WO2022037475A1 - 波束赋形方法、网络设备、终端及存储介质 - Google Patents

波束赋形方法、网络设备、终端及存储介质 Download PDF

Info

Publication number
WO2022037475A1
WO2022037475A1 PCT/CN2021/112313 CN2021112313W WO2022037475A1 WO 2022037475 A1 WO2022037475 A1 WO 2022037475A1 CN 2021112313 W CN2021112313 W CN 2021112313W WO 2022037475 A1 WO2022037475 A1 WO 2022037475A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network device
beamforming
information
location information
Prior art date
Application number
PCT/CN2021/112313
Other languages
English (en)
French (fr)
Inventor
王志鹏
刘鹏飞
张玉森
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21857570.2A priority Critical patent/EP4171094A4/en
Priority to JP2023505958A priority patent/JP2023542788A/ja
Priority to US18/041,923 priority patent/US20230327725A1/en
Publication of WO2022037475A1 publication Critical patent/WO2022037475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless network communication, and in particular, to a beamforming method, a network device, a terminal, and a storage medium.
  • Beamforming is a signal preprocessing technology based on antenna arrays. Beamforming generates directional beams by adjusting the weighting coefficients of each element in the antenna array, so that significant array gain can be obtained. Therefore, beamforming technology has great advantages in extending coverage, improving edge throughput, and interference suppression.
  • a direction of arrival (DOA) algorithm is used for beamforming, and the DOA angle is used to calculate the beamforming weight, which can generate a narrower and more concentrated beam.
  • DOA direction of arrival
  • the DOA algorithm can only carry one layer of services in one antenna polarization direction, and the anti-interference ability of the transmission channel is weak and the transmission flow is low.
  • the embodiments of the present application provide a beamforming method, a network device, a terminal, and a storage medium.
  • an embodiment of the present application provides a beamforming method for a network device, including: obtaining direction of arrival information; obtaining a first beamforming weight in the direction of a first polarized antenna according to the direction of arrival information obtain the precoding matrix indication information; obtain the phase difference between the first polarized antenna direction and the second polarized antenna direction according to the precoding matrix indication information; according to the first beamforming weight and the The phase difference is obtained to obtain a second beamforming weight in the direction of the second polarized antenna; a beamforming beam is generated according to the first beamforming weight and the second beamforming weight.
  • an embodiment of the present application provides a beamforming method for a terminal that is communicatively connected to a network device, including: acquiring terminal location information; sending the terminal location information to the network device, so that the network device performs the following: The beamforming method described in the first aspect.
  • an embodiment of the present application provides a network device, the network device includes a first memory, a first processor, and a program stored in the first memory and executable on the first processor, so When the program is executed by the first processor, the beamforming method described in the first aspect is implemented.
  • an embodiment of the present application provides a terminal, the terminal includes a second memory, a second processor, and a program stored in the second memory and executable on the second processor, the program When executed by the second processor, the method of the second aspect is implemented.
  • embodiments of the present application provide a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to Implement: the beamforming method described in the first aspect; or, the beamforming method described in the second aspect.
  • FIG. 1 is a block diagram of a module of an embodiment of a communication system composed of a network device and a terminal of the present application;
  • FIG. 2 is a schematic flowchart of an embodiment of a beamforming method of the present application
  • FIG. 3 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 4 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 9 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 10 is a schematic flowchart of another embodiment of the beamforming method of the present application.
  • FIG. 11 is a block diagram of a module of an embodiment of a network device in the present application.
  • FIG. 12 is a block diagram of a module of an embodiment of a terminal in the present application.
  • network device 1000 terminal 2000; first processor 1001; first memory 1002; second processor 2001; second memory 2002.
  • Beamforming is a signal preprocessing technology based on antenna arrays. Beamforming generates directional beams by adjusting the weighting coefficients of each element in the antenna array, so that significant array gain can be obtained. Therefore, beamforming technology has great advantages in extending coverage, improving edge throughput, and interference suppression.
  • the satellite communication solution covers a wide range, covering both land and sea, but the deployment and operation costs are high, and the network time is prolonged; the air-ground broadband communication solution can only be deployed on land, but has the advantages of low cost, fast speed, small delay, and iterative technology upgrades. Quick advantage.
  • the ATG communication system uses customized wireless transceiver equipment, and sets up ground network equipment and air-to-air antennas along the flight route or specific airspace to establish a ground-air communication link and then access the Internet.
  • the on-board ATG equipment provides wireless LAN data services to passengers, and users can establish a connection with it through Wi-Fi.
  • the ground network equipment establishes a communication link with the airborne ATG equipment.
  • the radius of a single cell can reach 300km, and only the narrow beam generated by beamforming with Precoding Matrix Indicator (PMI), as the distance between the user and the network device increases, The spread of the beam increases, the energy per unit of coverage space is reduced, and the final power cannot meet the communication requirements, so the ATG communication system needs a narrower beam to make the energy more concentrated to achieve ultra-long coverage.
  • PMI Precoding Matrix Indicator
  • the accuracy of the DOA angle calculated by the relative position of the network device and the aircraft can reach 1°, The accuracy is higher than the angle calculated according to the precoding matrix indication information, and a narrower beam with more concentrated energy can be generated.
  • beamforming according to the DOA algorithm can only carry one layer of services in one antenna polarization direction. If If the ATG communication system wants to send two-layer service data, only using the DOA algorithm will lose half of the antenna gain, and the anti-interference ability is weak, resulting in low traffic.
  • the embodiments of the present application provide a dual-polarization beamforming method, a network device, a terminal, and a storage medium.
  • the ATG communication system uses the Direction of Arrival (DOA) algorithm to calculate the relative position of the network equipment and the aircraft, and adjust the antenna transmission direction.
  • the terrestrial communication system uses the PMI reported by the terminal to calculate the relative position between the terminal and the network device, adjust the beam direction, calculate the beamforming weight, and complete the beamforming.
  • the network device 1000 and the terminal 2000 are communicatively connected to form a communication system.
  • the network device 1000 may be a base station (NodeB base station, eNB base station, gNB base station, etc.), or may be another network device 1000 with a base station function.
  • the network device 1000 includes a gNB base station, a core network and related servers, and the core network provides communication services for the terminal 2000 through the gNB base station.
  • the network device 1000 has a dual-polarized antenna.
  • the dual-polarized antenna consists of two sets of antennas.
  • All the antenna elements of one set of antenna units are rotated by +45 degrees relative to the normal vertically polarized antenna unit, and the other set of antenna units is rotated by -45 degrees.
  • the two sets of antennas are orthogonally polarized. After the dual-polarized array antenna is adopted, the size of the antenna is greatly reduced, the reliability of the antenna is improved, and the interference is effectively reduced.
  • the terminal 2000 may be a mobile terminal device or a non-mobile terminal device.
  • Mobile terminal equipment can be mobile phone, tablet computer, notebook computer, PDA, vehicle terminal equipment, wearable device, super mobile personal computer, netbook, personal digital assistant, CPE (Customer Premisers Equipment, customer terminal equipment), UFI (wireless hotspot) equipment), etc.
  • the non-mobile terminal equipment may be a personal computer, a television, a teller machine or a self-service machine, etc.
  • the terminal 2000 may include an aviation ACPU (A Controller Processor Unit, control processing unit), a WIFI hotspot device, an airborne CPE, etc.
  • the WIFI hotspot device is connected to the airborne CPE through the ACPU , to provide Internet services for end users such as notebooks and mobile phones on the plane, and the on-board CPE communicates with the gNB base station.
  • the embodiments of the present application may be applied to various communication systems, such as a ground-air communication system, a ground communication system, and the like.
  • a ground-air communication system such as a ground-air communication system, a ground communication system, and the like.
  • the following only takes the ATG communication system as an example to describe the embodiments of the present application in detail.
  • the embodiments of the present application provide a beamforming method, which is used in a network device.
  • the hardware structures of network devices vary greatly due to different configurations or performances, and network devices may include one or more processors, at least one memory, and at least one network interface.
  • the memory is used to store one or more operating systems, and to store computer program codes and data.
  • the computer program code stored in the memory may include one or more modules, each module may include operations corresponding to a series of instructions in the network device.
  • the processor communicates with the memory and the network interface, the network device communicates with other devices in the core network and the base station through the network interface, and the processor executes a series of instruction operations in the memory on the network device, so as to execute the following first aspect beam Shape all or part of the steps performed by the network device in the embodiment of the method (the embodiment shown in FIG. 2 ).
  • the network equipment has dual-polarized antennas.
  • the dual-polarized antennas consist of two groups of antennas. All antenna elements of one group of antenna units are rotated by +45 degrees relative to the ordinary vertically polarized antenna units, and the other group of antenna units are rotated by -45 degrees.
  • the group antennas are orthogonally polarized. The use of a dual-polarized array antenna can reduce the size of the antenna, improve the reliability of the antenna, and effectively reduce interference.
  • the beamforming method provided by the embodiment of the present application includes:
  • Step S101 obtaining direction of arrival information
