WO2022038830A1 - Ultrasonic measurement device and ultrasonic measurement method - Google Patents

Ultrasonic measurement device and ultrasonic measurement method Download PDF

Info

Publication number
WO2022038830A1
WO2022038830A1 PCT/JP2021/015810 JP2021015810W WO2022038830A1 WO 2022038830 A1 WO2022038830 A1 WO 2022038830A1 JP 2021015810 W JP2021015810 W JP 2021015810W WO 2022038830 A1 WO2022038830 A1 WO 2022038830A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
frequency
unit
reception
transmission
Prior art date
Application number
PCT/JP2021/015810
Other languages
French (fr)
Japanese (ja)
Inventor
裕久 溝田
雅則 北岡
友輔 高麗
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022038830A1 publication Critical patent/WO2022038830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water

Definitions

  • the present invention relates to an ultrasonic measuring device and an ultrasonic measuring method for measuring using ultrasonic waves, and is particularly applied to measuring restrained long objects such as railroad rails and pipes and measuring high damping materials. Regarding effective technology.
  • Ultrasound technology is applied in various fields such as medical care, industry, fishing, and resource exploration. Even in the case of measurement technology, it is used, for example, for abdominal echo, non-destructive inspection, sonar, and visualization of subseafloor structures.
  • an ultrasonic probe is placed facing the measurement target to transmit and receive ultrasonic waves, and receive and receive scattered waves generated at boundaries with different acoustic impedances (product of sound velocity and density). The resulting waveform signal is processed to obtain the desired result.
  • the impedance of the probe at the end is the same as the characteristic impedance of the wiring to the end, that is, the impedance on the device side such as an amplifier or receiver.
  • the impedance is an electric resistance component in an AC circuit, and in an AC circuit, not only the resistance but also the coil and the capacitor are the resistance components.
  • impedance refers to this electrical impedance.
  • the main frequency band used in ultrasonic imaging devices / measuring devices for medical and general industry is about 1 MHz-15 MHz.
  • the impedance of the probe used in this frequency band does not deviate significantly from 50 ⁇ , causing major measurement problems. For this reason, there is little problem in measurement even if no matching is taken.
  • the thickness of the piezoelectric element built into the probe is the main factor that determines the oscillation / reception frequency band of ultrasonic waves.
  • a pulse voltage or burst voltage having a main band of 5 MHz is applied to the probe to drive the probe, and the reflected wave of the ultrasonic wave in the 5 MHz band emitted from the probe is received.
  • a piezoelectric element converts mechanical vibration into an electric signal to obtain a received waveform. This means that if a matching circuit is provided, the same transmission path will be used both at the time of transmission and at the time of reception, so that the same matching circuit will naturally be used. Since the resonance frequency and the antiresonance frequency peculiar to the probe are relatively close to each other, even the same matching circuit does not significantly affect the performance.
  • the high-frequency component may be cut and the low-frequency component may remain mainly due to the reduction in scattering generated when the ultrasonic wave propagates inside the high-attenuation material. Even in such a case, it is necessary to transmit a strong ultrasonic wave with a frequency that matches the probe at the time of transmission and match it so that it has high sensitivity in the frequency band to be detected at the time of reception. It can happen.
  • Patent Document 1 As a background technology in this technical field, for example, there is a technology such as Patent Document 1.
  • Patent Document 1 in order to suppress the electrical noise (white noise) of the waveform obtained by transmitting and receiving ultrasonic waves, the addition / averaging process is normally performed by software, but it takes time to acquire the waveform a plurality of times. It is disclosed that the number of receivers used at the same time is increased and the addition / averaging process is performed by hardware.
  • Patent Document 2 shows a probe for both transmission and reception, and a braking capacitance erasing circuit for changing the resonance frequency of the piezoelectric vibrator to the low frequency side is provided in the receiving line of the piezoelectric vibrator to transmit an ultrasonic signal. It is disclosed that sometimes the piezoelectric vibrator is driven at the resonance frequency, and when the ultrasonic signal is received, the anti-resonance frequency of the piezoelectric vibrator is changed to the low frequency side by the braking capacitance erasing circuit to obtain the maximum reception sensitivity. ..
  • Patent Document 1 since the number of receivers used at the same time increases and the value of electrical matching with the probe changes, it is necessary to adjust the variable matching circuit based on the number of receivers to improve the transmission / reception performance. Are listed. However, Patent Document 1 does not mention the above-mentioned problem due to the difference in frequency between transmission and reception.
  • Patent Document 2 it is premised that the frequencies of the transmitted wave and the received wave are the same, and as in Patent Document 1, the problem due to the difference in the frequency at the time of transmission and the frequency at the time of reception is not mentioned.
  • an object of the present invention is to independently set the impedance at the time of transmission and reception of ultrasonic waves according to the measurement target and the measurement conditions in the ultrasonic measurement device and the ultrasonic measurement method for measuring using ultrasonic waves. It is an object of the present invention to provide a matching ultrasonic measuring device and ultrasonic measuring method.
  • the present invention is generated by a measuring unit including an ultrasonic probe, a transmitting unit that applies a pulse voltage to the piezoelectric element in the ultrasonic probe, and the piezoelectric element receiving ultrasonic waves.
  • a receiving unit that converts an electric signal and acquires it as waveform data, and a control unit that controls the transmitting unit and the receiving unit are provided, and a variable matching device is provided in at least the receiving unit of the transmitting unit and the receiving unit.
  • the control unit includes an input device for inputting a frequency component value when the receiving unit receives the electric signal, and a storage device for storing frequency-dependent data of matching values corresponding to the ultrasonic probe. It is characterized by having a matching control device for controlling the variable matching device with reference to the frequency of the electric signal.
  • the present invention is an ultrasonic measurement method for measuring a subject using ultrasonic waves, based on a step of reading an input of an ultrasonic reception frequency as one of the measurement conditions and the reception frequency. It is characterized by having a step of performing impedance adjustment of a variable matching circuit on the receiving side of ultrasonic waves.
  • the impedances at the time of transmission and reception of ultrasonic waves can be independently matched according to the measurement target and the measurement conditions. It is possible to provide an ultrasonic measuring device and an ultrasonic measuring method.
  • FIG. 1 is a schematic configuration diagram of the ultrasonic measuring device 1 of this embodiment.
  • the ultrasonic measuring device 1 of this embodiment is roughly divided into a measuring unit 2 including an ultrasonic probe, a transmitting unit 3, a receiving unit 4, a control / processing unit (computer) 5, and a display unit 6.
  • FIG. 1 shows an example in which the display unit 6 is included as the configuration of the ultrasonic wave measuring device 1, the display unit 6 may be installed independently of the ultrasonic wave measuring device 1.
  • the measuring unit 2 mainly consists of an ultrasonic probe, a subject, and a jig for fixing them (not shown).
  • the ultrasonic probe may be a single type probe having a single element or an array probe having a plurality of elements.
  • the transmitting unit 3 and the receiving unit 4 match not only the transmitting unit 3 but also the receiving unit 4 on their respective lines, thereby maximizing the transmission efficiency of electric power to the ultrasonic probe at the time of transmission and transmitting strong ultrasonic waves.
  • vibration can be converted into an electric signal by a piezoelectric element (not shown) at the time of reception, and the electric signal can be efficiently transmitted to the receiver.
  • the transmission unit 3 includes a pulsar 7, an amplifier 8, and a variable matching device A (9).
  • the shape and voltage of the transmission pulse received by the input device 10 of the control / processing unit (computer) 5 or the transmission pulse stored in the storage device 11 are repeated, and a signal is sent to the amplifier 8 based on a value such as a frequency. Send.
  • the amplifier 8 amplifies the transmitted signal based on the amplification value.
  • variable matching device A the impedances of the ultrasonic probe of the amplifier 8 and the measuring unit 2 are matched with reference to the value of the transmission frequency. In the matched state, a voltage is applied to the piezoelectric element in the ultrasonic probe to oscillate the ultrasonic wave.
  • the receiving unit 4 includes another variable matching device B (12) and a receiver 13.
  • the impedances of the ultrasonic probe and the receiver 13 are matched with reference to the value of the receiving frequency.
  • the electric signal generated by receiving the ultrasonic wave by the piezoelectric element is amplified, A / D converted, etc., acquired as waveform data, and the received waveform data of the control / processing unit (computer) 5 described later is stored. Transfer data to memory.
  • Variable matching is continuously adjusted by an electronic circuit that includes either a variable capacitor, a variable coil, or a variable resistor, or a matching circuit is built using multiple non-variable capacitors, coils, resistors, etc. to make a switch. It can be adjusted discretely by controlling the connection with.
  • the control / processing unit (computer) 5 includes a storage device 11, a transmission / reception control device 14, an input device 10, and a matching control device 15.
  • FIG. 2 shows a schematic diagram of the data stored in the storage device 11.
  • the storage device 11 in addition to the reception frequency data characteristic of the present invention and the values as transmission / reception conditions received by the input device 10 of FIG. 1, transmission frequency data, probe specification data, display (gate) conditions, and transmission Stores waveform data, received waveform data, received waveform analysis data, etc.
  • the transmission / reception control device 14 has a function of controlling the voltage of the transmission pulse voltage, the pulse width, the repetition frequency, the amplification value, the sampling frequency, the data storage timing, and the like.
  • the input device 10 is composed of a general device for inputting by means such as a keyboard, a mouse, and a touch panel.
  • the matching control device 15 uses the variable matching device A (9) in the transmitting unit 3 and another variable matching device B (12) in the receiving unit 4 for the frequency used for transmission stored in the storage device 11 and for receiving. Sometimes it can be controlled using the desired frequency.
