WO2022035033A1 - Primer set for detecting severe fever with thrombocytopenia syndrome virus, and diagnostic kit using same - Google Patents

Primer set for detecting severe fever with thrombocytopenia syndrome virus, and diagnostic kit using same Download PDF

Info

Publication number
WO2022035033A1
WO2022035033A1 PCT/KR2021/007243 KR2021007243W WO2022035033A1 WO 2022035033 A1 WO2022035033 A1 WO 2022035033A1 KR 2021007243 W KR2021007243 W KR 2021007243W WO 2022035033 A1 WO2022035033 A1 WO 2022035033A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
seq
primer
sfts
segment
Prior art date
Application number
PCT/KR2021/007243
Other languages
French (fr)
Korean (ko)
Inventor
박기범
김남연
한연수
조용훈
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2022035033A1 publication Critical patent/WO2022035033A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/107RNA dependent DNA polymerase,(i.e. reverse transcriptase)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2561/00Nucleic acid detection characterised by assay method
    • C12Q2561/113Real time assay

Definitions

  • the present invention has been made under project number HG18C0028 with the support of the Ministry of Health and Welfare, the Ministry of Science and ICT, the Ministry of Agriculture, Food and rural Affairs, the Ministry of Trade, Industry and Energy, the Ministry of Public Administration and Security, the Ministry of Environment and the Ministry of Food and Drug Safety, and the research management institution of the above project is (re) Infectious disease research and development project group of ceremonies related to quarantine, the research project name is “Infectious disease research and development project of organizations related to quarantine”, the research project name is “Development and standardization of effective diagnostic methods for pathogens in vectors (mites, mosquitoes) through international joint research”, the lead institution Chonnam National University Industry-Academic Collaboration Group, the research period is 2018.08.06 ⁇ 2020.12.31.
  • the present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome virus transmitted by ticks and a diagnostic kit using the same.
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • SFTS SFTS fever characterized by thrombocytopenia and high fever, and additionally, gastrointestinal failure, leukopenia, and multiple organ failure. It has been confirmed that SFTS has a fatality rate of up to 30% in patients with weakened immunity, such as young children and the elderly. In addition, according to a recently published study, it has been reported that secondary infection occurs when closely exposed to SFTS-infected body fluids or blood even without direct contact with ticks. Therefore, SFTS is a disease requiring attention to infection and prevention.
  • Ticks that cause SFTS include dog tick, mite tick, and Japanese tick, which are known to expand their habitats mainly through wild animals.
  • the aforementioned ticks inhabit all of Korea, China and Japan, and cause many infections and deaths every year.
  • Methods for diagnosing such SFTS include culture method, enzyme-linked immunosorbent assay (ELISA), and indirect fluorescent antibody assay ( IFA).
  • ELISA enzyme-linked immunosorbent assay
  • IFA indirect fluorescent antibody assay
  • Conventional Reverse Transcription Polymerase Chain Reaction (hereinafter referred to as Conventional RT-PCR), Nested Reverse Transcription Polymerase Chain Reaction, and Nested Reverse Transcription Polymerase Chain Reaction are molecular diagnostics. ; Hereinafter, Nested RT-PCR) and Onestep Realtime Reverse Transcription Polymerase Chain Reaction (hereinafter, Onestep Realtime RT-PCR) are preferred.
  • Conventional RT-PCR, Nested RT-PCR, and Onestep Realtime RT-PCR have been developed for rapid diagnosis of SFTS and are being used in diagnostic tests.
  • RT-PCR and real-time RT-PCR have low reliability and sensitivity in complex and small samples such as ticks, and thus have a high false-negative rate. If the amplification product to be subjected to PCR is not clean, other substances as well as the amplification product to be tested due to non-specific binding may be amplified. Secondary PCR is performed by preparing a specific primer again inside it. At this time, the primer used on the outside for the first PCR is called an outer primer, and the primer prepared on the inside for the second PCR is called a nested primer. By performing the PCR twice in this way, more accurate PCR results can be obtained.
  • CDC Centers for Disease Control and Prevention
  • This method has the advantage of effectively detecting the SFTS virus in ticks and contributing to public health based on it, but the sensitivity is low because all PCR amplification products are electrophoresed and the results are judged based on the band intensity. It is low, and the analysis procedure is cumbersome, and the time required is also long.
  • SFTS Thrombocytopenia Syndrome
  • a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; And a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
  • composition for detecting SFTS virus comprising a primer set for detecting SFTS virus.
  • Another object of the present invention is to provide a kit for diagnosing SFTS virus including a primer set for detecting SFTS virus.
  • Another object of the present invention is to provide a method for providing information for SFTS diagnosis.
  • the present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus and a diagnostic kit using the same, and more particularly, the forward primer of SEQ ID NO: 7 and the reverse primer of SEQ ID NO: 8 A first primer set consisting of; And to provide a method for providing information for diagnosing a composition, diagnostic kit, and SFTS infection comprising a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10.
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • An example of the present invention is a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8;
  • a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
  • composition for detecting a severe fever with platelet syndrome virus comprising a.
  • the primer used for gene amplification is a nucleic acid sequence having a short free 3-terminal hydroxyl group, which can form a base pair with a complementary template and refers to a short nucleic acid that functions as a starting point for template strand copying.
  • the primer is capable of initiating DNA synthesis in the presence of a reagent for the polymerization reaction (ie, DNA polymerase or reverse transcriptase) and the four different nucleoside triphosphates in an appropriate buffer solution and temperature.
  • primers are sense and antisense nucleic acids having 7 to 50 nucleotide sequences as primers specific for each marker gene. Primers may incorporate additional features that do not change the basic properties of the primer to serve as the starting point of DNA synthesis.
  • the primer can be chemically synthesized using a phosphoramidite solid support method, or other well-known methods.
  • the sequence of the primers may also be modified using a number of means known in the art. Non-limiting examples of such modifications include methylation, “encapsulation”, substitution of one or more homologues of natural nucleotides, and modifications between nucleotides, such as uncharged linkages such as methyl phosphonates, phosphotriesters, phospho poroamidates, carbamates, etc.) or charged linkages (eg phosphorothioates, phosphorodithioates, etc.).
  • the primer comprises one or more additional covalently linked residues, for example, a protein (eg, a nuclease, a toxin, an antibody, a signal peptide, poly-L-lysine, etc.), an insertion agent (eg, acridine). , psoralen, etc.), chelating agents (eg, metals, radioactive metals, iron, oxidizing metals, etc.), and alkylating agents.
  • a protein eg, a nuclease, a toxin, an antibody, a signal peptide, poly-L-lysine, etc.
  • an insertion agent eg, acridine
  • chelating agents eg, metals, radioactive metals, iron, oxidizing metals, etc.
  • alkylating agents eg, metals, radioactive metals, iron, oxidizing metals, etc.
  • the primer may also be modified with a label
  • the first or second primer set is a group consisting of S segment (S segment, S segment), M segment (Medium segment, M segment) and L segment (Large segment, L segment) of severe fever with thrombocytopenia syndrome virus It may be complementary binding to one or more segments selected from, for example, binding to M segment, but is not limited thereto.
  • Another example of the present invention is a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8;
  • a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
  • kits for diagnosing severe fever with thrombocytopenia syndrome comprising a composition for detecting a virus for severe fever with thrombocytopenia comprising a.
  • Another embodiment of the present invention relates to a method of providing information for diagnosing severe fever with thrombocytopenia, comprising the steps of:
  • the first amplification step may be performed using a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8, but is not limited thereto.
  • the second amplification step may be performed using a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10, but is not limited thereto.
  • the subject may be one or more selected from the group consisting of humans, wild animals, livestock and companion animals, but is not limited thereto.
  • the RNA isolated from the subject may be isolated from the sample obtained from the subject.
  • the sample may be one or more selected from the group consisting of tissue, blood, serum, saliva, urine, semen, and body fluid, but is not limited thereto.
  • RT-PCR reverse transcription-PCR
  • PCR amplification product refers to an amplification product generated after performing the first or second PCR.
  • Nested PCR refers to a method for reducing the amplification of non-specific binding in which a primer is attached to a nucleotide sequence other than a target as a modification of PCR.
  • Conventional PCR requires a primer complementary to the end of the target DNA sequence, and PCR amplification products are amplified according to the cycle.
  • a common problem is that the primer is attached to an inaccurate nucleotide sequence site rather than a target template nucleotide region to create an unwanted strand. This problem appears as the PCR cycle increases.
  • two sets of primers are used in two consecutive PCRs to enhance specific DNA amplification.
  • the first PCR amplification product may include non-specific target amplification.
  • the first PCR amplification product is used as a template for the second PCR.
  • the second PCR uses nested primers attached to the (nested) base sequence located in the first PCR amplification product or increases specificity by 'hemi, semi-nesting' method. Since the second PCR is complementary to the specific nucleotide sequence of the first PCR amplification product, non-specific amplification products are not amplified.
  • Nested PCR is useful for PCR with very rare templates or high background. Nested PCR is more successful in amplifying long DNA than general PCR, but requires more specific target sequence knowledge.
  • real-time PCR refers to the application of a fluorescent material to the PCR technique, and the degree of emission of the fluorescent material is measured in real time along with the amplification of the target gene present in the sample during the reaction. It means a method that can quickly and accurately analyze the presence or absence of amplification of a target gene and its aspect by detecting and quantitatively analyzing it.
  • Such real-time PCR is divided into a method using SYBR Green and a method using a double-labeled probe.
  • the term "SYBR green technique” binds to the amplified DNA in the real-time PCR amplification process to generate a fluorescence signal.
  • the real-time PCR technique using a dual labeled probe is a method using a double-labeled probe labeled with a fluorescent material at the 5' end and a quencher at the 3' end. It can be checked whether the double-labeled probe is annealed with the PCR amplification product of the target gene through the fluorescence signal by the labeled probe, and real-time PCR known in the art such as the Tackman probe method of the target gene is applicable. .
  • the confirmation step is a melting curve temperature of 80 to 90 °C, 80 to 89 °C, 80 to 88 °C, 80 to 87 °C, 80 to 86 °C, 81 to 90 °C, 81 to 89 °C, 81 to 88 °C , 81 to 87 °C, 81 to 86 °C, 82 to 90 °C, 82 to 89 °C, 82 to 88 °C, 82 to 87 °C, 82 to 86 °C, 83 to 90 °C, 83 to 89 °C, 83 to 88 °C , 83 to 87 °C, 83 to 86 °C, 84 to 90 °C, 84 to 89 °C, 84 to 88 °C, 84 to 87 °C, 84 to 86 °C, 85 to 90 °C, 85 to 89 °C, 85 to 88 °C, 85 to 88
  • the confirmation step may be performed by at least one selected from the group consisting of capillary electrophoresis, DNA chip, gel electrophoresis, radiometric measurement, fluorescence measurement, and phosphorescence measurement, but is not limited thereto.
  • SYBR green is bound to the amplified DNA, and when SYBR green bound to the amplified DNA generates a fluorescence signal, the fluorescence signal is detected to determine the presence of the target gene and the amplification product therefrom.
  • the final amplification product is measured with Nested-Realtime PCR, a method for measuring the production of That is, it does not require an additional electrophoresis process.
  • the amplified amplification product when blast-analyzed and compared with the sequence of the SFTS virus itself, if the total score is 700 to 1000, it can be determined to have an effective value.
  • the amplified amplification product when blast-analyzed and compared with the sequence of the SFTS virus itself, if the identity score is 95 to 100%, it can be determined to have an effective value.
  • the present invention relates to a composition for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus, a kit for diagnosis, and a method for providing information for diagnosing SFTS.
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • the diagnosis efficiency can be increased compared to the existing method by using a composition for detecting severe fever with thrombocytopenia syndrome virus, a diagnostic kit, and a method that provides information for SFTS diagnosis, and can be used immediately at the quarantine site.
  • Figure 1a is a photograph showing the state of collecting mites ( Ixodidae spp. ) using a flag according to a manufacturing example of the present invention.
  • 1b is a photograph showing mites collected on a flag according to a manufacturing example of the present invention.
  • 1c is a photograph showing a tube containing mites collected as a sample according to one preparation example of the present invention.
  • Figure 2a is a graph showing the distribution of genome data for each segment of a severe fever with thrombocytopenia syndrome (Severe Fever with Thrombocytopenia Syndrome, hereinafter, SFTS) virus according to a preparation example of the present invention.
  • SFTS severe Fever with Thrombocytopenia Syndrome
  • Figure 2b is a graph showing the distribution of genomic data for each country (Korea, China and Japan) of the SFTS virus according to one preparation of the present invention.
  • FIG. 3 is a schematic diagram illustrating a database construction and utilization method based on RNA sequence data according to a preparation example of the present invention.
  • FIG. 4 is a diagram showing alignment of the M segment (Medium segment, M segment) of the SFTS virus according to a manufacturing example of the present invention.
  • FIG. 5 is a schematic diagram showing a process for detecting SFTS virus by conventional RT-PCR and nested PCR detection methods of a comparative example of the present invention.
  • FIG. 6 is an electrophoresis photograph showing the detection result of the SFTS virus amplification product after performing RT-PCR and nested PCR by extracting RNA from a sample isolated from ticks according to a comparative example of the present invention.
  • Figure 7a is a graph showing the result of performing nested-realtime PCR of the PCR amplification product in Example 1-2 of the present invention as a melting curve.
  • Figure 7b is an electrophoresis picture showing the results of comparison with the negative control and the amplification of the SFTS virus and positive control through Nested-Realtime PCR in Example 1-2 of the present invention.
  • Figure 8a is a schematic diagram showing the process for detecting the SFTS virus by RT-PCR and nested-realtime PCR detection method of Example 2 of the present invention.
  • Figure 8b is a schematic diagram including the electrophoresis step after the process for detecting the SFTS virus by RT-PCR and nested-realtime PCR detection method of Example 2 of the present invention.
  • Figure 9a is a graph showing the melting curve analysis results after performing nested-realtime PCR in Example 2-2 of the present invention.
  • Figure 9b is an electrophoresis picture showing the detection result of the SFTS virus amplification product after performing nested-realtime PCR in Example 2-2 of the present invention.
  • 10A is an electrophoresis photograph showing the result of amplification (560 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention by RT-PCR.
  • 10b is an electrophoresis photograph showing the nested PCR amplification product result (245 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
  • 10c is an electrophoresis photograph showing the result (565 bp) of the RT-PCR amplification product of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
  • 10d is an electrophoresis photograph showing the result of nested PCR amplification (496 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
  • FIG. 11 is a systematic diagram of an SFTS virus isolate analyzed using sequencing data according to Example 4 of the present invention.
  • 12A is a graph showing the result of comparing the sequence length of the PCR amplification product with Comparative Example 1 after sequencing the amplification product according to Example 2 of the present invention in the Sanger method.
  • 12b is a graph showing the overall score compared to Comparative Example 1 by comparing the amplification product according to Example 2 of the present invention with the sequence of the SFTS virus itself after blast analysis.
  • 12c is a graph showing the identity index compared to Comparative Example 1 by comparing the amplification product according to Example 2) of the present invention with the sequence of the SFTS virus itself after blast analysis.
  • a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8
  • a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • Severe Fever with Thrombocytopenia Syndrome (hereinafter referred to as SFTS)
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • the Severe Fever with Thrombocytopenia Syndrome (SFTS) virus sample, Sabuk-myeon, Chuncheon-si, Gangwon-do Ticks were collected using flags in (FIG. 1a). It is useful to use a flag to collect mites, as they exist mainly in thick bushes, but when an attachment target such as a person or an animal passes through the bush, they attach to the host and move.
  • FIG. 1b Ticks buried in flags (FIG. 1b) were collected and samples suspected of infection with severe fever with thrombocytopenia syndrome were secured in a tube (FIG. 1c).
  • a database (data base; hereinafter, DB) for each segment of the SFTS virus was constructed.
  • the SRA file was downloaded from NCBI genbank and changed to Fasta format using the NCNI-SRA toolkit.
  • sequence assembly was performed with an IDBA assembler.
  • the redundant sequence was removed using the CD-HIT program.
  • the database was built with the NCBI Blastdb make command using the generated file.
  • the created database used a sequence server program to run a local blast server.
  • the specifications of the computer that performed this analysis are CPU, AMD Ryzen Threadripper 2950X 1ea, Memory: 96GB, Storage1: Samsund SSD 970 EVO 1TB, Storage2: WD NAS 4TB HDD.
  • a total of 1,159 sequences were obtained, classified by virus genome data, and indicated by segment and country (Korea, China, and Japan) (Figs. 2a and 2b). The data constructed in this way was used to analyze the virus sequence.
  • NCBI-SRA was conducted with ticks, H. Longicornis and H. Longicornis. flava ) of the total RNA sequence (RNA sequence) data was obtained.
  • SFTS virus can be transmitted not only by small tick, but also by dog tick (H. of 95 to 98%, and the currently published genomic DNA data relates to the small tick and the dog tick, so RNA sequence data of two species were included.
  • S, M, and L segments were confirmed to be relatively conservative, but in the present invention, similar amplification sites were set so that they could be compared with the diagnostic method for partial detection of M segments used by the Korea Centers for Disease Control and Prevention and the Institute for Health and Environment.
  • Severe fever thrombocytopenia syndrome virus M segment alignment was visualized using UGENE after alignment using MAFFT, and the sequence is shown in Table 1 (SEQ ID NO: 1) and FIG. 4 .
  • a positive control sequence was prepared in order to confirm whether the PCR reaction proceeded normally in the PCR detection and diagnosis process (Table 1 SEQ ID NO: 2).
  • the positive control sequence was designed to generate a PCR amplification product having a smaller size than the actual positive result so that it could be distinguished from the actual positive sample.
  • a similar amplification site was set for comparison with the diagnostic method for detecting a part of the M segment (565 bp) being used by the Korea Centers for Disease Control and Prevention and the Institute for Health and Environment. As a result of the analysis, it was confirmed that the M segment was relatively conservative.
  • RNA of ticks obtained in Preparation Example 1 is extracted and then reverse transcription polymerization is the first conventional detection method. Detection was performed by sequentially performing the Reverse Transcription Polymerase Chain Reaction (hereinafter, RT-PCR) and secondly, the Nested Polymerase Chain Reaction (hereinafter, Nested PCR).
  • RT-PCR Reverse Transcription Polymerase Chain Reaction
  • Nested PCR Nested Polymerase Chain Reaction
  • RT-PCR was performed in which reverse transcription and PCR amplification were sequentially performed using the RNA extracted from the ticks obtained in Preparation Example 1 and the primer set designed in Preparation Example 2. Specific experimental conditions are shown in Tables 3 and 4.
  • the second step was performed with the PCR amplification product generated through the first RT-PCR.
  • Specific experimental conditions are shown in Tables 5 and 6.
  • step temperature hour number of repetitions hot start 94 °C 5 min 1 cycle Denatures 94 °C 20 sec 26 cycle Annealing 59 °C 20 sec Extension 72 °C 20 sec final extension 72 °C 5 min 1 cycle Store 4 °C forever -
  • nested PCR was electrophoresed in an agarose gel 2.0% Mupid electrophoresis apparatus at 130 v for 20 minutes to confirm a secondary amplification product of 245 bp (FIG. 6).
  • Example 1 Amplification of Severe Fever Thrombocytopenia Syndrome (SFTS) Virus and Positive Control and Comparison with Negative Control by RT-PCR and Nested-Realtime PCR Detection Method
  • Preparation Example 2 In order to confirm the melting peak temperature and the size of the PCR amplification product of the primers designed with SEQ ID NOs: 5 to 8 in Table 2, the first reverse transcription polymerase chain reaction method (Reverse Transcription Polymerase Chain Reaction; hereafter, RT- PCR) and the second nested realtime polymerase chain reaction (Nested Realtime Polymerase Chain Reaction; hereinafter, Nested-Realtime PCR) were sequentially performed.
  • Reverse Transcription Polymerase Chain Reaction hereafter, RT- PCR
  • Nested Realtime Polymerase Chain Reaction Nested Realtime Polymerase Chain Reaction
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • Table 1 Severe Fever with Thrombocytopenia Syndrome
  • Table 2 artificially synthesized positive control sequence
  • RT-PCR Reverse transcription
  • Specific experimental conditions are shown in Tables 7 and 8.
  • the second step Nested-Realtime PCR, was performed with the PCR amplification product generated through the first RT-PCR. Specific experimental conditions were performed according to Tables 9 and 10, and the amount of PCR product amplification was quickly confirmed in real time by using SYBR green as a fluorescent label.
  • the log value of the initial amount of the template has a linear relationship with the threshold cycle
  • the log value of the initial amount and the corresponding threshold cycle are used using nucleic acids with known initial amounts.
  • a standard calibration curve can be obtained, and by using this standard calibration curve, the initial amount for an unknown sample can be accurately calculated.
  • FIGS. 7A and 7B The results of detecting SFTS in this way are shown in FIGS. 7A and 7B .
  • step temperature hour number of repetitions hot start 95 °C 3 min 1 cycle Denatures 95 °C 15 sec 25 cycle Annealing 62 °C 20 sec Extension 72 °C 20 sec Melting peak 75 ⁇ 95°C 0.5 °C step 30 sec hold Step and Hold Store 16 °C Forever -
  • the melting curve temperature was in the range of 86 to 87 ° C, and in the case of the positive control replaced with a synthetic gene, it was in the range of 83 to 84 ° C.
  • the melting curve was observed in the negative control group. It didn't happen.
  • electrophoresis was additionally performed to compare the size of the final amplified product of PCR through the method of Example 1. Electrophoresis was performed on an agarose gel 2.0% Agaro-Power System electrophoresis device at 140 V for 30 minutes (FIG. 7b).
  • the actual positive sample was expressed as 530 bp
  • the positive control replaced with the synthetic gene was expressed as 184 bp
  • no PCR amplification product was observed in the negative control.
  • the melting curve temperature is 86 to 87° C. and a 530 bp PCR amplification product is observed on the electrophoresis, it can be determined that the SFTS virus is present.
  • Example 2 SFTS virus detection by RT-PCR and nested-realtime PCR of nucleic acids extracted from ticks suspected of having severe fever with thrombocytopenia syndrome (SFTS)
  • the size of the final amplification product can be measured by gel, capillary electrophoresis, DNA chip, radiometric measurement, fluorescence measurement, and phosphorescence measurement.
  • SYBR green is bound to the amplified DNA, and when SYBR green bound to the amplified DNA generates a fluorescence signal, the fluorescence signal is detected to detect the presence of the target gene.
  • the final amplification product is measured by Nested-Realtime PCR, which is a method of measuring whether or not the amplification product is produced therefrom, and the detection and diagnosis is carried out, and the specific product can be determined through melting curve analysis. That is, it does not require an additional electrophoresis process.
  • RT-PCR in which reverse transcription and PCR were performed sequentially was performed using the RNA extracted from the ticks obtained in Preparation Example 1 and the primer set designed in Preparation Example 2. Specific samples and experimental conditions are shown in Tables 7 to 8 of Example 1-1.
  • the generated PCR product was used as a template for secondary PCR immediately in a PCR station without electrophoresis in order to prevent contamination of the laboratory environment.
  • the second step was performed with the PCR amplification product generated through the first RT-PCR.
  • Specific experimental conditions are shown in Tables 9 to 10 of Example 1-2. Accordingly, an experiment was performed and the results were shown ( FIGS. 9A and 9B ).
  • electrophoresis was further performed to compare the size of the final amplification product of PCR through the method of Example 2 (see FIG. 8b ). Electrophoresis was performed on an agarose gel 2.0% Agaro-Power TM System electrophoresis device at 140 V for 30 minutes (FIG. 9b).
  • Example 3 Sensitivity comparison of the method of detecting severe fever with thrombocytopenia syndrome (SFTS) using RT-PCR and nested RT-PCR of Comparative Example 1 and RT-PCR and Nested-Realtime PCR of Example 2
  • SFTS B type RNA distributed from the Centers for Disease Control and Prevention Center was diluted twice for each concentration with 2 -1 to 2 -10 , followed by RT -PCR sensitivity was confirmed.
  • electrophoresis was performed on an agarose gel 2.0% Agaro-Power TM System electrophoresis device at 140 v for 30 minutes, and as a result, an amplification product of 560 bp was obtained (FIG. 10a).
  • SFTS B type RNA distributed from the Centers for Disease Control and Prevention's Mediation Analysis Division was diluted twice by concentration with 2 -1 to 2 -10 . After that, RT-PCR was performed to confirm sensitivity.
  • Table 11 shows the sequencing results of 33 PCR amplification products actually obtained from the 40 PCR test samples of Example 2 amplified by RT-PCR and nested-realtime PCR.
  • the secured sequence blast (Blast) results are shown in Table 12.
  • the KU507548.1 gene in Table 12 is the complete sequence of KADGH segment M isolated from severe fever with thrombocytopenia syndrome virus.
  • LC516197.1 gene of Table 12 is a Severe Fever with Thrombocytopenia Syndrome (SFTS) virus JNU-1 gene for a multivalent protein glycoprotein membrane among partial coding sequences (cds).
  • SFTS Severe Fever with Thrombocytopenia Syndrome
  • the amplification amplified by the detection method by RT-PCR and nested real-time PCR (this method; Example 2) compared to the conventional detection method by RT-PCR and nested PCR (existing method; Comparative Example 1)
  • the method for detection by RT-PCR and nested real-time PCR is BLAST (basic local alignment search tool) analysis.
  • the present method execution of Comparative Example 1 compared to the basic method (Comparative Example 1). It was confirmed that the overall score (Fig. 12b) and identity index (Fig. 12c) of the amplified product amplified in Example 2) were high.
  • the E-value (Table 12) was 0, and it was confirmed that the probability of accidentally matching a sequence other than SFTS was 0%.
  • the existing detection method for determining whether tick infection is present in Korea has low sensitivity of the nested PCR primer and difficulty in sequence analysis, but through the present invention, sensitivity problem and SFTS patient-infection through sequence analysis It is judged that it can help to more clearly understand the correlation between SFTS of ticks in the estimated area.
  • the present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome virus transmitted by ticks and a diagnostic kit using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to: a composition for detecting a severe fever with thrombocytopenia syndrome (hereinafter referred to as SFTS) virus; a diagnostic kit; and a method for providing information for SFTS diagnosis, and comprises a first primer set of SEQ ID NOs: 7 and 8 and a second primer set of SEQ ID NOs: 9 and 10, and thus can detect, with high sensitivity, an SFTS virus in a specimen.

