WO2022037410A1 - 一种多机多工序时空协同规划方法和系统 - Google Patents

一种多机多工序时空协同规划方法和系统 Download PDF

Info

Publication number
WO2022037410A1
WO2022037410A1 PCT/CN2021/110580 CN2021110580W WO2022037410A1 WO 2022037410 A1 WO2022037410 A1 WO 2022037410A1 CN 2021110580 W CN2021110580 W CN 2021110580W WO 2022037410 A1 WO2022037410 A1 WO 2022037410A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
station
mobile robot
machine
conflict
Prior art date
Application number
PCT/CN2021/110580
Other languages
English (en)
French (fr)
Inventor
乐毅
周莹皓
张加波
文科
王国欣
杨继之
陈钦韬
白效鹏
Original Assignee
北京卫星制造厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫星制造厂有限公司 filed Critical 北京卫星制造厂有限公司
Publication of WO2022037410A1 publication Critical patent/WO2022037410A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06316Sequencing of tasks or work
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention belongs to the technical field of machinery manufacturing, and in particular relates to a multi-machine and multi-process space-time collaborative planning method and system.
  • the multi-robot system is flexible in configuration and can be reconfigured according to the processing object, and the multi-robot system is more advantageous in time and space distribution, and can complete complex processing tasks based on advanced collaborative architecture and collaborative strategies.
  • the multi-robot military aircraft surface coating laser stripping system jointly developed by Carnegie Mellon University, CTC Corporation and the U.S. Air Force Research Laboratory; the dual-robot collaborative drilling and riveting system developed by Nanjing University of Aeronautics and Astronautics for the aviation industry Hongdu.
  • the multi-robot system also has certain problems. If the layout and processing sequence of the multi-robots are unreasonably arranged, the multi-robots will often conflict and affect each other during work, which will reduce the work efficiency.
  • the technical solution of the present invention is to overcome the deficiencies of the prior art, and to provide a multi-machine, multi-process, space-time collaborative planning method and system, which can quickly adjust the layout according to changes in manufacturing tasks or production environments. and working space, calculate an operation sequence that has the shortest overall processing time and guarantees safe and reliable processing. It is suitable for multi-variety, medium and small batch production, and can be extended to aerospace, aviation, rail transit, marine engineering and other fields. The bottleneck of processing technology for super-sized weakly rigid components is solved.
  • the present invention discloses a multi-machine and multi-process space-time collaborative planning method, including:
  • the operation sequence of each mobile robot is added to the Gantt chart of the non-time conflict station operation carrying the transfer time, so as to obtain a multi-machine multi-process space-time collaborative planning diagram;
  • the processing program running time of each mobile robot is formed, and the processing program is formed and pushed to each mobile robot, so as to realize the multi-machine multi-process time coordination planning.
  • the operation sequence of each mobile robot satisfies: when any mobile robot is transferred, other mobile robots must not be transferred at the same time.
  • the method further includes: determining the station to which the machined part belongs according to the position of the cabin where the machined surface of the machined part is located: according to the diameter and length of the cabin, and the processing stroke of the movable robot, Verify the axial direction of the cabin, plan and number the movable robot stations from the symmetrical sides.
  • the shorter job time will be ranked first.
  • the transfer time is added to the Gantt chart of the station operation without time conflict according to the following strategy:
  • the operation sequence of each mobile robot is added to the Gantt chart of the time-conflict-free station operation carrying the transfer time according to the following strategy:
  • the present application also discloses a multi-machine and multi-process space-time collaborative planning system, including:
  • the first generation module is used to generate a Gantt chart for station independent operation according to the planning elements
  • the second generation module is used for re-planning the mobile robot with time-conflicting stations in the station-independent operation Gantt chart, so as to obtain a time-conflicting station operation Gantt chart;
  • the third generation module is used for adding the transfer time to the Gantt chart of the no-time-conflict station operation to obtain a time-conflict-free station operation Gantt chart carrying the transfer time;
  • the fourth generation module is used to add the operation sequence of each mobile robot to the Gantt chart of the non-time conflict station operation carrying the transfer time, so as to obtain a multi-machine multi-process space-time collaborative planning diagram;
  • the planning module is used to form the processing program running time of each mobile robot according to the multi-machine and multi-process space-time collaborative planning diagram, and form the processing program and push it to each mobile robot, so as to realize the multi-machine and multi-process time coordination planning.
