WO2022037296A1 - 一种分光设备和分光系统 - Google Patents

一种分光设备和分光系统 Download PDF

Info

Publication number
WO2022037296A1
WO2022037296A1 PCT/CN2021/104919 CN2021104919W WO2022037296A1 WO 2022037296 A1 WO2022037296 A1 WO 2022037296A1 CN 2021104919 W CN2021104919 W CN 2021104919W WO 2022037296 A1 WO2022037296 A1 WO 2022037296A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
splitter
port
housing
Prior art date
Application number
PCT/CN2021/104919
Other languages
English (en)
French (fr)
Inventor
吴丹
熊伟
柳祺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21857391.3A priority Critical patent/EP4187810A4/en
Priority to MX2023001994A priority patent/MX2023001994A/es
Priority to JP2023509869A priority patent/JP2023538008A/ja
Publication of WO2022037296A1 publication Critical patent/WO2022037296A1/zh
Priority to US18/171,158 priority patent/US20230204860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4441Boxes
    • G02B6/4446Cable boxes, e.g. splicing boxes with two or more multi fibre cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4441Boxes
    • G02B6/445Boxes with lateral pivoting cover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present application relates to the field of optical communication, and in particular, to a light splitting device and a light splitting system.
  • ODN optical distribution network
  • FAT Fiber Access Terminal
  • the embodiments of the present application provide a light splitting device and a light splitting system, so that the light splitting device can be connected to more ONTs, and in a scenario with a high user density, input cost and construction difficulty are reduced.
  • an embodiment of the present application provides a light splitting device, including: a housing, at least one first light splitter, a multi-core light inlet, a multi-core light outlet, and at least one single-core light outlet.
  • the multi-core light inlet, the multi-core light outlet and at least one single-core light outlet are arranged on the outer wall of the casing.
  • At least one first beam splitter is disposed within the housing.
  • Each first optical splitter includes an input, a first output, and at least one second output.
  • the multi-core light inlet port is connected to the input end of at least one first optical splitter, the first output end of each first optical splitter is connected to the multi-core light outlet port, and the second output end of each first optical splitter is connected to the single-core light output port
  • the ports are connected one by one.
  • the multi-core light inlet of the optical splitting device supports multiple optical fibers, and multiple optical splitters can be set in the optical splitting device, and each optical fiber can be connected to the input end of a corresponding optical splitter.
  • the number of output ends of each optical splitter is limited, due to the expansion of the number of optical splitters in the optical splitting equipment, the optical splitting equipment can be connected to more ONTs, which reduces the input cost and construction difficulty in scenarios with high user density.
  • the multi-core light inlet is provided with a first multi-core adapter
  • the multi-core light outlet is provided with a second multi-core adapter
  • each single-core light outlet is provided with a single-core adapter.
  • the port located in the housing of the first multi-core adapter is connected to one end of the at least one first single-core optical fiber connector, and the other end of the at least one first single-core optical fiber connector is connected to the at least one first single-core optical fiber connector through an optical fiber.
  • the input ends of the first optical splitter are connected in one-to-one correspondence;
  • the port located in the housing of the second multi-core adapter is connected with one end of at least one second single-core fiber connector, and the other end of the at least one second single-core fiber connector passes through
  • the optical fiber is connected with the first output end of the at least one first optical splitter in a one-to-one correspondence;
  • the port located in the housing of each single-core adapter is connected with one end of each third single-core optical fiber connector in a one-to-one correspondence, and each third The other end of the single-core optical fiber connector is connected to each of the second output ends of the first optical splitter in a one-to-one correspondence through an optical fiber.
  • a specific connection mode inside the spectroscopic device is provided, which improves the practicability of the solution.
  • the number of fiber cores supported by the first multi-core adapter and the number of fiber cores supported by the second multi-core adapter are greater than or equal to the number of the first optical splitters.
  • the optical splitter can be preset in the second optical splitting device, and when the access demand becomes larger in the later stage, it can be connected. All supported optical splitters can be expanded later. Through the above design methods, more customer needs can be met, and the initial investment of customers can be saved. In addition, there is no need to add new spectroscopic equipment in the later expansion, as long as a spectrometer is added to the original spectroscopic equipment, which reduces the construction difficulty and material cost.
  • the port of the first multi-core adapter outside the housing is used for connecting the first multi-core fiber connector
  • the port of the second multi-core adapter outside the housing is used for connecting the second multi-core fiber connection
  • the ports located outside the housing of each single-core adapter are used to connect the fourth single-core fiber optic connector.
  • a connection mode between the optical splitting device and the external optical fiber connector is provided, which further improves the practicability of this solution.
  • the optical cable connected by the first multi-core optical fiber connector and the optical cable connected by the second multi-core optical fiber connector are distribution segment cables
  • the optical cable connected by the fourth single-core optical fiber connector is the home segment optical cable .
  • the optical splitting equipment in the present application is mainly applied to the optical cable of the wiring section, which reflects the practical value of the solution.
  • At least one second optical splitter is further provided in the casing, the second output end of the at least one first optical splitter is connected to the input end of the at least one second optical splitter in a one-to-one correspondence, and the at least one second optical splitter The output end of the optical splitter is connected with the single-core light outlet in one-to-one correspondence.
  • the output end of the first optical splitter can be further connected to the second optical splitter, which improves the scalability of the solution.
  • the first optical splitter is an unequal splitting optical splitter, and the output optical power of the first output end is greater than the output optical power of the second output end. It can be understood that, since the multi-core optical outlet connected to the first output terminal is used to connect with the multi-core optical inlet port of the next-stage optical splitting device, allocating a larger optical power to the first output terminal can reserve a large amount of optical power on the trunk road. Partial power optical signals can transmit longer distances and distribute the optical signals to users with longer distances.
  • the housing includes a base and an upper cover, the base and the upper cover are detachably and fixedly connected, and the multi-core light inlet, the multi-core light outlet and at least one single-core light outlet are arranged on the end face of the base.
  • a specific housing structure is provided, making the solution more practical.
  • the present application provides a spectroscopic device, comprising: a housing, a multi-core light inlet port and a plurality of multi-core light outlet ports, wherein the multi-core light inlet port and the plurality of multi-core light outlet ports are arranged on the outer wall of the housing , the multi-core light inlet port is connected with multiple multi-core light outlet ports.
  • the multi-core light inlet is provided with a first multi-core adapter
  • each multi-core light outlet is provided with a second multi-core adapter.
  • the port of the first multi-core adapter in the housing is connected to one end of the first multi-core optical fiber connector, and the port of each second multi-core adapter in the housing is connected to a plurality of single-core optical fibers One end of the connector is connected, and the other end of the first multi-core optical fiber connector is connected to the other ends of the plurality of single-core optical fiber connectors through fiber jumpers.
  • a specific connection mode inside the spectroscopic device is provided, which improves the practicability of the solution.
  • the ports of the first multi-core adapter located outside the housing are used to connect the second multi-core optical fiber connectors, and the ports of the second multi-core adapters located outside the housing are used to connect with a plurality of third multi-core optical fiber connectors.
  • the multi-core optical fiber connectors are connected one by one.
  • a connection mode between the optical splitting device and the external optical fiber connector is provided, which further improves the practicability of this solution.
  • a plurality of optical splitters are further arranged in the housing, the optical splitters correspond to the multi-core optical outlet ports one-to-one, the input end of each optical splitter is connected to the multi-core optical inlet port, and the multiple optical splitter The output terminals are connected to the multi-core optical outlet corresponding to each optical splitter.
  • the housing includes a base and an upper cover, the base and the upper cover are detachably and fixedly connected, and the multi-core light inlet port and the multiple multi-core light outlet ports are arranged on the end face of the base.
  • a specific housing structure is provided, making the solution more practical.
  • the present application provides an optical splitting system, including an OLT, a plurality of ONTs, a first optical splitting device, and multiple groups of cascaded second optical splitting devices, where the first optical splitting device is as in any embodiment of the second aspect above.
  • the spectroscopic device, and the second spectroscopic device is the spectroscopic device in any one of the embodiments of the first aspect.
  • the OLT is connected to the multi-core light inlet of the first optical splitting device.
  • Each multi-core optical outlet port of the first optical splitting device is connected to the multi-core optical inlet port of the second optical splitting device of the first stage in a group of cascaded second optical splitting devices.
  • the multi-core optical outlet of the second optical splitting device of the upper stage is connected to the multi-core optical inlet port of the second optical splitting device of the next stage.
  • the single-core optical outlet of each second optical splitting device is connected to the ONT in a one-to-one correspondence.
  • the multi-core optical inlet of the optical splitting device supports multiple optical fibers, and multiple optical splitters can be set in the optical splitting device, and each optical fiber can be connected to the input end of a corresponding optical splitter.
  • the number of output ends of each optical splitter is limited, due to the expansion of the number of optical splitters in the optical splitting equipment, the optical splitting equipment can be connected to more ONTs, which reduces the input cost and construction difficulty in scenarios with high user density.
