位置として、各信号対を構成する2つの信号のうち、後から発生する信号をエンジンの各気筒の上死点位置で発生させるようにしているが、エンジンの始動時の各気筒の点火位置は、各気筒の上死点位置に限定されない。例えば、各気筒の上死点位置よりも僅かに進んだ回転位置にエンジンの始動時の点火位置を設定して、各対の信号のうち、後から発生する方の信号を、設定されたエンジン始動時の点火位置で発生させるようにしてもよい。 In the above embodiment, the ignition position at the time of starting the engine is set as the top dead center position of each cylinder, and of the two signals constituting each signal pair, the signal generated later is the top dead center position of each cylinder of the engine. However, the ignition position of each cylinder at the time of starting the engine is not limited to the top dead center position of each cylinder. For example, the ignition position at the time of starting the engine is set at a rotation position slightly advanced from the top dead center position of each cylinder, and the signal of each pair that is generated later is set as the engine. It may be generated at the ignition position at the time of starting.
図12は、本発明に係る信号発生装置の他の実施形態を示したものである。この実施形態においても、ロータ3の円筒面302に第1ないし第6の設定位置P1ないしP6が設定されている。本実施形態では、第1の設定位置P1と第2の設定位置P2 との間の角度間隔、第2の設定位置P2と第3の設定位置P3 との間の角度間隔、第3の設定位置P3と第4の設定位置P4 との間の角度間隔、第4の設定位置P4と第5の設定位置P5 との間の角度間隔及び第5の設定位置P5と第6の設定位置P6との間の角度間隔がすべて60CAに設定されている。 FIG. 12 shows another embodiment of the signal generator according to the present invention. Also in this embodiment, the first to sixth set positions P1 to P6 are set on the cylindrical surface 302 of the rotor 3. In the present embodiment, the angular interval between the first set position P1 and the second set position P2, the angular interval between the second set position P2 and the third set position P3, and the third set position. The angular interval between P3 and the fourth set position P4, the angular interval between the fourth set position P4 and the fifth set position P5, and the fifth set position P5 and the sixth set position P6. The angular spacing between them is all set to 60 CA.
本実施形態においても、ロータ3の円筒面302に第1のリラクタ構成要素303Aと、第2のリラクタ構成要素303Bとが設けられ、これらのリラクタ構成要素により、リラクタが構成されている。第1のリラクタ構成要素303Aは、第1の設定位置P1から第2の設定位置P2まで延びる第1のセクションS1と、第2の設定位置P2から第3の設定位置P3 まで延びる第2のセクションS2と、第3の設定位置P3から第4の設定位置P4まで延びる第3のセクションS3とからなっている。 Also in this embodiment, the cylindrical surface 302 of the rotor 3 is provided with the first retractor component 303A and the second retractor component 303B, and the retractor is configured by these retractor components. The first retractor component 303A has a first section S1 extending from the first set position P1 to the second set position P2 and a second section extending from the second set position P2 to the third set position P3. It consists of S2 and a third section S3 extending from the third set position P3 to the fourth set position P4.
第1のリラクタ構成要素303Aを構成する第1のセクションS1ないし第3のセクションS3は、それぞれの極弧角が60CAである点を除き、図10に示した実施形態で用いたロータ3の第1のリラクタ構成要素303Aを構成している第1のセクションS1ないし第3のセクションS3と同様に構成されている。第2のリラクタ構成要素303Bは、ロータ3の周方向に第5の設定位置P5から第6の設定位置P6まで延びる円弧状の第4のセクションS4からなっている。 The first section S1 to the third section S3 constituting the first retractor component 303A are the third rotors 3 used in the embodiment shown in FIG. 10, except that the polar arc angle of each is 60 CA. It is configured in the same manner as the first section S1 to the third section S3 constituting the retractor component 303A of 1. The second retractor component 303B is composed of an arcuate fourth section S4 extending from the fifth set position P5 to the sixth set position P6 in the circumferential direction of the rotor 3.
図12に示された信号発生装置においても、第1ないし第6の設定位置P1ないしP6にそれぞれリラクタの第1ないし第6の作用点が設定され、これらの作用点が回転センサの磁極部4aの位置を通過する際に、信号発生部を構成する信号コイル402がパルス波形の第1ないし第6の信号Vs1ないしVs6を出力する。 Also in the signal generator shown in FIG. 12, the first to sixth action points of the retractor are set at the first to sixth set positions P1 to P6, respectively, and these action points are the magnetic pole portions 4a of the rotation sensor. When passing through the position of, the signal coil 402 constituting the signal generation unit outputs the first to sixth signals Vs1 to Vs6 of the pulse waveform.
図12に示された信号発生装置のリラクタの展開図と、信号発生部が発生する信号Vs1ないしVs6の波形とを図13(A),(B)に示した。また図13(C)ないし(E)には、それぞれエンジンの第1気筒#1、第2気筒#2及び第3気筒#3で行われる行程が示されている。図13(C)ないし(E)において、INT及びCOMはそれぞれ吸気行程及び圧縮行程を示し、EXP及びEXHはそれぞれ膨張行程及び排気行程を示している。 The developed view of the retractor of the signal generator shown in FIG. 12 and the waveforms of the signals Vs1 to Vs6 generated by the signal generator are shown in FIGS. 13 (A) and 13 (B). Further, FIGS. 13 (C) to 13 (E) show the strokes performed by the first cylinder # 1, the second cylinder # 2, and the third cylinder # 3 of the engine, respectively. In FIGS. 13C to 13E, INT and COM indicate an intake stroke and a compression stroke, respectively, and EXP and EXH indicate an expansion stroke and an exhaust stroke, respectively.
図13において、#1TDC~#3TDCはそれぞれエンジンの第1気筒ないし第3気筒の上死点位置を示している。また#1Ref~#3Refはそれぞれ第1気筒ないし第3気筒の上死点位置#1TDC~#3TDCより60CA手前の位置に設定された第1気筒ないし第3気筒の基準位置を示している。本実施形態では、ロータ3が60CA回転する毎に回転センサ4がパルス波形の信号を出力する。 In FIG. 13, # 1TDC to # 3TDC indicate the top dead center positions of the first cylinder to the third cylinder of the engine, respectively. Further, # 1Ref to # 3Ref indicate the reference positions of the first cylinder to the third cylinder set to the positions 60 CA before the top dead center positions # 1TDC to # 3TDC of the first cylinder to the third cylinder, respectively. In the present embodiment, the rotation sensor 4 outputs a pulse waveform signal every time the rotor 3 rotates by 60 CA.
この例では、第1の設定回転位置θ1が第2気筒の基準位置#2Refであり、第2の設定回転位置θ2が第2気筒の上死点位置#2TDCである。また第3の設定回転位置θ3が第3気筒の基準位置#3Refであり、第4の設定回転位置θ4が第3気筒の上死点位置#3TDCである。また第5の設定回転位置θ5は第1気筒の基準位置#1Refであり、第6の設定回転位置θ6は第1気筒の上死点位置#1TDCである。 In this example, the first set rotation position θ1 is the reference position # 2Ref of the second cylinder, and the second set rotation position θ2 is the top dead center position # 2 TDC of the second cylinder. Further, the third set rotation position θ3 is the reference position # 3Ref of the third cylinder, and the fourth set rotation position θ4 is the top dead center position # 3 TDC of the third cylinder. The fifth set rotation position θ5 is the reference position # 1 Ref of the first cylinder, and the sixth set rotation position θ6 is the top dead center position # 1 TDC of the first cylinder.
図示の例では、第2気筒の基準位置#2Refでクランク軸の回転位置が第1の設定回転位置θ1に一致したときに、ロータの外周の第1の設定位置P1に設定されたリラクタの第1の作用点が回転センサの磁極部4aの位置を通過したことにより、回転センサが正極性の第1の信号Vs1を出力する。また第2気筒の上死点位置#2TDCでクランク軸の回転位置が第2の設定回転位置θ2に一致したときに、ロータの外周の第2の設定位置P2に設定されたリラクタの第2の作用点が回転センサの磁極部4aの位置を通過したことにより、回転センサが正極性の第2の信号Vs2を出力する。 In the illustrated example, when the rotation position of the crank shaft coincides with the first set rotation position θ1 at the reference position # 2Ref of the second cylinder, the first of the retractors set at the first set position P1 on the outer periphery of the rotor. When the point of action of 1 passes through the position of the magnetic pole portion 4a of the rotation sensor, the rotation sensor outputs a positive first signal Vs1. Further, when the rotation position of the crank shaft coincides with the second set rotation position θ2 at the top dead point position # 2TDC of the second cylinder, the second of the retractors set at the second set position P2 on the outer periphery of the rotor. When the point of action passes through the position of the magnetic pole portion 4a of the rotation sensor, the rotation sensor outputs a positive second signal Vs2.