  • the present invention discloses a multi-machine and multi-process space-time collaborative planning scheme, and proposes a two-layer collaborative planning model of "multi-machine processing station time coordination" and single-machine "positioning, alignment, and processing” process step space coordination.
  • time-based multi-station collaborative path planning is used;
  • geometric model-based processing trajectory planning is used, and the combination of the two forms a multi-machine multi-process processing flow.
  • the present invention discloses a multi-machine and multi-process space-time collaborative planning scheme, and proposes "station independent operation time planning" and "spatial conflict-free station transfer planning”. ” in order to arrange the processing operations of all mobile robots under this station, realize rapid reorganization of multi-machine and multi-station process routes, clear calculation process, improve efficiency and ensure the safety of the processing process, and solve the problem of large and medium-sized national major projects such as aerospace. Efficient and high-quality manufacturing of structures.
  • FIG. 1 is a schematic flowchart of a multi-machine multi-process spatiotemporal collaborative planning method in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a station-independent running time planning in an embodiment of the present invention
  • Fig. 3 is a kind of stand-independent operation Gantt chart in the embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a V(m, a(k)) sorting list according to an embodiment of the present invention
  • V(m, a(k)) sorting list in an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a time-conflict-free planning of a robot in the same time period according to an embodiment of the present invention
  • Fig. 7 is a kind of Gantt chart of station operation without time conflict in the embodiment of the present invention.
  • Fig. 8 is a kind of schematic flowchart of station location planning after adding transfer time in the embodiment of the present invention.
  • Fig. 9 is a kind of Gantt chart of no-time conflict station operation carrying transfer time in an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a spatial conflict-free site transfer planning in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a result after a first delay adjustment in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a result after a second delay adjustment in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a result after a third delay adjustment in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a generated robot program list in an embodiment of the present invention.
  • the multi-machine multi-process spatiotemporal collaborative planning method includes:
  • Step 101 generating a Gantt chart for station-independent operation according to the planning elements.
  • a machining matrix to which the workpiece belongs can be generated according to planning factors such as the site to which the machined part belongs, machining features and tolerances, machining sequence, machining equipment, and machining time; and a "station-independent operation Gantt chart" can be generated.
  • the position of the machined part is determined by the position of the cabin where the machined surface is located. According to the diameter and length of the cabin, as well as the processing stroke of the mobile robot, verify the axial direction of the cabin, and plan and number the positions of the mobile robot from the symmetrical sides. The processing stroke of the robot on this station can completely cover the processing surface and complete the corresponding processing steps.
  • the processing features and tolerances of parts determine the processing steps and processing equipment.
  • the machining features of parts include plane milling and threaded bottom hole drilling.
  • the machining tolerances mainly include ⁇ 1mm, ⁇ 0.5mm, ⁇ 0.2mm and ⁇ 0.1mm. Due to the different machining accuracy of different mobile robots, the plane with ⁇ 0.1mm tolerance is processed by the mobile hybrid robot (mobile robot number: 3), and the plane with ⁇ 0.2mm tolerance is processed by the mobile series milling robot (with a set of high precision at the end).
  • Processing actuator processing (mobile robot number: 1), the plane with ⁇ 0.5mm tolerance is processed by the mobile tandem grinding robot (with a spindle at the end that can be milled) (mobile robot number: 4), the plane with ⁇ 1mm tolerance is processed by Mobile double-arm robot processing (mobile robot number: 2).
  • the processing time of the part is determined by the processing steps and processing equipment of the part. Through the robot path planning software, the machining surface milling and hole making paths are generated, and the machining time of the parts is calculated according to the path length and feed rate.
  • Station independent operation Gantt chart is to classify the workpieces processed at each station according to the principle of "one processing equipment completes all workpieces at this station at one time", so as to reduce the transfer of mobile robots and the search for secondary positioning.
  • a positive number means that i and j are equal in the membership processing matrix to be classified.