  • Fig. 1 is a network architecture diagram applied by this application
  • FIG. 2 is a schematic diagram of an embodiment of the spectroscopic system in the application
  • FIG. 3 is a schematic structural diagram of a first spectroscopic device in the application.
  • FIG. 4 is a schematic diagram of an embodiment of the first spectroscopic device in the application.
  • FIG. 5 is a schematic structural diagram of a second spectroscopic device in the application.
  • FIG. 6 is a schematic diagram of an embodiment of the second spectroscopic device in the application.
  • FIG. 7 is a schematic diagram of another embodiment of the second spectroscopic device in the application.
  • FIG. 8 is a schematic diagram of another embodiment of the second spectroscopic device in the application.
  • FIG. 9 is a schematic diagram of another embodiment of the second spectroscopic device in this application.
  • the embodiments of the present application provide a light splitting device and a light splitting system, so that the light splitting device can be connected to more ONTs, and in a scenario with a high user density, input cost and construction difficulty are reduced.
  • FIG. 1 is a network architecture diagram of an application of this application.
  • FTTx can be FTTH (fiber to the home, fiber to the home), FTTC (fiber to the curb, fiber to the curb), FTTP (fiber to the premises, fiber to the premises), or FTTN (fiber to the node or neighborhood, fiber to the node), it can also be FTTO (fiber to the office, fiber to the office), or FTTSA (fiber to the service area, fiber to the service area).
  • FTTH fiber to the home, fiber to the home
  • FTTC fiber to the curb, fiber to the curb
  • FTTP fiber to the premises, fiber to the premises
  • FTTN fiber to the node or neighborhood, fiber to the node
  • FTTSA fiber to the service area, fiber to the service area.
  • CO center office
  • ODF optical distribution frame
  • the optical cable distributed through ODF is connected to the optical fiber distribution terminal (FDT) located at the optical distribution point.
  • FDT optical fiber distribution terminal
  • a splitting and splicing box split and Splicing box
  • SSC closure, SSC
  • the optical cable redistributed by FDT is connected to the optical fiber distribution box (Fiber Access Terminal, FAT) located at the optical access point. If the distance between FDT and FAT is large, it can also be connected by installing SSC.
  • FAT is used to connect optical cables to indoor optical network terminations (ONTs).
  • the optical cable between the OLT and the optical distribution point is called the feeder segment cable
  • the optical cable between the optical distribution point and the optical access point is called the distribution segment optical cable
  • the optical cable between the optical access point and the ONT is called the home segment cable.
  • the optical splitting device provided by the present application may be a FAT applied to an optical access point.
  • FIG. 2 is a schematic diagram of an embodiment of the spectroscopic system in the present application.
  • the optical splitting system includes an optical line terminal 10, a first optical splitting device 20, multiple groups of cascaded second optical splitting devices (as shown in FIG. 2, each group of cascaded second optical splitting devices includes optical splitting devices 301-303) and multiple Optical network terminal 40 .
  • the optical line terminal 10 is connected to the multi-core optical inlet of the first optical splitting device 20 .
  • the first optical splitting device 20 has a plurality of multi-core optical outlets, and each multi-core optical outlet corresponds to a set of cascaded second optical splitting devices (as shown in FIG.
  • each multi-core optical outlet port of the first optical splitting device 20 is connected to the multi-core optical inlet port of the first-level optical splitting device 301 in a group of cascaded second optical splitting devices.
  • the multi-core optical outlet of the second optical splitting device of the upper stage is connected to the multi-core optical inlet port of the second optical splitting device of the next stage. As shown in FIG.
  • the multi-core optical outlet of the first-level optical splitting device 301 is connected to the multi-core optical inlet port of the second-level optical splitting device 302, and the multi-core optical outlet of the second-level optical splitting device 302 is connected to the third-level optical splitting device Multi-core optical port connection, and so on.
  • Each second optical splitting device is provided with at least one optical splitter, and the input end of each optical splitter is connected to the multi-core light inlet port of the second optical splitting device through an optical fiber.
  • the optical splitter also includes a plurality of output terminals, one of which is connected to the multi-core optical outlet of the second optical splitting device, and the other output terminals are connected to the multiple single-core optical outlets of the second optical splitting device in a one-to-one correspondence.
  • the multiple single-core optical outlet ports of each second optical splitting device are connected to the multiple optical network terminals 40 in a one-to-one correspondence.
  • equipment such as ODF, FDT, and SSC may also be set between the optical line terminal 10 and the first optical splitting device 20.
  • equipment such as ODF, FDT, and SSC may also be set between the optical line terminal 10 and the first optical splitting device 20.
  • the cascaded second optical splitting devices are two or more second optical splitting devices connected in sequence. It is understood that the present application does not limit the specific number of the cascaded second optical splitting devices.
  • the first optical splitting device 20 and the second optical splitting device are connected by a multi-core optical fiber, and every two adjacent second wind-solar devices are also connected by a multi-core optical fiber.
  • the number of cores of the multi-core optical fiber is It may be two as shown in FIG. 2 , or it may be a multi-core optical fiber with more than two cores, which is not specifically limited in this application.
  • FIG. 3 is a schematic structural diagram of the first spectroscopic device in the application.
  • the first spectroscopic device includes: a housing 21 , a multi-core light inlet port 22 and a plurality of multi-core light outlet ports (231 , 232 , 233 and 234 as shown in FIG. 3 ).
  • the multi-core light inlet port 22 and a plurality of multi-core light outlet ports are arranged on the outer wall of the housing 21 .
  • the multi-core light inlet port 22 is connected to a plurality of multi-core light outlet ports.
  • the housing 21 includes a base 211 and an upper cover 212 , the base 211 and the upper cover 212 are detachably and fixedly connected, and the multi-core light inlet 22 and multiple multi-core light outlet ports are arranged on the end surface of the base 211 . It should be understood that the multi-core optical inlet and the multi-core optical outlet can support the passage of multiple optical fibers.
  • the multi-core light inlet port 22 may be provided with a first multi-core adapter, and each multi-core light outlet port may be provided with a second multi-core adapter.
  • the first multi-core adapter and the second multi-core adapter are both optical fiber adapters, which are used for connecting with the optical fiber connector.
  • the first multi-core adapter is embedded in the multi-core light inlet port 22, and each second multi-core adapter is embedded in the corresponding multi-core light outlet port.
  • the port located in the housing 21 of the first multi-core adapter is connected to one end of the first multi-core optical fiber connector 24 .
  • the port located in the housing 21 of the second multi-core adapter is connected to one end of a plurality of single-core optical fiber connectors 25.
  • each second multi-core adapter shown in FIG. 3 is connected with two single-core optical fiber connectors. 25.
  • the other end of the first multi-core fiber connector 24 is connected to the other ends of the plurality of single-core fiber connectors 25 through fiber jumpers.
  • the other end of the first multi-core fiber connector 24 shown in FIG. Eight optical fibers are output, and the eight optical fibers are respectively connected with the corresponding single-core optical fiber connectors 25 .
  • the first multi-core optical fiber connector 24 can be an MPO connector
  • the single-core optical fiber connector 25 can be an LC connector
  • the port of the first multi-core adapter outside the housing 21 is used to connect with one end of the second multi-core fiber connector, and the other end of the second multi-core fiber connector can be connected to the OLT through the multi-core fiber. connect.
  • the port of the second multi-core adapter outside the housing 21 is used to connect with one end of the third multi-core optical fiber connector, and the other end of the third multi-core optical fiber connector can be connected to the second optical splitting device through the multi-core fiber.
  • Core optical port connection It should be understood that dust caps may be provided on the ports of the first multi-core adapter and the second multi-core adapter outside the housing, and the optical fiber adapters may be sealed by installing the dust caps when the optical fiber connector does not need to be installed.
  • the present application does not limit the number of multi-core optical outlets on the first optical splitting device and the number of fiber cores supported by each multi-core optical outlet. In addition, the present application does not limit the number of fiber cores supported by the multi-core optical port on the first optical splitting device.
  • FIG. 4 is a schematic diagram of an embodiment of the first spectroscopic device in the present application.
  • the casing 21 of the first optical splitter is further provided with a plurality of optical splitters (optical splitters 261-264 shown in FIG. 4 ).
  • a plurality of optical splitters correspond to a plurality of multi-core light output ports one by one.
  • the input end of each optical splitter is connected to the multi-core adapter at the multi-core light inlet 22 .
  • the multiple output ends of each optical splitter are connected to the multi-core adapters at the corresponding multi-core light output ports.
  • the optical splitter shown in FIG. 4 has an equal splitting ratio of 1:2, and each optical splitter has one input end and two output ends.
  • the optical splitter provided in the first optical splitting device may also adopt an unequal splitter, and the present application does not limit the splitting ratio of the optical splitter.
  • PON resources can be saved on the basis of ensuring high-density user access.
  • FIG. 5 is a schematic structural diagram of the second spectroscopic device in the application.
  • the second spectroscopic device includes: a housing 31 , a multi-core light inlet 32 , a multi-core light outlet 33 , at least one single-core light outlet 34 and at least one first beam splitter 35 .
  • the multi-core light inlet 32 , the multi-core light outlet 33 and the single-core light outlet 34 are arranged on the outer wall of the casing 31 .
  • the first optical splitters 35 are disposed in the housing 31, and each first optical splitter 35 includes an input terminal, a first output terminal and at least one second output terminal.
  • the multi-core light inlet port 32 is connected to the input end of each first optical splitter 35, the first output end of each first optical splitter 35 is connected to the multi-core light outlet port 33, and the multiple The second output end is connected to the plurality of single-core light outlet ports 34 in a one-to-one correspondence.