  • Step S102 obtaining a first beamforming weight in the direction of the first polarized antenna according to the direction of arrival information
  • Step S103 obtaining precoding matrix indication information
  • Step S104 obtaining the phase difference between the first polarized antenna direction and the second polarized antenna direction according to the precoding matrix indication information
  • Step S105 obtaining a second beamforming weight in the direction of the second polarized antenna according to the first beamforming weight and the phase difference;
  • Step S106 generating a shaped beam according to the first beamforming weight and the second beamforming weight.
  • beamforming in the first polarization direction is performed by using the direction of arrival algorithm, so that the beamforming of the network equipment is narrower, the energy concentration is higher, and the signal-to-noise ratio is effectively improved; the precoding matrix indication information is used to construct The orthogonal codebook is used to form the beam in the second polarization direction, so that one polarized antenna can transmit two layers of data, and the antenna gain of each layer of data is increased, thereby effectively improving the anti-interference ability and transmission flow of the transmission channel.
  • step S101 includes sub-steps:
  • Step S201 obtaining network device location information and terminal location information respectively;
  • Step S202 Calculate and obtain direction of arrival information according to the location information of the network device and the location information of the terminal.
  • network device location information and terminal location information may be acquired through a satellite positioning technology (eg, GPS, Beidou satellite, etc.).
  • the location information of the network device may be GPS information, or Beidou satellite positioning information, etc.; the terminal location information may be GPS information, or Beidou satellite positioning information, or the like.
  • the direction of arrival information can be obtained through geometric operation according to the location information of the network device and the location information of the terminal.
  • the DOA angle information can be obtained by geometric calculation.
  • the location information of the network device includes the longitude JA of the network device, the latitude WB of the network device, the altitude HA of the network device, etc.; the location information of the terminal includes the longitude J B of the terminal, the latitude WB of the terminal, the The height HB , etc.; the direction of arrival information includes the pitch angle ⁇ and the horizontal angle ⁇ , etc.
  • step S202 the direction of arrival information is calculated and obtained according to the location information of the network device and the location information of the terminal, including:
  • Step S301 calculating the pitch angle ⁇ according to the network device location information, the terminal location information and the first calculation formula
  • Step S302 Calculate the horizontal angle ⁇ according to the location information of the network device, the location information of the terminal and the second calculation formula.
  • the first calculation formula can calculate the pitch angle ⁇ in the DOA information according to the cosine law.
  • the first formula can be:
  • the second calculation formula can calculate the horizontal angle ⁇ in the direction of arrival information according to the arcsine algorithm.
  • the second formula can be:
  • R is the radius of the earth
  • ⁇ AOB is the angle formed by the network device A and the terminal B with the center of the earth O as the vertex.
  • A is the base station (network equipment)
  • O is the center of the earth
  • B is the aircraft (terminal)
  • is the distance between the base station and the aircraft
  • ⁇ AOB is the base station, the center of the earth, and the aircraft.
  • the base station after the base station (network device) cell is established, the base station will update the GPS information every fixed period (such as 24 hours) or after the GPS information of the modified base station changes to ensure the real-time and accurate location information of the base station sex.
  • the terminal reports parameters such as terminal GPS information (including latitude and longitude, altitude, altitude, and time) every fixed period (such as 1 second) to ensure the real-time and accuracy of terminal location information.
  • terminal GPS information including latitude and longitude, altitude, altitude, and time
  • the CPE in the aircraft sends the aircraft GPS information to the base station every 1 second.
  • the embodiment of the present application obtains the position information of the network equipment and the terminal position, and obtains the direction of arrival information through calculation, thereby estimating which terminal is working and the direction of the terminal.
  • the calculation method is simple and the accuracy is high (DOA angle accuracy can reach 1°).
  • step S102 obtaining the first beamforming weight in the direction of the first polarized antenna according to the direction of arrival information, includes sub-steps:
  • Step S401 according to the direction of arrival information, look up the steering vector conjugate table to obtain the steering vector;
  • step S402 the steering vector is operated to obtain the first beamforming weight.
  • a steering vector conjugate table is first determined according to a specific antenna layout; different antenna layouts have different steering vector conjugate tables, and the steering vector conjugate table includes the steering vector and the direction of arrival The corresponding relationship of the information, according to the direction of arrival information, the steering vector can be obtained by querying the steering vector conjugate table.
  • the steering vector is operated to obtain the first beamforming weight, specifically: the first beamforming weight is equal to the quantity product of the steering vector and the fundamental matrix (such as the identity matrix), which can be The first beamforming weight is obtained by performing an operation according to the steering vector.
  • the shaping weight W DOA of the DOA single-polarization direction (the first polarized antenna direction) is calculated and obtained according to the direction of arrival information and the third calculation formula.
  • the value of the shaping weight is related to the hardware layout of the polarized antenna.
  • the embodiments of the present application perform beamforming based on the direction of arrival information, and the DOA angle accuracy calculated by the relative positions of the base station and the aircraft can reach 1°, which can generate narrower and more concentrated beams.
  • step S104 obtaining the phase difference between the first polarized antenna direction and the second polarized antenna direction according to the precoding matrix indication information, including:
  • Step S501 obtaining a precoding index value according to the precoding matrix indication information
  • Step S502 Calculate the phase difference between the first polarized antenna direction and the second polarized antenna direction according to the precoding index value.
  • the precoding matrix indication information comes from the terminal. That is, after the terminal measures and obtains the precoding matrix indication information (PMI information), it reports and transmits it to the network device.
  • the network device obtains the precoding index value i 2 according to the precoding matrix indication information.
  • the precoding matrix of the codebook-based precoding technology is generated by the terminal, that is, the terminal obtains CSI (Channel State Information, channel state information) by estimating the received pilot information, and according to a certain criterion from the The optimal or suboptimal precoding matrix is selected from the pre-designed precoding matrix codebook, and finally the index value i 2 of the selected precoding matrix is transmitted through the feedback link.
  • CSI Channel State Information, channel state information
  • step S502 the phase difference between the first polarized antenna direction and the second polarized antenna direction is calculated according to the precoding index value i2 , specifically: calculating according to the precoding index value i2 and the fourth The formula calculates the phase difference between the first polarized antenna direction and the second polarized antenna direction; the fourth calculation formula is:
  • is the phase difference between the first polarized antenna direction and the second polarized antenna direction
  • j is an imaginary unit
  • e is the base of a natural number logarithm
  • ⁇ (ilayer) is the phase difference between the first polarized antenna direction and the second polarized antenna direction
  • ilayer is the number of transmission data layers
  • W pmi is the precoding vector generated according to the PMI information.
  • the PMI information is used to calculate the phase difference between the direction of the first polarized antenna and the direction of the second polarized antenna, so as to facilitate the subsequent construction of an orthogonal codebook, so that one polarized antenna can transmit two layers of data, and each layer The antenna gain of the data is increased, and the anti-interference ability is improved.
  • step 105 obtaining a second beamforming weight in the direction of the second polarized antenna according to the first beamforming weight and the phase difference, including:
  • Step S601 according to the first beamforming weight W DOA , the phase difference and the second calculation formula, calculate and obtain the second beamforming weight in the direction of the second polarized antenna
  • the second calculation formula is:
  • ⁇ (ilayer) is the phase difference between the direction of the first polarized antenna and the direction of the second polarized antenna, and ilayer is the number of transmission data layers.
  • the first beamforming weight W DOA and the phase difference are used to construct a codebook orthogonal to the first beamforming weight in the direction of the first polarized antenna, as the direction of the second polarized antenna.
  • the second beamforming weight of One polarized antenna can transmit two layers of data, the antenna gain of each layer of data is increased, and the anti-interference ability is improved.
  • step S106 generating a shaped beam according to the first beamforming weight and the second beamforming weight, including:
  • Step S701 normalizing the first beamforming weight and the second beamforming weight to obtain a normalized combined weight
  • Step S702 generating a shaped beam according to the normalized combination weight.
  • the total power of the signal transmitted by the network device will increase as the number of layers of data to be sent increases, and the actual transmit power of the network device needs to be controlled within a reasonable range.
  • the transmission signal power needs to be normalized by performing steps S701 and S702.
  • step S701 normalizing the first beamforming weight and the second beamforming weight to obtain a normalized combined weight, specifically: using a third calculation formula to The beamforming weight and the second beamforming weight are normalized to obtain a normalized combined weight;
  • the third calculation formula is:
  • W bf is a normalized combination weight
  • RI Rank Indicator, rank indicator
  • tier indication information which corresponds to the number of layers of the transmission data.
  • the RI is information measured and reported by the terminal.
  • the transmission signal power is normalized by performing step S106.
