WO2022037420A1 - 电磁波成像方法、装置及系统 - Google Patents

电磁波成像方法、装置及系统 Download PDF

Info

Publication number
WO2022037420A1
WO2022037420A1 PCT/CN2021/110883 CN2021110883W WO2022037420A1 WO 2022037420 A1 WO2022037420 A1 WO 2022037420A1 CN 2021110883 W CN2021110883 W CN 2021110883W WO 2022037420 A1 WO2022037420 A1 WO 2022037420A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
position information
electromagnetic wave
module
echo signal
Prior art date
Application number
PCT/CN2021/110883
Other languages
English (en)
French (fr)
Inventor
曾昆
王光健
耿东玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022037420A1 publication Critical patent/WO2022037420A1/zh
Priority to US18/170,451 priority Critical patent/US20230194701A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9089SAR having an irregular aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/90Lidar systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/74Systems using reradiation of electromagnetic waves other than radio waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • Embodiments of the present application relate to the field of electromagnetic wave imaging, and in particular, to an electromagnetic wave imaging method, device, and system.
  • Electromagnetic wave imaging is an imaging method that uses electromagnetic waves as an information carrier. Because the electromagnetic wave frequency band is lower than the optical frequency band, many objects that cannot penetrate the optical frequency band become transparent in the electromagnetic wave frequency band, realizing the ability to see through the inside of the object, which makes electromagnetic wave imaging in non-destructive testing, security inspection, medical testing and other commercial and scientific research.
  • the field has high application value.
  • electromagnetic wave imaging methods are usually divided into two types.
  • One is electromagnetic wave imaging through real array technology.
  • the other is a device for electromagnetic wave imaging based on synthetic aperture technology with a smaller volume, which requires higher trajectory positioning accuracy.
  • the existing technology usually adopts mechanical precise control methods such as robotic arms or optical tracking to control the moving trajectory of the device. question.
  • the present application provides an electromagnetic wave imaging method, device and system, which can meet the requirements of portability and miniaturization of electronic equipment.
  • an embodiment of the present application provides an electromagnetic wave imaging system.
  • the electromagnetic wave imaging system includes an electromagnetic echo signal acquisition module, a self-positioning module and an imaging module.
  • the electromagnetic echo signal collection module is configured to collect electromagnetic echo signals and output first information to the imaging module, where the first information includes electromagnetic wave scattering characteristic information of the target object.
  • the self-positioning module is used to acquire the position information of the receiving point of the electromagnetic echo signal, and output the position information to the imaging module, where the position information is used to indicate the relative position information of the receiving point and the positioning mark.
  • the imaging module is used for electromagnetic wave imaging of the target object based on electromagnetic wave scattering feature information and position information. In this way, the present application can meet the requirements of portability and miniaturization of the electronic device while ensuring the accuracy of the self-positioning of the electronic device.
  • the electromagnetic echo signal collection module is configured to collect electromagnetic echo signals at multiple times, and output the first information corresponding to each of the multiple times to the imaging module.
  • the self-positioning module is used to acquire the position information of the receiving point of the electromagnetic echo signal at multiple times, and output the position information corresponding to each of the multiple times to the imaging module.
  • the imaging module is configured to perform electromagnetic wave imaging on the target object based on the plurality of electromagnetic wave scattering feature information and the correspondence between each position information in the plurality of position information and the plurality of electromagnetic wave scattering feature information. In this way, the imaging module can perform electromagnetic wave imaging on the target object based on the acquired multiple electromagnetic wave scattering feature information and multiple position information and the corresponding relationship between them, thereby ensuring the accuracy of self-positioning of the electronic device.
  • the electromagnetic echo signal acquisition module and the self-positioning module can perform corresponding operations according to their respective periods, so as to realize the synchronization of the acquisition of the electromagnetic echo signal and the acquisition of the position information, so that the imaging module can acquire multiple electromagnetic wave scattering characteristic information and Correspondence between multiple location information.
  • the electromagnetic wave imaging system further includes at least three sensors; a self-positioning module, configured to acquire relative position information between each of the at least three sensors and the positioning identifier, According to the relative position information of the at least three sensors and the positioning mark and the relative position information of the at least three sensors and the receiving point, the relative position information of the receiving point and the positioning mark is obtained.
  • the present application can achieve precise positioning of the receiving point through the information or parameters collected by at least three sensors. Exemplarily, the greater the number of sensors, the more accurate the positioning.
  • the relative position information of the sensor and the positioning mark is obtained according to the distance information between the sensor and the positioning mark.
  • the present application can obtain the distance information from the positioning mark based on the plurality of distance measuring sensors, so as to accurately locate the receiving point.
  • the relative position information of the sensor and the positioning mark is obtained according to the angle information between the sensor and the positioning mark.
  • the present application can obtain the angle information with the positioning mark based on the multiple angle measuring sensors, so as to accurately position the receiving point.
  • the positioning mark is at least one of the following: a mark set on the target object, a mark point set within a specified range of the target object, a mark on the target object any feature point.
  • the positioning identification in the present application may be virtual or physical, so as to improve the flexibility of the positioning identification.
  • the system further includes a synchronization module for sending a control signal to the electromagnetic echo signal acquisition module and the self-positioning module, and the control signal is used to synchronize the electromagnetic echo signal acquisition The electromagnetic echo signal acquisition of the module and the position information acquisition of the self-positioning module.
  • a synchronization module for sending a control signal to the electromagnetic echo signal acquisition module and the self-positioning module, and the control signal is used to synchronize the electromagnetic echo signal acquisition The electromagnetic echo signal acquisition of the module and the position information acquisition of the self-positioning module.
  • the electromagnetic echo signal acquisition module is specifically configured to transmit electromagnetic waves and receive electromagnetic echo signals scattered by the target object. In this way, the electromagnetic echo signal acquisition module can acquire the electromagnetic echo signal through active acquisition.
  • the electromagnetic echo signal acquisition module is specifically configured to receive the electromagnetic echo signal released by the target object. In this way, the electromagnetic echo signal acquisition module can acquire the electromagnetic echo signal by passive acquisition.
  • the embodiments of the present application provide an electromagnetic wave imaging method.
  • the method is applied to an electromagnetic wave imaging device, and the method includes: collecting electromagnetic echo signals, where the electromagnetic echo signals are used to indicate electromagnetic wave scattering characteristic information of a target object; obtaining position information of a receiving point of the electromagnetic echo signals, and the position information is used to indicate the receiving point The relative position information of the point and the positioning mark; based on the electromagnetic wave scattering feature information and position information, the electromagnetic wave imaging of the target object is performed.
  • collecting electromagnetic echo signals includes: collecting electromagnetic echo signals at multiple times; obtaining location information of receiving points of the electromagnetic echo signals, including: obtaining the locations of receiving points of electromagnetic echo signals at multiple times electromagnetic wave imaging of the target object based on electromagnetic wave scattering feature information and position information, including: based on a plurality of electromagnetic wave scattering feature information and the correspondence between each position information in the plurality of position information and a plurality of electromagnetic wave scattering feature information, to The target object is imaged by electromagnetic waves.
  • the two periods are the same; or, the first period and the second period are in a multiple relationship.
  • the electromagnetic wave imaging device includes at least three sensors, and acquiring the position information of the receiving point of the electromagnetic echo signal includes: acquiring the relationship between each of the at least three sensors and the For the relative position information of the positioning mark, the relative position information of the receiving point and the positioning mark is obtained according to the relative position information of the at least three sensors and the positioning mark and the relative position information of the at least three sensors and the receiving point.
  • the relative position information of the sensor and the positioning mark is obtained according to the distance information between the sensor and the positioning mark.
  • the relative position information of the sensor and the positioning mark is obtained according to the angle information between the sensor and the positioning mark.
  • the location identifier is at least one of the following:
  • the identification point set on the target object the identification point set within the specified range of the target object, and any feature point on the target object.
  • the acquisition of the electromagnetic echo signal is synchronized with the acquisition of the position information.
  • collecting electromagnetic echo signals includes: transmitting electromagnetic waves, and receiving electromagnetic echo signals scattered by the target object.
  • collecting an electromagnetic echo signal includes: receiving an electromagnetic echo signal released by a target object.
  • inventions of the present application provide an electromagnetic wave imaging device.
  • the device includes a processor, a transceiver and at least three sensors; the processor is coupled with the transceiver and the at least three sensors; the transceiver is used for receiving and collecting electromagnetic echo signals, and outputting the electromagnetic echo signals to the processor, the electromagnetic echo
  • the signal is used to indicate the electromagnetic wave scattering characteristic information of the target object; the processor is used to obtain the position information of the transceiver, and the position information is used to indicate the relative position information of the receiving point and the positioning mark; the processor is also used to base on the electromagnetic wave scattering characteristic information and position information to image the target object with electromagnetic waves.
  • a transceiver is used to collect electromagnetic echo signals at multiple times, and output the electromagnetic echo signals corresponding to each of the multiple times to a processor; the processor is used to acquire electromagnetic echo signals at multiple times.
  • the position information of the receiving point of the echo signal; the processor is further configured to perform electromagnetic wave detection on the target object based on the plurality of electromagnetic wave scattering feature information and the correspondence between each position information in the plurality of position information and the plurality of electromagnetic wave scattering feature information imaging.
  • the multiple times at which the transceiver collects the electromagnetic echo signal conforms to the first period, and the multiple times at which the processor obtains the position information conforms to the second period;
  • the first period is the same as the second period; or, the first period and the second period are in a multiple relationship.
  • the electromagnetic wave imaging device further includes at least three sensors, and the processor is configured to acquire relative position information between each of the at least three sensors and the positioning identifier, according to The relative position information of the at least three sensors and the positioning mark and the relative position information of the at least three sensors and the receiving point are obtained to obtain the relative position information of the receiving point and the positioning mark.
  • the relative position information of the sensor and the positioning mark is obtained according to the distance information between the sensor and the positioning mark.
  • the relative position information of the sensor and the positioning mark is obtained according to the angle information between the sensor and the positioning mark.
  • the positioning mark is at least one of the following: an identification point set on the target object, an identification point set within a specified range of the target object, an identification point on the target object any feature point.
  • the acquisition of electromagnetic echo signals by the transceiver is synchronized with the acquisition of location information by the processor.
  • the transceiver is specifically configured to transmit electromagnetic waves and receive electromagnetic echo signals scattered by the target object.
  • the transceiver is specifically configured to receive the electromagnetic echo signal released by the target object.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the medium includes a computer program that, when run on an apparatus, causes the apparatus to perform the second aspect and the electromagnetic wave imaging method of any one of the second aspect.
  • an embodiment of the present application provides a computer program, where the computer program includes an electromagnetic wave imaging method for executing the second aspect and any one of the second aspect.
  • the embodiments of the present application also provide a computer program product including executable instructions, when the computer program product is executed, the second aspect and any possible implementation of the method part or All steps are performed.
  • FIG. 1 is a schematic diagram of an exemplary electromagnetic wave imaging device
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an exemplary electronic device
  • FIG. 4 is a block diagram of the software structure of the electronic device exemplarily shown
  • FIG. 5 is a schematic flowchart of an electromagnetic wave imaging method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an exemplary synchronization manner
  • FIG. 7 is a schematic diagram of an exemplary motion trajectory
  • FIG. 8 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an exemplary scanning manner
  • FIG. 10 is a schematic flowchart of an electromagnetic wave imaging method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an exemplary motion trajectory
  • Figure 12a is a schematic diagram of an exemplary motion trajectory
  • Figure 12b is a schematic diagram of an exemplary motion trajectory
  • FIG. 13 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 14 is a block diagram of the software structure of the electronic device exemplarily shown.
  • 15 is a schematic flowchart of an electromagnetic wave imaging method provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • Electromagnetic wave imaging is an imaging method that uses electromagnetic waves as an information carrier.
  • the target to be imaged may also be referred to as a target object or a target object, etc., which is not limited in the present application.
  • the electromagnetic wave frequency band is lower than the optical frequency band, objects that cannot be penetrated by the optical frequency band become transparent in the electromagnetic wave frequency band, realizing the ability to see through the inside of the object, which makes electromagnetic wave imaging in non-destructive testing, security inspection, medical testing and other commercial and scientific research fields It has high application value.
  • Spatial resolution is the main performance index to measure the effect of electromagnetic wave imaging, including: range resolution and azimuth resolution.
  • c represents the speed of light
  • B represents the signal bandwidth
  • D represents the distance between the object to be imaged and the imaging device
  • f c represents the carrier center frequency of the electromagnetic wave
  • L represents the effective aperture length of the antenna of the imaging device.
  • the effective aperture length of the antenna of the imaging device needs to be increased.
  • the distance between the object to be imaged and the imaging device is 0.5 meters.
  • the required effective aperture length of the antenna is
  • the imaging device usually adopts an array antenna (antenna array), that is, several antenna elements (antenna elements) are arranged according to a certain rule, such as 1/2 of the wavelength, arranged in an area array/linear array, etc., as shown in Figure 1 1, the array antenna can scan the target object through each antenna on the array, and the terminal can perform electromagnetic wave imaging based on the scanning result of the antenna.
  • an array antenna antenna array
  • antenna elements antenna elements
  • Synthetic aperture electromagnetic imaging technology has two advantages: first, the reduction from a real array to a single antenna or a small-sized array antenna reduces the overall size of the antenna and device; second, it avoids the above-mentioned risks of a real array.
  • the realization of synthetic aperture electromagnetic imaging requires high positioning accuracy of the moving trajectory of the imaging platform, and the positioning error needs to be controlled at the wavelength level. Only in this way can coherent processing of signals collected at different spatial positions be achieved. . If the positioning error is large, it will not be able to image. For example, for an imaging device (ie, an electronic device) operating at a frequency of 60 GHz, the positioning error needs to be controlled within the order of 4 mm. For a device with an operating frequency of 3 GHz, the positioning error only needs to be controlled to the order of 8 cm.
  • the prior art proposes a synthetic aperture electromagnetic imaging method based on a mechanical scanning gantry or a mechanical scanning arm (referred to as a robotic arm), and the electromagnetic imaging module is placed on a mechanical scanning gantry or a robotic arm, By presetting the movement trajectory of the mechanical scanning frame or the mechanical arm and the sampling time of the electromagnetic imaging module, electromagnetic signals can be collected at a specified spatial position, thereby realizing synthetic aperture electromagnetic imaging.
  • this method can ensure the positioning accuracy.
  • the volume of the mechanical scanning gantry or the robotic arm is usually large, which cannot meet the requirements for portability and miniaturization of the equipment.
  • the prior art proposes a synthetic aperture electromagnetic imaging device based on an optical tracking system.
  • the device consists of two parts: one is a synthetic aperture electromagnetic imaging module; the other is a commercial optical tracking system.
  • the optical tracking system consists of an external infrared optical camera and multiple positioning markers. Wherein, the positioning marker and the electromagnetic imaging module are placed on a structural member, and the relative positions between them are fixed.
  • the infrared optical camera is fixed around an operating table and is separated from the above-mentioned structural parts.
  • the infrared optical camera captures the spatial positions of these positioning markers at the signal acquisition time of the imaging module, and then calculates the spatial centroid of these positioning markers, and uses the spatial centroid as the position of the electromagnetic imaging module.
  • the present application provides a portable electromagnetic wave imaging method, which can accurately locate the movement trajectory of an electronic device (or can be called an electromagnetic wave imaging device) by using a positioning marker, so as to obtain the electromagnetic echo signal and the position on the movement trajectory of the electronic device. Corresponding relationship, so as to meet the requirements of portability and miniaturization while ensuring the success rate of electromagnetic wave imaging.
  • FIG. 2 it is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario includes the electronic device 100 and the target object 200 .
  • the number of electronic devices and target objects may be one or more, and the number of electronic devices and target objects in the application scenario shown in FIG. 2 is only an example of adaptability. Not limited.
  • the application scenarios in this application may be life entertainment scenarios, security inspection scenarios, medical detection scenarios, etc., which are not limited in this application.
  • the electronic device in FIG. 2 may be a terminal, and may also be referred to as a mobile station (mobile station), a subscriber unit (subscriber unit), a station (station), a terminal equipment (terminal equipment, TE), and the like.
  • a mobile station mobile station
  • subscriber unit subscriber unit
  • station station
  • terminal equipment terminal equipment
  • TE terminal equipment