  • the display unit 6 has a function of displaying measured raw waveforms, processed waveforms, image reconstruction results, etc., in addition to values necessary for controlling ultrasonic wave transmission / reception and recording conditions.
  • the scanning unit includes a scanner and a scanner control device.
  • the scanner fixes, scans, and moves the ultrasonic probe and the subject.
  • the scanner control device scans and moves the ultrasonic probe and the subject within a predetermined timing and range based on the scanning conditions stored in the control / processing unit (computer) 5, and the relative between the ultrasonic probe and the subject. You can change the positional relationship.
  • the measuring unit 2 including the ultrasonic probe, the transmitting unit 3 for applying the pulse voltage to the piezoelectric element in the ultrasonic probe, and the piezoelectric element are ultrasonic waves. It includes a receiving unit 4 that converts an electric signal generated in response to the signal and acquires it as waveform data, and a control unit (control / processing unit 5) that controls the transmitting unit 3 and the receiving unit 4, and the transmitting unit 3 and the receiving unit 3 are provided.
  • the receiving unit 4 has the variable matching device B (12), and the control unit (control / processing unit 5) inputs the frequency component value when the receiving unit 4 receives the electric signal.
  • It has an input device 10, a storage device 11 for storing frequency-dependent data of matching values corresponding to an ultrasonic probe, and a matching control device 15 for controlling a variable matching device B (12) with reference to the frequency of an electric signal. is doing.
  • the impedances at the time of transmission and reception of ultrasonic waves can be independently matched according to the measurement target and the measurement conditions.
  • the measurement performance can be improved by maximizing the output at the time of transmission and the sensitivity at the time of reception.
  • FIG. 3 is a flowchart showing the ultrasonic measurement method of this embodiment.
  • the basic inspection method as a base is the same as that of a general ultrasonic imaging device.
  • step S000 ultrasonic measurement is started.
  • step S001 the measurement conditions are read.
  • the reception frequency which is the data to be read in step S001, which is a feature of the present invention, is input from the input device 10 to the storage device 11 in step S008.
  • the reception frequency is a value to be input when the frequency of particular interest can be predicted from the frequency distribution included in the desired reception signal.
  • f is the main frequency included in the transmitted wave and you want to detect the harmonics of f / 2, 2f, 3f, etc. with high sensitivity due to the non-linear phenomenon generated between transmission and reception, 2 frequencies ( There is a case where it is desired to detect the frequency of fa-fb, which is the difference frequency component of two waves, with high sensitivity by using a parametric wave in which fa, fb: fb ⁇ fa) is mixed.
  • Other general measurement conditions to be read include, as described above, as transmission / reception setting conditions, a voltage waveform applied to the ultrasonic probe, a repetition frequency for repeating transmission / reception, and, if necessary, a peak of the reception waveform. Time gates for extracting intensities, frequency filters, etc. can be mentioned.
  • step S001 After the reading of the measurement conditions is completed in step S001, the values of the variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 are described later by the matching control device 15 in step S002. Then, the transmitting unit 3 and the receiving unit 4 match each other.
  • step S002 After impedance matching (adjustment) on the transmitting side and the receiving side is completed in step S002, ultrasonic waves are transmitted to the subject in step S003, ultrasonic waves are received in step S004, and the received waveform is displayed in step S005. Displayed in 6 or stored in the storage device 11, the measurement is completed in step S006.
  • FIG. 4 is a flowchart showing an impedance matching method on the transmitting side and the receiving side of this embodiment.
  • FIG. 5 is a diagram showing the frequency characteristics of the impedance matching value.
  • step S100 matching in the transmission unit 3 is started in step S100.
  • step S101 the strongest frequency component included in the input waveform (transmission waveform) is read as an input value.
  • a value close to the resonance frequency which is affected by the thickness of the piezoelectric vibrator inside the ultrasonic probe, will be input.
  • ultrasonic waves are oscillated at a frequency that is significantly deviated from the resonance frequency, for example, by intentionally deviating from the resonance frequency by applying a voltage of about 100 kHz even if the resonance frequency is 5 MHz. can do.
  • the frequency to be oscillated is input to the matching control device 15 of the control / processing unit (computer) 5, and the impedance of the ultrasonic probe at that frequency is the impedance of the amplifier 8 (usually 50 ⁇ ). ), The impedance of the variable matching device A (9) is adjusted by the matching control device 15.
  • step S103 After the impedance adjustment of the transmitting unit 3 is completed, matching in the receiving unit 4 is started in step S103.
  • step S104 the value of the desired frequency component in the obtained received signal is read as an input value.
  • step S105 the frequency to be oscillated is input to the matching control device 15 of the control / processing unit (computer) 5, so that the impedance of the ultrasonic probe at that frequency matches the impedance of the receiver 13 (also usually 50 ⁇ ).
  • the impedance of the variable matching device B (12) is adjusted by the matching control device 15.
  • step S106 the adjustment of the variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 is completed, and the process moves to the transmission of the ultrasonic wave in step S003 in FIG. ..
  • a method of obtaining the impedance value of the variable matching of the transmitting unit 3 and the receiving unit 4 will be described using a typical matching circuit using the coil and the capacitor shown in FIG.
  • each equation is solved so that the impedance resistance and reactance of the ultrasonic probe are matched with the impedance resistance (usually 50 ⁇ ) and reactance (usually 0 ⁇ ) on the device side as well. ..
  • the impedance of variable matching may be controlled according to the solution of this simultaneous equation.
  • FIG. 6 is a schematic configuration diagram of the ultrasonic measuring device 1 of this embodiment.
  • FIG. 7 is a flowchart showing the ultrasonic measurement method of this embodiment.
  • the ultrasonic measuring device 1 of the present embodiment includes an input / control unit 16 in place of the control / processing unit (computer) 5 of the first embodiment (FIG. 1). Is different. Other configurations are the same as those in the first embodiment (FIG. 1).
  • the input / control unit 16 includes a storage device 11, a transmission / reception frequency input device 17, an input waveform control device 18, a reception waveform evaluation device 19, and a variable matching control device 20.
  • the received waveform evaluation device 19 may be provided in the input / control unit 16 and the received waveform may be frequency-analyzed.
  • step S201 the received waveform is subjected to frequency analysis represented by the Fourier transform.
  • step S202 peak analysis of the frequency distribution of the frequency analysis result is performed, and the peak frequency is extracted and stored.
  • step S203 the reception frequency is re-input based on the result obtained in step S202. At this time, there may be a plurality of peak frequencies.
  • step S204 the measurement conditions are reloaded in step S204, and the impedance of the variable matching device B (12) of the receiving unit 4 is readjusted in step S205.
  • the ultrasonic wave is transmitted in step S206, the ultrasonic wave is received in step S207, and the measurement result is displayed and saved in step S208.
  • step S209 the variable matching device B (12) of the receiving unit 4 is readjusted at all the extracted frequencies to determine whether the measurement is completed. If it is not completed, the process returns to step S203, and if it is completed, the measurement is completed in step S210.
  • the ultrasonic measuring device and the ultrasonic measuring method according to the fifth embodiment of the present invention will be described.
  • the explanation is supplemented by giving an example of a case where ultrasonic waves are oscillated at a given frequency and measured in a plurality of different frequency bands by intentionally greatly deviating from the resonance frequency. Such measurement may be carried out by a guided wave inspection or the like.
  • variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 adjusted to 20 kHz. Adjust to, send and receive, and save the waveform. It is advisable to carry out 40kHz, 60kHz, 80kHz and 100kHz in sequence.
  • the ultrasonic measuring device and the ultrasonic measuring method according to the sixth embodiment of the present invention will be described.
  • a clear reflected signal for example, a bottom surface (shape) echo in ultrasonic inspection of a metal structure, or a surface echo of a subject in the case of a water immersion method, is applied to the received waveform by time-gate. It is advisable to monitor the peak value and fine-tune each matching circuit.
  • the solution of the simultaneous equations is set as the initial value, and the variable matching device A (9) of the transmission unit 3 is scanned around the initial value, and the place where the received waveform becomes the maximum peak value is set as the optimum value.
  • the variable matching device B (12) of the receiving unit 4 the place where the received waveform becomes the maximum peak value by scanning around the initial value is set as the optimum value. In this way, it is advisable to independently control the impedance of the variable matching on the transmitting side and the receiving side to find the optimum value.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above embodiments have been described in detail to aid in understanding of the present invention and are not necessarily limited to those comprising all of the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic measurement device which measures using ultrasonic waves, and with which it is possible to independently match the impedance of ultrasonic waves during transmission and during reception in accordance with the object to be measured and a measurement condition. The ultrasonic measurement device is characterized by comprising a measurement unit which includes an ultrasonic probe, a transmission unit which applies a pulse voltage to a piezoelectric element in the ultrasonic probe, a reception unit which converts and acquires an electrical signal as waveform data, said electrical signal being generated by the piezoelectric element which has received ultrasonic waves, and a control unit which controls the transmission unit and the reception unit, wherein: between the transmission unit and the reception unit, at least the reception unit has a variable matching device; and the control unit has an input device which inputs a frequency component value when the reception unit receives the electrical signal, a storage device which stores frequency-dependent data for a matching value associated with the ultrasonic probe, and a matching control device which controls the variable matching device using the electrical signal and the frequency.