  • the processing operations of all mobile robots under this station are arranged in the order of "priority processing tolerance requirements are low".
  • the calculation process is as follows: traverse all processed parts, find the subordinate processing matrix S(i, j), when the part is at the i-th station, check the value of j, and count its processing time into the corresponding
  • the processing time block of j mobile robots finally forms the total processing time of the j mobile robot at the i station.
  • a preferred station-independent operation Gantt chart obtained by the above calculation is shown in FIG. 3 .
  • Step 102 re-planning the mobile robots with time conflicting stations in the station-independent operation Gantt chart to obtain a time-conflicting station operation Gantt chart.
  • step 101 Taking the "station independent operation Gantt chart" obtained in step 101 as the input, it is considered that a mobile robot will be processed at different stations, and at the same time period, it can only work at one station. Therefore, it is necessary to generate a Gantt chart for the robot to run at the same time period without time conflict on the basis of the previous step.
  • the planning is based on the following principles: Robots with an earlier start-up time are ranked first, and if the start-up time is the same, the robots with a shorter operation time are ranked first, realizing the order of processing.
  • the machining robots at each station are arranged in the order of "priority machining with low tolerance requirements".
  • the operation time of the a(k)th robot is T(m,a(k))
  • the operation start time is Ts(m, a(k)).
  • V(m,a(k)) will be arranged in order of priority processing.
  • Each column of the matrix represents the processing station of a robot.
  • the first column represents the processing station of the first robot.
  • the order is 6 and 3.
  • the result of the V(m, a(k)) sorting list obtained by the above calculation is as follows shown in Figure 5.
  • the processing order of each robot at each station can be arranged in sequence according to the order provided by the list.
  • a(k) be the order of the processing robot.
  • a(k) [2,4,1,3]
  • Tl(V(m,a(k)), a(k)) represents the a-th (k)
  • Step 103 adding the transfer time to the Gantt chart for the time-conflict-free station operation to obtain a time-conflict-free station operation Gantt chart carrying the transfer time.
  • the robot on the original station should be transferred first, and the new robot will re-enter the station and re-positioning Justify, so need to add transfer time.
  • Ttrans is the transfer time of a single robot
  • the coefficient b is the time coefficient that the subsequent robots at the station need to increase (including the time multiplier added by the previous and current robots).
  • the Gantt chart for station operation without time conflict with transfer time calculated according to the flow chart shown in FIG. 8 is shown in FIG. 9 .
  • Step 104 adding the operation sequence of each mobile robot to the Gantt chart for station operation without time conflict with transfer time to obtain a multi-machine and multi-process space-time collaborative planning diagram.
  • the specific calculation flow is shown in Fig. 10:
  • the set array St(i) is used to store the order of processing time of each station i from long to short. Then, according to the result of sorting the array, the station transfer time of the shorter time is respectively delayed backward.
  • T(m,*) in Figure 10 represents the total running time of all robots at station m.
  • Step 105 According to the multi-machine and multi-process space-time coordination planning diagram, the processing program running time of each mobile robot is formed, and the processing program is formed and pushed to each mobile robot, so as to realize the planning of multi-machine multi-process time coordination .
  • the result adjusted in step 104 is formed into the processing program running time of each mobile robot, and the processing program is formed, and pushed to each mobile robot equipment, so as to realize the planning of multi-machine multi-process time coordination, such as Figure 14.
  • the present invention also discloses a multi-machine multi-process space-time collaborative planning system, including: a first generation module for generating a Gantt chart for independent operation of stations according to planning elements; a second generation module , which is used to re-plan the mobile robots with time-conflicted stations in the station-independent operation Gantt chart, and obtain the Gantt chart of time-conflict-free station operation; the third generation module is used to add the transfer time to In the Gantt chart for station operation without time conflict, a Gantt chart for station operation without time conflict with transfer time is obtained; the fourth generation module is used to add the operation sequence of each mobile robot to the transfer time In the Gantt chart of time-free station operation, a multi-machine, multi-process, space-time collaborative planning diagram is obtained; the planning module is used to form the processing program operation of each mobile robot according to the multi-machine and multi-process space-time collaborative planning diagram. Time, and form a processing program, and push it to each mobile

