WO2022037160A1 - 一种高温除尘脱硝系统的电源冗余系统 - Google Patents

一种高温除尘脱硝系统的电源冗余系统 Download PDF

Info

Publication number
WO2022037160A1
WO2022037160A1 PCT/CN2021/095734 CN2021095734W WO2022037160A1 WO 2022037160 A1 WO2022037160 A1 WO 2022037160A1 CN 2021095734 W CN2021095734 W CN 2021095734W WO 2022037160 A1 WO2022037160 A1 WO 2022037160A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
access point
electric field
temperature dust
Prior art date
Application number
PCT/CN2021/095734
Other languages
English (en)
French (fr)
Inventor
施小东
祝建军
郑立成
Original Assignee
浙江大维高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大维高新技术股份有限公司 filed Critical 浙江大维高新技术股份有限公司
Publication of WO2022037160A1 publication Critical patent/WO2022037160A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the utility model belongs to the technical field of flue gas dust removal, in particular to a power supply redundancy system of a high temperature dust removal and denitration system.
  • the existing cement kiln production process will produce a large amount of dust, nitrogen oxides, etc., especially the tail gas discharged from the kiln end.
  • the temperature of the flue gas is generally 320°C ⁇ 350°C, and the dust concentration is generally 80g/Nm 3 ⁇ 100g/Nm 3 .
  • the nitrogen oxide concentration is generally 700mg/Nm 3 to 800mg/Nm 3 .
  • SCR selective catalytic reduction
  • the dust removal efficiency of high temperature dust collector will directly affect the efficiency of selective catalytic reduction.
  • the dust removal efficiency is low, a large amount of dust will enter the denitration system and cover the surface of the catalyst.
  • the efficiency of selective catalytic reduction will decrease.
  • the dust also leads to the accumulation of dust in the honeycomb pores of the catalyst, which increases the resistance of the entire system. It is necessary to increase the output power of the induced draft fan, which increases the energy consumption of the system. Even when the resistance exceeds the limit, the entire cement kiln stops production.
  • the high-temperature precipitator is generally composed of two electric fields, one electric field and two electric fields, each electric field is powered by an independent high-voltage power supply. After the second electric field dust removal, the dust concentration is further reduced to 9% to 16% of the original, and then enters the denitration system.
  • the high-voltage power supply of the high-temperature dust collector works in a high-temperature and high-dust environment, and there will be a certain failure rate. When any electric field of high-temperature dust removal loses the high-voltage power supply, the dust entering the denitration system will increase sharply, affecting the reliability of the high-temperature dust removal and denitration system.
  • the utility model provides a power supply redundancy system for the high temperature dust removal and denitrification system in view of the problem of affecting the reliability of the high temperature dust removal and denitration system after the high voltage power supply of the high temperature dust remover fails in the prior art.
  • a power supply redundancy system for a high temperature dust removal and denitration system including a preheater, a flue gas modulation system, a high temperature dust collector and an SCR denitration system, the preheater,
  • the flue gas modulation system, the high-temperature precipitator and the SCR denitration system are connected in sequence through pipes.
  • the high-temperature precipitator includes a first high-voltage electric field and a second high-voltage electric field.
  • the power supply of the first high-voltage electric field is provided by the first high-voltage power supply through the first high-voltage electric field.
  • the switching device supplies power, and the power supply of the second high-voltage electric field is supplied by the second high-voltage power supply through the second high-voltage switching device; the first high-voltage switching device is provided between the first high-voltage switching device and the second high-voltage switching device.
  • the switching device and the second high-voltage switching device are electrically connected to a high-voltage communication device, wherein the first high-voltage switching device is provided with a first high-voltage electric field, a first high-voltage power supply, and a high-voltage communication device to communicate with each other at the same time or two.
  • the first high-voltage isolation switch is connected in two, and the second high-voltage switching device is provided with a second high-voltage isolation switch that connects the second high-voltage electric field, the second high-voltage power supply, and the high-voltage communication device at the same time or communicates with each other in pairs.
  • the first high-voltage power supply and the second high-voltage power supply are usually used as independent power supplies to supply power to the first high-voltage electric field and the second high-voltage electric field, respectively.