  • it may be a cellular phone, a personal digital assistant (PDA), a handheld, a pad, a handheld, a computing device or other processing device connected to a wireless modem, a vehicle equipment or wearable devices, virtual reality (VR) terminals, augmented reality (AR) terminals, terminals in industrial control (industrial control), terminals in unmanned driving (self driving), telemedicine ( Terminals in remote medical), terminals in smart grid, terminals in transportation safety, terminals in smart city, terminals in smart home, etc., in This is not limited.
  • VR virtual reality
  • AR augmented reality
  • FIG. 3 is a schematic structural diagram of an electronic device.
  • Figure 3 is a schematic structural diagram of an electronic device.
  • the electronic device includes at least one processor 101 , at least one transceiver 103 , and at least three sensors 104 .
  • the electronic device may also include at least one memory 102 .
  • the processor 101 , the memory 102 , the transceiver 103 and the sensor 104 are connected.
  • the electronic device may further include an output device 105 , an input device 106 and one or more antennas 107 .
  • the antenna 107 is connected to the transceiver 103 , and the output device 105 and the input device 106 are connected to the processor 101 .
  • the processor 101 may be a baseband processor or a CPU, and the baseband processor and the CPU may be integrated or separated.
  • the processor 101 can be used to implement various functions for the electronic device, for example, to process communication protocols and communication data, or to control the entire electronic device, execute software programs, and process data of software programs; or to assist Completion of computing processing tasks, such as graphic image processing or audio processing, etc.; or the processor 101 is used to implement one or more of the above functions.
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (Electrically erasable programmable read-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 102 may exist independently and be connected to the processor 101 .
  • the memory 102 can also be integrated with the processor 101, for example, integrated in one chip.
  • the memory 102 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 101 .
  • the processor 101 is configured to execute the computer program codes stored in the memory 102, thereby implementing the technical solutions in the embodiments of the present application.
  • the memory 102 can also be connected to the processor 101 through an interface outside the chip.
  • the transceiver 103 can be used to support the reception or transmission of electromagnetic wave signals, and the transceiver 103 can be connected to the antenna 107 .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 107 can receive electromagnetic wave signals
  • the receiver Rx of the transceiver 103 is configured to receive the electromagnetic wave signals from the antennas, and provide the electromagnetic wave signals after processing and conversion to the processor 101, so as to The processor 101 performs further processing on the converted electromagnetic wave signal, such as demodulation processing and decoding processing.
  • the output device 105 is in communication with the processor 101 and can display information in a variety of ways.
  • the output device 105 may be a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display device, a Cathode Ray Tube (CRT) display device, or a projector (projector) Wait.
  • Input device 106 communicates with processor 101 and can accept user input in a variety of ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the sensor 104 includes at least three sensors.
  • the sensor 104 may be a distance measuring sensor, which is used to obtain the distance information between the positioning marker and the sensor or a parameter used to indirectly represent the distance information between the sensor and the target object, for example
  • the parameters used to indirectly represent the distance information between the sensor and the target object may be parameters such as signal transmission duration.
  • the ranging sensor may be a femtosecond sensor.
  • the sensor 104 may also be a sensor in an optical camera for capturing images of the target object.
  • the sensor 104 may be a goniometric sensor for obtaining angle information between the positioning marker and the target object.
  • the types of sensors involved in this application are only illustrative examples, and in addition to the femtosecond sensor, goniometric sensor and goniometric sensor mentioned in this application, the sensor can also be any sensor that can make electronic A device that directly or indirectly obtains the distance between a sensor and a positioning marker. In the embodiment of the present application, a plurality of sensors are distributed in the electronic device.
  • FIG. 4 is a block diagram of the software structure of the electronic device 100 exemplarily shown.
  • the electronic device 100 includes, but is not limited to: an electromagnetic echo signal acquisition module, a self-positioning module, and an imaging module.
  • the electronic device 100 further includes a synchronization module.
  • each module may be implemented by a chip or a circuit, which is not limited in this application. It should be noted that FIG. 4 only shows some modules in the electronic device 100 , and the present application does not limit the names and numbers of the modules.
  • FIG. 5 shows a schematic flowchart of the electromagnetic wave imaging method provided by the embodiment of the present application, in FIG. 5:
  • Step 101a the electromagnetic echo signal collection module collects the electromagnetic echo signal.
  • the electromagnetic echo signal collection module can collect electromagnetic echo signals through a transceiver in the electronic device, such as an antenna.
  • the electromagnetic echo signal is used to indicate electromagnetic wave scattering characteristic information of the target object.
  • the antenna referred to in this application is the receiving antenna in FIG. 4 , which will not be described in detail below.
  • the electromagnetic echo signal acquisition module may collect electromagnetic echo signals in an active manner. Specifically, the electromagnetic echo signal acquisition module transmits electromagnetic waves and receives electromagnetic echoes scattered by the target object. wave signal.
  • the electromagnetic echo signal acquisition module may collect electromagnetic echo signals in a passive manner.
  • the target object may release electromagnetic echo signals, and the electromagnetic echo signal acquisition module receives the electromagnetic echo signals released by the target object. wave signal.
  • the electromagnetic echo signal released by the target object may be a thermal radiation signal.
  • Step 102a the electromagnetic echo signal acquisition module outputs first information to the imaging module, where the first information includes electromagnetic wave scattering characteristic information of the target object.
  • the electromagnetic echo signal acquisition module inputs the first information to the imaging module, where the first information is used to indicate the electromagnetic wave scattering characteristic information of the target object.
  • the first information may be an electromagnetic echo signal.
  • the electromagnetic echo signal acquisition module sends an electromagnetic echo signal including electromagnetic wave scattering characteristic information of the target object to the imaging module, and the imaging module can analyze the electromagnetic echo signal. Signal processing is performed to resolve the electromagnetic wave scattering characteristic information of the target object contained therein.
  • the first information may be electromagnetic wave scattering characteristic information of the target object.
  • the electromagnetic echo signal acquisition module may perform signal processing on the electromagnetic echo signal to obtain the electromagnetic wave scattering characteristic information of the target The electromagnetic wave scattering characteristic information of the object is output to the imaging module.
  • step 101b the position information of the receiving point of the electromagnetic echo signal is obtained from the positioning module, and the position information is used to indicate the relative position information of the receiving point and the positioning mark.
  • a positioning mark can be preset, and the position of the positioning mark can be used as an anchor point in space, so that during the movement of the electronic device, the electronic equipment (specifically, the receiving point of the electromagnetic wave signal) and the electronic equipment can be obtained.
  • the relative position information of the positioning mark so as to achieve accurate self-positioning.
  • the positioning mark is a mark whose position is fixed during the electromagnetic wave imaging process.
  • the positions of the positioning marks may be the same or different, which is not limited in this application.
  • the positioning mark may be a physical device, which is set on or near the target object.
  • the location marker may be active, ie, actively releasing a light source or signal.
  • the location marker may be passive, reflecting light impinging on it.
  • a device whose positioning identification is passive is used as an example for description. For a specific example, please refer to scenario 1.
  • the positioning identifier may be a virtual identifier, for example, any feature point on or near the target object.
  • a virtual identifier for example, any feature point on or near the target object.
  • each sensor can obtain the distance information between it and the positioning mark, or is used to indirectly mark the sensor and the positioning mark. Relevant parameters of distance information between locating markers.
  • the self-positioning module can obtain distance information or related parameters of at least three sensors.
  • the self-positioning module may obtain the distance information between the sensor and the target object based on the relevant parameters.
  • the self-positioning module can obtain the relative position between each sensor and the positioning mark based on the acquired distance information between each sensor and the positioning mark.
  • the self-positioning module can obtain the relative position between the receiving point of the electromagnetic echo signal and the positioning mark based on the relative position between each sensor and the positioning mark and the relative positions between the at least three sensors and the receiving point of the electromagnetic echo signal relative position.
  • the relative position between the sensor and the receiving point of the electromagnetic echo signal is fixed, and the specific value can be obtained by measurement.
  • the receiving point of the electromagnetic echo signal described in the embodiments of the present application may be a transceiver in an electronic device, for example, an antenna in the electronic device.
  • Step 102b the self-positioning module outputs the position information to the imaging module.
  • the positioning module obtains the position information, that is, the relative position between the receiving point of the electromagnetic echo signal and the positioning mark, the position information is output to the imaging module.
  • the electromagnetic echo signal acquisition module and the self-positioning module can perform the above operations at multiple times.
  • Action that is, the electromagnetic echo signal collection module can collect the electromagnetic echo signals at multiple times, and the self-positioning module can obtain the position information at multiple times.
  • the electromagnetic echo signal acquisition module and the self-positioning module perform corresponding actions according to a certain time sequence (which can also be understood as a period).
  • a certain time sequence which can also be understood as a period.
  • the multiple times at which the electromagnetic echo signal acquisition module collects the electromagnetic echo signal conforms to the first period, that is, the interval between the multiple times conforms to the first period. It can be understood that each period in the first period triggers The moment corresponds to a moment of the plurality of moments.
  • the multiple times at which the location information is obtained by the self-positioning module conforms to the second period, that is, the interval between the multiple times conforms to the second period. It can be understood that each period triggering time in the second period corresponds to the multiple times. a moment in a moment.
  • the electromagnetic echo signal acquisition module can collect electromagnetic echo signals according to the first cycle, that is, the electromagnetic echo signal acquisition module performs step 101a at the trigger time of each cycle of the first cycle, that is, collects electromagnetic echo signals .
  • the self-positioning module may collect electromagnetic echo signals according to the second cycle. Specifically, the self-positioning module executes step 101b at the triggering moment of each cycle of the second cycle, ie, obtains the position information.
  • the first cycle may be the same as the second cycle, that is, at the triggering moment of each cycle, step 101a and step 101b are performed simultaneously.
  • the first period may be a multiple of the second period.
  • the multiple relationship may be an integer, for example, the first period is 3 times the second period.
  • the multiple relationship can also be a non-integer multiple, for example, the first period is 1/3 times the second period (it can also be expressed as the second period is 3 times the first period), or the first period is 2/3 times of the second period, which is not limited in this application.
  • the electromagnetic echo signal collects the electromagnetic echo signal every 1ms
  • the self-positioning module obtains the position information every 3ms, wherein, while the self-positioning module collects the position information, the electromagnetic echo signal collection module collects the electromagnetic echo signal.
  • the concept of clock can be introduced. Specifically, the electronic device has a clock source to generate a clock signal. Both the electromagnetic echo signal acquisition module and the self-positioning module perform operations based on the clock signal, as shown in the figure.
  • the electromagnetic echo signal acquisition module collects the electromagnetic echo signal at the first clock edge, and the interval between the clock signals It is 1ms, that is to say, the electromagnetic echo signal acquisition module is triggered on each clock edge, that is, the action of acquiring the electromagnetic echo signal is performed.
  • the self-positioning module is triggered on the third and multiples of 3 clock edges, that is, the action of acquiring position information is performed. That is to say, in the case of different periods, the electromagnetic echo signal acquisition module and the self-positioning module can also be regarded as performing corresponding actions synchronously.
  • the synchronization module in order to realize the synchronization between the self-positioning module and the electromagnetic echo signal acquisition module, can send a control signal to the self-positioning module and the electromagnetic echo signal module to indicate the self-positioning module and the electromagnetic echo signal.
  • the signal module executes the response action synchronously.
  • the synchronization module can send a first control signal to the electromagnetic echo signal acquisition module to instruct the electromagnetic echo signal acquisition module and the first period to be triggered, and the synchronization module can send a second control signal to the self-positioning module to trigger the electromagnetic echo signal acquisition module. Indicates triggering of the self-locating module and the second cycle.
  • the self-positioning module and the electromagnetic echo signal acquisition module realize synchronization according to their respective periods and clock signals in response to the received control signal.
  • the first period and/or the second period may be dynamically set, and the electromagnetic echo signal acquisition module and/or The self-locating module indicates the current cycle.
  • the first period and the second period may also be pre-configured, that is, the self-positioning module and the electromagnetic echo signal acquisition module may perform corresponding operations based on the preset period without an instruction from the synchronization module.
  • Step 103 the imaging module performs electromagnetic wave imaging on the target object based on electromagnetic wave scattering feature information and position information.
  • the imaging module can obtain electromagnetic wave scattering feature information contained in the first information, and perform electromagnetic wave imaging on the target object based on the electromagnetic wave scattering feature information and the received position information.
  • the electronic device can display the result of the electromagnetic wave imaging on the screen, as shown in FIG. 7 , where the dotted line in FIG. 7 is a schematic diagram of the simulation of the running trajectory of the electronic device.
  • the electronic device can also display the results of electromagnetic wave imaging through other electronic devices that are communicatively connected to it (which can be wired or wirelessly connected), for example, the electronic device can send the results of electromagnetic wave imaging to another electronic device. device, another electronic device can display the result of imaging the received electromagnetic waves.
  • the electromagnetic echo signal acquisition module and the self-positioning module perform corresponding actions periodically, that is to say, the electromagnetic echo signal module and the self-positioning module will input corresponding signals to the imaging module according to their respective periods. parameters (including electromagnetic wave scattering feature information and location information).
  • the imaging module can perform electromagnetic wave imaging on the target object based on the acquired plurality of electromagnetic wave scattering feature information and the plurality of position information, and the correspondence between the plurality of electromagnetic wave scattering feature information and the plurality of position information.
  • the corresponding relationship refers to the corresponding relationship between multiple electromagnetic wave scattering feature information and multiple location information in time.
  • the self-positioning module and the electromagnetic echo signal acquisition module periodically acquire the corresponding relationship.
  • the execution of the self-positioning module and the electromagnetic echo signal acquisition module are synchronized, so there is a temporal correspondence between each electromagnetic wave scattering feature information and the position information. For example, at time t 1 , the electromagnetic echo The wave signal acquisition module collects the first electromagnetic echo signal and outputs it to the imaging module.
  • the self-positioning system also acquires the first position information at this moment and outputs it to the imaging module.
  • the electromagnetic echo signal is collected
  • the module collects the second electromagnetic echo signal and outputs it to the imaging module.
  • the self-positioning system also obtains the second position information at this moment and outputs it to the imaging module.
  • the imaging module determines the relationship between the first electromagnetic echo signal and the first electromagnetic echo signal. One position information corresponds to, and the second electromagnetic echo signal corresponds to the second position information.
  • the imaging module may determine the temporal correspondence between the plurality of electromagnetic wave scattering feature information and the plurality of position information based on the receiving moment.
  • the electromagnetic echo signal acquisition module can output the first information at multiple times and the timestamp corresponding to each first information to the imaging module, and the self-positioning module can output the position information at multiple times and each position.
  • the timestamp corresponding to the information is output to the imaging module.
  • the imaging module may determine the correspondence between the multiple pieces of first information and the multiple pieces of location information based on the timestamps of the first information and the timestamps of the location information.
  • the time stamp may be a system time or a relative time (for example, a relative time between the triggering moment of the control signal), which is not limited in this application.
  • the execution cycles of the electromagnetic echo signal acquisition module and the self-positioning module may be different, that is to say, the multiple position information and multiple electromagnetic wave scattering feature information acquired by the imaging module are not every time.
  • the imaging module can estimate the motion trajectory based on an interpolation algorithm, so that each electromagnetic wave scattering feature information corresponds to corresponding position information; on the other hand, if the position information obtained by the imaging module When there is more electromagnetic wave scattering characteristic information, the imaging module can perform down-sampling operation on the motion trajectory based on the decimation algorithm, so that each electromagnetic wave scattering characteristic information corresponds to the positioning position information one-to-one.
  • the imaging module can estimate the motion trajectory based on an interpolation algorithm, so that each electromagnetic wave scattering feature information corresponds to corresponding position information; on the other hand, if the position information obtained by the imaging module When there is more electromagnetic wave scattering characteristic information, the imaging module can perform down-sampling operation on the motion trajectory based on the decimation algorithm, so that each electromagnetic wave scattering characteristic information corresponds to
  • the self-positioning module and the electromagnetic echo signal acquisition module output response data or signals to the imaging module as an example after each acquisition of corresponding data or signals.
  • the self-positioning module and the electromagnetic echo signal acquisition module can also output the data or signals and the corresponding time information to the imaging module after acquiring multiple data or signals, and the imaging module can be based on the time information of each signal or data. , determine the correspondence between the position information and the electromagnetic wave scattering feature information, and carry out the electromagnetic wave imaging process of the target object.