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Mechanical Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Robotics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种多机多工序时空协同规划方法和系统,该方法包括:根据规划要素,生成站位独立运行甘特图;对存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;将转移时间添加至无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;将各台可移动机器人的作业时序添加至携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;根据多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序。该方法和系统能根据制造任务或生产环境的变化迅速进行调整布局,从各可移动机器人的工作时序和工作空间,计算出一种总体加工时间最短,且保证加工安全可靠的作业顺序。

Description

一种多机多工序时空协同规划方法和系统
本申请要求于2020年08月21日提交中国专利局、申请号为202010852034.9、申请名称为“一种多机多工序时空协同规划方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于机械制造技术领域,尤其涉及一种多机多工序时空协同规划方法和系统。
背景技术
在航空、航天、轨道交通、武器装备、海洋工程等领域的制造过程中,存在一部分尺寸大、结构复杂、刚度不足的待加工构件。此类构件的尺寸已逐步超出现有机床的加工行程,近几年,以移动机器人位代表的小型加工单元原位作业模式的兴起,逐渐成为大型结构件高品质制造的新趋势。例如,德国弗劳恩霍夫协会研制的移动机器人用于飞机机翼加工;华中科技大学丁汉院士团队研制出大型风电叶片移动磨抛机器人;浙江大学研制出适用于飞机机身钻铆的移动加工机器人设备,天津大学研制出面向航天大型结构的移动混联加工机器人。
相比于单机器人制造单元,多机器人系统配置灵活,可根据加工对象进行重构,而且多机器人系统在时间和空间分布上更具优越性,可以基于先进的协作架构和协同策略完成复杂加工任务。例如,卡内基梅隆大学、CTC公司和美国空军研究实验室联合开发的多机器人军机表面涂层激光剥离系统;南京航空航天大学为航空工业洪都研制的双机器人协同钻铆系统。
然而,多机器人系统也存在一定的问题,若对多机器人的布局、加工时序等安排不合理,则多机器人在工作时经常会发生冲突、相互影响,反而降低了工作效率。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种多机多工序时空协同规划方法和系统,能根据制造任务或生产环境的变化迅速进行调整布局,从各可移动机器人的工作时序和工作空间,计算出一种总体加工时间最短,且保证加工安全可靠的作业顺序,适用于多品种、中小批量生产,可扩展应用于航天、航空、轨道交通、海洋工程等多个领域,解决了超大尺寸弱刚性构件的加工技术瓶颈。
为了解决上述技术问题,本发明公开了一种多机多工序时空协同规划方法,包括:
根据规划要素,生成站位独立运行甘特图;
对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;
将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;
将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;
根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
在上述多机多工序时空协同规划方法中,规划要素,包括:被加工零件所属站位、加工特征与公差、加工顺序、加工装备和加工时间。
在上述多机多工序时空协同规划方法中,时间冲突站位是指:同一时段,一个可移动机器人出现在多个站位工作。
在上述多机多工序时空协同规划方法中,转移时间是指:在多机加工过程中,可移动机器人从一个站位转向另一站位时的时间t;其中,t=t 1+t 2,t 1表示原先站位上的可移动机器人转移出来的时间,t 2表示新的可移动机器人重新进 入该站位并重新进行定位找正的时间。
在上述多机多工序时空协同规划方法中,各台可移动机器人的作业时序满足:任意一台可移动机器人转移时,其他可移动机器人不得同时在转移。
在上述多机多工序时空协同规划方法中,还包括:根据被加工零件的加工面所在舱体的位置确定被加工零件所属站位:根据舱体的直径和长度,以及可移动机器人加工行程,验证舱体轴向,分别从对称的两侧规划出可移动机器人站位,并进行编号。
在上述多机多工序时空协同规划方法中,按照如下策略对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划:
将可移动机器人作业启动时间较早的排在前面;
若可移动机器人作业启动时间相同,则将作业时间较短的排在前面。
在上述多机多工序时空协同规划方法中,按照如下策略将转移时间添加至所述无时间冲突站位运行甘特图中:
按照站位i从小到大的顺序开始,按照可移动机器人出场次序a(k),当第i站位上可移动机器人a(k)工作起始时间Ts(i,a(k))>0,则在第i站位上可移动机器人a(k)的工作起始时间前增加一个转移时间。
在上述多机多工序时空协同规划方法中,按照如下策略将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中:
遍历各个站位中整体加工时间最长的站位,若其它站位的可移动机器的转移时间和整体加工时间最长的站位有重叠,则向后调整其它站位的转移时间,若多个站位均和整体加工时间最长的站位存在转移时间重叠,则优先调整整个加工时间次长的站位,最后调整整个加工时间最短的站位,直至所有站位的均被遍历过为止。