  • a high-voltage power supply can be used as a backup power supply for a faulty high-voltage power supply.
  • the first high-voltage switching device and the second high-voltage switching device are used to switch and connect the normally working high-voltage power supply, so that a single high-voltage power supply can support two sets of high-voltage electric field high-voltage power supplies at the same time.
  • the power supply ensures the system stability of the high temperature dust collector.
  • the power supply of the first high-voltage power supply and the power supply of the second high-voltage power supply are not less than the total rated operating power of the first high-voltage electric field and the second high-voltage electric field. It meets the requirement that one high-voltage power supply needs to supply power to two sets of high-voltage electric fields at the same time.
  • the first high-voltage isolation switch and the second high-voltage isolation switch respectively include a first power supply access point, a second power supply access point, a third power supply access point and a grounding point
  • the first high-voltage isolation switch has a The first power supply access point is electrically connected to the first high-voltage power supply
  • the second power supply access point of the first high-voltage isolation switch is electrically connected to the high-voltage communication device
  • the third power supply of the first high-voltage isolation switch is connected to
  • the first power supply access point of the second high-voltage isolation switch is electrically connected to the second high-voltage power supply
  • the second power supply access point of the second high-voltage isolation switch is electrically connected to the high-voltage power supply.
  • the communication device is electrically connected, and the third power supply access point of the second high-voltage isolation switch is electrically connected to the second high-voltage electric field;
  • the first power supply access point is also provided with a first knife switch, the first The knife switch can connect the first power access point with any connection point among the second power access point, the third power access point and the grounding point;
  • the second power access point is also provided with a second knife The second switch can connect the second power access point to any connection point among the first power access point, the third power access point and the grounding point.
  • the utility model has the following beneficial effects: two high-voltage power supplies supply power to two high-voltage electric fields respectively, and when one of the high-voltage power supplies fails, the other high-voltage power supply can be used without affecting the original power supply.
  • the faulty high-voltage power supply is used as a backup power supply to ensure the system stability of the high-temperature dust collector.
  • Fig. 1 is a schematic diagram of the equipment structure of a high temperature dust removal and denitration system
  • Figure 2 is a schematic diagram of the connection of the high temperature dust collector under normal working conditions
  • FIG. 3 is a schematic diagram of the connection when the first high-voltage power supply fails
  • FIG. 4 is a schematic diagram of connection when the second high-voltage power supply fails.
  • a power supply redundancy system of a high temperature dust removal and denitration system includes a preheater 1, a flue gas modulation system, a high temperature dust collector 3 and an SCR denitration system 9.
  • the preheater 1, the smoke The air conditioning system 2 , the high-temperature precipitator 3 and the SCR denitration system 9 are sequentially connected by pipelines.
  • the high-temperature precipitator 3 includes a first high-voltage electric field 31 and a second high-voltage electric field 32 , and the first high-voltage electric field 31 is powered by the first high-voltage electric field 31 .
  • the high-voltage power supply 4 is powered by the first high-voltage switching device 5, and the power supply of the second high-voltage electric field 32 is powered by the second high-voltage power supply 7 through the second high-voltage switching device 8; the power supply of the first high-voltage power supply 4 and the second high-voltage power supply
  • the power supply of the power source 7 is not less than the total rated operating power of the first high-voltage electric field 31 and the second high-voltage electric field 32 .
  • a high-voltage communication device 6 for electrically connecting the first high-voltage switching device 5 and the second high-voltage switching device 8 is provided between the first high-voltage switching device 5 and the second high-voltage switching device 8 .
  • the high-voltage switching device 5 is provided with a first high-voltage isolation switch that connects the first high-voltage electric field 31, the first high-voltage power supply 4, and the high-voltage communication device 6 at the same time or communicates with each other in pairs.