更に、第3気筒の基準位置#3Refでクランク軸の回転位置が第3の設定回転位置θ3に一致したときに、ロータの外周に設定された第3の設定位置P3に設定されたリラクタの第3の作用点が磁極部4aの位置を通過したことにより、回転センサが負極性の第3の信号Vs3を出力し、第3気筒の上死点位置#3TDCでクランク軸の回転位置が第4の設定回転位置θ4に一致したときにリラクタの第4の作用点が磁極部4aの位置を通過したことにより、回転センサが負極性の第4の信号Vs4を出力している。 Further, when the rotation position of the crank shaft matches the third set rotation position θ3 at the reference position # 3Ref of the third cylinder, the second of the retractors set at the third set position P3 set on the outer periphery of the rotor. When the point of action of 3 passes through the position of the magnetic pole portion 4a, the rotation sensor outputs a negative third signal Vs3, and the rotation position of the crank shaft is the fourth at the top dead point position # 3TDC of the third cylinder. The rotation sensor outputs a negative fourth signal Vs4 because the fourth point of action of the retractor passes through the position of the magnetic pole portion 4a when it coincides with the set rotation position θ4 of.
本実施形態においても、回転センサが続いて出力する2つの信号からなる信号列を構成する信号の極性に基づいて、各信号が何れの回転位置で発生した信号であるかを判別することができる。同様に、信号発生装置が連続して出力する3個の信号からなる信号列「001」,「010」,「101」,「011」,「110」,「100」 をそれぞれ構成する信号の極性の組合せに基づいて信号発生装置が発生する各信号の気筒判別を行うこともできる。 Also in this embodiment, it is possible to determine at which rotation position each signal is generated based on the polarity of the signal constituting the signal sequence consisting of two signals continuously output by the rotation sensor. .. Similarly, the polarities of the signals constituting the signal sequences “001”, “010”, “101”, “011”, “110”, “100”, which are composed of three signals continuously output by the signal generator. It is also possible to discriminate the cylinder of each signal generated by the signal generator based on the combination of.
図13に示した例では、リラクタを第1のリラクタ構成要素303Aと第2のリラクタ構成要素303Bとにより構成した図12に示した信号発生装置を、3気筒エンジンに適用しているが、図12に示した信号発生装置を適用できるエンジンは3気筒エンジンに限定されない。例えば、図12に示した信号発生装置を6気筒エンジンに適用することができる。 In the example shown in FIG. 13, the signal generator shown in FIG. 12, in which the retractor is composed of the first retractor component 303A and the second retractor component 303B, is applied to the three-cylinder engine. The engine to which the signal generator shown in No. 12 can be applied is not limited to the 3-cylinder engine. For example, the signal generator shown in FIG. 12 can be applied to a 6-cylinder engine.
図14は、図12に示した信号発生装置を6気筒エンジンに適用する実施形態において、リラクタと、回転センサが出力する一連の信号と、エンジンの6つの気筒で行われる行程との関係を示したものである。図14(A)は、本実施形態で用いるリラクタの展開図、図14(B)は同リラクタを用いた場合に得られる信号の波形を示した波形図、図14(C)~(H)は、図14(B)に示した各信号が発生したときに6気筒エンジンの6つの気筒で行われる行程を示した行程図である。 FIG. 14 shows the relationship between the retractor, the series of signals output by the rotation sensor, and the stroke performed in the six cylinders of the engine in the embodiment in which the signal generator shown in FIG. 12 is applied to the 6-cylinder engine. It is a thing. 14 (A) is a developed view of the retractor used in the present embodiment, FIG. 14 (B) is a waveform diagram showing the waveform of the signal obtained when the retractor is used, and FIGS. 14 (C) to 14 (H) are shown. Is a stroke diagram showing a stroke performed by six cylinders of a six-cylinder engine when each signal shown in FIG. 14B is generated.
図14に示した例においても、クランク軸の第1の設定回転位置θ1ないし第6の設定回転位置θ6でそれぞれ回転センサ4が第1の信号Vs1ないし第6の信号Vs6を出力する。図14に示した例では、第1の信号Vs1が発生するロータの第1の設定回転位置θ1が6気筒エンジンの第2気筒及び第5気筒の基準位置#2/#5Refであり、第2の信号Vs2が発生するクランク軸の第2の設定回転位置θ2は、第2気筒及び第5気筒の上死点位置#2/#5TDCである。また第3の信号Vs3が発生するクランク軸の第3の設定回転位置θ3は、第3気筒及び第4気筒の基準位置#3/#4Refであり、第4の信号Vs4が発生する際のクランク軸の第4の設定回転位置θ4は、第3気筒及び第4気筒の上死点位置#3/#4TDCである。また第5の信号Vs5が発生するクランク軸の第5の設定回転位置θ5は、第1気筒及び第6気筒の基準位置#1/#6Refであり、第6の信号Vs6が発生するクランク軸の設定回転位置θ6は、第1気筒及び第6気筒の上死点位置#1/#6TDCである。 Also in the example shown in FIG. 14, the rotation sensor 4 outputs the first signal Vs1 to the sixth signal Vs6 at the first set rotation position θ1 to the sixth set rotation position θ6 of the crank shaft, respectively. In the example shown in FIG. 14, the first set rotation position θ1 of the rotor in which the first signal Vs1 is generated is the reference position # 2 / # 5Ref of the second cylinder and the fifth cylinder of the 6-cylinder engine, and the second The second set rotation position θ2 of the crank shaft in which the signal Vs2 of the above is generated is the top dead center position # 2 / # 5TDC of the second cylinder and the fifth cylinder. Further, the third set rotation position θ3 of the crankshaft where the third signal Vs3 is generated is the reference position # 3 / # 4Ref of the third cylinder and the fourth cylinder, and the crank when the fourth signal Vs4 is generated. The fourth set rotation position θ4 of the shaft is the top dead center position # 3 / # 4TDC of the third cylinder and the fourth cylinder. Further, the fifth set rotation position θ5 of the crank shaft in which the fifth signal Vs5 is generated is the reference position # 1 / # 6Ref of the first cylinder and the sixth cylinder, and the sixth signal Vs6 is generated in the crank shaft. The set rotation position θ6 is the top dead center position # 1 / # 6TDC of the first cylinder and the sixth cylinder.
上記の実施形態では、第1のリラクタ構成要素303Aを第1セクションS1ないし第3セクションS3により構成し、第2のリラクタ構成要素303Bを第4のセクションS4により構成したが、本発明はこのようにリラクタ構成要素を構成する場合に限定されない。例えば、図15に示されているように、第1のリラクタ構成要素303A及び第2のリラクタ構成要素303Bのそれぞれを2つのセクションにより構成するようにしてもよい。 In the above embodiment, the first retractor component 303A is configured by the first section S1 to the third section S3, and the second retractor component 303B is configured by the fourth section S4. It is not limited to the case where the retractor component is configured in. For example, as shown in FIG. 15, each of the first retractor component 303A and the second retractor component 303B may be composed of two sections.
図15に示した例では、第1ないし第6の設定位置P1ないしP6相互間の角度がすべて60CAに設定されている。第1の設定位置P1から第2の設定位置P2まで延びる第1のセクションS1と、第2の設定位置P2から第3の設定位置P3まで延びる第2のセクションS2とにより第1のリラクタ構成要素303Aが構成され、第1の設定位置P1ないし第3の設定位置P3にそれぞれリラクタの第1の作用点ないし第3の作用点が設定されている。また第4の設定位置P4から第5の設定位置P5まで延びる第3のセクションS3と、第5の設定位置P5から第6の設定位置P6まで延びる第4のセクションS4とにより第2のリラクタ構成要素303Bが構成され、第4の設定位置P4ないし第6の設定位置P6にそれぞれリラクタの第4の作用点ないし第6の作用点が設定されている。 In the example shown in FIG. 15, the angles between the first to sixth set positions P1 to P6 are all set to 60CA. A first retractor component with a first section S1 extending from the first set position P1 to the second set position P2 and a second section S2 extending from the second set position P2 to the third set position P3. 303A is configured, and the first action point to the third action point of the retractor is set at the first set position P1 to the third set position P3, respectively. Further, a second retractor configuration is provided by a third section S3 extending from the fourth setting position P4 to the fifth setting position P5 and a fourth section S4 extending from the fifth setting position P5 to the sixth setting position P6. The element 303B is configured, and a fourth action point to a sixth action point of the retractor is set at the fourth set position P4 to the sixth set position P6, respectively.
