WO2022036641A1 - Techniques for cross-link interference measurement and reporting - Google Patents

Techniques for cross-link interference measurement and reporting Download PDF

Info

Publication number
WO2022036641A1
WO2022036641A1 PCT/CN2020/110286 CN2020110286W WO2022036641A1 WO 2022036641 A1 WO2022036641 A1 WO 2022036641A1 CN 2020110286 W CN2020110286 W CN 2020110286W WO 2022036641 A1 WO2022036641 A1 WO 2022036641A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
link interference
report
cli
configuration
Prior art date
Application number
PCT/CN2020/110286
Other languages
French (fr)
Inventor
Ruifeng MA
Chenxi HAO
Huilin Xu
Yuwei REN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/110286 priority Critical patent/WO2022036641A1/en
Publication of WO2022036641A1 publication Critical patent/WO2022036641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter

Definitions

  • the following relates to wireless communications, including techniques for cross-link interference (CLI) measurement and reporting.
  • CLI cross-link interference
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • uplink signals transmitted by an aggressor user equipment may interfere with downlink signals received by a victim UE, thereby resulting in cross-link interference (CLI) at the victim UE.
  • UE may interfere with downlink signals received by a victim UE, thereby resulting in cross-link interference (CLI) at the victim UE.
  • CLI cross-link interference
  • a UE may be configured to measure and report CLI. Conventional techniques for CLI measurement and reporting may be deficient.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for cross-link interference (CLI) measurement and reporting.
  • CLI cross-link interference
  • a UE may be configured with one or more parameters associated with measuring and reporting L1 CLI.
  • a UE may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI reference resource may indicate to the UE a point at which the UE is to cease CLI measurements, and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE may transmit the CLI report.
  • the UE may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE may refrain from measuring and start to generate a CLI report.
  • the UE may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource.
  • the UE may transmit, to the base station, the CLI report at an end of the interval duration.
  • a method of wireless communications at a UE is described.
  • the method may include receiving, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generating a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmitting, to a base station, the CLI report at an end of the interval duration.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
  • the apparatus may include means for receiving, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generating a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmitting, to a base station, the CLI report at an end of the interval duration.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a location of the CLI reference resource, and refraining from measuring for CLI during the interval duration after the identified location of the CLI reference resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and identifying, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in the configuration, an index from which values of the first number of symbols and of the second number of symbols may be identified.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, where the table may be selected based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both.
  • values of the first number of symbols and the second number of symbols may be based on a quantity of CLI reports the downlink control channel triggers.
  • values of the first number of symbols and the second number of symbols may be based on the CLI resource being a wideband resource, a subband resource, or both.
  • the CLI reference resource includes a downlink slot.
  • the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report.
  • the interval duration may be based on a number of CLI resources the UE may be configured to measure.
  • the interval duration may be based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that there may be not a CLI reference resource corresponding to the CLI report, and refraining from transmitting the CLI report based on the determination.
  • the interval duration may be based on the UE experiencing and measuring intra-cell crosslink interference.
  • the interval duration may be based on the UE experiencing and measuring inter-cell crosslink interference.
  • transmitting the CLI report further may include operations, features, means, or instructions for transmitting, to the base station, the CLI report via a layer 1 report.
  • a method of wireless communications at base station may include determining a configuration for a UE to measure and report CLI, transmitting the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receiving, from the UE, the CLI report at an end of the interval duration.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
  • the apparatus may include means for determining a configuration for a UE to measure and report CLI, transmitting the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receiving, from the UE, the CLI report at an end of the interval duration.
  • a non-transitory computer-readable medium storing code for wireless communications at base station is described.
  • the code may include instructions executable by a processor to determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and determining, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in the configuration, an index from which values of the first number of symbols and of the second number of symbols may be identified.
  • values of the first number of symbols and the second number of symbols may be based on a quantity of CLI reports the downlink control channel triggers.
  • values of the first number of symbols and the second number of symbols may be based on the CLI resource being a wideband resource, a subband resource, or both.
  • the CLI reference resource includes a downlink slot.
  • the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the interval duration for the configuration as a number of slots between the CLI reference resource and the CLI report.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the interval duration for the configuration as a duration of time between the CLI reference resource and the CLI report.
  • the interval duration may be based on a number of CLI resources the UE may be configured to measure.
  • the interval duration may be based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report.
  • the interval duration may be based on the UE experiencing and measuring intra-cell crosslink interference.
  • the interval duration may be based on the UE experiencing and measuring inter-cell crosslink interference.
  • receiving the CLI report further may include operations, features, means, or instructions for receiving, from the UE, the CLI report via a layer 1 report.
  • FIG. 1 illustrates an example of a system for wireless communications that supports techniques for cross-link interference (CLI) measurement and reporting in accordance with aspects of the present disclosure.
  • CLI cross-link interference
  • FIGs. 2A and 2B each illustrate an example of a system for wireless communications that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIGs. 3 and 4 each illustrate an example of a CLI reporting configuration that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show block diagrams of devices that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIG. 12 shows a block diagram of a communications manager that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIG. 13 shows a diagram of a system including a device that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • FIGs. 14 through 17 show flowcharts illustrating methods that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • multiple nearby UEs may communicate with a base station (or different base stations) via either uplink signaling or downlink signaling.
  • whether a UE is communicating via uplink signaling or downlink signaling may be based on a current time-domain location (e.g., a current symbol) in a slot and a corresponding slot format configured at the UE.
  • a first UE may be configured with a first slot format and a second UE may be configured with a second slot format such that the first UE may communicate with a base station via uplink signaling or downlink signaling according to the first slot format while the second UE may communicate with the base station (or a different base station) via uplink signaling or downlink signaling according to the second slot format.
  • the first slot format may differ from the second slot format such that the first UE may be scheduled for downlink signaling over the same symbols as the second UE is scheduled for uplink signaling. In such cases, the transmission of the uplink signaling from the second UE may interfere with the downlink signaling received by the first UE.
  • Such interference from one UE to another may be referred to as cross-link interference (CLI) .
  • CLI cross-link interference
  • the base station may configure a time-domain resource as a measurement resource (e.g., a CLI measurement resource) over which the first UE may measure CLI.
  • the base station may configure the CLI measurement at the first UE as a Layer 3 (L3) measurement, which may result in a long-term view of the CLI conditions at the first UE.
  • L3 Layer 3
  • the slot formats at the first UE and the second UE are configured dynamically (e.g., by downlink control information (DCI) )
  • DCI downlink control information
  • the time-domain resources over which CLI may be present at the first UE may change in the short-term.
  • the CLI measurement resource may no longer include symbols allocated for downlink signaling to the first UE and uplink signaling from the second UE (e.g., when CLI may likely occur) .
  • the first UE may sub-optimally measure the actual CLI at the first UE because the configuration of the L3 CLI measurement may be unable to keep up (e.g., stay current) with the dynamically configured slot formats and may lose synchronization with the symbols during which CLI may be likely.
  • the UE may be configured to perform layer 1 (L1) CLI measurement and reporting.
  • L1 CLI layer 1
  • a UE may be configured with one or more parameters associated with measuring and reporting L1 CLI.
  • the one or more parameters may indicate the resources associated with a CLI reference resource, a position of a CLI reference resource, a duration between the CLI reference resource and a CLI reporting resource, etc.
  • a UE may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI reference resource may indicate to the UE a point at which the UE is to cease CLI measurements, and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE may transmit the CLI report. As such, the UE may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE may refrain from measuring and start to generate a CLI report. The UE may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource. The UE may transmit, to the base station, the CLI report at an end of the interval duration.
  • the described techniques may support improvements in CLI measurement and reporting by decreasing latency, improving flexibility, and improving reliability among other advantages.
  • supported techniques may include improved network operations and, in some examples, may promote network efficiencies, among other benefits.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to CLI reporting configurations and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for CLI measurement and reporting.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the "device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • carrier may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a UE 115 may be configured with one or more parameters associated with measuring and reporting CLI.
  • the UE 115 may be configured to measure L1 CLI metrics and transmit an L1 CLI report.
  • a UE 115 may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE 115.
  • the CLI reference resource may indicate to the UE 115 a point at which the UE 115 is to cease CLI measurements and indicate the start of the interval duration.
  • the UE 115 may transmit the CLI report.
  • the UE 115 may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE 115 may refrain from measuring and start to generate a CLI report.
  • the UE 115 may start to generate the CLI report at any point during the interval duration.
  • the UE 115 may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource.
  • the UE 115 may transmit, to the base station 105, the CLI report at an end of the interval duration.
  • FIGs. 2A and 2B illustrate example wireless communications systems 200 and 201, respectively, that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the wireless communications systems 200 and 201 may implement aspects of the wireless communications system 100.
  • the wireless communications systems 200 and 201 may each include multiple UEs 115 and one or more base stations 105, which may be examples of corresponding devices described herein.
  • the wireless communications system 200 as shown in FIG. 2A, may illustrate implementations of the present disclosure in examples in which nearby UEs 115 communicate with different base stations 105.
  • the wireless communications system 201 as shown in FIG. 2B, may illustrate implementations of the present disclosure in examples in which nearby UEs 115 may communicate with the same base station 105.
  • a base station 105 and one or more UEs 115 may each be configured to support L1 CLI measurement and reporting.
  • a first UE 115 such as a UE 115-a (as shown in the wireless communications system 200) or a UE 115-c (as shown in the wireless communications system 201) , may experience CLI 210 (e.g., CLI 210-a, or CLI 210-b, respectively) from a second UE 115, such as a UE 115-b (which may be nearby or proximate to the UE 115-a) or a UE 115-d (which may be nearby or proximate to the UE 115-c) , in cases in which the network (e.g., a base station 105) has configured different TDD uplink and downlink slot formats for the first UE 115 and the second UE 115.
  • the network e.g., a base station 105
  • the UE 115-a may communicate with a base station 105-a over a communication link 205-a within a geographic area 110-a and the base station 105-a may configure a first slot format at the UE 115-a.
  • the UE 115-b may communicate with a base station 105-b over a communication link 205-b within a geographic area 110-b and the base station 105-b may configure a second slot format at the UE 115-b.
  • the UE 115-c may communicate with a base station 105-c over a communication link 205-c within a geographic coverage area 110-c and the base station 105-c may configure a first slot format at the UE 115-c.
  • the UE 115-d may communicate with the base station 105-c over a communication link 205-d within the geographic coverage area 110-c and the base station 105-c may configure a second slot format at the UE 115-d.
  • the base station 105-c may have a full-duplex capability or functionality.
  • the configured slot formats may include one or more uplink symbols 215, one or more downlink symbols 220, or one or more flexible symbols, or any combination thereof, such that the UEs 115 may communicate with their respective base stations 105 via either uplink signaling or downlink signaling according to their respectively configured slot formats.
  • the first slot format may be different than the second slot format such that, when aligned in the time-domain, the location of uplink symbols 215 or downlink symbols 220 in the first slot and the location of uplink symbols 215 or downlink symbols 220 in the second slot format may be different (e.g., non-overlapping) .
  • the first slot format configured at the UE 115-a or the UE 115-c may include one or more downlink symbols 220 (e.g., downlink symbols 220-a, and 220-b, respectively) and the second slot format configured at UE 115-b or UE 115-d may include one or more uplink symbols 215 (e.g., uplink symbols 215-a, and 215-b, respectively) .
  • the UE 115-b or the UE 115-d may transmit signaling to the base station 105-b or to the base station 105-c, respectively, via communication links 205-b and 205-d, respectively.
  • UE 115-a or UE 115-c may receive signaling from the base station 105-a or from the base station 105-c, respectively via communication links 205-a and 205-c, respectively.
  • one or more transmissions by UE 115-b while UE 115-a is receiving may generate CLI 210-a at UE 115-a, which may decrease the likelihood of UE 115-a to successfully receive downlink signaling from the base station 105-a.
  • one or more transmissions by UE 115-d while UE 115-c is receiving may generate CLI 210-b at UE 115-c, which may lower the likelihood of UE 115-c to successfully receive signaling from the base station 105-c.
  • CLI 210 may arise at UE 115-a or UE 115-c from one or more uplink transmissions from UE 115-b or UE 115-d, respectively, during a downlink-designated symbol at UE 115-a or UE 115-c.
  • UE 115-a or UE 115-c may experience interference from UE 115-b or the UE 115-d as CLI 210-a or CLI 210-b, respectively.
  • UE 115-b and UE 115-d may be referred to as aggressor UEs 115 and UE 115-a and UE 115-c may be referred to as victim UEs.
  • CLI 210-a may be referred to as inter-cell CLI 210