  • the housing 31 includes a base 311 and an upper cover 312 .
  • the base 311 and the upper cover 312 are detachably and fixedly connected. It should be understood that the multi-core optical inlet and the multi-core optical outlet support the passage of multiple optical fibers, and the single-core optical outlet supports the passage of a single optical fiber.
  • the number of fiber cores supported by the multi-core optical inlet 32 and the multi-core optical outlet 33 is greater than or equal to the number of the first optical splitters 35 .
  • FIG. 6 is a schematic diagram of an embodiment of the second spectroscopic device in the present application.
  • both the multi-core light inlet 32 and the multi-core light outlet 33 support two optical fibers, and the two optical fibers are respectively connected to the input end of the optical splitter 351 and the input end of the optical splitter 352 .
  • the splitting ratio of the optical splitter 351 and the optical splitter 352 is 1:9.
  • the first output end of the optical splitter 351 is connected to the multi-core light outlet 33 through an optical fiber.
  • the eight second output ends of the optical splitter 351 are connected to the eight single-core light output ports (3401-3408) in a one-to-one correspondence through optical fibers.
  • the first output end of the optical splitter 352 is connected to the multi-core light outlet 33 through an optical fiber.
  • the eight second output ends of the optical splitter 352 are connected to the eight single-core light output ports (3409-3416) in a one-to-one correspondence through optical fibers. It should be understood that the above-mentioned 16 single-core optical outlets are respectively connected to the ONTs in a one-to-one correspondence through optical fibers.
  • the optical splitter in the second optical splitting device is an unequal splitter, wherein the output optical power of the first output end is greater than the output optical power of the second output end.
  • the optical power output by the first output end accounts for 70% of the total output power
  • the optical power output by the second output end accounts for 30% of the total output power.
  • the output optical power of each second output end may be the same or different.
  • the optical power ratio of the first output end and the second output end may be 70/30 as listed above, or may be other ratio schemes such as 80/20 or 90/10.
  • the optical splitter in the second optical splitting device may also be an equal splitter, which is not specifically limited here.
  • FIG. 7 is a schematic diagram of another embodiment of the second spectroscopic device in this application.
  • a second optical splitter may also be provided in the housing 31, wherein the input end of the second optical splitter is connected to the second output end of the first optical splitter, and the output end of the second optical splitter is connected to the single-core
  • the light outlets are connected one by one.
  • the beam splitter 351 is similar to the beam splitter 351 shown in FIG. 6 , and is an unequal beam splitter with a beam splitting ratio of 1:9.
  • the optical splitter 352 is different from the optical splitter 352 shown in FIG. 6 , and is an unequal splitter with a splitting ratio of 1:2.
  • the first output end of the optical splitter 352 is also connected to the multi-core light outlet 33 through an optical fiber.
  • the second output end of the optical splitter 352 is connected to the input end of the optical splitter 353 through an optical fiber.
  • the optical splitter 353 is an equal splitter with a splitting ratio of 1:8, and the eight output ends of the optical splitter 353 are connected to the eight single-core optical outlets (3409-3416) in one-to-one correspondence through optical fibers. It can be understood that the combination of the optical splitter 352 and the optical splitter 353 can also achieve the effect of the optical splitter 351 .
  • the optical splitter 351 and the optical splitter 352 can be preset in the second optical splitting device. Connect the optical splitter 353 to complete the later expansion.
  • the optical splitter 353 Connect the optical splitter 353 to complete the later expansion.
  • the optical splitter 351 and the optical splitter 352 are preset in the second optical splitting device, and the third optical splitting device 50 is installed later when the access requirement increases.
  • the second output terminal of the optical splitter 352 is connected to the input terminal of the optical splitter 501 in the third optical splitting device 50 .
  • the optical splitter 501 in FIG. 8 is similar to the optical splitter 353 in FIG.
  • connection between the first optical splitter and the second optical splitter may be implemented by an optical fiber connector carrying an optical fiber, or the connection may be implemented by optical fiber fusion, which is not specifically limited here.
  • the multi-core light inlet port 32 may be provided with a first multi-core adapter
  • the multi-core light outlet 33 may be provided with a second multi-core adapter.
  • a single-core adapter can be provided on the light outlet.
  • the first multi-core adapter, the second multi-core adapter and the single-core adapter are all optical fiber adapters, which are used for connecting with the optical fiber connector.
  • the first multi-core adapter is embedded in the multi-core light inlet port 32
  • the second multi-core adapter is embedded in the multi-core light outlet port 33
  • each single-core adapter is embedded in the corresponding single-core light outlet port.
  • the port of the first multi-core adapter located in the housing 31 is connected to one end of at least one first single-core optical fiber connector 36 .
  • the other end of each first single-core optical fiber connector 36 is connected to the input end of each first optical splitter 35 in a one-to-one correspondence through an optical fiber.
  • a port of the second multi-core adapter located in the housing 31 is connected to one end of at least one second single-core fiber optic connector 37 .
  • each second single-core fiber connector 37 is connected to the first output end of each first optical splitter 35 in a one-to-one correspondence through an optical fiber.
  • the ports located in the housing 31 of each single-core adapter are connected to one end of each third single-core fiber connector 38 in a one-to-one correspondence, and the other end of each third single-core fiber connector 38 is connected to the first optical splitter 35
  • Each of the second output terminals is connected in a one-to-one correspondence.
  • the first multi-core adapter shown in FIG. 5 is connected with two single-core fiber connectors 36 , and the two single-core fiber connectors 36 are also connected to the input ends of the two optical splitters 35 respectively.
  • Two single-core optical fiber connectors 37 are connected to the second multi-core adapter, and the two single-core optical fiber connectors 37 are also connected to the first output ends of the two optical splitters 35 respectively.
  • a single-core optical fiber connector 38 is connected to each single-core adapter, and each single-core optical fiber connector 38 is also connected to the second output ends of the two optical splitters 35 in a one-to-one correspondence.
  • the port of the first multi-core adapter located outside the housing 31 is used to connect one end of the first multi-core connector, and the other end of the first multi-core connector is used to connect to the multi-core light output of the first optical splitting device. mouth.
  • the port of the second multi-core adapter located outside the housing 31 is used to connect one end of the second multi-core connector, and the other end of the second multi-core connector is used to connect to the multi-core light inlet port of the next-level second optical splitting device .
  • the ports of each single-core adapter outside the housing 31 are used to connect with each ONT in a one-to-one correspondence through an optical fiber connector.
  • a dust cap can be provided on the ports of the first multi-core adapter, the second multi-core adapter and the single-core adapter located outside the housing, and when the optical fiber connector does not need to be installed, the optical fiber adapter can be sealed by installing the dust cap. .
  • the present application does not limit the number of fiber cores supported by the multi-core optical inlet and the multi-core optical outlet on the second optical splitting device. In addition, the present application does not limit the number of optical splitters and the number of single-core optical outlets in the second optical splitting device.
  • the second optical splitting device provided in the present application has been introduced above.
  • the structures of other second optical splitting devices except the second optical splitting device in the last stage of the cascaded second optical splitting devices can refer to the above description.
  • the second spectroscopic device of the last stage will be introduced below.
  • FIG. 9 is a schematic diagram of another embodiment of the second spectroscopic device in this application.
  • the second optical splitting device in the last stage is already the end of the cascade system, so the second optical splitting device does not include a multi-core optical outlet, and the optical splitter in the second optical splitting device naturally does not need to be allocated an output port separately.
  • to connect the multi-core optical outlet Specifically, each single-core light outlet (3401-3416 shown in FIG. 8 ) of the second optical splitting device is connected to the output end of the optical splitter 351 and the output terminal of the optical splitter 352 in a one-to-one correspondence.
  • the structure of other parts is similar to that of the second spectroscopic device shown in FIG. 5 and FIG. 6 , and details are not repeated here.
  • the multi-core optical inlet of the second optical splitting device supports multiple optical fibers, then multiple optical splitters can be set in the second optical splitting device, and each optical fiber can be connected to the input end of a corresponding optical splitter.
  • the second optical splitting device can be connected to more ONTs due to the expanded number of optical splitters in the second optical splitting device, which reduces the input cost in scenarios with high user density and construction difficulty.
  • the definitions of the names of the multi-core optical inlet, multi-core optical outlet, single-core optical outlet, output end and output end of the optical splitter are all defined by the transmission direction of the downstream optical signal.
  • the above-mentioned multi-core light inlet port can also be used for light output
  • the above-mentioned multi-core light outlet port and single-core light output port can also be used for light input
  • the output end of the above-mentioned optical splitter can also be used for light input.
  • the input end of the optical splitter can also be used for incoming light. Therefore, the above-mentioned multi-core optical inlet, multi-core optical outlet, single-core optical outlet, output end and output end of the optical splitter are only a definition of names, and are not used to define functions (such as light input or light output).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本申请实施例公开了一种分光设备和分光系统,使得分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。分光设备包括壳体、至少一个第一分光器、多芯入光口、多芯出光口和至少一个单芯出光口,所述多芯入光口、所述多芯出光口和至少一个所述单芯出光口设置在所述壳体的外壁上,至少一个所述第一分光器设置在所述壳体内,每个所述第一分光器包括输入端、第一输出端和至少一个第二输出端。所述多芯入光口与至少一个所述第一分光器的输入端连接,每个所述第一分光器的第一输出端与所述多芯出光口连接,每个所述第一分光器的第二输出端与所述单芯出光口一一对应连接。