  • the transmission signal power of the network equipment is controlled within a reasonable range, and the dual-polarized antenna is used to send two layers of data at the same time.
  • the antenna gain of each layer of data is increased, and the anti-interference ability is improved.
  • the data services to be sent can be divided into two parts, and beamforming is performed with mutually orthogonal codebooks respectively.
  • the two layers of data services will not interfere with each other, so that the transmitted services will be transmitted from the first layer. It is increased to two layers to achieve traffic improvement.
  • the network device is a base station (5G base station), and the terminal is an airplane.
  • This example requires 5G_ATG to complete the initial access.
  • the DOA angle information is calculated in combination with the GPS information of the base station, so as to obtain the single-polarization weight of the antenna.
  • the base station completes the dual-polarization shaping of the antenna in combination with the DOA angle. Specifically include:
  • Step S801 After the cell is established, the base station will update GPS information every 24 hours or after the base station GPS is modified.
  • Step S802 After the aircraft accesses the cell, the airborne CPE reports parameters such as aircraft GPS information (including latitude and longitude, height above the ground, altitude and time) to the base station every second.
  • aircraft GPS information including latitude and longitude, height above the ground, altitude and time
  • Step S803 Calculate the DOA pitch angle ⁇ and the horizontal angle ⁇ of the aircraft according to the GPS information of the base station and the aircraft. For the specific calculation method, refer to the above steps S301 and S302.
  • Hardware OK For the specific calculation method, refer to the above steps S401 and S402.
  • Step S805 the aircraft reports the measured PMI message.
  • ilayer is the number of layers of transmission data
  • W pmi is the pre-order generated according to the PMI information.
  • encoding vector, i 2 is the precoding index value.
  • Step S807 Calculate the shaping weight of another polarization direction according to the phase difference and the calculated DOA polarization direction shaping weight
  • Step S808 Perform power normalization processing according to the number of scheduling layers according to the combined weight of the antenna index to complete the dual-polarization shaping of the antenna. For specific processing procedures, refer to the above-mentioned steps S701 and S702.
  • a beamforming method is used for a terminal that is communicatively connected to a network device.
  • the terminal may be a mobile terminal device or a non-mobile terminal device.
  • Mobile terminal equipment can be mobile phone, tablet computer, notebook computer, PDA, vehicle terminal equipment, wearable device, super mobile personal computer, netbook, personal digital assistant, CPE (Customer Premisers Equipment, customer terminal equipment), UFI (wireless hotspot) equipment), etc.;
  • the non-mobile terminal equipment may be a personal computer, a television, a teller machine or a self-service machine, etc.
  • the embodiments of this application are not specifically limited.
  • the terminal may include an aviation ACPU (A Controller Processor Unit, control processing unit), a WIFI hotspot device, an airborne CPE, etc.
  • the WIFI hotspot device is connected to the airborne CPE through the ACPU, Provide Internet services for end users such as notebooks and mobile phones on the plane, and the on-board CPE communicates with the gNB base station.
  • the beamforming method provided by the embodiment of the present application includes:
  • Step S901 obtaining terminal location information
  • Step S902 Send the terminal location information to the network device, so that the network device executes the beamforming method according to the first aspect.
  • the terminal location information may be GPS information, or Beidou satellite positioning information or the like.
  • step S801 is performed periodically to acquire terminal location information, and send the terminal location information to the network device.
  • the aircraft reports parameters such as terminal GPS information (including latitude and longitude, height above the ground, altitude and time) to the network equipment every fixed period (such as 1 second) to the network equipment. Ensure the real-time and accuracy of terminal location information.
  • the onboard CPE in the aircraft sends the aircraft GPS information to the base station every 1 second.
  • the network device may perform the beamforming method as steps S101 to S106 of the first aspect.
  • the network device can form a narrower beam, have a higher energy concentration, and effectively improve the signal-to-noise ratio.
  • the terminal location information includes the terminal's longitude J B , the terminal's latitude WB , the terminal's altitude HB , and the like.
  • the network device can obtain the direction of arrival information through geometric operations according to the location information of the network device and the location information of the terminal.
  • the beamforming method of the second aspect further includes:
  • Step S1001 measuring to obtain precoding matrix indication information
  • Step S1002 sending precoding matrix indication information to a network device.
  • the terminal device sends the precoding matrix indication information to the network device by performing steps S1001 and S1002, and the network device receives the PMI information from the terminal, and uses the PMI information to construct an orthogonal codebook, so that a polar
  • the antenna is used to transmit two layers of data, and the antenna gain of each layer of data is increased to improve the anti-interference ability.
  • step S101 to step S106 in the first aspect please refer to the descriptions of step S101 to step S106 in the first aspect, which are not repeated here.
  • the terminal device obtains RI (Rank Indicator, rank indication) information by measuring, and transmits the RI information to the network device for the network device to perform normalization processing.
  • RI Rank Indicator, rank indication
  • the specific steps are as in step S701 of the first aspect. and step S702, which will not be repeated here.
  • an embodiment of the present application provides a network device.
  • the network device includes a first memory 1002 , a first processor 1001 , and a The program, when executed by the first processor 1001, implements the beamforming method of the first aspect.
  • the network device may be a base station (NodeB base station, eNB base station, gNB base station, etc.), or may be other network devices with base station functions.
  • the network equipment includes a gNB base station, a core network and related servers, and the core network provides communication services for the terminal through the gNB base station.
  • the network equipment has dual-polarized antennas.
  • the dual-polarized antennas consist of two groups of antennas. All antenna elements of one group of antenna units are rotated by +45 degrees relative to the ordinary vertically polarized antenna units, and the other group of antenna units are rotated by -45 degrees.
  • the group antennas are orthogonally polarized. After the dual-polarized array antenna is adopted, the size of the antenna is greatly reduced, the reliability of the antenna is improved, and the interference is effectively reduced.
  • the first processor 1001 may include one or more processing units, for example, the first processor 1001 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), Image signal processor (ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor
  • AP application processor
  • modem processor graphics processor
  • ISP Image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the network device includes a first memory 1002, a first processor 1001, and a program stored in the first memory 1002 and executable on the first processor 1001.
  • the program is executed by the first processor 1001, Implement the beamforming method from steps S101 to S105 of the first aspect, or implement the beamforming method from steps S101 to S106 of the first aspect.
  • an embodiment of the present application provides a terminal, the terminal includes a second memory 2002, a second processor 2001, and a program stored in the second memory 2002 and running on the second processor 2001, When the program is executed by the second processor 2001, the method of the second aspect is implemented.
  • the terminal may be a mobile terminal device or a non-mobile terminal device.
  • Mobile terminal equipment can be mobile phone, tablet computer, notebook computer, PDA, vehicle terminal equipment, wearable device, super mobile personal computer, netbook, personal digital assistant, CPE (Customer Premisers Equipment, customer terminal equipment), UFI (wireless hotspot) equipment), etc.
  • the non-mobile terminal equipment may be a personal computer, a television, a teller machine or a self-service machine, etc.
  • the terminal may include an aviation ACPU (A Controller Processor Unit, control processing unit), a WIFI hotspot device, an airborne CPE, etc.
  • the WIFI hotspot device is connected to the airborne CPE through the ACPU, Provide Internet services for end users such as notebooks and mobile phones on the plane, and the on-board CPE communicates with the gNB base station.
  • the second processor 2001 may include one or more processing units, for example, the second processor 2001 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), Image signal processor (ISP), controller, memory, video codec, digital signal processor (DSP), baseband processor, and/or neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP Image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the terminal includes a second memory 2002, a second processor 2001, and a program stored in the second memory 2002 and executable on the second processor 2001.
  • the program is executed by the second processor 2001, the implementation of Such as the method of step S901 and step S902 of the second aspect; or, as the method of step S901, step S902, step S1001 and step S1002 of the second aspect.
  • embodiments of the present application further provide a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to achieve:
  • the beamforming method of the second aspect is the beamforming method of the second aspect.
  • the embodiments of the present application include: obtaining direction of arrival information; obtaining a first beamforming weight in the direction of the first polarized antenna according to the direction of arrival information; obtaining precoding matrix indication information; The information obtains the phase difference between the direction of the first polarized antenna and the direction of the second polarized antenna; according to the first beamforming weight and the phase difference, the second beamforming in the direction of the second polarized antenna is obtained.
  • shaping weight generating a shaped beam according to the first beamforming weight and the second beamforming weight.
  • beamforming in the first polarization direction is performed by using the direction of arrival algorithm, so that the beamforming of the network equipment is narrower, the energy concentration is higher, and the signal-to-noise ratio is effectively improved;
  • the precoding matrix indication information is used to construct Beamforming in the second polarization direction enables one polarization antenna to transmit two layers of data, and the antenna gain of each layer of data increases, thereby effectively improving the anti-interference ability and transmission flow of the transmission channel.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Abstract