  • CLI 210-b may be referred to as intra-cell CLI 210.
  • the base station 105 serving the first UE 115 may configure the first UE 115 to measure CLI 210 from an aggressing second UE 115 (e.g., either or both of the UE 115-b and the UE 115-d) .
  • the second UE 115 may be unaware that the first UE 115 is measuring uplink transmissions of the second UE 115 and may accordingly refrain from transmitting signaling (such as a reference signal) to the first UE 115 that is dedicated for CLI 210 measurement at the first UE 115.
  • the base station 105 serving the first UE 115 may configure measurement of CLI 210 at the first UE 115 as an L3 measurement, which may be similar to radio resource measurement (RRM) for mobility in a multi-cell scenario.
  • base station 105-a may configure UE 115-a with a CLI measurement resource (which may be configured as a periodic resource via radio resource control (RRC) signaling) over which UE 115-b may transmit a sounding reference signal (SRS) or other uplink transmissions such as physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , and a random access channel (RACH) preamble to base station 105-b.
  • RRC radio resource control
  • SRS sounding reference signal
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • RACH random access channel
  • UE 115-a may measure a reference signal received power (RSRP) based on the SRS or the received signal strength indicator (RSSI) that corresponds to the uplink transmissions from the UE 115-b over the periodic CLI measurement resource.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • base station 105-a may indicate the CLI measurement resource as an indication of an uplink transmission from UE 115-b that may generate CLI 210-a at the UE 115-a.
  • Whether UE 115-a experiences CLI 210 may be based on whether UE 115-a receives downlink signaling from the base station 105-a in resources that overlap with the uplink transmission from UE 115-b.
  • Base station 105-c may configure a similar CLI measurement resource at UE 115-c.
  • Such a configuration of a CLI measurement resource over which UE 115-a or UE 115-c may measure the CLI 210 may be suitable for estimating a long-term average of the CLI 210 from an uplink transmission of an aggressor UE 115. For example, based on using an L3 measurement of the CLI 210, UE 115-a may determine a long-term view of the CLI 210-a condition at UE 115-a. Similarly, UE 115-c may determine a long-term view of the CLI 210-b condition at UE 115-c.
  • such a configuration of a CLI measurement resource over which to measure a long-term average of the CLI 210 at UE 115-a or UE 115-c may be sub-optimal.
  • dynamic TDD configuration e.g., dynamic slot format configuration
  • an L3 measurement resource of the CLI 210 at UE 115-a and UE 115-c may be unable to stay current with the actual symbols over which UE 115-b or UE 115-d may transmit uplink signaling and over which UE 115-a or UE 115-c may receive downlink signaling.
  • UE 115-a or UE 115-c may use a L1 (e.g., physical layer, higher layer) measurement to measure the CLI 210 and may use L1 reporting of a CLI measurement report. In some cases, a different layer may be used.
  • the UE 115 may be configured, such as by a base station 105, with report settings and resource settings that may indicate one or more parameters associated with L1 measurement and reporting.
  • a UE 115 may be configured with report, where in some cases, report settings may be configured for a UE 115 which is associated with a single downlink bandwidth part (BWP) .
  • BWP downlink bandwidth part
  • the report setting may include information (e.g., parameters) for the UE 115 to measure and report CLI 210.
  • one of the parameters may include report quality.
  • the report setting may indicate that the CLI report is aperiodic, periodic, or semi-persistent.
  • the CLI measurement resource may coincide with the CLI report type.
  • an L1 CLI measurement resource may be configured as periodic (e.g., via RRC configuration) , semi-persistently scheduled (e.g., via RRC configuration with DCI activation) , or as aperiodic (e.g., triggered by a one-time DCI) .
  • the UE 115 may be configured with resource settings, where one or more resource set types may be configured by a single report setting.
  • a resource set type may include a non-zero-power (NZP) based resource, or a zero-power (ZP) based resource, or both.
  • NZP non-zero-power
  • ZP zero-power
  • a resource configuration indicated by the resource setting may indicate the time and/or frequency resources where the measurement resource (e.g., CLI resource) may be received by the UE 115.
  • the resource configuration may indicate time domain periodicity (e.g., how frequently a CLI resource may occur) and/or offset for the CLI resource.
  • one or more timeline parameters may be configured for the UE 115 to determine when to transmit the CLI report.
  • the one or more timeline parameters may indicate the resources associated with a CLI reference resource, a position of a CLI reference resource, a duration between the CLI reference resource and a CLI reporting resource, a duration between a physical downlink control channel (PDCCH) and a PUSCH, a duration between a CLI resource and a PUSCH, etc.
  • PDCCH physical downlink control channel
  • a UE 115 may identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE 115.
  • the UE 115 may have received the configuration from a base station 105.
  • the CLI reference resource may indicate to the UE 115 a point at which the UE 115 is to cease CLI measurements, and indicate the start of the interval duration.
  • the UE 115 may transmit the CLI report.
  • the UE 115 may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE 115 may refrain from measuring and start to generate a CLI report at some point during the interval duration.
  • the UE 115 may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource.
  • the UE 115 may transmit, to the base station 105, the CLI report at an end of the interval duration.
  • FIG. 3 illustrates an example of a CLI reporting configuration 300 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the CLI reporting configuration 300 may be implemented by a base station and a UE, which may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2.
  • a base station may configure the CLI reporting configuration 300 which may be utilized by a UE to perform a CLI measurement and reporting procedure.
  • other wireless devices such as a UE, may configure the CLI reporting configuration 300, and other devices, such as a base station, may utilize the CLI reporting configuration 300.
  • a UE may receive (e.g., from a base station, or other network device) , identify, and/or perform a CLI reporting configuration 300.
  • the CLI reporting configuration 300 may include at least one CLI resource 305 that the UE may use to measure CLI from one or more aggressor UEs.
  • the CLI reporting configuration 300 may include a CLI reference resource 310, a CLI report 320, and a reference interval 315 (e.g., interval duration) .
  • the CLI reference resource 310 may be configured to define an anchor (e.g., baseline, starting point) associated with the reference interval 315.
  • the UE may receive the time and/or frequency location of the CLI reference resource 310 prior to the occurrence of the CLI reference resource 310.
  • the UE may receive or be pre-configured with a configuration associated with CLI measurement and reporting.
  • the configuration may include an indication of the location (e.g., time and/or frequency location) of one or more CLI resources 305, an indication of the location of one or more CLI reference resources 310, an indication of one or more reference intervals 315 associated with the one or more CLI reference resources 310.
  • the UE may receive the configuration in one message, or multiple different messages from a base station or some other network device.
  • the UE may dynamically identify the occurrence of the CLI reference resource 310 without prior knowledge of the location of the CLI reference resource 310 and the UE may perform the CLI reporting procedure based on dynamically identifying the CLI reference resource 310, where the duration reference interval 315 may be pre-configured, or may be signaled to the UE (such as in a periodic or semi-persistent configuration message) .
  • a UE may be configured with one or more CLI resources 305 for the UE to measure CLI metrics (e.g., RSRP, RSSI) , where the CLI measurements may be fast (e.g., instantaneous, near instantaneous) measurements due to the measurements being L1 measurements.
  • CLI metrics e.g., RSRP, RSSI
  • the UE may refrain from continuing to measure CLI resources 305, even if a CLI resource 305 is allocated after the CLI reference resource 310.
  • the CLI reference resource 310 may coincide (e.g., fully or partially overlap) with a CLI resource 305.
  • the UE may be configured to refrain from measuring this CLI resource 305 that overlaps with the CLI reference resource 310.
  • the UE may be configured to measure this CLI resource 305 that overlaps with the CLI reference resource 310, and to refrain from measuring any CLI resources 305 after the CLI reference resource 310.
  • the CLI reference resource 310 may be configured as a set of time and/or frequency resources.
  • the CLI reference resource 310 may be defined by a group of downlink physical resource blocks.
  • the group of downlink physical resource blocks may correspond to the frequency band to which the derived CLI measurements relate.
  • the frequency band the UE measures the CLI measurements in may be the same frequency band in which the CLI reference resource 310 is located.
  • the CLI reference resource 310 may be defined one or more downlink time resources (e.g., slots, symbols, TTIs) .
  • the CLI reference resource 310 may be defined as a single downlink slot.
  • the UE may identify that the reference interval 315 has started, and that the UE has the remainder of the reference interval 315 to generate a CLI report.
  • the expiry of the reference interval 315 may serve as a trigger for the UE to transmit the CLI report.
  • the reference interval 315 may be defined in relation to a quantity of time units, such as a number of slots (e.g., n_ref slots) , subframes, TTIs, etc.
  • the reference interval may be defined in terms of a duration of time, such as a number of milliseconds (e.g., n_ref ms) , seconds, etc.
  • the length of the reference interval 315 may be based on the report type of the CLI report, or based on the number of CLI resources 305 the UE is configured to measure prior to the CLI reference resource 310.
  • the duration of the reference interval 315 may be determined such that the CLI reference resource 310 and/or the CLI report 320 is located in a valid downlink slot. As such, if the UE is configured to measure a single CLI resource 305 to generate a periodic or semi-persistent CLI report 320, the reference interval 315 duration may be smaller than if the UE is configured to measure multiple CLI resources 305.
  • the additional time allocated for the multiple CLI resources 305 may be used by the UE to generate a more complex and/or larger CLI report 320.
  • a UE that is configured to measure a single CLI resource 305 may be configured with a reference interval 315 of 4 ms
  • a UE that is configured to measure multiple CLI resources 305 may be configured with a reference interval 315 of 5 ms.
  • the reference interval 315 may be based on a parameter (e.g., Z’) which may correspond to the symbol number indicated in a higher layer delay requirement, or may be pre-defined.
  • the reference interval 315 defined for an aperiodic CLI report may be the smallest value greater than or equal to where may refer to the number of symbols that are configured to fit into a slot.
  • CLI reporting may be omitted (e.g., for that serving cell) in corresponding uplink slot.
  • the UE may not transmit a CLI report 320.
  • a CLI report configuration may be reconfigured (via CLI report settings, CLI resource settings) , or one or more other communication parameters may change and impact the CLI report configuration.
  • the UE may transmit a CLI report 320 after receiving at least one CLI resource transmission occasion, where the CLI resource transmission occasions may occur no later than CLI reference resource 310. If the CLI resource transmission occasion occurs later than the CLI reference resource 310, the UE may refrain from transmitting (e.g., drop) the CLI report 320.
  • the CLI resources 305 may be non-zero power (NZP) CLI resources 305, or zero-power (ZP) CLI resources 305.
  • the UE may typically be configured with NZP CLI resources 305 if the UE is experiencing intra-cell CLI, as described with reference to FIG. 2B, and the UE may typically be configured with ZP CLI resources 305 if the UE is experiencing inter-cell CLI, as described with reference to FIG. 2A.
  • the UE may experience both intra-cell and inter-cell CLI.
  • the UE may be configured to assume that a ZP CLI resource 305 and an NZP CLI resource 305 will not overlap.
  • FIG. 4 illustrates an example of a CLI reporting configuration 400 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the CLI reporting configuration 400 may be implemented by a base station and a UE, which may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2.
  • a base station may configure the CLI reporting configuration 400 which may be utilized by a UE to perform a CLI measurement and reporting procedure.
  • other wireless devices such as a UE, may configure the CLI reporting configuration 400, and other devices, such as a base station, may utilize the CLI reporting configuration 400.
  • a UE may be configured with one or more other CLI timeline parameters.
  • the parameters that are configured and/or the parameters the UE considers may be based on the report type (e.g., periodic, semi-persistent, aperiodic) of the CLI report. For example, if the UE is configured with periodic or semi-persistent CLI reporting, the UE may use the CLI reference resource and reference interval to determine when to stop measuring CLI and to transmit the CLI report. In some cases, if the UE receives an indication for the UE to transmit an aperiodic CLI report, the UE may use the CLI reference resource, the reference interval, Z, or Z’, or a combination thereof.
  • the report type e.g., periodic, semi-persistent, aperiodic
  • the UE may use only Z and Z’ to measure and transmit CLI.
  • the indication to transmit an aperiodic CLI report may be a downlink control channel 405.
  • the UE may receive a downlink control channel 405, such as a PDCCH, that may trigger the UE to measure and report CLI, where the UE may report the CLI measurement in an uplink shared channel 415, such as a PUSCH.
  • the downlink control channel 405 may indicate the location of one or more CLI resources 410.
  • the CLI resource 410 depicted in FIG. 4 may coincide with a CLI reference resource.
  • the one or more other CLI timeline parameters may include Z and Z’ (this Z’ may be different from the Z’ as described with reference to FIG. 3) .
  • Z may refer to a duration of time or number of time resources between the last symbol of the downlink control channel 405 (e.g., PDCCH) that triggers the aperiodic CLI report (e.g., or some other CLI report) and the first symbol of the uplink shared channel 415 (e.g., PUSCH) which carriers the CLI report (e.g., aperiodic CLI report) .
  • the time duration may be a minimum OFDM symbol number gap.
  • Z’ may refer to a duration of time or number of time resources between the last symbol of the CLI resource (e.g., aperiodic CLI resource) the UE may use to calculate the CLI report and the first symbol of the uplink shared channel 415 (e.g., PUSCH) .
  • the time duration may be a minimum OFDM symbol number gap.
  • the values of Z and Z’ may be based on the reporting quantity (e.g., the number of CLI reports the UE is configured to transmit) .
  • the values of Z and Z’ may be preconfigured, or dynamically or semi-persistently indicated.
  • the UE may receive an explicit indication of Z and/or Z’, such that the UE may receive the value of Z and/or Z’ such as in the downlink control channel 405, or some other message.
  • the UE may receive an implicit indication of Z and/or Z’.
  • the implicit index may be an index.
  • the UE may be configured with one or more lookup tables, where the UE may determine the values of Z and/or Z’ based on the index and the one or more look tables. In some cases, the UE may independently determine the value of Z and/or Z’ based on the look tables and the parameters associated with the CLI measurement and reporting procedure.
  • the UE may be configured with multiple lookup tables, where each lookup table corresponds a different configuration and each lookup table includes one or more sets of values for Z and Z’, where each set of values is associated with an index.
  • the UE may be configured with multiple different look tables, where each lookup table is associated with a different CLI computation delay requirement (or channel state information (CSI) computation delay requirement) .
  • the computation delay requirements may be based on one or more CLI resource configurations.
  • the values of Z and Z’ may be based on the CLI resource 410 being a wideband resource and subband resource. Additionally or alternatively, the values of Z and Z’ may be based on a single CLI resource 410 being configured for a CLI report or multiple CLI resources being configured for a CLI report.