Description

중증열성혈소판감소증후군 바이러스 검출용 프라이머 세트 및 이를 이용한 진단용 키트Primer set for detection of severe fever with thrombocytopenia syndrome virus and diagnostic kit using the same
본 발명은 보건복지부, 과학기술정보통신부, 농림축산식품부, 산업통상자원부, 행정안전부, 환경부 및 식품의약품안전처의 지원 하에 과제번호 HG18C0028에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 (재)방역연계범부처감염병연구개발사업단, 연구사업명은 "방역연계범부처감염병연구개발사업", 연구과제명은 "국제공동연구를 통한 매개체(참진드기, 모기)내 병원체 효율적 진단법 개발 및 표준화", 주관기관은 전남대학교산학합력단, 연구기간은 2018.08.06 ~ 2020.12.31이다.The present invention has been made under project number HG18C0028 with the support of the Ministry of Health and Welfare, the Ministry of Science and ICT, the Ministry of Agriculture, Food and Rural Affairs, the Ministry of Trade, Industry and Energy, the Ministry of Public Administration and Security, the Ministry of Environment and the Ministry of Food and Drug Safety, and the research management institution of the above project is (re) Infectious disease research and development project group of ministries related to quarantine, the research project name is “Infectious disease research and development project of ministries related to quarantine”, the research project name is “Development and standardization of effective diagnostic methods for pathogens in vectors (mites, mosquitoes) through international joint research”, the lead institution Chonnam National University Industry-Academic Collaboration Group, the research period is 2018.08.06 ~ 2020.12.31.
본 특허출원은 2020년 8월 14일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2020-0102539호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application claims priority to Korean Patent Application No. 10-2020-0102539 filed with the Korean Intellectual Property Office on August 14, 2020, the disclosure of which is incorporated herein by reference.
본 발명은 참진드기류에 의해 전파되는 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome) 바이러스 검출용 프라이머 세트 및 이를 이용한 진단용 키트에 관한 것이다.The present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome virus transmitted by ticks and a diagnostic kit using the same.
중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS)는 SFTS 바이러스에 감염된 참진드기류가 질병의 매개체가 되어 사람에게 전파되는 질병이다. SFTS는 2000 년대에 중국에서 환자가 확인되었고, 2011년에 병원균인 화양산 반양바이러스 (Huaiyangshan banyangvirus) 가 발견되었다.Severe Fever with Thrombocytopenia Syndrome (hereinafter, SFTS) is a disease transmitted to humans by ticks infected with SFTS virus as a carrier of the disease. SFTS was identified in China in the 2000s, and the pathogen Huaiyangshan banyangvirus was discovered in 2011.
SFTS의 증상은 혈소판 감소 및 고열이 주요 특징이며, 추가적으로 소화기 부전, 백혈구 감소 및 다발성 장기부전 등을 특징으로 한다. 이러한 SFTS는 어린 아이나 노인과 같이 면역력이 약한 환자에게는 치사율이 최대 30 %까지 치솟는 것으로 확인되고 있다. 뿐만 아니라, 최근 발표된 연구에 따르면 참진드기류에 직접적으로 접촉하지 않았음에도 SFTS에 감염된 체액 또는 혈액에 밀접 노출되는 경우 2차 감염이 일어나는 것으로 보고되었다. 따라서, SFTS는 감염 및 예방에 주의가 필요한 질병이다.The symptoms of SFTS are characterized by thrombocytopenia and high fever, and additionally, gastrointestinal failure, leukopenia, and multiple organ failure. It has been confirmed that SFTS has a fatality rate of up to 30% in patients with weakened immunity, such as young children and the elderly. In addition, according to a recently published study, it has been reported that secondary infection occurs when closely exposed to SFTS-infected body fluids or blood even without direct contact with ticks. Therefore, SFTS is a disease requiring attention to infection and prevention.
SFTS를 유발하는 주요 매개체인 참진드기류는 개피 참진드기, 뭉뚝 참진드기 및 일본 참진드기 등이 있으며, 이들은 주로 야생 동물을 통해 서식지를 확대하고 있는 것으로 알려져 있다. 특히, 앞서 언급한 참진드기류의 경우는 한국, 중국 및 일본 모두에 서식하고 있으며 매년 많은 감염자와 사망자를 발생시키고 있다.Ticks that cause SFTS include dog tick, mite tick, and Japanese tick, which are known to expand their habitats mainly through wild animals. In particular, the aforementioned ticks inhabit all of Korea, China and Japan, and cause many infections and deaths every year.
이러한 SFTS를 진단하기 위한 방법으로는 배양법, 효소면역측정법 (Enzyme-Linked Immunosorbent Assay; 이하, ELISA), 간접 형광 항체법 (indirect fluorescent antibody assay, IFA) 등이 있으나, 검사를 위한 시간이 오래 걸리며 이를 수행하기 위한 전문인력과 특수장비가 필요하기 때문에 국내에서는 국가공중보건관리 중추기관인 질병관리본부에서만 이를 활용하고 있다.Methods for diagnosing such SFTS include culture method, enzyme-linked immunosorbent assay (ELISA), and indirect fluorescent antibody assay ( IFA). In Korea, only the Korea Centers for Disease Control and Prevention, which is the central institution for national public health management, utilizes it because it requires specialized manpower and special equipment to perform it.
비교적 범용적으로 사용하는 방식은 분자진단법으로 컨벤셔널 역전사 중합효소 연쇄반응법 (Conventional Reverse Transcription Polymerase Chain Reaction; 이하, Conventional RT-PCR), 네스티드 역전사 중합효소 연쇄반응법 (Nested Reverse Transcription Polymerase Chain Reaction; 이하, Nested RT-PCR) 및 원스텝 실시간 중합효소 연쇄반응법 (Onestep Realtime Reverse Transcription Polymerase Chain Reaction; 이하, Onestep Realtime RT-PCR)이 선호되고 있다. 현재 국내에서는 SFTS 신속 진단을 위해 Conventional RT-PCR, Nested RT-PCR 및 Onestep Realtime RT-PCR을 개발하여 진단검사에 활용하고 있다.Conventional Reverse Transcription Polymerase Chain Reaction (hereinafter referred to as Conventional RT-PCR), Nested Reverse Transcription Polymerase Chain Reaction, and Nested Reverse Transcription Polymerase Chain Reaction are molecular diagnostics. ; Hereinafter, Nested RT-PCR) and Onestep Realtime Reverse Transcription Polymerase Chain Reaction (hereinafter, Onestep Realtime RT-PCR) are preferred. Currently, in Korea, Conventional RT-PCR, Nested RT-PCR, and Onestep Realtime RT-PCR have been developed for rapid diagnosis of SFTS and are being used in diagnostic tests.
하지만, 참진드기류와 같은 복잡하면서도 소량인 시료에서는 RT-PCR이나 Real-time RT-PCR은 모두 신뢰성과 민감도가 낮아 위음성율이 높다는 한계가 있다. PCR을 수행할 증폭 산물 (product)이 깨끗하지 못할 경우, 비특이적결합 (non-specific binding)에 의한 검사 대상 증폭 산물뿐만 아니라 다른 물질이 증폭될 수 있기 때문에 1차로 PCR을 진행한 PCR 증폭 산물에 대해 그 안쪽에 다시 특이화된 프라이머를 제작하여 2차로 PCR을 하게 된다. 이때, 1차 PCR용으로 바깥쪽에 사용한 프라이머를 아우터 프라이머 (outer primer), 2차 PCR용으로 안쪽에 제작한 프라이머를 네스티드 프라이머 (Nested Primer)라고 한다. 이렇게 두 번 PCR을 함으로써 보다 정확한 PCR 결과를 얻을 수 있다. 이러한 이유로 질병관리본부 매개체분석과에서는 아우터 프라이머로 1차 RT-PCR을 수행하고 이를 통해 증폭된 낮은 농도의 PCR 증폭 산물을 네스티드 프라이머로 다시 증폭하는 네스티드 PCR (Nested PCR)법을 사용하였다.However, both RT-PCR and real-time RT-PCR have low reliability and sensitivity in complex and small samples such as ticks, and thus have a high false-negative rate. If the amplification product to be subjected to PCR is not clean, other substances as well as the amplification product to be tested due to non-specific binding may be amplified. Secondary PCR is performed by preparing a specific primer again inside it. At this time, the primer used on the outside for the first PCR is called an outer primer, and the primer prepared on the inside for the second PCR is called a nested primer. By performing the PCR twice in this way, more accurate PCR results can be obtained. For this reason, the Centers for Disease Control and Prevention (CDC) used a nested PCR method in which primary RT-PCR was performed with an outer primer and the PCR amplification product of a low concentration amplified through this was amplified again with nested primers.
이러한 방법은 참진드기류에서 효과적으로 SFTS 바이러스를 검출하고 이를 기반으로 공중보건에 기여할 수 있다는 장점이 있으나, 모든 PCR 증폭 산물을 전기 영동을 하고 밴드 인텐시티 (band intensity)를 기반으로 결과를 판정하므로 민감도가 낮으며 분석 절차가 번거롭고, 소요시간 또한 길다는 단점이 있다.This method has the advantage of effectively detecting the SFTS virus in ticks and contributing to public health based on it, but the sensitivity is low because all PCR amplification products are electrophoresed and the results are judged based on the band intensity. It is low, and the analysis procedure is cumbersome, and the time required is also long.
이에 본 발명자들은 종래 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS) 진단용 프라이머 세트의 효율성과 민감도를 개선하고자 최근 변이가 누적된 SFTS 유전체 데이터 베이스를 구축하고, 이를 기반으로 기존방법에 비하여 증폭 효율이 높고 방역 현장에서 즉시 활용할 수 있는 SFTS 바이러스 검출용 프라이머 세트를 포함하는 조성물, 키트 및 진단을 위한 정보를 제공하는 방법을 예의 연구 노력하였다. 그 결과, 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;를 포함하는 SFTS 바이러스 검출용 조성물, 이를 포함하는 진단용 키트 및 SFTS 진단을 위한 정보를 제공하는 방법을 규명함으로써, 본 발명을 완성하게 되었다.In order to improve the efficiency and sensitivity of the conventional primer set for diagnosing severe fever with Thrombocytopenia Syndrome (SFTS), the present inventors built a SFTS genome database with recent mutations, and based on this, In comparison, intensive research efforts were made on a composition, kit, and method of providing information for diagnosis, including a primer set for detecting SFTS virus that has high amplification efficiency and can be used immediately at the quarantine site. As a result, a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; And a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10; By identifying a composition for detecting SFTS virus comprising the same, a diagnostic kit comprising the same, and a method of providing information for SFTS diagnosis, the present invention invention was completed.
이에, 본 발명의 목적은 SFTS 바이러스 검출용 프라이머 세트를 포함하는 SFTS 바이러스 검출용 조성물을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a composition for detecting SFTS virus comprising a primer set for detecting SFTS virus.
본 발명의 다른 목적은 SFTS 바이러스 검출용 프라이머 세트를 포함하는 SFTS 바이러스 진단용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for diagnosing SFTS virus including a primer set for detecting SFTS virus.
본 발명의 또 다른 목적은 SFTS 진단을 위한 정보를 제공하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for providing information for SFTS diagnosis.
본 발명은 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS) 바이러스 검출용 프라이머 세트 및 이를 이용한 진단용 키트에 관한 것으로서, 더욱 상세하게는 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트를 포함하는 SFTS 바이러스 검출용 조성물, 진단용 키트 및 SFTS 감염의 진단을 위한 정보를 제공하는 방법을 제공하는 것이다.The present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus and a diagnostic kit using the same, and more particularly, the forward primer of SEQ ID NO: 7 and the reverse primer of SEQ ID NO: 8 A first primer set consisting of; And to provide a method for providing information for diagnosing a composition, diagnostic kit, and SFTS infection comprising a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10.
이하 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 예는 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및An example of the present invention is a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; and
서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
를 포함하는 중증열성혈소판증후군 바이러스 검출용 조성물에 관한 것이다.It relates to a composition for detecting a severe fever with platelet syndrome virus comprising a.
본 발명에 있어서 유전자 증폭에 사용되는 프라이머는 짧은 자유 3 말단 수산화기를 가지는 핵산 서열로 상보적인 템플레이트 (template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산을 의미한다. 프라이머는 적절한 완충 용액 및 온도에서 중합반응 (즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4 가지 뉴클레오사이드 트리포스테이트의 존재 하에서 DNA 합성을 개시할 수 있다.In the present invention, the primer used for gene amplification is a nucleic acid sequence having a short free 3-terminal hydroxyl group, which can form a base pair with a complementary template and refers to a short nucleic acid that functions as a starting point for template strand copying. . The primer is capable of initiating DNA synthesis in the presence of a reagent for the polymerization reaction (ie, DNA polymerase or reverse transcriptase) and the four different nucleoside triphosphates in an appropriate buffer solution and temperature.
본 발명에 있어서 프라이머는 각 마커 유전자에 특이적인 프라이머로 7 개 내지 50 개의 뉴클레오타이드 서열을 가진 센스 및 안티센스 핵산이다. 프라이머는 DNA 합성의 개시점으로 작용하는 프라이머의 기본 성질을 변화시키지 않는 추가의 특징을 혼입할 수 있다.In the present invention, primers are sense and antisense nucleic acids having 7 to 50 nucleotide sequences as primers specific for each marker gene. Primers may incorporate additional features that do not change the basic properties of the primer to serve as the starting point of DNA synthesis.
또한, 상기 프라이머는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 상기 프라이머의 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비한정적인 예로는 메틸화, "캡화", 천연 뉴클레오타이드 하나 이상의 동족체로의 치환, 및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체 (예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체 (예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.In addition, the primer can be chemically synthesized using a phosphoramidite solid support method, or other well-known methods. The sequence of the primers may also be modified using a number of means known in the art. Non-limiting examples of such modifications include methylation, “encapsulation”, substitution of one or more homologues of natural nucleotides, and modifications between nucleotides, such as uncharged linkages such as methyl phosphonates, phosphotriesters, phospho poroamidates, carbamates, etc.) or charged linkages (eg phosphorothioates, phosphorodithioates, etc.).
본 발명에 있어서 프라이머는 하나 이상의 부가적인 공유 결합된 잔기, 예를 들면, 단백질 (예: 뉴클레아제, 독소, 항체, 시그날 펩타이드, 폴리-L-리신 등), 삽입제 (예: 아크리딘, 프소랄렌 등), 킬레이트화제 (예: 금속, 방사성 금속, 철, 산화성 금속 등), 및 알킬화제를 함유할 수 있다. 상기 프라이머는 또한 검출 가능한 시그널을 직접 또는 간접적으로 제공할 수 있는 표지를 이용하여 변형시킬 수 있다. 표지의 예로는 방사성 동위원소, 형광성 분자, 바이오틴 등이 있다. In the present invention, the primer comprises one or more additional covalently linked residues, for example, a protein (eg, a nuclease, a toxin, an antibody, a signal peptide, poly-L-lysine, etc.), an insertion agent (eg, acridine). , psoralen, etc.), chelating agents (eg, metals, radioactive metals, iron, oxidizing metals, etc.), and alkylating agents. The primer may also be modified with a label capable of directly or indirectly providing a detectable signal. Examples of labels include radioactive isotopes, fluorescent molecules, biotin, and the like.
본 발명에 있어서 제1 또는 제2 프라이머 세트는 중증열성혈소판증후군 바이러스의 S 분절(small segment, S segment), M 분절 (Medium segment, M segment) 및 L 분절(Large segment, L segment)으로 이루어진 군에서 선택된 하나 이상의 분절에 상보적으로 결합하는 것일 수 있고, 예를 들어, M 분절에 결합하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first or second primer set is a group consisting of S segment (S segment, S segment), M segment (Medium segment, M segment) and L segment (Large segment, L segment) of severe fever with thrombocytopenia syndrome virus It may be complementary binding to one or more segments selected from, for example, binding to M segment, but is not limited thereto.
본 발명의 다른 일 예는 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및Another example of the present invention is a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; and
서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
를 포함하는 중증열성혈소판증후군 바이러스 검출용 조성물을 포함하는 중증열성혈소판증후군 진단용 키트에 관한 것이다.It relates to a kit for diagnosing severe fever with thrombocytopenia syndrome, comprising a composition for detecting a virus for severe fever with thrombocytopenia comprising a.
본 발명의 또 다른 일 예는 다음의 단계를 포함하는 중증열성혈소판증후군 진단을 위한 정보를 제공하는 방법에 관한 것이다:Another embodiment of the present invention relates to a method of providing information for diagnosing severe fever with thrombocytopenia, comprising the steps of:
대상체로부터 분리한 RNA를 주형으로 RT-PCR (Reverse Transcription Polymerase Chain Reaction) 증폭을 수행하는 제1 증폭 단계;A first amplification step of performing RT-PCR (Reverse Transcription Polymerase Chain Reaction) amplification using the RNA isolated from the subject as a template;