Description

一种分光设备和分光系统
本申请要求于2020年8月20日提交中国国家知识产权局、申请号为202021750495.7、申请名称为“一种分光设备和分光系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种分光设备和分光系统。
背景技术
随着现代社会的发展、信息量的爆炸增长,人们对网络吞吐能力的需求不断提高。光传输凭借其独有的超高带宽,低电磁干扰等特性,逐渐成为现代通信的主流方案,尤其是现阶段新建的网络,以光纤到户(fiber to the home,FTTH)为代表的接入网,正在大规模的部署。
在光纤到户网络建设中,从光线路终端(optical line terminal,OLT)到光网络终端(optical network termination,ONT),中间需要经过光分配网络(optical distribution network,ODN)。ODN由馈线段光缆、配线段光缆以及入户段光缆构成。目前的ODN方案中,用来连接配线段光缆和入户段光缆的光纤分纤箱(Fiber Access Terminal,FAT)仅支持单芯的配线段光缆,并且每个FAT支持的入户段光缆的数量有限。在用户密度较高的场景下,就需要增加配线段光缆以及FAT的数量,加大了投入成本和施工难度。
发明内容
本申请实施例提供了一种分光设备和分光系统,使得分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。
第一方面,本申请实施例提供了一种分光设备,包括:壳体、至少一个第一分光器、多芯入光口、多芯出光口和至少一个单芯出光口。多芯入光口、多芯出光口和至少一个单芯出光口设置在壳体的外壁上。至少一个第一分光器设置在壳体内。每个第一分光器包括输入端、第一输出端和至少一个第二输出端。多芯入光口与至少一个第一分光器的输入端连接,每个第一分光器的第一输出端与多芯出光口连接,每个第一分光器的第二输出端与单芯出光口一一对应连接。
在该实施方式中,分光设备的多芯入光口支持多路光纤,分光设备中可以设置多个分光器,每一路光纤可以与对应的一个分光器的输入端连接。虽然每个分光器的输出端的数量有限,但由于分光设备中扩展了分光器的数量,使得分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。
在一些可能的实施方式中,多芯入光口设置有第一多芯适配器,多芯出光口设置有第 二多芯适配器,每个单芯出光口设置有单芯适配器。通过预置上述光纤适配器,可以在现场施工时实现与光纤连接头的即插即用,免去了熔接的操作,可以提高施工效率。
在一些可能的实施方式中,第一多芯适配器的位于壳体内的端口与至少一个第一单芯光纤连接头的一端连接,至少一个第一单芯光纤连接头的另一端通过光纤与至少一个第一分光器的输入端一一对应连接;第二多芯适配器的位于壳体内的端口与至少一个第二单芯光纤连接头的一端连接,至少一个第二单芯光纤连接头的另一端通过光纤与至少一个第一分光器的第一输出端一一对应连接;每个单芯适配器的位于壳体内的端口与每个第三单芯光纤连接头的一端一一对应连接,每个第三单芯光纤连接头的另一端通过光纤与第一分光器的每个第二输出端一一对应连接。在该实施方式中,提供了分光设备内部的具体连接方式,提高了本方案的可实现性。
在一些可能的实施方式中,第一多芯适配器所支持纤芯的数量和第二多芯适配器所支持纤芯的数量大于或等于第一分光器的数量。在实际应用中,在光纤部署初期可能并没有那么多用户需要光纤接入,那么可以在第二分光设备中只预置部分的分光器,等后期接入需求变大时,再接上所能支持的全部分光器,完成后期扩容。通过上述设计方式可以满足更多的客户需求,节省客户的初期投资。另外,后期扩容时不需要增加新的分光设备,只要在原有的分光设备中增加分光器即可,降低了施工难度和物料成本。
在一些可能的实施方式中,第一多芯适配器的位于壳体外的端口用于连接第一多芯光纤连接头,第二多芯适配器的位于壳体外的端口用于连接第二多芯光纤连接头,每个单芯适配器的位于壳体外的端口用于连接第四单芯光纤连接头。在该实施方式中,提供了分光设备与外部光纤连接头之间的连接方式,进一步提高了本方案的可实现性。
在一些可能的实施方式中,第一多芯光纤连接头连接的光缆和第二多芯光纤连接头连接的光缆为配线段光缆,第四单芯光纤连接头连接的光缆为入户段光缆。本申请中的分光设备主要应用于配线段光缆,体现了本方案的实用价值。
在一些可能的实施方式中,壳体内还设置有至少一个第二分光器,至少一个第一分光器的第二输出端与至少一个第二分光器的输入端一一对应连接,至少一个第二分光器的输出端与单芯出光口一一对应连接。在该实施方式中,第一分光器的输出端还可以再连接第二分光器,提高了本方案的扩展性。
在一些可能的实施方式中,第一分光器为不等比分光器,第一输出端的输出光功率大于第二输出端的输出光功率。可以理解的是,由于与第一输出端连接的多芯出光口用于和下一级分光设备的多芯入光口连接,为第一输出端分配较大的光功率可以使得主干路上保留大部分功率的光信号,能够传输更远的距离,将光信号分配给距离更远的用户使用。
在一些可能的实施方式中,壳体包括底座和上盖,底座和上盖可拆卸固定连接,多芯入光口、多芯出光口和至少一个单芯出光口设置在底座的端面上。在该实施方式中,提供了具体的壳体结构,使得本方案更具有实用性。
第二方面,本申请提供了一种分光设备,包括:壳体、多芯入光口和多个多芯出光口,多芯入光口和多个多芯出光口设置在壳体的外壁上,多芯入光口与多个多芯出光口连接。
在一些可能的实施方式中,多芯入光口设置有第一多芯适配器,每个多芯出光口设置 有第二多芯适配器。通过预置上述光纤适配器,可以在现场施工时实现与光纤连接头的即插即用,免去了熔接的操作,可以提高施工效率。
在一些可能的实施方式中,第一多芯适配器的位于壳体内的端口与第一多芯光纤连接头的一端连接,每个第二多芯适配器的位于壳体内的端口与多个单芯光纤连接头的一端连接,第一多芯光纤连接头的另一端通过跳纤与多个单芯光纤连接头的另一端连接。在该实施方式中,提供了分光设备内部的具体连接方式,提高了本方案的可实现性。
在一些可能的实施方式中,第一多芯适配器的位于壳体外的端口用于连接第二多芯光纤连接头,多个第二多芯适配器的位于壳体外的端口用于与多个第三多芯光纤连接头一一对应连接。在该实施方式中,提供了分光设备与外部光纤连接头之间的连接方式,进一步提高了本方案的可实现性。
在一些可能的实施方式中,壳体内还设置有多个分光器,分光器与多芯出光口一一对应,每个分光器的输入端与多芯入光口连接,每个分光器的多个输出端与每个分光器对应的多芯出光口连接。通过设置分光器,可以在保证高密度用户接入的基础上,节约PON资源。
在一些可能的实施方式中,壳体包括底座和上盖,底座和上盖可拆卸固定连接,多芯入光口和多个多芯出光口设置在底座的端面上。在该实施方式中,提供了具体的壳体结构,使得本方案更具有实用性。
第三方面,本申请提供了一种分光系统,包括OLT、多个ONT、第一分光设备和多组级联的第二分光设备,第一分光设备如上述第二方面任一实施方式中的分光设备,第二分光设备如上述第一方面任一实施方式中的分光设备。
OLT与第一分光设备的多芯入光口连接。第一分光设备的每个多芯出光口与一组级联的第二分光设备中第一级的第二分光设备的多芯入光口连接。每相邻两个级联的第二分光设备中上一级的第二分光设备的多芯出光口与下一级的第二分光设备的多芯入光口连接。每个第二分光设备的单芯出光口与ONT一一对应连接。
本申请实施例中,分光设备的多芯入光口支持多路光纤,分光设备中可以设置多个分光器,每一路光纤可以与对应的一个分光器的输入端连接。虽然每个分光器的输出端的数量有限,但由于分光设备中扩展了分光器的数量,使得分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。