図15に示された例では、ロータ3が図示の矢印R方向に正回転する過程で、第1の設定位置P1が回転センサの磁極部の位置を通過する際に回転センサが検出する磁束を一方向に変化させて回転センサから第1の極性を有する第1の信号Vs1を出力させた後、第2の設定位置P2が回転センサの磁極部の位置を通過する際に回転センサが検出している磁束を更に一方向に変化させて回転センサから第1の信号Vs1と同極性の第2の信号Vs2を出力させる。次いで第3の設定位置P3が回転センサの磁極部の位置を通過する際に、回転センサが検出している磁束を他方向に変化させて、回転センサから第2の極性を有する第3の信号Vs3を出力させた後、第4の設定位置P4が回転センサの磁極部の位置を通過する際に、回転センサが検出している磁束を更に他方向に変化させて、回転センサから第2の極性を有する第4の信号Vs4を出力させる。 In the example shown in FIG. 15, the magnetic flux detected by the rotation sensor when the first set position P1 passes through the position of the magnetic pole portion of the rotation sensor in the process of positive rotation of the rotor 3 in the direction of the arrow R shown in the figure. After changing in one direction and outputting the first signal Vs1 having the first polarity from the rotation sensor, the rotation sensor detects when the second set position P2 passes the position of the magnetic pole portion of the rotation sensor. The current magnetic flux is further changed in one direction, and the second signal Vs2 having the same polarity as the first signal Vs1 is output from the rotation sensor. Next, when the third set position P3 passes through the position of the magnetic pole portion of the rotation sensor, the magnetic flux detected by the rotation sensor is changed in the other direction, and a third signal having a second polarity is transmitted from the rotation sensor. After outputting Vs3, when the fourth set position P4 passes the position of the magnetic pole portion of the rotation sensor, the magnetic flux detected by the rotation sensor is further changed in the other direction, and the second from the rotation sensor. A fourth signal Vs4 having a polarity is output.
図15に示した例では、第1の設定位置P1が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第1の設定回転位置θ1を、第2気筒の下死点位置 #2BDCに一致させ、第2の設定位置P2が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第2の設定回転位置θ2を、第1気筒の上死点位置#1TDCに一致させるように第1の設定位置P1及び第2の設定位置P2が設定されている。また第3の設定位置P3が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第3の設定回転位置θ3を第3気筒の下死点位置#3BDCに一致させるように、第3の設定位置P3が設定されている。 In the example shown in FIG. 15, the first set rotation position θ1 which is the rotation position of the crank shaft when the first set position P1 passes the position of the magnetic pole portion of the rotation sensor is set to the bottom dead center of the second cylinder. Match the position # 2BDC, and set the second set rotation position θ2, which is the rotation position of the crank shaft when the second set position P2 passes the position of the magnetic pole of the rotation sensor, to the top dead center position of the first cylinder. The first set position P1 and the second set position P2 are set so as to match # 1 TDC. Further, the third set rotation position θ3, which is the rotation position of the crank shaft when the third set position P3 passes the position of the magnetic pole portion of the rotation sensor, is made to match the bottom dead center position # 3BDC of the third cylinder. , The third setting position P3 is set.
図15に示した例ではまた、第4の設定位置P4が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第4の設定回転位置θ4を、第2気筒の上死点位置#2TDCに一致させ、第5の設定位置P5が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第5の設定回転位置θ5を、第1気筒の下死点位置#1BDCに一致させるように第4の設定位置P4及び第5の設定位置P5が設定されている。また第6の設定位置P6が回転センサの磁極部の位置を通過する際のクランク軸の回転位置である第6の設定回転位置θ6を第3気筒の上死点位置#3TDCに一致させるように、第6の設定位置P6が設定されている。 In the example shown in FIG. 15, the fourth set rotation position θ4, which is the rotation position of the crank shaft when the fourth set position P4 passes the position of the magnetic pole portion of the rotation sensor, is set to the top dead center of the second cylinder. The fifth set rotation position θ5, which is the rotation position of the crank shaft when the fifth set position P5 passes the position of the magnetic pole portion of the rotation sensor, coincides with the point position # 2 TDC, and is set to the bottom dead center of the first cylinder. The fourth set position P4 and the fifth set position P5 are set so as to match the position # 1 BDC. Further, the sixth set rotation position θ6, which is the rotation position of the crank shaft when the sixth set position P6 passes the position of the magnetic pole portion of the rotation sensor, is made to match the top dead center position # 3TDC of the third cylinder. , The sixth setting position P6 is set.
図15に示された実施形態において、信号の正極性を「1」で表し、負極性を「0」で表すと、信号コイルが続けて発生する2個の信号からなる信号列は、クランク軸が1回転する間に「11」、「10」、「01」、「10」、「00」、「01」のように変化する。これらの信号列を用いて各信号を構成する信号のうち後から発生した信号が何れの設定ポジションに対応する信号であるかを判別することができる。 In the embodiment shown in FIG. 15, when the positive electrode property of the signal is represented by "1" and the negative electrode property is represented by "0", the signal train consisting of two signals generated in succession by the signal coil is a crank shaft. Changes to "11", "10", "01", "10", "00", "01", etc. during one rotation. Using these signal sequences, it is possible to determine which set position the signal generated later is the signal corresponding to which of the signals constituting each signal.
また図15に示された実施形態において、信号コイルが続けて発生する3個の信号からなる信号列は、クランク軸が1回転する間に、「110」、「101」、「010」、「100」、「001」、「011」のように変化する。これらの信号列を検出することにより、各信号列を構成する3個の信号のうちの最後に発生した信号が何れの設定ポジションに対応する信号であるかを判別することができる。 Further, in the embodiment shown in FIG. 15, the signal train consisting of three signals generated in succession by the signal coil is "110", "101", "010", and "" during one rotation of the crank shaft. It changes like "100", "001", "011". By detecting these signal sequences, it is possible to determine which set position the signal corresponding to which setting position is the last signal generated among the three signals constituting each signal sequence.
本発明に係る信号発生装置で用いる回転センサは、リラクタの磁極面に空隙を介して対向させられるセンサ磁極部と、該センサ磁極部とリラクタとを含む磁路に磁束を流す磁石と、ロータが回転する過程でリラクタが前記磁路を流れる磁束に変化を生じさせる毎にレベル変化を示す信号をクランク角情報を含む信号として発生する信号発生部とを備えることにより構成される。 The rotation sensor used in the signal generator according to the present invention includes a sensor magnetic pole portion that faces the magnetic pole surface of the retractor via a gap, a magnet that allows magnetic flux to flow in a magnetic path including the sensor magnetic pole portion and the retractor, and a rotor. It is configured to include a signal generation unit that generates a signal indicating a level change as a signal including crank angle information each time the retractor causes a change in the magnetic flux flowing through the magnetic path in the process of rotation.
 上記の実施形態で用いた回転センサは、センサ磁極部4aを先端に有して前記磁路の一部を構成する回転センサ鉄心401と、該鉄心に信号発生用磁束を流す磁石403と、回転センサ鉄心401に巻回された信号コイル402とを備えて、該信号コイルが信号発生部を構成しているが、本発明で用いる信号発生部は信号コイルには限定されない。 The rotation sensor used in the above embodiment includes a rotation sensor iron core 401 having a sensor magnetic pole portion 4a at the tip and forming a part of the magnetic path, a magnet 403 that flows a signal generation magnetic flux through the iron core, and rotation. A signal coil 402 wound around a sensor iron core 401 is provided, and the signal coil constitutes a signal generation unit, but the signal generation unit used in the present invention is not limited to the signal coil.
例えば、前記磁路を通して流れる信号発生用磁束を検出して、検出した磁束量に対応するレベルの電圧信号を出力する磁気センサにより信号発生部を構成するか、又は信号発生用磁束を検出して検出した磁束量に対応するレベルの電圧信号を出力する該磁気センサと、該磁気センサが出力する電圧信号のレベルの変化をパルス信号に変換する信号変換部とにより信号発生部を構成することもできる。 For example, the signal generation unit is configured by a magnetic sensor that detects the signal generation magnetic flux flowing through the magnetic path and outputs a voltage signal at a level corresponding to the detected magnetic flux amount, or detects the signal generation magnetic flux. A signal generation unit may be configured by a magnetic sensor that outputs a voltage signal at a level corresponding to the detected magnetic flux amount and a signal conversion unit that converts a change in the level of the voltage signal output by the magnetic sensor into a pulse signal. can.
信号発生用磁束を検出して、検出した磁束量に対応するレベルの電圧信号を出力する磁気センサにより信号発生部を構成する場合、該信号発生部が発生する電圧信号Vhは例えば図16(A)に示すように変化する。この電圧信号の各レベル変化を示す部分を、クランク角情報を含む信号として用いることができる。 When the signal generation unit is configured by a magnetic sensor that detects the signal generation magnetic flux and outputs a voltage signal at a level corresponding to the detected magnetic flux amount, the voltage signal Vh generated by the signal generation unit is, for example, FIG. 16 (A). ) Changes. A portion indicating each level change of this voltage signal can be used as a signal including crank angle information.