  • the values of Z and Z’ may be determined in the lookup table associated with computation delay requirement 1.
  • the values of Z and Z’ may be determined by Z 1 and Z 1 ’ in the lookup table associated with computation delay requirement 2.
  • the values of Z and Z’ may be determined by Z 2 and Z 2 ’ in the lookup table associated with computation delay requirement 2.
  • at least two lookup tables may be configured for computation delay requirement 2, where one is associated with Z 1 and Z 1 ’ and the other lookup table is associated with Z 2 and Z 2 ’.
  • the values of Z and Z’ may generally be the lowest in the lookup table used in the first case, and may be the highest in the lookup table used in the third cases, comparatively.
  • the value of Z may be updated one or more times. In such cases, the final value of Z may be the maximum value across the original or updated values.
  • a UE may be configured with ZP-based CLI resources for inter-cell CLI measurements based on RSSI measurements, for example and may be configured with NZP-based CLI resources for intra-cell CLI measurements based on RSRP detection, for example.
  • the RSSI computation may be more simple than an RSRP computation.
  • the timing interval (e.g., minimum timing interval) for CLI RSSI measurements may be less than the timing interval (e.g., minimum timing interval) for CLI RSRP measurements.
  • the timing interval associated with a ZP CLI resource e.g., the duration of the CLI resource
  • the timing interval associated with a ZP CLI resource may be less than or equal to the timing interval associated with the NZP CLI resource.
  • FIG. 5 illustrates an example of a process flow 500 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the process flow 500 may illustrate an example CLI measurement and reporting scheme.
  • UE 115-e may perform measure and report, to base station 105-d, CLI caused by another UE 115.
  • Base station 105-d and UE 115-e may be examples of the corresponding wireless devices described with reference to FIGs. 1 through 4.
  • a different type of wireless device e.g., a base station 105
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • base station 105-d may determine a configuration for at least UE 115-e to measure and report CLI.
  • UE 115-e may receive, from base station 105-d (or some other network device) , a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • UE 115-e may identify a location of the CLI reference resource, and refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource. For example, UE 115-e may measure CLI based on receiving CLI resources and upon identifying the occurrence of the CLI reference resource, UE 115-e may refrain from measuring CLI because the interval duration started at the beginning or at the end of the CLI reference resource.
  • the CLI reference resource may include a downlink slot (or any number of downlink slots, symbols TTIs, seconds, milliseconds, etc. ) .
  • the CLI reference resource includes a set of downlink physical resource blocks, where the set of downlink physical resource blocks may be associated with a frequency range of the CLI measurements.
  • UE 115-e may identify the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report.
  • UE 115-e may identify the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report.
  • the interval duration is based on a number of CLI resources UE 115-e is configured to measure.
  • the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report.
  • the interval duration may be based on UE 115-e experiencing and measuring intra-cell crosslink interference.
  • the interval duration may be based on UE 115-e experiencing and measuring inter-cell CLI.
  • UE 115-e may receive, such as from base station 105-d, a downlink control channel (e.g., PDCCH) that triggers UE 115-e to generate the CLI report.
  • the downlink control channel may trigger UE 115-e to transmit the CLI report in an uplink shared channel (e.g., PUSCH) .
  • UE 115-d may identify from the configuration, a first number of symbols (e.g., Z as described with reference to FIG. 4) defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and UE 115-e may identify, from the configuration, a second number of symbols (e.g., Z’ as described with reference to FIG.
  • UE 115-e may receive, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. UE 115-e may select a table for identification of the values of the first number of symbols and of the second number of symbols based on the index. UE 115-e may select the table based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both.
  • values of the first number of symbols and the second number of symbols are based at least in part on a quantity of CLI reports the downlink control channel triggers. In some implementations, values of the first number of symbols and the second number of symbols are based at least in part on the CLI resource being a wideband resource, a subband resource, or both.
  • UE 115-e may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. In some cases, UE 115-e may generate the CLI report during the interval duration to transmit the CLI report at the end of the interval duration.
  • UE 115-e may transmit, to base station 105-d, the CLI report at an end of the interval duration.
  • UE 115-e may transmit the CLI via and L1 report.
  • UE 115-e may determine that there is not a CLI reference resource corresponding to the CLI report, and UE 115-e may refrain from transmitting the CLI report based on the determination.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • the communications manager 615 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 605 to more efficiently and reliably determine and report CLI that occurs between device 605 and another device.
  • a device 605 may be configured to measure and report CLI via layer 1, where the device 605 may be further configured with one or more time related parameters for reporting the CLI to provide the device 605 with a reliable reporting duration.
  • a processor of a UE 115 may increase reliability and efficiency in the measurement and reporting of CLI.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 735.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a CLI configuration manager 720, a CLI report manager 725, and a CLI report transmitter 730.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the CLI configuration manager 720 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI report manager 725 may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource.
  • the CLI report transmitter 730 may transmit, to a base station, the CLI report at an end of the interval duration.
  • the transmitter 735 may transmit signals generated by other components of the device 705.
  • the transmitter 735 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 735 may be an example of aspects of the transceiver 920 described with reference to FIG. 9.
  • the transmitter 735 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a CLI configuration manager 810, a CLI report manager 815, a CLI report transmitter 820, a reference resource identifier 825, a CLI measurement manager 830, and a CLI report trigger receiver 835. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the CLI configuration manager 810 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI report manager 815 may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource.
  • the CLI report transmitter 820 may transmit, to a base station, the CLI report at an end of the interval duration. In some examples, the CLI report transmitter 820 may transmit, to the base station, the CLI report via a layer 1 report.
  • the reference resource identifier 825 may identify a location of the CLI reference resource.
  • the CLI measurement manager 830 may refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource.
  • the CLI report trigger receiver 835 may receive a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
  • the CLI configuration manager 810 may identify, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel.
  • the CLI configuration manager 810 may identify, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
  • the CLI configuration manager 810 may receive, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. In some examples, the CLI configuration manager 810 may select a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, where the table is selected based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both.
  • values of the first number of symbols and the second number of symbols are based on a quantity of CLI reports the downlink control channel triggers. In some examples, values of the first number of symbols and the second number of symbols are based on the CLI resource being a wideband resource, a subband resource, or both.
  • the CLI reference resource includes a downlink slot. In some cases, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
  • the CLI configuration manager 810 may identify the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report. In some examples, the CLI configuration manager 810 may identify the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report.
  • the CLI configuration manager 810 may determine that there is not a CLI reference resource corresponding to the CLI report. In some examples, the CLI report manager 815 may refrain from transmitting the CLI report based on the determination.
  • the interval duration is based on a number of CLI resources the UE is configured to measure. In some cases, the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report. In some cases, the interval duration is based on the UE experiencing and measuring intra-cell crosslink interference. In some cases, the interval duration is based on the UE experiencing and measuring inter-cell crosslink interference.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting techniques for CLI measurement and reporting) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
  • the communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
  • the communications manager 1015 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1015 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1015, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1015, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1020 may transmit signals generated by other components of the device 1005.
  • the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1020 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1135.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein.
  • the communications manager 1115 may include a CLI configuration component 1120, a CLI configuration transmitter 1125, and a CLI report receiver 1130.
  • the communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
  • the CLI configuration component 1120 may determine a configuration for a UE to measure and report CLI.
  • the CLI configuration transmitter 1125 may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI report receiver 1130 may receive, from the UE, the CLI report at an end of the interval duration.
  • the transmitter 1135 may transmit signals generated by other components of the device 1105.
  • the transmitter 1135 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1135 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13.
  • the transmitter 1135 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein.
  • the communications manager 1205 may include a CLI configuration component 1210, a CLI configuration transmitter 1215, a CLI report receiver 1220, and a CLI trigger component 1225. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the CLI configuration component 1210 may determine a configuration for a UE to measure and report CLI.
  • the CLI configuration transmitter 1215 may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the CLI report receiver 1220 may receive, from the UE, the CLI report at an end of the interval duration. In some examples, the CLI report receiver 1220 may receive, from the UE, the CLI report via a layer 1 report.
  • the CLI trigger component 1225 may transmit a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
  • the CLI configuration component 1210 may determine, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel. In some examples, the CLI configuration component 1210 may determine, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
  • the CLI configuration transmitter 1215 may transmit, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. In some examples, values of the first number of symbols and the second number of symbols are based on a quantity of CLI reports the downlink control channel triggers. In some examples, values of the first number of symbols and the second number of symbols are based on the CLI resource being a wideband resource, a subband resource, or both.
  • the CLI reference resource includes a downlink slot. In some cases, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
  • the CLI configuration component 1210 may determine the interval duration for the configuration as a number of slots between the CLI reference resource and the CLI report. In some examples, the CLI configuration component 1210 may determine the interval duration for the configuration as a duration of time between the CLI reference resource and the CLI report.
  • the interval duration is based on a number of CLI resources the UE is configured to measure. In some cases, the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report. In some cases, the interval duration is based on the UE experiencing and measuring intra-cell crosslink interference. In some cases, the interval duration is based on the UE experiencing and measuring inter-cell crosslink interference.
  • FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
  • buses e.g., bus 1350
  • the communications manager 1310 may determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
  • the network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1330 may include RAM, ROM, or a combination thereof.
  • the memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1340
  • the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1340 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1340.
  • the processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to perform various functions (e.g., functions or tasks supporting techniques for CLI measurement and reporting) .
  • the inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a CLI configuration manager as described with reference to FIGs. 6 through 9.
  • the UE may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a CLI report manager as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to a base station, the CLI report at an end of the interval duration.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a CLI report transmitter as described with reference to FIGs. 6 through 9.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a CLI configuration manager as described with reference to FIGs. 6 through 9.
  • the UE may identify a location of the CLI reference resource.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reference resource identifier as described with reference to FIGs. 6 through 9.
  • the UE may refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a CLI measurement manager as described with reference to FIGs. 6 through 9.
  • the UE may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a CLI report manager as described with reference to FIGs. 6 through 9.
  • the UE may transmit, to a base station, the CLI report at an end of the interval duration.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a CLI report transmitter as described with reference to FIGs. 6 through 9.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may determine a configuration for a UE to measure and report CLI.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a CLI configuration component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a CLI configuration transmitter as described with reference to FIGs. 10 through 13.
  • the base station may receive, from the UE, the CLI report at an end of the interval duration.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a CLI report receiver as described with reference to FIGs. 10 through 13.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may determine a configuration for a UE to measure and report CLI.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a CLI configuration component as described with reference to FIGs. 10 through 13.
  • the base station may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a CLI configuration transmitter as described with reference to FIGs. 10 through 13.
  • the base station may transmit a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a CLI trigger component as described with reference to FIGs. 10 through 13.
  • the base station may receive, from the UE, the CLI report at an end of the interval duration.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a CLI report receiver as described with reference to FIGs. 10 through 13.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a configuration for measuring and reporting cross-link interference (CLI), where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI reference resource may indicate to the UE a point at which the UE is to cease CLI measurements, and indicate the start of the interval duration. The UE may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE may refrain from measuring and start to generate a CLI report. The UE may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource. The UE may transmit, to the base station, the CLI report at an end of the interval duration.