附图说明
图1为本申请应用的网络架构图;
图2为本申请中分光系统的一个实施例示意图;
图3为本申请中第一分光设备的结构示意图;
图4为本申请中第一分光设备的一个实施例示意图;
图5为本申请中第二分光设备的结构示意图;
图6为本申请中第二分光设备的一个实施例示意图;
图7为本申请中第二分光设备的另一个实施例示意图;
图8为本申请中第二分光设备的另一个实施例示意图;
图9为本申请中第二分光设备的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种分光设备和分光系统,使得分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。
为便于理解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本申请应用的网络架构图。本申请主要应用于FTTx的无源光网络(passive optical network,PON)。FTTx可以是FTTH(fiber to the home,光纤到户),还可以是FTTC(fiber to the curb,光纤到路边),还可以是FTTP(fiber to the premises,光纤到驻地),还可以是FTTN(fiber to the node or neighborhood,光纤到节点),还可以是FTTO(fiber to the office,光纤到办公室),或者是FTTSA(fiber to the service area,光纤到服务区)。以FTTH网络为例,在中心机房(centre office,CO)中,光线路终端(optical line terminal,OLT)输出的跳纤连接到光纤配线架(Optical Distribution Frame,ODF)。通过ODF分配的光缆与位于光分配点的光缆交接箱(Fiber Distribution Terminal,FDT)连接,在ODF与FDT之间距离较远时,还可以在ODF和FDT之间安装光缆接头盒(Splitting and Splicing closure,SSC)来接续。通过FDT二次分配的光缆与位于光接入点的光纤分纤箱(Fiber Access Terminal,FAT)连接,若FDT与FAT之间距离较大,也可以通过安装SSC来接续。FAT用于将光缆接入住户内的光网络终端(optical network termination,ONT)。其中,OLT与光分配点之间的光缆称作馈线段光缆,光分配点与光接入点之间的光缆称作配线段光缆,光接入点与ONT之间的光缆称作入户段光缆。具体地,本申请所提供的分光设备可以是应用于光接入点的FAT。
下面首先对本申请所提供的分光系统进行介绍。图2为本申请中分光系统的一个实施例示意图。该分光系统包括光线路终端10、第一分光设备20、多组级联的第二分光设备(如图2中所示每组级联的第二分光设备包括分光设备301-303)和多个光网络终端40。其中,光线路终端10与第一分光设备20的多芯入光口连接。第一分光设备20具有多个多芯出光口,每个多芯出光口对应一组级联的第二分光设备(如图2所示对应4组级联的第二分光设备)。具体地,第一分光设备20的每个多芯出光口与一组级联的第二分光设备中的第一级分光设备301的多芯入光口连接。每个相邻两个第二分光设备中上一级的第二分光设备的多芯出光口与下一级的第二分光设备的多芯入光口连接。如图2所示,第一级分光设备301的多芯出光口与第二级分光设备302的多芯入光口连接,第二级分光设备302的多芯出光口与第三级分光设备的多芯入光口连接,以此类推。每个第二分光设备中设置有至少一个分光器,每个分光器的输入端通过一路光纤与该第二分光设备的多芯入光口连接。分光器还包括多个输出端,其中一个输出端与该第二分光设备的多芯出光口连接,其他输出 端与该第二分光设备的多个单芯出光口一一对应连接。每个第二分光设备的多个单芯出光口与多个光网络终端40一一对应连接。
可以理解的是,本申请所提供的分光系统中,光线路终端10与第一分光设备20之间还可以设置有ODF、FDT和SSC等设备,具体可以参照图1的介绍,此处不再赘述。
需要说明的是,级联的第二分光设备是两个或两个以上的第二分光设备依次相连,可以理解的是,本申请不限定级联的第二分光设备的具体数量。另外,第一分光设备20和第二分光设备之间是通过多芯光纤连接的,并且每相邻两个第二风光设备之间也是通过多芯光纤连接的,该多芯光纤的纤芯数量可以是如图2所示的2个,也可以是纤芯数量多于2个的多芯光纤,具体本申请不做限定。
接下来对上述图2中所示的第一分光设备进行详细介绍。图3为本申请中第一分光设备的结构示意图。该第一分光设备包括:壳体21、多芯入光口22和多个多芯出光口(如图3所示的231、232、233和234)。多芯入光口22和多个多芯出光口设置在壳体21的外壁上。多芯入光口22与多个多芯出光口连接。具体地,壳体21包括底座211和上盖212,底座211和上盖212可拆卸固定连接,多芯入光口22和多个多芯出光口设置在底座211的端面上。应理解,多芯入光口和多芯出光口可以支持多根光纤通过。
在一些可能的实现方式中,多芯入光口22上可以设置有第一多芯适配器,每个多芯出光口上都可以设置有第二多芯适配器。其中,第一多芯适配器和第二多芯适配器均为光纤适配器,用于与光纤连接头连接。通过在多芯入光口和多芯出光口预置多芯适配器,可以在现场施工时实现与光纤连接头的即插即用,免去了熔接的操作,可以提高施工效率。
具体地,第一多芯适配器嵌设在多芯入光口22上,每个第二多芯适配器嵌设在对应的多芯出光口上。该第一多芯适配器的位于壳体21内的端口与第一多芯光纤连接头24的一端连接。第二多芯适配器的位于壳体21内的端口与多个单芯光纤连接头25的一端连接,例如,图3所示的每个第二多芯适配器上连接有2个单芯光纤连接头25。第一多芯光纤连接头24的另一端通过跳纤与多个单芯光纤连接头25的另一端连接,例如,图3所示的第一多芯光纤连接头24的另一端通过跳纤分出8路光纤,这8路光纤分别与对应的单芯光纤连接头25连接。
需要说明的是,上述第一多芯光纤连接头24可以采用MPO连接头,上述单芯光纤连接头25可以采用LC连接头。
可以理解的是,第一多芯适配器的位于壳体21外的端口用于与第二多芯光纤连接头的一端连接,该第二多芯光纤连接头的另一端可以通过多芯光纤与OLT连接。第二多芯适配器的位于壳体21外的端口用于与第三多芯光纤连接头的一端连接,该第三多芯光纤连接头的另一端可以通过多芯光纤与第二分光设备的多芯入光口连接。应理解,第一多芯适配器和第二多芯适配器位于壳体外的端口上可以设置防尘帽,在不需要安装光纤连接头时,可以通过安装防尘帽对光纤适配器进行密封。
需要说明的是,本申请不限定上述第一分光设备上多芯出光口的数量以及每个多芯出光口所支持的纤芯数量。另外,本申请也不限定第一分光设备上多芯入光口所支持的纤芯数量。
可选地,图4为本申请中第一分光设备的一个实施例示意图。第一分光器的壳体21内还设置有多个分光器(如图4所示的分光器261-264)。多个分光器与多个多芯出光口一一对应。每个分光器的输入端与多芯入光口22处的多芯适配器连接。每个分光器的多个输出端与对应的多芯出光口处的多芯适配器连接。例如,图4所示的分光器的分光比为1:2的等比分光器,每个分光器具有一个输入端和两个输出端。应理解,第一分光设备中设置的分光器也可以采用不等比分光器,并且本申请不限定分光器的分光比。本实施例中,通过在第一分光设备中设置分光器,可以在保证高密度用户接入的基础上,节约PON资源。