波束赋形方法、网络设备、终端及存储介质。波束赋形方法包括:根据波达方向信息得到第一极化天线方向上的第一波束赋形权值;根据预编码矩阵指示信息获取两个极化天线方向的相位差;根据第一波束赋形权值和相位差,得到第二极化天线方向上的第二波束赋形权值;根据第一波束赋形权值和第二波束赋形权值产生赋形波束。

Description

波束赋形方法、网络设备、终端及存储介质
相关申请的交叉引用
本申请基于申请号为202010833588.4、申请日为2020年08月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线网络通信技术领域,尤其涉及波束赋形方法、网络设备、终端及存储介质。
背景技术
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。
一些情况中,采用波达方向(Direction of Arrival,DOA)算法进行波束赋形,利用DOA角度计算波束赋形权值,可以产生更窄、能量更集中的波束。但采用DOA算法在一个天线极化方向上只能承载一层业务,传输信道的抗干扰能力弱、传输流量低。
发明内容
本申请实施例提供了波束赋形方法、网络设备、终端及存储介质。
第一方面,本申请实施例提供了波束赋形方法,用于网络设备,包括:获取波达方向信息;根据所述波达方向信息得到第一极化天线方向上的第一波束赋形权值;获取预编码矩阵指示信息;根据所述预编码矩阵指示信息获取所述第一极化天线方向和第二极化天线方向的相位差;根据所述第一波束赋形权值和所述相位差,得到第二极化天线方向上的第二波束赋形权值;根据所述第一波束赋形权值和所述第二波束赋形权值产生赋形波束。
第二方面,本申请实施例提供了波束赋形方法,用于与网络设备通信连接的终端,包括:获取终端位置信息;发送终端位置信息到所述网络设备,以使所述网络设备执行如第一方面所述的波束赋形方法。
第三方面,本申请实施例提供了网络设备,所述网络设备包括第一存储器、第一处理器以及存储在所述第一存储器上并可在所述第一处理器上运行的程序,所述程序被所述第一处理器执行时,实现第一方面所述的波束赋形方法。
第四方面,本申请实施例提供了终端,所述终端包括第二存储器、第二处理器以及存储在所述第二存储器上并可在所述第二处理器上运行的程序,所述程序被所述第二处理器执行时,实现第二方面所述的方法。
第五方面,本申请实施例提供了存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现:如 第一方面所述的波束赋形方法;或者,如第二方面所述的波束赋形方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本申请网络设备和终端组成的通信系统一种实施例的模块框图;
图2是本申请波束赋形方法一种实施例的流程示意图;
图3是本申请波束赋形方法另一种实施例的流程示意图;
图4是本申请波束赋形方法另一种实施例的流程示意图;
图5是本申请波束赋形方法另一种实施例的流程示意图;
图6是本申请波束赋形方法另一种实施例的流程示意图;
图7是本申请波束赋形方法另一种实施例的流程示意图;
图8是本申请波束赋形方法另一种实施例的流程示意图;
图9是本申请波束赋形方法另一种实施例的流程示意图;
图10是本申请波束赋形方法另一种实施例的流程示意图;
图11是本申请中网络设备的一种实施例的模块框图;
图12是本申请中终端的一种实施例的模块框图。
附图标记:网络设备1000;终端2000;第一处理器1001;第一存储器1002;第二处理器2001;第二存储器2002。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。因此,波束赋形技术在扩大覆盖范围、改善边缘吞吐量以及干扰抑止等方面都有很大的优势。
例如,在航空通信领域中,主要的通信方案有两种,一种是卫星通信方案,一种是空地宽带通信(Air to Ground,ATG)方案。卫星通信方案覆盖范围广,陆地和海洋均可覆盖,但部署和运营成本高,网络时延长;空地宽带通信方案仅能在陆地部署,但具有成本低、速率快、时延小、技术迭代升级快等优势。
ATG通信系统采用定制的无线收发设备,沿飞行航路或特定空域架设地面网络设备和 对空天线,建立地空通信链路,进而接入互联网。在机舱内,机载ATG设备向乘客提供无线局域网数据业务,用户可通过Wi-Fi与之建立连接。在机舱外,地面网络设备与机载ATG设备建立通信链路。
在复杂的空地通信环境下,单小区半径可达到300km,仅使用预编码矩阵指示信息(Precoding Matrix Indicator,PMI)进行波束赋形所产生的窄波束,随着用户与网络设备距离的拉远,波束扩散加大,每单位覆盖空间的能量减少,最终功率达不到通信要求,所以ATG通信系统需要更窄的波束,使能量更集中以达到超远覆盖。
基于全球定位系统(Global Positioning System,GPS)计算波达方向(Direction of Arrival,DOA)角度以完成波束赋形时,通过网络设备和飞机的相对位置计算出的DOA角度的精度可达1°,高于根据预编码矩阵指示信息计算出的角度的精度,可以产生更窄,能量更集中的波束,但根据DOA算法进行波束赋形,在一个天线极化方向上只能承载一层业务,如果ATG通信系统想要发送两层业务数据,只使用DOA算法会损失一半的天线增益,抗干扰能力弱,导致流量低。
基于此,本申请实施例提供了双极化波束赋形方法、网络设备、终端及存储介质。ATG通信系统根据飞机和网络设备的GPS信息,采用波达方向(Direction of Arrival,DOA)算法计算网络设备与飞机的相对位置,调整天线发射方向。地面通信系统用终端上报的PMI计算终端与网络设备之间的相对位置,调整波束方向,计算波束赋形权值,完成波束赋形。本申请实施例通过结合DOA算法和PMI信息进行双极化波束赋形,能够克服空地通信中远距离天线功率覆盖弱和传输两层数据时抗干扰能力弱的问题。
需要说明的是,下列多种实施例中,参照图1,网络设备1000和终端2000通信连接组成通信系统。网络设备1000可以是基站(NodeB基站、eNB基站、gNB基站等),也可以是其它带有基站功能的网络设备1000。例如,在ATG通信系统中,网络设备1000包括gNB基站、核心网及相关服务器,核心网通过gNB基站为终端2000提供通信服务。网络设备1000具有双极化天线,双极化天线由两组天线组成,一组天线单元的所有天线阵子相对普通垂直极化天线单元旋转+45度,另外一组天线单元旋转-45度,这两组天线是正交极化的。采用双极化的阵列天线后,大大减小了天线的尺寸,提高了天线的可靠性,有效的降低了干扰。
终端2000可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本、个人数字助理、CPE(Customer Premisers Equipment,客户终端设备)、UFI(无线热点设备)等;非移动终端设备可以为个人计算机、电视机、柜员机或者自助机等;本申请实施方案不作具体限定。例如,在ATG通信系统中,终端2000可以包括航空ACPU(A Controller Processor Unit,控制处理单元)、WIFI热点设备、机载CPE等,在一些实施例中,WIFI热点设备通过ACPU与机载CPE连接,为飞机上的笔记本、手机等终端用户提供互联网服务,机载CPE与gNB基站通信连接。
本申请实施例可以应用于多种通信系统,如地空通信系统、地面通信系统等。下面仅以ATG通信系统为例,详细描述本申请的实施方式。
第一方面,本申请实施例提供了波束赋形方法,用于网络设备。在一些实施例中,网络设备的硬件结构因配置或性能不同而产生比较大的差异,网络设备可以包括一个或一个 以上处理器、至少一个存储器以及至少一个网络接口。其中,存储器用于存储一个或一个以上操作系统,以及存储计算机程序代码和数据。存储在存储器的计算机程序代码可以包括一个或一个以上模块,每个模块可以包括对应于网络设备中的一系列指令操作。处理器与存储器、网络接口通信,网络设备通过网络接口与核心网中的其他设备以及基站通信,处理器在网络设备上执行存储器中的一系列指令操作,以用于执行下述第一方面波束赋形方法实施例(如图2所示的实施例)中网络设备所执行的全部或部分步骤。网络设备具有双极化天线,双极化天线由两组天线组成,一组天线单元的所有天线阵子相对普通垂直极化天线单元旋转+45度,另外一组天线单元旋转-45度,这两组天线是正交极化的。采用双极化的阵列天线,可减小了天线的尺寸,提高天线的可靠性,有效降低干扰。