Description

超音波計測装置、超音波計測方法Ultrasonic measuring device, ultrasonic measuring method
 本発明は、超音波を用いて計測を行う超音波計測装置及び超音波計測方法に係り、特に、鉄道レールや配管等の拘束された長尺物の計測及び高減衰材の計測に適用して有効な技術に関する。 The present invention relates to an ultrasonic measuring device and an ultrasonic measuring method for measuring using ultrasonic waves, and is particularly applied to measuring restrained long objects such as railroad rails and pipes and measuring high damping materials. Regarding effective technology.
 超音波に関する技術は、医療・工業・漁業・資源探査と、数々の分野で応用されている。計測技術に限っても、例えば、腹部エコー、非破壊検査、ソナー、海底下構造の可視化などに用いられている。超音波による計測では大抵の場合、超音波プローブを計測対象に対向して配置して超音波を送受信し、音響インピーダンス(音速と密度の積)が異なる境界で発生した散乱波を受信し、受信した波形信号を処理して所望の結果を得る。 Ultrasound technology is applied in various fields such as medical care, industry, fishing, and resource exploration. Even in the case of measurement technology, it is used, for example, for abdominal echo, non-destructive inspection, sonar, and visualization of subseafloor structures. In ultrasonic measurement, in most cases, an ultrasonic probe is placed facing the measurement target to transmit and receive ultrasonic waves, and receive and receive scattered waves generated at boundaries with different acoustic impedances (product of sound velocity and density). The resulting waveform signal is processed to obtain the desired result.
 この時、高シグナルかつ低ノイズな受信信号を得るには、終端部となるプローブのインピーダンスが、終端部までの配線の特性インピーダンス、すなわち、アンプやレシーバといった装置側のインピーダンスと同じ値であれば理想的である。ここで、インピーダンスとは、交流回路における電気抵抗成分のことであり、交流回路では、抵抗はもちろん、コイルやコンデンサも抵抗成分となる。以降、特に断らない場合、インピーダンスは、この電気的なインピーダンスのことを指す。 At this time, in order to obtain a high signal and low noise reception signal, if the impedance of the probe at the end is the same as the characteristic impedance of the wiring to the end, that is, the impedance on the device side such as an amplifier or receiver. Ideal. Here, the impedance is an electric resistance component in an AC circuit, and in an AC circuit, not only the resistance but also the coil and the capacitor are the resistance components. Hereinafter, unless otherwise specified, impedance refers to this electrical impedance.
 これらのインピーダンスの値が完全に一致していれば、入力波の電気エネルギーが100%プローブに伝わり、強い超音波が発振する。装置側のインピーダンスと、配線の先に接続されるプローブのインピーダンスを合わせることを整合という。 If these impedance values are completely the same, 100% of the electrical energy of the input wave is transmitted to the probe, and strong ultrasonic waves oscillate. Matching the impedance on the device side with the impedance of the probe connected to the end of the wiring is called matching.
 もし、インピーダンス値が大きく異なれば、終端部で強い反射が発生し、電気エネルギーがプローブに十分に伝わらず、さらには、反射波が入力波に重ね合わされた形で、プローブから超音波が発振することになり、強いノイズを発振する原因となることがある。 If the impedance values are significantly different, strong reflection will occur at the end, electrical energy will not be sufficiently transmitted to the probe, and ultrasonic waves will oscillate from the probe in the form of the reflected wave superimposed on the input wave. Therefore, it may cause strong noise to be oscillated.
 医療用や一般工業用の超音波映像化装置/計測装置において利用する主な周波数帯域は、1MHz-15MHz程度である。この周波数帯域において使用するプローブのインピーダンスは、計測に大きな問題が生じるほど50Ωから大きく外れてはいない。このため、特に整合をとらずとも、計測上支障をきたすことは少ない。 The main frequency band used in ultrasonic imaging devices / measuring devices for medical and general industry is about 1 MHz-15 MHz. The impedance of the probe used in this frequency band does not deviate significantly from 50Ω, causing major measurement problems. For this reason, there is little problem in measurement even if no matching is taken.
 ところが、物理探査やコンクリート検査など、低周波帯域の超音波計測が主となる計測装置においては、散乱減衰を抑制するための低周波化と、拡散減衰を抑えるための指向性を両立させるため、超音波の発振源である圧電素子の厚さと面積(開口)は共に大きくなる傾向がある。このためインピーダンスはkΩオーダーとなって50Ωから乖離する傾向がある。このように装置側の特性インピーダンスと、配線の先に接続されるプローブのインピーダンスが乖離する(不整合が生じる)場合には、十分な送信性能を出すために整合回路を設ける必要がある。 However, in measuring devices such as physical exploration and concrete inspection, which mainly measure ultrasonic waves in the low frequency band, in order to achieve both low frequency to suppress scattering attenuation and directivity to suppress diffusion attenuation. Both the thickness and the area (opening) of the piezoelectric element, which is the oscillation source of ultrasonic waves, tend to be large. Therefore, the impedance is on the order of kΩ and tends to deviate from 50Ω. When the characteristic impedance on the device side and the impedance of the probe connected to the end of the wiring deviate from each other (mismatch occurs), it is necessary to provide a matching circuit in order to obtain sufficient transmission performance.
 超音波を送受信する場合、プローブに内蔵する圧電素子の厚さが、超音波の発振・受信周波数帯域を決定する主要なファクターとなっている。例えば、公称周波数5MHzの超音波プローブであれば、5MHzが主となる帯域を有するパルス電圧やバースト電圧をプローブに印加して駆動し、プローブから発する5MHz帯域の超音波の反射波を受信し、圧電素子で機械振動を電気信号に変換して、受信波形を得る。このことは、整合回路を設けることになった場合、送信時も受信時も同一の伝送路となるため、当然、同一の整合回路を介することになる。プローブに固有の共振周波数と反共振周波数は比較的近いため、同一の整合回路であっても性能へ大きく影響しない。 When transmitting and receiving ultrasonic waves, the thickness of the piezoelectric element built into the probe is the main factor that determines the oscillation / reception frequency band of ultrasonic waves. For example, in the case of an ultrasonic probe with a nominal frequency of 5 MHz, a pulse voltage or burst voltage having a main band of 5 MHz is applied to the probe to drive the probe, and the reflected wave of the ultrasonic wave in the 5 MHz band emitted from the probe is received. A piezoelectric element converts mechanical vibration into an electric signal to obtain a received waveform. This means that if a matching circuit is provided, the same transmission path will be used both at the time of transmission and at the time of reception, so that the same matching circuit will naturally be used. Since the resonance frequency and the antiresonance frequency peculiar to the probe are relatively close to each other, even the same matching circuit does not significantly affect the performance.
 しかしながら、超音波の非線形現象を利用した計測技術では、高調波・分調波・差周波・和周波を発生させ、受信波より該当する周波数成分を抽出して分析する。このため、送信波の周波数帯域と受信波の周波数帯域は大きく異なることがある。この場合、送信時も受信時も同一の整合回路では、インピーダンス不整合が生じかねない。 However, in the measurement technology using the non-linear phenomenon of ultrasonic waves, harmonics, harmonics, differential frequencies, and sum frequencies are generated, and the corresponding frequency components are extracted and analyzed from the received waves. Therefore, the frequency band of the transmitted wave and the frequency band of the received wave may be significantly different. In this case, impedance mismatch may occur in the same matching circuit at the time of transmission and reception.
 また、高減衰材を超音波で計測する場合、高減衰材内部を超音波が伝搬していく際に生じる散乱減少により、高周波成分がカットされ、低周波成分が主として残る場合がある。
このような場合にも、送信時にはプローブに合わせた周波数となる強い超音波を送信し、受信時には検知したい周波数帯域で高感度となるように整合させる必要があり、同一の整合回路では不整合が生じかねない。
Further, when the high-attenuation material is measured by ultrasonic waves, the high-frequency component may be cut and the low-frequency component may remain mainly due to the reduction in scattering generated when the ultrasonic wave propagates inside the high-attenuation material.
Even in such a case, it is necessary to transmit a strong ultrasonic wave with a frequency that matches the probe at the time of transmission and match it so that it has high sensitivity in the frequency band to be detected at the time of reception. It can happen.
 さらには、共振周波数を大きく外して、任意の周波数で送受信するような利用方法を想定した場合においても、送信周波数に応じて送信側・受信側ともに不整合を生じかねない。 Furthermore, even if a usage method is assumed in which the resonance frequency is largely removed and transmission / reception is performed at an arbitrary frequency, inconsistency may occur on both the transmitting side and the receiving side depending on the transmission frequency.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1では、超音波の送受信で得られた波形の電気ノイズ(ホワイトノイズ)を抑制するために、通常であればソフトウェアで加算・平均化処理を実施するが、複数回の波形取得で時間を要するところを課題に挙げ、同時に使用するレシーバの数を増やしてハードウェアで加算・平均化処理することが開示されている。 As a background technology in this technical field, for example, there is a technology such as Patent Document 1. In Patent Document 1, in order to suppress the electrical noise (white noise) of the waveform obtained by transmitting and receiving ultrasonic waves, the addition / averaging process is normally performed by software, but it takes time to acquire the waveform a plurality of times. It is disclosed that the number of receivers used at the same time is increased and the addition / averaging process is performed by hardware.
 また、特許文献2では、送受信兼用型のプローブが示されており、圧電振動子の受信ラインに圧電振動子における共振周波数を低周波数側に変化させる制動容量消去回路を設け、超音波信号の送信時には圧電振動子を共振周波数で駆動し、超音波信号の受信時には制動容量消去回路によって圧電振動子における反共振周波数を低周波数側に変化させて最大限の受信感度を得ることが開示されている。 Further, Patent Document 2 shows a probe for both transmission and reception, and a braking capacitance erasing circuit for changing the resonance frequency of the piezoelectric vibrator to the low frequency side is provided in the receiving line of the piezoelectric vibrator to transmit an ultrasonic signal. It is disclosed that sometimes the piezoelectric vibrator is driven at the resonance frequency, and when the ultrasonic signal is received, the anti-resonance frequency of the piezoelectric vibrator is changed to the low frequency side by the braking capacitance erasing circuit to obtain the maximum reception sensitivity. ..
特開2014-173939号公報Japanese Unexamined Patent Publication No. 2014-173939 特開平11-153665号公報Japanese Unexamined Patent Publication No. 11-153665
 上述したように、超音波計測において、送信波の周波数帯域と受信波の周波数帯域が大きく異なる場合、送信時にはプローブまでの装置側のインピーダンスとプローブのインピーダンスが整合していたとしても、受信側で不整合となり、超音波の計測感度の低下が生じる。 As described above, in ultrasonic measurement, when the frequency band of the transmitted wave and the frequency band of the received wave are significantly different, even if the impedance of the device side up to the probe and the impedance of the probe match at the time of transmission, the receiving side Inconsistency will occur and the measurement sensitivity of ultrasonic waves will decrease.
 上記特許文献1には、同時に使用するレシーバの数が増えてプローブとの電気整合の値が変わるため、このレシーバの数を元に可変整合回路を調整して送受信性能を改善する必要があると記載されている。しかしながら、特許文献1では、上記のような送信時と受信時の周波数の相違による課題については言及されていない。 According to Patent Document 1, since the number of receivers used at the same time increases and the value of electrical matching with the probe changes, it is necessary to adjust the variable matching circuit based on the number of receivers to improve the transmission / reception performance. Are listed. However, Patent Document 1 does not mention the above-mentioned problem due to the difference in frequency between transmission and reception.