下面对上述图2中所示的第二分光设备进行详细介绍。图5为本申请中第二分光设备的结构示意图。该第二分光设备包括:壳体31、多芯入光口32、多芯出光口33、至少一个单芯出光口34和至少一个第一分光器35。多芯入光口32、多芯出光口33和单芯出光口34设置在壳体31的外壁上。第一分光器35设置在壳体31内,每个第一分光器35包括输入端、第一输出端和至少一个第二输出端。其中,多芯入光口32与每个第一分光器35的输入端连接,每个第一分光器35的第一输出端与多芯出光口33连接,每个第一分光器的多个第二输出端与多个单芯出光口34一一对应连接。具体地,壳体31包括底座311和上盖312,底座311和上盖312可拆卸固定连接,多芯入光口32、多芯出光口33和单芯出光口设置在底座311的端面上。应理解,多芯入光口和多芯出光口支持多根光纤通过,单芯出光口支持单根光纤通过。
可以理解的是,多芯入光口32和多芯出光口33所支持的纤芯数量大于或等于第一分光器35的数量。
下面以图6为例对第二分光设备进行进一步介绍。图6为本申请中第二分光设备的一个实施例示意图。如图6所示,多芯入光口32和多芯出光口33均支持两路光纤,两路光纤分别与分光器351的输入端和分光器352的输入端连接。其中,分光器351和分光器352的分光比为1:9。分光器351的第一输出端通过光纤与多芯出光口33连接。分光器351的8个第二输出端与8个单芯出光口(3401-3408)通过光纤一一对应连接。分光器352的第一输出端通过光纤与多芯出光口33连接。分光器352的8个第二输出端与8个单芯出光口(3409-3416)通过光纤一一对应连接。应理解,上述16个单芯出光口分别通过光纤与ONT一一对应连接。
在一种可能的实现方式中,第二分光设备中的分光器为不等比分光器,其中,第一输出端的输出光功率大于第二输出端的输出光功率。例如,第一输出端输出的光功率占总输出功率的70%,第二输出端输出的光功率占总输出功率的30%。可以理解的是,由于与第一输出端连接的多芯出光口33用于和下一级第二分光设备的多芯入光口连接,为第一输出端分配较大的光功率可以使得主干路上保留大部分功率的光信号,能够传输更远的距离,将光信号分配给距离更远的用户使用。
可选地,每个第二输出端的输出光功率可以是相同的,也可以是不同的。第一输出端和第二输出端的光功率配比可以是如上述列举70/30,也可是80/20或90/10等其他配比方案。第二分光设备中的分光器也可以采用等比分光器,具体此处不做限定。
图7为本申请中第二分光设备的另一个实施例示意图。在该实现方式中,壳体31内还 可以设置有第二分光器,其中,第二分光器的输入端与第一分光器的第二输出端连接,第二分光器的输出端与单芯出光口一一对应连接。如图7所示,分光器351与图6中所示的分光器351类似,是一个分光比为1:9的不等比分光器。分光器352与图6中所示的分光器352不同,是一个分光比为1:2的不等比分光器。分光器352的第一输出端同样通过光纤与多芯出光口33连接。分光器352的第二输出端通过光纤与分光器353的输入端连接。分光器353为一个分光比为1:8的等比分光器,分光器353的8个输出端与8个单芯出光口(3409-3416)通过光纤一一对应连接。可以理解的是,分光器352和分光器353的结合同样可以达到分光器351的效果。
在实际应用中,在光纤部署初期可能并没有那么多用户需要光纤接入,那么可以在第二分光设备中只预置分光器351和分光器352,等后期接入需求变大时,可以再接上分光器353,完成后期扩容。除此之外,另一种实现方式可以如图8所示,在第二分光设备中只预置分光器351和分光器352,等后期接入需求变大时再安装第三分光设备50。具体地,将分光器352的第二输出端与第三分光设备50中分光器501的输入端连接。应理解,图8中的分光器501与图7中的分光器353类似,此处不再赘述。通过上述设计方式可以满足更多的客户需求,节省客户的初期投资。另外,后期扩容时不需要增加新的分光设备,只要在原有的分光设备中增加分光器即可,降低了施工难度和物料成本。
具体地,第一分光器和第二分光器之间的连接可以通过携带光纤的光纤连接头实现,也可以通过光纤熔接的方式实现连接,具体此处不做限定。
在一种可能的实现方式中,如图5所示,多芯入光口32上可以设置有第一多芯适配器,多芯出光口33上可以设置有第二多芯适配器,每个单芯出光口上都可以设置有单芯适配器。其中,第一多芯适配器、第二多芯适配器和单芯适配器均为光纤适配器,用于与光纤连接头连接。通过预置上述光纤适配器,可以在现场施工时实现与光纤连接头的即插即用,免去了熔接的操作,可以提高施工效率。
具体地,第一多芯适配器嵌设在多芯入光口32上,第二多芯适配器嵌设在多芯出光口33上,每个单芯适配器嵌设在对应的单芯出光口上。该第一多芯适配器的位于壳体31内的端口与至少一个第一单芯光纤连接头36的一端连接。每个第一单芯光纤连接头36的另一端通过光纤与每个第一分光器35的输入端一一对应连接。第二多芯适配器的位于壳体31内的端口与至少一个第二单芯光纤连接头37的一端连接。每个第二单芯光纤连接头37的另一端通过光纤与每个第一分光器35的第一输出端一一对应连接。每个单芯适配器的位于壳体31内的端口与每个第三单芯光纤连接头38的一端一一对应连接,每个第三单芯光纤连接头38的另一端与第一分光器35的每个第二输出端一一对应连接。
例如,图5所示的第一多芯适配器上连接有2个单芯光纤连接头36,这2个单芯光纤连接头36还分别连接2个分光器35的输入端。第二多芯适配器上连接有2个单芯光纤连接头37,这2个单芯光纤连接头37还分别连接2个分光器35的第一输出端。每个单芯适配器上连接有1个单芯光纤连接头38,每个单芯光纤连接头38还与2个分光器35的第二输出端一一对应连接。
可以理解的是,第一多芯适配器的位于壳体31外的端口用于连接第一多芯连接头的一 端,第一多芯连接头的另一端用于连接第一分光设备的多芯出光口。第二多芯适配器的位于壳体31外的端口用于连接第二多芯连接头的一端,第二多芯连接头的另一端用于连接下一级第二分光设备的多芯入光口。每个单芯适配器的位于壳体31外的端口用于通过光纤连接头与每个ONT一一对应连接。应理解,第一多芯适配器、第二多芯适配器和单芯适配器位于壳体外的端口上可以设置防尘帽,在不需要安装光纤连接头时,可以通过安装防尘帽对光纤适配器进行密封。
需要说明的是,本申请不限定上述第二分光设备上多芯入光口和多芯出光口所支持的纤芯数量。另外,本申请也不限定第二分光设备中分光器的数量和单芯出光口的数量。
上面对本申请提供的第二分光设备进行了介绍,级联的多个第二分光设备中除了最后一级的第二分光设备外,其他第二分光设备的结构都可以参照上面的描述。下面对最后一级的第二分光设备进行介绍。
图9为本申请中第二分光设备的另一个实施例示意图。可以理解的是,最后一级的第二分光设备已经是级联系统的末端,因此该第二分光设备不包括多芯出光口,第二分光设备中的分光器自然也不用单独分配一个输出端来连接多芯出光口。具体地,该第二分光设备的每个单芯出光口(如图8所示的3401-3416)与分光器351的输出端和分光器352的输出端一一对应连接。其他部分的结构与上述图5和图6所示的第二分光设备类似,此处不再赘述。
本申请实施例中,第二分光设备的多芯入光口支持多路光纤,那么第二分光设备中可以设置多个分光器,每一路光纤可以与对应的一个分光器的输入端连接。虽然每个分光器的输出端的数量有限,但由于第二分光设备中扩展了分光器的数量,使得第二分光设备可以连接更多的ONT,在用户密度较高的场景下,降低了投入成本和施工难度。
可以理解的是,上述多芯入光口、多芯出光口、单芯出光口、分光器的输出端和输出端等名称的定义,都是以下行光信号的传输方向来定义的。在上行光信号传输时,上述多芯入光口同样可以用于出光,上述多芯出光口和单芯出光口同样可以用于入光,上述分光器的输出端同样可以用于入光,上述分光器的输入端同样可以用于入光。因此,上述多芯入光口、多芯出光口、单芯出光口、分光器的输出端和输出端等只是一种名称定义,并不用于对功能(如入光或出光)的限定。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (16)