また信号発生用磁束を検出して、検出した磁束量に対応するレベルの電圧信号を出力する磁気センサと、該磁気センサが出力する電圧信号のレベルの変化をパルス信号に変換する信号変換部とにより信号発生部を構成する場合、該信号発生部が出力する信号の波形は例えば図16(B)に示す通りである。磁気センサとしてはホール素子を用いることができ、磁気センサが出力する電圧信号のレベル変化をパルス信号に変換する信号変換部は例えば微分回路により構成することができる。 Further, a magnetic sensor that detects a signal generation magnetic flux and outputs a voltage signal at a level corresponding to the detected magnetic flux amount, and a signal conversion unit that converts a change in the voltage signal level output by the magnetic sensor into a pulse signal. When the signal generation unit is configured by the above, the waveform of the signal output by the signal generation unit is as shown in FIG. 16B, for example. A Hall element can be used as the magnetic sensor, and a signal conversion unit that converts a level change of a voltage signal output by the magnetic sensor into a pulse signal can be configured by, for example, a differentiating circuit.
次に図9に示した実施形態を例にとって、信号発生装置が発生する各信号が、クランク軸の何れの回転位置で発生した信号であるかの判別を行う際にマイクロプロセッサに実行させる判別処理のアルゴリズムの一例を、図17乃至図19に示したフローチャートを用いて説明する。 Next, taking the embodiment shown in FIG. 9 as an example, the discrimination process to be executed by the microprocessor when discriminating at which rotation position of the crank shaft each signal generated by the signal generator is. An example of the algorithm of FIG. 17 will be described with reference to the flowcharts shown in FIGS. 17 to 19.
図17ないし図19に示したフローチャートにおいては、リラクタの各セクションの先端が回転センサの磁極部の位置を通過する際に発生するパルス信号を、リラクタが磁極部4aの位置に立ち入った際に発生するパルス信号という意味で、「入りパルス(enter pulse)」と呼ぶ。またリラクタの各セクションの後端が回転センサの磁極部の位置を通過する際に発生するパルス信号を、リラクタが回転センサの磁極部4aの位置から抜け出す際に発生するパルス信号という意味で、「抜けパルス(exit pulse)と呼ぶことにする。また「入りパルス」が発生した際に実行される割り込み処理を「入り割り込み」と呼び、「抜けパルス」が発生した際に実行される割り込み処理を「抜け割り込み」と呼ぶ。 In the flowchart shown in FIGS. 17 to 19, a pulse signal generated when the tip of each section of the retractor passes through the position of the magnetic pole portion of the rotation sensor is generated when the retractor enters the position of the magnetic pole portion 4a. It is called an "enter pulse" in the sense that it is a pulse signal. Further, the pulse signal generated when the rear end of each section of the retractor passes through the position of the magnetic pole portion of the rotation sensor is the pulse signal generated when the retractor exits the position of the magnetic pole portion 4a of the rotation sensor. It will be called an exit pulse. The interrupt processing executed when an "entry pulse" occurs is called an "entry interrupt", and the interrupt processing executed when an "exit pulse" occurs is called an exit pulse. Called "missing interrupt".
図17は、信号発生装置がクランク軸の回転位置情報(クランク角情報)を含む信号(本実施形態ではパルス信号)を発生する毎に実行されるクランク角割り込み処理のアルゴリズムを示したものである。また図18は図17のクランク角割り込み処理で実行される初回処理のアルゴリズムを示したものであり、図19は、図17のクランク角割り込み処理で実行される本判定処理のアルゴリズムを示したものである。 FIG. 17 shows an algorithm for crank angle interrupt processing executed every time the signal generator generates a signal (pulse signal in this embodiment) including rotation position information (crank angle information) of the crank shaft. .. Further, FIG. 18 shows an algorithm of the initial processing executed by the crank angle interrupt processing of FIG. 17, and FIG. 19 shows an algorithm of the present determination processing executed by the crank angle interrupt processing of FIG. Is.
図17のフローチャートにおいて、First_fは、初回割り込み検知フラグで、今回の割り込みが初回の割り込みである場合に“0”の値をとり、初回の割り込みでない場合に“1”の値をとる。ここで、初回の割り込みとは、回転センサが最初にパルスを発生したときに実行される割り込みを意味する。またJudge_f は、信号発生位置判別判定フラグで、このフラグは、信号の発生位置の判別が完了していないときに0の値をとり、判別が完了しているときに1にセットされるである。 In the flowchart of FIG. 17, First_f is the first interrupt detection flag, and takes a value of "0" when the current interrupt is the first interrupt, and takes a value of "1" when it is not the first interrupt. Here, the first interrupt means an interrupt executed when the rotation sensor first generates a pulse. Judge_f is a signal generation position determination determination flag, and this flag takes a value of 0 when the determination of the signal generation position is not completed and is set to 1 when the determination is completed. ..
図17のクランク角割り込み処理が開始されると、先ずステップS001において、初回割り込み検知フラグFirst_fが0であるか否かを判定する。その結果、First_fが0で、今回の割り込みが、初回の割り込みであると判定されたときには、ステップS002に進んで図18に示した初回処理を実行させた後、このクランク角割り込み処理を終了する。 When the crank angle interrupt process of FIG. 17 is started, first, in step S001, it is determined whether or not the first interrupt detection flag First_f is 0. As a result, when First_f is 0 and it is determined that the current interrupt is the first interrupt, the process proceeds to step S002 to execute the initial process shown in FIG. 18, and then the crank angle interrupt process is terminated. ..
ステップS001で初回割り込み検知フラグFirst_fが0でなく、図17のクランク角割り込み処理への割り込みが初回の割り込みではないと判定されたときには、ステップS003に進んで、信号発生位置判別判定フラグJudge_f が0であるか否かを判定する。その結果、Judge_f が0であると判定されたとき、即ち信号発生位置の判別が未だ行われていないと判定されたときには、ステップS004に進んで、図19に示された本判定処理を実行した後、図17のクランク角割り込み処理を終了する。 When it is determined in step S001 that the first interrupt detection flag First_f is not 0 and the interrupt to the crank angle interrupt process in FIG. 17 is not the first interrupt, the process proceeds to step S003 and the signal generation position determination flag Judge_f is 0. It is determined whether or not it is. As a result, when it is determined that Judge_f is 0, that is, when it is determined that the determination of the signal generation position has not been performed yet, the process proceeds to step S004, and the present determination process shown in FIG. 19 is executed. After that, the crank angle interrupt process of FIG. 17 is terminated.
ステップS003において、Judge_f が0でないと判定されたとき、即ち、信号発生位置判別処理が完了していると判定されたときには、ステップS005に進んで、信号発生位置の判別が完了した後の通常運転処理を実行することを指示した後、この処理を終了する。 When it is determined in step S003 that Judge_f is not 0, that is, when it is determined that the signal generation position determination process is completed, the process proceeds to step S005, and normal operation is performed after the signal generation position determination is completed. After instructing to execute the process, this process ends.
次に図17に示したクランク角割り込み処理のステップS002で実行される図18の初回処理について説明する。図18において、Prev_ind は、前回発生したパルスが入りパルスであったか、抜けパルスであったかを示す標識である。この標識は、マイクロプロセッサの起動時に行われるイニシャライズ時に0にされる。 Next, the initial processing of FIG. 18 executed in step S002 of the crank angle interrupt processing shown in FIG. 17 will be described. In FIG. 18, Prev_ind is a sign indicating whether the pulse generated last time was an incoming pulse or an missing pulse. This indicator is set to 0 at the initialization performed at the startup of the microprocessor.
図18の初回処理が開始されると、ステップS101において、今回の割り込みが「入り割り込み」であるか否かを判定する。即ち、今回の割り込み処理を実行させたパルスが、図9に示された第1の設定回転位置θ1で発生した入りパルスVs1であるか否かを判定する。その結果、今回の割り込みが入り割り込みであると判定されたときには、ステップS102に進んでPrev_ind を1にセットする。これにより、今回発生したパルスが入りパルスであったことを記憶させる。次いでステップS103に進んで、初回割り込み検知フラグ First_fを1にセットした後、この初回判定処理を終了する。 When the initial process of FIG. 18 is started, in step S101, it is determined whether or not the interrupt this time is an “enter interrupt”. That is, it is determined whether or not the pulse for which the interrupt processing is executed this time is the incoming pulse Vs1 generated at the first set rotation position θ1 shown in FIG. As a result, when it is determined that the current interrupt is an incoming interrupt, the process proceeds to step S102 and Prev_ind is set to 1. As a result, it is memorized that the pulse generated this time was an incoming pulse. Next, the process proceeds to step S103, the first interrupt detection flag First_f is set to 1, and then this initial determination process is terminated.