  • the imaging module may perform the electromagnetic wave imaging process after acquiring all the data or signals input by the electromagnetic echo signal acquisition module and the self-positioning module.
  • the imaging module may perform the electromagnetic wave imaging process after acquiring enough data or signals input from the electromagnetic echo signal acquisition module and the self-positioning module.
  • the electronic device realizes the accuracy of self-positioning based on the relative position between the receiving point and the positioning mark, and at the same time improves the flexibility of the electronic device to meet the requirements of portability and miniaturization.
  • FIG. 8 is a schematic diagram of an exemplary application scenario.
  • the electronic device 100 is a mobile phone, and the mobile phone is provided with sensors 104, 104a, 104b, 104c and 104d, respectively.
  • a transceiver 107 is also provided on the top, and the transceiver is an antenna in an example.
  • the sensor is a femtosecond sensor as an example. It should be noted that the number and position of each sensor shown in this embodiment and the following embodiments, as well as the relative position between the sensor and the antenna are schematic examples, which are not limited in this application, and will not be described below. Repeat instructions.
  • the positioning marker 300 is a peripheral device marker, which is set on the target object 200 in this embodiment.
  • the target object is a cardboard box, and scissors are placed in the box.
  • the sensor uses the optical principle to measure the distance. Therefore, it is necessary to ensure that there is no obstruction between the sensor 104 and the positioning marker 300 . It should be noted that, during the imaging process, the position of the positioning mark is fixed.
  • the mobile phone 100 starts an electromagnetic wave imaging process to perform motion scanning on the target object 200.
  • this application does not make a special agreement on the movement trajectory of the mobile phone during the motion scanning process.
  • the scanning method shown in Figure 9 can be used. It should be noted that the moving speed and direction of the mobile phone can be agreed upon according to the performance of the mobile phone, which is not limited in this application. Those in the art need to understand that the longer the scanning duration of the mobile phone and the richer the trajectory, the more accurate the imaging will be.
  • FIG. 10 shows a schematic flowchart of the electromagnetic wave imaging provided by the embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of the electromagnetic wave imaging provided by the embodiment of the present application.
  • Step 201 the synchronization module sends a control signal to the electromagnetic echo signal acquisition module and the self-positioning module.
  • the synchronization module respectively sends the first control signal to the electromagnetic echo signal acquisition module, and sends the second control signal to the self-positioning module.
  • the first control signal is used to instruct to trigger the electromagnetic echo signal acquisition module, and to instruct the first period.
  • the second control signal is used to instruct the self-positioning module to be triggered, and to instruct the second period.
  • Step 202a the electromagnetic echo signal collection module transmits electromagnetic waves.
  • the electromagnetic echo collection module in response to the received first control signal, sends electromagnetic waves through the antenna 107 at each moment ti .
  • Step 203a the electromagnetic echo signal collection module collects the electromagnetic echo signal.
  • the electromagnetic echo signal acquisition module collides with the target object, it will generate an electromagnetic echo signal, which may also be called an electromagnetic scattering echo signal, and the electromagnetic echo signal is used to indicate the electromagnetic scattering of the target object. characteristic information.
  • the electromagnetic echo signal acquisition module collects the electromagnetic echo signal at each time t i according to the time sequence (ie, the first cycle) issued by the synchronization module.
  • the electromagnetic echo signal acquisition module performs signal processing on the collected electromagnetic echo signals to obtain electromagnetic scattering characteristic information of the target object.
  • the electromagnetic scattering characteristic information acquired by the electromagnetic echo signal acquisition module at different times t i is ⁇ i .
  • Step 204a the electromagnetic echo signal acquisition module outputs the electromagnetic scattering characteristic information of the target object to the imaging module.
  • Step 202b the self-positioning module receives the data input by the sensor.
  • the sensors in this embodiment are femtosecond sensors, which can transmit optical signals and receive optical signals reflected by the positioning marks to obtain the transmitted optical signals and the received optical signals.
  • the time difference ⁇ t between the optical signals can also be understood as the parameter mentioned above for indirectly representing the distance between the sensor and the positioning marker.
  • the self-positioning module can read the time difference ⁇ t i obtained by each sensor at different times t i . That is to say, the self-positioning module can acquire at least three ⁇ t i at time t i .
  • the self-positioning module can obtain ⁇ t ai corresponding to sensor 104a , ⁇ t bi corresponding to sensor 104b , ⁇ t ci corresponding to sensor 104c , and ⁇ t di corresponding to sensor 104d .
  • Step 203b the self-positioning module determines the relative position between the antenna and the positioning mark based on the data input by the sensor and the relative position between the sensor and the antenna.
  • the self-positioning module obtains the distance information between each sensor and the positioning mark based on the time difference between each sensor and the positioning mark, and further determines that the positioning mark is in the space based on the distance information between each sensor and the positioning mark location information. And the self-positioning module can obtain the relative position between each sensor and the positioning mark based on the position information of the positioning mark in space. Among them, since the relative position between each sensor and the antenna is known, the self-positioning module can obtain the antenna and the positioning mark based on the relative position between each sensor and the positioning mark and the relative position between each sensor and the antenna relative position between.
  • FIG. 11 is a schematic diagram of the motion trajectory of the sensor and the antenna when the mobile phone moves.
  • the coordinate values of the antenna at time t i are ( xi , y i , z i ), and the location identifier is denoted as the coordinate origin (0, 0, 0).
  • each sensor including sensors 104a, 104b, 104c, and 104d
  • the self-positioning module may obtain the position (ie, the coordinates) of the antenna at time ti based on a time of arrival algorithm (Time of Arrival, TOA).
  • TOA Time of Arrival
  • the relative position between the antenna and the positioning identifier can be calculated in a feasible manner. For example, it may also be based on a Time Difference of Arrival (TDOA) algorithm, which is not limited in this application.
  • TDOA Time Difference of Arrival
  • Step 204b the self-positioning module outputs the position information of the antenna to the imaging module, where the position information is used to indicate the relative position between the antenna and the positioning mark.
  • the self-positioning module can output the relative position information to the imaging module.
  • each module in this application can perform deviation correction based on the known delay, so as to synchronize in the initial steps (ie, steps 202a and 202b)
  • the input steps ie, step 204a and step 204b
  • the specific deviation correction method may refer to the prior art, which is not limited in this application.
  • Step 205 the imaging module performs electromagnetic wave imaging on the target object based on the position information and the electromagnetic scattering feature information.
  • the imaging module can simultaneously acquire the set of electromagnetic scattering feature information ⁇ i ⁇ input by the electromagnetic echo acquisition module and the set of antenna position information input by the self-positioning module. ⁇ P i ⁇ .
  • the imaging module can perform synthetic aperture electromagnetic imaging operations on the above two sets of information. Specifically, the imaging module can determine the motion trajectory of the antenna of the electromagnetic echo collection module at this time set based on the position information input by the self-positioning module at the above-mentioned time set ⁇ t i ⁇ , as shown in FIG. 12a , it should be noted that, The movement trajectory of the antenna can be a trajectory on a two-dimensional plane or a trajectory on a three-dimensional space.
  • FIG. 12a only takes the motion trajectory on the two-dimensional plane as an example for illustration.
  • X and Y respectively represent the two axes of the two-dimensional plane, for example, X represents the horizontal axis and Y represents the vertical axis.
  • the imaging module may determine the correspondence between any electromagnetic scattering characteristic information ⁇ i in the set ⁇ i ⁇ of electromagnetic scattering characteristic information and the point on the motion trajectory, as shown in FIG. 12b .
  • the correspondence between the electromagnetic scattering characteristic information and the points on the motion track refers to the corresponding relation in time, and it can also be understood as the electromagnetic scattering characteristic information ⁇ i and the position information P i of the antenna at the time corresponding to t i .
  • the imaging module since the sampling period of the self-positioning module and the electromagnetic echo acquisition module is the same, the imaging module does not need to perform interpolation or decimation processing, that is, the set of electromagnetic scattering feature information ⁇ i ⁇ and The number of elements of the set ⁇ P i ⁇ of the position information of the antennas is equal, and corresponds to each other at the time.
  • the correspondence can be expressed as a new sampling variable Among them, the subscript i in the formula represents the value of time t i .
  • the imaging module can perform electromagnetic wave imaging on the target object based on the non-uniform sampling synthetic aperture imaging method, and display the imaging result.
  • the above embodiment is described by taking a distance measuring sensor (ie a femtosecond sensor) as an example.
  • the sensor may also be an angle measuring sensor.
  • the self-positioning module can read the relationship between each sensor and the positioning mark. and the relative position between the antenna and the positioning mark is obtained based on the triangulation method.
  • each of the at least three angle sensors can obtain the angle information between the angle sensor and the positioning mark.
  • the angle information is the difference between the straight line formed by the angle sensor and the other angle sensor.
  • the angle between the positioning marks, the self-positioning module can obtain the distance between each goniometer sensor and the positioning mark according to the triangulation method based on the angle information of each goniometer sensor and the relative position between each goniometer sensor, For the specific calculation method, reference may be made to the relevant description of the triangulation method, which is not repeated in this application.
  • the self-positioning module can locate the mark as the origin, and calculate the relative position between the antenna and the positioning mark based on the distance between each goniometer sensor and the positioning mark and the relative position between each goniometer sensor and the antenna.
  • FIG. 13 is a schematic diagram of an exemplary application scenario.
  • the electronic device 100 is a mobile phone, and the mobile phone is provided with sensors 104, 104a, 104b, 104c and 104d, respectively.
  • a transceiver 107 is also provided on the top, and the transceiver is an antenna in an example.
  • the sensor is a femtosecond sensor as an example. It should be noted that the number and position of each sensor shown in this embodiment and the following embodiments, as well as the relative position between the sensor and the antenna are schematic examples, which are not limited in this application, and will not be described below. Repeat instructions.
  • the location identification is any feature point on the target object 200
  • the feature point may be a feature point on the target object 200 such as a pattern, any corner, etc. that can be distinguished from other parts.
  • the sensor 104 in this embodiment may be a sensor in an optical camera, and the sensor in the optical camera may collect an image of the target object 200 .
  • FIG. 14 is a software structure diagram of an exemplary electronic device. Referring to FIG. 14 , the electronic device further includes an image acquisition unit, and the image acquisition unit (also referred to as an image processing unit) can Image analysis is performed to determine the feature points on the target object.
  • the Scale-invariant feature transform (SIFT) algorithm and the Histogram of Oriented Gradient (HOG) algorithm can be used.
  • the image acquisition unit can obtain the distance between the feature point and the sensor.
  • the sensor is a sensor in a depth camera. In other embodiments, it can also be other achievable sensors.
  • the sensor of the technical solutions in the embodiments of the present application may be made to the prior art, which is not limited in this application.
  • the time interval at which the sensor collects images may be consistent with the period corresponding to the self-positioning module, so as to reduce the power consumption of the system.
  • FIG. 15 shows a schematic flowchart of electromagnetic wave imaging provided in this embodiment of the present application.
  • FIG. 15 shows a schematic flowchart of electromagnetic wave imaging provided in this embodiment of the present application.
  • FIG. 15 shows a schematic flowchart of electromagnetic wave imaging provided in this embodiment of the present application.
  • Step 301 the synchronization module sends a control signal to the electromagnetic echo signal acquisition module and the self-positioning module.
  • Step 302a the electromagnetic echo signal collection module transmits electromagnetic waves.
  • Step 303a the electromagnetic echo signal collection module collects the electromagnetic echo signal.
  • Step 304a the electromagnetic echo signal acquisition module outputs the electromagnetic scattering characteristic information of the target object to the imaging module.
  • Step 302b the self-positioning module receives the distance information input by the image acquisition unit.
  • Step 303b the self-positioning module determines the relative position between the antenna and the positioning marker based on the distance information and the relative position between the sensor and the antenna.
  • Step 304b the self-positioning module outputs the position information of the antenna to the imaging module, where the position information is used to indicate the relative position between the antenna and the positioning mark.
  • Step 305 the imaging module performs electromagnetic wave imaging on the target object based on the position information and the electromagnetic scattering feature information.
  • the self-location module may acquire the relationship between the transceiver (ie, the antenna) and the multiple location identifiers.
  • Relative position that is, coordinates
  • the self-positioning system can perform multi-coordinate fusion on the acquired position information.
  • the geometric centroid of multiple coordinates is taken as the coordinates of the transceiver, which can improve the accuracy of positioning and further improve the electromagnetic wave. imaging effect.
  • the electronic device includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the electronic device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 16 shows a possible schematic structural diagram of the electronic device 400 involved in the above-mentioned embodiment, as shown in FIG. 16 .
  • the electronic device 400 may include: a collection module 401 , an acquisition module 402 , and a processing module 403 .
  • the acquisition module is used to collect electromagnetic echo signals, and the electromagnetic echo signals are used to indicate the electromagnetic wave scattering characteristic information of the target object.
  • the obtaining module 402 is configured to obtain the position information of the receiving point of the electromagnetic echo signal, where the position information is used to indicate the relative position information of the receiving point and the positioning mark.
  • the processing module 403 is configured to perform electromagnetic wave imaging on the target object based on electromagnetic wave scattering feature information and position information.
  • the acquisition module 401 is used to acquire electromagnetic echo signals at multiple times.
  • the obtaining module 402 is configured to obtain the position information of the receiving point of the electromagnetic echo signal at multiple times.
  • the processing module 403 is configured to perform electromagnetic wave imaging on the target object based on the plurality of electromagnetic wave scattering feature information and the correspondence between each position information in the plurality of position information and the plurality of electromagnetic wave scattering feature information.
  • the electromagnetic wave imaging device includes at least three sensors, and the acquisition module 402 is used to acquire the relative position information of each of the at least three sensors and the positioning mark, according to the relative position information between the at least three sensors and the positioning mark The position information and the relative position information of the at least three sensors and the receiving point are used to obtain the relative position information of the receiving point and the positioning mark.
  • the relative position information of the sensor and the positioning mark is obtained according to the distance information between the sensor and the positioning mark.
  • the relative position information of the sensor and the positioning mark is obtained according to the angle information between the sensor and the positioning mark.
  • the positioning mark is at least one of the following: an identification point set on the target object, an identification point set within a specified range of the target object, and any feature point on the target object.
  • the acquisition of the electromagnetic echo signal by the acquisition module 301 is synchronized with the acquisition of the position information by the acquisition module 302 .
  • the acquisition module 301 is used for transmitting electromagnetic waves and receiving electromagnetic echo signals scattered by the target object.
  • the acquisition module 301 is configured to receive the electromagnetic echo signal released by the target object.
  • the apparatus includes a processing module 501 , a communication module 502 and a sensor 503 .
  • the apparatus further includes a storage module 504 .
  • the processing module 501, the communication module 502, the sensor 503 and the storage module 504 are connected through a communication bus.
  • the communication module 502 may be a device with a transceiving function for transmitting or receiving signals.
  • the storage module 504 may include one or more memories, which may be devices in one or more devices or circuits for storing programs or data.
  • the storage module 504 can exist independently, and is connected to the processing module 501 through a communication bus.
  • the storage module can also be integrated with the processing module 501 .
  • the apparatus 500 may be used in an electronic device, circuit, hardware component or chip.
  • the apparatus 500 may be an electronic device in this embodiment of the present application.
  • a schematic diagram of the electronic device may be shown in FIG. 3 .
  • the communication module 502 of the apparatus 500 may include an antenna and a transceiver of an electronic device, for example, the antenna 105 and the transceiver 103 in FIG. 3 .
  • the apparatus 500 may be a chip in the electronic device in the embodiment of the present application.
  • the communication module 502 may be an input or output interface, a pin or a circuit, or the like.
  • the storage module may store computer execution instructions of the method on the network device side, so that the processing module 501 executes the method on the network device side in the foregoing embodiment.
  • the storage module 504 can be a register, cache or RAM, etc., and the storage module 504 can be integrated with the processing module 501; the storage module 504 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module 504 can be combined with
  • the processing modules 501 are independent of each other.
  • the transceiver may be integrated on the device 500 , for example, the communication module 502 integrates the transceiver 103 .
  • the apparatus 500 is an electronic device in an embodiment of the present application or a chip in the electronic device, the method performed by the electronic device in the foregoing embodiment can be implemented.
  • the chip shown in FIG. 17 includes a processor 501 and an interface 502 .
  • the number of processors 501 may be one or more, and the number of interfaces 502 may be multiple.
  • the chip or chip system may include memory 503 .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media can include both computer storage media and communication media and also include any medium that can transfer a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a computer.
  • the computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to carry or carry instructions or data structures
  • the required program code is stored in the form and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable , twisted pair, DSL or wireless technologies such as infrared, radio and microwave
  • Disk and disc as used herein includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the embodiments of the present application also provide a computer program product.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof. If implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the above-mentioned computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the above-mentioned method embodiments are generated.
  • the aforementioned computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.