Description

TECHNIQUES FOR CROSS-LINK INTERFERENCE MEASUREMENT AND REPORTING
FIELD OF TECHNOLOGY
The following relates to wireless communications, including techniques for cross-link interference (CLI) measurement and reporting.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications systems, uplink signals transmitted by an aggressor user equipment (UE) may interfere with downlink signals received by a victim UE, thereby resulting in cross-link interference (CLI) at the victim UE. In some cases, a UE may be configured to measure and report CLI. Conventional techniques for CLI measurement and reporting may be deficient.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for cross-link interference (CLI) measurement and reporting. Generally, the described techniques provide for CLI measurement and reporting by  a UE, such as layer 1 (L1) CLI measurement and reporting. A UE may be configured with one or more parameters associated with measuring and reporting L1 CLI. For example, a UE may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI reference resource may indicate to the UE a point at which the UE is to cease CLI measurements, and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE may transmit the CLI report. As such, the UE may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE may refrain from measuring and start to generate a CLI report. The UE may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource. The UE may transmit, to the base station, the CLI report at an end of the interval duration.
A method of wireless communications at a UE is described. The method may include receiving, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generating a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmitting, to a base station, the CLI report at an end of the interval duration.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generating a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the  CLI reference resource, and transmitting, to a base station, the CLI report at an end of the interval duration.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a location of the CLI reference resource, and refraining from measuring for CLI during the interval duration after the identified location of the CLI reference resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and identifying, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in the configuration, an index from which values of the first number of symbols and of the second number of symbols may be identified.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, where the table may be selected based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, values of the first number of symbols and the second number of symbols may be based on a quantity of CLI reports the downlink control channel triggers.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, values of the first number of symbols and the second number of symbols may be based on the CLI resource being a wideband resource, a subband resource, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the CLI reference resource includes a downlink slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on a number of CLI resources the UE may be configured to measure.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that there may be not a CLI reference resource corresponding to the CLI report, and refraining from transmitting the CLI report based on the determination.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the UE experiencing and measuring intra-cell crosslink interference.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the UE experiencing and measuring inter-cell crosslink interference.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the CLI report further may include operations, features, means, or instructions for transmitting, to the base station, the CLI report via a layer 1 report.
A method of wireless communications at base station is described. The method may include determining a configuration for a UE to measure and report CLI, transmitting the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receiving, from the UE, the CLI report at an end of the interval duration.
An apparatus for wireless communications at base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI  reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
Another apparatus for wireless communications at base station is described. The apparatus may include means for determining a configuration for a UE to measure and report CLI, transmitting the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receiving, from the UE, the CLI report at an end of the interval duration.
A non-transitory computer-readable medium storing code for wireless communications at base station is described. The code may include instructions executable by a processor to determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and determining, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in the configuration, an index from which values of the first number of symbols and of the second number of symbols may be identified.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, values of the first number of symbols and the second number of symbols may be based on a quantity of CLI reports the downlink control channel triggers.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, values of the first number of symbols and the second number of symbols may be based on the CLI resource being a wideband resource, a subband resource, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the CLI reference resource includes a downlink slot.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the interval duration for the configuration as a number of slots between the CLI reference resource and the CLI report.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the interval duration for the configuration as a duration of time between the CLI reference resource and the CLI report.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on a number of CLI resources the UE may be configured to measure.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the UE experiencing and measuring intra-cell crosslink interference.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the interval duration may be based on the UE experiencing and measuring inter-cell crosslink interference.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the CLI report further may include operations, features, means, or instructions for receiving, from the UE, the CLI report via a layer 1 report.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports techniques for cross-link interference (CLI) measurement and reporting in accordance with aspects of the present disclosure.
FIGs. 2A and 2B each illustrate an example of a system for wireless communications that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIGs. 3 and 4 each illustrate an example of a CLI reporting configuration that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show block diagrams of devices that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIG. 12 shows a block diagram of a communications manager that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIG. 13 shows a diagram of a system including a device that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
FIGs. 14 through 17 show flowcharts illustrating methods that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, multiple nearby UEs may communicate with a base station (or different base stations) via either uplink signaling or downlink signaling. In some cases, whether a UE is communicating via uplink signaling or downlink signaling may be based on a current time-domain location (e.g., a current symbol) in a slot and a corresponding slot format configured at the UE. For example, a first UE may be configured with a first slot format and a second UE may be configured with a second slot format such that the first UE may communicate with a base station via uplink signaling or downlink signaling according to the first slot format while the second UE may communicate with the base station (or a different base station) via uplink signaling or downlink signaling according to the second slot format. In some cases, the first slot format may differ from the second slot format such that the first UE may be scheduled for downlink signaling over the same symbols as the second UE is scheduled for uplink signaling. In such cases, the transmission of the uplink signaling from the second UE may interfere with the downlink signaling received by the first UE. Such interference from one UE to another may be referred to as cross-link interference (CLI) . To account for CLI between the first UE and the second UE, the base station may configure a time-domain resource as a measurement resource (e.g., a CLI measurement resource) over which the first UE may measure CLI.
In some cases, the base station may configure the CLI measurement at the first UE as a Layer 3 (L3) measurement, which may result in a long-term view of the CLI conditions at the first UE. In examples in which the slot formats at the first UE and the second UE are  configured dynamically (e.g., by downlink control information (DCI) ) , however, the time-domain resources over which CLI may be present at the first UE may change in the short-term. For example, if the slot formats at the first UE or the second UE, or both, are dynamically configured, the CLI measurement resource may no longer include symbols allocated for downlink signaling to the first UE and uplink signaling from the second UE (e.g., when CLI may likely occur) . As such, the first UE may sub-optimally measure the actual CLI at the first UE because the configuration of the L3 CLI measurement may be unable to keep up (e.g., stay current) with the dynamically configured slot formats and may lose synchronization with the symbols during which CLI may be likely.
To improve flexibility and reliability in the network, the UE may be configured to perform layer 1 (L1) CLI measurement and reporting. To facilitate L1 measurement and reporting, a UE may be configured with one or more parameters associated with measuring and reporting L1 CLI. In some cases, the one or more parameters may indicate the resources associated with a CLI reference resource, a position of a CLI reference resource, a duration between the CLI reference resource and a CLI reporting resource, etc. For example, a UE may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI reference resource may indicate to the UE a point at which the UE is to cease CLI measurements, and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE may transmit the CLI report. As such, the UE may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE may refrain from measuring and start to generate a CLI report. The UE may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource. The UE may transmit, to the base station, the CLI report at an end of the interval duration.
Particular aspects of the subject matter described herein may be implemented to realize one or more advantages. The described techniques may support improvements in CLI measurement and reporting by decreasing latency, improving flexibility, and improving reliability among other advantages. As such, supported techniques may include improved network operations and, in some examples, may promote network efficiencies, among other benefits.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are then described with respect to CLI reporting configurations and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for CLI measurement and reporting.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the "device" may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term "carrier" may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a  bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be  divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared  to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining  the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
UE 115 may be configured with one or more parameters associated with measuring and reporting CLI. In some cases, the UE 115 may be configured to measure L1 CLI metrics and transmit an L1 CLI report. For example, a UE 115 may receive and/or identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE 115. The CLI reference resource may indicate to the UE 115 a point at which the UE 115 is to cease CLI measurements and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE 115 may transmit the CLI report. As such, the UE 115 may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE 115 may refrain from measuring and start to generate a CLI report. The UE 115 may start to generate the CLI report at any point during the interval duration. The UE 115 may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI reference resource. The UE 115 may transmit, to the base station 105, the CLI report at an end of the interval duration.
FIGs. 2A and 2B illustrate example  wireless communications systems  200 and 201, respectively, that support techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. In some examples, the  wireless communications systems  200 and 201 may implement aspects of the wireless communications system 100. The  wireless communications systems  200 and 201 may each include multiple UEs 115 and one or more base stations 105, which may be examples of corresponding devices described herein. The wireless communications system 200, as shown in FIG. 2A, may illustrate implementations of the present disclosure in examples in which nearby UEs 115 communicate with different base stations 105. The wireless communications system 201, as  shown in FIG. 2B, may illustrate implementations of the present disclosure in examples in which nearby UEs 115 may communicate with the same base station 105. In both FIG. 2A and FIG. 2B, a base station 105 and one or more UEs 115 may each be configured to support L1 CLI measurement and reporting.
For example, a first UE 115, such as a UE 115-a (as shown in the wireless communications system 200) or a UE 115-c (as shown in the wireless communications system 201) , may experience CLI 210 (e.g., CLI 210-a, or CLI 210-b, respectively) from a second UE 115, such as a UE 115-b (which may be nearby or proximate to the UE 115-a) or a UE 115-d (which may be nearby or proximate to the UE 115-c) , in cases in which the network (e.g., a base station 105) has configured different TDD uplink and downlink slot formats for the first UE 115 and the second UE 115. For instance, as shown in the wireless communications system 200, the UE 115-a may communicate with a base station 105-a over a communication link 205-a within a geographic area 110-a and the base station 105-a may configure a first slot format at the UE 115-a. Likewise, the UE 115-b may communicate with a base station 105-b over a communication link 205-b within a geographic area 110-b and the base station 105-b may configure a second slot format at the UE 115-b.
Similarly, as shown in the wireless communications system 201, the UE 115-c may communicate with a base station 105-c over a communication link 205-c within a geographic coverage area 110-c and the base station 105-c may configure a first slot format at the UE 115-c. Likewise, the UE 115-d may communicate with the base station 105-c over a communication link 205-d within the geographic coverage area 110-c and the base station 105-c may configure a second slot format at the UE 115-d. In some cases, the base station 105-c may have a full-duplex capability or functionality. In some aspects, the configured slot formats may include one or more uplink symbols 215, one or more downlink symbols 220, or one or more flexible symbols, or any combination thereof, such that the UEs 115 may communicate with their respective base stations 105 via either uplink signaling or downlink signaling according to their respectively configured slot formats.
In some cases, the first slot format may be different than the second slot format such that, when aligned in the time-domain, the location of uplink symbols 215 or downlink symbols 220 in the first slot and the location of uplink symbols 215 or downlink symbols 220 in the second slot format may be different (e.g., non-overlapping) . For example, at a time- domain location, the first slot format configured at the UE 115-a or the UE 115-c may include one or more downlink symbols 220 (e.g., downlink symbols 220-a, and 220-b, respectively) and the second slot format configured at UE 115-b or UE 115-d may include one or more uplink symbols 215 (e.g., uplink symbols 215-a, and 215-b, respectively) . As such, at the time-domain location, the UE 115-b or the UE 115-d may transmit signaling to the base station 105-b or to the base station 105-c, respectively, via communication links 205-b and 205-d, respectively. At or near the same time-domain location, UE 115-a or UE 115-c may receive signaling from the base station 105-a or from the base station 105-c, respectively via communication links 205-a and 205-c, respectively. In some cases, one or more transmissions by UE 115-b while UE 115-a is receiving may generate CLI 210-a at UE 115-a, which may decrease the likelihood of UE 115-a to successfully receive downlink signaling from the base station 105-a. Similarly, one or more transmissions by UE 115-d while UE 115-c is receiving may generate CLI 210-b at UE 115-c, which may lower the likelihood of UE 115-c to successfully receive signaling from the base station 105-c. In other words, CLI 210 may arise at UE 115-a or UE 115-c from one or more uplink transmissions from UE 115-b or UE 115-d, respectively, during a downlink-designated symbol at UE 115-a or UE 115-c. For example, UE 115-a or UE 115-c may experience interference from UE 115-b or the UE 115-d as CLI 210-a or CLI 210-b, respectively. As such, UE 115-b and UE 115-d may be referred to as aggressor UEs 115 and UE 115-a and UE 115-c may be referred to as victim UEs. CLI 210-a may be referred to as inter-cell CLI 210, and CLI 210-b may be referred to as intra-cell CLI 210.
To account for such CLI 210 at a first UE 115 (e.g., either or both of UE 115-aand UE 115-c) , the base station 105 serving the first UE 115 may configure the first UE 115 to measure CLI 210 from an aggressing second UE 115 (e.g., either or both of the UE 115-b and the UE 115-d) . As such, the second UE 115 may be unaware that the first UE 115 is measuring uplink transmissions of the second UE 115 and may accordingly refrain from transmitting signaling (such as a reference signal) to the first UE 115 that is dedicated for CLI 210 measurement at the first UE 115. In some cases, the base station 105 serving the first UE 115 may configure measurement of CLI 210 at the first UE 115 as an L3 measurement, which may be similar to radio resource measurement (RRM) for mobility in a multi-cell scenario. For example, base station 105-a may configure UE 115-a with a CLI measurement resource (which may be configured as a periodic resource via radio resource control (RRC)  signaling) over which UE 115-b may transmit a sounding reference signal (SRS) or other uplink transmissions such as physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , and a random access channel (RACH) preamble to base station 105-b. In such examples, UE 115-a may measure a reference signal received power (RSRP) based on the SRS or the received signal strength indicator (RSSI) that corresponds to the uplink transmissions from the UE 115-b over the periodic CLI measurement resource. Although referred to as an interference, base station 105-a may indicate the CLI measurement resource as an indication of an uplink transmission from UE 115-b that may generate CLI 210-a at the UE 115-a. Whether UE 115-a experiences CLI 210 may be based on whether UE 115-a receives downlink signaling from the base station 105-a in resources that overlap with the uplink transmission from UE 115-b. Base station 105-c may configure a similar CLI measurement resource at UE 115-c.