参照图2,本申请实施例提供的波束赋形方法,包括:
步骤S101,获取波达方向信息;
步骤S102,根据波达方向信息得到第一极化天线方向上的第一波束赋形权值;
步骤S103,获取预编码矩阵指示信息;
步骤S104,根据预编码矩阵指示信息获取第一极化天线方向和第二极化天线方向的相位差;
步骤S105,根据第一波束赋形权值和相位差,得到第二极化天线方向上的第二波束赋形权值;
步骤S106,根据第一波束赋形权值和第二波束赋形权值产生赋形波束。
本申请实施例通过波达方向算法进行第一极化方向的波束赋形,使网络设备赋形波束更窄,能量集中度更高,有效的提高了信噪比;利用预编码矩阵指示信息构造正交码本,从而为第二极化方向的波束赋形,使一个极化天线发送两层数据,每层数据的天线增益增加,从而有效提升传输信道的抗干扰能力和传输流量。
在一些实施例中,步骤S101中的波达方向信息即为DOA角度信息。在一些实施例中,参照图3,步骤S101包括子步骤:
步骤S201,分别获取网络设备位置信息和终端位置信息;
步骤S202,根据网络设备位置信息和终端位置信息,计算得到波达方向信息。
在一些实施例中,步骤S201中,可以通过卫星定位技术(如GPS、北斗卫星等)获取网络设备位置信息和终端位置信息。网络设备位置信息可以为GPS信息,也可以是北斗卫星定位信息等;终端位置信息可以为GPS信息,也可以是北斗卫星定位信息等。
在一些实施例中,步骤S202中,根据网络设备位置信息和终端位置信息,通过几何运算,即可得到波达方向信息。例如,在ATG通信系统中,在收到飞机的GPS信息(终端位置信息)后,结合基站GPS信息(网络设备位置信息),即可通过几何运算计算得到DOA角度信息。
在一些实施例中,网络设备位置信息包括网络设备的经度J A、网络设备的纬度W B、网络设备的高度H A等;终端位置信息包括终端的经度J B、终端的纬度W B、终端的高度H B等;波达方向信息包括俯仰角α和水平角β等。
参照图4,在一些实施例中,步骤S202中,根据网络设备位置信息和终端位置信息,计算得到波达方向信息,包括:
步骤S301,根据网络设备位置信息、终端位置信息和第一计算公式计算得到俯仰角α;
步骤S302,根据网络设备位置信息、终端位置信息和第二计算公式计算得到水平角β。
第一计算公式可以根据余弦定理计算得到波达方向信息中的俯仰角α。例如,第一公式可以为:
Figure PCTCN2021112313-appb-000001
第二计算公式可以根据反正弦算法计算得到波达方向信息中的水平角β。例如,第二公式可以为:
Figure PCTCN2021112313-appb-000002
其中,R为地球半径;∠AOB为以地心O为顶点,网络设备A和终端B形成的夹角。例如,在ATG通信系统中,A为基站(网络设备),O为地心,B为飞机(终端),|AB|即为基站与飞机的距离,∠AOB即为基站、地心、飞机三点形成的夹角。
在一些实施例中,在基站(网络设备)小区建立后,每个固定周期(如24小时)或者修改基站GPS信息发生变化后,基站会更新GPS信息,以确保基站位置信息的实时性和准确性。飞机(终端)接入小区后,终端每个固定周期(如1秒)上报终端GPS信息(包含经纬度、离地高度、海拔和时间)等参数,以确保终端位置信息的实时性和准确性。例如,在ATG通信系统中,飞机(终端)接入小区后,飞机中的CPE每1秒向基站发送飞机GPS信息。
本申请实施例通过获取网络设备位置信息和终端位置信息,经过计算得到波达方向信息,从而估计出哪个终端在工作以及终端所处的方向,计算方式简单,且精度高(DOA角度精度可达1°)。
参照图5,在一些实施例中,步骤S102,根据波达方向信息得到第一极化天线方向上的第一波束赋形权值,包括子步骤:
步骤S401,根据波达方向信息,查导向矢量共轭表得到导向矢量;
步骤S402,对导向矢量做运算得到第一波束赋形权值。
在一些实施例中,步骤S401中,首先根据具体天线布局确定一个导向矢量共轭表;不同的天线布局具有不同的导向矢量共轭表,导向矢量共轭表中包含了导向矢量和波达方向信息的对应关系,根据波达方向信息,通过查询导向矢量共轭表即可得到导向矢量。
在一些实施例中,步骤S402中,对导向矢量做运算得到第一波束赋形权值,具体为:第一波束赋形权值等于导向矢量和基础矩阵(如单位矩阵)的数量积,可根据导向矢量做运算得到第一波束赋形权值。
在一些实施例中,根据波达方向信息和第三计算公式计算获得DOA单极化方向(第一极化天线方向)的赋形权值W DOA。第三计算公式为:W DOA=conj(a(α,β)),其中,a(α,β)为根据波达方向信息中的俯仰角α和水平角β生成赋形矩阵,赋形矩阵a(α,β)为导向矢量和基础矩阵(如单位矩阵)的数量积,赋形权值W DOA等于赋形矩阵的共轭,即W DOA=conj(a(α,β)),具体赋形权值的取值与极化天线的硬件布局相关。
本申请实施例基于波达方向信息进行波束赋形,通过基站和飞机的相对位置计算出的DOA角度精度可达1°,可以产生更窄、能量更集中的波束。
参照图6,在一些实施例中,步骤S104,根据预编码矩阵指示信息获取第一极化天线方向和第二极化天线方向的相位差,包括:
步骤S501,根据预编码矩阵指示信息得到预编码索引值;
步骤S502,根据预编码索引值计算得到第一极化天线方向和第二极化天线方向的相位差。
在一些实施例中,步骤S501中,预编码矩阵指示信息来自终端。即终端测量得到预编码矩阵指示信息(PMI信息)后,上报传输给网络设备。网络设备根据预编码矩阵指示信息得到预编码索引值i 2。在一些实施例中,基于码本的预编码技术的预编码矩阵产生于终端,即终端通过收到的导频信息来估计获得CSI(Channel State Information,信道状态信息),并按照一定的准则从预先设计过的预编码矩阵码本中选取最优或者次优的预编码矩阵,最后通过反馈链路传递所选预编码矩阵的索引值i 2。一套码本的适用场景相对具体和固定,且不同场景下的码本设计差异较大。
在一些实施例中,步骤S502中,根据预编码索引值i 2计算得到第一极化天线方向和第二极化天线方向的相位差,具体为:根据预编码索引值i 2和第四计算公式计算得到第一极化天线方向和第二极化天线方向的相位差;第四计算公式为:
Figure PCTCN2021112313-appb-000003
当传输数据层数ilayer为1层时,
Figure PCTCN2021112313-appb-000004
当传输数据层数ilayer为2层时,
Figure PCTCN2021112313-appb-000005
其中,φ为第一极化天线方向和第二极化天线方向的相位差,j为虚数单位,e为自然数对数的底。
在一些实施例中,步骤S502中,根据预编码索引值i 2计算得到第一极化天线方向和第二极化天线方向的相位差,具体为:根据预编码索引值i 2和第五计算公式计算得到第一极化天线方向和第二极化天线方向的相位差;第五计算公式表示为:
φ(ilayer)=angle(W pmi(i 2,ilayer));
其中,φ(ilayer)为第一极化天线方向和第二极化天线方向的相位差,ilayer为传输数据层数,W pmi为根据PMI信息生成的预编码向量。对预编码向量W pmi求复数相角即可得到相位差φ(ilayer),即φ(ilayer)=angle(W pmi(i 2,ilayer))。例如,计算出来的相位差为90°或270°,即可根据相位差构造正交码本使一个极化天线可发送两层数据。
本申请实施例中,利用PMI信息计算第一极化天线方向和第二极化天线方向的相位差,以利于后续构造正交码本,进而使一个极化天线可发送两层数据,每层数据的天线增益增加,提升抗干扰能力。
参照图7,在一些实施例中,步骤105,根据第一波束赋形权值和相位差,得到第二极化天线方向上的第二波束赋形权值,包括:
步骤S601,根据第一波束赋形权值W DOA、相位差和第二计算公式,计算得到第二极化天线方向上的第二波束赋形权值
Figure PCTCN2021112313-appb-000006
第二计算公式为:
Figure PCTCN2021112313-appb-000007
其中,φ(ilayer)为第一极化天线方向和第二极化天线方向的相位差,ilayer为传输数据层数。
本申请实施例中,利用第一波束赋形权值W DOA、相位差构造与第一极化天线方向上的第一波束赋形权值正交的码本,作为第二极化天线方向上的第二波束赋形权值
Figure PCTCN2021112313-appb-000008