ステップS101で今回の割り込みは入り割り込みでないと判定されたときには、ステップS104に進んで、今回発生したパルスが抜けパルスであったことを示すためにPrev_ind を2にセットする。次いでステップS103に進んで、初回割り込み検知フラグ First_fを1にセットした後、初回判定処理を終了する。 When it is determined in step S101 that this interrupt is not an incoming interrupt, the process proceeds to step S104, and Prev_ind is set to 2 to indicate that the pulse generated this time is an missing pulse. Next, the process proceeds to step S103, the first interrupt detection flag First_f is set to 1, and then the first determination process is terminated.
次に図19を参照して、図17に示されたクランク角割り込み処理のステップS004で実行される本判定処理について説明する。図19のフローチャートにおいて、Position_No は今回発生したパルス信号の発生位置を示すポジション番号である。Position_Noには、パルス信号が発生した位置に応じて1,2,3または4の値が割り当てられる。図19の本判定処理において、今回発生したパルス信号がクランク軸の第1の設定回転位置θ1で発生した信号であると判定されたときには、Position_No を“1”とし、今回発生したパルス信号がクランク軸の第2の設定回転位置θ2で発生した信号であると判定されたときには、Position_No を“2”とする。また今回発生したパルス信号がクランク軸の第3の設定回転位置θ3で発生した信号であると判定されたときには、Position_No を“3”とし、今回発生したパルス信号がクランク軸の第4の設定回転位置θ4で発生した信号であると判定されたときには、Position_Noを“4”とする。 Next, with reference to FIG. 19, the present determination process executed in step S004 of the crank angle interrupt process shown in FIG. 17 will be described. In the flowchart of FIG. 19, Position_No is a position number indicating the position where the pulse signal generated this time is generated. A value of 1, 2, 3 or 4 is assigned to Position_No depending on the position where the pulse signal is generated. In the present determination process of FIG. 19, when it is determined that the pulse signal generated this time is a signal generated at the first set rotation position θ1 of the crank shaft, Position_No is set to “1” and the pulse signal generated this time is the crank. When it is determined that the signal is generated at the second set rotation position θ2 of the axis, Position_No is set to “2”. When it is determined that the pulse signal generated this time is a signal generated at the third set rotation position θ3 of the crank shaft, Position_No is set to “3” and the pulse signal generated this time is the fourth set rotation of the crank shaft. When it is determined that the signal is generated at the position θ4, Position_No is set to “4”.
図19の本判定処理が開始されると、先ずステップS201において、Prev_ind が1であるか否かを判定する。その結果Prev_ind が1でないと判定された場合、即ち前回発生したパルスが入りパルスではないと判定されたときには、ステップS202に進んで、今回の割り込みが入り割り込みであるか否か、即ち、今回の割り込み処理が、入りパルスが発生したことにより実行される割り込み処理であるか否かを判定する。その結果、今回の割り込みが入り割り込みであると判定されたときには、ステップS203に進んで、Position_No を“1”として、今回発生したパルス信号が第1の設定回転位置θ1で発生した第1の信号Vs1であるとの判定結果を残す。次いでステップS204に進んでJudge_f =1とし、これにより今回発生したパルス信号の発生位置の判定が完了したことを記憶させた後、図19の本判定処理を終了する。 When the main determination process of FIG. 19 is started, it is first determined in step S201 whether or not Prev_ind is 1. As a result, when it is determined that Prev_ind is not 1, that is, when it is determined that the pulse generated last time is not an incoming pulse, the process proceeds to step S202, and whether or not the current interrupt is an incoming interrupt, that is, this time. It is determined whether or not the interrupt processing is the interrupt processing executed by the occurrence of the incoming pulse. As a result, when it is determined that the current interrupt is an incoming interrupt, the process proceeds to step S203, the Position_No is set to "1", and the pulse signal generated this time is the first signal generated at the first set rotation position θ1. The determination result that it is Vs1 is left. Next, the process proceeds to step S204, Judge_f = 1, and after storing that the determination of the generation position of the pulse signal generated this time is completed, the present determination process of FIG. 19 is terminated.
また図19のフローチャートのステップS201でPrev_ind が1であると判定されたとき、即ち前回発生したパルスが入りパルスであると判定されたときには、ステップS205に進んで、今回の割り込みが入り割り込みであるか否かを判定する。その結果、今回の割り込みが入り割り込みであると判定されたときには、ステップS206に進んで、Position_No を“2”として、今回発生したパルス信号が第2の設定回転位置θ2で発生した第2の信号Vs2であるとの判定結果を残す。次いでステップS204に進んでJudge_f =1とし、これにより今回発生したパルス信号の発生位置の判定が完了したことを記憶させた後、図19の本判定処理を終了する。 Further, when Prev_ind is determined to be 1 in step S201 of the flowchart of FIG. 19, that is, when it is determined that the previously generated pulse is an incoming pulse, the process proceeds to step S205, and the current interrupt is an incoming interrupt. Judge whether or not. As a result, when it is determined that the current interrupt is an incoming interrupt, the process proceeds to step S206, the Position_No is set to "2", and the pulse signal generated this time is the second signal generated at the second set rotation position θ2. The judgment result that it is Vs2 is left. Next, the process proceeds to step S204, Judge_f = 1, and after storing that the determination of the generation position of the pulse signal generated this time is completed, the present determination process of FIG. 19 is terminated.
図19に示されたフローチャートのステップS201においてPrev_ind が1であると判定され、ステップS205において、今回の割り込みが入り割り込みでないと判定されたときには、ステップS207に進んでPosition_No を“3”として、今回発生したパルス信号が第3の設定回転位置θ3で発生した第3の信号Vs3であるとの判定結果を残す。次いでステップS204に進んでJudge_f =1として、今回発生したパルス信号の発生位置の判定が完了したことを記憶させた後、図19の本判定処理を終了する。 When Prev_ind is determined to be 1 in step S201 of the flowchart shown in FIG. 19 and it is determined in step S205 that the current interrupt is not an incoming interrupt, the process proceeds to step S207 and Position_No is set to "3". The determination result that the generated pulse signal is the third signal Vs3 generated at the third set rotation position θ3 is left. Next, the process proceeds to step S204, and Judge_f = 1 is set to store that the determination of the generation position of the pulse signal generated this time is completed, and then the present determination process of FIG. 19 is terminated.
図19に示されたフローチャートのステップS201においてPrev_ind が1でないと判定され、ステップS202で今回の割り込みが入り割り込みでないと判定されたときには、ステップS208に進んで、Position_No を“4”とし、今回発生したパルス信号が、第4の設定回転位置θ4で発生した第4の信号Vs4であるとの判定結果を残す。次いでステップS204に進んでJudge_f =1として、今回発生したパルス信号の発生位置の判定が完了したことを記憶させた後、図19の本判定処理を終了する。 When it is determined in step S201 of the flowchart shown in FIG. 19 that Prev_ind is not 1, and it is determined in step S202 that the current interrupt is not an interrupt, the process proceeds to step S208, Position_No is set to "4", and this time occurs. The determination result that the generated pulse signal is the fourth signal Vs4 generated at the fourth set rotation position θ4 is left. Next, the process proceeds to step S204, and Judge_f = 1 is set to store that the determination of the generation position of the pulse signal generated this time is completed, and then the present determination process of FIG. 19 is terminated.
エンジンの運転中回転センサがパルス信号を発生する毎に図17~図19の処理を反復させて、エンジンの運転中回転センサがパルス信号を出力する毎に、今回発生したパルス信号が、設定回転位置θ1~θ4のうちの何れの設定回転位置で発生した信号であるかを判別する。エンジンの制御装置は、この判別結果からクランク軸の回転位置についての情報を得て、点火位置の制御等を行う。 Each time the rotation sensor during operation of the engine generates a pulse signal, the processes of FIGS. 17 to 19 are repeated, and each time the rotation sensor during operation of the engine outputs a pulse signal, the pulse signal generated this time is set to rotate. It is determined which of the positions θ1 to θ4 the set rotation position is the signal generated. The engine control device obtains information about the rotation position of the crank shaft from this determination result and controls the ignition position and the like.
上記の実施形態では、リラクタを設けるロータの円筒面をロータの外周に設けて、ロータの外側に回転センサを配置するようにしているが、本発明はこのように構成する場合に限定されるものではなく、リラクタを設ける円筒面をロータの内周に設けて、回転センサをロータの内側に配置する構成をとる場合にも本発明を適用することができる。 In the above embodiment, the cylindrical surface of the rotor to which the retractor is provided is provided on the outer periphery of the rotor so that the rotation sensor is arranged on the outside of the rotor, but the present invention is limited to such a configuration. Instead, the present invention can be applied even when a cylindrical surface on which a retractor is provided is provided on the inner circumference of the rotor and the rotation sensor is arranged inside the rotor.