相应的,本申请还公开了一种多机多工序时空协同规划系统,包括:
第一生成模块,用于根据规划要素,生成站位独立运行甘特图;
第二生成模块,用于对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;
第三生成模块,用于将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;
第四生成模块,用于将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;
规划模块,用于根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
本发明具有以下优点:
(1)本发明公开了一种多机多工序时空协同规划方案,提出“多机加工站位时间协同”和单机“定位、找正、加工”工步空间协同两层协同规划模型。在站位工序层面,采用基于时间的多站位协同路径规划;在“定位、找正、加工”工步层面,采用基于几何模型的加工轨迹规划,两者结合形成多机多工序加工流程。
(2)本发明公开了一种多机多工序时空协同规划方案,提出“站位独立运行时间规划”和“空间无冲突站位转移规划”,在一个站位上按照“优先加工公差要求低”的顺序排列该站位下所有可移动机器人的加工作业,实现多机多工位工艺路线快速重组,计算流程清晰,在提高效率同时保证加工过程安全,解决了航空航天等国家重大工程中大型结构的高效高质制造。
附图说明
图1是本发明实施例中一种多机多工序时空协同规划方法的流程示意图;
图2是本发明实施例中一种站位独立运行时间规划的流程示意图;
图3是本发明实施例中一种站位独立运行甘特图;
图4是本发明实施例中一种V(m,a(k))排序清单流程图示意图;
图5是本发明实施例中一种V(m,a(k))排序清单的示意图;
图6是本发明实施例中一种同一时间段机器人无时间冲突规划的流程示意图;
图7是本发明实施例中一种无时间冲突站位运行甘特图;
图8是本发明实施例中一种添加转移时间后站位规划的流程示意图;
图9是本发明实施例中一种携带转移时间的无时间冲突站位运行甘特图;
图10是本发明实施例中一种空间无冲突站位转移规划的流程图示意图;
图11是本发明实施例中一种第一次顺延调整后的结果示意图;
图12是本发明实施例中一种第二次顺延调整后的结果示意图;
图13是本发明实施例中一种第三次顺延调整后的结果示意图;
图14是本发明实施例中一种生成的机器人程序清单的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明公开的实施方式作进一步详细描述。
如图1,在本实施例中,该多机多工序时空协同规划方法,包括:
步骤101,根据规划要素,生成站位独立运行甘特图。
在本实施例中,可以根据被加工零件所属站位、加工特征与公差、加工顺序、加工装备和加工时间等规划要素生成其隶属的加工矩阵;并生成“站位独立运行甘特图”。
被加工零件所属站位由其加工面所在舱体的位置决定。根据舱体的直径和长度,以及可移动机器人加工行程,验证舱体轴向,分别从对称的两侧规划出可移动机器人站位,并进行编号。该站位上机器人加工行程能够完全覆盖加工面,并完成相应的加工工步。
零件加工特征与公差决定其加工工步、加工装备。零件加工特征包括平面铣削和螺纹底孔钻孔两类,加工公差主要包括±1mm、±0.5mm、±0.2mm和±0.1mm。由于不同可移动机器人加工精度不同,±0.1mm公差的平面由可移动混联机器人加工(可移动机器人编号:3),±0.2mm公差的平面由可移动串联铣削机器人(末端带一套高精度加工执行器)加工(可移动机器人编号:1),±0.5mm公差的平面由可移动串联磨削机器人(末端带主轴可以铣削)加工(可 移动机器人编号:4),±1mm公差的平面由可移动双臂机器人加工(可移动机器人编号:2)。
零件的加工时间由零件的加工工步、加工装备决定。通过机器人路径规划软件,生成加工面铣削、制孔路径,根据路径长度和进给速度,计算出零件的加工时间。
加工面w(n)(其中n=1,2,…,N,代表加工支架的编号)隶属的加工矩阵S(i,j),其中i=1,2,…,6,代表加工站位;其中j=1,2,…,4,代表所使用的可移动机器人编号;表1为可移动机器人加工工件列表示例。
Figure PCTCN2021110580-appb-000001
表1
站位独立运行甘特图是将每一个站位加工工件,按照“同一加工装备一次全部加工完成该站位所有工件”的原则进行归类,以此减少可移动器人转移和二次定位找正的次数,即将隶属加工矩阵中,i,j相等的进行归类。同时,按照“优先加工公差要求低”的顺序排列该站位下所有可移动机器人的加工作业。在本例中j=a(k)=[2,4,1,3],k=1,2,3,4,代表所使用的可移动机器人编号按照2,4,1,3的优先级顺序进行排列。
如图2,计算流程如下:遍历所有的加工零件,查找隶属的加工矩阵S(i,j),当该零件在第i站位时,查看j的值,并将其加工时间计入对应第j台可移动机器人的加工时间块,最终形成第i站位上第j台可移动机器人的总加工时间。当所有加工零件都遍历结束后,按照“优先加工公差要求低”加工面的原则,即 按照a(k)=[2,4,1,3],k=1,2,3,4的顺寻,顺次排列第i站位上所有加工机器人的加工时间T(i,*),形成各个站位独立运行甘特图。
优选的,通过上述计算获得的一种优选的站位独立运行甘特图如图3所示。
步骤102,对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图。
以步骤101得到的“站位独立运行甘特图”作为输入,考虑到一个可移动机器人会在不同的站位上进行加工,而同一时段,只能在一个站位工作。因此需要在上一步基础上生成同一时间段机器人无时间冲突站位运行甘特图。
规划基于以下原则:机器人作业启动时间较早的排在前面,若启动时间相同则作业时间较短的排在前面,实现加工顺序排列。