Such a configuration of a CLI measurement resource over which UE 115-a or UE 115-c may measure the CLI 210 may be suitable for estimating a long-term average of the CLI 210 from an uplink transmission of an aggressor UE 115. For example, based on using an L3 measurement of the CLI 210, UE 115-a may determine a long-term view of the CLI 210-a condition at UE 115-a. Similarly, UE 115-c may determine a long-term view of the CLI 210-b condition at UE 115-c. In some cases, however, such a configuration of a CLI measurement resource over which to measure a long-term average of the CLI 210 at UE 115-a or UE 115-c may be sub-optimal. For instance, in cases in which dynamic TDD configuration (e.g., dynamic slot format configuration) is enabled for the UEs 115, an L3 measurement resource of the CLI 210 at UE 115-a and UE 115-c may be unable to stay current with the actual symbols over which UE 115-b or UE 115-d may transmit uplink signaling and over which UE 115-a or UE 115-c may receive downlink signaling.
In some examples, UE 115-a or UE 115-c may use a L1 (e.g., physical layer, higher layer) measurement to measure the CLI 210 and may use L1 reporting of a CLI measurement report. In some cases, a different layer may be used. To facilitate the L1 CLI measurements and report, the UE 115 may be configured, such as by a base station 105, with report settings and resource settings that may indicate one or more parameters associated with L1 measurement and reporting. For example, a UE 115 may be configured with report, where in some cases, report settings may be configured for a UE 115 which is associated with a single downlink bandwidth part (BWP) . The report setting may include information (e.g.,  parameters) for the UE 115 to measure and report CLI 210. In some cases, one of the parameters may include report quality. In some cases, the report setting may indicate that the CLI report is aperiodic, periodic, or semi-persistent. As such, the CLI measurement resource may coincide with the CLI report type. For example, an L1 CLI measurement resource may be configured as periodic (e.g., via RRC configuration) , semi-persistently scheduled (e.g., via RRC configuration with DCI activation) , or as aperiodic (e.g., triggered by a one-time DCI) . Additionally or alternatively, the UE 115 may be configured with resource settings, where one or more resource set types may be configured by a single report setting. In some cases, a resource set type may include a non-zero-power (NZP) based resource, or a zero-power (ZP) based resource, or both. A resource configuration indicated by the resource setting may indicate the time and/or frequency resources where the measurement resource (e.g., CLI resource) may be received by the UE 115. In some cases, the resource configuration may indicate time domain periodicity (e.g., how frequently a CLI resource may occur) and/or offset for the CLI resource.
To enable a reliable CLI measurement and reporting scheme (e.g., for L1 CLI measurement and reporting) , one or more timeline parameters may be configured for the UE 115 to determine when to transmit the CLI report. In some cases, the one or more timeline parameters may indicate the resources associated with a CLI reference resource, a position of a CLI reference resource, a duration between the CLI reference resource and a CLI reporting resource, a duration between a physical downlink control channel (PDCCH) and a PUSCH, a duration between a CLI resource and a PUSCH, etc. For example, a UE 115 may identify a configuration for measuring and reporting CLI, where the configuration may indicate an interval duration between a CLI reference resource and a CLI report transmission by the UE 115. In some cases, the UE 115 may have received the configuration from a base station 105. The CLI reference resource may indicate to the UE 115 a point at which the UE 115 is to cease CLI measurements, and indicate the start of the interval duration. In some cases, at the end of the interval duration, the UE 115 may transmit the CLI report. As such, the UE 115 may measure CLI resources up to the occurrence of the CLI reference resource, at which point, the UE 115 may refrain from measuring and start to generate a CLI report at some point during the interval duration. The UE 115 may generate the CLI report in accordance with the configuration and may include CLI measurements made prior to or during the CLI  reference resource. The UE 115 may transmit, to the base station 105, the CLI report at an end of the interval duration.
FIG. 3 illustrates an example of a CLI reporting configuration 300 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The CLI reporting configuration 300 may be implemented by a base station and a UE, which may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2. In some cases, a base station may configure the CLI reporting configuration 300 which may be utilized by a UE to perform a CLI measurement and reporting procedure. Additionally or alternatively, other wireless devices, such as a UE, may configure the CLI reporting configuration 300, and other devices, such as a base station, may utilize the CLI reporting configuration 300.
To enable reliable CLI measurement and reporting, a UE may receive (e.g., from a base station, or other network device) , identify, and/or perform a CLI reporting configuration 300. The CLI reporting configuration 300 may include at least one CLI resource 305 that the UE may use to measure CLI from one or more aggressor UEs. The CLI reporting configuration 300 may include a CLI reference resource 310, a CLI report 320, and a reference interval 315 (e.g., interval duration) . The CLI reference resource 310 may be configured to define an anchor (e.g., baseline, starting point) associated with the reference interval 315. In some cases, the UE may receive the time and/or frequency location of the CLI reference resource 310 prior to the occurrence of the CLI reference resource 310. For example, the UE may receive or be pre-configured with a configuration associated with CLI measurement and reporting. In some cases, the configuration may include an indication of the location (e.g., time and/or frequency location) of one or more CLI resources 305, an indication of the location of one or more CLI reference resources 310, an indication of one or more reference intervals 315 associated with the one or more CLI reference resources 310. In some cases, the UE may receive the configuration in one message, or multiple different messages from a base station or some other network device. In some cases, the UE may dynamically identify the occurrence of the CLI reference resource 310 without prior knowledge of the location of the CLI reference resource 310 and the UE may perform the CLI reporting procedure based on dynamically identifying the CLI reference resource 310, where the duration reference interval 315 may be pre-configured, or may be signaled to the UE (such as in a periodic or semi-persistent configuration message) .
As such, a UE may be configured with one or more CLI resources 305 for the UE to measure CLI metrics (e.g., RSRP, RSSI) , where the CLI measurements may be fast (e.g., instantaneous, near instantaneous) measurements due to the measurements being L1 measurements. Upon identifying the occurrence of a CLI reference resource 310, the UE may refrain from continuing to measure CLI resources 305, even if a CLI resource 305 is allocated after the CLI reference resource 310. The CLI reference resource 310 may coincide (e.g., fully or partially overlap) with a CLI resource 305. In such cases, the UE may be configured to refrain from measuring this CLI resource 305 that overlaps with the CLI reference resource 310. Alternatively, the UE may be configured to measure this CLI resource 305 that overlaps with the CLI reference resource 310, and to refrain from measuring any CLI resources 305 after the CLI reference resource 310.
The CLI reference resource 310 may be configured as a set of time and/or frequency resources. For example, in the frequency domain the CLI reference resource 310 may be defined by a group of downlink physical resource blocks. In some cases, the group of downlink physical resource blocks may correspond to the frequency band to which the derived CLI measurements relate. Such that the frequency band the UE measures the CLI measurements in may be the same frequency band in which the CLI reference resource 310 is located. In the time domain, the CLI reference resource 310 may be defined one or more downlink time resources (e.g., slots, symbols, TTIs) . For example, the CLI reference resource 310 may be defined as a single downlink slot.
Upon identifying the occurrence of the CLI reference resource, the UE may identify that the reference interval 315 has started, and that the UE has the remainder of the reference interval 315 to generate a CLI report. The expiry of the reference interval 315 may serve as a trigger for the UE to transmit the CLI report. In some cases, the reference interval 315 may be defined in relation to a quantity of time units, such as a number of slots (e.g., n_ref slots) , subframes, TTIs, etc. In some cases, the reference interval may be defined in terms of a duration of time, such as a number of milliseconds (e.g., n_ref ms) , seconds, etc.
In some cases, the length of the reference interval 315 may be based on the report type of the CLI report, or based on the number of CLI resources 305 the UE is configured to measure prior to the CLI reference resource 310. The duration of the reference interval 315 may be determined such that the CLI reference resource 310 and/or the CLI report 320 is  located in a valid downlink slot. As such, if the UE is configured to measure a single CLI resource 305 to generate a periodic or semi-persistent CLI report 320, the reference interval 315 duration may be smaller than if the UE is configured to measure multiple CLI resources 305. In some cases, the additional time allocated for the multiple CLI resources 305 may be used by the UE to generate a more complex and/or larger CLI report 320. For example, a UE that is configured to measure a single CLI resource 305 may be configured with a reference interval 315 of 4 ms, and a UE that is configured to measure multiple CLI resources 305 may be configured with a reference interval 315 of 5 ms. If the UE is configured to measure and report CLI aperiodically, the reference interval 315 may be based on a parameter (e.g., Z’) which may correspond to the symbol number indicated in a higher layer delay requirement, or may be pre-defined. In some cases, the reference interval 315 defined for an aperiodic CLI report may be the smallest value greater than or equal to 
Figure PCTCN2020110286-appb-000001
where 
Figure PCTCN2020110286-appb-000002
may refer to the number of symbols that are configured to fit into a slot.
In some cases, if the UE is not configured with a valid downlink slot for the CLI reference resource 310 that corresponds to a CLI report setting (e.g., in a serving cell) , CLI reporting may be omitted (e.g., for that serving cell) in corresponding uplink slot. For example, if the UE is not configured with a downlink slot that fits within a configured CLI reporting configuration, then the UE may not transmit a CLI report 320. In some implementations, a CLI report configuration may be reconfigured (via CLI report settings, CLI resource settings) , or one or more other communication parameters may change and impact the CLI report configuration. In such cases, after a CLI report 320 is reconfigured, after a serving cell activation, after a BWP change, or after activation of semi-persistent CLI report procedure, or a combination thereof the UE may transmit a CLI report 320 after receiving at least one CLI resource transmission occasion, where the CLI resource transmission occasions may occur no later than CLI reference resource 310. If the CLI resource transmission occasion occurs later than the CLI reference resource 310, the UE may refrain from transmitting (e.g., drop) the CLI report 320.
In some cases, the CLI resources 305 may be non-zero power (NZP) CLI resources 305, or zero-power (ZP) CLI resources 305. The UE may typically be configured with NZP CLI resources 305 if the UE is experiencing intra-cell CLI, as described with reference to FIG. 2B, and the UE may typically be configured with ZP CLI resources 305 if the UE is experiencing inter-cell CLI, as described with reference to FIG. 2A. In some case,  the UE may experience both intra-cell and inter-cell CLI. The UE may be configured to assume that a ZP CLI resource 305 and an NZP CLI resource 305 will not overlap.
FIG. 4 illustrates an example of a CLI reporting configuration 400 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The CLI reporting configuration 400 may be implemented by a base station and a UE, which may be examples of a base station 105 and a UE 115 as described with reference to FIGs. 1 and 2. In some cases, a base station may configure the CLI reporting configuration 400 which may be utilized by a UE to perform a CLI measurement and reporting procedure. Additionally or alternatively, other wireless devices, such as a UE, may configure the CLI reporting configuration 400, and other devices, such as a base station, may utilize the CLI reporting configuration 400.
Additionally or alternatively to being configured with a CLI reference resource, a UE may be configured with one or more other CLI timeline parameters. In some cases, the parameters that are configured and/or the parameters the UE considers may be based on the report type (e.g., periodic, semi-persistent, aperiodic) of the CLI report. For example, if the UE is configured with periodic or semi-persistent CLI reporting, the UE may use the CLI reference resource and reference interval to determine when to stop measuring CLI and to transmit the CLI report. In some cases, if the UE receives an indication for the UE to transmit an aperiodic CLI report, the UE may use the CLI reference resource, the reference interval, Z, or Z’, or a combination thereof. In some cases, if the UE receives an indication to transmit an aperiodic CLI report, the UE may use only Z and Z’ to measure and transmit CLI. In some cases, the indication to transmit an aperiodic CLI report may be a downlink control channel 405. For example, the UE may receive a downlink control channel 405, such as a PDCCH, that may trigger the UE to measure and report CLI, where the UE may report the CLI measurement in an uplink shared channel 415, such as a PUSCH. In some cases, the downlink control channel 405 may indicate the location of one or more CLI resources 410. In some cases, the CLI resource 410 depicted in FIG. 4 may coincide with a CLI reference resource. In such cases, or some other cases, the one or more other CLI timeline parameters may include Z and Z’ (this Z’ may be different from the Z’ as described with reference to FIG. 3) . Z may refer to a duration of time or number of time resources between the last symbol of the downlink control channel 405 (e.g., PDCCH) that triggers the aperiodic CLI report (e.g., or some other CLI report) and the first symbol of the uplink shared channel 415  (e.g., PUSCH) which carriers the CLI report (e.g., aperiodic CLI report) . The time duration may be a minimum OFDM symbol number gap. Z’ may refer to a duration of time or number of time resources between the last symbol of the CLI resource (e.g., aperiodic CLI resource) the UE may use to calculate the CLI report and the first symbol of the uplink shared channel 415 (e.g., PUSCH) . The time duration may be a minimum OFDM symbol number gap.
The values of Z and Z’ may be based on the reporting quantity (e.g., the number of CLI reports the UE is configured to transmit) . The values of Z and Z’ may be preconfigured, or dynamically or semi-persistently indicated. For example, the UE may receive an explicit indication of Z and/or Z’, such that the UE may receive the value of Z and/or Z’ such as in the downlink control channel 405, or some other message. In another example, the UE may receive an implicit indication of Z and/or Z’. In some cases, the implicit index may be an index. The UE may be configured with one or more lookup tables, where the UE may determine the values of Z and/or Z’ based on the index and the one or more look tables. In some cases, the UE may independently determine the value of Z and/or Z’ based on the look tables and the parameters associated with the CLI measurement and reporting procedure.
In some implementations, the UE may be configured with multiple lookup tables, where each lookup table corresponds a different configuration and each lookup table includes one or more sets of values for Z and Z’, where each set of values is associated with an index. For example, the UE may be configured with multiple different look tables, where each lookup table is associated with a different CLI computation delay requirement (or channel state information (CSI) computation delay requirement) . The computation delay requirements may be based on one or more CLI resource configurations. For example, the values of Z and Z’ may be based on the CLI resource 410 being a wideband resource and subband resource. Additionally or alternatively, the values of Z and Z’ may be based on a single CLI resource 410 being configured for a CLI report or multiple CLI resources being configured for a CLI report.
In a first case with a wideband and single resource configuration, if a single CLI report is triggered (by a PDCCH) , without multiplexing with either an uplink shared channel or feedback information (e.g., HARQ-ACK) and when all of the CPUs of the UE are unoccupied, the values of Z and Z’ may be determined in the lookup table associated with  computation delay requirement 1. In a second case with a wideband and single resource configuration and/or a subband and single resource configuration, the values of Z and Z’ may be determined by Z 1 and Z 1’ in the lookup table associated with computation delay requirement 2. In a third case with a wideband and multiple resource configuration and/or a subband and multiple CLI resource configuration, the values of Z and Z’ may be determined by Z 2 and Z 2’ in the lookup table associated with computation delay requirement 2. In some cases, at least two lookup tables may be configured for computation delay requirement 2, where one is associated with Z 1 and Z 1’ and the other lookup table is associated with Z 2 and Z 2’. In some case, the values of Z and Z’ may generally be the lowest in the lookup table used in the first case, and may be the highest in the lookup table used in the third cases, comparatively. In some implementations, the value of Z may be updated one or more times. In such cases, the final value of Z may be the maximum value across the original or updated values.