上記の実施形態では、リラクタがロータの円筒面に形成された突起からなっているが、リラクタは、ロータの円筒面に形成された凹部又は溝からなっていてもよい。リラクタを凹部又は溝により構成する場合、該凹部又は溝は、非磁性材料により充填されていても良い。 In the above embodiment, the retractor is composed of protrusions formed on the cylindrical surface of the rotor, but the retractor may be composed of recesses or grooves formed on the cylindrical surface of the rotor. When the retractor is composed of recesses or grooves, the recesses or grooves may be filled with a non-magnetic material.
図12に示した実施形態では、リラクタを第1のリラクタ構成要素303Aと第2のリラクタ構成要素303Bとにより構成する場合に、第1のリラクタ構成要素303Aの先端と第2のリラクタ構成要素303Bの後端との間及び第2のリラクタ構成要素303Bの先端と第1のリラクタ構成要素303Aの後端との間にそれぞれ位置するロータの外周に突起が設けられていない領域が設けられているが、ロータの周方向に沿う全領域に突起が存在する形態を採用することもできる。例えば、図12において、セクションS1の先端とセクションS4の後端との間、及びセクションS4の先端とセクションS3の後端との間が、セクションS1及びセクションS3の幅寸法よりも小さい一定の幅寸法を持ってセクションS1とS4との間及びセクションS3とS4を連続的に延びる円弧状の突起により連結されていてもよい。 In the embodiment shown in FIG. 12, when the retractor is composed of the first retractor component 303A and the second retractor component 303B, the tip of the first retractor component 303A and the second retractor component 303B are used. An area without protrusions is provided on the outer periphery of the rotor located between the rear end and the tip of the second retractor component 303B and the rear end of the first retractor component 303A, respectively. However, it is also possible to adopt a form in which protrusions are present in the entire region along the circumferential direction of the rotor. For example, in FIG. 12, between the tip of section S1 and the rear end of section S4, and between the tip of section S4 and the rear end of section S3, a constant width smaller than the width dimension of section S1 and section S3. It may be connected with dimensions between sections S1 and S4 and by arcuate protrusions extending continuously between sections S3 and S4.
同様に、図1に示した実施形態において、第1のセクションS1の先端S1aと第3のセクションS3の後端との間が、第1のセクションS1の幅寸法及び第3のセクションS3の幅寸法よりも小さい一定の幅寸法を持って、第1のセクションS1の先端S1aと第3のセクションS3の後端との間を連続的に延びる円弧状の突起により連結されている形態をとることもできる。 Similarly, in the embodiment shown in FIG. 1, the width dimension of the first section S1 and the width of the third section S3 are between the tip S1a of the first section S1 and the rear end of the third section S3. It has a constant width dimension smaller than the dimension, and is connected by an arcuate protrusion that continuously extends between the tip S1a of the first section S1 and the rear end of the third section S3. You can also.
上記の実施形態では、図2に示されているように、リラクタの先端側でも、後端側でも、リラクタ構成要素を構成するセクションの幅寸法を段階的に異ならせることにより、第1の磁束変化生成部及び第2の磁束変化生成部を構成するか、又は図4に示されているように、リラクタの先端側でも、後端側でも、リラクタ構成要素を構成するセクションの高さを異ならせることにより、第1の磁束変化生成部及び第2の磁束変化生成部を構成している。しかしながら、本発明は、このように構成する場合に限定されない。例えば、リラクタ構成要素の先端側では、リラクタ構成要素を構成するセクションS1及びS2の高さを異ならせることにより第1の磁束変化生成部を構成し、リラクタ構成要素の後端側では、リラクタ構成要素を構成するセクションS2及びS3の幅寸法を異ならせることにより、第2の磁束変化生成部を構成するようにしてもよい。またリラクタ構成要素を構成するセクションの幅と高さとの双方を段階的に変化させることにより、第1の磁束変化生成部及び第2の磁束変化生成部を構成してもよい。 In the above embodiment, as shown in FIG. 2, the first magnetic flux is obtained by gradually changing the width dimension of the section constituting the retractor component on both the front end side and the rear end side of the retractor. If the heights of the sections that make up the retractor component are different, either on the front end side or the rear end side of the retractor, either as a change generator and a second flux change generator, or as shown in FIG. By doing so, a first magnetic flux change generation unit and a second magnetic flux change generation unit are configured. However, the present invention is not limited to such a configuration. For example, on the front end side of the retractor component, the first magnetic flux change generation unit is configured by making the heights of the sections S1 and S2 constituting the retractor component different, and on the rear end side of the retractor component, the retractor configuration is formed. The second magnetic flux change generation unit may be configured by making the width dimensions of the sections S2 and S3 constituting the element different. Further, the first magnetic flux change generation unit and the second magnetic flux change generation unit may be configured by gradually changing both the width and the height of the sections constituting the retractor component.
 1 信号発生装置
 2 クランク軸
 3 ロータ
 301 回転体
 301a 周壁部
 301b 底壁部
 301c ボス部
 302 ロータの円筒面
 303A 第1のリラクタ構成要素
 303B 第2のリラクタ構成要素
 4 回転センサ
 4a 回転センサの磁極部
 401 鉄心
 402 信号コイル(信号発生部)
 403 磁石
 404 磁路構成部材
 P1 ロータの円筒面に設定された第1の設定位置
 P2 ロータの円筒面に設定された第2の設定位置
 P3 ロータの円筒面に設定された第3の設定位置
P4 ロータの円筒面に設定された第4の設定位置
 P5 ロータの円筒面に設定された第5の設定位置
P6 ロータの円筒面に設定された第6の設定位置
 θ1 クランク軸の第1の設定回転位置
 θ2 クランク軸の第2の設定回転位置
 θ3 クランク軸の第3の設定回転位置
 θ4 クランク軸の第4の設定回転位置
 θ5 クランク軸の第5の設定回転位置
 θ6 クランク軸の第6の設定回転位置
 S1 第1のセクション
 S2 第2のセクション
 S3 第3のセクション
 S4 第4のセクション
S5 第5のセクション
S6 第6のセクション
MS 磁極面
Vs1 第1の信号
Vs2 第2の信号
Vs3 第3の信号
Vs4 第4の信号
Vs5 第5の信号
Vs6 第6の信号
1 Signal generator 2 Crank shaft 3 Rotor 301 Rotating body 301a Peripheral wall part 301b Bottom wall part 301c Boss part 302 Rotor cylindrical surface 303A First retractor component 303B Second retractor component 4 Rotation sensor 4a Magnetic pole part of rotation sensor 401 Iron core 402 Signal coil (Signal generator)
403 Magnet 404 Magnetic path component P1 First set position set on the cylindrical surface of the rotor P2 Second set position set on the cylindrical surface of the rotor P3 Third set position set on the cylindrical surface of the rotor P4 4th set position set on the cylindrical surface of the rotor P5 5th set position set on the cylindrical surface of the rotor P6 6th set position set on the cylindrical surface of the rotor θ1 1st set rotation of the crank shaft Position θ2 2nd set rotation position of the crank shaft θ3 3rd set rotation position of the crank shaft θ4 4th set rotation position of the crank shaft θ5 5th set rotation position of the crank shaft θ6 6th set rotation of the crank shaft Position S1 1st section S2 2nd section S3 3rd section S4 4th section S5 5th section S6 6th section MS magnetic pole plane
Vs1 1st signal Vs2 2nd signal Vs3 3rd signal Vs4 4th signal Vs5 5th signal Vs6 6th signal

Claims (6)

  1. 磁束の変化を検出する毎に信号を出力するように構成されてエンジンのケースに対して固定される回転センサと、前記エンジンのクランク軸と共に回転するように設けられて、前記クランク軸の回転位置が設定回転位置に一致する毎に前記回転センサが検出する磁束に一方向又は他方向への変化を生じさせるリラクタを備えたロータとを備えて、前記リラクタが前記磁束を一方向に変化させた際に前記回転センサから第1の極性の信号を出力させ、前記リラクタが前記磁束を他方向に変化させた際に前記回転センサから第2の極性の信号を出力させるように構成されたエンジン用信号発生装置であって、
    前記リラクタは、前記ロータが回転する過程で前記回転センサが検出する磁束に前記一方向への変化を続けて2回生じさせる第1の磁束変化生成部と、前記ロータが回転する過程で前記回転センサが検出する磁束に前記他方向への変化を続けて2回生じさせる第2の磁束変化生成部とを1つずつ持つように構成され、
    前記回転センサが続いて出力する2つの信号を信号対として捉えたときに、前記ロータが1回転する間に前記回転センサが出力する信号対群が、2つの前記第1の極性の信号からなる第1の同極性の信号対と、2つの前記第2の極性の信号からなる第2の同極性の信号対とを1つずつ含むように構成されているエンジン用信号発生装置。
    A rotation sensor configured to output a signal each time a change in magnetic flux is detected and fixed to the case of the engine, and a rotation sensor provided to rotate with the crank shaft of the engine, the rotation position of the crank shaft. The reactor is provided with a rotor provided with a retractor that causes a change in the magnetic flux detected by the rotation sensor in one direction or the other direction each time the rotation position coincides with the set rotation position. For an engine configured to output a signal of the first polarity from the rotation sensor at the time, and to output a signal of the second polarity from the rotation sensor when the retractor changes the magnetic flux in the other direction. It is a signal generator
    The retractor has a first magnetic flux change generation unit that causes the magnetic flux detected by the rotation sensor to change twice in a row in the process of rotating the rotor, and the rotation in the process of rotating the rotor. It is configured to have one second magnetic flux change generation unit that causes the magnetic flux detected by the sensor to continuously change in the other direction twice.