  • the second high-voltage switching device 8 A second high-voltage isolation switch is provided inside to connect the second high-voltage electric field 32 , the second high-voltage power supply 7 , and the high-voltage communication device 6 at the same time or in two-to-two communication with each other.
  • the high-voltage isolating switch is a four-point high-voltage isolating switch.
  • the four-point isolation switch includes a first power supply access point 10, a second power supply access point 11, a third power supply access point 12 and a grounding point 13.
  • the first power supply access point of the first high-voltage isolation switch 10 is electrically connected to the first high-voltage power supply 4, the second power supply access point 11 of the first high-voltage isolation switch is electrically connected to the high-voltage communication device 6, and the third power supply access point 12 of the first high-voltage isolation switch connected to the first high-voltage electrical field;
  • the first power supply access point 10 of the second high-voltage isolation switch is electrically connected to the second high-voltage power supply 7, and the second power supply access point 11 of the second high-voltage isolation switch It is electrically connected to the high-voltage communication device 6, and the third power supply access point 12 of the second high-voltage isolation switch is electrically connected to the second high-voltage electric field 32;
  • the first power supply access point 10 is also provided with a first pole
  • the first switch 14 can connect the first power access point 10 with
  • connection positions of the first high-voltage isolation switch and the second high-voltage isolation switch are shown in Figure 2.
  • the specific operation steps are as follows:
  • Step 1 Immediately cut off the power supply of the first high-voltage power supply 4, and switch the first switch 14 in the first high-voltage isolation switch from the first power supply access point 10 and the third power supply access point 12 to the first power supply
  • the access point 10 is connected to the ground point 13 .
  • Step 2 Switch the second switch 15 of the first high-voltage isolating switch from the connection between the second power access point 11 and the grounding point 13 to the connection between the second power access point 11 and the third power access point 12 .
  • Step 3 Interrupt the power supply of the normally working second high-voltage power supply 7 at zero hour.
  • the zero-hour interruption time shall not exceed 1min.
  • Step 4 Switch the second switch 15 of the second high-voltage isolation switch from the connection between the second power access point 11 and the ground point 13 to the connection between the second power access point 11 and the third power access point 12 .
  • Step 5 Check and maintain the first high-voltage power supply 4 .
  • Step 6 After the first high-voltage power supply 4 is inspected and repaired, the first switch 14 and the second switch 15 of the first high-voltage isolation switch and the second high-voltage isolation switch are respectively switched to the connection when both high-voltage power supplies are operating normally. Location.
  • Step 7 The first high-voltage power supply 4 and the second high-voltage power supply 7 supply power at the same time.
  • Step 1 Immediately cut off the power supply of the second high-voltage power supply 7, and switch the first switch 14 in the second high-voltage isolation switch from the first power supply access point 10 and the third power supply access point 12 to the first power supply
  • the access point 10 is connected to the ground point 13 .
  • Step 2 Switch the second switch 15 of the second high-voltage isolation switch from the second power access point 11 and the grounding point 13 to the second power access point 11 and the third power access point 12.
  • Step 3 Interrupt the power supply of the normally working first high-voltage power supply 4 at zero hour.
  • the zero-hour interruption time shall not exceed 1min.
  • Step 4 Switch the second switch 15 of the first high-voltage isolation switch from the connection between the second power access point 11 and the ground point 13 to the connection between the second power access point 11 and the third power access point 12 .
  • Step 5 Check and maintain the second high-voltage power supply 7 .
  • Step 6 After the second high-voltage power supply 7 is inspected and repaired, the first switch 14 and the second switch 15 of the first high-voltage isolation switch and the second high-voltage isolation switch are respectively switched to the connection when both high-voltage power supplies are operating normally. Location.
  • Step 7 The first high-voltage power supply 4 and the second high-voltage power supply 7 supply power at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Electrostatic Separation (AREA)