As described with reference to FIGs. 2A and 2B, a UE may be configured with ZP-based CLI resources for inter-cell CLI measurements based on RSSI measurements, for example and may be configured with NZP-based CLI resources for intra-cell CLI measurements based on RSRP detection, for example. In some cases, the RSSI computation may be more simple than an RSRP computation. As such, the timing interval (e.g., minimum timing interval) for CLI RSSI measurements may be less than the timing interval (e.g., minimum timing interval) for CLI RSRP measurements. As such, the timing interval associated with a ZP CLI resource (e.g., the duration of the CLI resource) may be less than or equal to the timing interval associated with the NZP CLI resource.
FIG. 5 illustrates an example of a process flow 500 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The process flow 500 may illustrate an example CLI measurement and reporting scheme. For example, UE 115-e may perform measure and report, to base station 105-d, CLI caused by another UE 115. Base station 105-d and UE 115-e may be examples of the corresponding wireless devices described with reference to FIGs. 1 through 4. In some cases, instead of UE 115-e implementing the CLI measurement and reporting procedure, a different type of wireless device (e.g., a base station 105) may perform CLI related measurements. Alternative examples of the following may be implemented, where some steps are performed in a  different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 505, base station 105-d may determine a configuration for at least UE 115-e to measure and report CLI.
At 510, UE 115-e may receive, from base station 105-d (or some other network device) , a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE.
In some cases, UE 115-e may identify a location of the CLI reference resource, and refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource. For example, UE 115-e may measure CLI based on receiving CLI resources and upon identifying the occurrence of the CLI reference resource, UE 115-e may refrain from measuring CLI because the interval duration started at the beginning or at the end of the CLI reference resource. The CLI reference resource may include a downlink slot (or any number of downlink slots, symbols TTIs, seconds, milliseconds, etc. ) . In some implementations, the CLI reference resource includes a set of downlink physical resource blocks, where the set of downlink physical resource blocks may be associated with a frequency range of the CLI measurements.
UE 115-e may identify the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report. UE 115-e may identify the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report. In some cases, the interval duration is based on a number of CLI resources UE 115-e is configured to measure. In some cases, the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report. The interval duration may be based on UE 115-e experiencing and measuring intra-cell crosslink interference. The interval duration may be based on UE 115-e experiencing and measuring inter-cell CLI.
In some cases, UE 115-e may receive, such as from base station 105-d, a downlink control channel (e.g., PDCCH) that triggers UE 115-e to generate the CLI report. The downlink control channel may trigger UE 115-e to transmit the CLI report in an uplink shared channel (e.g., PUSCH) . UE 115-d may identify from the configuration, a first number of symbols (e.g., Z as described with reference to FIG. 4) defining a first minimum gap  between a last symbol of the downlink control channel and a first symbol of the uplink shared channel, and UE 115-e may identify, from the configuration, a second number of symbols (e.g., Z’ as described with reference to FIG. 4) defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel. In some cases, UE 115-e may receive, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. UE 115-e may select a table for identification of the values of the first number of symbols and of the second number of symbols based on the index. UE 115-e may select the table based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both. In some implementations, values of the first number of symbols and the second number of symbols are based at least in part on a quantity of CLI reports the downlink control channel triggers. In some implementations, values of the first number of symbols and the second number of symbols are based at least in part on the CLI resource being a wideband resource, a subband resource, or both.
At 515, UE 115-e may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. In some cases, UE 115-e may generate the CLI report during the interval duration to transmit the CLI report at the end of the interval duration.
At 520, UE 115-e may transmit, to base station 105-d, the CLI report at an end of the interval duration. In some implementations, UE 115-e may transmit the CLI via and L1 report. In some cases, UE 115-e may determine that there is not a CLI reference resource corresponding to the CLI report, and UE 115-e may refrain from transmitting the CLI report based on the determination.
FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a  transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
The communications manager 615 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 605 to more efficiently and reliably determine and report CLI that occurs between device 605 and another device. For example, a device 605 may be configured to measure and report CLI via layer 1, where the device 605 may be further configured with one or more time related parameters for reporting the CLI to provide the device 605 with a reliable reporting duration.
Based on implementing the CLI measurement and reporting techniques as described herein, a processor of a UE 115 (e.g., controlling the receiver 610, the transmitter 620, or the transceiver 920 as described with reference to FIG. 9) may increase reliability and efficiency in the measurement and reporting of CLI.
FIG. 7 shows a block diagram 700 of a device 705 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 735. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a CLI configuration manager 720, a CLI report manager 725, and a CLI report transmitter 730. The communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The CLI configuration manager 720 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI report manager 725 may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. The CLI report transmitter 730 may transmit, to a base station, the CLI report at an end of the interval duration.
The transmitter 735 may transmit signals generated by other components of the device 705. In some examples, the transmitter 735 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 735 may be an example of aspects of the transceiver 920 described with reference to FIG. 9. The transmitter 735 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a CLI configuration manager 810, a CLI report manager 815, a CLI report transmitter 820, a reference resource identifier 825, a CLI measurement manager 830, and a CLI report trigger receiver 835. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The CLI configuration manager 810 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI report manager 815 may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. The CLI report transmitter 820 may transmit, to a base station, the CLI report at an end of the interval duration. In some examples, the CLI report transmitter 820 may transmit, to the base station, the CLI report via a layer 1 report.
The reference resource identifier 825 may identify a location of the CLI reference resource. The CLI measurement manager 830 may refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource.
The CLI report trigger receiver 835 may receive a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel. In some examples, the CLI configuration manager 810 may identify, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel. In some examples, the CLI configuration manager 810 may identify, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
In some examples, the CLI configuration manager 810 may receive, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. In some examples, the CLI configuration manager 810 may select a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, where the table is selected based on a quantity of CLI reports the downlink control channel triggers or on the CLI resource being a wideband resource, a subband resource, or both.
In some examples, values of the first number of symbols and the second number of symbols are based on a quantity of CLI reports the downlink control channel triggers. In some examples, values of the first number of symbols and the second number of symbols are based on the CLI resource being a wideband resource, a subband resource, or both.
In some cases, the CLI reference resource includes a downlink slot. In some cases, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
In some examples, the CLI configuration manager 810 may identify the interval duration from the configuration as a number of slots between the CLI reference resource and the CLI report. In some examples, the CLI configuration manager 810 may identify the interval duration from the configuration as a duration of time between the CLI reference resource and the CLI report.
In some examples, the CLI configuration manager 810 may determine that there is not a CLI reference resource corresponding to the CLI report. In some examples, the CLI report manager 815 may refrain from transmitting the CLI report based on the determination.
In some cases, the interval duration is based on a number of CLI resources the UE is configured to measure. In some cases, the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report. In some cases, the interval duration is based on the UE experiencing and measuring intra-cell crosslink interference. In some cases, the interval duration is based on the UE experiencing and measuring inter-cell crosslink interference.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource, and transmit, to a base station, the CLI report at an end of the interval duration.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as 
Figure PCTCN2020110286-appb-000003
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact  with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include random-access memory (RAM) and read-only memory (ROM) . The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting techniques for CLI measurement and reporting) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but  may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1020. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration. The communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.
The communications manager 1015, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1015, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1015, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1015, or its sub-components, may be a separate and  distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1015, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1020 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1135. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for CLI measurement and reporting, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may be an example of aspects of the communications manager 1015 as described herein. The communications manager 1115 may include a CLI configuration component 1120, a CLI configuration transmitter 1125, and a CLI report receiver 1130. The communications manager 1115 may be an example of aspects of the communications manager 1310 described herein.
The CLI configuration component 1120 may determine a configuration for a UE to measure and report CLI. The CLI configuration transmitter 1125 may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI  reference resource and a CLI report transmission by the UE. The CLI report receiver 1130 may receive, from the UE, the CLI report at an end of the interval duration.
The transmitter 1135 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1135 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1135 may be an example of aspects of the transceiver 1320 described with reference to FIG. 13. The transmitter 1135 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a communications manager 1205 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The communications manager 1205 may be an example of aspects of a communications manager 1015, a communications manager 1115, or a communications manager 1310 described herein. The communications manager 1205 may include a CLI configuration component 1210, a CLI configuration transmitter 1215, a CLI report receiver 1220, and a CLI trigger component 1225. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The CLI configuration component 1210 may determine a configuration for a UE to measure and report CLI. The CLI configuration transmitter 1215 may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The CLI report receiver 1220 may receive, from the UE, the CLI report at an end of the interval duration. In some examples, the CLI report receiver 1220 may receive, from the UE, the CLI report via a layer 1 report.
The CLI trigger component 1225 may transmit a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel.
In some examples, the CLI configuration component 1210 may determine, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel. In some examples, the CLI configuration component 1210 may determine, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a CLI resource and the first symbol of the uplink shared channel.
In some examples, the CLI configuration transmitter 1215 may transmit, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified. In some examples, values of the first number of symbols and the second number of symbols are based on a quantity of CLI reports the downlink control channel triggers. In some examples, values of the first number of symbols and the second number of symbols are based on the CLI resource being a wideband resource, a subband resource, or both.
In some cases, the CLI reference resource includes a downlink slot. In some cases, the CLI reference resource includes a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the CLI measurements.
In some examples, the CLI configuration component 1210 may determine the interval duration for the configuration as a number of slots between the CLI reference resource and the CLI report. In some examples, the CLI configuration component 1210 may determine the interval duration for the configuration as a duration of time between the CLI reference resource and the CLI report.
In some cases, the interval duration is based on a number of CLI resources the UE is configured to measure. In some cases, the interval duration is based on the CLI report being a periodic report, a semi-persistent report, or an aperiodic report. In some cases, the interval duration is based on the UE experiencing and measuring intra-cell crosslink interference. In some cases, the interval duration is based on the UE experiencing and measuring inter-cell crosslink interference.
FIG. 13 shows a diagram of a system 1300 including a device 1305 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (e.g., bus 1350) .
The communications manager 1310 may determine a configuration for a UE to measure and report CLI, transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE, and receive, from the UE, the CLI report at an end of the interval duration.
The network communications manager 1315 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1325. However, in some cases the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM, ROM, or a combination thereof. The memory 1330 may store computer-readable code 1335 including instructions that, when executed by a processor (e.g., the processor 1340) cause the device to perform various functions described herein. In some cases, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1340 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1340 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1330) to cause the device 1305 to  perform various functions (e.g., functions or tasks supporting techniques for CLI measurement and reporting) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 14 shows a flowchart illustrating a method 1400 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a CLI configuration manager as described with reference to FIGs. 6 through 9.
At 1410, the UE may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a CLI report manager as described with reference to FIGs. 6 through 9.
At 1415, the UE may transmit, to a base station, the CLI report at an end of the interval duration. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a CLI report transmitter as described with reference to FIGs. 6 through 9.
FIG. 15 shows a flowchart illustrating a method 1500 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may receive, by the UE, a configuration for measuring and reporting CLI, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a CLI configuration manager as described with reference to FIGs. 6 through 9.
At 1510, the UE may identify a location of the CLI reference resource. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reference resource identifier as described with reference to FIGs. 6 through 9.
At 1515, the UE may refrain from measuring for CLI during the interval duration after the identified location of the CLI reference resource. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1515 may be performed by a CLI measurement manager as described with reference to FIGs. 6 through 9.
At 1520, the UE may generate a CLI report in accordance with the configuration, the CLI report including CLI measurements made prior to or during the CLI reference resource. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a CLI report manager as described with reference to FIGs. 6 through 9.
At 1525, the UE may transmit, to a base station, the CLI report at an end of the interval duration. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a CLI report transmitter as described with reference to FIGs. 6 through 9.
FIG. 16 shows a flowchart illustrating a method 1600 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1605, the base station may determine a configuration for a UE to measure and report CLI. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a CLI configuration component as described with reference to FIGs. 10 through 13.
At 1610, the base station may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a CLI configuration transmitter as described with reference to FIGs. 10 through 13.
At 1615, the base station may receive, from the UE, the CLI report at an end of the interval duration. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a CLI report receiver as described with reference to FIGs. 10 through 13.
FIG. 17 shows a flowchart illustrating a method 1700 that supports techniques for CLI measurement and reporting in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1705, the base station may determine a configuration for a UE to measure and report CLI. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a CLI configuration component as described with reference to FIGs. 10 through 13.
At 1710, the base station may transmit the configuration to the UE, the configuration indicating an interval duration between a CLI reference resource and a CLI report transmission by the UE. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a CLI configuration transmitter as described with reference to FIGs. 10 through 13.