使一个极化天线可发送两层数据,每层数据的天线增益增加,提升抗干扰能力。
参照图8,在一些实施例中,步骤S106,根据第一波束赋形权值和第二波束赋形权值产生赋形波束,包括:
步骤S701,对第一波束赋形权值和第二波束赋形权值进行归一化处理,得到归一化组合权值;
步骤S702,根据归一化组合权值产生赋形波束。
在一些实施例中,网络设备发射信号总功率会随发送数据层数增加而增加,实际网络设备发射功率需要控制在合理的范围内。为了实现网络设备发射信号功率在合理范围内,需要对通过执行步骤S701和步骤S702对发射信号功率做归一化处理。
在一些实施例中,步骤S701,对第一波束赋形权值和第二波束赋形权值进行归一化处理,得到归一化组合权值,具体为:利用第三计算公式对第一波束赋形权值和第二波束赋形权值进行归一化处理,得到归一化组合权值;
第三计算公式为:
Figure PCTCN2021112313-appb-000009
其中,W bf为归一化组合权值;RI(Rank Indicator,层(秩)指示)为层指示信息,与传输数据的层数相对应。
在一些实施例中,RI为终端测量并上报的信息。
本申请实施例中,通过执行步骤S106对发射信号功率做归一化处理。将网络设备的发射信号功率控制在合理的范围内,同时实现利用双极化天线发送两层数据,每层数据的天线增益增加,提升抗干扰能力。实际应用过程中,可将待发送数据业务分成两份,分别用相互正交的码本进行波束赋形,在传输的时候这两层数据业务不会相互干扰,这样传输的业务就从一层提高到两层,实现流量提升。
下面以一个完整的场景示例说明。该示例中,本示例应用于ATG通信系统,网络设备为基站(5G基站),终端为飞机。本示例要求5G_ATG完成初始接入,收到飞机GPS信息后,结合基站GPS信息计算DOA角度信息,从而得到天线单极化权值。基站在收到来自终端的PMI信息上报后,结合DOA角度完成天线双极化赋形。具体包括:
步骤S801:小区建立后,每24小时或修改基站GPS后,基站会更新GPS信息。
步骤S802:飞机接入小区后,机载CPE每一秒上报飞机GPS信息(包含经纬度、离地高度、海拔和时间)等参数到基站。
步骤S803:根据基站和飞机的GPS信息计算飞机的DOA俯仰角α和水平角β。具体计算方式可参照上述步骤S301和步骤S302。
步骤S804:根据DOA角度信息计算获得DOA单极化方向(第一极化方向)的赋形 权值W DOA=conj(a(α,β)),具体赋形权值的取值要根据天线硬件确定。具体计算方式可参照上述步骤S401和步骤S402。
步骤S805:飞机上报测量的PMI消息。
步骤S806:根据上报的PMI计算极化天线间的相位差φ(ilayer)=angle(W pmi(i 2,ilayer)),其中,ilayer为传输数据层数,W pmi为根据PMI信息生成的预编码向量,i 2为预编码索引值。具体计算方式可参照上述步骤S501和步骤S502。
步骤S807:根据相位差和计算出的DOA极化方向赋形权,计算另一极化方向的赋形权值
Figure PCTCN2021112313-appb-000010
步骤S808:根据天线索引组合权值,按调度层数进行功率归一化处理,完成天线的双极化赋形。具体处理过程可参照上述步骤S701和步骤S702。
第二方面,波束赋形方法,用于与网络设备通信连接的终端。终端可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本、个人数字助理、CPE(Customer Premisers Equipment,客户终端设备)、UFI(无线热点设备)等;非移动终端设备可以为个人计算机、电视机、柜员机或者自助机等;本申请实施方案不作具体限定。例如,在ATG通信系统中,终端可以包括航空ACPU(A Controller Processor Unit,控制处理单元)、WIFI热点设备、机载CPE等,在一些实施例中,WIFI热点设备通过ACPU与机载CPE连接,为飞机上的笔记本、手机等终端用户提供互联网服务,机载CPE与gNB基站通信连接。
参照图9,本申请实施例提供的波束赋形方法,包括:
步骤S901,获取终端位置信息;
步骤S902,发送终端位置信息到网络设备,以使网络设备执行如第一方面的波束赋形方法。
在一些实施例中,终端位置信息可以为GPS信息,也可以是北斗卫星定位信息等。终端进入网络设备信号覆盖的小区后,定期执行步骤S801,获取终端位置信息,并将终端位置信息发送给网络设备。例如,在ATG通信系统中,飞机(终端)接入小区后,飞机每个固定周期(如1秒)上报终端GPS信息(包含经纬度、离地高度、海拔和时间)等参数到网络设备,以确保终端位置信息的实时性和准确性。例如,在ATG通信系统中,飞机(终端)接入小区后,飞机中的机载CPE每1秒向基站发送飞机GPS信息。
在一些实施例中,网络设备接收到来自终端的终端位置信息后,如第一方面的波束赋形方法,已完成波束赋形。例如,网络设备可执行如第一方面步骤S101至步骤S106的波束赋形方法。
本申请实施例通过采集终端位置信息并将终端位置信息发送给网络设备,使网络设备赋形波束更窄,能量集中度更高,有效的提高了信噪比。
在一些实施例中,终端位置信息包括终端的经度J B、终端的纬度W B、终端的高度H B等。网络设备根据网络设备位置信息和终端位置信息,通过几何运算,即可得到波达方向 信息。
参照图10,在一些实施例中,第二方面的波束赋形方法还包括:
步骤S1001,测量得到预编码矩阵指示信息;
步骤S1002,发送预编码矩阵指示信息到网络设备。
在一些实施例中,终端设备通过执行步骤S1001和步骤S1002发送预编码矩阵指示信息到网络设备到网络设备,网络设备接收来自终端的PMI信息,并利用PMI信息构造正交码本,使一个极化天线发送两层数据,每层数据的天线增益增加,提升抗干扰能力。具体实现步骤请参照第一方面步骤S101至步骤S106的描述,在此不做赘述。
在一些实施例中,终端设备测量得到RI(Rank Indicator,层(秩)指示)信息,并将RI信息传输给网络设备,以供网络设备执行归一化处理,具体步骤如第一方面步骤S701和步骤S702记载,在此不做赘述。
第三方面,参照图11,本申请实施例提供一种网络设备,网络设备包括第一存储器1002、第一处理器1001以及存储在第一存储器1002上并可在第一处理器1001上运行的程序,程序被第一处理器1001执行时,实现如第一方面的波束赋形方法。
在一些实施例中,网络设备可以是基站(NodeB基站、eNB基站、gNB基站等),也可以是其它带有基站功能的网络设备。例如,在ATG通信系统中,网络设备包括gNB基站、核心网及相关服务器,核心网通过gNB基站为终端提供通信服务。网络设备具有双极化天线,双极化天线由两组天线组成,一组天线单元的所有天线阵子相对普通垂直极化天线单元旋转+45度,另外一组天线单元旋转-45度,这两组天线是正交极化的。采用双极化的阵列天线后,大大减小了天线的尺寸,提高了天线的可靠性,有效的降低了干扰。
第一处理器1001可以包括一个或多个处理单元,例如:第一处理器1001可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
在一些实施例中,网络设备包括第一存储器1002、第一处理器1001以及存储在第一存储器1002上并可在第一处理器1001上运行的程序,程序被第一处理器1001执行时,实现如第一方面步骤S101至步骤S105的波束赋形方法,或者,如第一方面步骤S101至步骤S106的波束赋形方法。
第四方面,参照图12,本申请实施例提供一种终端,终端包括第二存储器2002、第二处理器2001以及存储在第二存储器2002上并可在第二处理器2001上运行的程序,程序被第二处理器2001执行时,实现如第二方面的方法。
在一些实施例中,终端可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本、个人数字助理、CPE(Customer Premisers Equipment,客户终端设备)、UFI(无线热点设备)等;非移动终端设备可以为个人计算机、电视机、柜员机或者自助机等;本申请实施方案不作具体限定。例如,在ATG通信系统中,终端可以包括航空 ACPU(A Controller Processor Unit,控制处理单元)、WIFI热点设备、机载CPE等,在一些实施例中,WIFI热点设备通过ACPU与机载CPE连接,为飞机上的笔记本、手机等终端用户提供互联网服务,机载CPE与gNB基站通信连接。