Abstract

本实用新型针对现有技术中高温除尘器的高压电源出现故障后影响高温除尘脱硝系统的可靠性的问题,提供一种高温除尘脱硝系统的电源冗余系统,属于烟气除尘技术领域,包括预热器、烟气调制系统、高温除尘器和SCR脱硝系统,所述预热器、烟气调制系统、高温除尘器和SCR脱硝系统通过管道依次连接,所述高温除尘器包括第一高压电场和第二高压电场,所述第一高压电场的供电由第一高压电源通过第一高压转接装置供电,所述第二高压电场的供电由第二高压电源通过第二高压转接装置供电;所述第一高压转接装置和第二高压转接装置之间设有将第一高压转接装置和第二高压转接装置电性连接的高压连通装置。

Description

一种高温除尘脱硝系统的电源冗余系统 技术领域
本实用新型属于烟气除尘技术领域,具体涉及一种高温除尘脱硝系统的电源冗余系统。
背景技术
现有的水泥窑生产工艺会产生大量粉尘、氮氧化物等,尤其是窑尾排放的尾气,烟气温度一般在320℃~350℃,粉尘浓度一般在80g/Nm 3~100g/Nm 3,氮氧化物浓度一般在700mg/Nm 3~800mg/Nm 3。水泥窑氮氧化物要实现超低排放,满足氮氧化物超低排放小于50mg/Nm 3的标准,高温除尘器与选择性催化还原(SCR)脱硝系统的组合是一种非常好的超低排放技术方案。高温除尘器与选择性催化还原(SCR)脱硝系统的组合方案中,高温除尘器的除尘效率会直接影响选择性催化还原的效率。除尘效率较低时,大量的粉尘会进入脱硝系统,覆盖在催化剂表面,一定厚度时,选择性催化还原的效率降低。粉尘还导致催化剂蜂窝孔积灰,使整个系统的阻力增加,需要加大引风机输出功率,增加了系统能耗,甚至当阻力超过限值,整个水泥窑停止生产。高温除尘器一般由一电场、二电场两个电场组成,每个电场由独立的高压电源供电,含尘气体经过高温除尘器第一电场除尘后,粉尘浓度降低到原来的30%~40%,再经过第二电场除尘后,粉尘浓度进一步降低到原来的9%~16%后,进入脱硝系统。高温除尘器的高压电源工作在高温高尘的环境,会出现一定的故障率,当高温除尘任何一个电场失去高压电源供电后,进入脱硝系统粉尘会急剧增加,影响高温除尘脱硝系统可靠性。
发明内容
本实用新型针对现有技术中高温除尘器的高压电源出现故障后影响高温除尘脱硝系统的可靠性的问题,提供一种高温除尘脱硝系统的电源冗余系统。
本实用新型的发明目的是通过以下技术方案实现的:一种高温除尘脱硝系统的电源冗余系统,包括预热器、烟气调制系统、高温除尘器和SCR脱硝系统,所述预热器、烟气调制系统、高温除尘器和SCR脱硝系统通过管道依次连接,所述高温除尘器包括第一高压电场和第二高压电场,所述第一高压电场的供电由第一高压电源通过第一高压转接装置供电,所述第二高压电场的供电由第二高压电源通过第二高压转接装置供电;所述第一高压转接装置和第二高压转接装置之间设有将第一高压转接装置和第二高压转接装置电性连接的高压连通装置,所述第一高压转接装置内设有将第一高压电场、第一高压电源、高压连通装置三者 同时连通或相互两两连通的第一高压隔离开关,所述第二高压转接装置内设有将第二高压电场、第二高压电源、高压连通装置三者同时连通或相互两两连通的第二高压隔离开关。
上述方案中,第一高压电源和第二高压电源平时作为独立的供电电源分别给第一高压电场和第二高压电场供电,可当第一高压电源或第二高压电源出现故障的时候,另外一台高压电源就可以作为故障高压电源的备用电源,通过第一高压转接装置和第二高压转接装置将正常工作的高压电源切换连接,使单台高压电源同时支持两套高压电场的高压电源供电,保证了高温除尘器的系统稳定性。
作为优选,所述第一高压电源的供电功率和第二高压电源的供电功率不小于第一高压电场与第二高压电场的总的额定运行功率。满足一台高压电源需要同时给两套高压电场供电的需求。
作为优选,所述第一高压隔离开关和第二高压隔离开关分别包括第一电源接入点、第二电源接入点、第三电源接入点和接地点,所述第一高压隔离开关的第一电源接入点和第一高压电源电性连接,所述第一高压隔离开关的第二电源接入点和高压连通装置电性连接,所述第一高压隔离开关的第三电源接入点和第一高压电性电场连接;所述第二高压隔离开关的第一电源接入点和第二高压电源电性连接,所述第二高压隔离开关的第二电源接入点和高压连通装置电性连接,所述第二高压隔离开关的第三电源接入点和第二高压电场电性连接;所述第一电源接入点上还设有第一刀闸,所述第一刀闸可以将第一电源接入点和第二电源接入点、第三电源接入点、接地点中的任一连接点相连;所述第二电源接入点上还设有第二刀闸,所述第二刀闸可以将第二电源接入点和第一电源接入点、第三电源接入点、接地点中的任一连接点相连。
与现有技术相比,本实用新型具有以下有益效果:两台高压电源分别给两个高压电场供电,当其中一台高压电源出现故障时,另一台高压电源又可以在不影响原来供电的高压电场的工作的情况下,给出现故障的高压电源充当备用电源,保证了高温除尘器的系统稳定性。