At 1715, the base station may transmit a downlink control channel that triggers the UE to generate the CLI report, the downlink control channel triggering the UE to transmit the CLI report in an uplink shared channel. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a CLI trigger component as described with reference to FIGs. 10 through 13.
At 1720, the base station may receive, from the UE, the CLI report at an end of the interval duration. The operations of 1720 may be performed according to the methods  described herein. In some examples, aspects of the operations of 1720 may be performed by a CLI report receiver as described with reference to FIGs. 10 through 13.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software  executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, "or" as used in a list of items (e.g., a list of items prefaced by a phrase such as "at least one of" or "one or more of" ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase "based on" shall not be construed as a reference to a closed set of conditions. For example, an example  step that is described as "based on condition A" may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase "based on" shall be construed in the same manner as the phrase "based at least in part on. "
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term "example" used herein means "serving as an example, instance, or illustration, " and not "preferred" or "advantageous over other examples. " The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (70)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, by the UE, a configuration for measuring and reporting cross-link interference, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE;
    generating a cross-link interference report in accordance with the configuration, the cross-link interference report including cross-link interference measurements made prior to or during the cross-link interference reference resource; and
    transmitting, to a base station, the cross-link interference report at an end of the interval duration.
  2. The method of claim 1, further comprising:
    identifying a location of the cross-link interference reference resource; and
    refraining from measuring for cross-link interference during the interval duration after the identified location of the cross-link interference reference resource.
  3. The method of claim 1, further comprising:
    receiving a downlink control channel that triggers the UE to generate the cross-link interference report, the downlink control channel triggering the UE to transmit the cross-link interference report in an uplink shared channel.
  4. The method of claim 3, further comprising:
    identifying, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel; and
    identifying, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a cross-link interference resource and the first symbol of the uplink shared channel.
  5. The method of claim 4, further comprising:
    receiving, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified.
  6. The method of claim 5, further comprising:
    selecting a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, wherein the table is selected based at least in part on a quantity of cross-link interference reports the downlink control channel triggers or on the cross-link interference resource being a wideband resource, a subband resource, or both.
  7. The method of claim 4, wherein:
    values of the first number of symbols and the second number of symbols are based at least in part on a quantity of cross-link interference reports the downlink control channel triggers.
  8. The method of claim 4, wherein:
    values of the first number of symbols and the second number of symbols are based at least in part on the cross-link interference resource being a wideband resource, a subband resource, or both.
  9. The method of claim 1, wherein the cross-link interference reference resource comprises a downlink slot.
  10. The method of claim 1, wherein the cross-link interference reference resource comprises a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the cross-link interference measurements.
  11. The method of claim 1, further comprising:
    identifying the interval duration from the configuration as a number of slots between the cross-link interference reference resource and the cross-link interference report.
  12. The method of claim 1, further comprising:
    identifying the interval duration from the configuration as a duration of time between the cross-link interference reference resource and the cross-link interference report.
  13. The method of claim 1, wherein the interval duration is based at least in part on a number of cross-link interference resources the UE is configured to measure.
  14. The method of claim 1, wherein the interval duration is based at least in part on the cross-link interference report being a periodic report, a semi-persistent report, or an aperiodic report.
  15. The method of claim 1, further comprising:
    determining that there is not a cross-link interference reference resource corresponding to the cross-link interference report; and
    refraining from transmitting the cross-link interference report based at least in part on the determination.
  16. The method of claim 1, wherein the interval duration is based at least in part on the UE experiencing and measuring intra-cell crosslink interference.
  17. The method of claim 1, wherein the interval duration is based at least in part on the UE experiencing and measuring inter-cell crosslink interference.
  18. The method of claim 1, wherein transmitting the cross-link interference report further comprises:
    transmitting, to the base station, the cross-link interference report via a layer 1 report.
  19. A method for wireless communications at base station, comprising:
    determining a configuration for a user equipment (UE) to measure and report cross-link interference;
    transmitting the configuration to the UE, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE; and
    receiving, from the UE, the cross-link interference report at an end of the interval duration.
  20. The method of claim 19, further comprising:
    transmitting a downlink control channel that triggers the UE to generate the cross-link interference report, the downlink control channel triggering the UE to transmit the cross-link interference report in an uplink shared channel.
  21. The method of claim 20, further comprising:
    determining, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel; and
    determining, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a cross-link interference resource and the first symbol of the uplink shared channel.
  22. The method of claim 21, further comprising:
    transmitting, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified.
  23. The method of claim 21, wherein:
    values of the first number of symbols and the second number of symbols are based at least in part on a quantity of cross-link interference reports the downlink control channel triggers.
  24. The method of claim 21, wherein:
    values of the first number of symbols and the second number of symbols are based at least in part on the cross-link interference resource being a wideband resource, a subband resource, or both.
  25. The method of claim 19, wherein the cross-link interference reference resource comprises a downlink slot.
  26. The method of claim 19, wherein the cross-link interference reference resource comprises a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the cross-link interference measurements.
  27. The method of claim 19, further comprising:
    determining the interval duration for the configuration as a number of slots between the cross-link interference reference resource and the cross-link interference report.
  28. The method of claim 19, further comprising:
    determining the interval duration for the configuration as a duration of time between the cross-link interference reference resource and the cross-link interference report.
  29. The method of claim 19, wherein the interval duration is based at least in part on a number of cross-link interference resources the UE is configured to measure.
  30. The method of claim 19, wherein the interval duration is based at least in part on the cross-link interference report being a periodic report, a semi-persistent report, or an aperiodic report.
  31. The method of claim 19, wherein the interval duration is based at least in part on the UE experiencing and measuring intra-cell crosslink interference.
  32. The method of claim 19, wherein the interval duration is based at least in part on the UE experiencing and measuring inter-cell crosslink interference.
  33. The method of claim 19, wherein receiving the cross-link interference report further comprises:
    receiving, from the UE, the cross-link interference report via a layer 1 report.
  34. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, by the UE, a configuration for measuring and reporting cross-link interference, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE;
    generate a cross-link interference report in accordance with the configuration, the cross-link interference report including cross-link interference  measurements made prior to or during the cross-link interference reference resource; and
    transmit, to a base station, the cross-link interference report at an end of the interval duration.
  35. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a location of the cross-link interference reference resource; and
    refrain from measuring for cross-link interference during the interval duration after the identified location of the cross-link interference reference resource.
  36. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a downlink control channel that triggers the UE to generate the cross-link interference report, the downlink control channel triggering the UE to transmit the cross-link interference report in an uplink shared channel.
  37. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify, from the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel; and
    identify, from the configuration, a second number of symbols defining a second minimum gap between a last symbol of a cross-link interference resource and the first symbol of the uplink shared channel.
  38. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified.
  39. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    select a table for identification of the values of the first number of symbols and of the second number of symbols based on the index, wherein the table is selected based at  least in part on a quantity of cross-link interference reports the downlink control channel triggers or on the cross-link interference resource being a wideband resource, a subband resource, or both.
  40. The apparatus of claim 37, wherein values of the first number of symbols and the second number of symbols are based at least in part on a quantity of cross-link interference reports the downlink control channel triggers.
  41. The apparatus of claim 37, wherein values of the first number of symbols and the second number of symbols are based at least in part on the cross-link interference resource being a wideband resource, a subband resource, or both.
  42. The apparatus of claim 34, wherein the cross-link interference reference resource comprises a downlink slot.
  43. The apparatus of claim 34, wherein the cross-link interference reference resource comprises a set of downlink physical resource blocks, the set of downlink physical resource blocks associated with a frequency range of the cross-link interference measurements.
  44. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify the interval duration from the configuration as a number of slots between the cross-link interference reference resource and the cross-link interference report.
  45. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify the interval duration from the configuration as a duration of time between the cross-link interference reference resource and the cross-link interference report.
  46. The apparatus of claim 34, wherein the interval duration is based at least in part on a number of cross-link interference resources the UE is configured to measure.
  47. The apparatus of claim 34, wherein the interval duration is based at least in part on the cross-link interference report being a periodic report, a semi-persistent report, or an aperiodic report.
  48. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that there is not a cross-link interference reference resource corresponding to the cross-link interference report; and
    refrain from transmitting the cross-link interference report based at least in part on the determination.
  49. The apparatus of claim 34, wherein the interval duration is based at least in part on the UE experiencing and measuring intra-cell crosslink interference.
  50. The apparatus of claim 34, wherein the interval duration is based at least in part on the UE experiencing and measuring inter-cell crosslink interference.
  51. The apparatus of claim 34, wherein the instructions to transmit the cross-link interference report further are executable by the processor to cause the apparatus to:
    transmit, to the base station, the cross-link interference report via a layer 1 report.
  52. An apparatus for wireless communications at base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    determine a configuration for a user equipment (UE) to measure and report cross-link interference;
    transmit the configuration to the UE, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE; and
    receive, from the UE, the cross-link interference report at an end of the interval duration.
  53. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a downlink control channel that triggers the UE to generate the cross-link interference report, the downlink control channel triggering the UE to transmit the cross-link interference report in an uplink shared channel.
  54. The apparatus of claim 53, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine, for the configuration, a first number of symbols defining a first minimum gap between a last symbol of the downlink control channel and a first symbol of the uplink shared channel; and
    determine, for the configuration, a second number of symbols defining a second minimum gap between a last symbol of a cross-link interference resource and the first symbol of the uplink shared channel.
  55. The apparatus of claim 54, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, in the configuration, an index from which values of the first number of symbols and of the second number of symbols are identified.
  56. The apparatus of claim 54, wherein values of the first number of symbols and the second number of symbols are based at least in part on a quantity of cross-link interference reports the downlink control channel triggers.
  57. The apparatus of claim 54, wherein values of the first number of symbols and the second number of symbols are based at least in part on the cross-link interference resource being a wideband resource, a subband resource, or both.
  58. The apparatus of claim 52, wherein the cross-link interference reference resource comprises a downlink slot.
  59. The apparatus of claim 52, wherein the cross-link interference reference resource comprises a set of downlink physical resource blocks, the set of downlink  physical resource blocks associated with a frequency range of the cross-link interference measurements.
  60. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the interval duration for the configuration as a number of slots between the cross-link interference reference resource and the cross-link interference report.
  61. The apparatus of claim 52, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the interval duration for the configuration as a duration of time between the cross-link interference reference resource and the cross-link interference report.
  62. The apparatus of claim 52, wherein the interval duration is based at least in part on a number of cross-link interference resources the UE is configured to measure.
  63. The apparatus of claim 52, wherein the interval duration is based at least in part on the cross-link interference report being a periodic report, a semi-persistent report, or an aperiodic report.
  64. The apparatus of claim 52, wherein the interval duration is based at least in part on the UE experiencing and measuring intra-cell crosslink interference.
  65. The apparatus of claim 52, wherein the interval duration is based at least in part on the UE experiencing and measuring inter-cell crosslink interference.
  66. The apparatus of claim 52, wherein the instructions to receive the cross-link interference report further are executable by the processor to cause the apparatus to:
    receive, from the UE, the cross-link interference report via a layer 1 report.
  67. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, by the UE, a configuration for measuring and reporting cross-link interference, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE;
    means for generating a cross-link interference report in accordance with the configuration, the cross-link interference report including cross-link interference measurements made prior to or during the cross-link interference reference resource; and
    means for transmitting, to a base station, the cross-link interference report at an end of the interval duration.
  68. An apparatus for wireless communications at base station, comprising:
    means for determining a configuration for a user equipment (UE) to measure and report cross-link interference;
    means for transmitting the configuration to the UE, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE; and
    means for receiving, from the UE, the cross-link interference report at an end of the interval duration.
  69. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, by the UE, a configuration for measuring and reporting cross-link interference, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE;
    generate a cross-link interference report in accordance with the configuration, the cross-link interference report including cross-link interference measurements made prior to or during the cross-link interference reference resource; and
    transmit, to a base station, the cross-link interference report at an end of the interval duration.
  70. A non-transitory computer-readable medium storing code for wireless communications at base station, the code comprising instructions executable by a processor to:
    determine a configuration for a user equipment (UE) to measure and report cross-link interference;
    transmit the configuration to the UE, the configuration indicating an interval duration between a cross-link interference reference resource and a cross-link interference report transmission by the UE; and
    receive, from the UE, the cross-link interference report at an end of the interval duration.
PCT/CN2020/110286 2020-08-20 2020-08-20 Techniques for cross-link interference measurement and reporting WO2022036641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110286 WO2022036641A1 (en) 2020-08-20 2020-08-20 Techniques for cross-link interference measurement and reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110286 WO2022036641A1 (en) 2020-08-20 2020-08-20 Techniques for cross-link interference measurement and reporting