 また、上記特許文献2では、送信波と受信波の周波数が同一であることを前提としており、特許文献1と同様に、送信時と受信時の周波数の相違による課題については触れられていない。 Further, in the above-mentioned Patent Document 2, it is premised that the frequencies of the transmitted wave and the received wave are the same, and as in Patent Document 1, the problem due to the difference in the frequency at the time of transmission and the frequency at the time of reception is not mentioned.
 そこで、本発明の目的は、超音波を用いて計測を行う超音波計測装置及び超音波計測方法において、計測対象や計測条件に応じて超音波の送信時及び受信時のインピーダンスをそれぞれ独立して整合可能な超音波計測装置及び超音波計測方法を提供することにある。 Therefore, an object of the present invention is to independently set the impedance at the time of transmission and reception of ultrasonic waves according to the measurement target and the measurement conditions in the ultrasonic measurement device and the ultrasonic measurement method for measuring using ultrasonic waves. It is an object of the present invention to provide a matching ultrasonic measuring device and ultrasonic measuring method.
 上記課題を解決するために、本発明は、超音波プローブを含む計測部と、前記超音波プローブ内の圧電素子にパルス電圧を印加する送信部と、前記圧電素子が超音波を受けて生成した電気信号を変換し波形データとして取得する受信部と、前記送信部および前記受信部を制御する制御部と、を備え、前記送信部および前記受信部のうち、少なくとも前記受信部に可変整合装置を有し、前記制御部は、前記受信部が前記電気信号を受信する際の周波数成分値を入力する入力装置と、前記超音波プローブに対応する整合値の周波数依存性データを格納する記憶装置と、前記電気信号の周波数を参照して前記可変整合装置を制御する整合制御装置と、を有することを特徴とする。 In order to solve the above problems, the present invention is generated by a measuring unit including an ultrasonic probe, a transmitting unit that applies a pulse voltage to the piezoelectric element in the ultrasonic probe, and the piezoelectric element receiving ultrasonic waves. A receiving unit that converts an electric signal and acquires it as waveform data, and a control unit that controls the transmitting unit and the receiving unit are provided, and a variable matching device is provided in at least the receiving unit of the transmitting unit and the receiving unit. The control unit includes an input device for inputting a frequency component value when the receiving unit receives the electric signal, and a storage device for storing frequency-dependent data of matching values corresponding to the ultrasonic probe. It is characterized by having a matching control device for controlling the variable matching device with reference to the frequency of the electric signal.
 また、本発明は、超音波を用いて被検体の計測を行う超音波計測方法であって、超音波の受信周波数の入力を計測条件の一つとして読み込むステップと、前記受信周波数に基づいて、超音波の受信側の可変整合回路のインピーダンス調整を実施するステップと、を有することを特徴とする。 Further, the present invention is an ultrasonic measurement method for measuring a subject using ultrasonic waves, based on a step of reading an input of an ultrasonic reception frequency as one of the measurement conditions and the reception frequency. It is characterized by having a step of performing impedance adjustment of a variable matching circuit on the receiving side of ultrasonic waves.
 本発明によれば、超音波を用いて計測を行う超音波計測装置及び超音波計測方法において、計測対象や計測条件に応じて超音波の送信時及び受信時のインピーダンスをそれぞれ独立して整合可能な超音波計測装置及び超音波計測方法を提供することができる。 According to the present invention, in an ultrasonic measuring device and an ultrasonic measuring method for measuring using ultrasonic waves, the impedances at the time of transmission and reception of ultrasonic waves can be independently matched according to the measurement target and the measurement conditions. It is possible to provide an ultrasonic measuring device and an ultrasonic measuring method.
 これにより、送信時の出力と受信時の感度をそれぞれ最大化することができ、超音波による高精度な計測を実現できる。 This makes it possible to maximize the output at the time of transmission and the sensitivity at the time of reception, respectively, and realize highly accurate measurement by ultrasonic waves.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
本発明の実施例1に係る超音波計測装置の概略構成図である。It is a schematic block diagram of the ultrasonic measuring apparatus which concerns on Example 1 of this invention. 記憶装置に格納するデータの概略図である。It is a schematic diagram of the data stored in a storage device. 本発明の実施例2に係る超音波計測方法を示すフローチャートである。It is a flowchart which shows the ultrasonic wave measurement method which concerns on Example 2 of this invention. 本発明の実施例3に係る送信側と受信側におけるインピーダンス整合方法を示すフローチャートである。It is a flowchart which shows the impedance matching method on the transmitting side and the receiving side which concerns on Example 3 of this invention. 本発明の実施例3に係るインピーダンス整合値の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the impedance matching value which concerns on Example 3 of this invention. 本発明の実施例4に係る超音波計測装置の概略構成図である。It is a schematic block diagram of the ultrasonic measuring apparatus which concerns on Example 4 of this invention. 本発明の実施例4に係る超音波計測方法を示すフローチャートである。It is a flowchart which shows the ultrasonic wave measurement method which concerns on Example 4 of this invention.
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and the detailed description of the overlapping portions will be omitted.
 図1及び図2を参照して、本発明の実施例1の超音波計測装置の構成と動作(作用)について説明する。図1は、本実施例の超音波計測装置1の概略構成図である。本実施例の超音波計測装置1は、大別して、超音波プローブを含む計測部2と、送信部3と、受信部4と、制御・処理部(コンピュータ)5と、表示部6からなる。なお、図1では、超音波計測装置1の構成として表示部6を含む例を示しているが、表示部6は超音波計測装置1とは独立に設置されていても良い。 The configuration and operation (action) of the ultrasonic measuring device according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram of the ultrasonic measuring device 1 of this embodiment. The ultrasonic measuring device 1 of this embodiment is roughly divided into a measuring unit 2 including an ultrasonic probe, a transmitting unit 3, a receiving unit 4, a control / processing unit (computer) 5, and a display unit 6. Although FIG. 1 shows an example in which the display unit 6 is included as the configuration of the ultrasonic wave measuring device 1, the display unit 6 may be installed independently of the ultrasonic wave measuring device 1.
 計測部2は、主に、超音波プローブ、被検体、及びそれらの固定治具(図示せず)からなる。超音波プローブは、単一素子の単一型のプローブでも良いし、複数の素子を備えたアレイプローブでも良い。 The measuring unit 2 mainly consists of an ultrasonic probe, a subject, and a jig for fixing them (not shown). The ultrasonic probe may be a single type probe having a single element or an array probe having a plurality of elements.
 送信部3と受信部4は、送信部3だけでなく受信部4も各々の線路上で整合をとることにより、送信時には超音波プローブに対して電力の伝達効率を最大にして強い超音波を発振するとともに、受信時には振動を電気信号に圧電素子(図示せず)で変換し、その電気信号をレシーバに効率良く伝達することができる。 The transmitting unit 3 and the receiving unit 4 match not only the transmitting unit 3 but also the receiving unit 4 on their respective lines, thereby maximizing the transmission efficiency of electric power to the ultrasonic probe at the time of transmission and transmitting strong ultrasonic waves. At the same time as oscillating, vibration can be converted into an electric signal by a piezoelectric element (not shown) at the time of reception, and the electric signal can be efficiently transmitted to the receiver.
 送信部3は、パルサ7とアンプ8と可変整合装置A(9)からなる。パルサ7では、制御・処理部(コンピュータ)5の入力装置10で受け付けた送信パルス、或いは記憶装置11に格納された送信パルスの形状及び電圧を繰り返し周波数等の値に基づいてアンプ8へ信号を送信する。アンプ8では、送信された信号を増幅値に基づいて増幅する。 The transmission unit 3 includes a pulsar 7, an amplifier 8, and a variable matching device A (9). In the pulsar 7, the shape and voltage of the transmission pulse received by the input device 10 of the control / processing unit (computer) 5 or the transmission pulse stored in the storage device 11 are repeated, and a signal is sent to the amplifier 8 based on a value such as a frequency. Send. The amplifier 8 amplifies the transmitted signal based on the amplification value.
 可変整合装置A(9)では、送信周波数の値を参照して、アンプ8と計測部2の超音波プローブのインピーダンスを整合する。整合が取れた状態で、超音波プローブ内の圧電素子に電圧を印加し超音波を発振する。 In the variable matching device A (9), the impedances of the ultrasonic probe of the amplifier 8 and the measuring unit 2 are matched with reference to the value of the transmission frequency. In the matched state, a voltage is applied to the piezoelectric element in the ultrasonic probe to oscillate the ultrasonic wave.
 受信部4は、もう一つの可変整合装置B(12)とレシーバ13からなる。可変整合装置B(12)では、受信周波数の値を参照して、超音波プローブとレシーバ13のインピーダンスを整合する。整合した状態で、超音波を圧電素子で受けて発生した電気信号を増幅・A/D変換等を行い波形データとして取得し、後述する制御・処理部(コンピュータ)5の受信波形データを格納するメモリへデータ転送する。 The receiving unit 4 includes another variable matching device B (12) and a receiver 13. In the variable matching device B (12), the impedances of the ultrasonic probe and the receiver 13 are matched with reference to the value of the receiving frequency. In the matched state, the electric signal generated by receiving the ultrasonic wave by the piezoelectric element is amplified, A / D converted, etc., acquired as waveform data, and the received waveform data of the control / processing unit (computer) 5 described later is stored. Transfer data to memory.
 可変整合は、可変コンデンサ、可変コイル、可変抵抗のいずれかを含む電子回路により連続的に調整するか、或いは、可変でないコンデンサ、コイル、抵抗などを複数個用いて整合回路を組んでおいてスイッチで接続制御することで離散的に調整することができる。 Variable matching is continuously adjusted by an electronic circuit that includes either a variable capacitor, a variable coil, or a variable resistor, or a matching circuit is built using multiple non-variable capacitors, coils, resistors, etc. to make a switch. It can be adjusted discretely by controlling the connection with.
 制御・処理部(コンピュータ)5は、記憶装置11と、送受信制御装置14と、入力装置10と、整合制御装置15からなる。 The control / processing unit (computer) 5 includes a storage device 11, a transmission / reception control device 14, an input device 10, and a matching control device 15.
 図2に、記憶装置11に格納するデータの概略図を示す。記憶装置11には、本発明の特徴となる受信周波数データをはじめ、図1の入力装置10で受け付ける送受信条件としての値に加えて、送信周波数データ、プローブ仕様データ、表示(ゲート)条件、送信波形データ、受信波形データ、受信波形解析データなどを格納する。 FIG. 2 shows a schematic diagram of the data stored in the storage device 11. In the storage device 11, in addition to the reception frequency data characteristic of the present invention and the values as transmission / reception conditions received by the input device 10 of FIG. 1, transmission frequency data, probe specification data, display (gate) conditions, and transmission Stores waveform data, received waveform data, received waveform analysis data, etc.