如图4,为针对所有站位上所有机器人工序形成V(m,a(k))排序清单流程图:
首先,形成具有排序功能的加工优先矩阵V(m,a(k)),其中m=1,2,…,6,代表遍历的顺序,a(k)=[2,4,1,3],代表所使用的可移动机器人编号,V(m,a(k))的值代表第a(k)个加工机器人在第m个顺序上加工的站位值。每个站位的加工机器人按照“优先加工公差要求低”的顺序排列。
其次,站位搜索顺序按照m=1,2,…,6,在每次搜索m上,第a(k)台机器人的作业时长为T(m,a(k)),作业起始时间为Ts(m,a(k))。
搜索排序的条件包括:(1)机器人作业启动时间较早的排在前面,即流程图中的判断条件Ts(m,a(k))>Ts(m-1,a(k));(2)若启动时间相同则作业时间较短的排在前面,即流程图中的判断条件当Ts(m,a(k))==Ts(m-1,a(k))时,再次判断两个站位的作业时长T(m,a(k))和Ts(m-1,a(k))的大小,并将作业时长较短的排到前面。
最后,V(m,a(k))的值将按照优先加工顺序进行排列。
仍以前述实例为例,通过上述计算获得的V(m,a(k))排序清单结果为:
Figure PCTCN2021110580-appb-000002
矩阵的每一列代表一台机器人加工的站位,例如,第1列代表第1台机器人加工站位顺序为6、3,通过上述计算获得的V(m,a(k))排序清单结果如图5所示。
形成V(m,a(k))排序清单后,就可以根据该清单提供的顺序,顺次排列各台机器人在各个站位的加工顺序。设a(k)为加工机器人的顺序,本例中a(k)=[2,4,1,3],则Tl(V(m,a(k)),a(k))表示第a(k)台机器人在第V(m,a(k))个站位上加工结束时间。
对于任意一个站位V(m,a(k)),若当前机器人a(k)在上一个工作站位V(m-1,a(k))的工作完成时间Tl(V(m-1,a(k)),a(k))和当前站位V(m,a(k)),上一台机器人a(k-1)工作完成时间Tl(V(m,a(k)),a(k-1))进行比较,当前机器人在本站位V(m,a(k))的工作起始时间Ts(V(m,a(k)),a(k))都将晚于这两个完成时间。具体的计算流程图如图6所示。
按照形成的V(m,a(k))站位顺序进行遍历完a(k)机器人的各个站位后,获得无时间冲突站位运行甘特图,如图7所示。
步骤103,将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图。
在本实施例中,在多机加工过程中,可移动机器人从一个站位转向另一站位时,原先站位上的机器人要先转移出来,新的机器人重新进入该站位,重新进行定位找正,因此需要添加转移时间。
如图8所示,添加的方法为按照站位i从小到大的顺序开始,按照机器人出场次序a(k)=[2,4,1,3],当第i站位上机器人a(k)工作起始时间Ts(i,a(k))>0,则说明该机器人并非在该站位第一个作业机器人或者在其它站位上进行过作 业,则该机器人的工作起始时间前增加一个转移时间b*Ttrans。其中,Ttrans是单台机器人的转移时间,系数b则是该站位后续机器人需要增加的时间系数(包括前序和当前机器人增加的时间乘数)。
按照图8所示的流程图计算得到的携带转移时间的无时间冲突站位运行甘特图如图9所示。
步骤104,将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图。
在本实施例中,由于可移动机器人需要安全转移,为防止多台机器人转移路径发生干涉,规定了每台机器人转移时,其它机器人不得同时在转移。因此需要在上一步规划的基础上,进一步调整各台机器人的作业时序。
为了保证整个加工时间最短,首先遍历各个站位中整体加工时间最长的站位,若其它站位的机器人的转移时间和该站位有重叠,则向后调整其它站位的转移时间,若多个站位均和该站位存在转移时间重叠,则优先调整整个加工时间次长的站位,最后调整整个加工时间最短的站位,直至所有站位的均被遍历过为止。
具体的计算流程如图10所示:设定数组St(i)用于存储各站位i加工时间由长到短的顺序。然后按照该数组排序的结果,分别将时间较短的站位转移时间向后延迟。其中,图10中T(m,*)表示站位m上所有机器人的总运行时间。
同样的,仍以前述实例为例,图9中站位5整体作业时间最长,站位4作业时间次长,因此先将站位4的转移时间顺延,第一次调整后的结果如图11所示。然后,调整时间次长的站位4,检查与其有转运冲突的站位1、3,其中站位3加工时间较长,因此优先调整站位3的转移时间,第二次调整后的结果如图12所示。最后,调整时间较短的站位1,第三次调整后的结果如图13所示。
步骤105,根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
在本实施例中,将步骤104调整的结果形成各台可移动机器人的加工程序 运行时间,并形成加工程序,推送至各台可移动机器人装备,以实现多机多工序时间协同的规划,如图14所示。
在上述实施例的基础上,本发明还公开了一种多机多工序时空协同规划系统,包括:第一生成模块,用于根据规划要素,生成站位独立运行甘特图;第二生成模块,用于对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;第三生成模块,用于将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;第四生成模块,用于将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;规划模块,用于根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
对于系统实施例而言,由于其与方法实施例相对应,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