附图说明
图1为高温除尘脱硝系统的设备结构示意图;
图2为高温除尘器正常工况时的连接示意图;
图3为第一高压电源故障时的连接示意图;
图4为第二高压电源故障时的连接示意图。
图中标记:1、预热器;2、烟气调制系统;3、高温除尘器;31、第一高压电场; 32、第二高压电场;4、第一高压电源;5、第一高压转接装置;6、高压连通装置;7、第二高压电源;8、第二高压转接装置;9、SCR脱硝系统;10、第一电源接入点;11、第二电源接入点;12、第三电源接入点;13、接地点;14、第一刀闸;15、第二刀闸。
具体实施方式
下面结合附图所表示的实施例对本实用新型作进一步描述:
实施例1
如图1、图2所示,一种高温除尘脱硝系统的电源冗余系统,包括预热器1、烟气调制系统、高温除尘器3和SCR脱硝系统9,所述预热器1、烟气调制系统2、高温除尘器3和SCR脱硝系统9通过管道依次连接,所述高温除尘器3包括第一高压电场31和第二高压电场32,所述第一高压电场31的供电由第一高压电源4通过第一高压转接装置5供电,所述第二高压电场32的供电由第二高压电源7通过第二高压转接装置8供电;第一高压电源4的供电功率和第二高压电源7的供电功率不小于第一高压电场31与第二高压电场32的总的额定运行功率。所述第一高压转接装置5和第二高压转接装置8之间设有将第一高压转接装置5和第二高压转接装置8电性连接的高压连通装置6,所述第一高压转接装置5内设有将第一高压电场31、第一高压电源4、高压连通装置6三者同时连通或相互两两连通的第一高压隔离开关,所述第二高压转接装置8内设有将第二高压电场32、第二高压电源7、高压连通装置6三者同时连通或相互两两连通的第二高压隔离开关。所述高压隔离开关为四点式高压隔离开关。所述四点式隔离开关包括第一电源接入点10、第二电源接入点11、第三电源接入点12和接地点13,所述第一高压隔离开关的第一电源接入点10和第一高压电源4电性连接,所述第一高压隔离开关的第二电源接入点11和高压连通装置6电性连接,所述第一高压隔离开关的第三电源接入点12和第一高压电性电场连接;所述第二高压隔离开关的第一电源接入点10和第二高压电源7电性连接,所述第二高压隔离开关的第二电源接入点11和高压连通装置6电性连接,所述第二高压隔离开关的第三电源接入点12和第二高压电场32电性连接;所述第一电源接入点10上还设有第一刀闸14,所述第一刀闸14可以将第一电源接入点10和第二电源接入点11、第三电源接入点12、接地点13中的任一连接点相连;所述第二电源接入点11上还设有第二刀闸15,所述第二刀闸15可以将第二电源接入点11和第一电源接入点10、第三电源接入点12、接地点13中的任一连接点相连。
正常工况下,第一高压隔离开关和第二高压隔离开关的连接位置如图2所示,当第一高压电源4出现故障时,如图3所示,具体操作步骤如下:
步骤一:立即切断第一高压电源4的供电电源,并将第一高压隔离开关中的第一刀闸14从 第一电源接入点10和第三电源接入点12相连切换到第一电源接入点10和接地点13相连。
步骤二:将第一高压隔离开关的第二刀闸15从第二电源接入点11和接地点13相连切换到第二电源接入点11和第三电源接入点12相连。
步骤三:将正常工作的第二高压电源7供电零时中断。零时中断时间不超过1min。
步骤四:将第二高压隔离开关的第二刀闸15从第二电源接入点11和接地点13相连切换到第二电源接入点11和第三电源接入点12相连。
步骤五:对第一高压电源4进行检查维修。
步骤六:第一高压电源4检查维修好后将第一高压隔离开关和第二高压隔离开关的第一刀闸14和第二刀闸15分别切换到两台高压电源都运行正常状态时的连接位置。
步骤七:第一高压电源4和第二高压电源7同时供电。
如图4所示,当第二高压电源7出现故障时,具体操作步骤如下:
步骤一:立即切断第二高压电源7的供电电源,并将第二高压隔离开关中的第一刀闸14从第一电源接入点10和第三电源接入点12相连切换到第一电源接入点10和接地点13相连。
步骤二:将第二高压隔离开关的第二刀闸15从第二电源接入点11和接地点13相连切换到第二电源接入点11和第三电源接入点12相连。
步骤三:将正常工作的第一高压电源4供电零时中断。零时中断时间不超过1min。
步骤四:将第一高压隔离开关的第二刀闸15从第二电源接入点11和接地点13相连切换到第二电源接入点11和第三电源接入点12相连。
步骤五:对第二高压电源7进行检查维修。
步骤六:第二高压电源7检查维修好后将第一高压隔离开关和第二高压隔离开关的第一刀闸14和第二刀闸15分别切换到两台高压电源都运行正常状态时的连接位置。
步骤七:第一高压电源4和第二高压电源7同时供电。
文中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。