Publications (1)

Publication Number Publication Date
WO2022036641A1 true WO2022036641A1 (en) 2022-02-24

Family

ID=80322473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110286 WO2022036641A1 (en) 2020-08-20 2020-08-20 Techniques for cross-link interference measurement and reporting

Country Status (1)

Country Link
WO (1) WO2022036641A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211846A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Cross-link interference reporting on physical uplink channels
WO2023206229A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Configuring cross-link interference (cli) measurement resources or cli measurement windows
WO2024060175A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Timing for cross-link interference reporting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323887A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Interference management based on reference signals in wireless communications
US20180323916A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Method And Apparatus For Cross-Link Interference Measurements In Mobile Communications
CN108933648A (en) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 The processing method and processing device of channel state information, terminal, base station
WO2019032031A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Measurement and report for cross-link interference management based on reference signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323887A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Interference management based on reference signals in wireless communications
US20180323916A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Method And Apparatus For Cross-Link Interference Measurements In Mobile Communications
CN108933648A (en) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 The processing method and processing device of channel state information, terminal, base station
WO2019032031A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Measurement and report for cross-link interference management based on reference signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "CLI measurements configuration and reporting", 3GPP DRAFT; R2-1907399 CLI MEASUREMENTS CONFIGURATION AND REPORTING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051730838 *
NOKIA, NOKIA SHANGHAI BELL: "UE CLI measurement configuration and reporting", 3GPP DRAFT; R2-1906637_UE_CLI_REPORTING_V4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051730097 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211846A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Cross-link interference reporting on physical uplink channels
WO2023206229A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Configuring cross-link interference (cli) measurement resources or cli measurement windows
WO2024060175A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Timing for cross-link interference reporting

Similar Documents

Publication Publication Date Title
EP3776954B1 (en) Transport block repetition handling for downlink and uplink transmissions
WO2021226824A1 (en) Reduced cross-link interference measurements
WO2022036641A1 (en) Techniques for cross-link interference measurement and reporting
WO2022032567A1 (en) Methods for measuring and reporting doppler shift
CN115956352A (en) Techniques for flexible reference signal patterns in wireless communication systems
US11540331B2 (en) Techniques for adapting communication procedures based on device characteristics
US11689950B2 (en) Channel state information reference signal multiplexing with synchronization signal blocks
WO2020263912A1 (en) Wake-up signal assisted link management
WO2021243674A1 (en) Multi-panel power reporting techniques
WO2021026042A1 (en) Power-boosting design for multi-slot shared channels
WO2021203282A1 (en) Slot format for intra-frequency cross link interference measurement
WO2021248457A1 (en) Cross-link interference measurements for cell dormancy
US11832242B2 (en) Sidelink channel state information reporting
WO2022160204A1 (en) Resource allocation for sidelink full duplex communications
EP4324151A1 (en) Sidelink channel access timeline techniques for wireless communications systems
WO2022011583A1 (en) Power boosting for uplink shared channel repetitions
WO2023056616A1 (en) Techniques for uplink control information transmission with small data transmission
WO2023142018A1 (en) Unified transmission configuration indicator type switching
US11617179B2 (en) Indication of a random access transmission beam
US20230254707A1 (en) Techniques for adaptive scheduling in idle mode
US20210345232A1 (en) Physical cell identifier limit configuration
WO2023010504A1 (en) Validating channel state information reference signals
WO2022147712A1 (en) Timing advance acquisition techniques for sidelink
WO2022032617A1 (en) Interference measurements for sidelink communications
WO2023150954A1 (en) Restricted ue assistance for minimization of drive test and quality of experience measurement alignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949852

Country of ref document: EP

Kind code of ref document: A1