    When the two signals output by the rotation sensor are captured as signal pairs, the signal pair group output by the rotation sensor during one rotation of the rotor consists of two signals of the first polarity. A signal generator for an engine configured to include one signal pair of the same polarity and a second signal pair of the same polarity composed of two signals of the second polarity.
  2. 前記ロータが1回転する間に前記回転センサが出力する信号対群が、2つの前記第1の極性の信号からなる第1の同極性の信号対と、続けて発生する前記第1の極性の信号と前記第2の極性の信号との2つの信号からなる第1の異極性の信号対と、2つの前記第2の極性の信号からなる第2の同極性の信号対と、続けて発生する前記第2の極性の信号と前記第1の極性の信号との2つの信号からなる第2の異極性の信号対との4つの信号対からなるように前記リラクタが設けられている請求項1に記載のエンジン用信号発生装置。 The signal pair group output by the rotation sensor during one rotation of the rotor is a signal pair of the same polarity consisting of two signals of the first polarity, and the signal pair of the first polarity generated in succession. A first signal pair of different polarities consisting of a signal and a signal of the second polarity, and a second signal pair of the same polarity consisting of two signals of the second polarity are continuously generated. The retractor is provided so as to be composed of four signal pairs of a second different polarity signal pair consisting of two signals of the second polarity signal and the first polarity signal. The engine signal generator according to 1.
  3. 前記ロータが1回転する間に前記回転センサが出力する信号対群が、2つの前記第1の極性の信号からなる第1の同極性の信号対と、続けて発生する前記第1の極性の信号と前記第2の極性の信号との2つの信号からなる第1の異極性の信号対と、2つの前記第2の極性の信号からなる第2の同極性の信号対と、続けて発生する前記第2の極性の信号と前記第1の極性の信号との2つの信号からなる第2の異極性の信号対と、続けて発生する前記第1の極性の信号と前記第2の極性の信号との2つの信号からなる第3の異極性の信号対と、続けて発生する前記第2の極性の信号と前記第1の極性の信号からなる第4の異極性の信号対との6つの信号対からなるように前記リラクタが設けられている請求項1に記載のエンジン用信号発生装置。 The signal pair group output by the rotation sensor during one rotation of the rotor is a signal pair of the same polarity consisting of two signals of the first polarity, and the signal pair of the first polarity generated in succession. A first signal pair of different polarities consisting of two signals of the signal and the signal of the second polarity and a second signal pair of the same polarity consisting of two signals of the second polarity are continuously generated. A second different polarity signal pair consisting of two signals of the second polarity signal and the first polarity signal, and subsequently generated the first polarity signal and the second polarity. A third signal pair of different polarities consisting of two signals of the above, and a fourth signal pair of different polarities consisting of a signal of the second polarity and a signal of the first polarity generated in succession. The engine signal generator according to claim 1, wherein the retractor is provided so as to consist of six signal pairs.
  4. 前記ロータは、エンジンに取り付けられる際にクランク軸と中心軸線を共有した状態で配置される円筒面を有して、この円筒面に前記リラクタが設けられ、
    前記回転センサは、前記ロータの円筒面のリラクタが設けられた領域に空隙を介して対向させられる磁極部と、前記磁極部と前記ロータのリラクタが設けられた領域とを含むように形成された磁路に信号生成用の磁束を流す磁石と、前記ロータが回転する過程で前記リラクタが前記信号生成用の磁束に変化を生じさせる毎にレベル変化を示す信号を発生する信号発生部とを備え、
    前記リラクタは、先端を前記ロータの回転方向の前方に向け、後端を前記ロータの回転方向の後方側に向けた状態で前記円筒面の周方向に一定の幅寸法を持って延びる第1のセクションと、該第1のセクションの後端に先端を連結し、後端を前記ロータの回転方向の後方に向けた状態で、一定の幅寸法を持って前記円筒面の周方向に延びる第2のセクションと、先端を前記第2のセクションの後端に連結し、後端を前記ロータの回転方向の後方側に向けた状態で、一定の幅寸法を持って前記円周面の周方向に延びる第3のセクションとを備えた突起又は凹部をリラクタ構成要素として備えて、各セクションに前記回転センサの磁極部に対向するリラクタの磁極面が形成され、
    前記第1のセクションの先端は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記一方向にステップ状に変化させるべく、前記回転センサの磁極部とリラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第1のセクションの後端と前記第2のセクションの先端との連結部は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記一方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第2のセクションの後端と第3のセクションの先端との連結部は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記他方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第3のセクションの後端は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記他方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第1のセクションの先端、及び前記第1のセクションの後端と第2のセクションの先端との連結部により前記第1の磁束変化生成部が構成され、
    前記第2のセクションの後端と第3のセクションの先端との連結部、及び前記第3のセクションの後端により前記第2の磁束変化生成部が構成されている、
    請求項1に記載の信号発生装置。
    The rotor has a cylindrical surface that is arranged so as to share a central axis with the crank shaft when attached to the engine, and the retractor is provided on the cylindrical surface.
    The rotation sensor is formed so as to include a magnetic flux portion that is opposed to a region of the cylindrical surface of the rotor provided with a retractor via a gap, and a region of the magnetic flux portion and a region provided with a retractor of the rotor. It is provided with a magnet that flows a magnetic flux for signal generation in a magnetic path, and a signal generation unit that generates a signal indicating a level change each time the retractor causes a change in the magnetic flux for signal generation in the process of rotating the rotor. ,
    The first retractor extends with a constant width dimension in the circumferential direction of the cylindrical surface with its tip directed forward in the rotational direction of the rotor and its rear end directed rearward in the rotational direction of the rotor. A second section extending in the circumferential direction of the cylindrical surface with a certain width dimension with the tip connected to the section and the rear end of the first section and the rear end facing rearward in the rotational direction of the rotor. With the section and the tip connected to the rear end of the second section and the rear end facing the rear side in the rotation direction of the rotor, with a certain width dimension in the circumferential direction of the circumferential surface. A protrusion or recess with an extending third section is provided as a retractor component, and each section is formed with a magnetic pole surface of the retractor facing the magnetic pole portion of the rotation sensor.
    The tip of the first section is the rotation sensor so as to change the signal generation magnetic flux in a step-like manner in one direction when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the reactor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepped manner.
    The connecting portion between the rear end of the first section and the tip of the second section transmits the signal generating magnetic flux when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepped manner in order to change the magnetic pole portion in one direction in a stepped manner.
    The connecting portion between the rear end of the second section and the tip of the third section applies the magnetic flux for signal generation to the other when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepped manner in order to change the direction in steps.
    The rear end of the third section rotates in order to change the signal generating magnetic flux in a stepwise manner in the other direction as the rotor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating. It is formed so as to change the distance between the magnetic pole portion of the sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepwise manner.
    The first magnetic flux change generation unit is configured by the tip of the first section and the connecting portion between the rear end of the first section and the tip of the second section.
    The connection portion between the rear end of the second section and the tip of the third section, and the rear end of the third section constitute the second magnetic flux change generation portion.
    The signal generator according to claim 1.
  5. 前記リラクタは、前記リラクタ構成要素の後端部から回転方向の後方側に離れた位置に形成された円弧状の突起又は凹部からなる更に他のリラクタ構成要素を備えている請求項4に記載の信号発生装置。 4. The fourth aspect of the present invention, wherein the retractor includes yet another retractor component composed of an arcuate protrusion or recess formed at a position separated from the rear end portion of the retractor component on the rear side in the rotational direction. Signal generator.