第二处理器2001可以包括一个或多个处理单元,例如:第二处理器2001可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
在一些实施例中,终端包括第二存储器2002、第二处理器2001以及存储在第二存储器2002上并可在第二处理器2001上运行的程序,程序被第二处理器2001执行时,实现如第二方面步骤S901和步骤S902的方法;或者,如第二方面步骤S901、步骤S902、步骤S1001、步骤S1002的方法。
第五方面,本申请实施例还提供一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现:
如第一方面的波束赋形方法;
或者,
如第二方面的波束赋形方法。
本申请实施例包括:获取波达方向信息;根据所述波达方向信息得到第一极化天线方向上的第一波束赋形权值;获取预编码矩阵指示信息;根据所述预编码矩阵指示信息获取所述第一极化天线方向和第二极化天线方向的相位差;根据所述第一波束赋形权值和所述相位差,得到第二极化天线方向上的第二波束赋形权值;根据所述第一波束赋形权值和所述第二波束赋形权值产生赋形波束。本申请实施例通过波达方向算法进行第一极化方向的波束赋形,使网络设备赋形波束更窄,能量集中度更高,有效的提高了信噪比;利用预编码矩阵指示信息构造第二极化方向的波束赋形,使一个极化天线发送两层数据,每层数据的天线增益增加,从而有效提升传输信道的抗干扰能力和传输流量。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者 可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施例进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可做出各种各样的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种波束赋形方法,用于网络设备,包括:
    获取波达方向信息;
    根据所述波达方向信息得到第一极化天线方向上的第一波束赋形权值;
    获取预编码矩阵指示信息;
    根据所述预编码矩阵指示信息获取所述第一极化天线方向和第二极化天线方向的相位差;
    根据所述第一波束赋形权值和所述相位差,得到第二极化天线方向上的第二波束赋形权值;
    根据所述第一波束赋形权值和所述第二波束赋形权值产生赋形波束。
  2. 根据权利要求1所述的方法,其中,所述获取波达方向信息,包括:
    分别获取网络设备位置信息和终端位置信息;
    根据所述网络设备位置信息和所述终端位置信息,计算得到所述波达方向信息。
  3. 根据权利要求2所述的方法,其中,
    所述网络设备位置信息包括网络设备的经度J A、网络设备的高度H A;所述终端位置信息包括终端的经度J B、终端的纬度W B、终端的高度H B;所述波达方向信息包括俯仰角α和水平角β;
    所述根据所述网络设备位置信息和所述终端位置信息,计算得到所述波达方向信息,包括:
    根据所述网络设备位置信息、所述终端位置信息和第一计算公式计算得到所述俯仰角α;
    根据所述网络设备位置信息、所述终端位置信息和第二计算公式计算得到所述水平角β;
    所述第一计算公式为:
    Figure PCTCN2021112313-appb-100001
    所述第二计算公式为:
    Figure PCTCN2021112313-appb-100002
    其中,R为地球半径;∠AOB为以地心O为顶点,网络设备A和终端B形成的夹角。
  4. 根据权利要求1至3任一项所述的方法,其中,所述根据所述波达方向信息得到第一极化天线方向上的第一波束赋形权值,包括:
    根据所述波达方向信息,查导向矢量共轭表得到导向矢量;
    对所述导向矢量做运算得到所述第一波束赋形权值。
  5. 根据权利要求1至3任一项所述的方法,其中,所述根据所述预编码矩阵指示信息获取所述第一极化天线方向和第二极化天线方向的相位差,包括:
    根据所述预编码矩阵指示信息得到预编码索引值;
    根据预编码索引值计算得到所述第一极化天线方向和第二极化天线方向的相位差。
  6. 根据权利要求1至3任一项所述的方法,其中,所述根据所述第一波束赋形权值和所述相位差,得到第二极化天线方向上的第二波束赋形权值,包括:
    根据所述第一波束赋形权值W DOA、所述相位差和第二计算公式,计算得到第二极化天线方向上的第二波束赋形权值;
    所述第二计算公式为:
    Figure PCTCN2021112313-appb-100003
    其中,φ(ilayer)为相位差,ilayer为层数。
  7. 根据权利要求1至3任一项所述的方法,其中,所述根据所述第一波束赋形权值和所述第二波束赋形权值产生赋形波束,包括:
    对所述第一波束赋形权值和所述第二波束赋形权值进行归一化处理,得到归一化组合权值;
    根据所述归一化组合权值产生所述赋形波束。
  8. 根据权利要求7所述的方法,其中,所述对所述第一波束赋形权值和所述第二波束赋形权值进行归一化处理,得到归一化组合权值,包括:
    利用第三计算公式对所述第一波束赋形权值和所述第二波束赋形权值进行归一化处理,得到归一化组合权值;
    所述第三计算公式为:
    Figure PCTCN2021112313-appb-100004
    其中,W bf为归一化组合权值,RI为层指示信息。
  9. 一种波束赋形方法,用于与网络设备通信连接的终端,包括:
    获取终端位置信息;
    发送终端位置信息到所述网络设备,以使所述网络设备执行如权利要求1至8任一项所述的波束赋形方法。
  10. 根据权利要求9所述的方法,其中,所述终端位置信息包括终端的经度J B、终端的纬度W B、终端的高度H B
  11. 根据权利要求9或10所述的方法,其中,还包括:
    测量得到预编码矩阵指示信息;
    发送预编码矩阵指示信息到所述网络设备。
  12. 一种网络设备,包括第一存储器、第一处理器以及存储在所述第一存储器上并可在所述第一处理器上运行的程序,其中,所述程序被所述第一处理器执行时,实现权利要求1至8任一项所述的波束赋形方法。
  13. 一种终端,包括第二存储器、第二处理器以及存储在所述第二存储器上并可在所述第二处理器上运行的程序,其中,所述程序被所述第二处理器执行时,实现权利要求9至11任一项所述的方法。
  14. 一种存储介质,用于计算机可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现:
    如权利要求1至8任一项所述的波束赋形方法;
    或者,
    如权利要求9至11任一项所述的波束赋形方法。
PCT/CN2021/112313 2020-08-18 2021-08-12 波束赋形方法、网络设备、终端及存储介质 WO2022037475A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21857570.2A EP4171094A4 (en) 2020-08-18 2021-08-12 BEAM SHAPING METHOD, NETWORK DEVICE, TERMINAL, AND STORAGE MEDIUM
JP2023505958A JP2023542788A (ja) 2020-08-18 2021-08-12 ビームフォーミング方法、ネットワーク機器、端末、及び記憶媒体
US18/041,923 US20230327725A1 (en) 2020-08-18 2021-08-12 Beamforming method, network device, terminal, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010833588.4A CN113556162B (zh) 2020-08-18 2020-08-18 波束赋形方法、网络设备、终端及存储介质
CN202010833588.4 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022037475A1 true WO2022037475A1 (zh) 2022-02-24