 送受信制御装置14は、送信パルス電圧の電圧、パルス幅、繰り返し周波数、増幅値、サンプリング周波数、データ保存タイミング等を制御する機能を有する。 The transmission / reception control device 14 has a function of controlling the voltage of the transmission pulse voltage, the pulse width, the repetition frequency, the amplification value, the sampling frequency, the data storage timing, and the like.
 入力装置10は、キーボード、マウス、タッチパネル等の手段を用いて入力する一般的な機器からなる。 The input device 10 is composed of a general device for inputting by means such as a keyboard, a mouse, and a touch panel.
 整合制御装置15は、送信部3にある可変整合装置A(9)と受信部4にあるもう一つの可変整合装置B(12)を、記憶装置11に格納された送信時に用いる周波数と、受信時に所望する周波数を用いて制御することができる。 The matching control device 15 uses the variable matching device A (9) in the transmitting unit 3 and another variable matching device B (12) in the receiving unit 4 for the frequency used for transmission stored in the storage device 11 and for receiving. Sometimes it can be controlled using the desired frequency.
 表示部6は、超音波の送受信の制御や収録条件に必要な値の他、計測した生波形、処理した後の波形、画像再構成結果などを表示する機能を有する。 The display unit 6 has a function of displaying measured raw waveforms, processed waveforms, image reconstruction results, etc., in addition to values necessary for controlling ultrasonic wave transmission / reception and recording conditions.
 なお、本発明の構成としては必須ではないが、超音波プローブを走査する場合には、走査部が必要となる。走査部は、スキャナとスキャナ制御装置からなる。スキャナは超音波プローブや被検体を固定・走査・可動する。スキャナ制御装置は、制御・処理部(コンピュータ)5に格納された走査条件に基づき、定められたタイミング及び範囲で超音波プローブや被検体を走査・可動し、超音波プローブと被検体の相対的な位置関係を変えることができる。 Although not essential as the configuration of the present invention, a scanning unit is required when scanning the ultrasonic probe. The scanning unit includes a scanner and a scanner control device. The scanner fixes, scans, and moves the ultrasonic probe and the subject. The scanner control device scans and moves the ultrasonic probe and the subject within a predetermined timing and range based on the scanning conditions stored in the control / processing unit (computer) 5, and the relative between the ultrasonic probe and the subject. You can change the positional relationship.
 以上説明したように、本実施例の超音波計測装置1は、超音波プローブを含む計測部2と、超音波プローブ内の圧電素子にパルス電圧を印加する送信部3と、圧電素子が超音波を受けて生成した電気信号を変換し波形データとして取得する受信部4と、送信部3および受信部4を制御する制御部(制御・処理部5)を備えており、送信部3および受信部4のうち、少なくとも受信部4に可変整合装置B(12)を有しており、制御部(制御・処理部5)は、受信部4が電気信号を受信する際の周波数成分値を入力する入力装置10と、超音波プローブに対応する整合値の周波数依存性データを格納する記憶装置11と、電気信号の周波数を参照して可変整合装置B(12)を制御する整合制御装置15を有している。 As described above, in the ultrasonic measuring device 1 of the present embodiment, the measuring unit 2 including the ultrasonic probe, the transmitting unit 3 for applying the pulse voltage to the piezoelectric element in the ultrasonic probe, and the piezoelectric element are ultrasonic waves. It includes a receiving unit 4 that converts an electric signal generated in response to the signal and acquires it as waveform data, and a control unit (control / processing unit 5) that controls the transmitting unit 3 and the receiving unit 4, and the transmitting unit 3 and the receiving unit 3 are provided. Of the four, at least the receiving unit 4 has the variable matching device B (12), and the control unit (control / processing unit 5) inputs the frequency component value when the receiving unit 4 receives the electric signal. It has an input device 10, a storage device 11 for storing frequency-dependent data of matching values corresponding to an ultrasonic probe, and a matching control device 15 for controlling a variable matching device B (12) with reference to the frequency of an electric signal. is doing.
 本実施例によれば、計測対象や計測条件に応じて超音波の送信時及び受信時のインピーダンスをそれぞれ独立して整合することができる。 According to this embodiment, the impedances at the time of transmission and reception of ultrasonic waves can be independently matched according to the measurement target and the measurement conditions.
 また、送信時の周波数帯域と受信時の周波数帯域が異なっていたとしても、送信時の出力と受信時の感度をそれぞれ最大化することにより、計測性能を向上させることができる。 Further, even if the frequency band at the time of transmission and the frequency band at the time of reception are different, the measurement performance can be improved by maximizing the output at the time of transmission and the sensitivity at the time of reception.
 図3を参照して、図1で示した超音波計測装置1を用いた検査方法について説明する。
図3は、本実施例の超音波計測方法を示すフローチャートである。なお、ベースとなる基本的な検査方法は、一般の超音波映像化装置と同様である。
The inspection method using the ultrasonic measuring apparatus 1 shown in FIG. 1 will be described with reference to FIG.
FIG. 3 is a flowchart showing the ultrasonic measurement method of this embodiment. The basic inspection method as a base is the same as that of a general ultrasonic imaging device.
 先ず、ステップS000で、超音波計測を開始する。次に、ステップS001で、計測条件を読み込む。ここで、本発明の特徴となるステップS001で読み込むデータである受信周波数は、ステップS008で入力装置10から記憶装置11に入力しておく。受信周波数は、所望する受信信号に含まれる周波数分布のうち、特に着目したい周波数が予測できる場合に入力する値となる。 First, in step S000, ultrasonic measurement is started. Next, in step S001, the measurement conditions are read. Here, the reception frequency, which is the data to be read in step S001, which is a feature of the present invention, is input from the input device 10 to the storage device 11 in step S008. The reception frequency is a value to be input when the frequency of particular interest can be predicted from the frequency distribution included in the desired reception signal.
 例えば、送信波に含まれる主な周波数をfとして、送受信の間で生じた非線形現象によりf/2,2f,3f・・・という分調波・高調波を感度良く検出したい場合、2周波数(fa,fb:fb<fa)が混合するパラメトリック波を用いて2波の差周波成分となるfa-fbとなる周波数を感度良く検出したい場合が挙げられる。 For example, if f is the main frequency included in the transmitted wave and you want to detect the harmonics of f / 2, 2f, 3f, etc. with high sensitivity due to the non-linear phenomenon generated between transmission and reception, 2 frequencies ( There is a case where it is desired to detect the frequency of fa-fb, which is the difference frequency component of two waves, with high sensitivity by using a parametric wave in which fa, fb: fb <fa) is mixed.
 その他の読み込むべき一般的な計測条件としては、上述の通り、送受信の設定条件として、超音波プローブに印加する電圧波形、送受信を繰り返すための繰り返し周波数、また、必要に応じて、受信波形のピーク強度を抽出するための時間ゲート、周波数フィルタなどが挙げられる。 Other general measurement conditions to be read include, as described above, as transmission / reception setting conditions, a voltage waveform applied to the ultrasonic probe, a repetition frequency for repeating transmission / reception, and, if necessary, a peak of the reception waveform. Time gates for extracting intensities, frequency filters, etc. can be mentioned.
 なお、超音波プローブに印加する電圧波形は予め、ステップS007で特定の関数に定数を読み込んだり、任意の波形データを利用するなど送信波形を生成しておくと良い。 For the voltage waveform applied to the ultrasonic probe, it is advisable to generate a transmission waveform in advance by reading a constant into a specific function in step S007 or using arbitrary waveform data.
 ステップS001で計測条件の読み込みが完了した後、ステップS002で整合制御装置15により送信部3の可変整合装置A(9)と受信部4の可変整合装置B(12)の値を、後述する方法で、それぞれ送信部3と受信部4で整合させる。 After the reading of the measurement conditions is completed in step S001, the values of the variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 are described later by the matching control device 15 in step S002. Then, the transmitting unit 3 and the receiving unit 4 match each other.
 ステップS002で送信側及び受信側のインピーダンス整合(調整)が終了した後、ステップS003で被検体に対して超音波を送信し、ステップS004で超音波を受信し、ステップS005で受信波形を表示部6に表示、或いは、記憶装置11に保存して、ステップS006で計測を終了する。 After impedance matching (adjustment) on the transmitting side and the receiving side is completed in step S002, ultrasonic waves are transmitted to the subject in step S003, ultrasonic waves are received in step S004, and the received waveform is displayed in step S005. Displayed in 6 or stored in the storage device 11, the measurement is completed in step S006.
 図4及び図5を参照して、実施例2(図3)のステップS002における送信側及び受信側のインピーダンス調整について詳しく説明する。図4は、本実施例の送信側と受信側におけるインピーダンス整合方法を示すフローチャートである。図5は、インピーダンス整合値の周波数特性を示す図である。 With reference to FIGS. 4 and 5, impedance adjustment on the transmitting side and the receiving side in step S002 of the second embodiment (FIG. 3) will be described in detail. FIG. 4 is a flowchart showing an impedance matching method on the transmitting side and the receiving side of this embodiment. FIG. 5 is a diagram showing the frequency characteristics of the impedance matching value.
 先ず、ステップS100で送信部3における整合を開始する。 First, matching in the transmission unit 3 is started in step S100.
 次に、ステップS101で入力波形(送信波形)に含まれる最も強い周波数成分を入力値として読み込む。大抵の場合、超音波プローブ内部にある圧電振動子の厚さに影響される共振周波数に近い値を入力することになる。但し、例外的に、共振周波数を大きく外れた周波数、例えば、共振周波数が5MHzであっても100kHz程度の電圧を与えるなど、故意に共振周波数から大きく外すことで、与えた周波数で超音波を発振することができる。 Next, in step S101, the strongest frequency component included in the input waveform (transmission waveform) is read as an input value. In most cases, a value close to the resonance frequency, which is affected by the thickness of the piezoelectric vibrator inside the ultrasonic probe, will be input. However, as an exception, ultrasonic waves are oscillated at a frequency that is significantly deviated from the resonance frequency, for example, by intentionally deviating from the resonance frequency by applying a voltage of about 100 kHz even if the resonance frequency is 5 MHz. can do.
 いずれの場合にせよ、次のステップS102で、制御・処理部(コンピュータ)5の整合制御装置15に発振したい周波数を入力して、その周波数における超音波プローブのインピーダンスがアンプ8のインピーダンス(大抵50Ω)と合うように可変整合装置A(9)を整合制御装置15によってインピーダンス調整する。 In any case, in the next step S102, the frequency to be oscillated is input to the matching control device 15 of the control / processing unit (computer) 5, and the impedance of the ultrasonic probe at that frequency is the impedance of the amplifier 8 (usually 50Ω). ), The impedance of the variable matching device A (9) is adjusted by the matching control device 15.
 送信部3のインピーダンス調整が終了した後、ステップS103で受信部4における整合を開始する。 After the impedance adjustment of the transmitting unit 3 is completed, matching in the receiving unit 4 is started in step S103.
 続いて、ステップS104で、上述の通り、得られる受信信号で所望する周波数成分の値を入力値として読み込む。 Subsequently, in step S104, as described above, the value of the desired frequency component in the obtained received signal is read as an input value.
 次に、ステップS105で、制御・処理部(コンピュータ)5の整合制御装置15に発振したい周波数を入力して、その周波数における超音波プローブのインピーダンスがレシーバ13のインピーダンス(同じく大抵50Ω)と合うように可変整合装置B(12)を整合制御装置15によってインピーダンス調整する。 Next, in step S105, the frequency to be oscillated is input to the matching control device 15 of the control / processing unit (computer) 5, so that the impedance of the ultrasonic probe at that frequency matches the impedance of the receiver 13 (also usually 50Ω). The impedance of the variable matching device B (12) is adjusted by the matching control device 15.