Abstract

一种电磁波成像方法、系统及装置,该方法包括:采集电磁回波信号,电磁回波信号用于指示目标对象(200)的电磁波散射特征信息;获取电磁回波信号的接收点的位置信息,位置信息用于指示接收点与定位标识(300)的相对位置信息;基于电磁波散射特征信息和位置信息,对目标对象(200)进行电磁波成像。该方法可在保证电子设备的自定位的精准度的同时,满足电子设备的便携性和小型化需求,有效提高电磁波成像的成功率以及电子设备的灵活性。

Description

电磁波成像方法、装置及系统
本申请要求于2020年8月17日提交中国国家知识产权局、申请号为202010826573.5、申请名称为“电磁波成像方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电磁波成像领域,尤其涉及一种电磁波成像方法、装置及系统。
背景技术
电磁波成像是一种以电磁波作为信息载体的成像手段,其原理是通过主动或者被动检测拟成像目标及周围散射场的信号,重构物体的形状、特征或者介电常数分布,形成图像。由于电磁波频段比光学频段更低,许多对光学频段无法穿透的物体,在电磁波频段变得透明,实现对物体内部透视的能力,这使得电磁波成像在无损检测、安检、医学检测等商业和科研领域有极高应用价值。
目前,电磁波成像的方式通常分为两种,一种为通过实阵列技术进行电磁波成像,但是,为了实现较高成像性能,常需要设置较大的阵列孔径,导致实阵列装置的体积较大,另一种为利用体积较小的基于合成孔径技术进行电磁波成像的装置,该方式需要较高的轨迹定位精准度。为达到较高的轨迹定位精准度,已有技术通常采用机械臂或光学追踪等通过机械精准控制的方式,以控制装置的移动轨迹,但是,该方式同样存在装置体积较大,且不便携的问题。
发明内容
本申请提供一种电磁波成像方法、装置及系统,能够满足电子设备的便携性和小型化需求。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种电磁波成像系统。该电磁波成像系统包括电磁回波信号采集模块、自定位模块和成像模块。具体的,电磁回波信号采集模块,用于采集电磁回波信号,并向成像模块输出第一信息,第一信息包括目标对象的电磁波散射特征信息。自定位模块,用于获取电磁回波信号的接收点的位置信息,并向成像模块输出位置信息,位置信息用于指示接收点与定位标识的相对位置信息。成像模块,用于基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成像。这样,本申请可在保证电子设备的自定位的精准度的同时,满足电子设备的便携性和小型化需求。
根据第一方面,电磁回波信号采集模块,用于采集多个时刻的电磁回波信号,并向成像模块输出多个时刻中每个时刻对应的第一信息。自定位模块,用于获取多个时刻的电磁回波信号的接收点的位置信息,并向成像模块输出多个时刻中每个时刻对应的位置信息。成像模块,用于基于多个电磁波散射特征信息以及多个位置信息中的每个位置信 息与多个电磁波散射特征信息的对应关系,对目标对象进行电磁波成像。这样,成像模块可基于获取到的多个电磁波散射特征信息和多个位置信息以及它们之间的对应关系,对目标对象进行电磁波成像,从而保证电子设备的自定位的精准度。
根据第一方面,或者以上第一方面的任意一种实现方式,电磁回波信号采集模块采集电磁回波信号的多个时刻符合第一周期,自定位模块获取位置信息的多个时刻符合第二周期;其中,第一周期与第二周期相同;或者,第一周期与第二周期为倍数关系。这样,电磁回波信号采集模块以及自定位模块可按照各自的周期执行对应操作,以实现电磁回波信号的采集与位置信息的获取同步,从而使成像模块能够获取到多个电磁波散射特征信息和多个位置信息之间的对应关系。
根据第一方面,或者以上第一方面的任意一种实现方式,电磁波成像系统还包括至少三个传感器;自定位模块,用于获取至少三个传感器中每个传感器与定位标识的相对位置信息,根据至少三个传感器与定位标识的相对位置信息以及至少三个传感器与接收点的相对位置信息,获得接收点与定位标识的相对位置信息。这样,本申请可通过至少三个传感器所采集到的信息或参数,以实现对接收点的精准定位。示例性的,传感器的数量越多,则定位越准确。
根据第一方面,或者以上第一方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的距离信息得到的。这样,本申请可基于多个测距传感器获取到与定位标识之间的距离信息,以对接收点进行精准定位。
根据第一方面,或者以上第一方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的角度信息得到的。这样,本申请可基于多个测角传感器获取到与定位标识之间的角度信息,以对接收点进行精准定位。
根据第一方面,或者以上第一方面的任意一种实现方式,定位标识为以下至少之一:设置于目标对象上的标识点、设置于目标对象的指定范围内的标识点、目标对象上的任一特征点。这样,本申请中的定位标识可以是虚拟的,还可以是实体的,以提升定位标识的灵活性。
根据第一方面,或者以上第一方面的任意一种实现方式,系统还包括同步模块,用于向电磁回波信号采集模块和自定位模块发送控制信号,控制信号用于同步电磁回波信号采集模块的电磁回波信号采集与自定位模块的位置信息获取。这样,通过同步模块下发控制信号,可使得电磁回波信号采集模块的采集电磁回波信号的动作与自定位模块获取位置信息的动作同步,进而使得成像模块获得一一对应的电磁波散射特征信息与位置信息。
根据第一方面,或者以上第一方面的任意一种实现方式,电磁回波信号采集模块,具体用于发射电磁波,并接收经目标对象散射后的电磁回波信号。这样,电磁回波信号采集模块可通过主动采集的方式,获取到电磁回波信号。
根据第一方面,或者以上第一方面的任意一种实现方式,电磁回波信号采集模块,具体用于接收目标对象释放的电磁回波信号。这样,电磁回波信号采集模块可通过被动采集的方式,获取到电磁回波信号。
第二方面,本申请实施例提供一种电磁波成像方法。该方法应用于电磁波成像装置,方法包括:采集电磁回波信号,电磁回波信号用于指示目标对象的电磁波散射特征信息;获取电磁回波信号的接收点的位置信息,位置信息用于指示接收点与定位标识的相对位置信息;基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成像。
根据第二方面,采集电磁回波信号包括:采集多个时刻的电磁回波信号;获取电磁回波信号的接收点的位置信息,包括:获取多个时刻的电磁回波信号的接收点的位置信息;基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成像,包括:基于多个电磁波散射特征信息以及多个位置信息中的每个位置信息与多个电磁波散射特征信息的对应关系,对目标对象进行电磁波成像。
根据第二方面,或者以上第二方面的任意一种实现方式,采集电磁回波信号的多个时刻符合第一周期,获取位置信息的多个时刻符合第二周期;其中,第一周期与第二周期相同;或者,第一周期与第二周期为倍数关系。
根据第二方面,或者以上第二方面的任意一种实现方式,电磁波成像装置包括至少三个传感器,获取电磁回波信号的接收点的位置信息,包括:获取至少三个传感器中每个传感器与定位标识的相对位置信息,根据至少三个传感器与定位标识的相对位置信息以及至少三个传感器与接收点的相对位置信息,获得接收点与定位标识的相对位置信息。
根据第二方面,或者以上第二方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的距离信息得到的。
根据第二方面,或者以上第二方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的角度信息得到的。
根据第二方面,或者以上第二方面的任意一种实现方式,定位标识为以下至少之一:
设置于目标对象上的标识点、设置于目标对象的指定范围内的标识点、目标对象上的任一特征点。
根据第二方面,或者以上第二方面的任意一种实现方式,电磁回波信号的采集与位置信息的获取同步。
根据第二方面,或者以上第二方面的任意一种实现方式,采集电磁回波信号,包括:发射电磁波,并接收经目标对象散射后的电磁回波信号。
根据第二方面,或者以上第二方面的任意一种实现方式,采集电磁回波信号,包括:接收目标对象释放的电磁回波信号。
第三方面,本申请实施例提供一种电磁波成像装置。装置包括处理器、收发器和至少三个传感器;处理器与收发器和至少三个传感器耦合;收发器,用于接收采集电磁回波信号,并向处理器输出电磁回波信号,电磁回波信号用于指示目标对象的电磁波散射特征信息;处理器,用于获取收发器的位置信息,位置信息用于指示接收点与定位标识的相对位置信息;处理器,还用于基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成像。
根据第三方面,收发器,用于采集多个时刻的电磁回波信号,并向处理器输出多个时刻中每个时刻对应的电磁回波信号;处理器,用于获取多个时刻的电磁回波信号的接收点的位置信息;处理器,还用于基于多个电磁波散射特征信息以及多个位置信息中的 每个位置信息与多个电磁波散射特征信息的对应关系,对目标对象进行电磁波成像。
根据第三方面,或者以上第三方面的任意一种实现方式,收发器采集电磁回波信号的多个时刻符合第一周期,处理器获取位置信息的多个时刻符合第二周期;其中,第一周期与第二周期相同;或者,第一周期与第二周期为倍数关系。
根据第三方面,或者以上第三方面的任意一种实现方式,电磁波成像装置还包括至少三个传感器,处理器,用于获取至少三个传感器中每个传感器与定位标识的相对位置信息,根据至少三个传感器与定位标识的相对位置信息以及至少三个传感器与接收点的相对位置信息,获得接收点与定位标识的相对位置信息。
根据第三方面,或者以上第三方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的距离信息得到的。
根据第三方面,或者以上第三方面的任意一种实现方式,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的角度信息得到的。
根据第三方面,或者以上第三方面的任意一种实现方式,定位标识为以下至少之一:设置于目标对象上的标识点、设置于目标对象的指定范围内的标识点、目标对象上的任一特征点。
根据第三方面,或者以上第三方面的任意一种实现方式,收发器的电磁回波信号采集与处理器的位置信息获取同步。
根据第三方面,或者以上第三方面的任意一种实现方式,收发器,具体用于发射电磁波,并接收经目标对象散射后的电磁回波信号。
根据第三方面,或者以上第三方面的任意一种实现方式,收发器,具体用于接收目标对象释放的电磁回波信号。
第四方面,本申请实施例提供一种计算机可读存储介质。该介质包括计算机程序,当计算机程序在装置上运行时,使得装置执行第二方面以及第二方面中任意一项的电磁波成像方法。
第五方面,本申请实施例提供一种计算机程序,该计算机程序包括用于执行第二方面以及第二方面中任意一项的电磁波成像方法。
第六方面,本申请实施例还提供了一种包括可执行指令的计算机程序产品,当该计算机程序产品被运行时,使得上述第二方面及其任一种可能的实现中的方法的部分或全部步骤被执行。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为示例性示出的电磁波成像装置的示意图;
图2为本申请实施例提供的一种应用场景示意图;
图3为示例性示出的电子设备的结构示意图;
图4为示例性示出的电子设备的软件结构框图;
图5为本申请实施例提供的一种电磁波成像方法的流程示意图;
图6为示例性示出的同步方式示意图;
图7为示例性示出的运动轨迹示意图;
图8为本申请实施例提供的一种应用场景示意图;
图9为示例性示出的扫描方式示意图;
图10为本申请实施例提供的一种电磁波成像方法的流程示意图;
图11为示例性示出的运动轨迹示意图;
图12a为示例性示出的运动轨迹示意图;
图12b为示例性示出的运动轨迹示意图;
图13为本申请实施例提供的一种应用场景示意图;
图14为示例性示出的电子设备的软件结构框图;
图15为本申请实施例提供的一种电磁波成像方法的流程示意图;
图16为本申请实施例提供的一种电子设备的结构示意图;
图17为本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
为使本领域人员更好地理解本申请的技术方案,首先对可能涉及到的背景技术进行简单介绍。
1)电磁波成像
电磁波成像是一种以电磁波作为信息载体的成像手段,其原理是通过主动或者被动 检测拟成像目标及周围散射场的信号,以重构物体的形状、特征或者介电常数分布,从而形成图像。在本申请实施例的描述中,拟成像目标也可以称为目标对象或目标物体等,本申请不做限定。
由于电磁波频段比光学频段更低,对于光学频段无法穿透的物体,在电磁波频段变得透明,实现对物体内部透视的能力,这使得电磁波成像在无损检测、安检、医学检测等商业和科研领域有极高应用价值。
2)成像效果衡量指标
空间分辨率是衡量电磁波成像效果的主要性能指标,具体包括:距离向分辨率和方位向分辨率。
其中,距离向分辨率的理论计算公式为:
Figure PCTCN2021110883-appb-000001
方位向分辨率的理论计算公式为:
Figure PCTCN2021110883-appb-000002
式中,c表示光速,B表示信号带宽,D表示拟成像物体与成像装置的距离,f c表示电磁波的载波中心频点,L表示成像装置的天线的有效孔径长度。
显然,当D和f c固定时,即不改变成像环境条件下,为了提升方位向分辨率,需要增加成像装置的天线有效孔径长度。举例说明,当成像装置工作在3GHz,拟成像物体与成像装置的间距为0.5米,为实现厘米级方位向分辨率,需要的天线有效孔径长度为
Figure PCTCN2021110883-appb-000003
由此可见,这样的天线尺寸使得成像装置体积庞大,无法便携使用。
3)电磁成像装置便携化/小型化的技术途径
从上文可知,将设备工作频点由3GHz提高到30GHz,在相同方位向分辨率需求下,需要的天线有效孔径长度减至原来的1/10,即0.4425米。
因此,提高电磁成像设备工作频点,比如让其工作在毫米波(30~100GHz)或者太赫兹(100GHz~10THz)频段,是实现电磁成像装置小型化的有效技术途径之一。
4)合成孔径电磁成像
目前,成像装置通常采用阵列天线(antenna array),即由若干个天线阵元(antenna element)按一定规律,比如波长的1/2等间距排布成面阵/线阵等,如图1所示,参照图1,阵列天线可通过阵列上的各天线对目标对象进行扫描,终端可基于天线的扫描结果进行电磁波成像。
但是,以目前器件水平,毫米波或太赫兹实阵列天线存在获取性和成本风险。因此,一种等效技术手段是采用合成孔径电磁成像。即,将有限个天线阵元,通过成像平台在空间的移动构成虚拟阵列,以时间换空间,从而达到等同于实阵列信号采集的效果。合成孔径电磁成像技术有两个好处:第一、由实阵列减小至单天线或小规格阵列天线,降低天线和装置的总体尺寸;第二,规避了实阵列的上述风险。