  1. 一种分光设备,其特征在于,包括:壳体、至少一个第一分光器、多芯入光口、多芯出光口和至少一个单芯出光口,所述多芯入光口、所述多芯出光口和至少一个所述单芯出光口设置在所述壳体的外壁上,至少一个所述第一分光器设置在所述壳体内,每个所述第一分光器包括输入端、第一输出端和至少一个第二输出端;
    所述多芯入光口与至少一个所述第一分光器的输入端连接,每个所述第一分光器的第一输出端与所述多芯出光口连接,每个所述第一分光器的第二输出端与所述单芯出光口一一对应连接。
  2. 根据权利要求1所述的分光设备,其特征在于,所述多芯入光口设置有第一多芯适配器,所述多芯出光口设置有第二多芯适配器,每个所述单芯出光口设置有单芯适配器。
  3. 根据权利要求2所述的分光设备,其特征在于,所述第一多芯适配器的位于所述壳体内的端口与至少一个第一单芯光纤连接头的一端连接,至少一个所述第一单芯光纤连接头的另一端通过光纤与至少一个所述第一分光器的输入端一一对应连接;所述第二多芯适配器的位于所述壳体内的端口与至少一个第二单芯光纤连接头的一端连接,至少一个所述第二单芯光纤连接头的另一端通过光纤与至少一个所述第一分光器的第一输出端一一对应连接;每个所述单芯适配器的位于所述壳体内的端口与每个第三单芯光纤连接头的一端一一对应连接,每个所述第三单芯光纤连接头的另一端通过光纤与所述第一分光器的每个第二输出端一一对应连接。
  4. 根据权利要求2或3所述的分光设备,其特征在于,所述第一多芯适配器所支持纤芯的数量和所述第二多芯适配器所支持纤芯的数量大于或等于所述第一分光器的数量。
  5. 根据权利要求2至4中任一项所述的分光设备,其特征在于,所述第一多芯适配器的位于所述壳体外的端口用于连接第一多芯光纤连接头,所述第二多芯适配器的位于所述壳体外的端口用于连接第二多芯光纤连接头,每个所述单芯适配器的位于所述壳体外的端口用于连接第四单芯光纤连接头。
  6. 根据权利要求5所述的分光设备,其特征在于,第一多芯光纤连接头连接的光缆和所述第二多芯光纤连接头连接的光缆为配线段光缆,所述第四单芯光纤连接头连接的光缆为入户段光缆。
  7. 根据权利要求1至6中任一项所述的分光设备,其特征在于,所述壳体内还设置有至少一个第二分光器,至少一个所述第一分光器的第二输出端与至少一个所述第二分光器的输入端一一对应连接,至少一个所述第二分光器的输出端与所述单芯出光口一一对应连接。
  8. 根据权利要求1至7中任一项所述的分光设备,其特征在于,所述第一分光器为不等比分光器,所述第一输出端的输出光功率大于所述第二输出端的输出光功率。
  9. 根据权利要求1至8中任一项所述的分光设备,其特征在于,所述壳体包括底座和上盖,所述底座和所述上盖可拆卸固定连接,所述多芯入光口、所述多芯出光口和至少一个所述单芯出光口设置在所述底座的端面上。
  10. 一种分光设备,其特征在于,包括:壳体、多芯入光口和多个多芯出光口,所述 多芯入光口和多个所述多芯出光口设置在所述壳体的外壁上,所述多芯入光口与多个所述多芯出光口连接。
  11. 根据权利要求10所述的分光设备,其特征在于,所述多芯入光口设置有第一多芯适配器,每个所述多芯出光口设置有第二多芯适配器。
  12. 根据权利要求11所述的分光设备,其特征在于,所述第一多芯适配器的位于所述壳体内的端口与第一多芯光纤连接头的一端连接,每个所述第二多芯适配器的位于所述壳体内的端口与多个所述单芯光纤连接头的一端连接,所述第一多芯光纤连接头的另一端通过跳纤与多个所述单芯光纤连接头的另一端连接。
  13. 根据权利要求11或12所述的分光设备,其特征在于,所述第一多芯适配器的位于所述壳体外的端口用于连接第二多芯光纤连接头,多个所述第二多芯适配器的位于所述壳体外的端口用于与多个第三多芯光纤连接头一一对应连接。
  14. 根据权利要求10至13中任一项所述的分光设备,其特征在于,所述壳体内还设置有多个分光器,所述分光器与所述多芯出光口一一对应,每个所述分光器的输入端与所述多芯入光口连接,每个所述分光器的多个输出端与每个所述分光器对应的多芯出光口连接。
  15. 根据权利要求10至14中任一项所述的分光设备,其特征在于,所述壳体包括底座和上盖,所述底座和所述上盖可拆卸固定连接,所述多芯入光口和多个所述多芯出光口设置在所述底座的端面上。
  16. 一种分光系统,其特征在于,包括光线路终端OLT、多个光网络终端ONT、第一分光设备和多组级联的第二分光设备,所述第一分光设备如权利要求10至15中任一项所述的分光设备,所述第二分光设备如权利要求1至9中任一项所述的分光设备;
    所述OLT与所述第一分光设备的多芯入光口连接;所述第一分光设备的每个多芯出光口与一组级联的第二分光设备中第一级的第二分光设备的多芯入光口连接;每相邻两个级联的第二分光设备中上一级的第二分光设备的多芯出光口与下一级的第二分光设备的多芯入光口连接;每个第二分光设备的单芯出光口与所述ONT一一对应连接。
PCT/CN2021/104919 2020-08-20 2021-07-07 一种分光设备和分光系统 WO2022037296A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21857391.3A EP4187810A4 (en) 2020-08-20 2021-07-07 OPTICAL DIVISION DEVICE AND OPTICAL DIVISION SYSTEM
MX2023001994A MX2023001994A (es) 2020-08-20 2021-07-07 Dispositivo de division optica y sistema de division optica.
JP2023509869A JP2023538008A (ja) 2020-08-20 2021-07-07 光分割デバイス及び光分割システム
US18/171,158 US20230204860A1 (en) 2020-08-20 2023-02-17 Optical splitting device and optical splitting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021750495.7 2020-08-20
CN202021750495.7U CN214101388U (zh) 2020-08-20 2020-08-20 一种分光设备和分光系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/171,158 Continuation US20230204860A1 (en) 2020-08-20 2023-02-17 Optical splitting device and optical splitting system