 最後に、ステップS106で送信部3の可変整合装置A(9)及び受信部4の可変整合装置B(12)の調整を終了し、図3におけるステップS003の超音波の送信に移ることになる。 Finally, in step S106, the adjustment of the variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 is completed, and the process moves to the transmission of the ultrasonic wave in step S003 in FIG. ..
 送信部3及び受信部4の可変整合のインピーダンス値を求める方法について、図5に示すコイルとコンデンサを用いた代表的な整合回路を用いて説明する。インピーダンス整合に必要なコイル・コンデンサの値は、超音波プローブのインピーダンスの周波数特性をインピーダンスアナライザ等で予め把握しておき、超音波計測装置側のインピーダンス(大抵50Ω)と、整合させたい周波数における超音波プローブのインピーダンスを求め、連立方程式を解けば求めることができる。 A method of obtaining the impedance value of the variable matching of the transmitting unit 3 and the receiving unit 4 will be described using a typical matching circuit using the coil and the capacitor shown in FIG. For the value of the coil and capacitor required for impedance matching, grasp the frequency characteristics of the impedance of the ultrasonic probe in advance with an impedance analyzer, etc., and match it with the impedance on the ultrasonic measuring device side (usually 50Ω) at the frequency you want to match. It can be obtained by finding the impedance of the ultrasonic probe and solving the simultaneous equations.
 この連立方程式では、超音波プローブのインピーダンスのレジスタンス分とリアクタンス分について、同じく装置側のインピーダンスのレジスタンス分(大抵50Ω)とリアクタンス分(大抵0Ω)と整合するように各々の方程式を解くことになる。この連立方程式の解に従い、可変整合のインピーダンスを制御すれば良い。 In this simultaneous equation, each equation is solved so that the impedance resistance and reactance of the ultrasonic probe are matched with the impedance resistance (usually 50Ω) and reactance (usually 0Ω) on the device side as well. .. The impedance of variable matching may be controlled according to the solution of this simultaneous equation.
 このため、超音波プローブのプローブ型番とインピーダンス周波数特性データを紐づけて記憶装置11に記憶しておき、計測準備段階においてプローブ型番を指定し、可変整合で調整すべき値を求めておくと良い。 Therefore, it is advisable to link the probe model number of the ultrasonic probe and the impedance frequency characteristic data and store them in the storage device 11, specify the probe model number at the measurement preparation stage, and obtain the value to be adjusted by variable matching. ..
 図6及び図7を参照して、本発明の実施例4の超音波計測装置の構成と動作(作用)について説明する。図6は、本実施例の超音波計測装置1の概略構成図である。図7は、本実施例の超音波計測方法を示すフローチャートである。 The configuration and operation (action) of the ultrasonic measuring device according to the fourth embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 6 is a schematic configuration diagram of the ultrasonic measuring device 1 of this embodiment. FIG. 7 is a flowchart showing the ultrasonic measurement method of this embodiment.
 本実施例では、送信信号に対して得られる受信信号が予測できない場合、すなわち、受信信号に含まれる周波数が予測できない場合について説明する。 In this embodiment, a case where the received signal obtained for the transmitted signal cannot be predicted, that is, a case where the frequency included in the received signal cannot be predicted will be described.
 本実施例の超音波計測装置1は、図6に示すように、実施例1(図1)の制御・処理部(コンピュータ)5に替えて入力・制御部16を備える点において、実施例1とは異なっている。その他の構成は、実施例1(図1)と同様である。 As shown in FIG. 6, the ultrasonic measuring device 1 of the present embodiment includes an input / control unit 16 in place of the control / processing unit (computer) 5 of the first embodiment (FIG. 1). Is different. Other configurations are the same as those in the first embodiment (FIG. 1).
 入力・制御部16は、記憶装置11と、送信/受信周波数入力装置17と、入力波形制御装置18と、受信波形評価装置19と、可変整合制御装置20からなる。 The input / control unit 16 includes a storage device 11, a transmission / reception frequency input device 17, an input waveform control device 18, a reception waveform evaluation device 19, and a variable matching control device 20.
 受信信号に含まれる周波数が予測できない場合、入力・制御部16に受信波形評価装置19を設け、受信波形を周波数解析すればよい。 If the frequency included in the received signal cannot be predicted, the received waveform evaluation device 19 may be provided in the input / control unit 16 and the received waveform may be frequency-analyzed.
 この時の計測方法について、図7を用いて説明する。実施例2(図3)に示したステップS005までは同一である。 The measurement method at this time will be described with reference to FIG. 7. It is the same up to step S005 shown in Example 2 (FIG. 3).
 本実施例では、図7に示すように、先ず、ステップS201で、受信波形をフーリエ変換に代表される周波数解析をする。 In this embodiment, as shown in FIG. 7, first, in step S201, the received waveform is subjected to frequency analysis represented by the Fourier transform.
 次に、ステップS202で、周波数解析結果の周波数分布のピーク分析を実施し、ピークとなる周波数を抽出し、保存する。 Next, in step S202, peak analysis of the frequency distribution of the frequency analysis result is performed, and the peak frequency is extracted and stored.
 続いて、ステップS203で、ステップS202で得られた結果に基づき、受信周波数を再入力する。この時、ピークとなる周波数が複数あっても良い。 Subsequently, in step S203, the reception frequency is re-input based on the result obtained in step S202. At this time, there may be a plurality of peak frequencies.
 次に、ステップS204で計測条件の再読み込みを行い、ステップS205で受信部4の可変整合装置B(12)のインピーダンスを再調整する。 Next, the measurement conditions are reloaded in step S204, and the impedance of the variable matching device B (12) of the receiving unit 4 is readjusted in step S205.
 続いて、ステップS206で超音波を送信し、ステップS207で超音波を受信し、ステップS208で計測結果を表示・保存する。 Subsequently, the ultrasonic wave is transmitted in step S206, the ultrasonic wave is received in step S207, and the measurement result is displayed and saved in step S208.
 次に、ステップS209で、抽出された周波数全てにおいて受信部4の可変整合装置B(12)を再調整して測定が完了したかを判断する。完了していなければステップS203に戻り、完了していればステップS210で計測を終了する。 Next, in step S209, the variable matching device B (12) of the receiving unit 4 is readjusted at all the extracted frequencies to determine whether the measurement is completed. If it is not completed, the process returns to step S203, and if it is completed, the measurement is completed in step S210.
 このような方法をとることで、例えば、高減衰材を対象として超音波を伝搬さて計測を行うような場合、高周波成分の散乱減衰により、送信信号に含まれる周波数分布よりも受信信号に含まれる周波数分布が低周波側へシフトするような予測ができない場合にも対応することができる。 By adopting such a method, for example, when ultrasonic waves are propagated to a high attenuation material for measurement, it is included in the received signal rather than the frequency distribution included in the transmitted signal due to the scattering attenuation of the high frequency component. It is also possible to deal with cases where it is not possible to predict that the frequency distribution will shift to the low frequency side.
 本発明の実施例5の超音波計測装置及び超音波計測方法について説明する。 The ultrasonic measuring device and the ultrasonic measuring method according to the fifth embodiment of the present invention will be described.
 本実施例では、故意に共振周波数から大きく外すことで、与えた周波数で超音波を発振し、複数の異なる周波数帯域で計測する場合について一例をあげて説明を補足する。このような計測は、ガイド波検査などで実施されることがある。 In this embodiment, the explanation is supplemented by giving an example of a case where ultrasonic waves are oscillated at a given frequency and measured in a plurality of different frequency bands by intentionally greatly deviating from the resonance frequency. Such measurement may be carried out by a guided wave inspection or the like.
 共振周波数が5MHzのプローブを20kHz,40kHz,60kHz,80kHz,100kHzで発振する場合、送信部3の可変整合装置A(9)と受信部4の可変整合装置B(12)を20kHzに合わせた値に調整し、送受信をして波形を保存する。40kHz,60kHz,80kHz,100kHzについても順次実施していくと良い。 When a probe with a resonance frequency of 5 MHz oscillates at 20 kHz, 40 kHz, 60 kHz, 80 kHz, and 100 kHz, the value of the variable matching device A (9) of the transmitting unit 3 and the variable matching device B (12) of the receiving unit 4 adjusted to 20 kHz. Adjust to, send and receive, and save the waveform. It is advisable to carry out 40kHz, 60kHz, 80kHz and 100kHz in sequence.
 本発明の実施例6の超音波計測装置及び超音波計測方法について説明する。 The ultrasonic measuring device and the ultrasonic measuring method according to the sixth embodiment of the present invention will be described.
 送信部3及び受信部4の可変整合のインピーダンス値を連立方程式の解に従って調整しても、実際の値とのずれが生じることがある。この場合、例えば、明らかな反射信号、例えば、金属構造物における超音波検査でいうところの底面(形状)エコー、水浸法であれば被検体表面エコーを対象として受信波形に時間ゲートをかけて波高値をモニタリングしてそれぞれの整合回路を微調整すると良い。 Even if the impedance values of the variable matching of the transmitting unit 3 and the receiving unit 4 are adjusted according to the solution of the simultaneous equations, the deviation from the actual value may occur. In this case, for example, a clear reflected signal, for example, a bottom surface (shape) echo in ultrasonic inspection of a metal structure, or a surface echo of a subject in the case of a water immersion method, is applied to the received waveform by time-gate. It is advisable to monitor the peak value and fine-tune each matching circuit.
 すなわち、連立方程式の解を初期値として、送信部3の可変整合装置A(9)を初期値周辺でスキャンして受信波形が最大の波高値となるところを最適値とする。次に、受信部4の可変整合装置B(12)においても、初期値周辺でスキャンして受信波形が最大の波高値となるところを最適値とする。このように送信側と受信側の可変整合のインピーダンスを独立に制御して最適となる値を見つけると良い。 That is, the solution of the simultaneous equations is set as the initial value, and the variable matching device A (9) of the transmission unit 3 is scanned around the initial value, and the place where the received waveform becomes the maximum peak value is set as the optimum value. Next, also in the variable matching device B (12) of the receiving unit 4, the place where the received waveform becomes the maximum peak value by scanning around the initial value is set as the optimum value. In this way, it is advisable to independently control the impedance of the variable matching on the transmitting side and the receiving side to find the optimum value.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above embodiments have been described in detail to aid in understanding of the present invention and are not necessarily limited to those comprising all of the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 1…超音波計測装置、2…計測部、3…送信部、4…受信部、5…制御・処理部(コンピュータ)、6…表示部、7…パルサ、8…アンプ、9…可変整合装置A、10…入力装置、11…記憶装置、12…可変整合装置B、13…レシーバ、14…送受信制御装置、15…整合制御装置、16…入力・制御部、17…送信/受信周波数入力装置、18…入力波形制御装置、19…受信波形評価装置、20…可変整合制御装置。 1 ... ultrasonic measuring device, 2 ... measuring unit, 3 ... transmitting unit, 4 ... receiving unit, 5 ... control / processing unit (computer), 6 ... display unit, 7 ... pulsar, 8 ... amplifier, 9 ... variable matching device A, 10 ... Input device, 11 ... Storage device, 12 ... Variable matching device B, 13 ... Receiver, 14 ... Transmission / reception control device, 15 ... Matching control device, 16 ... Input / control unit, 17 ... Transmission / reception frequency input device , 18 ... Input waveform control device, 19 ... Received waveform evaluation device, 20 ... Variable matching control device.