상기 제1 증폭 단계에서 증폭된 PCR 증폭 산물을 주형으로 Nested-Realtime PCR (Nested Realtime Polymerase Chain Reaction)을 순차적으로 증폭을 수행하는 제2 증폭 단계; 및a second amplification step of sequentially amplifying the Nested-Realtime PCR (Nested Realtime Polymerase Chain Reaction) using the PCR amplification product amplified in the first amplification step as a template; and
상기 제2 증폭 단계에서 증폭된 PCR 증폭 산물을 확인하는 확인 단계.A confirmation step of confirming the PCR amplification product amplified in the second amplification step.
본 발명에 있어서 제1 증폭 단계는 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트를 이용하여 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the first amplification step may be performed using a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8, but is not limited thereto.
본 발명에 있어서 제2 증폭 단계는 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트를 이용하여 수행되는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the second amplification step may be performed using a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10, but is not limited thereto.
본 발명에 있어서 대상체는 인간, 야생동물, 가축 및 반려동물로 이루어진 군으로부터 선택되는 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the subject may be one or more selected from the group consisting of humans, wild animals, livestock and companion animals, but is not limited thereto.
본 발명에 있어서 대상체로부터 분리한 RNA는, 더욱 상세하게는 대상체로부터 얻은 검체로부터 분리된 것일 수 있다. 상기 검체는 조직, 혈액, 혈청, 타액, 뇨, 정액 및 체액으로 이루어진 군으로부터 선택되는 하나 이상인 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the RNA isolated from the subject may be isolated from the sample obtained from the subject. The sample may be one or more selected from the group consisting of tissue, blood, serum, saliva, urine, semen, and body fluid, but is not limited thereto.
본 명세서상의 용어 "RT-PCR (reverse transcription-PCR)"은 예를 들어 표적 핵산을 역전사 하는 동시에 PCR에 의하여 증폭하는 것이다.As used herein, the term “reverse transcription-PCR (RT-PCR)” refers to, for example, reverse transcription of a target nucleic acid and amplification by PCR.
본 명세서상의 용어 "PCR 증폭산물"은 1차 또는 2차 PCR 수행 이후에 생성된 증폭물을 의미한다.As used herein, the term "PCR amplification product" refers to an amplification product generated after performing the first or second PCR.
본 명세서상의 용어 "Nested PCR"은 PCR의 변형으로 타겟 이외의 염기서열에 프라이머가 붙는 비특이적 결합 (Non-specific binding)의 증폭을 줄이기 위한 방법을 의미한다. 기존의 PCR는 타겟 DNA 염기서열 끝에 상보적인 프라이머를 필요로 하며 PCR 증폭 산물들은 싸이클에 따라 증폭된다. 일반적인 문제점은 프라이머가 타겟 템플레이트 (Target template) 염기부분이 아닌 부정확한 염기서열 부위에 부착되어 원치 않는 가닥을 만들어 내는 것이다. 이 문제점은 PCR 사이클이 증가할 수록 나타난다. Nested PCR은 특이적인 DNA 증폭을 높이기 위해 두 세트의 프라이머가 두 번의 연속적인 PCR에 사용된다.As used herein, the term "Nested PCR" refers to a method for reducing the amplification of non-specific binding in which a primer is attached to a nucleotide sequence other than a target as a modification of PCR. Conventional PCR requires a primer complementary to the end of the target DNA sequence, and PCR amplification products are amplified according to the cycle. A common problem is that the primer is attached to an inaccurate nucleotide sequence site rather than a target template nucleotide region to create an unwanted strand. This problem appears as the PCR cycle increases. In nested PCR, two sets of primers are used in two consecutive PCRs to enhance specific DNA amplification.
첫번째 PCR 증폭 산물은 비특이적 타겟 증폭을 포함할 수도 있다. 첫번째 PCR 증폭 산물은 두번째 PCR의 주형으로 사용된다. 두번째 PCR은 첫번째 PCR 증폭 산물 내에 위치하는 (nested) 염기서열에 부착하는 네스티드 프라이머를 사용하거나 'hemi, semi-nesting'방법으로 특이성을 높인다. 두번째 PCR은 첫번째 PCR 증폭 산물의 특정 염기서열에 상보적이므로 비특이적 증폭 산물에는 증폭하지 않는다.The first PCR amplification product may include non-specific target amplification. The first PCR amplification product is used as a template for the second PCR. The second PCR uses nested primers attached to the (nested) base sequence located in the first PCR amplification product or increases specificity by 'hemi, semi-nesting' method. Since the second PCR is complementary to the specific nucleotide sequence of the first PCR amplification product, non-specific amplification products are not amplified.
이로서 첫번째 PCR 증폭수를 낮추고 사이클이 늘어남에 따라 증가하는 비특이적 증폭 산물 생성을 최소화할 수 있기 때문에 더 많은 PCR 사이클을 돌릴 수 있다. Nested PCR은 매우 희귀한 주형이나 높은 백그라운드를 가진 PCR에 사용하는데 유용하다. Nested PCR은 일반 PCR보다 긴 DNA 증폭에 더 성공적이지만 더 구체적인 타겟 시퀀스 (Target sequence) 지식을 요구한다.This reduces the number of first PCR amplification and minimizes the production of non-specific amplification products that increase as the cycle increases, so more PCR cycles can be run. Nested PCR is useful for PCR with very rare templates or high background. Nested PCR is more successful in amplifying long DNA than general PCR, but requires more specific target sequence knowledge.
본 명세서상의 용어 "리얼타임 PCR (Realtime PCR)"이란, 형광물질 (fluorescent marterial)을 PCR 기법에 응용한 것으로 반응 중 검체 내에 존재하는 표적 유전자의 증폭과 함께 형광물질의 발광 (emission) 정도를 실시간으로 검출하고 정량 분석하여 표적 유전자의 증폭 유무 및 그 양상을 신속하고 정확하게 분석할 수 있는 방법을 의미한다. 이러한 리얼타임 (real-time) PCR은 SYBR 그린 (SYBR Green)을 사용하는 방법과 이중 표지된 프로브를 이용하는 방법으로 나누어진다.As used herein, the term "real-time PCR" refers to the application of a fluorescent material to the PCR technique, and the degree of emission of the fluorescent material is measured in real time along with the amplification of the target gene present in the sample during the reaction. It means a method that can quickly and accurately analyze the presence or absence of amplification of a target gene and its aspect by detecting and quantitatively analyzing it. Such real-time PCR is divided into a method using SYBR Green and a method using a double-labeled probe.
본 명세서상의 용어 "SYBR 그린 (SYBR green) 기법"은 리얼타임 PCR 증폭 과정에서 증폭된 DNA에 결합하여 형광신호를 발생하게 되고 이러한 형광신호를 검출하여 표적 유전자의 존재 여부와 이로부터의 증폭 산물의 생성량을 측정할 수 있는 방법이다. 또한, 이중 표지된 프로브 (Dual labeled probe)를 이용한 리얼타임 PCR 기법은 5'말단에 형광물질이 표지되어 있고 3'말단에 소광물질 (Quencer)이 표지된 이중 표지된 프로브를 이용하는 방법으로서, 이중 표지된 프로브에 의한 형광신호를 통해 이중 표지된 프로브가 표적 유전자의 PCR 증폭 산물과 어닐링 되었는지 여부를 확인할 수 있고, 표적 유전자의 태크맨 프로브법 등 당업계에 알려진 리얼타임 PCR이 적용 가능함은 물론이다.As used herein, the term "SYBR green technique" binds to the amplified DNA in the real-time PCR amplification process to generate a fluorescence signal. A way to measure production. In addition, the real-time PCR technique using a dual labeled probe is a method using a double-labeled probe labeled with a fluorescent material at the 5' end and a quencher at the 3' end. It can be checked whether the double-labeled probe is annealed with the PCR amplification product of the target gene through the fluorescence signal by the labeled probe, and real-time PCR known in the art such as the Tackman probe method of the target gene is applicable. .
본 발명에 있어서 확인 단계는 융해곡선온도가 80 내지 90 ℃, 80 내지 89 ℃, 80 내지 88 ℃, 80 내지 87 ℃, 80 내지 86 ℃, 81 내지 90 ℃, 81 내지 89 ℃, 81 내지 88 ℃, 81 내지 87 ℃, 81 내지 86 ℃, 82 내지 90 ℃, 82 내지 89 ℃, 82 내지 88 ℃, 82 내지 87 ℃, 82 내지 86 ℃, 83 내지 90 ℃, 83 내지 89 ℃, 83 내지 88 ℃, 83 내지 87 ℃, 83 내지 86 ℃, 84 내지 90 ℃, 84 내지 89 ℃, 84 내지 88 ℃, 84 내지 87 ℃, 84 내지 86 ℃, 85 내지 90 ℃, 85 내지 89 ℃, 85 내지 88 ℃, 85 내지 87 ℃, 85 내지 86 ℃, 86 내지 90 ℃, 86 내지 89 ℃, 86 내지 88 ℃, 예를 들어, 86 내지 87 ℃인 경우 중증열성혈소판증후군 감염 여부를 양성으로 판단하는 것일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the confirmation step is a melting curve temperature of 80 to 90 ℃, 80 to 89 ℃, 80 to 88 ℃, 80 to 87 ℃, 80 to 86 ℃, 81 to 90 ℃, 81 to 89 ℃, 81 to 88 ℃ , 81 to 87 °C, 81 to 86 °C, 82 to 90 °C, 82 to 89 °C, 82 to 88 °C, 82 to 87 °C, 82 to 86 °C, 83 to 90 °C, 83 to 89 °C, 83 to 88 °C , 83 to 87 °C, 83 to 86 °C, 84 to 90 °C, 84 to 89 °C, 84 to 88 °C, 84 to 87 °C, 84 to 86 °C, 85 to 90 °C, 85 to 89 °C, 85 to 88 °C , 85 to 87 ℃, 85 to 86 ℃, 86 to 90 ℃, 86 to 89 ℃, 86 to 88 ℃, for example, in the case of 86 to 87 ℃, it may be to determine whether severe fever with platelet syndrome infection as positive , but is not limited thereto.
본 발명에 있어서 확인 단계는 모세관 전기 영동, DNA 칩, 겔 전기 영동, 방사성 측정, 형광 측정 및 인광 측정으로 이루어진 군으로부터 선택되는 하나 이상에 의해 수행되는 것 일 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the confirmation step may be performed by at least one selected from the group consisting of capillary electrophoresis, DNA chip, gel electrophoresis, radiometric measurement, fluorescence measurement, and phosphorescence measurement, but is not limited thereto.
본 발명에 있어서 SYBR 그린 (SYBR green)을 증폭된 DNA에 결합시키고, 증폭된 DNA에 결합된 SYBR 그린이 형광신호를 발생할 때, 이러한 형광신호를 검출하여 표적 유전자의 존재 여부 및 이로부터의 증폭 산물의 생산량을 측정하는 방법인 Nested-Realtime PCR로 최종 증폭 산물을 측정하여 검출 진단을 진행하며 특이적인 산물은 융해곡선 분석을 통해 결과를 판단할 수 있다. 즉, 추가적인 전기 영동 과정을 요구하지 않는다.In the present invention, SYBR green is bound to the amplified DNA, and when SYBR green bound to the amplified DNA generates a fluorescence signal, the fluorescence signal is detected to determine the presence of the target gene and the amplification product therefrom. The final amplification product is measured with Nested-Realtime PCR, a method for measuring the production of That is, it does not require an additional electrophoresis process.
본 발명에 있어서 증폭된 증폭 산물을 블라스트 (Blast) 분석하여 SFTS 바이러스 자체의 서열과 비교하였을 경우, 전체 점수 (Total score)가 700 내지 1000이면 유효한 값을 갖는다고 판단될 수 있다.In the present invention, when the amplified amplification product is blast-analyzed and compared with the sequence of the SFTS virus itself, if the total score is 700 to 1000, it can be determined to have an effective value.
본 발명에 있어서 증폭된 증폭 산물을 블라스트 (Blast) 분석하여 SFTS 바이러스 자체의 서열과 비교하였을 경우, 정체성 지수 (Identity score)가 95 내지 100 %이면 유효한 값을 갖는다고 판단될 수 있다.In the present invention, when the amplified amplification product is blast-analyzed and compared with the sequence of the SFTS virus itself, if the identity score is 95 to 100%, it can be determined to have an effective value.
본 발명은 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome, SFTS) 바이러스 검출용 조성물, 진단용 키트 및 SFTS 진단을 위한 정보를 제공하는 방법에 관한 것으로서, 최근 변이가 누적된 중증열성혈소판감소증후군 바이러스 유전체 데이터베이스를 구축하여, 중증열성혈소판감소증후군 바이러스 검출용 조성물, 진단용 키트 및 SFTS 진단을 위한 정보를 제공하는 방법을 이용하여 기존방법에 비하여 진단 효율을 높일 수 있으며, 방역 현장에서 즉시 활용할 수 있다.The present invention relates to a composition for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus, a kit for diagnosis, and a method for providing information for diagnosing SFTS. By establishing a database, the diagnosis efficiency can be increased compared to the existing method by using a composition for detecting severe fever with thrombocytopenia syndrome virus, a diagnostic kit, and a method that provides information for SFTS diagnosis, and can be used immediately at the quarantine site.
도 1a는 본 발명의 일 제조예에 따른 참진드기류 (Ixodidae spp.)를 깃발을 이용하여 채취하는 모습을 나타낸 사진이다.Figure 1a is a photograph showing the state of collecting mites ( Ixodidae spp. ) using a flag according to a manufacturing example of the present invention.
도 1b는 본 발명의 일 제조예에 따른 깃발에 채취된 참진드기류를 나타낸 사진이다.1b is a photograph showing mites collected on a flag according to a manufacturing example of the present invention.
도 1c는 본 발명의 일 제조예에 따른 시료로 채취된 참진드기류가 담긴 튜브를 나타낸 사진이다.1c is a photograph showing a tube containing mites collected as a sample according to one preparation example of the present invention.
도 2a는 본 발명의 일 제조예에 따른 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome, 이하, SFTS) 바이러스의 분절 (segment)별 지놈 (genome) 데이터의 분포를 나타낸 그래프이다.Figure 2a is a graph showing the distribution of genome data for each segment of a severe fever with thrombocytopenia syndrome (Severe Fever with Thrombocytopenia Syndrome, hereinafter, SFTS) virus according to a preparation example of the present invention.
도 2b는 본 발명의 일 제조예에 따른 SFTS 바이러스의 국가별 (한국, 중국 및 일본) 지놈 데이터의 분포를 나타낸 그래프이다.Figure 2b is a graph showing the distribution of genomic data for each country (Korea, China and Japan) of the SFTS virus according to one preparation of the present invention.
도 3은 본 발명의 일 제조예에 따른 RNA 서열 데이터를 기반으로 한 데이터베이스 구축 및 활용법을 나타낸 모식도이다.3 is a schematic diagram illustrating a database construction and utilization method based on RNA sequence data according to a preparation example of the present invention.
도 4는 본 발명의 일 제조예에 따른 SFTS 바이러스의 M 분절 (Medium segment, M segment) 얼라인먼트를 나타낸 그림이다.4 is a diagram showing alignment of the M segment (Medium segment, M segment) of the SFTS virus according to a manufacturing example of the present invention.
도 5는 본 발명의 일 비교예의 기존 RT-PCR 및 Nested PCR 검출법으로 SFTS 바이러스를 검출하기 위한 진행과정을 나타낸 도식도이다.5 is a schematic diagram showing a process for detecting SFTS virus by conventional RT-PCR and nested PCR detection methods of a comparative example of the present invention.
도 6은 본 발명의 일 비교예에 따른 참진드기류에서 분리한 시료로부터 RNA를 추출하여 RT-PCR 및 Nested PCR을 수행한 후 SFTS 바이러스 증폭 산물 검출 결과를 나타낸 전기 영동 사진이다.6 is an electrophoresis photograph showing the detection result of the SFTS virus amplification product after performing RT-PCR and nested PCR by extracting RNA from a sample isolated from ticks according to a comparative example of the present invention.
도 7a는 본 발명의 실시예 1-2에서 PCR 증폭 산물의 Nested-Realtime PCR을 수행한 결과를 융해곡선으로 나타낸 그래프이다.Figure 7a is a graph showing the result of performing nested-realtime PCR of the PCR amplification product in Example 1-2 of the present invention as a melting curve.
도 7b는 본 발명의 실시예 1-2에서 Nested-Realtime PCR 수행을 통한 SFTS 바이러스 및 양성 대조군의 증폭과 음성 대조군과의 비교 결과를 나타낸 전기 영동 사진이다.Figure 7b is an electrophoresis picture showing the results of comparison with the negative control and the amplification of the SFTS virus and positive control through Nested-Realtime PCR in Example 1-2 of the present invention.
도 8a는 본 발명의 일 실시예 2의 RT-PCR 및 Nested-Realtime PCR 검출법으로 SFTS 바이러스를 검출하기 위한 진행과정을 나타낸 도식도이다.Figure 8a is a schematic diagram showing the process for detecting the SFTS virus by RT-PCR and nested-realtime PCR detection method of Example 2 of the present invention.
도 8b는 본 발명의 일 실시예 2의 RT-PCR 및 Nested-Realtime PCR 검출법으로 SFTS 바이러스를 검출하기 위한 진행과정 이후 전기 영동 단계를 포함하여 나타낸 도식도이다.Figure 8b is a schematic diagram including the electrophoresis step after the process for detecting the SFTS virus by RT-PCR and nested-realtime PCR detection method of Example 2 of the present invention.
도 9a는 본 발명의 실시예 2-2에서 Nested-Realtime PCR 수행 후 융해곡선 분석 결과를 나타낸 그래프이다.Figure 9a is a graph showing the melting curve analysis results after performing nested-realtime PCR in Example 2-2 of the present invention.
도 9b는 본 발명의 실시예 2-2에서 Nested-Realtime PCR 수행 후 SFTS 바이러스 증폭 산물의 검출 결과를 나타낸 전기 영동 사진이다.Figure 9b is an electrophoresis picture showing the detection result of the SFTS virus amplification product after performing nested-realtime PCR in Example 2-2 of the present invention.
도 10a는 본 발명의 일 실시예 3의 농도별로 희석한 SFTS B type RNA의 RT-PCR로 증폭 산물 결과 (560 bp)를 나타낸 전기 영동 사진이다.10A is an electrophoresis photograph showing the result of amplification (560 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention by RT-PCR.
도 10b는 본 발명의 일 실시예 3의 농도별로 희석한 SFTS B type RNA의 Nested PCR 증폭 산물 결과 (245 bp)를 나타낸 전기 영동 사진이다.10b is an electrophoresis photograph showing the nested PCR amplification product result (245 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
도 10c는 본 발명의 일 실시예 3의 농도별로 희석한 SFTS B type RNA의 RT-PCR 증폭 산물 결과 (565 bp)를 나타낸 전기 영동 사진이다.10c is an electrophoresis photograph showing the result (565 bp) of the RT-PCR amplification product of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