Family

ID=78101624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112313 WO2022037475A1 (zh) 2020-08-18 2021-08-12 波束赋形方法、网络设备、终端及存储介质

Country Status (5)

Country Link
US (1) US20230327725A1 (zh)
EP (1) EP4171094A4 (zh)
JP (1) JP2023542788A (zh)
CN (1) CN113556162B (zh)
WO (1) WO2022037475A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236545A1 (zh) * 2022-06-10 2023-12-14 中兴通讯股份有限公司 干扰抑制方法及装置、存储介质、电子装置
WO2024044027A1 (en) * 2022-08-26 2024-02-29 Hughes Network Systems, Llc Precoded rate-splitting with multiple set-wise common streams for aggressive frequency reuse in a satellite communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541756B (zh) * 2020-12-04 2022-04-12 中兴通讯股份有限公司 波束赋型的方法、装置、基站及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017664A1 (zh) * 2008-08-15 2010-02-18 上海贝尔阿尔卡特股份有限公司 基于固定波束族的波束赋形方法、基站和用户设备
CN102832985A (zh) * 2012-08-27 2012-12-19 大唐移动通信设备有限公司 波束赋形传输方法和设备
WO2013034109A1 (zh) * 2011-09-08 2013-03-14 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
CN105356924A (zh) * 2014-08-21 2016-02-24 中兴通讯股份有限公司 双极化天线系统doa-bf权值估计方法和装置
CN106034307A (zh) * 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种到达角波束赋形权值估计方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273091A (zh) * 2008-11-03 2011-12-07 爱立信电话股份有限公司 发射参考信号并确定多天线发射的预编码矩阵的方法
CN109120321B (zh) * 2017-06-22 2021-05-11 中兴通讯股份有限公司 一种波束赋形的方法、装置、基站及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017664A1 (zh) * 2008-08-15 2010-02-18 上海贝尔阿尔卡特股份有限公司 基于固定波束族的波束赋形方法、基站和用户设备
WO2013034109A1 (zh) * 2011-09-08 2013-03-14 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
CN102832985A (zh) * 2012-08-27 2012-12-19 大唐移动通信设备有限公司 波束赋形传输方法和设备
CN105356924A (zh) * 2014-08-21 2016-02-24 中兴通讯股份有限公司 双极化天线系统doa-bf权值估计方法和装置
CN106034307A (zh) * 2015-03-19 2016-10-19 中兴通讯股份有限公司 一种到达角波束赋形权值估计方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4171094A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236545A1 (zh) * 2022-06-10 2023-12-14 中兴通讯股份有限公司 干扰抑制方法及装置、存储介质、电子装置
WO2024044027A1 (en) * 2022-08-26 2024-02-29 Hughes Network Systems, Llc Precoded rate-splitting with multiple set-wise common streams for aggressive frequency reuse in a satellite communication system

Also Published As

Publication number Publication date
JP2023542788A (ja) 2023-10-12
CN113556162A (zh) 2021-10-26
CN113556162B (zh) 2022-06-21
EP4171094A4 (en) 2024-03-20
EP4171094A1 (en) 2023-04-26
US20230327725A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022037475A1 (zh) 波束赋形方法、网络设备、终端及存储介质
US11012157B2 (en) Systems and methods for high-altitude radio/optical hybrid platform
US10734722B2 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
US20230318177A1 (en) Electronic device, wireless communication method and computer-readable storage medium
EP3868034B1 (en) Position likelihood based beamformer optimization
Bai et al. Air-to-ground wireless links for high-speed UAVs
CN109444809B (zh) 一种基于智能天线的无人机测控方法
CN113228533B (zh) 通信网络和进行连接的方法
KR20110050559A (ko) 무선 통신 네트워크에서 통신들을 제공하기 위한 시스템 아키텍처
US20220321192A1 (en) Deep learning aided fingerprint based beam alignment
US20220321198A1 (en) Dynamic control of an unmanned aerial vehicle using a reconfigurable intelligent surface
CN113228534B (zh) 通信网络和维持连接的方法
WO2016145916A1 (zh) 一种到达角波束赋形权值估计方法和装置
WO2015117532A1 (zh) 双极化天线系统doa-bf权值估计方法和装置
CN114144977A (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
US20230275639A1 (en) Precoding Method and Communication Apparatus
WO2022267853A1 (zh) 通道相位校正的方法和相关装置
WO2022116798A1 (zh) 波束赋型的方法、装置、基站及计算机可读存储介质
US11223416B2 (en) Communication system for aircrafts with altitude based antenna type selection
CN113364513A (zh) 基于无人机机阵的分布式多天线基站
KR102430193B1 (ko) 비행 센서 데이터 및 빔포밍 정보 기반 공중 노드 추적 방법 및 장치
WO2024045666A1 (zh) 信道重构方法,通信节点及存储介质
CA3116223C (en) Systems and methods for high-altitude radio/optical hybrid platform
Marinho et al. Performance assessment for distributed broadband radio localization
EP4187807A1 (en) Dynamic improvement in propagation spatial correlation by means of change in position of haps-equipped antenna in haps multi-feeder link

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505958

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021857570

Country of ref document: EP

Effective date: 20230123

NENP Non-entry into the national phase

Ref country code: DE