  1. 一种多机多工序时空协同规划方法,其特征在于,包括:
    根据规划要素,生成站位独立运行甘特图;
    对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;
    将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;
    将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;
    根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
  2. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,规划要素,包括:被加工零件所属站位、加工特征与公差、加工顺序、加工装备和加工时间。
  3. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,时间冲突站位是指:同一时段,一个可移动机器人出现在多个站位工作。
  4. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,转移时间是指:在多机加工过程中,可移动机器人从一个站位转向另一站位时的时间t;其中,t=t 1+t 2,t 1表示原先站位上的可移动机器人转移出来的时间,t 2表示新的可移动机器人重新进入该站位并重新进行定位找正的时间。
  5. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,各台可移动机器人的作业时序满足:任意一台可移动机器人转移时,其他可移动机器人不得同时在转移。
  6. 根据权利要求2所述的多机多工序时空协同规划方法,其特征在于,还包括:根据被加工零件的加工面所在舱体的位置确定被加工零件所属站位:根 据舱体的直径和长度,以及可移动机器人加工行程,验证舱体轴向,分别从对称的两侧规划出可移动机器人站位,并进行编号。
  7. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,按照如下策略对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划:
    将可移动机器人作业启动时间较早的排在前面;
    若可移动机器人作业启动时间相同,则将作业时间较短的排在前面。
  8. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,按照如下策略将转移时间添加至所述无时间冲突站位运行甘特图中:
    按照站位i从小到大的顺序开始,按照可移动机器人出场次序a(k),当第i站位上可移动机器人a(k)工作起始时间Ts(i,a(k))>0,则在第i站位上可移动机器人a(k)的工作起始时间前增加一个转移时间。
  9. 根据权利要求1所述的多机多工序时空协同规划方法,其特征在于,按照如下策略将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中:
    遍历各个站位中整体加工时间最长的站位,若其它站位的可移动机器的转移时间和整体加工时间最长的站位有重叠,则向后调整其它站位的转移时间,若多个站位均和整体加工时间最长的站位存在转移时间重叠,则优先调整整个加工时间次长的站位,最后调整整个加工时间最短的站位,直至所有站位的均被遍历过为止。
  10. 一种多机多工序时空协同规划系统,其特征在于,包括:
    第一生成模块,用于根据规划要素,生成站位独立运行甘特图;
    第二生成模块,用于对所述站位独立运行甘特图中存在时间冲突站位的可移动机器人进行重规划,得到无时间冲突站位运行甘特图;
    第三生成模块,用于将转移时间添加至所述无时间冲突站位运行甘特图中,得到携带转移时间的无时间冲突站位运行甘特图;
    第四生成模块,用于将各台可移动机器人的作业时序添加至所述携带转移时间的无时间冲突站位运行甘特图中,得到多机多工序时空协同规划图;
    规划模块,用于根据所述多机多工序时空协同规划图,形成各台可移动机器人的加工程序运行时间,并形成加工程序,推送至各台可移动机器人,以实现多机多工序时间协同的规划。
PCT/CN2021/110580 2020-08-21 2021-08-04 一种多机多工序时空协同规划方法和系统 WO2022037410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010852034.9 2020-08-21
CN202010852034.9A CN112207815B (zh) 2020-08-21 2020-08-21 一种多机多工序时空协同规划方法和系统