Claims (3)

  1. 一种高温除尘脱硝系统的电源冗余系统,其特征在于,包括预热器(1)、烟气调制系统(2)、高温除尘器(3)和SCR脱硝系统(9),所述预热器(1)、烟气调制系统(2)、高温除尘器(3)和SCR脱硝系统(9)通过管道依次连接,其特征在于,所述高温除尘器(3)包括第一高压电场(31)和第二高压电场(32),所述第一高压电场(31)的供电由第一高压电源(4)通过第一高压转接装置(5)供电,所述第二高压电场(32)的供电由第二高压电源(7)通过第二高压转接装置(8)供电;所述第一高压转接装置(5)和第二高压转接装置(8)之间设有将第一高压转接装置(5)和第二高压转接装置(8)电性连接的高压连通装置(6),所述第一高压转接装置(5)内设有将第一高压电场(31)、第一高压电源(4)、高压连通装置(6)三者同时连通或相互两两连通的第一高压隔离开关,所述第二高压转接装置(8)内设有将第二高压电场(32)、第二高压电源(7)、高压连通装置(6)三者同时连通或相互两两连通的第二高压隔离开关。
  2. 根据权利要求1所述的一种高温除尘脱硝系统的电源冗余系统,其特征在于,所述第一高压电源(4)的供电功率和第二高压电源(7)的供电功率不小于第一高压电场(31)与第二高压电场(32)的总的额定运行功率。
  3. 根据权利要求1所述的一种高温除尘脱硝系统的电源冗余系统,其特征在于,所述第一高压隔离开关和第二高压隔离开关分别包括第一电源接入点(10)、第二电源接入点(11)、第三电源接入点(12)和接地点(13),所述第一高压隔离开关的第一电源接入点(10)和第一高压电源(4)电性连接,所述第一高压隔离开关的第二电源接入点(11)和高压连通装置(6)电性连接,所述第一高压隔离开关的第三电源接入点(12)和第一高压电性电场连接;所述第二高压隔离开关的第一电源接入点(10)和第二高压电源(7)电性连接,所述第二高压隔离开关的第二电源接入点(11)和高压连通装置(6)电性连接,所述第二高压隔离开关的第三电源接入点(12)和第二高压电场(32)电性连接;所述第一电源接入点(10)上还设有第一刀闸(14),所述第一刀闸(14)可以将第一电源接入点(10)和第二电源接入点(11)、第三电源接入点(12)、接地点(13)中的任一连接点相连;所述第二电源接入点(11)上还设有第二刀闸(15),所述第二刀闸(15)可以将第二电源接入点(11)和第一电源接入点(10)、第三电源接入点(12)、接地点(13)中的任一连接点相连。
PCT/CN2021/095734 2020-08-21 2021-05-25 一种高温除尘脱硝系统的电源冗余系统 WO2022037160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021771525.2 2020-08-21
CN202021771525.2U CN212277984U (zh) 2020-08-21 2020-08-21 一种高温除尘脱硝系统的电源冗余系统

Publications (1)