도 10d는 본 발명의 일 실시예 3의 농도별로 희석한 SFTS B type RNA의 Nested PCR 증폭 산물 결과 (496 bp)를 나타낸 전기 영동 사진이다.10d is an electrophoresis photograph showing the result of nested PCR amplification (496 bp) of SFTS B type RNA diluted by concentration of Example 3 of the present invention.
도 11는 본 발명의 실시예 4에 따른 시퀀싱 데이터를 이용하여 분석한 SFTS 바이러스 분리주의 계통도이다.11 is a systematic diagram of an SFTS virus isolate analyzed using sequencing data according to Example 4 of the present invention.
도 12a는 본 발명의 실시예 2에 따른 증폭 산물을 생어 (Sanger) 방식의 시퀀싱을 한 후, PCR 증폭 산물의 서열 길이를 비교예 1과 비교한 결과를 나타낸 그래프이다.12A is a graph showing the result of comparing the sequence length of the PCR amplification product with Comparative Example 1 after sequencing the amplification product according to Example 2 of the present invention in the Sanger method.
도 12b는 본 발명의 실시예 2에 따른 증폭 산물을 블라스트 (Blast) 분석 후 SFTS 바이러스 자체의 서열과 비교하여 비교예 1 대비 전체 점수를 나타낸 그래프이다.12b is a graph showing the overall score compared to Comparative Example 1 by comparing the amplification product according to Example 2 of the present invention with the sequence of the SFTS virus itself after blast analysis.
도 12c는 본 발명의 실시예 2)에 따른 증폭 산물을 블라스트 분석 후 SFTS 바이러스 자체의 서열과 비교하여 비교예 1 대비 정체성 지수를 나타낸 그래프이다.12c is a graph showing the identity index compared to Comparative Example 1 by comparing the amplification product according to Example 2) of the present invention with the sequence of the SFTS virus itself after blast analysis.
서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;를 포함하는 중증열성혈소판증후군 (Severe Fever with Thrombocytopenia Syndrome, SFTS) 바이러스 검출용 조성물에 관한 것이다.a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; And a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10; to a composition for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus, including a.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.
제조예 1. 프라이머 설계를 위한 중증열성혈소판감소증후군 바이러스 서열 데이터 베이스 구축Preparation Example 1. Severe fever thrombocytopenia syndrome virus sequence database construction for primer design
1-1. 데이터 베이스 구축을 위한 중증열성혈소판감소증후군 바이러스 시료 확보1-1. Securing Severe Fever Thrombocytopenia Syndrome Virus Samples for Database Construction
중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome, 이하, SFTS) 바이러스 시료인 SFTS 바이러스 감염 의심 참진드기류 (Ixodidae spp.)를 확보하기 위하여, 중증열성혈소판감소증후군 감염 환자 발생 지역인 강원도 춘천시 사북면 일대에서 깃발을 활용하여 참진드기류를 채취하였다 (도 1a). 참진드기류는 주로 수풀이 우거진 곳에 존재하다가 사람이나 동물과 같은 부착 대상이 수풀 속을 지나가면 숙주에 붙어 이동하기 때문에 깃발을 사용하여 채취하는 것이 유용하다.Severe Fever with Thrombocytopenia Syndrome (hereinafter referred to as SFTS) In order to secure a tick ( Ixodidae spp .) suspected of being infected with the SFTS virus, the Severe Fever with Thrombocytopenia Syndrome (SFTS) virus sample, Sabuk-myeon, Chuncheon-si, Gangwon-do Ticks were collected using flags in (FIG. 1a). It is useful to use a flag to collect mites, as they exist mainly in thick bushes, but when an attachment target such as a person or an animal passes through the bush, they attach to the host and move.
깃발에 묻혀진 참진드기류 (도 1b)를 채취하여 튜브에 중증열성혈소판감소증후군 감염의심 시료를 확보하였다 (도 1c).Ticks buried in flags (FIG. 1b) were collected and samples suspected of infection with severe fever with thrombocytopenia syndrome were secured in a tube (FIG. 1c).
1-2. 중증열성혈소판감소증후군 바이러스의 분절 별 데이터 베이스 구축1-2. Construction of database for each segment of severe fever with thrombocytopenia syndrome virus
SFTS 바이러스의 분절 (segment)별 데이터 베이스 (data base; 이하, DB)를 구축하였다. NCBI 진뱅크 (genbank)에서 SRA 파일을 다운로드 받고, NCNI-SRA 툴키트를 사용하여 패스타 포맷 (Fasta format)으로 변경하였다. 그 다음, IDBA 어쌤블러 (assembler)로 서열 조립 (sequence assembly)를 하였다. 조립한 서열에서 중복된 서열 (redundant sequence)를 제거하기 위해서 CD-HIT 프로그램으로 중복 서열을 제거하였다. 이후, 생성된 파일을 NCBI Blastdb make 명령어로 데이터 베이스를 구축하였다. 생성된 데이터 베이스는 시퀀스 서버 (sequence server) 프로그램을 활용하여 로컬 블래스트 서버 (local blast sever)를 구동하였다. 이와 같은 분석을 수행한 컴퓨터의 사양은 CPU, AMD Ryzen Threadripper 2950X 1ea, Memory: 96GB, Storage1: Samsund SSD 970 EVO 1TB, Storage2: WD NAS 4TB HDD이다.A database (data base; hereinafter, DB) for each segment of the SFTS virus was constructed. The SRA file was downloaded from NCBI genbank and changed to Fasta format using the NCNI-SRA toolkit. Then, sequence assembly was performed with an IDBA assembler. In order to remove the redundant sequence from the assembled sequence, the redundant sequence was removed using the CD-HIT program. After that, the database was built with the NCBI Blastdb make command using the generated file. The created database used a sequence server program to run a local blast server. The specifications of the computer that performed this analysis are CPU, AMD Ryzen Threadripper 2950X 1ea, Memory: 96GB, Storage1: Samsund SSD 970 EVO 1TB, Storage2: WD NAS 4TB HDD.
총 1,159 개의 서열을 확보하여 바이러스 지놈 데이터 (Genome data)로 분류하여 분절 별 및 국가 별 (한국, 중국 및 일본)로 나타내었다 (도 2a 및 도 2b). 이와 같이 구축한 데이터를 바이러스 서열을 분석하는데 활용하였다.A total of 1,159 sequences were obtained, classified by virus genome data, and indicated by segment and country (Korea, China, and Japan) (Figs. 2a and 2b). The data constructed in this way was used to analyze the virus sequence.
1-3. 데이터 베이스 구축을 위한 중증열성혈소판감소증후군 바이러스 이외의 백그라운드 서열의 확보1-3. Securing background sequences other than severe fever with thrombocytopenia syndrome virus for database construction
참진드기류 (Ixodidae spp.)에 존재하는 SFTS 바이러스 이외의 백그라운드 시퀀스 데이터베이스 (background sequence database)를 설계하기 위해 NCBI-SRA에서 참진드기류 중 작은소참진드기 (H. Longicornis) 및 개피참진드기 (H. flava)의 총 RNA 시퀀스 (RNA sequence) 데이터를 확보하였다.To design a background sequence database other than the SFTS virus present in ticks ( Ixodidae spp .), NCBI-SRA was conducted with ticks, H. Longicornis and H. Longicornis. flava ) of the total RNA sequence (RNA sequence) data was obtained.
SFTS 바이러스는 작은소참진드기 뿐만 아니라 개피참진드기 (H.flava, 일본 참진드기 (Ixodes nipponensis)) 및 뭉뚝참진드기 (Amblyomma testudinarium) 등이 매개할 수 있으나, 국내에서는 작은소참진드기가 평균적으로 전체 채집량의 95 내지 98 %로 우점하고 있으며, 현재 공개된 genomic DNA 데이터는 작은소참진드기 및 개피참진드기에 관한 것이어서 두 종의 RNA sequence 데이터를 포함하였다.SFTS virus can be transmitted not only by small tick, but also by dog tick (H. of 95 to 98%, and the currently published genomic DNA data relates to the small tick and the dog tick, so RNA sequence data of two species were included.
진뱅크 (Genbank)에서 확보한 RNA서열 데이터를 기반으로 데 노보 시퀀스 어셈블러 (De novo sequence assemblers)는 IDBA 소프트웨어를 사용하여 데 노보 콘티그 (De novo contig)를 설계하였고, 데이터베이스 구축 및 활용법은 도 3과 같다.Based on the RNA sequence data obtained from Genbank, De novo sequence assemblers designed a de novo contig using IDBA software, and the database construction and utilization method is shown in Figure 3 same as
S, M 및 L 분절 (segment) 모두 비교적 보존적인 것으로 확인되었으나, 본 발명에서는 질병관리본부, 보건환경 연구원에서 활용중인 M 분절 일부 검출용 진단법과 상호 비교할 수 있도록 유사한 증폭부위를 설정하였다. 중증열성혈소판감소증후군 바이러스 M 분절 얼라인먼트 (alignment)는 MAFFT를 이용하여 정렬 후, UGENE을 사용하여 시각화 하여 그 서열을 표 1 (서열번호 1) 및 도 4에 나타내었다. 또한, PCR 검출 및 진단과정에서 PCR 반응이 정상적으로 진행되었는지 확인하기 위해 양성대조군 서열을 제조하였다 (표 1 서열번호 2). 양성대조군 서열은 실제 양성 시료와 구분될 수 있도록 실제 양성결과에 비하여 작은 사이즈의 PCR 증폭 산물을 생성시킬 수 있도록 설계하였다.All of the S, M, and L segments were confirmed to be relatively conservative, but in the present invention, similar amplification sites were set so that they could be compared with the diagnostic method for partial detection of M segments used by the Korea Centers for Disease Control and Prevention and the Institute for Health and Environment. Severe fever thrombocytopenia syndrome virus M segment alignment (alignment) was visualized using UGENE after alignment using MAFFT, and the sequence is shown in Table 1 (SEQ ID NO: 1) and FIG. 4 . In addition, a positive control sequence was prepared in order to confirm whether the PCR reaction proceeded normally in the PCR detection and diagnosis process (Table 1 SEQ ID NO: 2). The positive control sequence was designed to generate a PCR amplification product having a smaller size than the actual positive result so that it could be distinguished from the actual positive sample.
서열번호SEQ ID NO: 분절 (segment)segment 서열목록 (5'---> 3')Sequence Listing (5'---> 3')
1One M M RGCWAAYATCCCAAGCCCWACAGAYTGGCTRAATGCCYTGTTTGGCAATGGGCTGAGYAGGTGGRTYCTKGGGGTRATRGGGGTYCTRCTKGGGGGRTTRGCYCTCTTYTTCWTRATYATGTYTTTGYTYAARYTGGGRACAAAACARRTRTTTCGATCRAGGACRAAGCTGGCTTAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRGCWAAYATCCCAAGCCCWACAGAYTGGCTRAATGCCYTGTTTGGCAATGGGCTGAGYAGGTGGRTYCTKGGGGTRATRGGGGTYCTRCTKGGGGGRTTRGCYCTCTTYTTCWTRATYATGTYTTTGYTYAARYTGGGRACAAAACARRTRTTTCGATCRAGGACRAAGCTGGCTTAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
22 양성대조군positive control GCTGTGATGAGATGGTCCATGCTGATTCCAAGCTTGTTTCATGCAGGCAAGGCATGCGCAACTTGTGAAGTGTCTACTATCCTTAAACGCATATCTCATGAAGGAATGTGTCACAACTGGATCTGATGTTGCCCGGGCCGAGTTAGTGTTGAGCTCACGGAACTTATTGTATGAGTAGTGATTTGTAAGAGTTGTCATGGGATGGATTGGCTTGGGATGCTTGATAGTTCCaTCGTGACCTCAGAAGGCCAATGCCCTCAGGGGAGGTGAGGACATTCCACCCCATGAGGCTGTGATGAGATGGTCCATGCTGATTCCAAGCTTGTTTCATGCAGGCAAGGCATGCGCAACTTGTGAAGTGTCTACTATCCTTAAACGCATATCTCATGAAGGAATGTGTCACAACTGGATCTGATGTTGCCCGGGCCGAGTTAGTGTTGAGCTCGAGTGGGAACTTAGCTTGTATGAGTAGTGATTTGGATCGAGTGCCATGATCGATCGATCGACATGAGAGTGGGATGCTTGTATGAGTAGTGATTTGGATAAGAGTTGTAGGCTCAG
질병관리본부 및 보건환경 연구원에서 활용 중인 M 분절의 일부 (565 bp) 검출용 진단법과 상호 비교할 수 있도록 유사한 증폭부위를 설정하였고, 분석 결과, M 분절은 비교적 보존적인 것으로 확인되었다.A similar amplification site was set for comparison with the diagnostic method for detecting a part of the M segment (565 bp) being used by the Korea Centers for Disease Control and Prevention and the Institute for Health and Environment. As a result of the analysis, it was confirmed that the M segment was relatively conservative.
제조예 2. 프라이머의 설계Preparation Example 2. Design of Primer
제조예 1-2로 구축한 중증열성혈소판감소증후군 바이러스 지놈 서열 데이터 베이스 (Severe Fever with Thrombocytopenia Syndrome virus genome sequence DB)와 제조예 1-3으로 구축한 백그라운드 호스트 지놈 데이터 베이스 (background host genome DB)를 활용하여 프라이머 (primer)를 설계하여 표 2에 나타내었다.Severe Fever with Thrombocytopenia Syndrome virus genome sequence DB constructed in Preparation Example 1-2 and the background host genome database constructed in Preparation Example 1-3 A primer was designed and shown in Table 2.
서열
번호
order
number
구분division 명칭designation 서열목록 (5`- -> 3`)Sequence List (5`- -> 3`) bp bp
33 기존방법
첫번째 PCR 정방향 프라이머
existing method
first PCR forward primer
SFTS-MF3SFTS-MF3 GATGAGATGGTCCATGCTGATTCTGATGAGATGGTCCATGCTGATTCT 1708-17311708-1731
44 기존방법
첫번째 PCR 역방향 프라이머
existing method
first PCR reverse primer
SFTS-MR2SFTS-MR2 CTCATGGGGTGGAATGTCCTCACCTCATGGGGTGGAATGTCCTCAC 2245-22672245-2267
55 기존방법
두번째 PCR 정방향 프라이머
existing method
Second PCR Forward Primer
SFTS-2nd-FSFTS-2nd-F TAAACTTGTGTCGTGCAGTAAACTTGTGTCGTGCAG 1731-17501731-1750
66 기존방법
두번째 PCR 역방향 프라이머
existing method
second PCR reverse primer
SFTS-2nd-RSFTS-2nd-R CCCAGCGACATCTCCTTACACCCAGCGACATCTCCTTACA 1956-19751956-1975
77 첫번째 PCR 정방향 프라이머first PCR forward primer SFTS-1FWSFTS-1FW GCTGYGATGAGATGGTCCATGCGCTGYGATGAGATGGTCCATGC 1703-17241703-1724
88 첫번째 PCR 역방향 프라이머first PCR reverse primer SFTS-1RVSFTS-1RV CTCATGGGGTGGAATGTCCTCACCTCATGGGGTGGAATGTCCTCAC 2245-22672245-2267
99 두번째 PCR 정방향 프라이머Second PCR Forward Primer SFTS-2FW-v2SFTS-2FW-v2 ATGAAGGAATGYITCACAACTGGATGAAGGAATGYITCACAACTGG 1765-17871765-1787
1010 두번째 PCR 역방향 프라이머second PCR reverse primer SFTS-2Rev-v2SFTS-2Rev-v2 GTGGAATGTCCTCACITCICCGTGGAATGTCCTCACITCICC 2239-22592239-2259
비교예 1. 중증열성혈소판감소증후군 (SFTS) 감염의심 참진드기류로부터 추출된 핵산의 기존의 RT-PCR 및 Nested RT-PCR을 통한 SFTS 바이러스 검출Comparative Example 1. SFTS virus detection through conventional RT-PCR and nested RT-PCR of nucleic acids extracted from ticks suspected of having severe fever with thrombocytopenia syndrome (SFTS)
중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS) 바이러스를 검출하기 위하여 도 5에 나타낸 바와 같이, 제조예 1에서 확보한 참진드기류의 RNA를 추출한 후 기존의 검출법인 첫번째로 역전사 중합효소 연쇄반응법 (Reverse Transcription Polymerase Chain Reaction; 이하, RT-PCR) 및 두번째로 네스티드 중합효소 연쇄반응법 (Nested Polymerase Chain Reaction; 이하, Nested PCR)을 순차적으로 진행하는 방법으로 검출을 진행하였다.As shown in FIG. 5 in order to detect Severe Fever with Thrombocytopenia Syndrome (SFTS) virus, the RNA of ticks obtained in Preparation Example 1 is extracted and then reverse transcription polymerization is the first conventional detection method. Detection was performed by sequentially performing the Reverse Transcription Polymerase Chain Reaction (hereinafter, RT-PCR) and secondly, the Nested Polymerase Chain Reaction (hereinafter, Nested PCR).
1-1. 첫번째 RT-PCR 검출 시험1-1. First RT-PCR detection test
제조예 1에서 확보한 참진드기류로부터 추출한 RNA와 제조예 2에서 디자인한 프라이머 세트를 이용하여 역전사 (reverse transcription)와 PCR 증폭이 연차적으로 일어나는 RT-PCR을 수행하였다. 구체적인 실험의 조건은 표 3 및 표 4와 같다.RT-PCR was performed in which reverse transcription and PCR amplification were sequentially performed using the RNA extracted from the ticks obtained in Preparation Example 1 and the primer set designed in Preparation Example 2. Specific experimental conditions are shown in Tables 3 and 4.
요소Element 사용량usage
2x PCR 마스터 믹스2x PCR master mix 10 ul10 ul
Primer mix:
기존 첫번째 PCR 정방향 프라이머:
SFTS-MF3 (10pmole/ul)
기존 첫번째 PCR 역방향 프라이머:
SFTS-MR2 (10pmole/ul)
Primer mix:
Existing first PCR forward primer:
SFTS-MF3 (10 pmol/ul)
Existing first PCR reverse primer:
SFTS-MR2 (10 pmol/ul)
1 ul1 ul
RNARNA 5 ul5 ul
Molecular biology grade waterMolecular biology grade water 4 ul4 ul
단계step 온도temperature 시간hour 반복 수number of repetitions
RT reactionRT reaction 50 ℃50 ℃ 30 min30 min 1 cycle1 cycle
Hot starthot start 95 ℃95 ℃ 15 min15 min 1 cycle1 cycle
DenatureDenatures 95 ℃95 ℃ 20 sec20 sec 35 cycle35 cycle
AnnealingAnnealing 62 ℃62 ℃ 40 sec40 sec
ExtensionExtension 72 ℃72 30 sec30 sec
Final extension final extension 72 ℃72 5 min5 min 1 cycle1 cycle
StoreStore 4 ℃4 ℃ foreverforever --
첫번째 진행한 RT-PCR을 통하여, 560 bp의 1차 증폭 산물 (Product)을 수득하였다.Through the first RT-PCR, a 560 bp primary amplification product (Product) was obtained.
1-2. 두번째 Nested PCR 증폭 시험1-2. Second Nested PCR Amplification Test
첫번째 RT-PCR을 거쳐 생성된 PCR 증폭 산물로 두번째 단계인 Nested PCR을 수행하였다. 구체적인 실험의 조건은 표 5 및 표 6과 같다.The second step, nested PCR, was performed with the PCR amplification product generated through the first RT-PCR. Specific experimental conditions are shown in Tables 5 and 6.
요소Element 사용량usage
2x qPCR master mix(with intercalating dye)2x qPCR master mix (with intercalating dye) 10 ul10 ul
Primer mix:
기존 두번째 PCR 정방향 프라이머:
SFTS-2nd-F (10pmole/ul)
기존 두번째 PCR 역방향 프라이머:
SFTS-2nd-R (10pmole/ul)
Primer mix:
Existing second PCR forward primer:
SFTS-2nd-F (10 pmol/ul)
Existing second PCR reverse primer:
SFTS-2nd-R (10 pmol/ul)
1 ul1 ul
첫번째 PCR product first PCR product 1 ul1 ul
Molecular biology grade waterMolecular biology grade water 8 ul8 ul
단계step 온도temperature 시간hour 반복 수number of repetitions
Hot start hot start 94 ℃94 5 min5 min 1 cycle1 cycle
DenatureDenatures 94 ℃94 ℃ 20 sec20 sec 26 cycle26 cycle
AnnealingAnnealing 59 ℃59 ℃ 20 sec20 sec
ExtensionExtension 72 ℃72 20 sec20 sec
Final extension final extension 72 ℃72 5 min5 min 1 cycle1 cycle
StoreStore 4 ℃4 ℃ foreverforever --
두 번째 단계인 Nested PCR을 마친 후, 아가로스 젤 2.0 % Mupid 전기 영동장치에 130 v로 20 분간 전기 영동 하여 245 bp의 2차 증폭 산물을 확인하였다 (도 6).After the second step, nested PCR, was electrophoresed in an agarose gel 2.0% Mupid electrophoresis apparatus at 130 v for 20 minutes to confirm a secondary amplification product of 245 bp (FIG. 6).