但是,合成孔径成像存在新的技术挑战:实现合成孔径电磁成像对成像平台移动轨 迹的定位精度要求较高,定位误差需要控制在波长所在量级,只有这样才能实现不同空间位置采集信号的相干处理。如果定位误差较大,则将会无法成像。举例说明,对于60GHz工作频点的成像装置(即电子设备),定位误差需控制在4毫米量级。而对于工作频点为3GHz的装置,其定位误差只需要控制在8厘米量级即可。
为解决误差问题,一个示例中,已有技术提出一种基于机械扫描架或机械扫描手臂(简称机械臂)的合成孔径电磁成像方法,电磁成像模块被安置在一个机械扫描架或机械臂上面,通过预置机械扫描架或机械臂的移动轨迹和电磁成像模块的采样时刻,以在规定空间位置采集电磁信号,进而实现合成孔径电磁成像。
由于机械扫描架或机械臂移动位置精确是可知的,因此该方式可保证定位精度。
但是,机械扫描架或机械臂的体积通常较大,无法满足对设备的便携性及小型化的需求。
另一个示例中,已有技术提出一种基于光学追踪系统的合成孔径电磁成像装置。该装置由两部分构成:一部分是合成孔径电磁成像模块;另一部分则是一套商用光学追踪系统。
该光学追踪系统由外置的红外光学摄像头和多个定位标识器组成。其中,定位标识器与电磁成像模块放置在一个结构件上,它们之间的相对位置是固定的。而红外光学摄像头是固定在一个操作台的四周,与上述结构件是分开的。
工作时,红外光学摄像头在成像模块的信号采集时刻,捕捉这些定位标识器的空间位置,然后计算出这些定位标识器的空间质心,并将该空间质心作为电磁成像模块的位置。
但是,由于需要为光学跟踪系统构建一个外置的操作台,影响整个合成孔径成像装置的便携性,同样无法满足用户对设备的便携及小型化的需求。
本申请提供一种便携的电磁波成像方法,可通过定位标识对电子设备(或可称为电磁波成像装置)的运动轨迹进行精准定位,以获得电磁回波信号与电子设备的运动轨迹上的位置的对应关系,从而在保证电磁波成像的成功率的同时,满足便携性和小型化的需求。
在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。参见图2,为本申请实施例提供的一种应用场景示意图。该应用场景中包括电子设备100和目标对象200。需要说明的是,在实际应用中,电子设备与目标对象的数量均可以为一个或多个,图2所示应用场景中的电子设备与目标对象的数量仅为适应性举例,本申请对此不做限定。本申请中的应用场景可以为生活娱乐场景、安检场景、医学检测场景等,本申请不做限定。
图2中的电子设备可以为终端,也可以称为移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。例如,可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),手持设备(handheld),平板电脑(pad),手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备、虚拟现实(Virtual Reality,VR)终端、增强现实 (Augmented Reality,AR)终端、工业控制(industrial control)中的终端、无人驾驶(self driving)中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等,在此不作限定。
图3是一种电子设备的结构示意图。在图3中:
电子设备包括至少一个处理器101、至少一个收发器103、至少三个传感器104。可选地,该电子设备还可以包括至少一个存储器102。处理器101、存储器102、收发器103和传感器104相连。可选的,电子设备还可以包括输出设备105、输入设备106和一个或多个天线107。天线107与收发器103相连,输出设备105、输入设备106与处理器101相连。
处理器101可以是基带处理器,也可以是CPU,基带处理器和CPU可以集成在一起,或者分开。
处理器101可以用于为电子设备实现各种功能,例如用于对通信协议以及通信数据进行处理,或者用于对整个电子设备进行控制,执行软件程序,处理软件程序的数据;或者用于协助完成计算处理任务,例如对图形图像处理或者音频处理等等;或者处理器101用于实现上述功能中的一种或者多种。
本申请实施例中的存储器,例如存储器102,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器102可以是独立存在,与处理器101相连。可选的,存储器102也可以和处理器101集成在一起,例如集成在一个芯片之内。其中,存储器102能够存储执行本申请实施例的技术方案的程序代码,并由处理器101来控制执行,被执行的各类计算机程序代码也可被视为是处理器101的驱动程序。例如,处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例中的技术方案。可选的,存储器102还可以在芯片之外,通过接口与处理器101相连。
收发器103可以用于支持电磁波信号的接收或者发送,收发器103可以与天线107相连。收发器103包括发射机Tx和接收机Rx。具体地,一个或多个天线107可以接收电磁波信号,该收发器103的接收机Rx用于从天线接收所述电磁波信号,并将电磁波信号进行处理和转换后提供给所述处理器101,以便处理器101对转换后的电磁波信号做进一步的处理,例如解调处理和译码处理。
输出设备105和处理器101通信,可以以多种方式来显示信息。例如,输出设备105可以是液晶显示器(Liquid Crystal Display,LCD)、发光二级管(Light Emitting Diode, LED)显示设备、阴极射线管(Cathode Ray Tube,CRT)显示设备、或投影仪(projector)等。输入设备106和处理器101通信,可以以多种方式接受用户的输入。例如,输入设备106可以是鼠标、键盘、触摸屏设备或传感设备等。
传感器104包括至少三个传感器,一个示例中,传感器104可以为测距传感器,用于获得定位标识与传感器之间的距离信息或者用于间接表示传感器与目标对象之间的距离信息的参数,示例性的,用于间接表示传感器与目标对象之间的距离信息的参数可以为信号传输时长等参数。示例性的,测距传感器可以是飞秒传感器。另一个示例中,传感器104还可以是光学相机中的传感器,用于采集目标对象的图像。又一个示例中,传感器104可以为测角传感器,用于获得定位标识与目标对象之间的角度信息。需要说明的是,本申请中涉及的传感器类型仅为示例性举例,除本申请中提及的飞秒传感器、测角传感器与测角传感器之外,传感器还可以是任一一种可使得电子设备直接或间接获取传感器与定位标识之间的距离的器件。在本申请的实施例中,多个传感器分布式设置于电子设备中。
图4为示例性示出的电子设备100的软件结构框图。参照图4,电子设备100包括但不限于:电磁回波信号采集模块、自定位模块、成像模块。可选地,电子设备100还包括同步模块。可选地,各模块可以由芯片或者电路实现,本申请不做限定。需要说明的是,图4仅示出了电子设备100中的部分模块,本申请对模块的名称和数量不做限定。
结合图4,如图5所示为本申请实施例提供的电磁波成像方法的流程示意图,在图5中:
步骤101a,电磁回波信号采集模块采集电磁回波信号。
具体的,电磁回波信号采集模块可通过电子设备中的收发器,例如天线,采集电磁回波信号。可选地,电磁回波信号用于指示目标对象的电磁波散射特征信息。需要说明的是,本申请所指的天线为图4中的接收天线,下文中不再赘述。
在一种可能的实现方式中,电磁回波信号采集模块可采用主动式方式采集电磁回波信号,具体的,电磁回波信号采集模块发射电磁波,并接收经所述目标对象散射后的电磁回波信号。
另一种可能的实现方式中,电磁回波信号采集模块可采用被动方式采集电磁回波信号,具体的,目标对象可释放电磁回波信号,电磁回波信号采集模块接收目标对象释放的电磁回波信号。可选地,目标对象释放的电磁回波信号可以为热辐射信号。
步骤102a,电磁回波信号采集模块向成像模块输出第一信息,第一信息包括目标对象的电磁波散射特征信息。
具体的,电磁回波信号采集模块获取到电磁回波信号后,向成像模块输入第一信息,其中,第一信息用于指示目标对象的电磁波散射特征信息。
一个示例中,第一信息可以为电磁回波信号,具体的,电磁回波信号采集模块将包含目标对象的电磁波散射特征信息的电磁回波信号发送至成像模块,成像模块可对电磁回波信号进行信号处理,以解析其中包含的目标对象的电磁波散射特征信息。另一个示例中,第一信息可以为目标对象的电磁波散射特征信息,具体的,电磁回波信号采集模块可对电磁回波信号进行信号处理,以获取目标对象的电磁波散射特征信息,并将目标 对象的电磁波散射特征信息输出至成像模块。
步骤101b,自定位模块获取电磁回波信号的接收点的位置信息,位置信息用于指示接收点与定位标识的相对位置信息。
具体的,在本申请中可预先设置定位标识,并将该定位标识的位置作为空间中的锚点,以在电子设备移动过程中,可获取到电子设备(具体为电磁波信号的接收点)与定位标识的相对位置信息,从而实现精准自定位。
下面对定位标识的概念进行说明,具体的,定位标识是一种在电磁波成像过程中位置固定的标识。可选地,在对同一个目标对象进行多次电磁波成像,或者,对不同的目标对象进行电磁波成像的过程中,定位标识的位置可以相同也可以不同,本申请不做限定。
在一种可能的实现方式中,定位标识可以是实体器件,设置于目标对象上或者目标对象附近。一个示例中,定位标识可以是主动式的,即,主动释放光源或信号。另一个示例中,定位标识可以是被动式的,可反射打在其上的光。本申请中以定位标识为被动式的器件为例进行说明,具体示例可参照场景一。
在另一种可能的实现方式中,定位标识可以是虚拟标识,例如可以为目标对象上或目标对象附近的任一特征点,具体示例可参照场景二。
继续参照图5,具体的,在本申请中,电子设备中设置有至少三个传感器,如上文所述,各传感器可获取其与定位标识之间的距离信息,或者,用于间接标识传感器与定位标识之间的距离信息的相关参数。
自定位模块可获取到至少三个传感器的距离信息或相关参数。可选地,若自定位模块获取到的是用于间接标识传感器与定位标识之间的距离信息的相关参数,自定位模块可基于相关参数,获取传感器与目标对象之间的距离信息。
相应的,自定位模块可基于获取到的各传感器与定位标识之间的距离信息,得到各传感器与定位标识之间的相对位置。
接着,自定位模块可基于各传感器与定位标识之间的相对位置以及至少三个传感器与电磁回波信号的接收点之间的相对位置,获得电磁回波信号的接收点与定位标识之间的相对位置。示例性的,传感器与电磁回波信号的接收点之间的相对位置是固定的,具体数值可以通过测量得到。
需要说明的是,本申请实施例中所述的电磁回波信号的接收点可以是电子设备中的收发器,例如电子设备中的天线。
步骤102b,自定位模块向成像模块输出所述位置信息。
具体的,自定位模块获取到位置信息,即电磁回波信号的接收点与定位标识之间的相对位置后,将该位置信息输出至成像模块。
需要说明的是,上文中均是以电磁回波信号采集模块与自定位模块的单次动作为例进行说明的,实际上,电磁回波信号采集模块与自定位模块可在多个时刻执行上述动作,即,电磁回波信号采集模块可采集到多个时刻的电磁回波信号,自定位模块可获取到多个时刻的所述位置信息。
可选地,电磁回波信号采集模块与自定位模块是按照一定时序(也可以理解为周期) 执行相应动作的。示例性的,电磁回波信号采集模块采集电磁回波信号的多个时刻符合第一周期,即多个时刻之间的间隔符合第一周期,可以理解为,第一周期中的每个周期触发时刻对应所述多个时刻中的时刻。示例性的,自定位模块获取位置信息的多个时刻符合第二周期,即多个时刻之间的间隔符合第二周期,可以理解为,第二周期中的每个周期触发时刻对应所述多个时刻中的时刻。举例说明,电磁回波信号采集模块可按照第一周期,采集电磁回波信号,即电磁回波信号采集模块在第一周期的每个周期的触发时刻,执行步骤101a,即采集电磁回波信号。自定位模块可按照第二周期,采集电磁回波信号,具体的,自定位模在第二周期的每个周期的触发时刻,执行步骤101b,即获取所述位置信息。
一个示例中,第一周期可与第二周期相同,即,在每个周期触发时刻,步骤101a与步骤101b同时执行。
另一个示例中,第一周期可与第二周期为倍数关系。一个示例中,倍数关系可以为整数呗,例如,第一周期是第二周期的3倍。另一个示例中,倍数关系也可以是非整数倍,例如,第一周期是第二周期的1/3倍(也可以表示为第二周期是第一周期的3倍),或者,第一周期是第二周期的2/3倍,本申请不做限定。
可选地,在第一周期与第二周期不相同的情况下,其周期触发时刻是对齐的,举例说明,若第一周期的周期时长为1ms,第二周期的周期时长为3ms,即,电磁回波信号每1ms采集一次电磁回波信号,自定位模块每3ms获取一次位置信息,其中,自定位模块采集位置信息的同时,电磁回波信号采集模块采集电磁回波信号。为更好的理解该过程,可引入时钟的概念,具体的,电子设备中具有时钟源,用于产生时钟信号,电磁回波信号采集模块与自定位模块均基于该时钟信号执行操作,如图6所示为周期不同的情况下,自定位模块与电磁回波信号采集模块的执行流程,参照图6,电磁回波信号采集模块在第一个时钟沿采集电磁回波信号,时钟信号的间隔为1ms,也就是说,电磁回波信号采集模块在每个时钟沿触发,即执行采集电磁回波信号的动作。自定位模块则在第3个以及3的倍数个时钟沿触发,即执行获取位置信息的动作。也就是说,在周期不同的情况下,也可将电磁回波信号采集模块与自定位模块看做为同步执行相应动作的。
可选地,在本申请中,为实现自定位模块与电磁回波信号采集模块的同步,同步模块可向自定位模块与电磁回波信号模块发送控制信号,以指示自定位模块与电磁回波信号模块同步执行响应操作。示例性的,同步模块可向电磁回波信号采集模块发送第一控制信号,以指示触发电磁回波信号采集模块以及第一周期,并且,同步模块可向自定位模块发送第二控制信号,以指示触发自定位模块以及第二周期。自定位模块与电磁回波信号采集模块响应于接收到的控制信号,按照各自的周期以及时钟信号实现同步。可选地,在不同的电磁波成像过程中,第一周期和/或第二周期可以为动态设置的,可通过第一控制信号和/或第二控制信号向电磁回波信号采集模块和/或自定位模块指示当前的周期。
可选地,第一周期与第二周期也可以为预先配置的,即无需同步模块指示,自定位模块与电磁回波信号采集模块可基于预先设置的周期,执行相应操作。
步骤103,成像模块基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成 像。
具体的,成像模块接收到第一信息后,可获取第一信息中包含的电磁波散射特征信息,并基于电磁波散射特征信息以及接收到的位置信息,对目标对象进行电磁波成像。一个示例中,电子设备可通过屏幕显示电磁波成像后的结果,如图7所示,其中,图7中的虚线为电子设备的运行轨迹的模拟示意图。另一个示例中,电子设备也可以通过其它与其通信连接(可以有线连接,也可以无线连接)的电子设备显示电磁波成像后的结果,例如,电子设备可将电磁波成像后的结果发送至另一电子设备,另一电子设备可显示接收到的电磁波成像后的结果。