Publications (1)

Publication Number Publication Date
WO2022037296A1 true WO2022037296A1 (zh) 2022-02-24

Family

ID=77418369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104919 WO2022037296A1 (zh) 2020-08-20 2021-07-07 一种分光设备和分光系统

Country Status (7)

Country Link
US (1) US20230204860A1 (zh)
EP (1) EP4187810A4 (zh)
JP (1) JP2023538008A (zh)
CN (1) CN214101388U (zh)
AR (1) AR123292A1 (zh)
MX (1) MX2023001994A (zh)
WO (1) WO2022037296A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230683A1 (pt) * 2022-06-02 2023-12-07 Furukawa Electric Latam S.A. Sistema de distribuição de sinais de comunicação e potência em redes de fibras ópticas
WO2024144990A1 (en) * 2022-12-29 2024-07-04 Corning Research & Development Corporation Splitter module assembly for multiple dwelling units

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065411A (zh) * 2022-05-18 2022-09-16 中铁第四勘察设计院集团有限公司 一种数据传输控制系统
CN117641158A (zh) * 2022-08-11 2024-03-01 华为技术有限公司 一种分光装置、芯片、odn以及pon系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668418A (zh) * 2009-11-25 2012-09-12 Adc电信公司 用于提供光纤到桌面的方法、系统和设备
CN105359434A (zh) * 2013-05-23 2016-02-24 Adc电信股份有限公司 使用光纤索引的无源分布系统
CN110998403A (zh) * 2018-12-29 2020-04-10 华为技术有限公司 分光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015083B2 (ja) * 2008-07-09 2012-08-29 日本電信電話株式会社 光ケーブル接続用クロージャ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668418A (zh) * 2009-11-25 2012-09-12 Adc电信公司 用于提供光纤到桌面的方法、系统和设备
CN105359434A (zh) * 2013-05-23 2016-02-24 Adc电信股份有限公司 使用光纤索引的无源分布系统
CN110998403A (zh) * 2018-12-29 2020-04-10 华为技术有限公司 分光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187810A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230683A1 (pt) * 2022-06-02 2023-12-07 Furukawa Electric Latam S.A. Sistema de distribuição de sinais de comunicação e potência em redes de fibras ópticas
WO2024144990A1 (en) * 2022-12-29 2024-07-04 Corning Research & Development Corporation Splitter module assembly for multiple dwelling units

Also Published As

Publication number Publication date
EP4187810A4 (en) 2024-01-10
JP2023538008A (ja) 2023-09-06
AR123292A1 (es) 2022-11-16
US20230204860A1 (en) 2023-06-29
CN214101388U (zh) 2021-08-31
EP4187810A1 (en) 2023-05-31
MX2023001994A (es) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2022037296A1 (zh) 一种分光设备和分光系统
Keiser FTTX concepts and applications
US10554298B2 (en) Optical splitter assembly having tuned pigtails
US20200310066A1 (en) Fiber optic network architecture using high fiber-count fiber optic connectors
US11588571B2 (en) Separator modules for terminal bodies
CN110998403A (zh) 分光装置
US20100202746A1 (en) Fiber Optic Distribution Device and Fiber Optic Network Including the Same
WO2022001230A1 (zh) 分光器、odn、识别onu所在光链路的方法、olt、onu和pon系统
US20230273372A1 (en) Fiber optic terminals having optical splitter and wavelength division multiplexing devices
US8229261B2 (en) Optical splitter assembly
Borzycki FTTx Access Networks: Technical Developments and Standardization
AU2014406243B2 (en) Connecting a high number of users with a reduced number of optical fibers
AU2014406204B2 (en) Optical fibers deployment in the last mile
WO2024032238A1 (zh) 一种分光装置、芯片、odn以及pon系统
CN220419623U (zh) 分光装置和分光系统
CN113259787B (zh) 一种光线路终端和无源光纤网络
US20230071759A1 (en) Systems, devices and methods for adding capacity to a fiber optic network
US20230171526A1 (en) Optical devices having externally field-configurable splitting ratios and methods of using the same
Normurodov et al. ANALYSIS OF PON TECHNOLOGY AND RESERVE PROBLEMS
KR20100096357A (ko) 공동주택 mmf 광선로를 활용하여 초고속인터넷 서비스를제공하기 위한 수동형 광가입자망 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509869

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021857391

Country of ref document: EP

Effective date: 20230221

NENP Non-entry into the national phase

Ref country code: DE