도 6에 나타낸 바와 같이, RT-PCR 및 Nested PCR을 순차적으로 수행한 비교예 1의 방법으로 SFTS 바이러스를 검출할 경우, 245 bp의 분절을 증폭하기 때문에 생어 시퀀싱 (Sanger sequencing) 과정 중 QC 단계에서 상당 부분의 데이터가 손실될 수 있다. 또한, 전기 영동을 추가로 수행해야 한다는 점에서 절차가 복잡하고 전반적인 PCR 러닝 시간이 오래 소요된다는 단점이 있다.As shown in FIG. 6 , when the SFTS virus is detected by the method of Comparative Example 1 in which RT-PCR and nested PCR are sequentially performed, a 245 bp segment is amplified, so in the QC step during the Sanger sequencing process. A significant amount of data may be lost. In addition, there are disadvantages in that the procedure is complicated and the overall PCR running time is long in that electrophoresis must be additionally performed.
실시예 1. RT-PCR 및 Nested-Realtime PCR 검출법을 통한 중증열성혈소판감소증후군 (SFTS) 바이러스와 양성 대조군의 증폭 및 음성 대조군과의 비교Example 1. Amplification of Severe Fever Thrombocytopenia Syndrome (SFTS) Virus and Positive Control and Comparison with Negative Control by RT-PCR and Nested-Realtime PCR Detection Method
제조예 2 표 2의 서열번호 5 내지 8로 설계한 프라이머의 멜팅 피크 (melting peak) 온도와 PCR 증폭 산물의 사이즈를 확인하고자 첫번째 역전사 중합효소 연쇄반응법 (Reverse Transcription Polymerase Chain Reaction; 이하, RT-PCR) 및 두번째 네스티드 리얼타임 중합효소 연쇄반응법 (Nested Realtime Polymerase Chain Reaction; 이하, Nested-Realtime PCR)을 순차적으로 진행하였다.Preparation Example 2 In order to confirm the melting peak temperature and the size of the PCR amplification product of the primers designed with SEQ ID NOs: 5 to 8 in Table 2, the first reverse transcription polymerase chain reaction method (Reverse Transcription Polymerase Chain Reaction; hereafter, RT- PCR) and the second nested realtime polymerase chain reaction (Nested Realtime Polymerase Chain Reaction; hereinafter, Nested-Realtime PCR) were sequentially performed.
1-1. 첫번째 RT-PCR 증폭 시험1-1. First RT-PCR amplification test
중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS) 바이러스 배양액, 인공 합성한 양성대조군 서열 (표1, 서열번호 2) 및 제조예 2에서 디자인한 프라이머 세트를 이용하여 역전사 (reverse transcription)와 PCR이 연차적으로 일어나는 RT-PCR을 수행하였다. 구체적인 실험의 조건은 표 7, 표 8과 같다.Severe Fever with Thrombocytopenia Syndrome (hereinafter, SFTS) virus culture medium, artificially synthesized positive control sequence (Table 1, SEQ ID NO: 2) and the primer set designed in Preparation Example 2 Reverse transcription (reverse transcription) and RT-PCR in which PCR is performed sequentially was performed. Specific experimental conditions are shown in Tables 7 and 8.
요소Element 사용량usage
2x PCR 마스터 믹스2x PCR master mix 10 ul10 ul
Primer mix:
첫번째 PCR 정방향 프라이머:
SFTS-1FW (10pmole/ul)
첫번째 PCR 역방향 프라이머:
SFTS-1RV (10pmole/ul)
Primer mix:
First PCR forward primer:
SFTS-1FW (10pmole/ul)
First PCR reverse primer:
SFTS-1RV (10 pmol/ul)
1 ul1 ul
RNARNA 5 ul5 ul
Molecular biology grade waterMolecular biology grade water 4 ul4 ul
단계step 온도temperature 시간hour 반복 수number of repetitions
RT reactionRT reaction 50 ℃50 ℃ 10 min10 min 1 cycle1 cycle
Hot starthot start 95 ℃95 5 min5 min 1 cycle1 cycle
DenatureDenatures 95 ℃95 ℃ 20 sec20 sec 30 cycle30 cycle
AnnealingAnnealing 62 ℃62 ℃ 20 sec20 sec
ExtensionExtension 72 ℃72 30 sec30 sec
1-2. 두번째 Nested-Realtime PCR 후 융해곡선 및 전기 영동 분석결과1-2. Melting curve and electrophoresis analysis result after the second nested-realtime PCR
첫번째 RT-PCR을 거쳐 생성된 PCR 증폭 산물 (product)로 두번째 단계인 Nested-Realtime PCR을 수행하였다. 구체적인 실험의 조건은 표 9 및 표 10에 따라 수행하였고, SYBR 그린 (SYBR green)을 형광 표지물질로 사용하여 PCR 산물의 증폭량을 실시간으로 신속하게 확인하였다.The second step, Nested-Realtime PCR, was performed with the PCR amplification product generated through the first RT-PCR. Specific experimental conditions were performed according to Tables 9 and 10, and the amount of PCR product amplification was quickly confirmed in real time by using SYBR green as a fluorescent label.
주형 (template) 초기량의 log값은 역치 사이클 (threshold cycle)과 직선적으로 비례하는 관계를 가지기 때문에 초기량을 알고 있는 핵산을 이용하여 초기량의 로그 (log)값과 그에 해당하는 역치 사이클을 이용하여 표준 검량 곡선을 얻을 수 있고, 이 표준 검광곡선을 이용하면 미지의 검체에 대한 초기량을 정확하게 계산해 낼 수 있다.Since the log value of the initial amount of the template has a linear relationship with the threshold cycle, the log value of the initial amount and the corresponding threshold cycle are used using nucleic acids with known initial amounts. Thus, a standard calibration curve can be obtained, and by using this standard calibration curve, the initial amount for an unknown sample can be accurately calculated.
이와 같은 방법으로 SFTS를 검출한 결과를 도 7a 및 도 7b에 나타내었다.The results of detecting SFTS in this way are shown in FIGS. 7A and 7B .
요소Element 사용량usage
2x qPCR master mix(with intercalating dye)2x qPCR master mix (with intercalating dye) 10 ul10 ul
Primer mix:
두번째 PCR 정방향 프라이머:
SFTS-2Fw-v2 (10pmole/ul)
두번째 PCR 역방향 프라이머:
SFTS-2Rev-v2 (10pmole/ul)
Primer mix:
Second PCR forward primer:
SFTS-2Fw-v2 (10pmole/ul)
Second PCR reverse primer:
SFTS-2Rev-v2 (10pmole/ul)
1 ul1 ul
첫번째 PCR product first PCR product 1 ul1 ul
Molecular biology grade waterMolecular biology grade water 8 ul8 ul
단계step 온도temperature 시간hour 반복 수number of repetitions
Hot starthot start 95 ℃95 3 min3 min 1 cycle1 cycle
DenatureDenatures 95 ℃95 ℃ 15 sec15 sec 25 cycle25 cycle
AnnealingAnnealing 62 ℃62 ℃ 20 sec20 sec
ExtensionExtension 72 ℃72 20 sec20 sec
Melting peakMelting peak 75 ~ 95 ℃75~95℃ 0.5 ℃ step
30 sec hold
0.5 ℃ step
30 sec hold
Step and HoldStep and Hold
StoreStore 16 ℃16 ℃ ForeverForever --
도 7a에 나타낸 바와 같이, 실제 양성시료의 경우 융해곡선 온도는 86 내지 87 ℃ 범위 근처, 합성 유전자로 대체한 양성 대조군의 경우 83 내지 84 ℃ 범위 근처로 나타났으며, 음성대조군에서는 융해곡선이 관찰되지 않았다.As shown in Fig. 7a, in the case of the actual positive sample, the melting curve temperature was in the range of 86 to 87 ° C, and in the case of the positive control replaced with a synthetic gene, it was in the range of 83 to 84 ° C. The melting curve was observed in the negative control group. It didn't happen.
Nested-Realtime PCR의 결과값 분석 후, 실시예 1의 방법을 통한 PCR의 최종 증폭 산물의 크기를 비교하기 위하여 추가로 전기 영동을 진행하였다. 아가로스 젤 2.0 % Agaro-Power쪠 System 전기 영동장치에 140 V 로 30 분간 전기 영동 하였다 (도 7b).After analyzing the results of nested-realtime PCR, electrophoresis was additionally performed to compare the size of the final amplified product of PCR through the method of Example 1. Electrophoresis was performed on an agarose gel 2.0% Agaro-Power System electrophoresis device at 140 V for 30 minutes (FIG. 7b).
도 7b에 나타낸 바와 같이, 실제 양성시료의 경우 530 bp, 합성 유전자로 대체한 양성 대조군의 경우 184 bp로 표현되었으며, 음성 대조군에서는 PCR 증폭 산물이 관찰되지 않았다.As shown in FIG. 7b , the actual positive sample was expressed as 530 bp, and the positive control replaced with the synthetic gene was expressed as 184 bp, and no PCR amplification product was observed in the negative control.
이를 통하여, 융해 곡선 온도가 86 내지 87 ℃이며, 전기 영동상에서 530 bp PCR 증폭 산물이 관찰될 경우 SFTS 바이러스가 존재한다고 판단할 수 있다.Through this, when the melting curve temperature is 86 to 87° C. and a 530 bp PCR amplification product is observed on the electrophoresis, it can be determined that the SFTS virus is present.
실시예 2. 중증열성혈소판감소증후군 (SFTS) 감염의심 참진드기류로부터 추출된 핵산의 RT-PCR 및 Nested-Realtime PCR을 통한 SFTS 바이러스 검출Example 2. SFTS virus detection by RT-PCR and nested-realtime PCR of nucleic acids extracted from ticks suspected of having severe fever with thrombocytopenia syndrome (SFTS)
중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome; 이하, SFTS) 바이러스를 검출하기 위하여 도 8a에 나타낸 바와 같이, 제조예 1에서 확보한 참진드기류의 RNA를 추출한 후, 첫번째 역전사 중합효소 연쇄반응법 (Reverse Transcription Polymerase Chain Reaction; 이하, RT-PCR) 및 두 번째 네스티드 리얼타임 중합효소 연쇄반응법 (Nested Realtime Polymerase Chain Reaction; 이하, Nested-Realtime PCR)을 순차적으로 수행하였다. 다만, 본 발명에서의 최종 산물의 크기를 육안으로 확인하기 위하여 전기 영동을 추가로 실시하였다 (도 8b). 최종 증폭 산물의 크기는 겔 , 모세관 전기 영동, DNA 칩, 방사성 측정, 형광 측정 및 인광 측정 등으로 가능하다. 본 발명의 실제 검사방법에서는 도 8a와 같이 SYBR 그린 (SYBR green)을 증폭된 DNA에 결합시키고, 증폭된 DNA에 결합된 SYBR 그린이 형광신호를 발생할 때, 이러한 형광신호를 검출하여 표적 유전자의 존재 여부 및 이로부터의 증폭 산물의 생산량을 측정하는 방법인 Nested-Realtime PCR로 최종 증폭 산물을 측정하여 검출 진단을 진행하며 특이적인 산물은 융해곡선 분석을 통해 결과를 판단할 수 있다. 즉, 추가적인 전기 영동 과정을 요구하지 않는다.As shown in FIG. 8a to detect Severe Fever with Thrombocytopenia Syndrome (SFTS) virus, after extracting the RNA of ticks obtained in Preparation Example 1, the first reverse transcription polymerase chain reaction method (Reverse Transcription Polymerase Chain Reaction; hereinafter, RT-PCR) and the second nested realtime polymerase chain reaction (Nested Realtime Polymerase Chain Reaction; hereinafter, Nested-Realtime PCR) were sequentially performed. However, in order to visually confirm the size of the final product in the present invention, electrophoresis was additionally performed (FIG. 8b). The size of the final amplification product can be measured by gel, capillary electrophoresis, DNA chip, radiometric measurement, fluorescence measurement, and phosphorescence measurement. In the actual test method of the present invention, as shown in FIG. 8a, SYBR green is bound to the amplified DNA, and when SYBR green bound to the amplified DNA generates a fluorescence signal, the fluorescence signal is detected to detect the presence of the target gene. The final amplification product is measured by Nested-Realtime PCR, which is a method of measuring whether or not the amplification product is produced therefrom, and the detection and diagnosis is carried out, and the specific product can be determined through melting curve analysis. That is, it does not require an additional electrophoresis process.
2-1. 첫번째 RT-PCR 검출 시험2-1. First RT-PCR detection test
제조예 1에서 확보한 참진드기류로부터 추출한 RNA와 제조예 2에서 디자인한 프라이머 세트를 이용하여 역전사 (reverse transcription)와 PCR이 연차적으로 일어나는 RT-PCR을 수행하였다. 구체적인 시료 및 실험의 조건은 실시예 1-1의 표 7 내지 표 8과 같다. 생성된 PCR 산물은 실험실 환경 오염을 방지하기 위해 전기 영동 없이 바로 PCR 스테이션 (station) 내에서 바로 2 차 PCR의 주형 (template)으로 사용하였다.RT-PCR in which reverse transcription and PCR were performed sequentially was performed using the RNA extracted from the ticks obtained in Preparation Example 1 and the primer set designed in Preparation Example 2. Specific samples and experimental conditions are shown in Tables 7 to 8 of Example 1-1. The generated PCR product was used as a template for secondary PCR immediately in a PCR station without electrophoresis in order to prevent contamination of the laboratory environment.
2-2. 두번째 Nested-Realtime PCR 검출 시험2-2. Second Nested-Realtime PCR Detection Test
첫번째 RT-PCR을 거쳐 생성된 PCR 증폭 산물 (product)로 두번째 단계인 Nested-Realtime PCR)을 수행하였다. 구체적인 실험의 조건은 실시예 1-2의 표 9 내지 표 10과 같다. 이에 따라 실험을 수행하여 결과를 나타내었다 (도 9a 및 9b).The second step (Nested-Realtime PCR) was performed with the PCR amplification product generated through the first RT-PCR. Specific experimental conditions are shown in Tables 9 to 10 of Example 1-2. Accordingly, an experiment was performed and the results were shown ( FIGS. 9A and 9B ).
도 9a에 나타낸 바와 같이, Nested-Realtime PCR 융해곡선 분석결과 총 32개 시료 중 25개 시료에서 86 ℃ 부근의 양성의심 결과가 확인되었고 7개 시료에선 융해곡선이 관찰되지 않았다.As shown in FIG. 9A , as a result of nested-realtime PCR melting curve analysis, a positive suspicious result was confirmed around 86° C. in 25 samples out of a total of 32 samples, and no melting curve was observed in 7 samples.
네스티드 실시간 중합효소 연쇄반응법 값 분석 후, 실시예 2의 방법을 통한 PCR의 최종 증폭 산물의 크기를 비교하기 위하여 추가로 전기 영동을 진행하였다 (도 8b 참조). 아가로스 젤 2.0 % Agaro-PowerTM System 전기 영동 장치에 140 V 로 30 분간 전기 영동 하였다 (도 9b).After the nested real-time polymerase chain reaction value analysis, electrophoresis was further performed to compare the size of the final amplification product of PCR through the method of Example 2 (see FIG. 8b ). Electrophoresis was performed on an agarose gel 2.0% Agaro-Power TM System electrophoresis device at 140 V for 30 minutes (FIG. 9b).
도 9b에 나타낸 바와 같이, 495bp의 최종 증폭 산물을 얻었으며, 비교예 1의 방법으로 SFTS 바이러스를 검출할 경우 보다 데이터 손실이 적기 때문에 비교 분석할 서열의 수가 많으며, 따라서 환자-매개체 서열 상호 비교의 신뢰성이 높음을 확인하였다. 또한, 비교예 1의 방법 대비 실시예 1의 방법으로 SFTS 바이러스를 검출하였을 때 최종 증폭 산물의 검출 시간이 약 한 시간 이상 단축될 수 있음을 확인하였다.As shown in FIG. 9B, a final amplification product of 495 bp was obtained, and the number of sequences to be compared and analyzed is large because there is less data loss than when the SFTS virus is detected by the method of Comparative Example 1 It was confirmed that the reliability was high. In addition, it was confirmed that when the SFTS virus was detected by the method of Example 1 compared to the method of Comparative Example 1, the detection time of the final amplification product could be shortened by about one hour or more.
실시예 3. 비교예 1의 RT-PCR 및 Nested RT-PCR을 이용한 중증열성혈소판감소증후군 (SFTS) 바이러스 검출 방법과 실시예 2의 RT-PCR 및 Nested-Realtime PCR을 이용한 SFTS 검출 방법의 민감성 비교Example 3. Sensitivity comparison of the method of detecting severe fever with thrombocytopenia syndrome (SFTS) using RT-PCR and nested RT-PCR of Comparative Example 1 and RT-PCR and Nested-Realtime PCR of Example 2
비교예 1의 RT-PCR 및 Nested RT-PCR의 검출 민감도를 확인하기 위하여 질병관리본부 매개체 분석과에서 분양 받은 SFTS B type RNA를 2-1 내지 2-10으로 농도별로 두 배씩 희석한 후, RT-PCR 민감성 (sensitivity)을 확인하였다. PCR 증폭 산물의 확인을 위하여 아가로스 젤 2.0 % Agaro-PowerTM System 전기 영동장치에 140 v로 30 분간 전기 영동 하였고, 그 결과 560 bp의 증폭 산물을 얻었다 (도 10a).In order to confirm the detection sensitivity of the RT-PCR and nested RT-PCR of Comparative Example 1, SFTS B type RNA distributed from the Centers for Disease Control and Prevention Center was diluted twice for each concentration with 2 -1 to 2 -10 , followed by RT -PCR sensitivity was confirmed. To confirm the PCR amplification product, electrophoresis was performed on an agarose gel 2.0% Agaro-Power TM System electrophoresis device at 140 v for 30 minutes, and as a result, an amplification product of 560 bp was obtained (FIG. 10a).
또한, 도 10a로 확인된 PCR 증폭 산물을 주형 (Template)로 비교예 1의 Nested PCR로 2차 PCR을 수행하였고, 최종적으로 2-1 내지 2-5까지 SFTS B type RNA에서 245 bp의 PCR 증폭 산물이 확인되었다 (도 10b). 다만, 그 이후의 희석배수에서는 PCR 증폭 산물이 확인되지 않았다.In addition, secondary PCR was performed with the nested PCR of Comparative Example 1 using the PCR amplification product confirmed in FIG. 10a as a template, and finally, PCR amplification of 245 bp from SFTS B type RNA from 2 -1 to 2 -5 The product was identified (Fig. 10b). However, no PCR amplification products were identified in subsequent dilutions.
실시예 2의 RT-PCR 및 Nested-Realtime PCR을 이용한 SFTS 검출 방법의 민감도를 확인하기 위하여 질병관리본부 매개체분석과에서 분양 받은 SFTS B type RNA를 2-1 내지 2-10으로 농도별로 두 배씩 희석한 후, RT-PCR을 진행하여 민감성 (Sensitivity)을 확인하였다.In order to confirm the sensitivity of the SFTS detection method using RT-PCR and nested-realtime PCR of Example 2, SFTS B type RNA distributed from the Centers for Disease Control and Prevention's Mediation Analysis Division was diluted twice by concentration with 2 -1 to 2 -10 . After that, RT-PCR was performed to confirm sensitivity.
아가로스 젤 2.0 % A Agaro-Power™ System 전기 영동장치에 140 V로 30분간 전기 영동하였고, 565 bp의 증폭 산물을 얻었다 (도 10c).Agarose gel 2.0% A was electrophoresed in an Agaro-Power™ System electrophoresis device at 140 V for 30 minutes, and an amplification product of 565 bp was obtained (FIG. 10c).
도 10c에 확인된 PCR 증폭 산물을 주형 (template)으로 실시예 2의 Nested-Realtime PCR 방법으로 2차 PCR을 수행하였고, 그 결과 2-1 내지 2-10으로 희석한 모든 RNA 시료에서 496 bp의 PCR 증폭 산물이 확인되었다 (도 10d).Secondary PCR was performed by the nested-realtime PCR method of Example 2 using the PCR amplification product identified in FIG. 10c as a template, and as a result, in all RNA samples diluted with 2 -1 to 2 -10 , PCR amplification products were identified (Fig. 10d).