Publications (1)

Publication Number Publication Date
WO2022037410A1 true WO2022037410A1 (zh) 2022-02-24

Family

ID=74059422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110580 WO2022037410A1 (zh) 2020-08-21 2021-08-04 一种多机多工序时空协同规划方法和系统

Country Status (2)

Country Link
CN (1) CN112207815B (zh)
WO (1) WO2022037410A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700944A (zh) * 2022-04-06 2022-07-05 南京航空航天大学 一种面向异种任务的双机器人协同路径规划方法
CN114781863A (zh) * 2022-04-21 2022-07-22 南京航空航天大学 多机器人协同加工效率与质量双目标优化任务规划方法
CN116551684A (zh) * 2023-05-17 2023-08-08 南京航空航天大学 面向航天器大型舱体构件加工的多机器人协同规划方法
CN117057551A (zh) * 2023-08-02 2023-11-14 天津大学 考虑协作机器人的多工序作业调度问题的解决方法和装置
CN114781863B (zh) * 2022-04-21 2024-06-07 南京航空航天大学 多机器人协同加工效率与质量双目标优化任务规划方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207815B (zh) * 2020-08-21 2022-04-12 北京卫星制造厂有限公司 一种多机多工序时空协同规划方法和系统
CN114037261A (zh) * 2021-11-01 2022-02-11 佛山技研智联科技有限公司 生产排程方法、装置、计算机设备及存储介质
CN114393578A (zh) * 2021-12-31 2022-04-26 广州明珞装备股份有限公司 一种工艺动作判断方法、系统、设备及存储介质
CN117381805B (zh) * 2023-12-13 2024-02-27 成都航空职业技术学院 一种面向冲突应对的机械臂运行控制方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120338A1 (en) * 2003-10-23 2005-06-02 Franz Grob Process for determining and providing run time information for robot control programs
CN110135678A (zh) * 2019-03-29 2019-08-16 广州明珞汽车装备有限公司 一种基于工位的工艺时序分析方法、系统及存储介质
CN110781562A (zh) * 2020-01-02 2020-02-11 中国航空制造技术研究院 面向飞机脉动总装作业过程的多目标优化方法及装置
CN111240319A (zh) * 2019-12-31 2020-06-05 南京理工大学 室外多机器人协同作业系统及其方法
CN111401693A (zh) * 2020-02-25 2020-07-10 山东师范大学 一种带机器人运输的柔性车间调度优化方法及系统
CN112207815A (zh) * 2020-08-21 2021-01-12 北京卫星制造厂有限公司 一种多机多工序时空协同规划方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120338A1 (en) * 2003-10-23 2005-06-02 Franz Grob Process for determining and providing run time information for robot control programs
CN110135678A (zh) * 2019-03-29 2019-08-16 广州明珞汽车装备有限公司 一种基于工位的工艺时序分析方法、系统及存储介质
CN111240319A (zh) * 2019-12-31 2020-06-05 南京理工大学 室外多机器人协同作业系统及其方法
CN110781562A (zh) * 2020-01-02 2020-02-11 中国航空制造技术研究院 面向飞机脉动总装作业过程的多目标优化方法及装置
CN111401693A (zh) * 2020-02-25 2020-07-10 山东师范大学 一种带机器人运输的柔性车间调度优化方法及系统
CN112207815A (zh) * 2020-08-21 2021-01-12 北京卫星制造厂有限公司 一种多机多工序时空协同规划方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG XIU-YING, FENG HUI, REN ZHI-KAO, ZHOU YAN-PING: "Two-stage Optimal Modeling and Algorithm of Production Scheduling for Steelmaking and Continuous Casting", ACTA AUTOMATICA SINICA, KEXUE CHUBANSHE, BEIJING, CN, vol. 42, no. 11, 15 November 2016 (2016-11-15), CN , pages 1702 - 1710, XP055902303, ISSN: 0254-4156, DOI: 10.16383/j.aas.2016.c160005 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700944A (zh) * 2022-04-06 2022-07-05 南京航空航天大学 一种面向异种任务的双机器人协同路径规划方法
CN114700944B (zh) * 2022-04-06 2023-11-24 南京航空航天大学 一种面向异种任务的双机器人协同路径规划方法
CN114781863A (zh) * 2022-04-21 2022-07-22 南京航空航天大学 多机器人协同加工效率与质量双目标优化任务规划方法
CN114781863B (zh) * 2022-04-21 2024-06-07 南京航空航天大学 多机器人协同加工效率与质量双目标优化任务规划方法
CN116551684A (zh) * 2023-05-17 2023-08-08 南京航空航天大学 面向航天器大型舱体构件加工的多机器人协同规划方法
CN116551684B (zh) * 2023-05-17 2024-05-24 南京航空航天大学 面向航天器大型舱体构件加工的多机器人协同规划方法
CN117057551A (zh) * 2023-08-02 2023-11-14 天津大学 考虑协作机器人的多工序作业调度问题的解决方法和装置
CN117057551B (zh) * 2023-08-02 2024-04-19 天津大学 考虑协作机器人的多工序作业调度问题的解决方法和装置

Also Published As

Publication number Publication date
CN112207815A (zh) 2021-01-12
CN112207815B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022037410A1 (zh) 一种多机多工序时空协同规划方法和系统
WO2020007016A1 (zh) 一种基于数字孪生的智能车间自治生产过程动态联动控制方法
JP6333384B2 (ja) 小さな孔を穿孔するシステム、孔を穿孔する方法、穿孔するための製品、およびさらなる穿孔の方法
CN103955168A (zh) 基于delmia仿真的机器人制孔加工离线编程方法
CN113848803B (zh) 一种深腔曲面加工刀路生成方法
EP3530421B1 (en) Machining system with optimal paths
Zhai Early cost estimation for additive manufacture
CN104360638A (zh) 一种基于AutoCad的孔类特征数控加工系统及方法
Guo et al. A robotic boring system for intersection holes in aircraft assembly
Chen et al. Topology and dimension synchronous optimization design of 5-DoF parallel robots for in-situ machining of large-scale steel components
Wen et al. Evolution and development trend prospect of metal milling equipment
CN104007699B (zh) 基于工艺过程的飞机结构件自动编程加工单元优化排序方法
Li et al. Flexible tooling design technology for aircraft fuselage panel component pre-assembly
CN113276112B (zh) 一种基于移动式双机器人的弱刚性构件加工工艺规划方法
Izamshah et al. Cutter path strategies for shoulder milling of thin deflecting walls
Huang et al. Development and application of software for open and soft multi-axis EDM CNC systems
Balaji et al. Trends in manufacturing and assembly technologies for next generation combat aircraft
CN104238451B (zh) 工业机器人作业四段法协同规划方法
Xu et al. Global Optimal Trajectory Planning of Mobile Robot Grinding for High-Speed Railway Body
Xiao et al. Research on automatic assembly technology for final assembly of helicopter fuselage
Zhou et al. Research on precision and greenhouse manufacturing technology for large aircraft panels
CN203557114U (zh) 机械滑台用不等高组合导轨
Shang et al. Design and Realization of Robotic Automatic Drilling & Riveting Controlling System for Single-Sided Fasteners
Wang et al. Development of off-line programming and simulation system for automatic hole making equipment
Feiyan et al. Locating method and motion stroke design of flexible assembly tooling for multiple aircraft components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857505

Country of ref document: EP

Kind code of ref document: A1