如上文所述,电磁回波信号采集模块与自定位模块是周期性地执行相应动作的,也就是说,电磁回波信号模块与自定位模块会按照其各自的周期,向成像模块输入对应的参数(包括电磁波散射特征信息和位置信息)。成像模块可基于获取到的多个电磁波散射特征信息和多个位置信息,及多个电磁波散射特征信息和多个位置信息之间的对应关系,对目标对象进行电磁波成像。
需要说明的是,所述对应关系是指多个电磁波散射特征信息和多个位置信息在时间上的对应关系,如上文所述,自定位模块与电磁回波信号采集模块是周期性地获取相应信息的,并且,自定位模块与电磁回波信号采集模块的执行动作是同步的,因此,各电磁波散射特征信息与位置信息之间存在时间上的对应关系,例如,在t 1时刻,电磁回波信号采集模块采集第一电磁回波信号,并输出至成像模块,同时,自定位系统也在该时刻获取到第一位置信息,并输出至成像模块,在t 2时刻,电磁回波信号采集模块采集第二电磁回波信号,并输出至成像模块,同时,自定位系统也在该时刻获取到第二位置信息,并输出至成像模块,则,成像模块确定第一电磁回波信号与第一位置信息对应,第二电磁回波信号与第二位置信息对应。
可选地,成像模块可基于接收时刻确定多个电磁波散射特征信息和多个位置信息在时间上的对应关系。
可选地,电磁回波信号采集模块可将多个时刻的第一信息以及每个第一信息对应时间戳输出至成像模块,以及,自定位模块可将多个时刻的位置信息以及每个位置信息对应的时间戳输出至成像模块。相应的,成像模块可基于第一信息的时间戳和位置信息的时间戳,确定多个第一信息与多个位置信息之间的对应关系。示例性的,时间戳可以是系统时间也可以是相对时间(例如与控制信号触发时刻之间的相对时间),本申请不做限定。
需要说明的是,如上文所述,电磁回波信号采集模块与自定位模块的执行周期可能不相同,也就是说,成像模块获取到的多个位置信息与多个电磁波散射特征信息并不是每个都对应的,示例性的,成像模块可基于插值算法,对运动轨迹进行估计,以使每个电磁波散射特征信息均对应有相应的位置信息;另一方面,若成像模块获取到的位置信息多于电磁波散射特征信息时,成像模块可以基于抽值算法,对运动轨迹进行降采样操作,以使每个电磁波散射特征信息与定位位置信息一一对应。具体方式可参照已有技术,本申请不做赘述。
在本申请实施例的描述中,均是以自定位模块和电磁回波信号采集模块每获取到相 应数据或信号之后,即向成像模块输出响应数据或信号的方式为例进行说明,在其他实施例中,自定位模块与电磁回波信号采集模块也可以在获取到多个数据或信号后,将数据或信号以及对应的时间信息输出至成像模块,成像模块可基于各信号或数据的时间信息,确定位置信息与电磁波散射特征信息的对应关系,并进行目标对象的电磁波成像过程。
在一种可能的实现方式中,成像模块可以在获取到电磁回波信号采集模块与自定位模块输入的所有数据或信号后,再执行电磁波成像过程。
在另一种可能的实现方式中,成像模块可以在获取到足够多的电磁回波信号采集模块与自定位模块输入的数据或信号后,再执行电磁波成像过程。
综上,在本申请中,电子设备基于接收点与定位标识之间的相对位置,实现自定位的精准度,同时提高电子设备的灵活性,满足便携性和小型化的需求。
场景一
如图8所示为示例性示出的一种应用场景的示意图,参照图8,示例性的,电子设备100为手机,手机上设置有传感器104,分别为104a、104b、104c和104d,手机上还设置有收发器107,示例性的,收发器为天线。示例性的,本实施例中,以传感器为飞秒传感器为例。需要说明的是,本实施例中以及下面的各实施例中示出的各传感器的数量及位置,以及传感器与天线之间的相对位置均为示意性举例,本申请不做限定,下文不再重复说明。
仍参照图8,示例性的,定位标识300为外设标识器,在本实施例中,其设置于目标对象200上。示例性的,目标对象为一纸盒,箱子中放置有剪刀。在本实施例中,传感器是利用光学原理测距的,因此,传感器104与定位标识300之间需保证无遮挡。需要说明的是,在成像过程中,定位标识的位置固定不变。
示例性的,手机100响应于接收到的用户指令,启动电磁波成像流程,以对目标对象200进行运动扫描,不失一般性,本申请对运动扫描过程中手机的移动轨迹不做特殊约定,示例性的可采用如图9所示的扫描方式。需要说明的是,手机的移动速度以及方向等可根据手机的性能进行约定,本申请对此不作限定。本领域人员需了解,手机的扫描持续时间越长,轨迹越丰富,则成像越精准。
结合图8,如图10所示为本申请实施例提供的电磁波成像的流程示意图,在图10中:
步骤201,同步模块向电磁回波信号采集模块和自定位模块发送控制信号。
示例性的,同步模块分别向电磁回波信号采集模块发送第一控制信号,并向自定位模块发送第二控制信号。其中,第一控制信号用于指示触发电磁回波信号采集模块,并指示第一周期。第二控制信号用于指示触发自定位模块,并指示第二周期。
示例性的,在本实施例中,以第一周期与第二周期相同,周期时长为3ms为例进行说明,时序可表示为t i,i=1,2,…,m。
步骤202a,电磁回波信号采集模块发射电磁波。
示例性的,电磁回波采集模块响应于接收到的第一控制信号,在每个t i时刻,通过天 线107发送电磁波。
步骤203a,电磁回波信号采集模块采集电磁回波信号。
示例性的,电磁回波信号采集模块通过天线发射的电磁波碰撞到目标对象后,将产生电磁回波信号,也可以称为电磁散射回波信号,电磁回波信号用于指示目标对象的电磁散射特征信息。
示例性的,在本实施例中,电磁回波信号采集模块按照同步模块下发的时序(即第一周期),在每个t i时刻进行电磁回波信号的采集。
电磁回波信号采集模块对采集到的电磁回波信号进行信号处理,获取目标对象的电磁散射特征信息。示例性的,假设电磁回波信号采集模块在不同时刻t i获取到的电磁散射特征信息为ρ i
步骤204a,电磁回波信号采集模块向成像模块输出目标对象的电磁散射特征信息。
步骤202b,自定位模块接收传感器输入的数据。
示例性的,本实施例中的传感器(例如包括传感器104a、104b、104c和104d)为飞秒传感器,其可通过发射光信号,并接收经定位标识反射的光信号,得到发射光信号与接收光信号之间的时间差Δt,该数值也可以理解为上文所述的用于间接表示传感器与定位标识之间的距离的参数。自定位模块可在不同时刻t i,读取各传感器获取到的时间差Δt i。也就是说,自定位模块在t i时刻,可获取到至少三个Δt i。示例性的,在本实施例中,自定位模块在t i时刻,可获取到传感器104a对应的Δt ai、传感器104b对应的Δt bi、传感器104c对应的Δt ci、以及传感器104d对应的Δt di
步骤203b,自定位模块基于传感器输入的数据以及传感器与天线之间的相对位置,确定天线与定位标识之间的相对位置。
具体的,自定位模块基于各传感器与定位标识之间的时间差,获取至各传感器与定位标识之间的距离信息,并进一步基于各传感器与定位标识之间的距离信息,确定定位标识在空间中的位置信息。以及自定位模块可基于定位标识在空间中的位置信息,获取各传感器与定位标识之间的相对位置。其中,由于各传感器与天线之间的相对位置是已知的,因此,自定位模块可基于各传感器与定位标识之间的相对位置与各传感器与天线之间的相对位置,获取天线与定位标识之间的相对位置。
下面对上述获取天线与定位标识之间相对位置的方式进行详细说明,具体的,如图11所示为传感器与天线随手机运动时的运动轨迹示意图。参照图11,具体的,假设天线在t i时刻的坐标值为(x i,y i,z i),记定位标识为坐标原点(0,0,0)。此外,各传感器(包括传感器104a、104b、104c和104d)与天线之间的相对位置是已知的,分别记为offset ai=(Δx ai,Δy ai,Δz ai)、offset bi=(Δx bi,Δy bi,Δz bi)、offset ci=(Δx ci,Δy ci,Δz ci)、、offset di=(Δx di,Δy di,Δz di),则传感器104a、104b、104c和104d在t i时刻的位置,可以分别表示为:(x i+Δx ai,y i+Δy ai,z i+Δz ai)、(x i+Δx bi,y i+Δy bi,z i+Δz bi)、(x i+Δx ci,y i+Δy ci,z i+Δz ci)、(x i+Δx di,y i+Δy di,z i+Δz di)。
示例性的,自定位模块可基于到达时间算法(Time of Arrival,TOA),得到天线在t i时刻的位置(即坐标)。
示例性的,自定位模块可基于下述公式,计算出P i=(x i,y i,z i):
Figure PCTCN2021110883-appb-000004
需要说明的是,上述实施例中的计算方式仅为示意性举例,自定位模块在获取到各传感器与定位标识之间的相对位置以及各传感器与天线之间的相对位置之后,可基于任一可行的方式计算出天线与定位标识之间的相对位置,例如,还可以基于到达时间差算法(Time Difference of Arrival,TDOA)等,本申请不做限定。
步骤204b,自定位模块向成像模块输出天线的位置信息,位置信息用于指示天线与定位标识之间的相对位置。
示例性的,自定位模块获取到天线与定位标识之间的相对位置后,即可向成像模块输出该相对位置信息。
需要说明的是,本申请中各模块的处理时延和传输时延均是已知的,各模块可基于已知的时延进行纠偏,从而在起始步骤(即步骤202a和步骤202b)同步的情况下,输入步骤(即步骤204a和步骤204b)也同步,具体纠偏方式可参照已有技术,本申请不做限定。
步骤205,成像模块基于位置信息和电磁散射特征信息,对目标对象进行电磁波成像。
示意性的,成像模块在某一采样时刻集合{t i},可同步获取到电磁回波采集模块输入的电磁散射特征信息的集合{ρ i}以及自定位模块输入的天线的位置信息的集合{P i}。成像模块可对上述两组信息进行合成孔径电磁成像的操作。具体地,成像模块可基于自定位模块在上述时刻集合{t i}输入的位置信息,确定电磁回波采集模块的天线在该时刻集合的运动轨迹,如图12a所示,需要说明的是,天线的运动轨迹可以是二维平面上的轨迹,也可以是三维空间上的轨迹。为方便计,图12a中仅以二维平面上的运动轨迹为例进行示意。图中X和Y分别表示二维平面的两个轴,例如X表示水平轴,Y表示垂直轴。
接着,成像模块可确定电磁散射特征信息的集合{ρ i}中的任一电磁散射特征信息ρ i,与运动轨迹上的点的对应关系,如图12b所示。如上文所述,电磁散射特征信息与运动轨迹上的点(即位置信息)的对应关系是指时刻上的对应关系,也可以理解为电磁散射特征信息ρ i与天线的位置信息P i在时刻t i上对应。需要说明的是,在本实施例中,由于自定位模块与电磁回波采集模块的采样周期相同,因此成像模块无需进行插值或抽值处理,即,电磁散射特征信息的集合{ρ i}与天线的位置信息的集合{P i}的元素个数是相等,且在时刻上一一对应的。为方便理解,可将对应关系表示为新的采样变量
Figure PCTCN2021110883-appb-000005
其中,式中下标i表示时刻t i的取值。
示例性的,若将图12b所示二维平面进行网格化处理,例如以设备工作频点f c对应的半波长为划分单元,上述新采样变量是非均匀分布的。相应地,成像模块可以基于非均匀采样合成孔径成像方法,对目标对象进行电磁波成像,并显示成像结果。
上述实施例是以测距传感器(即飞秒传感器)为例进行说明的,在本申请中,传感 器还可以是测角传感器,示例性的,自定位模块可读取到各传感器与定位标识之间的角度信息,并基于三角定位法,获取到天线与定位标识之间的相对位置。
举例说明,至少三个测角传感器中的每个测角传感器可获取到其与定位标识之间的角度信息,示例性的,角度信息即为测角传感器与另一测角传感器所呈直线与定位标识之间的夹角,自定位模块可基于各测角传感器的角度信息以及各测角传感器之间的相对位置,按照三角定位法,获取到各测角传感器与定位标识之间的距离,具体计算方式可参照三角定位法的相关说明,本申请不做赘述。同样的,自定位模块可以定位标识为原点,并基于各测角传感器与定位标识之间的距离以及各测角传感器与天线之间的相对位置,计算出天线与定位标识之间的相对位置。
场景二
如图13所示为示例性示出的一种应用场景的示意图,参照图13,示例性的,电子设备100为手机,手机上设置有传感器104,分别为104a、104b、104c和104d,手机上还设置有收发器107,示例性的,收发器为天线。示例性的,本实施例中,以传感器为飞秒传感器为例。需要说明的是,本实施例中以及下面的各实施例中示出的各传感器的数量及位置,以及传感器与天线之间的相对位置均为示意性举例,本申请不做限定,下文不再重复说明。
在本实施例中,定位标识为目标对象200上的任一特征点,该特征点可以是目标对象200上的花纹、任一边角等可区别于其它部分的特征点。示例性的,本实施例中的传感器104可以是光学相机中的传感器,光学相机中的传感器可采集目标对象200的图像。如图14所示为示例性示出的电子设备的软件结构图,参照图14,电子设备还包括图像采集单元,图像采集单元(也可以称为图像处理单元)可用于对光学相机采集到的图像进行图像分析,确定目标对象上的特征点,例如可以采用尺度不变特征变换(Scale-invariant feature transform,SIFT)算法、方向梯度直方图(Histogram of Oriented Gradient,HOG)算法。图像采集单元可获取到特征点与传感器之间的距离,需要说明的是,在本实施例中,传感器为深度相机(depth camera)中的传感器,在其他实施例中,也可以是其他可实现本申请实施例中的技术方案的传感器。进一步需要说明的是,图像采集单元的处理细节可参照已有技术,本申请不做限定。示例性的,传感器采集图像的时间间隔可与自定位模块对应的周期一致,以降低系统功耗。
需要说明的是,除非特殊说明,本申请中未描述的部分可参照场景一的描述,本申请不再赘述。
结合图14,如图15所示为本申请实施例提供的电磁波成像的流程示意图,在图15中:
步骤301,同步模块向电磁回波信号采集模块和自定位模块发送控制信号。
步骤302a,电磁回波信号采集模块发射电磁波。
步骤303a,电磁回波信号采集模块采集电磁回波信号。
步骤304a,电磁回波信号采集模块向成像模块输出目标对象的电磁散射特征信息。
步骤302b,自定位模块接收图像采集单元输入的距离信息。
步骤303b,自定位模块基于距离信息以及传感器与天线之间的相对位置,确定天线与定位标识之间的相对位置。
步骤304b,自定位模块向成像模块输出天线的位置信息,位置信息用于指示天线与定位标识之间的相对位置。
步骤305,成像模块基于位置信息和电磁散射特征信息,对目标对象进行电磁波成像。