Publication Number Publication Date
WO2022037160A1 true WO2022037160A1 (zh) 2022-02-24

Family

ID=73870273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095734 WO2022037160A1 (zh) 2020-08-21 2021-05-25 一种高温除尘脱硝系统的电源冗余系统

Country Status (2)

Country Link
CN (1) CN212277984U (zh)
WO (1) WO2022037160A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212277984U (zh) * 2020-08-21 2021-01-01 浙江大维高新技术股份有限公司 一种高温除尘脱硝系统的电源冗余系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203312806U (zh) * 2013-06-25 2013-11-27 福建龙净环保股份有限公司 一种电除尘双高压电源混合供电的联锁控制系统
CN105551874A (zh) * 2016-03-04 2016-05-04 杭州天明电子有限公司 一种电除尘器及其隔离开关
CN206951415U (zh) * 2017-08-11 2018-02-02 浙江天创环境科技有限公司 一种静电除尘器供电系统
CN110893379A (zh) * 2019-12-27 2020-03-20 浙江德创环保科技股份有限公司 一种水泥窑尾高温除尘脱硝系统
CN212277984U (zh) * 2020-08-21 2021-01-01 浙江大维高新技术股份有限公司 一种高温除尘脱硝系统的电源冗余系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203312806U (zh) * 2013-06-25 2013-11-27 福建龙净环保股份有限公司 一种电除尘双高压电源混合供电的联锁控制系统
CN105551874A (zh) * 2016-03-04 2016-05-04 杭州天明电子有限公司 一种电除尘器及其隔离开关
CN206951415U (zh) * 2017-08-11 2018-02-02 浙江天创环境科技有限公司 一种静电除尘器供电系统
CN110893379A (zh) * 2019-12-27 2020-03-20 浙江德创环保科技股份有限公司 一种水泥窑尾高温除尘脱硝系统
CN212277984U (zh) * 2020-08-21 2021-01-01 浙江大维高新技术股份有限公司 一种高温除尘脱硝系统的电源冗余系统

Also Published As

Publication number Publication date
CN212277984U (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
WO2022037160A1 (zh) 一种高温除尘脱硝系统的电源冗余系统
CN205231835U (zh) 一种大型火力发电厂机组高压厂用电源互为备用的结构
CN203507791U (zh) 双介质低温螺旋等离子体废气净化机
CN201699472U (zh) 一种双电源自动切换电路及其隔离装置
WO2022037159A1 (zh) 一种高温除尘脱硝系统的电源冗余系统和运行方法及利用其对高压电场进行维修检测的方法
CN205395787U (zh) 一种城轨列车辅助供电系统
WO2020024384A1 (zh) 一种水泥窑烟气scr脱硝系统
CN111404259B (zh) 一种发电机组的保安段电源系统及其切换方法
CN201815242U (zh) 有机废气催化氧化净化处理系统装置
CN110901398A (zh) 一种跨座式单轨车辆控制电路及跨座式单轨车辆
CN206584019U (zh) 一种双电源自动转换开关试验电路与一种电气系统
CN208269355U (zh) 一种烟洗装置联动排风机的控制电路
CN209885427U (zh) 一种水泥窑尾烟气脱硝及余热回收的系统
CN112803580A (zh) 带出口断路器双燃机配置的保安电源系统及其工作方法
CN201669163U (zh) 电除尘器的电压控制装置
CN218549791U (zh) 优化机组电袋除尘器中罗茨风机电机控制回路
CN219866552U (zh) 两位三通电磁阀多重冗余连接装置
CN211159178U (zh) 一种复合型VOCs净化系统
CN218443379U (zh) 基于分体式余热锅炉的水泥窑废气氮氧化物减排系统
CN216312743U (zh) 带出口断路器双燃机配置的保安电源系统
CN214464821U (zh) 一拖二变频电动机事故按钮控制接线电路
CN109708001B (zh) 一种安全可靠低能耗的燃料气撬
TWI565222B (zh) 具有備用逆變器的太陽能發電系統
CN216395842U (zh) 一种烟气脱硝scr系统
CN216743845U (zh) 一种放散阀冗余控制装置及其燃气发电厂天然气调压站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857261

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21857261

Country of ref document: EP

Kind code of ref document: A1