이를 통하여, 기존의 RT-PCR 및 Nested PCR을 이용한 SFTS 바이러스 검출법 (비교예 1)은 SFTS B type RNA의 2-5 희석까지만 검출 가능하였으나, RT-PCR 및 Nested-Realtime PCR을 이용한 SFTS 바이러스 검출법 (실시예 2)는 2-10까지 희석하여도 검출이 가능한 것을 확인하였다.Through this, the conventional SFTS virus detection method using RT-PCR and nested PCR (Comparative Example 1) could detect only 2-5 dilutions of SFTS B type RNA, but the SFTS virus detection method using RT-PCR and nested-realtime PCR ( Example 2) was confirmed to be detectable even after dilution to 2 -10 .
실시예 4. RT-PCR 및 Nested-Realtime PCR로 증폭된 시료를 이용한 시퀀싱 및 계통의 분석Example 4. Sequencing and lineage analysis using samples amplified by RT-PCR and Nested-Realtime PCR
RT-PCR 및 Nested-Realtime PCR로 증폭시킨 실시예 2의 PCR 검사 대상 시료 40 개 중에서 실제로 PCR 증폭 산물을 수득한 33 개의 PCR 증폭 산물의 시퀀싱 결과를 하기 표 11에 나타내었다. 또한, 확보한 시퀀스 블라스트 (Blast)결과를 표 12에 나타내었다.Table 11 shows the sequencing results of 33 PCR amplification products actually obtained from the 40 PCR test samples of Example 2 amplified by RT-PCR and nested-realtime PCR. In addition, the secured sequence blast (Blast) results are shown in Table 12.
서열
번호
order
number
시료번호sample number 서열목록 (5'---> 3')Sequence Listing (5'---> 3')
88 1One ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
99 22 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGATTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCACTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGATATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGATTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCACTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGATATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1010 44 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1111 55 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1212 66 GAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTGAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACCGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCAAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGCATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA GAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTGAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACCGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCAAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGCATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
1313 77 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1414 88 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1515 99 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1616 1010 GAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
1717 1111 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
1818 1212 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
1919 1313 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2020 1414 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCAAGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAGATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCAAGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAGATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2121 1515 AGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCAGGGAGTCCGGACTCAAAATGTCTCAAAATCAAAGTTAAGAGGATTAACCTGAAATGCAAGAAGTCATCATCATATTTCGTTCCTGATGCTCGGTCCAGATGTACATCTGTGAGGAGATGCCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTTTCTGATGATTGGGCAGGTAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCTGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCCTCATGCATCTTCTGGAGGAAATGGGTGGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCATCAGCAGTCATAGAGCTAACAATGCCCTCAGGCGACGTGAGGACATTCCAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCAGGGAGTCCGGACTCAAAATGTCTCAAAATCAAAGTTAAGAGGATTAACCTGAAATGCAAGAAGTCATCATCATATTTCGTTCCTGATGCTCGGTCCAGATGTACATCTGTGAGGAGATGCCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTTTCTGATGATTGGGCAGGTAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCTGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCCTCATGCATCTTCTGGAGGAAATGGGTGGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCATCAGCAGTCATAGAGCTAACAATGCCCTCAGGCGACGTGAGGACATTCCA
2222 1616 GAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCGTATTTTGTTCCTGATGCTCGATCCAGGTGTATATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGCGCTCAGATGGATGTGGAGGAGCAGCCCGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCGTATTTTGTTCCTGATGCTCGATCCAGGTGTATATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGCGCTCAGATGGATGTGGAGGAGCAGCCCGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
2323 1717 GAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAGAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTCCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAGAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTCCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
2424 1818 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGTGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGTGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2525 1919 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2626 2121 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGGCTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGGCTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2727 2222 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
2828 2323 CGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTAAGAACATTCCACCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTAAGAACATTCCAC
2929 2424 GAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGAACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAAAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGAACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAAAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCA
3030 2525 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3131 2828 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3232 3030 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTAGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAGTGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGTGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGGTGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTAGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAGTGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGTGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGGTGCCCTCGGGCGACGTGAGGACATTCCAC
3333 3131 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCATCCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCATCCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3434 3232 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3535 3333 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3636 3636 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGGATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGGATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3737 3939 ACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGCGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTTAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGTAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
3838 4040 ACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTCAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGCAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCACACATGAAGGAATGTGTCACAACTGGGAGGGCGCTCCTTCCTGCGGTGAACCCAGGACAAGAGGCATGTCTGCACTTCACGGCACCTGGGAGCCCGGACTCAAAATGTCTCAAAATCAAGGTTAAGAGGATCAACCTAAAATGTAAGAAGTCATCATCATATTTTGTTCCTGATGCTCGATCCAGGTGTACATCTGTGAGGAGATGTCGCTGGGCAGGAGACTGTCAGTCTGGGTGCCCCTCTCATTTCACGTCCAACTCCTTCTCTGATGATTGGGCAGGAAAAATGGACAGGGCTGGTCTAGGATTCAGTGGGTGCTCAGATGGATGTGGAGGAGCAGCCTGCGGCTGCTTCAATGCGGCCCCTTCATGCATCTTTTGGAGGAAATGGGCAGAGAATCCACATGGGATCATCTGGAAAGTATCTCCATGTGCTGCATGGGTCCCTTCAGCAGTCATAGAGCTAACGATGCCCTCGGGCGACGTGAGGACATTCCAC
시료번호sample number 대상acc.verTarget acc.ver % 동일성% identity 정렬길이sort length 불일치Inconsistency 갭 오픈gap open q.스타트q. start q. 엔드q. end s. 스타트s. start s. 엔드s. end E-
밸류
E-
value
bit 스코어bit score
1One KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
22 KU507548.1KU507548.1 98.59298.592 497497 77 00 1One 497497 17631763 22592259 00 880880
44 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
55 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
66 KU507548.1KU507548.1 98.36198.361 488488 88 00 1One 488488 17711771 22582258 00 857857
77 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
88 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
99 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
1010 KU507548.1KU507548.1 99.38599.385 488488 33 00 1One 488488 17711771 22582258 00 885885
1111 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
1212 KU507548.1KU507548.1 99.19499.194 496496 44 00 1One 496496 17631763 22582258 00 894894
1313 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
1414 KU507548.1KU507548.1 98.59298.592 497497 77 00 1One 497497 17631763 22592259 00 880880
1515 LC516197.1LC516197.1 99.18499.184 490490 44 00 1One 490490 17121712 22012201 00 883883
1616 KU507548.1KU507548.1 98.36198.361 488488 88 00 1One 488488 17711771 22582258 00 857857
1717 KU507548.1KU507548.1 98.7798.77 488488 66 00 1One 488488 17711771 22582258 00 869869
1818 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
1919 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
2121 KU507548.1KU507548.1 98.79398.793 497497 66 00 1One 497497 17631763 22592259 00 885885
2222 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
2323 KU507548.1KU507548.1 99.35899.358 467467 33 00 1One 467467 17931793 22592259 00 846846
2424 KU507548.1KU507548.1 98.7798.77 488488 66 00 1One 488488 17711771 22582258 00 869869
2525 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
2828 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
3030 KU507548.1KU507548.1 98.18998.189 497497 99 00 1One 497497 17631763 22592259 00 869869
3131 KU507548.1KU507548.1 98.79398.793 497497 66 00 1One 497497 17631763 22592259 00 885885
3232 KU507548.1KU507548.1 99.19599.195 497497 44 00 1One 497497 17631763 22592259 00 896896
3333 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
3636 KU507548.1KU507548.1 98.79398.793 497497 66 00 1One 497497 17631763 22592259 00 885885
3939 KU507548.1KU507548.1 98.99498.994 497497 55 00 1One 497497 17631763 22592259 00 891891
4040 KU507548.1KU507548.1 98.79398.793 497497 66 00 1One 497497 17631763 22592259 00 885885
상기 표 12의 KU507548.1 유전자는 중증열성혈소판감소증후군 바이러스 분리 KADGH 분절 (segment) M의 완전한 서열이다.The KU507548.1 gene in Table 12 is the complete sequence of KADGH segment M isolated from severe fever with thrombocytopenia syndrome virus.
또한, 표 12의 LC516197.1 유전자는 부분 코딩 시퀀스 (coding sequence; cds) 중 다가 단백질 당단백질 막에 대한 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome, 이하, SFTS) 바이러스 JNU-1 유전자이다.In addition, the LC516197.1 gene of Table 12 is a Severe Fever with Thrombocytopenia Syndrome (SFTS) virus JNU-1 gene for a multivalent protein glycoprotein membrane among partial coding sequences (cds).
표 11 및 12과 같이 확보한 시퀀싱 데이터 중에서 1, 2, 4, 6, 7 및 8번 시료를 선택하여 계통 분석을 실시하였다 (도 11).From the sequencing data obtained as shown in Tables 11 and 12, samples 1, 2, 4, 6, 7, and 8 were selected and subjected to phylogenetic analysis (FIG. 11).
도 11에 나타낸 바와 같이, Nested-Realtime PCR을 이용한 중증열성혈소판감소증후군 바이러스 검출법 (실시예 2)을 수행하였을 때, PCR 산물의 길이가 짧은 일반적인 택맨 프로브 (Taqman probe) 방식으로는 분석할 수 없는 계통 분석도 가능한 것을 확인하였다. 또한, 계통학적으로 참진드기류 내의 각각의 유전자형으로 잘 분리되는 것을 확인할 수 있었다.11, when the severe fever thrombocytopenia syndrome virus detection method using nested-realtime PCR (Example 2) is performed, the PCR product cannot be analyzed by the general Taqman probe method with a short length. It was confirmed that phylogenetic analysis was also possible. In addition, it could be confirmed that phylogenetically, it was well separated into each genotype in the mites.
RT-PCR 및 Nested PCR로 검출하는 방법 (비교예 1)의 PCR 증폭 산물 및 RT-PCR 및 Nested Real-time PCR로 검출하는 방법 (실시예 2)의 PCR 증폭 산물을 생어 (Sanger) 방식의 시퀀싱을 하였을 때 기존의 RT-PCR 및 Nested PCR로 검출하는 방법 (비교예 1)에 비하여 RT-PCR 및 Nested Real-time PCR로 검출하는 방법 (실시예2)은 서열 길이가 비교적 길게 나오는 것으로 확인되었다 (도 12a).Sanger-style sequencing of the PCR amplification product of the detection method by RT-PCR and nested PCR (Comparative Example 1) and the PCR amplification product of the detection method by RT-PCR and nested real-time PCR (Example 2) It was confirmed that the sequence length of the method (Example 2) for detection by RT-PCR and Nested Real-time PCR (Example 2) was relatively long compared to the conventional method for detection by RT-PCR and nested PCR (Comparative Example 1). (Fig. 12a).
또한, 기존의 RT-PCR 및 Nested PCR로 검출하는 방법 (기존방법; 비교예 1)에 비하여 RT-PCR 및 Nested Real-time PCR로 검출하는 방법 (본 방법; 실시예 2)으로 각각 증폭된 증폭 산물을 블라스트 (Blast) 분석하여 SFTS 바이러스 자체의 서열과 비교하였을 때, RT-PCR 및 Nested Real-time PCR로 검출하는 방법 (본 방법; 실시예 2)은 BLAST(basic local alignment search tool) 분석을 일치/불일치 점수 (match/mismatch scoring)를 각각 +1, -2로 설정하고 갭 코스츠 (gap costs)를 선형으로 (linear) 수행한 결과, 기본방법 (비교예 1)에 비하여 본 방법 (실시예 2)로 증폭된 증폭 산물의 전체 점수 (도 12b) 및 정체성 지수 (도 12c)가 높은 것으로 확인되었다. 또한, E-value (표 12)는 0으로 우연히 SFTS 이외의 서열에 매치되었을 확률은 0 %인 것으로 확인되었다.In addition, the amplification amplified by the detection method by RT-PCR and nested real-time PCR (this method; Example 2) compared to the conventional detection method by RT-PCR and nested PCR (existing method; Comparative Example 1) When the product was analyzed by blast and compared with the sequence of the SFTS virus itself, the method for detection by RT-PCR and nested real-time PCR (this method; Example 2) is BLAST (basic local alignment search tool) analysis. As a result of setting match/mismatch scoring to +1 and -2, respectively, and linearly performing gap costs, the present method (execution of Comparative Example 1) compared to the basic method (Comparative Example 1). It was confirmed that the overall score (Fig. 12b) and identity index (Fig. 12c) of the amplified product amplified in Example 2) were high. In addition, the E-value (Table 12) was 0, and it was confirmed that the probability of accidentally matching a sequence other than SFTS was 0%.
따라서, 기존에 국내에서 활용 중인 참진드기류 감염여부 판별용 검출 방법은 사용하는 Nested PCR 프라이머의 민감도도 낮고, 서열 분석에도 어려움이 있으나, 본 발명을 통하여 민감도 문제 및 서열 분석을 통한 SFTS 환자-감염 추정지역의 참진드기 SFTS 간의 상관관계를 보다 명확하게 파악하는데 도움을 줄 수 있을 것으로 판단된다.Therefore, the existing detection method for determining whether tick infection is present in Korea has low sensitivity of the nested PCR primer and difficulty in sequence analysis, but through the present invention, sensitivity problem and SFTS patient-infection through sequence analysis It is judged that it can help to more clearly understand the correlation between SFTS of ticks in the estimated area.
본 발명은 참진드기류에 의해 전파되는 중증열성혈소판감소증후군 (Severe Fever with Thrombocytopenia Syndrome) 바이러스 검출용 프라이머 세트 및 이를 이용한 진단용 키트에 관한 것이다.The present invention relates to a primer set for detecting Severe Fever with Thrombocytopenia Syndrome virus transmitted by ticks and a diagnostic kit using the same.