在一种可能的实现方式中,定位标识可以为两个或两个以上,在定位标识为多个的情况下,自定位模块可获取到收发器(即天线)与多个定位标识之间的相对位置(即坐标),自定位系统可对获取到的多个位置信息进行多坐标融合,例如,取多个坐标的几何质心作为收发器的坐标,从而可提高定位的精准度,进一步提高电磁波成像的效果。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,在采用对应各个功能划分各个功能模块的情况下,图16示出了上述实施例中所涉及的电子设备400的一种可能的结构示意图,如图16所示,电子设备400可以包括:采集模块401、获取模块402、处理模块403。采集模块,用于采集电磁回波信号,电磁回波信号用于指示目标对象的电磁波散射特征信息。获取模块402,用于获取电磁回波信号的接收点的位置信息,位置信息用于指示接收点与定位标识的相对位置信息。处理模块403,用于基于电磁波散射特征信息和位置信息,对目标对象进行电磁波成像。
在上述技术方案的基础上,采集模块401,用于采集多个时刻的电磁回波信号。获取模块402,用于获取多个时刻的电磁回波信号的接收点的位置信息。处理模块403,用于基于多个电磁波散射特征信息以及多个位置信息中的每个位置信息与多个电磁波散射特征信息的对应关系,对目标对象进行电磁波成像。
在上述技术方案的基础上,采集电磁回波信号的多个时刻符合第一周期,获取位置信息的多个时刻符合第二周期;其中,第一周期与第二周期相同;或者,第一周期与第二周期为倍数关系。
在上述技术方案的基础上,电磁波成像装置包括至少三个传感器,获取模块402,用于获取至少三个传感器中每个传感器与定位标识的相对位置信息,根据至少三个传感器 与定位标识的相对位置信息以及至少三个传感器与接收点的相对位置信息,获得接收点与定位标识的相对位置信息。
在上述技术方案的基础上,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的距离信息得到的。
在上述技术方案的基础上,传感器与定位标识的相对位置信息是根据传感器与定位标识之间的角度信息得到的。
在上述技术方案的基础上,定位标识为以下至少之一:设置于目标对象上的标识点、设置于目标对象的指定范围内的标识点、目标对象上的任一特征点。
在上述技术方案的基础上,采集模块301的电磁回波信号的采集与获取模块302的位置信息的获取同步。
在上述技术方案的基础上,采集模块301,用于发射电磁波,并接收经目标对象散射后的电磁回波信号。
在上述技术方案的基础上,采集模块301,用于接收目标对象释放的电磁回波信号。
下面介绍本申请实施例提供的一种装置。如图17所示:
该装置包括处理模块501、通信模块502和传感器503。可选的,该装置还包括存储模块504。处理模块501、通信模块502、传感器503和存储模块504通过通信总线相连。
通信模块502可以是具有收发功能的装置,用于发送或接收信号。
存储模块504可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储模块504可以独立存在,通过通信总线与处理模块501相连。存储模块也可以与处理模块501集成在一起。
装置500可以用于电子设备、电路、硬件组件或者芯片中。
装置500可以是本申请实施例中的电子设备。电子设备的示意图可以如图3所示。可选的,装置500的通信模块502可以包括电子设备的天线和收发机,例如图3中的天线105和收发机103。
装置500可以是本申请实施例中的电子设备中的芯片。通信模块502可以是输入或者输出接口、管脚或者电路等。可选的,存储模块可以存储网络设备侧的方法的计算机执行指令,以使处理模块501执行上述实施例中网络设备侧的方法。存储模块504可以是寄存器、缓存或者RAM等,存储模块504可以和处理模块501集成在一起;存储模块504可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块504可以与处理模块501相独立。可选的,随着无线通信技术的发展,收发机可以被集成在装置500上,例如通信模块502集成了收发机103。
当装置500是本申请实施例中的电子设备或者电子设备中的芯片时,可以实现上述实施例中电子设备执行的方法。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图17所示的芯片的结构示意图。图17所示的芯片包括处理器501和接口502。其中,处理器501的数量可以是一个或多个,接口502的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器 503。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何可用介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或可用于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种电磁波成像系统,其特征在于,所述系统包括电磁回波信号采集模块、自定位模块和成像模块,
    所述电磁回波信号采集模块,用于采集电磁回波信号,并向所述成像模块输出第一信息,所述第一信息包括目标对象的电磁波散射特征信息;
    所述自定位模块,用于获取所述电磁回波信号的接收点的位置信息,并向所述成像模块输出所述位置信息,所述位置信息用于指示所述接收点与定位标识的相对位置信息;
    所述成像模块,用于基于所述电磁波散射特征信息和所述位置信息,对所述目标对象进行电磁波成像。
  2. 根据权利要求1所述的系统,其特征在于,
    所述电磁回波信号采集模块,用于采集多个时刻的电磁回波信号,并向所述成像模块输出所述多个时刻中每个时刻对应的第一信息;
    所述自定位模块,用于获取多个时刻的电磁回波信号的接收点的位置信息,并向所述成像模块输出所述多个时刻中每个时刻对应的所述位置信息;
    所述成像模块,用于基于多个电磁波散射特征信息以及多个位置信息中的每个位置信息与所述多个电磁波散射特征信息的对应关系,对所述目标对象进行电磁波成像。
  3. 根据权利要求2所述的系统,其特征在于,所述电磁回波信号采集模块采集所述电磁回波信号的多个时刻符合第一周期,所述自定位模块获取所述位置信息的多个时刻符合第二周期;
    其中,所述第一周期与所述第二周期相同;
    或者,
    所述第一周期与所述第二周期为倍数关系。
  4. 根据权利要求3所述的系统,其特征在于,所述电磁波成像系统还包括至少三个传感器,
    所述自定位模块,用于获取所述至少三个传感器中每个传感器与所述定位标识的相对位置信息,根据所述至少三个传感器与所述定位标识的相对位置信息以及所述至少三个传感器与所述接收点的相对位置信息,获得所述接收点与所述定位标识的相对位置信息。
  5. 根据权利要求4所述的系统,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的距离信息得到的。
  6. 根据权利要求4所述的系统,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的角度信息得到的。
  7. 根据权利要求1至6任一项所述的系统,其特征在于,所述定位标识为以下至少之一:
    设置于所述目标对象上的标识点、设置于所述目标对象的指定范围内的标识点、所述目标对象上的任一特征点。
  8. 根据权利要求1所述的系统,其特征在于,所述系统还包括同步模块,用于向所述电磁回波信号采集模块和所述自定位模块发送控制信号,
    所述控制信号用于同步所述电磁回波信号采集模块的电磁回波信号采集与所述自定位模块的位置信息获取。
  9. 根据权利要求1至8任一项所述的系统,其特征在于,所述电磁回波信号采集模块,具体用于发射电磁波,并接收经所述目标对象散射后的电磁回波信号。
  10. 根据权利要求1至8任一项所述的系统,其特征在于,所述电磁回波信号采集模块,具体用于接收所述目标对象释放的电磁回波信号。
  11. 一种电磁波成像方法,其特征在于,应用于电磁波成像装置,所述方法包括:
    采集电磁回波信号,所述电磁回波信号用于指示目标对象的电磁波散射特征信息;
    获取所述电磁回波信号的接收点的位置信息,所述位置信息用于指示所述接收点与定位标识的相对位置信息;
    基于所述电磁波散射特征信息和所述位置信息,对所述目标对象进行电磁波成像。
  12. 根据权利要求11所述的方法,其特征在于,
    所述采集电磁回波信号包括:
    采集多个时刻的电磁回波信号;
    所述获取所述电磁回波信号的接收点的位置信息,包括:
    获取多个时刻的电磁回波信号的接收点的位置信息;
    所述基于所述电磁波散射特征信息和所述位置信息,对所述目标对象进行电磁波成像,包括:
    基于多个电磁波散射特征信息以及多个位置信息中的每个位置信息与所述多个电磁波散射特征信息的对应关系,对所述目标对象进行电磁波成像。
  13. 根据权利要求12所述的方法,其特征在于,其中,
    采集所述电磁回波信号的多个时刻符合第一周期,获取所述位置信息的多个时刻符合第二周期;
    其中,所述第一周期与所述第二周期相同;
    或者,
    所述第一周期与所述第二周期为倍数关系。
  14. 根据权利要求13所述的方法,其特征在于,所述电磁波成像装置包括至少三个传感器,所述获取所述电磁回波信号的接收点的位置信息,包括:
    获取所述至少三个传感器中每个传感器与所述定位标识的相对位置信息,根据所述至少三个传感器与所述定位标识的相对位置信息以及所述至少三个传感器与所述接收点的相对位置信息,获得所述接收点与所述定位标识的相对位置信息。
  15. 根据权利要求14所述的方法,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的距离信息得到的。
  16. 根据权利要求14所述的方法,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的角度信息得到的。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,所述定位标识为以下至少之一:
    设置于所述目标对象上的标识点、设置于所述目标对象的指定范围内的标识点、所述目标对象上的任一特征点。
  18. 根据权利要求11所述的方法,其特征在于,所述电磁回波信号的采集与所述位置信息的获取同步。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,所述采集电磁回波信号,包括:
    发射电磁波,并接收经所述目标对象散射后的电磁回波信号。
  20. 根据权利要求11至18任一项所述的方法,其特征在于,所述采集电磁回波信号,包括:
    接收所述目标对象释放的电磁回波信号。
  21. 一种电磁波成像装置,其特征在于,包括处理器、收发器;
    所述处理器与所述收发器耦合;
    所述收发器,用于接收采集电磁回波信号,并向所述处理器输出所述电磁回波信号,所述电磁回波信号用于指示目标对象的电磁波散射特征信息;
    所述处理器,用于获取所述收发器的位置信息,所述位置信息用于指示所述接收点与定位标识的相对位置信息;
    所述处理器,还用于基于所述电磁波散射特征信息和所述位置信息,对所述目标对象进行电磁波成像。
  22. 根据权利要求21所述的装置,其特征在于,
    所述收发器,用于采集多个时刻的电磁回波信号,并向所述处理器输出所述多个时刻中每个时刻对应的电磁回波信号;
    所述处理器,用于获取多个时刻的电磁回波信号的接收点的位置信息;
    所述处理器,还用于基于多个电磁波散射特征信息以及多个位置信息中的每个位置信息与所述多个电磁波散射特征信息的对应关系,对所述目标对象进行电磁波成像。
  23. 根据权利要求22所述的装置,其特征在于,所述收发器采集所述电磁回波信号的多个时刻符合第一周期,所述处理器获取所述位置信息的多个时刻符合第二周期;
    其中,所述第一周期与所述第二周期相同;
    或者,
    所述第一周期与所述第二周期为倍数关系。
  24. 根据权利要求23所述的装置,其特征在于,所述电磁波成像装置还包括至少三个传感器,
    所述处理器,用于获取所述至少三个传感器中每个传感器与所述定位标识的相对位置信息,根据所述至少三个传感器与所述定位标识的相对位置信息以及所述至少三个传感器与所述接收点的相对位置信息,获得所述接收点与所述定位标识的相对位置信息。
  25. 根据权利要求24所述的装置,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的距离信息得到的。
  26. 根据权利要求24所述的装置,其特征在于,所述传感器与所述定位标识的相对位置信息是根据所述传感器与所述定位标识之间的角度信息得到的。
  27. 根据权利要求21至26任一项所述的装置,其特征在于,所述定位标识为以下至少之一:
    设置于所述目标对象上的标识点、设置于所述目标对象的指定范围内的标识点、所述目标对象上的任一特征点。
  28. 根据权利要求21所述的装置,其特征在于,所述收发器的所述电磁回波信号的采集与所述处理器的所述位置信息的获取同步。
  29. 根据权利要求21至28任一项所述的装置,其特征在于,所述收发器,具体用于发射电磁波,并接收经所述目标对象散射后的电磁回波信号。
  30. 根据权利要求21至28任一项所述的装置,其特征在于,所述收发器,具体用于 接收所述目标对象释放的电磁回波信号。
  31. 一种计算机可读存储介质,其特征在于包括计算机程序,当所述计算机程序被运行时,使得权利要求11至20任一项所述的方法被执行。
  32. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得权利要求11至20任一项所述的方法被执行。
PCT/CN2021/110883 2020-08-17 2021-08-05 电磁波成像方法、装置及系统 WO2022037420A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/170,451 US20230194701A1 (en) 2020-08-17 2023-02-16 Electromagnetic Wave Imaging Method, Apparatus, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010826573.5 2020-08-17
CN202010826573.5A CN114076958A (zh) 2020-08-17 2020-08-17 电磁波成像方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/170,451 Continuation US20230194701A1 (en) 2020-08-17 2023-02-16 Electromagnetic Wave Imaging Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2022037420A1 true WO2022037420A1 (zh) 2022-02-24