Claims (8)

  1.  超音波プローブを含む計測部と、
     前記超音波プローブ内の圧電素子にパルス電圧を印加する送信部と、
     前記圧電素子が超音波を受けて生成した電気信号を変換し波形データとして取得する受信部と、
     前記送信部および前記受信部を制御する制御部と、を備え、
     前記送信部および前記受信部のうち、少なくとも前記受信部に可変整合装置を有し、
     前記制御部は、前記受信部が前記電気信号を受信する際の周波数成分値を入力する入力装置と、
     前記超音波プローブに対応する整合値の周波数依存性データを格納する記憶装置と、
     前記電気信号の周波数を参照して前記可変整合装置を制御する整合制御装置と、を有することを特徴とする超音波計測装置。
    A measuring unit including an ultrasonic probe and
    A transmitter that applies a pulse voltage to the piezoelectric element in the ultrasonic probe,
    A receiver that converts the electrical signal generated by the piezoelectric element by receiving ultrasonic waves and acquires it as waveform data.
    A control unit that controls the transmission unit and the reception unit is provided.
    Of the transmitting unit and the receiving unit, at least the receiving unit has a variable matching device.
    The control unit includes an input device for inputting a frequency component value when the receiving unit receives the electric signal, and an input device.
    A storage device that stores frequency-dependent data of matching values corresponding to the ultrasonic probe, and
    An ultrasonic measuring device comprising a matching control device that controls the variable matching device with reference to the frequency of the electric signal.
  2.  請求項1に記載の超音波計測装置であって、
     前記制御部は、前記送信部から出力されるパルス電圧のパルス幅、繰り返し周波数、増幅値および前記受信部のサンプリング周波数、データ保存タイミングを制御する送受信制御装置を有することを特徴とする超音波計測装置。
    The ultrasonic measuring device according to claim 1.
    The control unit includes a transmission / reception control device that controls the pulse width, repetition frequency, amplification value, sampling frequency of the reception unit, and data storage timing of the pulse voltage output from the transmission unit. Device.
  3.  請求項1に記載の超音波計測装置であって、
     前記制御部は、前記電気信号の特定の時間ゲートにおけるピークモニタ、或いは、前記電気信号の周波数解析結果のピーク分析を実施する受信波形評価装置を有することを特徴とする超音波計測装置。
    The ultrasonic measuring device according to claim 1.
    The control unit is an ultrasonic measuring device including a peak monitor at a specific time gate of the electric signal or a received waveform evaluation device that performs peak analysis of a frequency analysis result of the electric signal.
  4.  請求項1に記載の超音波計測装置であって、
     超音波の送受信の制御及び収録条件に必要な値、計測した生波形、処理後の波形、画像再構成結果を表示する表示部を有することを特徴とする超音波計測装置。
    The ultrasonic measuring device according to claim 1.
    An ultrasonic measuring device characterized by having a display unit for displaying values required for ultrasonic transmission / reception control and recording conditions, measured raw waveforms, processed waveforms, and image reconstruction results.
  5.  請求項1に記載の超音波計測装置であって、
     前記送信部から複数の異なる周波数のパルス電圧を前記圧電素子に順次印加し、
     前記受信部で取得した波形データに基づき被検体を計測することを特徴とする超音波計測装置。
    The ultrasonic measuring device according to claim 1.
    A plurality of pulse voltages having different frequencies are sequentially applied to the piezoelectric element from the transmitter.
    An ultrasonic measuring device characterized in that a subject is measured based on waveform data acquired by the receiving unit.
  6.  超音波を用いて被検体の計測を行う超音波計測方法であって、
     超音波の受信周波数の入力を計測条件の一つとして読み込むステップと、
     前記受信周波数に基づいて、超音波の受信側の可変整合回路のインピーダンス調整を実施するステップと、
     を有することを特徴とする超音波計測方法。
    It is an ultrasonic measurement method that measures a subject using ultrasonic waves.
    The step of reading the input of the ultrasonic wave reception frequency as one of the measurement conditions,
    A step of adjusting the impedance of the variable matching circuit on the receiving side of the ultrasonic wave based on the received frequency, and
    An ultrasonic measurement method characterized by having.
  7.  請求項6に記載の超音波計測方法であって、
     受信波形を周波数解析するステップと、
     前記周波数解析結果のピーク分析及び抽出を実施するステップと、
     前記抽出した周波数を再度計測条件として入力するステップと、
     前記抽出した周波数に基づいて超音波の受信部の可変整合のインピーダンス調整を実施するステップと、
     を有することを特徴とする超音波計測方法。
    The ultrasonic measurement method according to claim 6, wherein the ultrasonic measurement method is used.
    Steps to frequency analyze the received waveform and
    Steps for performing peak analysis and extraction of the frequency analysis result,
    The step of inputting the extracted frequency again as a measurement condition, and
    The step of performing variable matching impedance adjustment of the ultrasonic receiver based on the extracted frequency, and
    An ultrasonic measurement method characterized by having.
  8.  請求項6に記載の超音波計測方法であって、
     複数の異なる周波数の超音波を前記被検体に印加し、
     前記被検体から取得した波形データに基づき被検体を計測することを特徴とする超音波計測方法。
    The ultrasonic measurement method according to claim 6, wherein the ultrasonic measurement method is used.
    Ultrasound of multiple different frequencies is applied to the subject to
    An ultrasonic measurement method characterized by measuring a subject based on waveform data acquired from the subject.
PCT/JP2021/015810 2020-08-18 2021-04-19 Ultrasonic measurement device and ultrasonic measurement method WO2022038830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-138041 2020-08-18
JP2020138041A JP7397776B2 (en) 2020-08-18 2020-08-18 Ultrasonic measurement device, ultrasonic measurement method