Claims (8)

  1. 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; and
    서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
    를 포함하는 중증열성혈소판증후군 (Severe Fever with Thrombocytopenia Syndrome, SFTS) 바이러스 검출용 조성물.A composition for detecting Severe Fever with Thrombocytopenia Syndrome (SFTS) virus comprising a.
  2. 제1항에 있어서, 상기 제1 또는 제2 프라이머 세트는 중증열성혈소판증후군 바이러스의 S 분절 (small segment, S segment), M 분절 (Medium segment, M segment) 및 L 분절 (Large segment, L segment)으로 이루어진 군에서 선택된 하나 이상의 분절에 상보적으로 결합하는 것인 중증열성혈소판증후군 바이러스 검출용 조성물.According to claim 1, wherein the first or the second primer set S segment (small segment, S segment), M segment (Medium segment, M segment) and L segment (Large segment, L segment) of the severe fever with thrombocytopenia syndrome virus A composition for detecting severe fever with thrombocytopenia syndrome that is complementary to one or more segments selected from the group consisting of.
  3. 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트; 및a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8; and
    서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트;a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10;
    를 포함하는 중증열성혈소판증후군 (Severe Fever with Thrombocytopenia Syndrome, SFTS) 바이러스 검출용 조성물을 포함하는, 중증열성혈소판증후군 진단용 키트.A kit for diagnosing severe fever with thrombocytopenia syndrome, including a composition for detecting the Severe Fever with Thrombocytopenia Syndrome, SFTS virus.
  4. 다음의 단계를 포함하는 중증열성혈소판증후군 (Severe Fever with Thrombocytopenia Syndrome, SFTS) 진단을 위한 정보를 제공하는 방법:A method of providing information for diagnosing Severe Fever with Thrombocytopenia Syndrome (SFTS) comprising the steps of:
    대상체로부터 분리한 RNA를 주형으로 RT-PCR (Reverse Transcription Polymerase Chain Reaction) 증폭을 수행하는 제1 증폭 단계;A first amplification step of performing RT-PCR (Reverse Transcription Polymerase Chain Reaction) amplification using the RNA isolated from the subject as a template;
    상기 제1 증폭 단계에서 증폭된 PCR 증폭 산물을 주형으로 Nested-Realtime PCR (Nested Realtime Polymerase Chain Reaction)을 순차적으로 증폭을 수행하는 제2 증폭 단계; 및a second amplification step of sequentially amplifying Nested-Realtime PCR (Nested Realtime Polymerase Chain Reaction) using the PCR amplification product amplified in the first amplification step as a template; and
    상기 제2 증폭 단계에서 증폭된 PCR 증폭 산물을 확인하는 확인 단계.A confirmation step of confirming the PCR amplification product amplified in the second amplification step.
  5. 제4항에 있어서, 제1 증폭 단계는 서열번호 7의 정방향 프라이머 및 서열번호 8의 역방향 프라이머로 구성된 제1 프라이머 세트를 이용하여 수행되는 것인, 중증열성혈소판증후군 진단을 위한 정보를 제공하는 방법.The method of claim 4, wherein the first amplification step is performed using a first primer set consisting of a forward primer of SEQ ID NO: 7 and a reverse primer of SEQ ID NO: 8. .
  6. 제4항에 있어서, 제2 증폭 단계는 서열번호 9의 정방향 프라이머 및 서열번호 10의 역방향 프라이머로 구성된 제2 프라이머 세트를 이용하여 수행되는 것인, 중증열성혈소판증후군 진단을 위한 정보를 제공하는 방법.The method of claim 4, wherein the second amplification step is performed using a second primer set consisting of a forward primer of SEQ ID NO: 9 and a reverse primer of SEQ ID NO: 10. .
  7. 제4항에 있어서, 상기 확인 단계는 융해곡선온도가 80 내지 90 ℃인 경우 중증열성혈소판증후군 감염 여부를 양성으로 판단하는 것인, 중증열성혈소판증후군 감염의 진단을 위한 정보를 제공하는 방법.[Claim 5] The method of claim 4, wherein in the confirming step, when the melting curve temperature is 80 to 90 ° C., it is determined whether the severe fever thrombocytopenia syndrome infection is positive.
  8. 제4항에 있어서, 상기 확인 단계는 모세관 전기 영동, DNA 칩, 겔 전기 영동, 방사성 측정, 형광 측정 및 인광 측정으로 이루어진 군으로부터 선택되는 하나 이상에 의해 수행되는 것인, 중증열성혈소판증후군 감염의 진단을 위한 정보를 제공하는 방법.The method of claim 4, wherein the confirming step is performed by at least one selected from the group consisting of capillary electrophoresis, DNA chip, gel electrophoresis, radiometric measurement, fluorescence measurement and phosphorescence measurement. How to provide information for diagnosis.
PCT/KR2021/007243 2020-08-14 2021-06-10 Primer set for detecting severe fever with thrombocytopenia syndrome virus, and diagnostic kit using same WO2022035033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0102539 2020-08-14
KR1020200102539A KR102400491B1 (en) 2020-08-14 2020-08-14 Primer Sets for Detecting Severe Fever with Thrombocytopenia Syndrome Virus and Diagnostic kit Using Thereof