Family

ID=80280857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110883 WO2022037420A1 (zh) 2020-08-17 2021-08-05 电磁波成像方法、装置及系统

Country Status (3)

Country Link
US (1) US20230194701A1 (zh)
CN (1) CN114076958A (zh)
WO (1) WO2022037420A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234022A (zh) * 2006-12-19 2008-08-06 华东师范大学 一种微波近场医学体检测方法及其应用
CN106338732A (zh) * 2016-08-23 2017-01-18 华讯方舟科技有限公司 一种毫米波三维全息成像方法及系统
CN106546981A (zh) * 2016-10-24 2017-03-29 复旦大学 运动人体安检成像系统和方法
WO2018187040A1 (en) * 2017-04-05 2018-10-11 Beth Israel Deaconess Medical Center, Inc. System and method for improved spin-echo-based magnetic resonance imaging
CN109541594A (zh) * 2018-11-12 2019-03-29 中国人民解放军国防科技大学 基于涡旋电磁波的条带sar三维成像方法
CN110596705A (zh) * 2019-08-22 2019-12-20 南京理工大学 基于生命体征sar成像的人体目标身份识别方法及系统
CN110680319A (zh) * 2019-10-25 2020-01-14 深圳技术大学 用于生物组织检测的磁感应分子成像方法及系统
CN110967692A (zh) * 2019-12-24 2020-04-07 上海无线电设备研究所 一种成像方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234022A (zh) * 2006-12-19 2008-08-06 华东师范大学 一种微波近场医学体检测方法及其应用
CN106338732A (zh) * 2016-08-23 2017-01-18 华讯方舟科技有限公司 一种毫米波三维全息成像方法及系统
CN106546981A (zh) * 2016-10-24 2017-03-29 复旦大学 运动人体安检成像系统和方法
WO2018187040A1 (en) * 2017-04-05 2018-10-11 Beth Israel Deaconess Medical Center, Inc. System and method for improved spin-echo-based magnetic resonance imaging
CN109541594A (zh) * 2018-11-12 2019-03-29 中国人民解放军国防科技大学 基于涡旋电磁波的条带sar三维成像方法
CN110596705A (zh) * 2019-08-22 2019-12-20 南京理工大学 基于生命体征sar成像的人体目标身份识别方法及系统
CN110680319A (zh) * 2019-10-25 2020-01-14 深圳技术大学 用于生物组织检测的磁感应分子成像方法及系统
CN110967692A (zh) * 2019-12-24 2020-04-07 上海无线电设备研究所 一种成像方法

Also Published As

Publication number Publication date
CN114076958A (zh) 2022-02-22
US20230194701A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
KR102133105B1 (ko) 3차원 공간 검출 시스템, 측위 방법 및 시스템
Cui et al. High precision human detection and tracking using millimeter-wave radars
Mainetti et al. A survey on indoor positioning systems
Batistić et al. Overview of indoor positioning system technologies
US10566699B2 (en) System and method for radio frequency penetration imaging of an object
CN107479513B (zh) 一种定位方法及系统、电子设备
US11893317B2 (en) Method and apparatus for associating digital content with wireless transmission nodes in a wireless communication area
JP2013096828A (ja) ドップラーレーダシステム、及び物体検知方法
CN111542128B (zh) 一种基于uwb的设备交互方法、装置及设备
US10949579B2 (en) Method and apparatus for enhanced position and orientation determination
CN110673092A (zh) 基于超宽带的分时定位方法及装置、系统
CA3092756A1 (en) Acoustic positioning transmitter and receiver system and method
Carter et al. An ultrasonic indoor positioning system for harsh environments
WO2022037420A1 (zh) 电磁波成像方法、装置及系统
WO2020180074A1 (en) Determining relevant signals using multi-dimensional radar signals
Kilberg et al. Accurate 3D lighthouse localization of a low-power crystal-free single-chip mote
Dellosa et al. Modified fingerprinting localization technique of indoor positioning system based on coordinates
CN113156432B (zh) 一种便携式微波成像系统
Horton King et al. Platypus: Sub-mm Micro-Displacement Sensing with Passive Millimeter-wave Tags As" Phase Carriers"
Morawska et al. Static and dynamic comparison of pozyx and decawave uwb indoor localization systems with possible improvements
Bashirov et al. RadNet: a testbed for mmwave radar networks
US20200393560A1 (en) Video object processing
Qiao et al. The trip to WiFi indoor localization across a decade—A systematic review
Ma et al. Mobi2Sense: enabling wireless sensing under device motions
Baunach et al. Beyond theory: development of a real world localization application as low power WSN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857515

Country of ref document: EP

Kind code of ref document: A1