  6. 前記ロータは、エンジンに取り付けられる際にクランク軸と中心軸線を共有した状態で配置される円筒面を有して、この円筒面に前記リラクタが設けられ、
    前記回転センサは、前記ロータの円筒面のリラクタが設けられた領域に空隙を介して対向させられる磁極部と、前記ロータと回転センサとの間に形成された磁路に信号生成用の磁束を流す磁石と、前記ロータが回転する過程で前記リラクタが前記信号生成用の磁束に変化を生じさせる毎にレベル変化を示す信号を発生する信号発生部とを備え、
    前記リラクタは、先端を前記ロータの回転方向の前方に向け、後端を前記ロータの回転方向の後方側に向けた状態で、一定の幅寸法を持って前記円筒面の周方向に延びる第1のセクションと、該第1のセクションの後端に先端を連結し、後端を前記ロータの回転方向の後方に向けた状態で、一定の幅寸法を持って前記円筒面の周方向に延びる第2のセクションとを備えた突起又は凹部からなる第1のリラクタ構成要素と、前記第2のセクションの後端よりもロータの回転方向の後方側に離れた位置で先端を前記ロータの回転方向の前方側に向け、後端をロータの回転方向の後方側に向けた状態で、一定の幅寸法を持って前記円筒面の周方向に延びる第3のセクションと該第3のセクションの後端に先端を連結し、後端を前記ロータの回転方向の後方側に向けた状態で、一定の幅寸法を持って前記円筒面の周方向に延びる第4のセクションとを備えた突起又は凹部からなる第2のリラクタ構成要素とを備えて、各セクションに前記回転センサの磁極部に対向するリラクタの磁極面が形成され、
    前記第1のセクションの先端は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記一方向にステップ状に変化させるべく、前記回転センサの磁極部とリラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第1のセクションの後端と第2のセクションの先端との連結部は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記一方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第2のセクションの後端は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記他方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第3のセクションの先端は、前記前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記一方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第3のセクションと第4のセクションとの連結部は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記他方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第4のセクションの後端は、前記ロータが回転する過程で前記回転センサの磁極部の位置を通過する際に、前記信号発生用磁束を前記他方向にステップ状に変化させるべく、前記回転センサの磁極部と前記リラクタの磁極面との間の距離又は前記リラクタの磁極面の面積をステップ状に変化させるように形成され、
    前記第1のセクションの先端、及び第1のセクションの後端と第2のセクションの先端との連結部により前記第1の磁束変化生成部が構成され、
    前記第3のセクションの後端と第4のセクションの先端との連結部、及び前記第4のセクションの後端により前記第2の磁束変化生成部が構成されている、
    請求項1に記載の信号発生装置。
     
    The rotor has a cylindrical surface that is arranged so as to share a central axis with the crank shaft when attached to the engine, and the retractor is provided on the cylindrical surface.
    The rotation sensor applies a magnetic flux for signal generation to a magnetic path portion formed between the rotor and the rotation sensor and a magnetic pole portion facing the region of the rotor's cylindrical surface provided with a retractor via a gap. It is provided with a magnet to be flown and a signal generation unit that generates a signal indicating a level change each time the retractor causes a change in the magnetic flux for signal generation in the process of rotating the rotor.
    The first retractor extends in the circumferential direction of the cylindrical surface with a certain width dimension with its tip directed forward in the rotational direction of the rotor and its rear end directed rearward in the rotational direction of the rotor. The tip is connected to the rear end of the section and the rear end of the first section, and the rear end extends in the circumferential direction of the cylindrical surface with a certain width dimension with the rear end facing rearward in the rotation direction of the rotor. A first retractor component consisting of a protrusion or recess with two sections and a tip in the direction of rotation of the rotor at a position distant from the rear end of the second section to the rear of the direction of rotation of the rotor. At the third section extending in the circumferential direction of the cylindrical surface with a certain width dimension and the rear end of the third section with the rear end facing the front side and the rear end facing the rear side in the rotation direction of the rotor. Consists of protrusions or recesses with a fourth section extending in the circumferential direction of the cylindrical surface with a constant width dimension, with the tips connected and the rear end facing rearward in the direction of rotation of the rotor. Each section is provided with a second retractor component, and a magnetic pole surface of the retractor facing the magnetic pole portion of the rotation sensor is formed.
    The tip of the first section is the rotation sensor so as to change the signal generation magnetic flux in a step-like manner in one direction when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the reactor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepped manner.
    The connecting portion between the rear end of the first section and the tip of the second section transmits the signal generation magnetic flux when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepped manner in order to change the direction in steps.
    The rear end of the second section rotates in order to change the signal generating magnetic flux in a stepwise manner in the other direction as the rotor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating. It is formed so as to change the distance between the magnetic pole portion of the sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepwise manner.
    The tip of the third section rotates so as to change the signal generation magnetic flux in a step-like manner in one direction when passing through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepwise manner.
    The connecting portion between the third section and the fourth section steps the signal generating magnetic flux in the other direction as it passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating the rotor. It is formed so as to change the distance between the magnetic pole portion of the rotation sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepwise manner.
    The rear end of the fourth section rotates in order to change the signal generating magnetic flux in a stepwise manner in the other direction as the rotor passes through the position of the magnetic pole portion of the rotation sensor in the process of rotating. It is formed so as to change the distance between the magnetic pole portion of the sensor and the magnetic pole surface of the retractor or the area of the magnetic pole surface of the retractor in a stepwise manner.
    The first magnetic flux change generation part is formed by the tip of the first section and the connecting part between the rear end of the first section and the tip of the second section.
    The connection portion between the rear end of the third section and the tip of the fourth section, and the rear end of the fourth section constitute the second magnetic flux change generation portion.
    The signal generator according to claim 1.
PCT/JP2021/029992 2020-08-19 2021-08-17 Signal generating device for engine WO2022039145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022543946A JPWO2022039145A1 (en) 2020-08-19 2021-08-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020138607 2020-08-19
JP2020-138607 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022039145A1 true WO2022039145A1 (en) 2022-02-24

Family

ID=80350421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029992 WO2022039145A1 (en) 2020-08-19 2021-08-17 Signal generating device for engine

Country Status (2)

Country Link
JP (1) JPWO2022039145A1 (en)
WO (1) WO2022039145A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103856A (en) * 1990-08-24 1992-04-06 Kokusan Denki Co Ltd Cylinder judging method for internal combustion engine and signal generating device for cylinder judging thereof
JPH06213058A (en) * 1992-08-04 1994-08-02 Nippondenso Co Ltd Engine controller
JPH10103946A (en) * 1996-09-19 1998-04-24 Robert Bosch Gmbh Sensor apparatus for identifying cylinder at high speed for internal combustion engine
JPH11229946A (en) * 1998-02-06 1999-08-24 Unisia Jecs Corp Cylinder determination device for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103856A (en) * 1990-08-24 1992-04-06 Kokusan Denki Co Ltd Cylinder judging method for internal combustion engine and signal generating device for cylinder judging thereof
JPH06213058A (en) * 1992-08-04 1994-08-02 Nippondenso Co Ltd Engine controller
JPH10103946A (en) * 1996-09-19 1998-04-24 Robert Bosch Gmbh Sensor apparatus for identifying cylinder at high speed for internal combustion engine
JPH11229946A (en) * 1998-02-06 1999-08-24 Unisia Jecs Corp Cylinder determination device for engine

Also Published As

Publication number Publication date
JPWO2022039145A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US7949457B2 (en) Control apparatus for internal combustion engine
JP4577031B2 (en) Ignition device for internal combustion engine
JP4825786B2 (en) 4-cycle engine stroke discrimination device
JP2002115598A (en) Load detecting method, control method, ignition timing control method and ignition timing control apparatus for internal combustion engine
US7305871B2 (en) Cylinder discriminating device and method thereof, and engine ignition control device and method thereof
EP1911955A1 (en) Crank angle detector of internal combustion engine and method for detecting reference angular position
JP5108058B2 (en) Internal combustion engine control device
JP4140246B2 (en) Rotation information detecting device for multi-cylinder internal combustion engine
US6216669B1 (en) Control system for an internal combustion engine
WO2022039145A1 (en) Signal generating device for engine
WO2017145863A1 (en) Control apparatus of internal combustion engine
US20080011272A1 (en) Apparatus and method for ignition timing for small gasoline engine
JP2629022B2 (en) Ignition starting device for internal combustion engine
EP1439299A1 (en) Engine control device
JP2008309038A (en) Stroke determination method and stroke determination device for single cylinder engine
US6837100B1 (en) Detection of combustion misfiring
JP3716947B2 (en) Cylinder discrimination device for internal combustion engine
JP3788269B2 (en) 4-stroke internal combustion engine stroke determination method and apparatus
JP2003074406A (en) Stroke determining device of 4 cycle internal combustion engine
JP2016215933A (en) Drive control device
JP2853300B2 (en) Cylinder discrimination signal generator for internal combustion engine
JP2005098200A (en) Cylinder identification device of internal combustion engine
JP5276703B2 (en) Fuel injection control device for internal combustion engine
JPH08121299A (en) Individual ignition method
JP5153688B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858289

Country of ref document: EP

Kind code of ref document: A1