Publications (1)

Publication Number Publication Date
WO2022035033A1 true WO2022035033A1 (en) 2022-02-17

Family

ID=80247084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007243 WO2022035033A1 (en) 2020-08-14 2021-06-10 Primer set for detecting severe fever with thrombocytopenia syndrome virus, and diagnostic kit using same

Country Status (2)

Country Link
KR (1) KR102400491B1 (en)
WO (1) WO2022035033A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170111935A (en) * 2016-03-30 2017-10-12 배재대학교 산학협력단 PNA probe for detecting causative gene mutation of Wilson disease and the method of diagnosis using the same
KR20190037027A (en) * 2017-09-28 2019-04-05 충북대학교 산학협력단 Primer set for detection of SFTSV and SFTSV detection method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170111935A (en) * 2016-03-30 2017-10-12 배재대학교 산학협력단 PNA probe for detecting causative gene mutation of Wilson disease and the method of diagnosis using the same
KR20190037027A (en) * 2017-09-28 2019-04-05 충북대학교 산학협력단 Primer set for detection of SFTSV and SFTSV detection method using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "National Academy of Environmental Sciences. Part 1: Prevention, treatment and diagnosis of severe fever with thrombocytopenia syndrome (SFTS)", GUIDELINES FOR THE PREVENTION AND CONTROL OF DISEASES ENDEMIC TO WILD ANIMALS, NATIONAL ACADEMY OF ENVIRONMENTAL SCIENCES, KOREA, no. NIER-GP2016-081, 1 April 2016 (2016-04-01), Korea, pages 1 - 33, XP009534504 *
CHAE JEONG-BYOUNG, KIM TAE-HEE, JUNG JEE-HO, PARK YOON-JI, PARK JIN-HO, CHOI KYOUNG-SEONG, YU DO-HYEON, PARK BAE-KEUN, CHAE JOON-S: "Prevalence of severe fever with thrombocytopenia syndrome virus among ticks surveyed at Mt. Gwanak, Korea", KOREAN JOURNAL OF VETERINARY RESEARCH, vol. 57, no. 3, 30 September 2017 (2017-09-30), pages 169 - 174, XP055900364, ISSN: 2466-1384, DOI: 10.14405/kjvr.2017.57.3.169 *
SEO JANG-HOON, JEON BO-YOUNG, MONOLDOROVA SEZIM, LEE IN-YONG: "Seasonal Prevalence of Ticks at Bukhansan Dullegil and Detection of Severe Fever with Thrombocytopenia Syndrome Virus", KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE, vol. 52, no. 2, 30 June 2020 (2020-06-30), pages 143 - 149, XP055900360, ISSN: 1738-3544, DOI: 10.15324/kjcls.2020.52.2.143 *

Also Published As

Publication number Publication date
KR20220021674A (en) 2022-02-22
KR102400491B1 (en) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2016167408A1 (en) Method for predicting organ transplant rejection using next-generation sequencing
WO2016195382A1 (en) Next-generation nucleotide sequencing using adaptor comprising bar code sequence
WO2002095074A1 (en) Foot and mouth disease virus diagnostic and methods
WO2020256378A1 (en) Nucleic acid detection method
Zhang et al. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis
WO2022005255A2 (en) Simultaneous diagnosis method and kit for sars-cov-2 inducing coronavirus disease-19 and sarbecovirus using pna probe
WO2022010238A1 (en) Composition for determining false positives by using specific artificial nucleotide sequence and method for determining false positives by using same
WO2022035033A1 (en) Primer set for detecting severe fever with thrombocytopenia syndrome virus, and diagnostic kit using same
WO2016056796A1 (en) Kit for detecting avian influenza viruses at high sensitivity, probe composition and genetic chip for detecting avian influenza viruses for same, and method for detecting avian influenza viruses using same
WO2017191871A1 (en) Method and device for determining reliability of variation detection marker
WO2021225424A1 (en) Composition for detecting coronavirus-19 and kit for detection thereof
WO2011142646A9 (en) Method for detecting hpv (human papilloma virus) and genotype thereof
WO2020171596A1 (en) Composition for detecting ganoderma sp. microorganism and diagnosing root rot disease, and method using same
WO2020153673A1 (en) General-purpose primer sets for detecting flaviviruses and use thereof
WO2021091211A1 (en) Whole genome detection method using whole genome amplification of mers corona virus, and diagnostic kit
WO2021201601A1 (en) Pna probe and primer for detection of sars-cov-2 causing covid-19 by rt-lamp, and method for determining infection by using same
WO2020054906A1 (en) Method for designing primer for detecting target gene
WO2012002594A1 (en) Diagnostic primer for the hepatitis c virus, probe, kit including same, and method for diagnosing the hepatitis c virus using the kit
WO2013147352A1 (en) Method using restriction fragment mass polymorphism to detect genetic mutation that causes hiv drug resistance
WO2019194640A1 (en) Molecule-indexed bisulfite sequencing
WO2020096247A1 (en) Method for preparing probe for detecting mutation derived from cells in tissues of breast cancer and detection method
WO2024101758A1 (en) Novel nucleic acid isothermal amplification method using extension-mediated self-folding
WO2020171603A1 (en) Composition for detecting microorganism of genus ganoderma and diagnosing basal stem rot and method using same
WO2023140596A1 (en) Chikungunya virus universal primer set for whole genome amplification and diagnostic kit using same
WO2020171598A1 (en) Composition for detecting microorganism of genus ganoderma and for diagnosing basal stem rot, and method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21856040

Country of ref document: EP

Kind code of ref document: A1