Publications (1)

Publication Number Publication Date
WO2022038830A1 true WO2022038830A1 (en) 2022-02-24

Family

ID=80322635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015810 WO2022038830A1 (en) 2020-08-18 2021-04-19 Ultrasonic measurement device and ultrasonic measurement method

Country Status (2)

Country Link
JP (1) JP7397776B2 (en)
WO (1) WO2022038830A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223196B1 (en) * 2022-03-07 2023-02-15 PayPay株式会社 Information processing device, information processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204735A (en) * 1986-03-03 1987-09-09 ダイキン工業株式会社 Apparatus for discriminating motion direction of artery wall
JPH0584245A (en) * 1991-09-30 1993-04-06 Shimadzu Corp Ultrasonic diagnostic device
JP2000287969A (en) * 1999-04-05 2000-10-17 Sekisui Chem Co Ltd Osteoporosis measuring apparatus
JP2004097588A (en) * 2002-09-11 2004-04-02 Aloka Co Ltd Ultrasonograph
JP2014173939A (en) * 2013-03-07 2014-09-22 Hitachi Power Solutions Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device
US20170290568A1 (en) * 2016-04-08 2017-10-12 Samsung Medison Co., Ltd. Ultrasound diagnosis apparatus and method of controlling the ultrasound diagnosis apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204735A (en) * 1986-03-03 1987-09-09 ダイキン工業株式会社 Apparatus for discriminating motion direction of artery wall
JPH0584245A (en) * 1991-09-30 1993-04-06 Shimadzu Corp Ultrasonic diagnostic device
JP2000287969A (en) * 1999-04-05 2000-10-17 Sekisui Chem Co Ltd Osteoporosis measuring apparatus
JP2004097588A (en) * 2002-09-11 2004-04-02 Aloka Co Ltd Ultrasonograph
JP2014173939A (en) * 2013-03-07 2014-09-22 Hitachi Power Solutions Co Ltd Ultrasonic flaw detection method and ultrasonic flaw detection device
US20170290568A1 (en) * 2016-04-08 2017-10-12 Samsung Medison Co., Ltd. Ultrasound diagnosis apparatus and method of controlling the ultrasound diagnosis apparatus

Also Published As

Publication number Publication date
JP2022034304A (en) 2022-03-03
JP7397776B2 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
Garcia-Rodriguez et al. Low cost matching network for ultrasonic transducers
Kim et al. Impedance matching network for high frequency ultrasonic transducer for cellular applications
CN110967408B (en) Device and method for measuring sensitivity of air coupling ultrasonic probe
JPS5847026B2 (en) How to calibrate acoustic radiation transducers
Ramos et al. Improvement in transient piezoelectric responses of NDE transceivers using selective damping and tuning networks
Huang et al. Introducing S-parameters for ultrasound-based structural health monitoring
WO2022038830A1 (en) Ultrasonic measurement device and ultrasonic measurement method
Jin et al. An online impedance analysis and matching system for ultrasonic transducers
Wei et al. An automatic optimal excitation frequency tracking method based on digital tracking filters for sandwiched piezoelectric transducers used in broken rail detection
Franček et al. Electrical resonance/antiresonance characterization of NDT transducer and possible optimization of impulse excitation signals width and their types
Long et al. Metamaterials for characterisation of conductive objects using time-domain reflectometry of magnetoinductive waves
JP2011047763A (en) Ultrasonic diagnostic device
US20200386719A1 (en) Multi-functional ultrasonic phased array imaging device
Gatsa et al. Hybrid optimization of driving frequency for crack signature enhancement in nonlinear ultrasonic nondestructive testing
Kourtiche et al. Harmonic propagation of finite amplitude sound beams: comparative method in pulse echo measurement of nonlinear B/A parameter
Li et al. Size effect study on high frequency transducers for sensitivity enhancement
Huang A time-frequency analysis of the correlation between the electromechanical impedance (EMI) of surface bonded piezoelectric wafer active transducers (PWaTs) and the pitch-catch signal
RU2246724C1 (en) Method of ultrasonic testing of material quality
Petošić et al. Comparison between piezoelectric material properties obtained by using low-voltage magnitude frequency sweeping and high-level short impulse signals
KR101961267B1 (en) Device and method for estimating ultrasonic absolute nonlinear parameter by using ultrasonic relative nonlinear parameter and calculation of proportional correction factor
EP3505927A1 (en) Method and system for measuring a characteristic loop sensitivity for an acoustic transducer
EP3505926A1 (en) Method and system for determining an optimum drive signal for an acoustic transducer
WO2018015722A1 (en) Non-destructive testing apparatus
Kachanov et al. Requirements for choosing the parameters of broadband transducers for testing objects with high damping of ultrasonic signals
van Neer et al. Simple method for measuring phase transfer functions of transducers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857982

Country of ref document: EP

Kind code of ref document: A1